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1 INTRODUCTION  

Railway tracks are commonly constructed with railpads that attenuate the level of vibration and 
impact transmitted to them from railway vehicles. The stiffness and damping properties of railpads 
have significant effects on track vibration and forces transmitted to the track substructure and 
underlying soil. When modelling track dynamic behaviour, it is most common to assume that these 
properties are linear and homogeneous. However, many studies, including Fenander (1997)

1
, 

Thompson et al. (1998)
2
, Maes et al. (2006)

3
, etc., have shown that railpads exhibit pronounced 

nonlinear behaviour and their properties are dependent on preloads, among other factors like 
frequency and temperature. Characterising these dependencies is, to a large extent, subjective to a 
particular data set and is by no means a generic process. Therefore, this process should be carried 
out with the scope set to particular applications, for e.g. in railway track dynamics, the scope may 
be to predict the vibration levels in a track for which experimental data is available for the railpads. 
 
The preload dependent behavior of a railway track with nonlinear railpads and ballast was studied 
by Wu and Thompson (1999)

4
. The preload dependent stiffnesses of the railpads were calculated 

using an equivalent continuous elastic foundation model. These were then used in a discretely 
supported track model in the frequency domain to obtain the track receptances and decay rates. 

 
In this paper, a similar process is followed but the analysis is carried out in the time domain. In 
section 2, the stiffness and damping properties of the railpad are characterised for a studded rubber 
railpad that is commonly used on European railway tracks. Emperical expressions for the static and 
dynamic stiffnesses for a railpad are derived based on experimental data. A time domain based 
nonlinear Finite Element model is then developed in section 3 which incorporates the nonlinear 
railpads. The model consists of a rail that is discretely supported on railpads with preload 
dependent stiffness and damping under combined static and dynamic load to study the effects of 
nonlinearity on track dynamics. The model is solved in the time domain using a time integration 
scheme. Results are presented for the track dynamic response for various preload levels in section 
4. 
 

2 RAILPAD STIFFNESS AND DAMPING PROPERTIES 

In this section, the static and dynamic load-displacement relationship of a railpad is presented. 
Based on experimental data presented in Thompson et al. (1998), empirical approximation is done 
for both the static and dynamic stiffnesses of a railpad using a Kelvin-Voigt visco-elastic model. This 
model consists of a spring and dashpot in parallel, with the spring representing the stiffness and the 
dashpot the damping properties of the railpad. Section 2.1 deals with the static stiffness whilst 
section 2.2 deals with the dynamic stiffness. 

 
2.1 Static stiffness of railpads 

Railpads have been found to exhibit strong nonlinear relationship between the applied static load 
and the corresponding displacement,

1,2
. In this section, the load-displacement relationship is 

characterised, and hence its static stiffness is described. Figure 1 shows a typical load-
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displacement ( up  ) curve and the associated stiffnesses that may result under the action of 

combined static and dynamic loading. 
 

 
Figure 1: Static up   curve showing the tangent and secant stiffnesses at a given set of ),( 00 up  

and and an example of the dynamic stiffness when a dynamic load is superimposed on the preload 
 
The force, p , on the railpad is a nonlinear function of the displacement, u , and can be described by 

a polynomial of degree   such that 

 


uauauauaup j
j  2

21)( ,                          (Eq. 1) 

 

where aa ,,1   are the coefficients and are obtained through the nonlinear curve fitting of experi-

mental data, and j  is a positive integer. In order to ensure that the fit between p  and u  is well 

conditioned, the approximation is done with p  being in kN and u  in mm. From Eq. 1 the secant 

stiffness, upks  / , and the tangent stiffness, dudpkt /  can be obtained. 

 
A seventh degree polynomial was found to sufficiently describe the up   relationship. The values 

of the polynomial coefficients obtained from the nonlinear curve fitting are: MN/m00.201 a , 

3
3 MN/m94.3a , 5

5 MN/m78.1a  and 7
7 MN/m28.3a .The coefficients of the polynomial 

that are not included are zeros. Note that when fully unloaded, the railpad possesses an unloaded 

stiffness of 1a  MN/m. 

 
In the construction of railway tracks, each railpad is preloaded by clips that hold it in place and by 
the weight of the rail that is supported within one fastener bay (i.e. 0.6 m length of rail). Wu and 
Thompson (1999)

4
 calculated the total force to be about 20.36 kN, for 60E1 rail. To account for this 

initial preload, the reaction force in the railpad due to external track loads are added to this preload. 
However, it is assumed that the railpad is in static equilibrium at this preload, and all displacements 
are taken with reference to this point. 

 
2.2 Dynamic stiffness of railpads 

In addition to the preload dependence of the stiffness of a railpad, the stiffness is also dependent on 
frequency. Thompson et al (1998)

2
 presented dynamic stiffness data for studded rubber railpads for 

five preload levels: 20, 30, 40, 60, and 80 kN, over a frequency range of 40-1000 Hz. Based on 
these data, approximations of the dynamic stiffness as a function of preload and frequency is 
derived using nonlinear curve fitting. A simple Kelvin-Voigt model is used here. 
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p

curve  nonlinear p-u

stiffness tangent

stiffnesssecant

0p
stiffnessdynamic

u



Proceedings of the Institute of Acoustics 
 
 

Vol. 35. Pt.1 2013 

 

Consider the railpad is subjected to a combined preload, 0p , and a dynamic load 

)exp( 01 tippdyn  . The preload will induce a static displacement, 0u , resulting in a tangent 

stiffness, tk  at this configuration. It is assumed here that the dynamic load on the railpad is a linear 

function of the resulting dynamic displacement, dynu , i.e. neglecting any nonlinearity that may result 

from the dynamic load amplitude. The dynamic reaction force on the railpad is dyndynt ucuk  , c

being the damping factor. The resulting dynamic stiffness is given by 
 

cikk tdyn 0 .                                                   (Eq. 2) 

 
Approximation of the railpad dynamic stiffness using Eq. 2 shows poor correlation with experimental 
data. However, better correlation is achieved when the theoretical dynamic stiffness is modified 
such that 

cikk tdyn 0                                                    (Eq. 3) 

 
where   is a positive factor. The parameters required from the approximation are thus   and c , 

since tk  can be calculated by differentiating Eq. 1. Values obtained for   range from 3.2-3.6 for the 

five preload levels, giving an average value of 3.4. A constant value of 3.6 was used by Wu and 
Thompson (1999) for all frequency range. The damping factor follows the form 
 

)1(0
rcc                                                     (Eq. 4) 

 

where 0c  is the damping factor at a reference preload value cp , N.s/m1066.14 3
0 c ,   is a 

ratio of the preload increment relative to cp , i.e. cc ppp /)(  and r  is the exponential preload 

influence and has a value of 1.74. The reference preload is taken as the initial preload on the 

railpad due to the clips and mass of rail; i.e. kN36.20cp . Figure 2 shows a comparison of the 

experimental and fitted dynamic stiffness of the railpad. Good approximation can be seen to exist 
between the data and Eq. (Eq. 3). 
 

 
 

Figure 2: Approximations of railpad dynamic stiffness plotted against frequency for various preload 
levels (lines) compared with data points from 

2
 (markers). ——, o: 20;  , □: 30 ; — • —,*: 40; 

  , x: 60 and •••••••••, +: 80 kN; 
 

One limitation of this Kelvin-Voigt model approximation is that the value constant value of   for all 

0f  Hz exhibits a sudden change from a relatively low stiffness value to a much higher stiffness 

even though the dynamic contributions are small at low frequencies. 
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3 NONLINEAR FINITE ELEMENT TRACK MODEL 

3.1 Model description 

Figure 3 is a time domain Finite Elements (FE) based model of a railway track in which the rail is 

modelled as an Euler-Bernoulli beam with bending stiffness, EI , and mass per unit length, m . The 

rail is discretely supported on railpads at regular intervals, d , (typically 0.6 m) and is simply 

supported at the ends. For the purpose of studying only the effects of railpad properties on the 
dynamic behaviour of the track, it assumed that all track layers below the railpads are much stiffer 
than the railpads and can therefore be assumed to be rigid.  

 

Figure 3: A model of a rail discretely supported on elastic foundation (railpad) and subjected to a 
non-moving combined static and dynamic load 

 
The track is subjected to a stationary load, placed vertically at the midpoint of the beam, directly 

over a railpad, i.e. at 2/NLx  . The load consists of a static component, 0P , and a dynamic 

component, )(tP . In order to investigate the dynamic behaviour of the track, )(tP  is defined as a 

harmonic function with amplitude, 1P , and angular frequency 00 2 f  , 0f  being the excitation 

frequency. Hence, the load on the track can be described by 
 

)2/()]exp([),( 010 NLxtiPPtxPT                             (Eq. 5) 

 
In the following sections, the discretisation of the rail, the system matrices and equation of motion of 
the track are presented. 
 

3.2 Discretisation of the beam and system matrices 

The rail is discretised into N  finite elements of length, L , each having two nodes and four degrees-
of-freedom (dofs), i.e. a vertical translation and rotation at each node. The length of each of these 

elements, L , is chosen such that qLd / , where q  is a positive integer. The track is composed 

of n  railpad bays, hence the total number of elements in the track is qnN  . The resulting 

number of nodes is 1N , number of dofs )1(2  NND  and number of railpads of 1 nND . 

The local stiffness and mass matrices for the ith beam element are given as 
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The local displacement and force vectors of the ith element are respectively given by 
 

T
iiiii uuuu },,,{ 2212212 u and T

iiiii PPPP },,,{ 2212212 P .             (Eq. 7) 

 
Global system matrices and vectors must be formed to describe the dynamic behavior of the track 
as a whole. This is considered in the next section. 

 
3.3 Assembly of global track matrices and equation of motion 

The global stiffness and mass matrices of the beam structure are assembled using compatibility 
conditions at the nodes, i.e. displacement, slope and bending moments are continuous. In this way, 
the local matrix components corresponding to the mutual nodes between two successive elements 
are overlapped. The assembly of the global matrices can be summarised in the following equations: 
 

; 
~

  and ; 
~
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iiiii KKKMMM          (Eq. 8) 

where M
~

 and K
~

 are DD NN   null matrices for the stiffness and mass of the beam respectively.  

In addition to the global mass and stiffness matrices for the beam, global stiffness and damping 
matrices of the railpads are formed as follows 

; 
~

  and ; 
~

1

}1)1(2,1)1(2{

1

}1)1(2,1)1(2{ 
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i

jjqjqP

N

i

jjqjq kc KKCC           (Eq. 9) 

where C
~

 is an DD NN   null matrix for the damping of the railpad, jj kc  and  are the preload 

dependent stiffness and damping. The total track stiffness matrix is thus PB KKK  . 

The differential equation of motion can now be written for the whole track structure. The differential 
equation of motion of a beam supported on a Kelvin-Voigt foundation is given by 

PKuuCuM   ,                                                (Eq. 10) 

Where u  and P  are the global nodal displacement and external force vector, P  consists of only 

one non-zero entry being ),( txPT . 

 

3.4 Solution of equation of motion 

The procedure for solving the differential equations of motion in Eq. 10 requires that the preloaded 
stiffnesses of the railpads be calculated based on the static load-displacement relationship and 
according to the magnitude of the static load. These are then used as input to study the dynamic 
behaviour of the track. 
 

3.4.1 Calculation of preloaded stiffnesses 

To obtain the preloaded stiffnesses of the railpads under the effect of the static load, the following 
nonlinear static equation needs to be solved 

00)( PuF                                                          (Eq. 11) 

Where )( 0uF  is the nonlinear reaction force vector; 000 uuKuF )()( , with )( 0uK  being the 

nonlinear static stiffness as a function of the static displacements, 0u , 0P  is the external nodal force 

vector consisting of 0P  as the only non-zero element, at the corresponding dof where the external 

load is applied. 
A simple Newton-Raphson iteration procedure is adopted to obtain the static displacements of the 
pads, and hence the preloaded stiffnesses. This procedure is summarised as 
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where )1( iK  is the consistent tangent stiffness matrix at the configuration corresponding to the 

static displacement 
)1( i

0u , for ‘ i ’ being the number of iterations. Convergence of Eq. 12 is 

achieved by satisfying a predefined convergence criterion that guarantees the degree of accuracy 
required for the solution. Once the static displacements of the pads have been obtained, the 
preloaded pad stiffnesses corresponding to these displacements are then computed. 
 

3.4.2 Solution for the dynamic response of the track 

The solution for the dynamic response of the track is carried out using the composite implicit time 
integration procedure presented by Bathe and Irfan-Baig (2005)

5
. The general stability of this 

scheme has been thoroughly discussed therein. 
 
Results are now presented in section 4 to study the effect the preload dependence of the railpad on 
the dynamic behaviour of the track. 
 

4 RESULTS AND DISCUSSIONS 

The parameter used for the numerical simulations are: 60E1 rail with mass and bending stiffness of 
2MN.m4.6,kg/m21.60  EIm , railpad spacing, m60.d  and the length of each element

m30 .L  . The railpad properties are as described in section 2. 

 

4.1 Results for preloads and preloaded stiffnesses 

Tables 1 and 2 contain respectively the static preloads and stiffnesses for the case when a static 
load is positioned directly over the railpad at the middle of the track. Due to symmetry, only the pads 
on the positive side of the load have been presented. 

 
Table 1: Preloads (in kN) on the railpads in the vicinity of the static load 

 

Pad position 
from load (m) 

Static Load (kN) 

0 25 50 75 100 

0 
0.6 
1.2 
1.8 
2.4 
3.0 

20.36 
20.36 
20.36 
20.36 
20.36 
20.36 

28.47 
26.26 
23.08 
21.04 
20.18 
20.02 

37.26 
32.09 
25.56 
21.62 
20.00 
19.70 

48.24 
37.41 
27.50 
22.03 
19.83 
19.45 

62.57 
41.75 
28.73 
22.24 
19.69 
19.28 

      
∞ initial preload of 20.36 kN 

 
The preload values given in Table 1 compare with values given Wu and Thompson (1999) to within 
10%, with the differences being accounted for by the absence of a ballast layer in the current model 
and the approximation of the nonlinear fit to the load-deflection relationship of the railpad. It can be 
seen from Tables 1 and 2 that when there is no external load on the track, all preloads and 
stiffnesses of the railpads are equal to the unloaded values of 20.36 kN and 20 MN/m respectively. 
They then increase for higher levels of preload, but beyond a distance of about 3 m from the load, 
the pads are almost insensitive to load and remain fairly unloaded. 
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Table 2: Preloaded stiffnesses (in MN/m) of the railpads in the vicinity of the static load 

 
Pad position 
from load (m) 

Static Load (kN) 

0 25 50 75 100 

0 
0.6 
1.2 
1.8 
2.4 
3.0 

20.00 
20.00 
20.00 
20.00 
20.00 
20.00 

21.74 
20.96 
20.21 
20.01 
20.00 
20.00 

28.60 
23.60 
20.75 
20.05 
20.00 
20.00 

53.56 
28.80 
21.37 
20.08 
20.01 
20.00 

102.16 
36.53 
21.85 
20.10 
20.01 
20.00 

      
∞ unloaded stiffness of 20 MN/m 

 
Results are now presented for the dynamic response of the track. Validation of the FE model is first 
carried out in section 4.2 and the effect of preload is studied in section 4.3. 
 

4.2 Validation of the FE model 

Results are first presented to compare the nonlinear FE model with the solution of the beam on 
elastic foundation using the Fourier Transformation Method (FTM).  The comparison is done for the 

case of 00 P  and a harmonic load with unit amplitude (i.e. 11 P  N). At this configuration, the 

stiffness corresponds to the linear value. Figure 4 shows the peak steady-state displacement 
amplitude and phase angle for a point on the beam directly under the load, plotted against the 
excitation frequency of the load. 

 
Figure 4: (a) Peak steady-state displacement amplitude and (b) phase angle for a point directly 

under the load plotted against excitation frequency of the oscillating load. ——: FEM, o: FTM. 

 
It is apparent that the results are in good agreement over the range of frequencies shown, with the 
response amplitudes increasing with increase in frequency up until the cut-on frequency,

Hz218/2/1 1  mdafco  , before gradually decaying beyond this point. This occurs since the 

beam vibrates in phase with the load up to the cut-on frequency, but out of phase beyond this point.   
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4.3 Effect of the magnitude of the static load 

Results are now presented for the nonlinear FE model. Five levels of static load are considered; 0, 
25, 50, 75 and 100 kN. Superimposed on each of these is a unit amplitude dynamic load. The 
preloaded stiffness distribution is calculated using Eq. 12 and then used as input to study the 
dynamic response. Figure 5 shows the dynamic displacement amplitude and phase as a function of 
excitation frequency for a point that is directly under the load. 

 
Figure 5: (a) Peak steady-state displacement amplitude and (b) phase angle for a point directly 
under the load plotted against frequency of the oscillating load for five preload levels. ——: 20;

 : 30;   —• —: 40;   : 60 and •••••••••: 80 kN. 
 

The general trend is that the dynamic response amplitudes and phase angles reduce with increase 
in preload due to the increased preloaded stiffness of the pads in the vicinity of the load. This in turn 
leads to an increased cut on frequency. For the range of preload shown, the peak response 
amplitudes vary by almost 15 dB between the linear stiffness case at 0 kN and the strongly 
nonlinear case at 100 kN.  
  
Such a large difference between the loaded and unloaded behavior suggests that the preload effect 
should be accounted since the constant stiffness model largely overestimates the track response. 
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