The shotgun approach to trying to find a technique that improves labels from the crowd
A TALE OF THREE TECHNIQUES

• How can we improve beyond majority voting with the provided workers?
 – Ideas:
 • Employ more workers
 • Play some statistical games
 – Find the unreliable workers and discount them
 • Play some more statistical games
 – Find the unreliable workers and discount them…
 – And at the same time try to learn classifiers from the data
RUN 1: STATISTICAL GAMES

• There is a stack of research on using generative probabilistic models of workers to improve over majority voting.
 – Goes all the way back to a paper in 1977/78!

• Basic Idea:
 – Estimate worker reliability and thus better estimates of the true response

• More complex models incorporate item difficulty, etc.
RUN 1: STATISTICAL GAMES

• We picked an off-the-shelf model by Paul Mineiro @ Microsoft
RUN 2: CROWD & EXPERTS

• Idea: Generate additional labels, and use straight majority voting.

• Employ crowd workers to re-label the images that had more than 2 “NotSure” answers
 – Used the CrowdFlower platform
 – 824 additional responses from 421 images
RUN 2: CROWD & EXPERTS

• Get two fashion “experts” to label 1000 randomly selected images
RUN 2: CROWD & EXPERTS

- Get two fashion “experts” to label 1000 randomly selected images
RUN 2: CROWD & EXPERTS

• Get two fashion “experts” to label 1000 randomly selected images

• Labelled images independently & then conferred on the ones which they disagreed

Fashion Experts

Maribel

Elena
RUN 3: CROWD, EXPERTS & STATISTICAL GAMES

• Use the run #1 PGM with the additional data from run #2
 – Use the expert labels to “clamp” the model during training.
Run 4: Crowd, Experts & More
Statistical Games with Text Features

• Apply another PGM by Paul Mineiro which extends the previous one with features

\[
\begin{array}{c}
\gamma \\
W \\
\alpha \\
I \\
\psi \\
\beta \\
z
\end{array}
\]

Observed features (we used BoW from the titles, tags, descriptions, contexts and notes)

• In learning the model parameters, the features are used to learn a classifier, which in turn informs the model parameters for the next iteration.
RUN 5: CROWD, EXPERTS & MORE STATISTICAL GAMES WITH TEXT & VISUAL FEATURES

• Same as run #4, but add visual features to the mix
 – 2x2-4x4 PHOW from dense SIFT quantised into 300 visual terms

Observed features
(BoW from the titles, tags, descriptions, contexts and notes + PHOW)
RESULTS AND OBSERVATIONS

<table>
<thead>
<tr>
<th>Run #</th>
<th>Label 1 F1 Score</th>
<th>Label 2 F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7352</td>
<td>0.7636</td>
</tr>
<tr>
<td>2</td>
<td>0.8377</td>
<td>0.7621</td>
</tr>
<tr>
<td>3</td>
<td>0.7198</td>
<td>0.7710</td>
</tr>
<tr>
<td>4</td>
<td>0.7097</td>
<td>0.7528</td>
</tr>
<tr>
<td>5</td>
<td>0.6427</td>
<td>0.6026</td>
</tr>
</tbody>
</table>
RESULTS AND OBSERVATIONS

<table>
<thead>
<tr>
<th>Run #</th>
<th>Label 1 F1 Score</th>
<th>Label 2 F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7352</td>
<td>0.7636</td>
</tr>
<tr>
<td>2</td>
<td>0.8377</td>
<td>0.7621</td>
</tr>
<tr>
<td>3</td>
<td>0.7198</td>
<td>0.7710</td>
</tr>
<tr>
<td>4</td>
<td>0.7097</td>
<td>0.7528</td>
</tr>
<tr>
<td>5</td>
<td>0.6427</td>
<td>0.6026</td>
</tr>
</tbody>
</table>

Additional data **really** helped with the first label, but not the second.
Results and Observations

<table>
<thead>
<tr>
<th>Run #</th>
<th>Label 1 F1 Score</th>
<th>Label 2 F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7352</td>
<td>0.7636</td>
</tr>
<tr>
<td>2</td>
<td>0.8377</td>
<td>0.7621</td>
</tr>
<tr>
<td>3</td>
<td>0.7198</td>
<td>0.7710</td>
</tr>
<tr>
<td>4</td>
<td>0.7097</td>
<td>0.7528</td>
</tr>
<tr>
<td>5</td>
<td>0.6427</td>
<td>0.6026</td>
</tr>
</tbody>
</table>

The worker PGM didn’t benefit from the additional data for label 1, but there was a minor improvement for label 2.
RESULTS AND OBSERVATIONS

<table>
<thead>
<tr>
<th>Run #</th>
<th>Label 1 F1 Score</th>
<th>Label 2 F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7352</td>
<td>0.7636</td>
</tr>
<tr>
<td>2</td>
<td>0.8377</td>
<td>0.7621</td>
</tr>
<tr>
<td>3</td>
<td>0.7198</td>
<td>0.7710</td>
</tr>
<tr>
<td>4</td>
<td>0.7097</td>
<td>0.7528</td>
</tr>
<tr>
<td>5</td>
<td>0.6427</td>
<td>0.6026</td>
</tr>
</tbody>
</table>

The joint modelling with text features didn’t help, but didn’t hurt to much (over run #3). Visual features didn’t work so well though.
RESULTS AND OBSERVATIONS

<table>
<thead>
<tr>
<th>Run #</th>
<th>Label 1 F1 Score</th>
<th>Label 2 F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7352</td>
<td>0.7636</td>
</tr>
<tr>
<td>2</td>
<td>0.8377</td>
<td>0.7621</td>
</tr>
<tr>
<td>3</td>
<td>0.7198</td>
<td>0.7710</td>
</tr>
<tr>
<td>4</td>
<td>0.7097</td>
<td>0.7528</td>
</tr>
<tr>
<td>5</td>
<td>0.6427</td>
<td>0.6026</td>
</tr>
</tbody>
</table>

These are strangely similar... why?

In our PGMs we assumed this was a binary labelling problem, but it’s really multi-class...
SOME THOUGHTS FOR DISCUSSION

• Were the questions asked of the workers too subjective?
 – Is asking “is this a fashion image” more subjective than asking if a certain fashion item is present in the image?
 • This might explain why our additional crowdsourcing had such a big effect on the first label, but virtually no effect on the second
 – How much do the example images shown to the workers bias their scoring?
 • Is the domain of fashion images too big to “capture” by a few samples?
SOME THOUGHTS FOR DISCUSSION

- Why don’t the PGMs seem to fit well?
 - We’d at least expect the label 1 score for the third run to be near that of run 2.
 - Usual reasons given:
 - The PGM doesn’t model the process well
 - Other published work shows these models to work though… what’s special about our task?
 - The data is bad and no amount of statistical tricks can make it better
 - Difficult to prove/disprove, but if it is bad, why is it bad?
ANY QUESTIONS OR COMMENTS?