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Abstract

Social networks characterise the set of relationships amongst a pop-

ulation of social agents. As such, their structure both constrains and

is constrained by social processes such as partnership formation and the

spread of information, opinions and behaviour. Models of these coevolu-

tionary network dynamics exist, but they are generally limited to specific

interaction types such as games on networks or opinion dynamics.

Here we present a dynamic model of social network formation and

maintenance that exhibits the characteristic features of real-world social

networks such as community structure, high clustering, positive degree

assortativity and short characteristic path length. While these macro-

structural network properties are stable, the network micro-structure un-

dergoes continuous change at the level of relationships between individ-

uals. Notably, the edges are weighted, allowing for gradual change in
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relationship strength in contrast to more abrupt mechanisms, such as

rewiring, used in other models.

We show how the structural features that characterise social networks

can arise as the result of constraints placed on the interactions between

individuals. Here we explore the relationship between structural prop-

erties and four idealised constraints placed on social interactions: space,

affinity, time, and history. We show that spatial embedding and the sub-

sequent constraints on possible interactions are crucial in this model for

the emergence of the structures characterising social networks.

1 Introduction

Patterns of human interactions are often characterised as social networks. In

such networks, individuals are represented by network nodes and are connected

by a network edge (a link) if they interact with each other in some way (Newman,

2010). The nature of the interactions being represented depends on the setting

considered. Network connections might represent mere proximity between in-

dividuals, a history of explicit interactions of some type, e.g., sexual contacts

(Liljeros et al., 2001), face-to-face meetings (Cattuto et al., 2010), phone calls

(Onnela et al., 2007) or online interactions (Grabowski, 2007; Leskovec and

Horvitz, 2008; Szell and Thurner, 2010). Or they might be limited to represent-

ing interactions with a specific function, such as one individual seeking advice

from another. It is often appropriate to attribute a strength or weight to each

network connection, since some social interactions may be stronger or take place

more frequently than others (Barrat et al., 2004, 2005).

Because real social behaviour changes over time, social networks are inher-

ently dynamic in nature. Each node’s number of network neighbours (its de-

gree), the identity of these neighbours as well as the strengths of the connections
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may change over time as a result of the underlying social processes, behavioural

decisions and externalities that shape social interactions. It has been shown

that incorporating the dynamics of the interaction structure in models of social

behaviour influences the observed outcomes (Bravo et al., 2012).

Although the structure of a social network may tend to be constantly chang-

ing in terms of which individuals can be said to be connected to which others,

the overall aggregate statistical properties of the network may be remarkably

stable (Bryden et al., 2011). While individual nodes and edges appear and dis-

appear over time, properties such as connectivity, clustering (how likely it is for

individuals to have mutual friends), degree distribution or degree assortativity

(correlation between the number of friends that an individual has and the num-

ber of friends its friends have) tend to remain characteristic of social networks

in general (Newman, 2002; Toivonen et al., 2006; Wong et al., 2006).

While existing network models have tended to concentrate on generating

a static topology that matches the statistical properties of some class of real-

world network (Barrat et al., 2005; Toivonen et al., 2006; Wong et al., 2006),

it would also be desirable for a dynamic model to exhibit these properties as a

consequence of idealised ongoing social dynamics within the model.

Such a model would allow the exploration of research questions such as: To

what extent do the stable aggregate properties of social networks arise from

the local interactions between individuals? What properties must individuals

have and be sensitive to in order for appropriate structures to form? How

stable are these structures to perturbations of various kinds? In this paper we

take some steps towards such a dynamic model of social network formation and

maintenance.

There are of course a number of approaches that can be taken to model

construction in this situation (Levins, 1966). Our aim for this paper is not to
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present an empirically calibrated model of a specific social process, but rather

to present a simple heuristic or conceptual model (Oreskes et al., 1994) that

reflexively links network-mediated processes of social interaction with socially

mediated processes of network change. This style of model is not intended to

allow us to make predictions about real social networks. Instead its aim is to

allow us to better understand how different theoretically motivated constraints

on social interaction might combine to influence the structure and dynamics of

social networks.

Given that there are still relatively few models in this area, and those that

do exist tend to concentrate on either strategic interactions between agents or

spreading processes on social networks, it is appropriate to ask which (if any)

typical properties of social networks tend to arise robustly from simple, local,

network-mediated constraints on basic social contact, and which do not. To

make sense of such a model we must build a bridging account that relates how

local interactions give rise to network structure, and how network structure

feeds back on local interactions. Such a bridging account can then be tested

through directed empirical enquiry into real social networks.

In this paper we present a model that takes the first steps on this path,

demonstrate the conditions under which it has appropriate system-level proper-

ties that arise from ongoing dynamic interactions and explain this relationship

in terms of the parameterised constraints that govern system behaviour.

In the next section we locate our model with respect to existing network

models that have relevance for social systems. Subsequently we specify our

dynamic network model and report some results that describe its behaviour.

We explain these results, and conclude with a discussion of the model and

directions for future work.

4



2 Social Network Models

As outlined in the previous section, we argue that a dynamic social network

model should generate a social network where the low-level topological struc-

ture is subject to change as the result of ongoing processes that are idealisations

of social behaviours, while the high-level statistical characteristics of the net-

work topology, e.g., clustering or assortativity, are relatively stable and tend

to lie within the range of values observed for the appropriate real-world social

networks. This dynamic model approach contrasts with static network mod-

els which aim to efficiently grow or generate a fixed topology whose statistical

properties are consistent with empirical social network data.

Real-world social networks are relatively sparsely connected and exhibit high

levels of clustering, positive assortativity with respect to degree, community

structure and short characteristic path length (meaning most individuals can

reach most other individuals through very few intermediate contacts) (Newman,

2002; Newman and Park, 2003; Toivonen et al., 2006). There has been some

debate as to whether the degree distribution in social networks follows a power-

law or not, exhibiting a few nodes with very high degree even though most

nodes have a low degree. This seems to depend on the interaction considered

and data on communication and contact networks generally lack a power law’s

long-tail and if it is present there is a cut-off for higher values (Amaral et al.,

2000). This is due to the fact that in these types of social networks, contacts

require active maintenance in order to persist, in contrast to, e.g., online social

networks, where after “friending” someone, the contact may persist without

maintenance.

Many models that are able to grow networks that mimic social network

structure exist and the networks resulting from these models match the charac-

teristic topological features observed in real-world social networks. While some
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models of social networks grow the network in a dynamic fashion, the growth

process is typically a means to achieve some class of final network structure

rather than an attempt to model the human social behaviours that generate

real social networks. One approach used in these models is to grow the network

by connecting one node at a time to the already existing nodes until the desired

network size has been reached (Holme and Kim, 2002; Toivonen et al., 2006;

Vázquez, 2003). In real social networks new connections are often made when

an individual brings two of their friends into contact, which as a result form a

connection between them. This triangle closure is an important process and is

used by all of the models discussed here to achieve strong clustering (meaning

connected nodes are likely to have network neighbours in common (Newman,

2010). In other models the dynamics are a very high level abstraction of hu-

man behaviour but rely on periodic removal of randomly chosen edges or nodes

(including all their edges) in order to maintain the system in a steady state

(Davidsen et al., 2002; Ebel et al., 2002; Kumpula et al., 2007; Marsili et al.,

2004). Models of coevolutionary or adaptive networks focus on the mutual feed-

back between processes constrained by the network and topological change as a

result of individual behaviour (Gross and Blasius, 2008; Skyrms and Pemantle,

2000). These models rely on a specific process taking place on the network

such as opinion dynamics or pairwise games (Egúıluz et al., 2005; Holme and

Newman, 2006; Takács et al., 2008; Van Segbroeck et al., 2009) which restricts

their applicability to the study of very specific social dynamics.

With the exception of Kumpula et al. (2007) and Skyrms and Pemantle

(2000), all models described here do not allow for weighted edges, despite the

fact that this is important if we want to model gradual changes of the topology,

or represent so called weak ties (Granovetter, 1973).

An important factor in some models of social networks is spatial embedding
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of the nodes, often accompanied by spatial constraints that limit interactions

to occur only between pairs of spatially proximal nodes (Boguñá et al., 2004;

Wong et al., 2006). A model using a random geometric graph (Penrose, 2003)

is presented in Hamill and Gilbert (Hamill and Gilbert, 2009). In their model

a social reach of interaction is defined for each node as a circle of a certain

radius centred on the node’s spatial location and two nodes may only interact

if their spatial reaches overlap. These models generate networks using spatial

constraints but do not attempt to model dynamics.

In the model presented in this paper we adopt a similar spatial constraint on

interaction, but also include idealised social interactions that allow for triangle

closure. Furthermore, we explicitly model the dynamic change of the network as

a result of mutual, coevolutionary feedback between the network topology and

individuals’ decisions and actions. The model’s behavioural rules are designed

such that they reflect certain aspects of human social behaviour. This allows

us to understand how individual behavioural tendencies lead to macro-level

topology and which factors of this behaviour are important for creating structure

observed in the real-world.

3 The RASH Model

In this section we will introduce an algorithm to establish and maintain a dy-

namic social network using only local rules. We will introduce the algorithm

and its relevant parameters and provide context for the modelling choices taken.

The core of the model is very simple. Each timestep, every individual invites

their network neighbours to gatherings where connections between individuals

are made and strengthened. This mode of social interaction allows for an in-

dividual’s mutual friends to be introduced to each other, resulting in triangle

closure. It also makes possible the maintenance of connections between people
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who would not actively maintain contact, which could be a result of constraints

of distance or disinterest.

Four primary factors influence the design of the model, reflecting constraints

that operate on real-world social interactions. Each factor is governed by a single

model parameter, R, A, S and H:

1. Interactions are constrained by a limited interaction range: individuals

separated by a spatial distance greater than R cannot accept each others’

invitations.

2. Interactions are constrained by affinity : with probability A there is enough

affinity between a pair of individuals to interact. With probability 1− A

there is a lack of affinity and the individuals will not accept each oth-

ers’ invitations. They can however, meet if both follow a mutual friend’s

invitation.

3. Interactions are constrained by a limited number of time slots available:

each individual can accept at most S invitations per timestep.

4. Interactions are constrained by history : invitations tend to be accepted

when the individuals involved have a strong history of interaction over the

preceding H timesteps.

We will describe these four constraints on the model in more detail before

formally specifying the algorithm that implements them.

First, real-world social networks are embedded in space and many of the

properties that define social networks are linked to spatial embedding (Barnett

et al., 2007; Bullock et al., 2010; Herrmann et al., 2003). It has been shown

that people are more likely to interact with individuals spatially close to them

(Illenberger et al., 2012). We therefore embed nodes in space by assigning them

a random position in a two-dimensional bounded square arena. Each individual
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may only invite another to its gathering if the distance between them is not more

than R. This is similar to the spatial restriction used by Hamill and Gilbert

(Hamill and Gilbert, 2009, 2010) and following them we will refer to it as the

social reach or reach of an individual. In their model, two individuals interact

if their reaches overlap therefore leading to an interaction distance of up to 2R.

In addition to this constraint on direct interactions, individuals in our model

can interact with friends of their friends, even if these individuals are located

beyond their own direct social reach, since they can meet at a mutual friend’s

gathering. This relaxes the limitations on triangle closure present in Hamill’s

social reach model.

In addition to spatial distance, pairs of individuals may be separated by

issues of personality or belief. To reflect this, each pair of individuals is assigned

an affinity value describing how well they get along. This value is mutual and

therefore symmetrical, and, once assigned, it remains constant for the duration

of a run. For simplicity we only distinguish between two cases. With probability

A, a pair of nodes have sufficient affinity to send invites to each other. With

probability 1−A, the pair’s affinity is not sufficient for invitations to be sent.

For most social systems, social interactions are limited by the time budgets

of the individuals involved (Miritello et al., 2013; Sutcliffe et al., 2012). In

general, individuals have more opportunities for social interactions than time

available to pursue these opportunities. We model this constraint by restricting

individuals to attend at most S gatherings per time step, chosen from amongst

the (typically greater than S) invites that they receive. They choose based on

affinity as well as relative familiarity (based on the previous encounters reflected

in the edge weight), similar to the mechanism of choosing interaction partners

described in the “Friends” models in Skyrms and Pemantle (2000).

Finally, real social connections must typically be actively maintained or they
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erode and eventually disappear (Cummings et al., 2006). A simple mechanism

to achieve this is to use a global decay process which reduces all edge weights

every time step. This can be difficult to calibrate, often leading to networks

either fragmenting completely if decay is too strong, or connecting fully if decay

is too weak.

Some models avoid this problem through occasionally removing nodes with

all their edges. This can be an effective global mechanism. However, it does not

allow for the gradual decay of connection strengths. Furthermore, this requires

a turnover of nodes. Depending on the time-scales considered, this can be a

realistic or unrealistic assumption. Here we focus on small groups of individuals

over relatively short periods of time where it is more realistic to assume a fixed

number of nodes.

Consequently, rather than implement decay or turnover processes, we have

chosen a localised mechanism inspired by the fact that friendships need to be

actively maintained. In this model each individual has a memory recording

their meetings with other individuals for each of the previous H time steps.

The number of encounters between two individuals i and j at timestep t is

denoted ht
ij and can range from 0 to S+1 occasions per timestep, the maximum

value corresponding to the situation where both individuals attend each others’

gatherings and also attend the same S − 1 gatherings hosted by their other

shared neighbours.

If two individuals have had no meetings in the last H timesteps, then there

is no edge between them, otherwise an edge exists with a particular strength

or weight. The weight of an edge between individuals i and j, is calculated as

wij = 1
H

H∑
t=1

ht
ij , summing the total number of meetings in the pairs recorded

interaction history hij and dividing this number by the history length H, yield-

ing the average number of encounters per time step. This gives us a value that
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is meaningful and allows for comparison between runs with different memory

lengths.

With the mechanics described, we can specify the model more formally, as

follows:

1. Each of N nodes is independently assigned a location, (xi, yi), selected

uniformly at random on a map of size M (only one parameter is needed

as we use a square map of area M2).

2. Every pair of nodes, (i, j), where i 6= j, is assigned a symmetric affinity,

aij = aji, set equal to one with probability A, and zero otherwise.

3. For every pair of nodes, (i, j), where i 6= j and the distance separating

them, dij , is not more than R, a connection is established by adding a

single meeting at a randomly chosen point, 0 < t < H in their interac-

tion histories, ht
ij and ht

ji, initialising the remainder of the history with 0

meetings.

4. For each simulated timestep t < tmax:

(a) For each pair of nodes, (i, j), invite j to i’s gathering if wij = wji > 0

meaning j is a current network neighbour of i, and aij = 1, and

dij ≤ R.

(b) For each node, i, accept at most S invitations, each selected with

probability proportionate to the edge weight wij .

(c) For each node, i, consider each pair of individuals (j, k) attending i’s

gathering (including i themselves), where j 6= k, and increment their

interaction history by one meeting in the most recent time slot, i.e.,

increment h0
jk and h0

kj by one.

(d) For each node, i, update their interaction history by shuffling more

recent values one step down the list and overwriting the oldest value
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hH , i.e.

∀t ∈ {0, 1, . . . ,H − 1} : ht+1
jk ← ht

jk

4 Topology and network dynamics

In this section we will present results obtained from the model introduced above,

analysing its dynamic behaviour and characterising the resulting networks and

their properties.

The networks obtained are typically sparse, exhibiting both densely con-

nected clusters and weaker bridges between clusters. Thus, the resulting net-

works exhibit community structure. An example network is shown in Figure 1

and in Table 1 we list the characteristic properties of networks generated with

the standard parameter setting of R = 30, A = 0.75, S = 3, H = 50 and

M = 200. Each value shown is the rounded average taken over 100 runs, with

the standard deviation shown in brackets. The values obtained for the statis-

tical measures match those of real-world social networks with high clustering,

positive assortativity with respect to degree and short characteristic path length

(Newman, 2003).

Figure 1 and Table 1 about here

The degree distribution is relatively broad, spanning an order of magnitude,

and centred around a characteristic value as has been observed for real-world

social networks where links require maintenance (Amaral et al., 2000). The

maximum degree has a cut-off, which has been suggested as another important

characteristic of interaction networks (Figure 2) (Hamill and Gilbert, 2010).

Figure 2 about here

The network’s properties scale appropriately. For instance, for a larger sys-

tem consisting of N = 1000 nodes (the size of the grid was increased appro-

priately to ensure the density of nodes remained the same for N = 100 and
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N = 1000), we observe the same structures as before, leading to comparable

values of clustering, assortativity and average degree (see Table 1 for values and

Figure 3 for an example network). Since these measures are linked strongly to

the connectivity, they are mainly constrained by the spatial restrictions placed

on the interactions. Therefore, the increased number of nodes does not result in

growth of the existing structure but in the presence of more of the local struc-

ture previously observed. They are linked together to form a larger network,

leading to increased diameter, shortest path length and number of components

(see Figure 4). The increase in those measures is due to the fact that long range

links are not possible in the model because of the restrictions on social reach,

thus prohibiting the existence of edges bridging long distances.

Figure 3 about here

Figure 4 about here

The spatial constraints imposed by finite reach encourage the high clustering

and community structure typical of a social network. However, the networks are

not just random geometric graphs with threshold distance, R. Gatherings bring

about longer range edges with a length up to 2R, but this means that these

longer range edges can only be created if they close a triangle. These edges

are able to persist only as long as connections to the shared neighbour that

facilitated the edge creation continues to exist. Because of this dependence on

other edges we will refer to these edges as secondary edges and to the edges with

length less than R (which can be directly maintained by mutual invitation) as

primary edges. Since edges with length between R and 2R have to be maintained

by a mutual friend, many nodes separated by such a distance are not connected

(see Figure 5). The influence of affinity results in not all possible primary edges

being present since as some individuals will not invite each other. Furthermore,

the stochasticity of the meeting process in combination with the time constraint

13



can lead to a primary edge being lost in which case it can only be recovered if

the pair of nodes have at least one common neighbour.

Figure 5 about here

Comparing the weights of existing edges, the secondary edges that do exist

tend to be weaker than the primary edges (see Figure 6). This stems from

the fact that two individuals i and j at distance R < dij < 2R are unable

to reinforce their connection by attending each others’ own gatherings and also

that the increased distance between them ensures that they share fewer common

neighbours.

Figure 6 about here

Regarding the dynamics of the system, the topological measures reach equi-

librium after H timesteps as shown in Figure 7. For this figure, the system is

perturbed by removal of a large number of edges (200 edges) at step t = 1000.

The system recovers quickly after H timesteps, with the measures returning to

values close to their pre-perturbation values, demonstrating that the system dy-

namics are somewhat robust to external perturbation. Complete recovery from

perturbation is not possible in the case where the removal of edges fractures

the network into more components as the process of triangle closure cannot re-

connect a component that has been split into two disconnected fragments. The

observed increase in number of components after the perturbation shows that

fragmentation of the network does indeed happen. The resulting decrease in

degree is an obvious consequence as now fewer potential neighbours are avail-

able to some of the nodes. In contrast, the reduction in diameter and average

shortest path length result from the way these measures are calculated - we

measure the characteristic path length and the diameter considering only the

shortest paths between pairs of nodes that lie within the same network com-

ponent, rather than leaving these values undefined for networks that involve
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more than one component. Consequently, network fragmentation created by

the perturbation will tend to permanently reduce these values.

Figure 7 about here

The system reaches a quasi-stable equilibrium in which the statistical prop-

erties of the topology do not change, whereas the exact topology described by

edges and their weights is subject to random fluctuations. This is exemplified

in Figure 6 where the change of the edges weights of all edges attached to a

randomly selected node in a single run are shown. The edge weights fluctuate

over time due to the stochasticity in the meeting process generated by limiting

the number of invites accepted to S and having only a finite memory of length

H. The magnitude of the fluctuations can be controlled by changing H. A

higher value (longer memory) means that the edge weights are calculated over

a larger window of time, leading to less volatility (Figure 6).

5 Exploring the Parameter Space

The model has four main parameters that control network dynamics and, con-

sequently, influence topology: the social reach, R; the probability of affinity, A;

the maximum number of invitations accepted per time step, S; and the length

of the interactions histories, H. In this section we explore the effect that varying

these parameters has and determine the portion of parameter space for which

the model produces networks with desired characteristics.

Low values of H lead to more noise and greater fluctuation in the edge weight

dynamics. This can be observed in Figure 6 which shows the dynamics of the

edge weights of all edges attached to a particular node for one run where H = 50

and another with H = 5. The higher value of H shows substantially smaller

fluctuations. More fluctuation in the edge weights leads to more fragmentation

events where a component is split in two. Since components cannot fuse, de-
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creasing H leads to an increase in the number of components (see Figure 8).

For very low values (H = 2) the network is fragmented into many components

and displays almost maximal clustering since only fully connected cliques can

persist in the presence of high noise.

Figure 8 about here

Conversely, increasing H allows each node to keep track of an increased

number of relationships, leading to and increase in the maximum and average

degree and flattening the degree distribution (as shown in Figure 9). Sufficiently

high values of H allow nodes to remember enough neighbours for the system

to transition from a collection of disconnected components where only small

cliques with strong links can persist to a network with community structure

where weak ties can exist as well.

Figure 9 about here

The parameter R increases the social reach of each node, leading to more

potential interactions. The length of network edges increases indicating that

relationships are able to span greater distances. For low R, networks are sparse

and fragmented into many components as each node has only a limited number

of potential interaction partners (see top row of Figure 10). As R increases,

components connect until the network consists of one component. This point is

reached at around R = 40. At R = 30 the majority of nodes belongs to a single

connected component, however, some singleton nodes might still be present. At

this point the diameter and characteristic path length are at their maximum, as

the largest component spans the whole network (leading to a higher diameter

than the average diameter of several smaller components) but the social reach

is still too small to allow direct connections between pairs of nodes on opposite

sides of the space. Note that this is the region where the previously increasing

clustering decreases somewhat, as the previously isolated components connect
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without all triangles being able to close. Note that clustering stays fairly high

in the system across all parameter settings shown, due to the triangle closure

mechanism present (Figure 11).

Figure 10 about here

Figure 11 about here

Increasing the value of R further weakens the influence of spatial proximity

until networks eventually transition to random networks. As the model makes

this transition, assortativity decreases until it becomes negative and clustering

increases as more and more of the open triangles are no longer prevented from

closing by spatial constraints on interactions. The value of R at which the net-

work transitions to a random network decreases for increasing H (see Figure

12). This means that realistic looking social networks are obtained for interme-

diate values of the parameter R of approximately 20 < R < 70, with the exact

range depending on the values of the other parameters as well as the desired

density of the resulting social network.

Figure 12 about here

Increasing R or H leads to higher degree. Average node strength, however,

is constrained by the parameter S. Figure 13 shows that increasing R only

increases the average strength up to a certain point at which it is limited by S.

Figure 13 about here

As mentioned, the maximum weight of each edge is S+1, therefore increasing

S increases the possible strength of the nodes. This effect is most obvious for

the bottom row of Figure 10 where the edges are plotted thicker in proportion

to their increasing weights. For R = 30 which is the base parameter setting for

the network presented here, increasing S from 1 to 2 and then 3 first leads to an

increase in degree. This increase in connectivity also leads to a decrease in the

number of components. Increasing S further to 4, 5 and 6 has a much smaller
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effect on the degree as the number of nodes in reach is limited by R = 30.

Therefore, the increase in “socialising time” leads to an increase of the average

weight as the extra time can not be spent on creating new relationships, so

instead it is spent strengthening existing ones. (Figure 14)

Figure 14 about here

6 Discussion

We have presented a model that generates and maintains a weighted social

network as a result of the interplay of local interactions, which have been chosen

in a way to resemble human behaviour. The resulting network is dynamic and

reaches a quasi-stable equilibrium in which global topology measures equilibrate.

Locally, edges continue to change in weight, the magnitude of these fluctuations

being controlled by the parameter H. We have discussed the importance of

including a mechanism to balance edge formation and deletion and have shown

that using a finite memory of past interactions provides an elegant way to both

maintain a sparse network and generate meaningful, dynamic edge weights.

This stands in contrast to existing models that use system-level events such

as random node or edge removals that are not a direct result of individuals’

decisions.

We have shown that some of the characteristic features of social networks

can result from spatial constraints being placed on the interactions. In this

model, the influence of the spatial constraint is controlled by the parameter R.

Increasing R produces a transition from almost empty networks (when most

interactions are prohibited) to networks resembling social networks, eventually

transitioning to random networks when spatial embedding ceases to be influ-

ential. Importantly, the range of R for which networks exhibiting the defining

features of social networks are obtained is reasonably broad and within that
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range, R can be used to match the density of the network to a real-world setting.

Furthermore, we have discussed how varying the amount of time available for

maintaining connections (S) influences the topology and regulates the weights

and thus the strength of the nodes.

So far we have established that key constraints on social dynamics imposed

by the model can bring about and then dynamically maintain key properties of

social networks: restrictive spatial embedding (R) achieves sparseness, cluster-

ing, assortativity, and community structure; the distribution of social affinity

(A) allows for structural holes to be created as some triangles remain open;

agent time budgets (S) regulate the number and strength of relationships; and

the time depth of agent social histories (H) regulates the stability of local re-

lationships. This bridging account, reflexively linking local processes to global

system properties, establishes the model as a framework within which we can

explore questions relating social network structure and dynamics.

For instance, we might concentrate on real-world social network properties

that the model fails to generate: what must be added to the model in order to ob-

serve long-tailed degree distributions (which are typical only of social networks

where relationships can be maintained at no cost), or complicated hierarchical

community structure, or ongoing change in the identity of the highest degree

nodes. The fact that the model has ongoing endogenous dynamics also makes

it possible for the system to react to external perturbations. Therefore, the

model could be used as a basis for studying the coevolutionary dynamics of so-

cial processes and social networks subject to exogenous influences such as birth,

death, and changes in node properties such as affinity or location. Additionally,

the model presents a dynamic network mechanism into which other sociological

processes can be integrated, thus providing a framework to study coevolution-

ary interaction of a sociological process and network evolution. While it in its
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current form does not allow us to investigate questions about details of human

social behaviour, it provides a basis for such exploration. In the future, we plan

to extend this work to study how social networks can fragment as the result of

an external perturbation, such as reversing a small number of affinity values.

To summarise, we have presented a model that captures the dynamics of a

weighted social network using simple but plausible local behavioural rules gov-

erning the interactions between individuals. We have shown that the constraints

placed on these interactions are crucial for the emergence of the topological fea-

tures that characterise real-world social networks such as high clustering, com-

munity structure and assortativity. We have argued that the ongoing dynamics

of the model make the model suitable as framework to study coevolutionary

interaction of a sociological process and network evolution.
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Kumpula, J., Onnela, J., Saramäki, J., Kaski, K., and Kertész, J. (2007).

22



Emergence of communities in weighted networks. Physical Review Letters,

99:228701.

Leskovec, J. and Horvitz, E. (2008). Planetary-scale views on a large instant-

messaging network. In Proceeding of the 17th International Conference on

World Wide Web, pages 915–924. ACM.

Levins, R. (1966). The strategy of model building in population biology. Amer-

ican Scientist, 54:421–431.

Liljeros, F., Edling, C., Amaral, L., Stanley, H., and Åberg, Y. (2001). The web
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J., and Barabási, A. (2007). Structure and tie strengths in mobile com-

23



munication networks. Proceedings of the National Academy of Sciences,

104(18):7332–7336.

Oreskes, N., Shrader-Frechette, K., and Belitz, K. (1994). Verification, valida-

tion, and confirmation of numerical models in the earth sciences. Science,

263(5147):641–646.

Penrose, M. (2003). Random Geometric Graphs, volume 5. Oxford University

Press.

Skyrms, B. and Pemantle, R. (2000). A dynamic model of social network for-

mation. Proceedings of the National Academy of Sciences, 97(16):9340–9346.

Sutcliffe, A., Dunbar, R., Binder, J., and Arrow, H. (2012). Relationships

and the social brain: Integrating psychological and evolutionary perspectives.

British journal of psychology, 103(2):149–168.

Szell, M. and Thurner, S. (2010). Measuring social dynamics in a massive

multiplayer online game. Social Networks, 32(4):313–329.
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Toivonen, R., Onnela, J., Saramäki, J., Hyvönen, J., and Kaski, K. (2006). A

model for social networks. Physica A, 371:851–860.

Van Segbroeck, S., Santos, F. C., Lenaerts, T., and Pacheco, J. M. (2009).

Reacting differently to adverse ties promotes cooperation in social networks.

Physical Review Letters, 102(5):058105.

Vázquez, A. (2003). Growing network with local rules: Preferential attachment,

clustering hierarchy, and degree correlations. Physical Review E, 67:056104.

24



Wong, L., Pattison, P., and Robins, G. (2006). A spatial model for social

networks. Physica A, 360(1):99–120.

Figure 1: An example network at t = 10, 000 for the standard parameter setting
R = 30, S = 3, H = 50, A = 0.75, and N = 100 on a map of size M = 200.
The network exhibits community structure with densely connected components,
which are linked together by weaker edges.
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N=100 N=1000
nodes∗ 98.49 (± 1.23) 992.06 (± 3.41)
edges 535.56 (± 56.76) 6153.70 (± 163.57)
clustering 0.75 (± 0.04) 0.71 (± 0.01)

weighted 0.25 (± 0.03) 0.20 (± 0.01)
transitivity 0.69 (± 0.04) 0.66 (± 0.01)
assortativity 0.49 (± 0.11) 0.55 (± 0.05)
shortest path 3.49 (± 0.75) 12.16 (± 1.78)
diameter 8.49 (± 2.23) 31.69 (± 5.89)
degree 10.88 (± 1.17) 12.41 (± 0.34)
strength 12.22 (± 0.37) 12.67 (± 0.09)
components 2.88 (± 1.39) 8.37 (± 2.96)

Table 1: Measures characterising the topology of the resulting networks for
network sizes N = 100 and N = 1000, showing mean (over 100 runs) and
standard deviation for each. (∗When calculating these measures singletons are
ignored, meaning only nodes with at least one edge are considered. Nodes
denotes the number of nodes that were not singletons and therefore included in
the calculation.)

Figure 2: The degree distribution of the network shown in Figure 1. The distri-
bution is broad, spanning an order of magnitude and limited for higher values,
as observed in real social networks.
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Figure 3: An example network with many nodes. Parameters are the same as
in Figure 1 except for the increased number of nodes N = 1000 and the size of
the map being enlarged to M = 632 to ensure the same node density as for the
run with fewer nodes. The resulting network exhibits the same characteristic
local structures as for N = 100 but inevitably has a larger diameter and longer
shortest path length due to longer range edges being prohibited by the spatial
constraint (see Table 1).

27



Figure 4: Topological measures for different network sizes N . Clustering,
strength and average degree and assortativity do not scale with N (apart from
for small values of N) while diameter, average shortest path length and the num-
ber of components increase with increasing N . All values shown are averages
over 20 runs. The map was enlarged with increasing N to keep the node den-
sity constant across different values of N according to M =

√
400 ·N , all other

parameters were kept constant to the standard parameter setting of R = 30,
A = 0.75, S = 3, and H = 50.
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(a) Primary edges present (b) Secondary edges present

(c) Primary edges missing (d) Secondary edges missing

Figure 5: Classes of edges within the network shown in Figure 1. Primary edges
are between nodes close enough to invite each other to gatherings (i.e. dij ≤ R).
Secondary edges are between nodes that may only interact at the gatherings of
mutual neighbours (i.e. R < dij ≤ 2R). A typical network features many but
not all of the possible primary edges and a much smaller fraction of the possible
secondary edges.
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(a) H = 50 (b) H = 5

Figure 6: Edge weights over time for all edges attached to a randomly chosen
node, shown for the interval t = 4000 to t = 5000 where the system has reached
global equilibrium where topological measures are stable but individual weights
continue to fluctuate. Primary edges are plotted in black, secondary edges
in a lighter shade (cyan). To highlight the effect of the history parameter H
on the stochastic fluctuations the settings H = 5 and H = 50 are shown,
displaying a much larger magnitude and frequency in fluctuations for shorter
history dynamics. All other parameters were set as in Figure 1
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Figure 7: Topological measures equilibrate rapidly, within H timesteps after
which initialisation effects have been removed. The measures recover following
disturbance at t = 1000 where 200 randomly selected edges are removed. The
parameters used were R = 30, S = 3, H = 50, A = 0.75, and N = 100, measures
are means taken over 100 runs.
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Figure 8: Number of components decreasing for increasing values of H (memory
length). Parameters used are R = 50, A = 0.75, S = 3 and M = 200, with 20
repeats per data point. Note that in contrast to Table 1, the calculation of the
number of components does include singletons.

(a) H = 2 (b) H = 4 (c) H = 8

(d) H = 16 (e) H = 32 (f) H = 50

Figure 9: Degree distributions for different values of H = 2, 4, 8, 16, 32, 50. Pa-
rameters are per Figure 8.
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Figure 10: Resulting networks after t = 10000 steps for H = 50, A = 0.75 and
varying R (rows, from top to bottom: R = 20, 30, 50, 70) and S (columns, from
left to right: S = 1, 2, 3, 4, 5), using the same placement of nodes for all runs.
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Figure 11: Topological measures changing in reaction to varying the social reach
R (R ranging from 10 to 70, 20 repeats per data point). Note that in contrast to
Table 1, the calculation of the number of components does include singletons as
we are considering parameter settings for which significant numbers of singletons
exist. Other parameters where set as in Figure 1.

34



Figure 12: Mean of assortativity (calculated over 20 runs per data point) show-
ing that the value of H influences the point at which the network transitions
towards a random network, crossing to negative values of assortativity. R rang-
ing from 50 to 120, shown for different values of H. S and A were set to the
standard parameter setting of S = 3 and A = 0.75.

35



Figure 13: Strength in reaction to varying R for different values of S, 20 repeats
for each data point, H = 50, A = 0.75. The average strength increases for
increasing R, with the maximum value reached being determined by the number
of slots available per timestep (S).
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Figure 14: Mean of average degree and edge weight (calculated over 20 runs per
data point) showing that increasing S initially leads to an increase in degree
and later (for S > 3) to increased average edge weight. Parameters used were
R = 30, A = 0.75 and H = 50.
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