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Abstract 
THE MODELLING OF MIXOTROPHY IN THE OLIGOTROPHIC ATLANTIC 

By Siân Joscelyn Herrington 

In the oligotrophic Atlantic Ocean small algae are the dominant fixers of inorganic carbon. 

In situ experiments have shown that a large proportion of these algae are mixotrophs - 

eating bacteria (bacterivory) as well as obtaining energy from sunlight. Bacterivory 

performed by algae has implications for our understanding of the role of ultraplankton (< 

5 µm) in biogeochemical cycling. The motivation of this thesis is to explore how 

mixotrophy may be modelled in the subtropical Atlantic using a data driven approach.  

An ecosystem model incorporating ultraplankton mixotrophy was developed, constructed 

and parameterised using in situ data, initially through network analysis and later using a 

µ-Genetic Algorithm technique. The model  highlights the key role of mixotrophy in the 

cycling of nutrients, in a region where fast nutrient turnover is important for the 

functioning of the ecosystem. In addition, the model reveals that bacterivory is the 

predominant route of nutrient acquisition for these mixotrophs and suggests that 

mixotrophy in this low nutrient region is an adaptive rather than a survival mechanism.  

This thesis also addresses wider questions related to model structure and assumptions. 

The need for an explicit dissolved organic phosphate variable in an ecosystem model for 

the oligotrophic Atlantic is questioned through in situ radio-nucleotide bioassay 

techniques. Additionally, ultraplankton spatial variability is statistically assessed and used 

to demonstrate  that a zero-dimensional model is not necessarily applicable to an entire 

region, despite the ultraplankton community within that region being statistically similar 

according to multivariate analyses. Furthermore a comparison of in situ to remotely 

sensed data shows that ocean colour is limited in its ability to detect ultraphytoplankton, 

making the use of such data to calibrate and assess future models difficult.  

This thesis therefore not only contributes to our ability to model the oligotrophic Atlantic 

but more broadly to our understanding of the role of mixotrophs within it.  
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1. Introduction 

1.1. General Introduction 

The nutrient poor (oligotrophic) regions of the oceans form the Earth’s largest ecosystem, 

covering approximately 40 % of the Earth’s surface (Karl 1999, Polovina et al. 2008) and 

accounting for roughly half of total marine primary production, in terms of the production 

of biomass from the uptake of CO2 (Sarmiento and Gruber 2006). Consequently the 

oligotrophic regions profoundly affect global biogeochemical cycling. Planktonic plastidic 

protists (algae) are major fixers of inorganic carbon in the oceans (Li 1994). It is 

conventionally thought that in oligotrophic areas the dominant phototrophic 

ultraplankton (< 5 μm) are severely nutrient limited (Tyrrell 1999, Wu et al. 2000, Mather 

et al. 2008). Ultraplankton, however, do live and reproduce in these waters. ‘How?’ is a 

major question in biological oceanography (Mahaffey et al. 2004). 

Measurements from the Sargasso Sea suggest that dissolved organic phosphate may be 

subsidising the limited inorganic phosphate (Casey et al. 2009, Lomas et al. 2010, 

Michelou et al. 2011), yet measurements from the adjacent central north Atlantic 

contradict this (Zubkov et al. 2007). Bacterivory has been previously documented to play a 

role in algae survival not only in the subtropics (Zubkov and Tarran 2008, Hartmann et al. 

2012), but  in other regions of the oceans (see Table 1.1, discussed in Section 1.3, and 

references therein). Mixotrophy in this thesis, is defined as the ability of planktonic 

organisms to ‘mix’ two modes of nutrition – gaining energy from sunlight and preying on 

bacterioplankton to acquire inorganic and some essential organic nutrients (this is 
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explained further in Section 1.3). Bacterivory by algae has significant implications for the 

current understanding of the role of ultraplankton in biogeochemical cycling.   

The motivation of this thesis is to undertake research into mixotrophy in the open ocean 

surface waters of the oligotrophic Atlantic’s ecosystem. More specifically the thesis will 

focus on how models for the region incorporating mixotrophy can be built, this will partly 

involve the construction and parameterisation of simple ultraplankton trophodynamical 

models, using in situ ultraplankton observations to construct, calibrate and parameterise 

them. However it will also address wider related questions. Necessary model structure 

will be addressed, such as the need to include an organic nutrient variable, and the validity 

of assumptions of steady state and spatial uniformity, that may be thought applicable to 

these ‘Ocean deserts’. It should be noted that although the focus of this thesis is on the 

subtropical Atlantic, the work will be relevant to other oligotrophic regions.  

This Chapter provides an  overview of mixotrophy, the organisms of interest and the 

region within which they are being studied – the oligotrophic subtropical Atlantic. This is 

followed by a review of  previous mixotrophy models.  The objectives of this thesis are 

then outlined. 

1.2. The Oligotrophic Atlantic Ocean 

The oligotrophic subtropical and tropical Atlantic ocean covers in excess of 10 million 

square kilometres (Polovina et al. 2008). The subtropics are usually defined as being 

between 40° and 10° north and south of the equator, and are dominated by the vast ocean 

circulations known as the subtropical gyres. These are driven by wind circulation patterns 

(Munk 1950). These large systems of ocean currents rotate clockwise in the northern 

hemisphere and anti-clockwise in the southern hemisphere.  Each of the subtropical 

oligotrophic oceanic gyres are asymmetric and bounded to the west by a pole-ward 

current, the western boundary current (e.g. in the north Atlantic gyre, the Gulf Steam). To 

the east the gyres are bounded by a current flowing towards the equator. These eastern 

currents are typically slower moving, wider, shallower and diffuse (Stommel 1947, 

Stommel 1948).   
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The biological distribution of plankton within the subtropical gyres is influenced by the 

physical environment. Water is upwelled at the edges of a gyre (equatorial or coastal 

margins), introducing nutrient rich water from the deep ocean to the surface for utilisation 

by plankton in neighbouring waters. The nutrient concentration decreases towards a 

minimum in the centre of the gyre  (which can be identified  by maximum sea surface 

height), where convergence resulting from Ekman transport driven by the trade winds 

causes the water to be down-welled, suppressing upward transport of nutrients (Colling 

2002, Sarmiento and Gruber 2006). The subtropical Atlantic regions display a relatively 

shallow stratified mixed layer, with only small changes in the mixed layer depth between 

opposing seasons (Monterey and Levitus 1997, Henson et al. 2009). This lack of 

seasonality is also observed in remotely sensed chlorophyll concentrations, which are 

relatively constant all year round (Lutz et al. 2007, Cole et al. 2012).  

1.2.1. Oligotrophic Atlantic Ultraplankton 

In the oligotrophic ocean the majority of the planktonic organisms are small (< 5 µm) and 

are termed ultraplankton. Prochlorococcus spp. (Pro) cyanobacteria and the SAR11 group 

of heterotrophic α-proteobacteria are the most numerous microbes contained within this 

fraction  (Chisholm et al. 1988, Morris et al. 2002). In terms of phototrophic ultraplankton, 

Pro are the most abundant followed by Synechococcus (Syn) spp. (Partensky et al. 1999a) 

and then single-celled picoeukaryotes (protists), which may include among others 

Chrysophyceae, Prasinophyceae, Prymnesiophyceae species (Lepère et al. 2009, Liu et al. 

2009, Jardillier et al. 2010). Although picoeukaryotic algae are not numerically dominant, 

they do dominate on the basis of biomass and primary production (Li 1995). These small 

picoeukaryotic algae are major fixers of inorganic carbon in the oceans (Li 1994, Li 1995).  

The ultraplankton within the north Atlantic subtropical gyre are understood to be 

primarily limited by the availability of phosphorus (Tyrrell 1999, Mather et al. 2008), with 

field measurements estimating the concentration as < 2 nmol l-1 (Wu et al. 2000, Zubkov et 

al. 2007). Phosphorus (P) is an essential element for all living cells, forming the structural 

framework of DNA and RNA and is a component of ATP and lipids in cell membranes. As 

such it is a critical driver of phytoplankton growth and ecosystem functioning in the ocean. 
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The P limitation in the NAG is thought to be as a result of iron enhanced nitrogen fixation, 

as the region is subject to iron deposition from Saharan dust (Duce et al. 1991, Wu et al. 

2000). Bacterioplankton dominate P uptake in the gyre and outcompete protists for it due 

to their higher surface area to volume ratio (Zubkov et al. 2007, Hartmann et al. 2011). 

Despite the low P uptake by protists, that cannot satisfy their growth requirements 

(Hartmann et al. 2011), they are major contributors to carbon fixation (Li 1994, Jardillier 

et al. 2010). Studies in the Sargasso Sea, adjacent to the north Atlantic (and with differing 

physical forcing, see Chapter 3 for further explanation of differences), have indicated that 

carbon fixation may be being maintained due to planktonic organisms utilising dissolved 

organic P (DOP) as an alternative dissolved inorganic P (DIP) source (Casey et al. 2009, 

Michelou et al. 2011). However, measurements made in the north Atlantic gyre, have 

shown DOP to be only a minor contribution to total P uptake (Zubkov et al. 2007); Chapter 

3 of this thesis investigates this further.    

Zubkov and Tarran (2008) challenged the assumption that algae within the oligotrophic 

north Atlantic subtropical gyre are completely reliant on light and inorganic or organic 

nutrients. They  demonstrated that a large proportion, 37 - 70 % (a comparable 

percentage was also reported in the temperate North Atlantic Ocean, 40 - 95 %) of 

bacterial grazing (bacterivory) in this region was undertaken by these small algae. 

Recently the significance and ubiquity of mixotrophy was shown across the whole of the 

subtropical and tropical Atlantic (40°N to 40°S), with algae accounting for 60 - 77 % of 

bacterivory (Hartmann et al. 2012, also see Table 1.1). These studies suggest that algae are 

using mixotrophy as a mechanism to survive in nutrient depleted waters (see Section 1.3 

on mixotrophy). This observation is significant because in these waters ultraplankton 

account for ~ 80 % of phytoplankton biomass and chlorophyll a and ~ 70 % of primary 

production (Li and Harrison 2001). Thus, these findings have important implications for 

the current understanding of biogeochemical cycling  and the role of ultraplankton and 

picoeukaryotes in particular, as the amount of primary production and export occurring in 

the Atlantic oligotrophic gyres may be affected by algae ‘eating’ in addition to 

photosynthesising. Firstly, algae may be able to survive at lower nutrient conditions than 

previously thought, as they can supplement nutrient uptake and reduce competition 

through predation of competitors. Secondly, the fraction of nutrients passed on to higher 
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trophic levels may be less than previously thought as an extra trophic link is present 

within the system. This decreases the efficiency of energy transfer and subsequent 

primary production that is passed on to higher levels, which in turn reduces the amount of 

export out of the surface waters.  

 Remote Sensing of Ultraplankton 1.2.1.1.

Oceanographers were limited to in situ sampling for centuries, unable to study vast areas 

and the plankton within them. Remotely sensed observations from satellites changed this 

by allowing routine regional and global monitoring. From space, the differing population 

densities of phytoplankton reveal themselves as many blues and greens which satellites 

are able to measure as ‘ocean colour’ (seen in Figure 1.1). The principles of ocean colour 

algorithms have changed little since the first space borne ocean colour sensor CZCS 

(Coastal Zone Colour Scanner) was launched in 1978 (Feldman et al. 1989, Yoder et al. 

1993). Atmospheric correction is performed (90 % of the original signal), then the blue-to-

green ratio of water-leaving radiances allows the estimation of ‘chlorophyll a 

concentration’ - the sum of chlorophyll a and pheophytin a, which is used as a proxy for 

phytoplankton (algae and cyanobacteria) biomass (Martin 2004).  

 

 
Figure 1.1. SeaWiFS mission average (September 1997 – November 2010) 
chlorophyll a concentration. Blue indicates low chlorophyll and yellow and reds the 
highest regions of chlorophyll concentration. Note units of chlorophyll a are mg m-3. 
Downloaded from http://oceancolor.gsfc.nasa.gov. 
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If the oceans can be viewed remotely, at high spatial and temporal resolutions, what is the 

advantage of using in situ measurements? First, remote sensing cannot measure rates, 

such as grazing and bacterivory. Second, the accuracy of remotely sensed ultraplankton 

has been brought into question by a study undertaken in the Mozambique Channel, which 

did not find a strong correlation between satellite derived chlorophyll estimates and in 

situ abundance measurements of ultraplankton taxa (Zubkov and Quartly 2003). It is 

hitherto unknown if ultraplankton are also poorly represented by ocean colour within the 

oligotrophic Atlantic ocean. This will be addressed in Chapter 6 of this thesis.  

1.2.2. The Atlantic Meridional Transect 

Programme 

The Atlantic Meridional Transect (AMT) is a multidisciplinary oceanographic research 

programme, established in 1995, which provides a unique annual time series of surface 

ocean measurements along a transect throughout the mid-Atlantic Ocean. It has enabled 

measurements to be made regularly along an entire transect of the Atlantic ocean (~ 

13,500 km).  A primary aim of the AMT project since 2002 has been to “provide data for 

use in the development of models” with the specific objective to determine “how the 

structure, functional properties and trophic status of the major planktonic ecosystems 

vary in space and time” (Robinson et al. 2006, pp.1489). Research presented in this thesis 

contributes to the fulfilment of these AMT project objectives, as it utilises ultraplankton 

data collected on four AMT cruises to help construct, develop and constrain a model 

inclusive of mixotrophy. Details of the data collected from these cruises are outlined in 

Appendix Tables (Tables A.1 and A.2). 

1.3. Mixotrophic Protists 

Mixotrophy is the ‘mixing’ of plant and animal modes of nutrition, akin to the terrestrial 

Venus fly trap which obtains energy within terrestrial biomes from sunlight and the 

catching of insects. A mixotroph here, is more specifically a protist with the capability to 

utilise autotrophic and heterotrophic nutrition to varying degrees. In the context of this 
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thesis, autotrophy refers to phototrophy as using electromagnetic energy (light), inorganic 

nutrients and CO2 to produce energy and organic matter. Heterotrophy refers to 

phagotrophy, where organic compounds are absorbed into food vacuoles for digestion, 

metabolism, growth and reproduction (Sanders 1991, Jones 1994, Raven 1997).  

The ability of some protists to exist straddling two trophic levels has been observed 

throughout ocean and freshwater ecosystems (Sanders 1991) and appears to be a 

successful evolutionary strategy. Numerous species from diverse taxa (e.g. Cryptophyceae, 

Dinophyceae and Prymnesiophyceae) have been found to be capable of mixotrophy (see 

references in Sanders and Porter, 1988). As previously stated, mixotrophs have recently 

been found to be notably prevalent in oligotrophic regions, where it is thought bacterivory 

by ultraplankton gives a competitive advantage (Zubkov and Tarran 2008, Hartmann et al. 

2012). 

A simple technical definition of mixotrophy is difficult, as mixotrophic protists vary widely 

in their photosynthetic and ingestion capabilities. Existing at different points along the 

spectrum of nutritional strategies (Jones 1994), three broad types have been identified 

(see schematic in Figure 1.2): Type I, an ideal or obligate mixotroph, which combines both 

autotrophic and heterotrophic modes of nutrition equally; Type II, phagotrophic ‘algae’ 

that are primarily phototrophic; and Type III, phototrophic ‘protozoa’ that are primarily 

phagotrophic (Stoecker 1998). The oligotrophic Atlantic mixotrophs are primarily ‘algae’ 

that are phagotrophic, believed to subsidise their growth and reproduction by bacterivory 

when nutrients are limiting (Zubkov and Tarran 2008). Therefore, under Stoecker’s 

(1998) definition they are Type IIa mixotrophs (phagotrophic when nutrients are limiting, 

see Figure 1.2). Throughout this thesis, unless otherwise indicated, references to 

mixotrophs refer to small (≤ 5 µm) Type IIa mixotrophs (phagotrophic or bacterivorous 

‘algae’). For a more detailed overview of mixotrophic nutritional types the reader is 

directed to Jones (1994) and Stoecker (1998). 

The housing of organelles for both autotrophy and heterotrophy, however, is energetically 

expensive, which is why evolutionary forces may not have led mixotrophy to be the 

dominant nutritional mechanism in the photic zone (Raven 1997). Mixotrophs’ nutritional 

flexibility, however, suggests they have a competitive advantage over obligate (pure) 
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autotrophs and heterotrophs when nutrients are low and particulate food and prey is 

limited in oligotrophic regions (Nygaard and Tobiesen 1993, Raven 1997, Stibor and 

Sommer 2003), which may explain their dominance in low nutrient regions (see Table 1.1 

and references therein).  

 

Figure 1.2. The physiological types of mixotrophy possible among planktonic 
protists, according to Stoecker  (1998). Type IIa and IIIb, highlighted in blue, are 
postulated as being the most common. 

1.3.1. Observations of Mixotrophy 

There have been a number of studies of mixotrophy in the laboratory, in vitro (e.g. 

Rothaupt 1996a, 1996b, Stibor and Sommer 2003 ) and in the field, in situ (e.g. Bird and 

Kalff 1986, Arenovski et al. 1995 ). Despite this, the ubiquitousness of mixotrophy in the 

oligotrophic Atlantic has only recently been recognised (Zubkov and Tarran 2008, 

Hartmann et al. 2012). 

 

Type I
Ideal mixotroph, balanced 

phagotrophy and 
phototrophy

Type II
Phagotrophic 'algae' 

primarily phototrophic

Type IIa
Phagotrophic when 

nutrients are limiting

Type IIb
Phagotrophic when 

trace organic growth 
factors are limiting

Type IIc
Phagotrophic when 

light is limiting

Type III
Phototrophic 'protozoa' 
primarily phagotrophic

Type IIIa
Phototrophic when 

prey is limiting

Type IIIb
Phototrophy 

subsidises predation



 

9 

 

Ta
bl

e 
1.

1.
 P

er
ce

nt
ag

e 
of

 to
ta

l p
ro

ti
st

 b
ac

te
ri

vo
ry

 b
y 

m
ix

ot
ro

ph
ic

 fl
ag

el
la

te
s 

in
 d

iff
er

en
t t

ro
ph

ic
 m

ar
in

e 
en

vi
ro

nm
en

ts
, a

cc
or

di
ng

 to
 p

re
vi

ou
sl

y 
pu

bl
is

he
d 

re
se

ar
ch

. 
Sy

st
em

 
D

ep
th

 
Tr

op
hi

c 
st

at
us

 
Se

as
on

 
Tr

ac
er

 
Su

gg
es

te
d 

do
m

in
an

t m
ix

ot
ro

ph
ic

 
ta

xa
 

%
 b

ac
te

ri
vo

ry
 b

y 
m

ix
ot

ro
ph

s 
Re

fe
re

nc
es

 

So
ut

hw
es

t c
oa

st
 o

f N
ew

 Z
ea

la
nd

  
10

m
 

Ol
ig

o 
W

in
te

r 
FL

M
 

* 
32

-4
0 

%
  

H
al

l e
t a

l. 
(1

99
3)

 
Ae

ge
an

 S
ea

, E
as

t M
ed

ite
rr

an
ea

n 
Se

a 
1-

10
0m

 
Ol

ig
o 

Sp
ri

ng
 

FL
M

 
H

ap
to

ph
yc

ea
e 

(2
-4

µm
) 

5 
%

 
Ch

ri
st

ak
i e

t a
l. 

(1
99

9)
 

Ae
ge

an
 S

ea
, E

as
t M

ed
ite

rr
an

ea
n 

Se
a 

1-
10

0m
 

Ol
ig

o 
Su

m
m

er
 

FL
M

 
Ph

yt
of

la
ge

lla
te

s (
8-

10
µm

) 
5 

%
 

Ch
ri

st
ak

i e
t a

l. 
(1

99
9)

 

Ne
w

 Z
ea

la
nd

, S
ub

tr
op

ic
al

 
Co

nv
er

ge
nc

e 
DC

M
 

Ol
ig

o-
m

es
o 

Su
m

m
er

 
FL

Bc
 

H
ap

to
ph

yc
ea

e;
 D

in
op

hy
ce

ae
 

55
 %

 
Sa

fi 
an

d 
H

al
l (

19
99

) 

Ne
w

 Z
ea

la
nd

, S
ub

tr
op

ic
al

 
Co

nv
er

ge
nc

e 
DC

M
 

M
es

o 
Su

m
m

er
 

FL
M

 
H

ap
to

ph
yc

ea
e;

 D
in

op
hy

ce
ae

 
40

 %
 

Sa
fi 

an
d 

H
al

l (
19

99
) 

Ba
y 

of
 A

ar
hu

s,
 D

en
m

ar
k 

Su
rf

ac
e 

M
es

o 
Sp

ri
ng

 
FL

Bn
 

H
ap

to
ph

yc
ea

e;
 D

ic
ty

oc
ho

ph
yc

ea
e 

86
 %

 
H

av
sk

um
 a

nd
 

Ri
em

an
n 

(1
99

6)
 

Ba
y 

of
 A

ar
hu

s,
 D

en
m

ar
k 

Be
lo

w
 th

e 
py

cn
oc

lin
e 

M
es

o 
Sp

ri
ng

 
FL

Bn
 

H
ap

to
ph

yc
ea

e;
 D

ic
ty

oc
ho

ph
yc

ea
e 

19
 %

 
H

av
sk

um
 a

nd
 

Ri
em

an
n 

(1
99

6)
 

Bo
st

on
 H

ar
bo

ur
 

Su
rf

ac
e 

M
es

o?
 

Au
tu

m
n 

FL
Bc

 
Eu

gl
en

op
hy

ce
ae

; C
hr

ys
op

hy
ce

ae
; 

Cr
yp

to
ph

yc
ea

e 
38

 %
 

Ep
st

ei
n 

an
d 

Sh
ia

ri
s 

(1
99

2)
 

Co
as

t o
f N

or
w

ay
 

0-
4m

 
M

es
o 

Bl
oo

m
 o

f p
ry

m
ne

si
um

 
pa

rv
um

 
FL

B*
 

H
ap

to
ph

yc
ea

e 
0-

60
 %

 
Ny

ga
ar

d 
an

d 
To

bi
es

en
 

(1
99

3)
 

No
rw

eg
ia

n 
fjo

rd
 

Su
rf

ac
e 

 
M

es
o 

Su
m

m
er

 
FL

Bc
 

Di
ct

yo
ch

op
hy

ce
ae

; H
ap

to
ph

yc
ea

e;
 

Di
no

ph
yc

ea
e 

0 
%

 
H

av
sk

um
 a

nd
 H

an
se

n 
(1

99
7)

 

Bl
ac

k 
Se

a 
M

ix
in

g 
la

ye
r 

Ol
ig

o 
to

 
eu

tr
o 

Su
m

m
er

 
FL

Bn
 

Di
no

ph
yc

ea
e;

 C
ili

at
e 

14
 %

 
Bo

uv
ie

r e
t a

l. 
(1

99
6)

 

Bl
an

es
 B

ay
, N

W
 M

ed
ite

rr
an

ea
n 

Se
a 

Su
rf

ac
e 

Ol
ig

o 
An

nu
al

 
FL

Bc
 

H
ap

to
ph

yc
ea

e;
 D

in
op

hy
ce

ae
; 

Cr
yp

to
ph

yc
ea

e;
 

35
-6

5 
%

 
Un

re
in

 e
t a

l. 
(2

00
7)

 

Ro
ss

 S
ea

, A
nt

ar
ct

ic
a 

0-
49

m
 

(S
ur

fa
ce

-D
CM

) 
Eu

tr
o 

- 
Ol

ig
o?

 
Sp

ri
ng

 
FL

Bn
 

* 
8-

42
 %

 
M

oo
rt

hi
 e

t a
l. 

(2
00

9)
 

Ea
st

er
n 

Eq
ua

to
ri

al
 P

ac
ifi

c 
– 

H
NL

C 
ar

ea
 

18
 m

 
Ol

ig
o 

Su
m

m
er

/A
ut

um
n 

FL
Bn

 
* 

54
 %

 
St

uk
el

 e
t a

l. 
(2

01
1)

 

Su
bt

ro
pi

ca
l a

nd
 T

ro
pi

ca
l A

tl
an

ti
c 

 
(4

0°
N 

to
 4

0°
S)

 
20

 m
 

Ol
ig

o 
Au

tu
m

n 
(N

)/
Sp

ri
ng

 (S
) 

RL
B,

 R
LA

 
* 

60
-7

7%
 

H
ar

tm
an

n 
et

 a
l. 

(2
01

2)
 

Te
m

pe
ra

te
 N

or
th

 A
tla

nt
ic

 O
ce

an
 

(5
8.

2–
60

o N
) 

7 
or

 4
7m

 (e
up

ho
tic

 
la

ye
r)

 
Eu

tr
o 

Su
m

m
er

 
RL

B 
H

ap
to

ph
yc

ea
e;

 P
ra

si
no

ph
yt

es
 

40
–9

5%
 

Zu
bk

ov
 a

nd
 T

ar
ra

n 
(2

00
8)

 
Tr

op
ic

al
 N

or
th

-E
as

t A
tl

an
tic

 
O

ce
an

 (1
2.

6–
22

o N
) 

20
m

 
Ol

ig
o 

W
in

te
r 

RL
B 

H
ap

to
ph

yc
ea

e;
 P

ra
si

no
ph

yt
es

 
37

–7
0%

 
Zu

bk
ov

 a
nd

 T
ar

ra
n 

(2
00

8)
 

Sa
rg

as
so

 S
ea

 
1-

5m
 

Ol
ig

o 
Su

m
m

er
 

FL
Bn

; 
FL

M
 

* 
74

-8
0%

 
Ar

en
ov

sk
i e

t a
l. 

(1
99

5)
 

Sa
rg

as
so

 S
ea

 
15

m
 

Ol
ig

o 
Su

m
m

er
 

FL
M

 
Di

no
ph

yc
ea

e 
5-

18
%

 P
NA

N^
 

4-
15

%
 P

ha
go

^ 
Sa

nd
er

s e
t a

l. 
(2

00
0)

 

Sa
rg

as
so

 S
ea

 
10

-2
0m

 
Ol

ig
o 

W
in

te
r 

FL
B 

Di
no

ph
yc

ea
e 

12
-1

8%
 P

NA
N^

 
12

-2
8 

%
 P

ha
go

^ 
Sa

nd
er

s e
t a

l. 
(2

00
0)

 

Ge
or

ge
s B

an
k,

 N
W

 A
tla

nt
ic

 O
ce

an
 

0-
2m

 
Eu

tr
o 

Su
m

m
er

 
FL

B 
Di

no
ph

yc
ea

e 
7-

30
%

 P
NA

N^
 

10
-2

3%
 P

ha
go

^ 
Sa

nd
er

s e
t a

l. 
(2

00
0)

 

Ge
or

ge
s B

an
k,

 N
W

 A
tla

nt
ic

 O
ce

an
 

5-
10

m
 

Eu
tr

o 
W

in
te

r 
FL

B 
Di

no
ph

yc
ea

e 
<2

-3
8%

 P
NA

N^
 

7-
39

%
 P

ha
go

^ 
Sa

nd
er

s e
t a

l. 
(2

00
0)

 

* n
ot

 sp
ec

ifi
ed

; F
LM

, f
lu

or
es

ce
nt

ly
 la

be
lle

d 
m

in
i-c

el
ls

; F
LB

c, 
FL

B 
w

ith
 a

 b
ac

te
ri

al
 cu

ltu
re

; F
LB

n,
 F

LB
 p

re
pa

re
d 

w
ith

 n
at

ur
al

 b
ac

te
ri

a;
 R

LB
, r

ad
io

la
be

le
d 

ba
ct

er
ia

; R
LA

, r
ad

io
la

be
le

d 
ba

ct
er

ia
 a

lg
ae

; F
LA

, f
lu

or
es

ce
nt

ly
 

la
be

lle
d 

<3
 µ

m
 a

lg
ae

; F
LC

, f
lu

or
es

ce
nt

ly
 la

be
lle

d 
cy

an
ob

ac
te

ri
a;

 P
N

AN
^,

 p
ho

to
tr

op
hi

c n
an

op
la

nk
to

n;
 P

ha
go

^,
 to

ta
l h

et
er

ot
ro

ph
ic

 n
an

op
la

nk
to

n 
pl

us
 m

ix
ot

ro
ph

ic
 n

an
op

la
nk

to
n;

 O
lig

o,
 o

lig
ot

ro
ph

ic
; M

es
o,

 
m

es
ot

ro
ph

ic
; E

ut
ro

, e
ut

ro
ph

ic
; D

CM
, d

ee
p 

ch
lo

ro
ph

yl
l m

ax
im

um
 



 

10 

The recent nature of this discovery, coupled with cost, logistical and methodological 

limitations of observations means there is a very limited dataset to study mixotrophy, that 

may in turn be utilised for parameterisation and calibration of models. In situ data are 

preferable to using laboratory based measurements, as the latter does not take into 

account ‘real-world’ complexity and variability (e.g. physical forcing such as the mixing 

between surface and deeper waters, or biological influences, such as predator-prey 

dynamics).  

Table 1.1 provides a summary of studies of bacterivory by mixotrophs. This Table shows 

that mixotrophy has been found in a number of different environments, from the 

seasonally oligotrophic Antarctic (Moorthi et al. 2009) to the mesotrophic coast of Norway 

(Nygaard and Tobiesen 1993). As such there does not appear to be a correlation with 

nutrient availability. Table 1.1 demonstrates that there is not a consistent fraction of 

bacterivory by mixotrophs, with measurements varying from 5 % up to 80 % in 

oligotrophic regions (Arenovski et al. 1995, Christaki et al. 1999) and from < 2 % to 95 % 

in eutrophic regions (Sanders et al. 2000, Zubkov and Tarran 2008). It is nevertheless 

clear from these studies that mixotrophic strategies appear to be ubiquitous. 

1.3.2. Modelling Mixotrophs 

Plankton dynamics can also be explored in silico, using  computer modelling to simulate 

and study marine ecosystems. Models have been applied as a quantitative and a 

descriptive tool for over 70 years, since the seminal studies of Fleming (1939) and Riley 

(1946), who used Lotka-Volterra  predator-prey models to interpret temporal changes in 

phytoplankton abundances. Simple NPZ-type (Nutrient-Phytoplankton–Zooplankton, 

described below) models have formed the basis of the planktonic biological modelling for 

decades (Gentleman 2002) and have become common place since the seminal paper by 

Fasham et al. (1990). These studies are the ancestors of many large-scale marine 

ecosystem and biogeochemistry models (e.g. Sarmiento et al. 1993, Oschlies et al. 2000, 

Schartau and Oschlies 2003a).  Major advances have been made possible by increasingly 

efficient computation, and models can now include a vast array of processes. For a detailed 

overview of planktonic modelling see for example reviews by Gentleman (2002) and 

Follows and Dutkiewicz (2011).  

Direct observations of mixotrophy over time-scales longer than a few hours are limited. 

Therefore in silico studies are a useful tool to investigate the impact of mixotrophy over 
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longer temporal scales, such as a complete seasonal cycle. Model parameterisation is, 

however, limited by the available data. To date there have been no direct measurements of 

mixotrophs used within a model incorporating mixotrophy.  

NPZ-type models incorporate a simple set of dynamics to describe oceanic plankton 

ecosystems (Franks 2002). NPZ-type models have few parameters and a limited number 

of state variables (e.g. a single nutrient, phytoplankton and zooplankton). As such they can 

be relatively easily parameterised with and tested against data compared with more 

complicated models. Therefore despite being simple they still allow for a wide range of 

model ecosystems dynamics to be simulated (Franks 2002). Consequently several 

theoretical mixotroph models have been based on this structure (simple, with few 

variables and minimal parameters). They follow the philosophy that it is desirable to use a 

simple approach, when an ecosystems structure and internal processes are not fully 

understood (Anderson 2005).   

Plankton functional types (or PFT’s), define  ecosystem model variables based on their 

ecological traits (Hood et al. 2006a), for example by nutritional strategy, such as 

mixotrophy (e.g. Thingstad et al. 1996, Baretta-Bekker et al. 1998, Jost et al. 2004). Such 

simple mixotroph models have, despite being mainly theoretical (e.g. Thingstad et al. 

1996, Hammer and Pitchford 2005) or based upon broad literature values (e.g. Taylor and 

Joint 1990, Stickney et al. 2000, Jost et al. 2004, Crane and Grover 2010), been able to 

point to the potentially important role of mixotrophic organisms as stabilisers of system 

dynamics, as their grazing on autotrophs reduces the competition for nutrients (Jost et al. 

2004, Hammer and Pitchford 2005). In addition, such models have shown that mixotrophs 

are particularly important within nutrient limited systems (Baretta-Bekker et al. 1998, 

Floder et al. 2006, Crane and Grover 2010). However, the consequences of mixotrophy in 

terms of their influence upon primary productivity remain uncertain. Some models have 

concluded that mixotrophs have a positive influence on productivity (Baretta-Bekker et al. 

1998, Hammer and Pitchford 2005), because primary production is supported by nutrients 

obtained from grazing. Other models report a negative influence on total primary 

productivity (Stickney et al. 2000), although the mixotrophs may maintain the total 

photosynthetic rate through the direct recycling of nutrients (this however was not 

considered ‘primary’ production as it was derived from recycling). 

Although the majority of previous models incorporating mixotrophy are of the simple 

NPZ-type, with a preponderance for studying a single common nutrient (e.g. Taylor and 
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Joint 1990, Baretta-Bekker et al. 1998), there are other theoretical mixotroph models that 

are more complex. It is argued that constructing a detailed mechanistic physiological 

description is justified for ecological studies, despite the data limitations for 

parameterisations. The paper ‘Building the "perfect beast": modelling mixotrophic 

plankton’ by Flynn and Mitra (2009) assumed that such a model with variable C-N-P 

stoichiometry (on a cellular and regional level) is necessary to model the range of 

mixotroph configurations (i.e. type I, II or III and the gradients between, see Figure 1.2 and 

Stoecker 1998). However, obtaining stoichiometric measurements in situ is highly 

impractical at present.  

Kooijman and colleagues have also used Dynamic Energy Budget theory to investigate 

evolutionary issues in mixotrophy, by examining the symbiotic merger of autotrophs and 

heterotrophs into a single organism, a mixotroph (Kooijman et al. 2003, Kooijman et al. 

2004). These more complex studies, however, were not undertaken in the context of an 

ecosystem but at the physiological level of an individual organism. At present, mechanistic 

quantification of processes and internal elemental composition is insufficient in 

mixotrophs for a data-driven physiological mechanistic-stoichiometric model to be 

constructed. Hence a different type of model is not used in this thesis. 

1.4. Research Objectives 

Over the next five Chapters, the research presented aims to further current knowledge of 

mixotrophy, using a multidisciplinary approach, by combining a range of observations and 

ecological modelling. A mixotroph model is constructed and parameterised, using in situ 

data, a mixotroph model for the subtropical Atlantic region (Chapters 4 and 5). In 

addition to this, a number of fundamental model structure questions and assumptions are 

addressed: In terms of ultraplankton, can the Atlantic be considered a single province 

(Chapter 2)? Is a steady state model suitable (Chapters 2 and 3)? Is a dissolved organic P 

variable necessary for a model with mixotrophs (Chapter 3)? Do the observed variability 

and spatial scales of the different microbial groups support an assumption of uniformity in 

a mixotroph model (Chapter 6)? Can satellites accurately quantifiably sense 

ultraplankton?  
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The main aim of this thesis is: 

‘To explore how mixotrophy may be modelled in the subtropical Atlantic using a data 

driven approach.’ 

The objectives of this thesis are as follows: 

Objective 1: To ascertain if the subtropical Atlantic ocean can be considered as a single 

oceanographic province (Chapter 2).  

Objective 2: To investigate dissolved organic phosphate (DOP)  utilisation by 

ultraplankton in the Atlantic oligotrophic ocean (Chapter 3), in order to identify if an 

organic component needs to be included in models representing mixotrophy (Chapters 4 

and 5).  

Objective 3: To develop and to parameterise from in situ observations a simple zero-

dimensional model of the Atlantic microbial ecosystem incorporating mixotrophy 

(Chapters 4 and 5). 

Objective 4: To explore microbial spatial distribution and variability throughout the 

subtropical Atlantic Ocean (Chapter 6).  

Objective 5: To investigate if remotely sensed satellite chlorophyll a concentration can be 

used to estimate the abundances, biomass or chlorophyll a content of phototrophic 

ultraplankton (Chapter 6). 

The above objectives form the basis of Chapters 2 to 6. The introduction of each Chapter 

provides a more in depth overview applicable to the objectives being addressed in that 

Chapter together with details of the relevant hypotheses. The results are then discussed in 

the light of the hypotheses detailed at the beginning of each Chapter. Chapter 7 

synthesises and summarises the key findings of Chapters 2 to 6 and relates them to the 

objectives listed above. 
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2. Microbial	Partitioning:	Can	
Ultraplankton	Assemblages	be	
used	to	define	the	Biogeography	of	
the	Atlantic	Ocean? 

2.1. Introduction  

The Oceans cover approximately 71 % of the earth’s surface, within which vastly different 

features are found, from depths, to currents, to temperature and salinity. Distinctive 

biogeographic provinces have nevertheless been recognised within this array of 

contrasting environments and defined albeit with differing criteria, since Sverdrup et al. 

(1942) 70 years ago. The province concept provides a framework to enable analysis over 

broad regions of the oceans by aggregating or separating data. Thus provinces have been 

employed in many Atlantic biogeochemistry studies, focusing for example on primary 

production (Tilstone et al. 2009), bacterial communities (Gomez-Pereira et al. 2010) and 

phytoplankton size structure (Marañón et al. 2001). The most widespread set of criteria is 

that defined by Longhurst (1995, 1998, 2007).  This Chapter will address whether these 

previously defined provinces, which are typically based on physical processes and 

remotely sensed data, are applicable to in situ ultraplankton (< 5 µm) assemblages. This 

will be done by applying multivariate analysis to a high spatial resolution data set of 

abundances for six ultraplankton groups. This issue is key to modelling the Atlantic 

subtropical region: Can the Atlantic be considered and modelled as a single unit or can 

models only be applied to specific smaller sub-areas?  

2.1.1. Previous Approaches to defining Provinces 

Remote sensing (McClain et al. 2004), modelling (Follows et al. 2007) and physical 

features (Longhurst 1995, 1998, 2007) have all been used previously to define 
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biogeographic provinces.  The most widely applied criteria originate from a seminal paper 

by Alan Longhurst (1995), who divided the oceans using physical oceanographic 

processes and ocean colour images from satellite observations. Longhurst’s partitioning 

has since been used widely, and often without question, in a range of studies from carbon 

flux (Boyd and Newton 1999) to zooplankton assemblages (Woodd-Walker et al. 2002).  

This study’s sampling transect (AMT14 cruise labelled in red on Figure 2.1 and detailed in 

Appendix Table A.1) passes through five Longhurst defined biogeographic provinces (see 

Figure 2.1 and following description).  

 
Figure 2.1. Longhurst provinces in the Atlantic (Longhurst 1998). The AMT14 
sampling transect (red solid line) passes through the North Atlantic Drift (NADR), 
the North Atlantic Subtropical Gyre (NAST), the North Atlantic Tropical Gyre 
(NATR), the Western Tropical Atlantic (WTRA) and the South Atlantic Gyre (SATL) 
provinces. 

The North Atlantic Drift (NADR) province is characterised by deep winter mixing and a 

strong spring bloom. The North Atlantic Subtropical Gyre - East (NAST) is, in contrast to 

the NADR, oligotrophic with a weak spring bloom and low levels of primary production. In 

the North Atlantic Tropical Gyre (NATR), phytoplankton biomass and productivity are 

minimal, with mixed layer depth (MLD) varying marginally with seasonality throughout 

the year. The Western Tropical Atlantic (WTRA) is influenced by the Equatorial current 

system that is driven by seasonal changes in wind forcing and during most of the year a 



 

17 

band of enhanced chlorophyll a (chl a) is evident. Finally, the South Atlantic Gyre (SATL) is 

also oligotrophic, but does accumulate phytoplankton during the austral summer and a 

seasonal variation in MLD is found (Longhurst 1995, 1998, 2007).   

Two other ways to delineate regions considered here, are not as commonly used as 

Longhurst provinces. McClain et al. (2004) used remotely sensed chl a concentrations to 

delineate oligotrophic (chl a ≤ 0.07 mg m-3) and non-oligotrophic (chl a > 0.07 mg m-3) 

regions. Longhurst provinces NAST, NATR and SATL regions fall into McClain et al. (2004) 

oligotrophic category, with the temperate (NADR) and parts of the equatorial region 

(WTRA) defined as non-oligotrophic regions by McClain et al. (2004) criterion.  

The emergent biogeography model of Follows et al. (2007) used physiological traits of 

phytoplankton types in a “self-assembling” marine ecosystem and biogeochemistry model 

to predict distributions of plankton communities. This model identified two distinct 

regions in the Atlantic: one dominated by an organism analogous to Prochlorococcus spp. 

(Pro), extending from approximately 20° north to 20° south of the equator (covering the 

WTRA Longhurst defined province and parts of the SATL and NATR). The other region was 

dominated by small photo-autotrophs that encompassed the remaining north and south 

Atlantic up to ~ 55°. Photo-autotrophs are analogous to mixotrophs, because as already 

stated, algae in the Atlantic are primarily ‘mixotrophs’ (see Section 1.3.1, Zubkov and 

Tarran 2008, Hartmann et al. 2012). In the context of Longhurst provinces, Follows et al. 

(2007) analogous photo-autotroph regions covers the NADR and NAST provinces and 

parts of the NATR in the north Atlantic and the majority of the SATL in the south Atlantic.  

The three approaches to defining provinces are clearly not always in agreement. A key 

question is therefore: “how do these provinces relate to ultraplankton biogeography”? 

There is no a priori reason why Longhurst provinces should apply to ultraplankton, as no 

microbial data apart from ocean colour (which is commonly used as a proxy of total 

phytoplankton, although does not separately distinguish ultraplankton) was used in their 

definition or validation. McClain et al. (2004) also utilised remotely sensed chl a, but no 

other ultraplankton measurements. Detrimental to these two methods is evidence that the 

smallest photosynthesising planktonic organisms that dominate the oligotrophic Atlantic 

may be being missed by ocean colour remote sensing (Zubkov and Quartly 2003). This is 

investigated further in Chapter 6.  The emergent microbial model of Follows et al. (2007) 

does attempt to identify regions by investigating the microbial community and is the only 
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one to compare and find agreement between in situ measurements (Johnson et al. 2006) 

and modelled regions, in this case for Pro.  

This Chapter uses ultraplankton abundances and multivariate analysis to define provinces 

along a transect within the Atlantic open ocean (~ 50°N to ~ 40°S). To understand the 

region of applicability and to model it, is important to know over what extent the 

community can be viewed as similar and to what extent it is constrained by physical 

boundaries and parameters, such as those used by Longhurst (1998, 2007).  A similar 

stance to biogeography has been taken by Gomez-Pereira et al. (2010) as part of their 

study on Flavobacteria abundances which undertook multivariate analysis. However 

Gomez-Pereira et al. (2010) study only utilised 18 sample locations, along a ~30° transect, 

and this Chapter utilises a richer dataset in terms of sample number, spatial resolution and 

quantity of microbial groups used. This present study also covers a wider area of the 

Atlantic (Gomez-Pereira et al. was restricted to 34°N to 65°N), crossing five Longhurst 

(1995) defined provinces (see Figure 2.1). In addition this Chapter considers oligotrophic 

and non-oligotrophic regions as defined by McClain et al. (2004) and regions analogous to 

Pro and small photo-autotrophs as dictated by Follows et al. (2007) emergent microbial 

model.  

This Chapter addresses the following hypotheses: 

 Multivariate analysis of ultraplankton microbial group abundances can delineate 

distinct biogeographic regions within the Atlantic sharing similar community 

structure. 

 These multivariate ultraplankton defined regions need not adhere to the provinces 

defined by Longhurst (1995, 1998, 2007), McClain et al. (2004) and Follows et al. 

(2007). 

 A model incorporating mixotrophy will be valid for the entire subtropical Atlantic. 
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2.2. Method 

2.2.1. Data Collection 

Samples were taken along a northbound transect of the Atlantic Ocean from 40°S to 49°N 

on the AMT14 (part of the Atlantic Meridional Transect Programme) by M Zubkov on-

board RRS James Clark Ross from 28th April to 1st June 2004, in the boreal spring and 

austral autumn. Water was collected along this transect from the underway seawater 

supply (~ 5 m depth), using a miniprep-60 autosampler, at a horizontal resolution of ~ 10 

- 20 km (shown in Figure 2.3a, each point representing the location of one sample). This 

gave 663 samples for each ultraplankton group enumerated.  A FACsort flow cytometer 

(Beckton Dickinson, Oxford, UK) was used to sort and count the following photosynthetic 

ultraplankton groups: Prochlorococcus spp. (Pro), Synechococcus spp. (Syn), 

Picoeukaryotes (PicoEuk)  and Cryptophytes (Crypt). The majority of PicoEuk’s have been 

found to be mixotrophic (Zubkov and Tarran, 2008). In addition, heterotrophic bacteria 

were enumerated and further characterised as low DNA content bacteria (LNA), high-

nucleic acid bacteria with a low 90° light, or side scatter (HNAls) and a high-nucleic acid 

bacteria with a high 90° light scatter (HNAhs). The three heterotrophic bacterial groups 

(LNA, HNAls and HNAhs) were also counted as total heterotrophic bacteria (ttl). See 

Zubkov et al. (2007) for microbial sampling and enumeration protocol.  

SeaWiFS chl a concentration data (level 3 mapped, rolling 32 day data at a 9 km 

resolution) for the duration of the cruise was provided by NASA Goddard Space Flight 

Centre (downloaded from http:/oceancolor.gsfc.nasa.gov/). 

For each multivariate defined cluster and a priori defined region/province the peak and 

mean and associated standard error is reported for the abundances of each ultraplankton 

group. This aims to demonstrate the spread of the data within each cluster.  

2.2.2. Multivariate Statistics applied to 

Abundance Data 

Multivariate statistical analyses were applied to distinguish spatial groupings in 

ultraplankton along the oceanic Section of the AMT14 transect (samples taken over the 
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continental shelf, < 16°W, were excluded) following the methods described in Clarke 

(1993) using E-PRIMER (v. 6.0) (Clarke and Gorley 2006), see Figure 2.2. 

Ultraplankton abundances were normalised to balance the contributions of common (i.e. 

Pro) and rarer groups (i.e. PicoEuk), then fourth root transformed to stabilise variance and 

reduce skew (Figure 2.2, Stage 2). Remotely sensed chl a concentration was square root 

transformed. The Box-Cox method was used (not shown) to determine the appropriate 

transformation of the data (Box and Cox 1964).  Once data were normalised and 

transformed a pairwise Bray-Curtis similarity matrix was calculated between the jth and 

kth samples, Sjk (Figure 2.2, Stage 3).  

Equation 2.1   ࢐࢑ࡿ = ૚૙૙× 	
∑ ૛࢔࢏࢓	࢖(࢑࢏࢟,࢐࢏࢟)
స૚࢏
∑ ࢖(࢑࢏࢟	࢐ା࢏࢟)
స૚࢏

 

Here yij represents the abundance of the ith ultraplankton group in the jth sample. 

Likewise yik counts for the ith abundance in the kth sample. Min(.,.) represents the 

minimum of the two counts. The total number of samples is p (Clarke and Warwick 2001). 

To illustrate the similarity matrix, a dendrogram was constructed (Figure 2.2, Stage 4a). A 

similarity profile test (SIMPROF) was then used to test the null hypothesis that the 

resultant groups in the dendrogram (which are not a priori divided) did not differ from 

one another in multivariate structure at the 5 % level (Clarke and Gorley 2005, Clarke et 

al. 2008). 

Multi-dimensional scaling (MDS) plots were also generated (Figure 2.2, Stage 4b). An MDS 

plot is a map of all samples separated by distances related to their dissimilarity. Plotting 

this map in two dimensions can distort it, this effect is represented by the stress function 

(Clarke and Warwick 2001).  To ensure the minima of the stress function is reached, 25 

restarts, starting at different random positions of samples in the MDS were performed.  
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Figure 2.2. Diagrammatic summary of stages leading to cluster classification and 
ordination, adapted from Field et al. (1982). Stages are referred to in the text. Stage 
1, raw data are presented in a matrix of samples (n) by microbial group (S). Data 
were normalised and transformed (Stage 2). A Bray-Curtis measure of similarity 
(Equation 2.1) is used to draw a comparison of each sample with every other sample 
resulting in a triangular similarity matrix (Stage 3). Stage 4 generates a dendrogram 
(Stage 4a) and multidimensional scaling plot (MDS, Stage 4b) to summarise the 
sample relationships.  

Once clusters had been discriminated, a one-way similarity percentages routine (SIMPER) 

could be used on the Bray-Curtis similarity matrix to identify the key ultraplankton groups 

contributing to the dissimilarity between and the similarity within clusters (Clarke and 

Warwick 2001, Clarke and Gorley 2006). 

2.2.3. Multivariate Statistics on a Priori Defined 

Regions 

Preceding the a priori analysis, all the samples in the dataset were grouped according to 

the predefined biogeographic regions outlined in Section 2.1.1 – Longhurst (1998, 2007), 

McClain et al. (2004) and Follows et al. (2007). This enabled their relevance to the 

ultraplankton assemblages to be assessed. To test the null hypothesis that there were no 

differences in community composition in a priori defined regions (i.e. Longhurst 

provinces) a one-way analysis of similarities (ANOSIM) was used on the Bray-Curtis 

resemblance matrix. ANOSIM is an approximate analogue to the standard univariate 

ANOVA.  The test statistic R is scaled between + 1 and - 1; a value of + 1 implies that the 

similarities between all samples in one province are higher than similarities between 

provinces.   The following thresholds can be used: > 0.75 total separation; 0.75 - 0.5 weak 
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overlap; 0.5 - 0.25 overlap but some separation; < 0.25 no separation (Vichi et al. 2011). R 

was recomputed under the default 999 random permutations of the sample labels to 

achieve a significance level (Clarke 1993, Clarke and Green 1998). 

2.3. Results 

Ttl was a count of all heterotrophic bacteria (LNA, HNAhs and HNAls).Ttl was excluded 

from multivariate analysis as its inclusion would repeat representation of bacterial 

groups. It should also be noted that Crypt abundances were low throughout the transect (0 

– 477 cell ml-1). At low abundances, experimental error can be high, due to a decrease in 

the accuracy of flow cytometric counting and sorting at low abundances. Therefore Crypt 

is excluded from the analysis. 

2.3.1. Multivariate Analysis  

Cluster analysis of the underway flow cytometry sorted microbial groups (Pro, Syn, 

PicoEuk, LNA, HNAhs and HNAls) revealed four clusters that were all significantly 

different (SIMPROF, p < 0.05) at the > 90 % similarity level. These groups were taken on 

for further analysis. An accord was found between the dendrogram and MDS 

representations (% labelled, Figure 2.2, Stage 4a and 4b) and a low stress level of 0.07 was 

obtained; robustness is achieved when these are viewed in combination. MDS ordination 

(Figure 2.3a) displays the four clusters and Figure 2.3b the corresponding overlaid 

dendrogram. From here, multivariate defined ultraplankton groups are plotted 

geographically (Figure 2.3). Group c has only 2 sample points, both located at the very 

north of the transect (> 44°N). As this group is small and an overlap is seen in the MDS 

(Figure 2.3a), it is not clearly seen on the geographical transect plot and due to its low n 

will not be considered further here.  

Cluster region a is the largest, grouping the north and south Atlantic and the equator 

together. Group d encompasses the north and south temperate region above and below 

group a (> 39°S) and between groups a and b to the north (36 - 42°N), despite these 

temperate areas being ~ 9000 km apart. Group b is found at the very north of the transect 

(42°- 49°N). The MDS stress is low, clusters are in agreement with the dendrogram (see 

Figure 2.3b) and the standard error for each cluster’s microbial group abundance is 

relative low, all indicating that this partitioning is robust.   
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a. 

 
 

b. 

 

Figure 2.3. (a) AMT14 transect samples and associated multidimensional scaling 
(MDS) plot.  Colours denote MDS > 90 % similarity groupings and dashed lines 
around these denote multivariate defined groups from the dendrogram in plot b. 
‘Sub’ cluster labelled ai encompasses 38°S - 22°N and aii between 23 - 38°N. (b) 
Dendrogram of same data (> 90 % similarity groupings). Letters correspond to 
clusters in plot a. 

a    b     c      d 
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It should also be noted that cluster region a could be further statistically divided into two 

groups if similarity was increased to 91 %: one of the north Atlantic gyre between 23 - 

38°N (grouping in the bottom of MDS cluster region a, labelled ai in Figure 2.3a) and the 

other encompassing the whole of the south Atlantic, the equator and the southernmost 

part of the north Atlantic gyre, 38°S - 22°N (top grouping within MDS cluster region a, 

labelled aii in Figure 2.3a).  This Chapter will focus on the four provinces defined from > 

90 % ultraplankton similarity. The reason behind the divide in cluster region a, will be 

discussed further in the light of additional results in Chapter 6. 

 SIMPER Analysis of Multivariate Defined Clusters 2.3.1.1.

The SIMPER test was used to identify the contribution from each ultraplankton group to 

the dissimilarity between the multivariate defined groups (Table 2.1). The greatest 

average dissimilarity is found between cluster region a and b (27 %, data not shown), the 

oligotrophic region and the northern end of the transect respectively. Syn and PicoEuk 

dominated the dissimilarity between all the groups, followed by Pro and HNAls. It is also 

important to note that the mixotrophs (PicoEuk) were key in differentiating group a, from 

groups b, c and d. See Figure 2.4a, b and c for Syn, PicoEuk and Pro abundances across 

clusters.   

Table 2.1. SIMPER analysis of variables dominating difference between clusters at 
the > 90 % similarity level. Percentage contribution of each variable to dissimilarity 
between CLUSTER defined groups is given in brackets. See Figure 2.3a. 

 a B c d 

a     

b Syn (28%) 
PicoEuk (26%)    

c PicoEuk (42%) 
Pro (27%) 

Syn (42%) 
HNAls (20%)   

d Syn (34%) 
PicoEuk (28%) 

Pro (30%) 
PicoEuk (21%) 

Pro (34%) 
PicoEuk (25%)  
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SIMPER was also used to identify the characteristic ultraplankton groups within each 

cluster (Table 2.2). For three of the multivariate defined clusters average similarity was 

typified best by PicoEuk (group c and d) or Syn (group b). The heterotrophic bacteria 

(LNA, HNAhs and HNAls) were most typical of cluster region a. LNA despite not being the 

most defining ultraplankton group in any of the clusters, contributed consistently (17.5 - 

18.9 %) to all cluster samples similarity (this can be seen in Figure 2.4d, as the size of the 

bubbles, representative of abundance, are relatively consistent throughout the clusters). 

Pro, although relatively unimportant in clusters b, c and d, does contribute to within-

cluster similarity in cluster region a (17.1 %) and cluster region a is the only cluster where 

its contribution to similarity is more than Syn (12.3 %). The contrasting distribution of Pro 

relative to PicoEuk and Syn can be clearly seen in Figure 2.4 a-c. 

Table 2.2. SIMPER routine result for the percentage ultraplankton contribution of 
each microbial group to the Bray-Curtis Similarity within each four cluster regions 
at > 90 % similarity level, as defined in Figure 2.3a. 

 a b C d 
PicoEuk 14.7 22.9 25.6 18.9 
Syn 12.3 23.1 15.1 18.3 
LNA 18.9 17.2 18.0 17.5 
HNAls 18.2 19.5 18.1 16.0 
HNAhs 18.8 15.3 16.5 16.1 
Pro 17.1 2.1 6.8 13.2 
     
Average Similarity 92.5 93.9 96.9 93.6 

 Microbial Abundances of Multivariate Defined 2.3.1.2.

Clusters 

Across all samples absolute cell numbers of prokaryotic cells peaked at 1,143,200 cell ml-1 

(LNA) and at 36,707cell ml-1 for eukaryotic cell.  LNA was the most abundant group and 

PicoEuk the least. Heterotrophic bacteria (LNA, HNAhs and HNAls) abundances were 

consistent throughout the transect (see Figure 2.4d). 

In terms of the ultraplankton defined clusters (see Figure 2.3 and Table 2.3), cluster b 

(located at the northern temperate end of the transect) had the highest mean and peak 

abundances for all microbial groups except for Pro. Cluster region a (the region that covers 

all of the oligotrophic gyres and the equatorial region) had the lowest mean abundances 

for all microbial groups except for HNAhs and Pro, whose abundances instead peaked in 

region a.  
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Table 2.3. Groupings defined by multivariate analysis. Peak, mean and standard 
error of the mean (SEM) for each ultraplankton group (n, sample number).   

Ultraplankton 
Cluster 

Peak 
abundance 
(cell ml-1) 

Mean 
abundance  
(cell ml-1) 

SEM           
(cell ml-1) 

a            
n = 566 

Syn 33342 4123 ± 210 
Pro 275545 92295 ± 2474 
PicoEuk 6751 818 ± 22 
LNA 482196 235111 ± 2778 
HNAls 147564 64944 ± 845 
HNAhs 354762 154393 ± 2626 

b            
n = 37 

Syn 205406 97222 ± 5202 
Pro 25764 4098 ± 987 
PicoEuk 36707 18140 ± 1125 
LNA 1143228 627578 ± 25357 
HNAls 653285 373868 ± 21490 
HNAhs 414899 230742 ± 9539 

c                      
n = 2 

Syn 9691 8601 ± 1091 
Pro 3103 2623 ± 480 
PicoEuk 18193 14682 ± 3511 
LNA 398616 368721 ± 29894 
HNAls 126907 117545 ± 9362 
HNAhs 141008 141002 ± 6 

d                     
n = 58 

Syn 141042 39938 ± 4612 
Pro 144032 65343 ± 4905 
PicoEuk 12786 5530 ± 264 
LNA 1027273 487225 ± 22496 
HNAls 240939 110970 ± 5258 
HNAhs 364378 195132 ± 7275 

all                   
n = 663 

Syn 205406 12466 ± 1034 
Pro 275545 84745 ± 2312 
PicoEuk 36707 2239 ± 176 
LNA 1143228 279472 ± 5467 
HNAls 653285 86370 ± 3126 
HNAhs 414899 162177 ± 2514 

2.3.2. A Priori defined Provinces 

 ANOSIM of a Priori defined Provinces 2.3.2.1.

An assessment of a priori defined provinces was conducted using ANOSIM for Longhurst 

(1995, 1998, 2007) provinces, McClain et al. (2004) oligotrophic and non-oligotrophic 

defined regions and Follow et al. (2007) emergent model defined regions. The test statistic 

R reflects the difference between regions, contrasted with samples from within. The higher 

the test statistic, R, the more contrasting the regions.  
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Longhurst provinces analysis excluded the area not definitively within a Longhurst 

provinces (i.e. those along the boundaries). These were labelled transitional (Trans) zones 

in Figure 2.5. The evaluation of the applicability of Longhurst (1998, 2007) provinces to 

the ultraplankton community, found that the NADR province is the best constrained by the 

ultraplankton population, as it has the greatest difference in ultraplankton relative to all 

other provinces (total separation,  R  > 0.9, p < 0.001), see Table 2.4.  NAST against WTRA 

and SATL had a weak overlap (R = 0.7, p < 0.001) and for all other provinces ultraplankton 

communities overlapped with each other but had some separation (R = 0.25 - 0.5, p < 

0.001), except for NATR and SATL which had no separation (i.e. difference) in 

ultraplankton populations (R = 0.2, p < 0.001). 

Table 2.4. Longhurst (1998, 2007) ANOSIM pairwise test (R statistic). All significant 
at p < 0.001. Overall test statistics R = 0.53. 

 NADR NAST NATR WTRA 

NAST 0.921    

NATR 1.000 0.360   

WTRA 0.999 0.701 0.447  

SATL 0.988 0.662 0.203 0.247 

McClain et al. (2004) regions split the data set in two (samples > 0.07 mg m-3 and ≤ 0.07 

mg m-3 chl a). Here it should be noted that due to cloud cover, there were data gaps in the 

transect. The ANOSIM was calculated only where satellite data existed (see Figure 2.6).  All 

oligotrophically defined samples were found within ultraplankton defined cluster region a. 

Oligotrophic and non-oligotrophic regions however, compared by ANOSIM, had a test 

statistic of R = 0.23 (p < 0.001). This indicates no separation of oligotrophic and non-

oligotrophic regions, as the ultraplankton communities barely differ in the two regions.  

Follows et al. (2007) defined regions have a R test statistic of 0.01, a complete overlap of 

ultraplankton community structure. However, this was not at an acceptable level of 

significance and therefore not robust (see Figure 2.7).   
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 Microbial Abundances of a Prior Defined 2.3.2.2.

Provinces 

Within the Longhurst (1995, 1998, 2007) defined provinces the highest peak and mean 

abundances are also found at the northern end of the transect (NADR, > 44°N), except for 

Pro which peaks in abundance within the WTRA (~ 5°S - 10°N). The lowest abundances 

are found across the oligotrophic regions (NATR, NAST and SATL), see Figure 2.5 and 

Table 2.5. This Chapters’ ultraplankton defined cluster regions contrast with Longhurst 

provinces. As cluster region a houses four Longhurst provinces - NAST, NATR, WTRA and 

SATL. Cluster region b is the only region to agree with a Longhurst province, the NADR 

(see Figure 2.5).  

 

Figure 2.5. AMT14 transect samples and corresponding multidimensional scaling 
(MDS) plot (see Figure 2.3), with Longhurst (1998, 2007) provinces overlaid. 
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Table 2.5. Microbial characteristics of provinces as defined by Longhurst (1995, 
1998, 2007). Peak, mean and standard error of the mean (SEM) for each 
ultraplankton group (n, sample number). 

Longhurst 
Provinces 

Peak 
abundance 
(cell ml-1) 

Mean 
abundance  
(cell ml-1) 

SEM    
(cell ml-1) 

NADR     
n = 34 

Syn 205406 91599 ± 6541 
Pro 25764 3719 ± 1055 
PicoEuk 36707 19513 ± 985 
LNA 1143228 610701 ± 28859 
HNAls 653285 387528 ± 21757 
HNAhs 414899 230833 ± 10428 

NAST    
n = 97 

Syn 79219 10900 ± 1397 
Pro 86812 22899 ± 1860 
PicoEuk 6751 2225 ± 183 
LNA 1027273 280833 ± 13077 
HNAls 240939 66950 ± 2667 
HNAhs 364378 109293 ± 4726 

NATR    
n = 69 

Syn 4679 2776 ± 105 
Pro 150139 59920 ± 4344 
PicoEuk 1569 980 ± 26 
LNA 288976 214713 ± 3048 
HNAls 93758 65045 ± 1313 
HNAhs 302232 185237 ± 4970 

WTRA    
n = 
107 

Syn 33342 9491 ± 842 
Pro 275545 149475 ± 3703 
PicoEuk 2633 1003 ± 37 
LNA 482196 307159 ± 7569 
HNAls 147564 85257 ± 2247 
HNAhs 354762 227580 ± 5357 

SATL   
n = 
282 

Syn 23901 3373 ± 273 
Pro 214881 108374 ± 2419 
PicoEuk 7847 960 ± 94 
LNA 438556 226009 ± 4274 
HNAls 138722 61805 ± 1469 
HNAhs 280981 150475 ± 2797 

Using the McClain et al. (2004) criteria, oligotrophic regions (chl a ≤ 0.07 mg m-3) had 

lower ultraplankton peak and mean abundance, than non-oligotrophic regions (chl a > 

0.07 mg m-3), see Figure 2.6 and Table 2.5. In terms of this Chapters’ ultraplankton defined 

regions, cluster region a housed a mixture of oligotrophic and non-oligotrophic defined 

samples and cluster regions b to d were all classed as non-oligotrophic according to the 

McClain et al. (2004) criteria (Figure 2.6). 
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Figure 2.6. AMT14 transect samples and corresponding multidimensional scaling 
(MDS) plot (see Figure 2.3), with  McClain et al. (2004) chlorophyll a concentration 
defined regions ( > or < 0.07 mg m-3) overlaid.  

Table 2.6. Groupings defined using McClain, et al. (2004) criteria for oligotrophic 
and non-oligotrophic regions (≤	or	>	0.07	mg	m-3, derived from SeaWiFS). Peak, 
mean and standard error of the mean (SEM) for each ultraplankton group (n, 
sample number). 

McClain et al. (2004) regions Peak abundance 
(cell ml-1) 

Mean abundance  
(cell ml-1) 

SEM      
(cell ml-1) 

Oligotrophic  
≤		0.07	mg	m-3                      
n = 225 

Syn 5774 1708 ± 93 
Pro 213282 54200 ± 2986 
PicoEuk 1569 623 ± 15 
LNA 276014 192960 ± 2082 
HNAls 92151 54698 ± 917 
HNAhs 214276 109227 ± 2608 

Non-Oligotrophic 
> 0.07 mg m-3                 
n = 351 

Syn 205406 20564 ± 1793 
Pro 275545 95793 ± 3306 
PicoEuk 36707 3558 ± 312 
LNA 1054667 334624 ± 8237 
HNAls 595960 107763 ± 5312 
HNAhs 374152 183054 ± 3011 
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The Follows et al. (2007) emergent model defined grouping that is analogous to a region 

dominated by Pro had the lowest peak and mean abundances for all microbial groups, 

except for Pro. The opposite was found in the region analogous to small photo-autotrophs 

(see Figure 2.7 and Table 2.6). Similar to the McClain et al. (2004) criteria, cluster region a 

defined by ultraplankton in this Chapter had a mixture of photo-autotrophs and Pro 

defined samples, and cluster regions b to d were all analogous to photo-autotrophs.  

 

Figure 2.7. AMT14 transect samples and corresponding multidimensional scaling 
(MDS) plot (see Figure 2.3), with Follows et al. (2007) emergent model regions for 
Pro and Photo-autotrophs overlaid  
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Table 2.7. Follows et al. (2007) emergent model dictated regions defined as 
analogous to Pro spp. and to small photo-autotrophs - peak, mean and standard 
error of the mean (SEM) for each ultraplankton group (n, sample number). 

Follows et al. (2007) regions 
analogous to: 

Peak abundance 
(cell ml-1) 

Mean abundance  
(cell ml-1) 

SEM    
(cell ml-1) 

Photo-autotrophs     
n = 431 

Syn 205406 16278 ± 1541 
Pro 214881 65788 ± 2719 
PicoEuk 36707 2990 ± 263 
LNA 1143228 291742 ± 7889 
HNAls 653285 95174 ± 4677 
HNAhs 414899 148193 ± 2709 

Pro                                   
n = 232 

Syn 33342 5382 ± 467 
Pro 275545 119962 ± 3154 
PicoEuk 2633 844 ± 24 
LNA 482196 256676 ± 5103 
HNAls 147564 70012 ± 1623 
HNAhs 354762 188156 ± 4676 

2.4. Discussion 

This Chapter defined four Atlantic Provinces on the basis of ultraplankton abundances 

(see Figure 2.3). This study shows that ultraplankton community structure is clearly 

delineated along the transect studied and that ultraplankton communities can therefore be 

used to define a large oligotrophic subtropical and tropical Atlantic province, 

characterised by similar abundances. 

The large region, cluster region a, was found to coherently describe both the north and 

south oligotrophic Atlantic and the equatorial region, regardless of the transect sampling 

two opposing seasons (boreal spring and austral autumn). As seasonality does not affect 

the delineation of provinces, this Chapter gives some support to the assumption of steady 

state made when the mixotroph model is first developed in Chapter 4. This result is also 

supported by previous observational studies on the stability of the meridional distribution 

of picoplanktonic groups over differing seasons (Zubkov et al. 2000). Cluster region a 

differs from previous frameworks that have separately defined the north and south 

Atlantic (e.g. Pauly 1998, Longhurst 1998, 2007). Some support for the NATR-NAST 

Longhurst province defined boundaries, however, is found. If cluster region a was further 

separated into two ‘sub’ cluster regions (ai and aii, see Figure 2.3a), the boundary (~ 

23°N) would lie close to that of the Longhurst (1998, 2007) NATR-NAST boundary (25 - 

30°N) which, was defined by the presence of the subtropical convergence zone. 

Nevertheless this study’s result is more consistent with recent emergent models, that 
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produce provinces that are inclusive of regions both north and south of the equator (e.g. 

Lewis et al. 2008, Dutkiewicz et al. 2009). This suggests that provinces defined by physical 

processes have limited application when describing ultraplankton distributions. 

The existence of a single province encompassing both gyres for ultraplankton groups is 

important for future in situ observations and modelling. Limited samples, due to 

methodological, time and monetary constraints on measurements in the oceanic Atlantic, 

may be less of a problem than previously thought, because samples could be localised and 

extrapolation of results could be applied across the province. Similarly in modelling, which 

often requires a large amount of data for parameterisation, one area could be anticipated 

to be the equivalent of another within the same province, and then extrapolations for the 

province as a whole could be made (if spatial variability is ignored, Chapter 6 examines 

this assumption).  

The multivariate analyses of the ultraplankton groups showed that > 50 % of the 

distinction between the main cluster regions (a, b and d) was due to the PicoEuk and 

either Syn or Pro microbial groups (see Table 2.1). Previous studies have shown that not 

only are these groups major fixers of inorganic carbon (Li 1994), but PicoEuk’s have also 

been observed to be predominantly responsible for bacterivory (see Chapter 1) within the 

temperate and tropical North Atlantic Ocean (Zubkov and Tarran 2008). PicoEuk’s as a 

key defining ultraplankton group of cluster region a is reassuring for later models, 

incorporating mixotrophy in this thesis (Chapter 4 and 5), models are based upon this 

multivariate defined cluster. 

Results presented in this chapter also quantitatively tested the applicability of previously 

defined provinces to ultraplankton communities. Longhurst (1998, 2007) states that 

bottom up control by physical drivers defines biogeochemical provinces. Therefore, at the 

base of the marine ecosystem, these physical forces should directly affect ultraplankton. 

Consequently, one might expect that ultraplankton communities would have been given 

consideration. Longhurst (1998) gave a brief review of phytoplankton and zooplankton 

species interactions. However, bacterioplankton are absent from the first edition and in 

the second edition are discussed only briefly (Longhurst 2007), referring to two graphs of 

Atlantic transects (from Li, 1995, Zubkov et al. 1998). Nonetheless since publication, the 

Longhurst province framework has been used in numerous studies, including those on 

microbes (e.g. Boyd and Newton 1999, Gomez-Pereira et al. 2010, Freidline et al. 2012). In 

this study the NADR is shown to be best constrained by an ultraplankton population 
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distinct from other provinces (see Table 2.7). This is the northernmost part of the transect, 

a temperate region also distinguished by clusters (b, c and d, see Figure 2.5). Longhurst 

provinces, however, incorrectly distinguish the SATL from other subtropical and tropical 

Atlantic Longhurst defined regions (NAST, NATR and WTRA), as the north and south 

Atlantic gyre regions have no significant difference in ultraplankton populations. However, 

if similarity were to be increased in this study, the boundary of NATR-NAST would be 

consistent with the distribution of the ultraplankton (ai and aii in Figure 2.3a).  

Secondly, the current multivariate analysis result was compared to McClain et al.’s (2004) 

oligotrophic and non-oligotrophic regions. Figure 2.6, shows relatively small gyre regions 

using the McClain et al. criteria (~ 21 - 32°N and ~ 10 – 30°S, similar to those found by 

Polovina et al. 2008), north and south of a large non-oligotrophic equatorial area. This is in 

contrast to the cluster results from this study where a single region was defined that 

covered these differing McClain regions (see cluster region a, in Figure 2.3a and Figure 

2.6). Within cluster group a, approximately equal numbers of McClain et al. (2004) defined 

oligotrophic and non-oligotrophic samples are present. In cluster regions b, c and d all 

samples are non-oligotrophic according to McClain et al. (2004). The ANOSIM test statistic 

reported no difference between oligotrophic and non-oligotrophic ultraplankton 

communities (R = 0.23, p < 0.001) using the McClain et al. (2004) definition. This is an 

interesting result in two respects, of which the latter may be the cause of the former. 

Firstly, it may suggest that the oligotrophic ‘bar’ (chl a ≤ 0.07 mg m-3) has been set too low 

(Antoine et al. 1996 set it at chl a ≤ 0.1 mg m-3). Secondly, it may support previous 

evidence that suggests inadequacies in the remote sensing of chl a for phototrophic 

ultraplankton groups (Zubkov and Quartly 2003). This in turn brings the accuracy of 

determining ultraplankton communities by remote sensing into question. Phototrophic 

ultraplankton detection by remote sensing is investigated with this dataset, in Chapter 6 of 

this thesis. 

Thirdly, the region defined as analogous of Pro by the Follows et al. (2007) emergent 

model is smaller than that defined by the presented ultraplankton multivariate analysis 

(cluster region a, see Figure 2.3 and 2.7).  The difference between the two Follows et al. 

(2007) defined regions (photo-autotroph and Pro) could also not be shown to be 

statistically different on the basis of ultraplankton abundances. Dutkiewicz et al. (2009) 

expanded on the Follows et al. (2007) model, using similar equations except for a change 

in the grazing term (for variable palatability of phytoplankton and sloppy feeding). This 

led to an even larger area around the equator dominated by Pro. Therefore, this expanded 
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Follows et al. (2007) model may be more appropriate to describe ultraplankton 

community regions within the Atlantic.  

Out of all the previous regional definitions discussed, none matches the regions extracted 

from the ultraplankton community. The multivariate cluster regions defined here bear 

little resemblance to Longhurst (1998, 2007) provinces. As well as enveloping the entire 

oligotrophic region of McClain et al. (2004) and part of the non-oligotrophic region. The 

ultraplankton defined cluster region a spans a wider area than those analogous to Pro 

defined by Follows et al. (2007). This suggests that the ultraplankton-defined clusters 

presented here are of more relevance to ultraplankton studies, especially those in the 

tropical and subtropical Atlantic, than a priori defined provinces. Thus, future studies of 

ultraplankton should not use unconditionally regions previously defined. Studies ideally 

ought to conduct multivariate analysis on each occasion to give confidence in region 

definitions. 

2.5. Summary and Implications 

This investigation found that samples taken from the Atlantic Meridional Transect could 

be grouped into four provinces (at > 90 % similarity level) using ultraplankton group 

abundances, the largest of which incorporates the north and south subtropical and 

tropical region (~ 36°N to ~ 39°S). SIMPER analysis of these multivariate defined groups, 

showed that > 50 % of the distinction between the main cluster regions (a, b and d) was 

due to the PicoEuk (mixotrophic algae) and either Syn or Pro microbial groups (see Table 

2.1). 

This multivariate defined cluster region a, will be used in the subsequent Chapters, in the 

following ways:  

 Dissolved organic phosphate uptake by bacterioplankton will be compared within 

cluster region a multivariate defined provinces (Chapter 3)  

 The Atlantic subtropical and tropical region (cluster region a) has been defined on 

the basis of similarity in ultraplankton assemblages. Therefore a model 

constructed incorporating mixotrophy, is applicable for this entire region. This 

also helps to the support an assumption of steady state (Chapters 4 and 5), as 

seasonality does not influence region similarity.  
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 The multivariate method in this Chapter does not reveal any information on spatial 

homogeneity in cluster region a. To evaluate this, Chapter 6 assesses microbial 

group spatial variability within cluster region a which appears to displays 

homogeneity at the ultraplankton community scale.   

 An assessment will be made of the ability of remotely sensed chl a to detect 

ultraplankton groups (Chapter 6), this question having arisen from the comparison 

of McClain et al. (2004) oligotrophic regions to ultraplankton defined provinces. 

From the results presented in this chapter and considering the  

three stated hypothesis to be tested  the  following can be 

concluded: 

 Multivariate analyses of ultraplankton microbial group abundances can delineate 

biogeographic regions within the Atlantic.  

 Ultraplankton defined regions do not equate to previously defined provinces. 

 A model incorporating mixotrophy is valid for the entire subtropics and tropical 

Atlantic.
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3. Dissolved	Organic	Phosphate	-	
an	Alternative	Source	of	Phosphate	
in	the	Subtropical	North	and	
Central	Atlantic? 

3.1. Introduction 

Phosphorus is one of the main elements controlling primary production in the oceans. It is 

a key macronutrient, a component of DNA, RNA and lipids and is a limiting nutrient for 

productivity in the subtropical and tropical north Atlantic subtropical gyre (NAG) (Tyrrell 

1999, Mills et al. 2004, Mills et al. 2008). The NAG has very low concentrations of 

phosphorus (Zubkov et al. 2007), in its inorganic form, phosphate. Measurements of 

dissolved inorganic phosphate (DIP) uptake by microbes showed that DIP uptake was too 

low to sustain the observed picoeukaryotic (algae) biomass (Hartmann et al. 2011). In 

spite of this, the NAG has comparable rates of carbon fixation to the south Atlantic 

subtropical gyre, which is not P limited (Poulton et al. 2006). This suggests the utilisation 

of an alternative phosphorus source to satisfy demand.  

Dissolved organic phosphate (DOP) represents a considerable fraction (~ 70 – 80 %) of 

the total dissolved phosphorus (comprised of DOP and DIP) pool (Karl and Björkman 

2002). The composition of DOP is poorly understood, although a study has indicated a 

predominance of phosphonate (C-P) and P-ester (C-O-P) bond classes (Kolowith et al. 

2001), the latter of which are considered more labile to primary producers (P-ester 

examples include ATP, UMP and AMP the nucleotides in this study, which are explained 

below). It has previously been suggested in studies from the Sargasso Sea (e.g. Casey et al. 

2009, Lomas et al. 2010, Michelou et al. 2011) and ex situ laboratory cultures (Wang et al. 

2011) that DOP may be being significantly utilised by plankton. Zubkov et al. (2007) 

demonstrated however, through a sensitive bioassay radioactive labelling technique and 
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flow cytometry that ATP represented only a small fraction of the DIP uptake in the NAG. 

Casey et al. (2009) and Michelou et al. (2011) used a similar technique to Zubkov et al. 

(2007) to measure assimilation of ATP by different picophytoplankton groups, concluding 

contrary to Zubkov et al. (2007) that all the microbial groups studied assimilated ATP at a 

significant rate (Casey et al. 2009) and that heterotrophic bacteria dominated ATP uptake, 

while cyanobacteria accounted for less than 10 % of the total ATP uptake (Michelou et al. 

2011). This conclusion of significant ATP utilisation was further supported by Lomas et al. 

(2010), who measured DOP indirectly by subtracting DIP from total dissolved P, and 

concluding that DOP supported approximately 25% of annual primary production. 

Nevertheless these three studies (Casey et al. 2009, Lomas et al. 2010, Michelou et al. 

2011), took place within the Sargasso Sea, which despite bordering the NAG has differing 

biogeochemical variables and are not here considered analogous to the north Atlantic 

gyre. Casey et al. (2009) and Michelou et al. (2011) also assumed a 1 nmol-1  ambient 

concentration of ATP for calculations, based on bioassay data from the NAG from  Zubkov 

et al. (2007) and chemical data from the North Pacific (Karl and Bossard 1985). They used 

this assumed concentration of ATP despite acknowledging the trans-Atlantic difference 

between the oligotrophic Atlantic and Sargasso Sea, and regardless of the bioassay 

techniques they employed being able to deduce maximum ambient concentrations. The 

reason they omitted to use direct observations of concentration are not explained.   

Past studies of DOP have concentrated on ATP (Adenosine-5'-triphosphate, which contains 

three phosphate groups, a purine base - adenine and a pentose sugar - ribose) as a model 

compound, despite its instability in seawater, assuming it is the main component of, or 

proxy for, the total DOP pool (e.g. Zubkov et al. 2007, Casey et al. 2009, Orchard et al. 2010, 

Michelou et al. 2011, Bjorkman et al. 2012). ATP, however, is only one constituent of DOP 

(Karl and Björkman 2002). Here for the first time, two other nucleotides, that are also 

monomers of RNA are studied: Uridine monophosphate, also known as 5'-uridylic acid 

(UMP), and adenosine monophosphate (AMP), or 5'-adenylic acid. ATP and AMP are 

known to be dephosphorylated extracellularly with the phosphate groups and the adenine 

base then separately transported by a carrier-mediated transport system (Bengis-Garber 

and Kushner 1982, Bengis-Garber 1983). To the author’s knowledge no studies have been 

undertaken on microbial UMP uptake transport. Here it is hypothesised that the uracil 

base is taken up in the same way as the ATP and AMP adenine bases. Therefore, the 

utilisation of these three phosphate nucleotide constituents of the DOP pool are 

investigated in the NAG and central Atlantic, to assess if any of the nucleotides tested are 

consistently being utilised at a significant rate by the marine microbial pool (> 0.2 µm) or 
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if there is a significant difference between these nucleotides, and hence to evaluate if DOP 

is a significant alternative source of P to DIP in this P limited region.   

It has previously been stated (Chapter 1) that recent research has indicated mixotrophy 

(bacterivory) as a major source of phosphate to algae (Zubkov and Tarran 2008, 

Hartmann et al. 2012). This finding changed the basic understanding of the oligotrophic 

food web, as it established that plastidic protists (algae) are the foremost bacterivores as 

well as the main CO2 fixers in this oligotrophic ecosystem (Li 1994, Hartmann et al. 2012). 

Motivated by this discovery, a central aim of this thesis is the development of a mixotroph 

model (in Chapters 4 and 5). Prior to doing so, however, it is necessary and prudent to 

examine whether DOP is an alternative source of phosphate that needs to be included in 

the model.  

The aim of data presented in this chapter was to determine if, in the tropical and 

subtropical north and central Atlantic ocean, DOP is being used as a significant source of 

phosphorus by plankton (> 0.2 µm). In addition to assessing this by examining three 

different nucleotide fractions of the DOP pool (ATP, AMP and UMP), it also examines if 

there is inter-annual variability or seasonality in the ATP fraction of the DOP pool. The 

overall objective of this Chapter is to ascertain if a separate DOP pool is required in a 

model to capture the population dynamics of the tropical and subtropical north Atlantic 

ocean. 

This Chapter addresses the following hypotheses: 

 DOP is utilised as an alternative significant source of phosphate (to DIP) by plankton in the 

subtropical north and tropical central Atlantic. 

 For the three DOP nucleotides measured (ATP, AMP and UMP), turnover time, 

concentration and uptake by plankton are not significantly different in the subtropical 

north and tropical central Atlantic. 

 Across the three years (2004, 2008 and 2009), inter-annual variability and seasonality is 

not present in ATP turnover time, concentration or uptake by plankton in the subtropical 

north and tropical central Atlantic. 

 DOP needs to be included in a model of the oligotrophic Atlantic, as an important 

alternative source of P.  
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3.2. Method  

3.2.1. Sampling 

Experiments were conducted in the subtropical and tropical Atlantic during three Atlantic 

Meridional Transect (AMT) cruises (Table 3.1). Only ATP was collected on all three 

cruises. (see Figure 3.1 and Table 3.1).  The analysis is restricted to the ultraplankton 

defined area, cluster region a (detailed in Chapter 2). 

Table 3.1. Details of cruises and respective nucleotides measured (also see Figure 
3.1). 

Cruise Date Austral 
Season Ship Nucleotides Collected by 

AMT14 May 2004 Spring RRS James 
Clark Ross ATP M Zubkov 

AMT18 Oct-Nov 
2008 Autumn RRS James 

Clark Ross ATP M Zubkov 
M Hartmann 

AMT19 Oct-Nov 
2009 Autumn RRS James 

Cook 
ATP, AMP, UMP, 

DIP 
S Herrington 
M Hartmann 

Seawater samples were collected at midday (AMT14) and predawn (AMT18 and AMT19) 

from a depth of 20 m (representing the mixed layer and the shallowest depth not affected 

by the ships movement) with 20 litre niskin bottles mounted on a sampling rosette with a 

conductivity-temperature-depth profiler. Samples were collected in acid-washed 1 litre 

thermos flasks, using acid soaked silicon tubing, which were rinsed with sampled 

seawater prior to sample collection. Radiotracer experiments were started immediately 

after sampling. To avoid light effects, experiments were conducted in the dark and at in 

situ temperatures.  
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Figure 3.1. Sampling locations of AMT14 (black circles), AMT18 (light grey circles) 
and AMT19 (dark grey triangles) in May 2004, October/November 2008 and 
October/November 2009 respectively. 

3.2.2. Determination of Organic and Inorganic 

Phosphate Ambient Concentration, Microbial 

Uptake Rate and Turnover Time using Bioassays 

Isotopic dilution time-series incubations (Zubkov et al. 2004, Zubkov et al. 2007), referred 

to as bioassays, were used to measure turnover rates, ambient concentrations and 

microbial uptake rates. [α33P]AMP, [α33P]ATP (on AMT14 only [γ33P]ATP) and [α33P] UMP 

(all > 111 TBq mmol-1 – Hartmann Analytics GmbH, Germany) were all added to individual 

samples at a concentration of 0.2 nmol l-1 and diluted with non-labelled (cold) AMP, ATP 

and UMP respectively  using a dilution series of 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4 nmol-1. [33P] 

orthophosphoric acid (> 111 TBq mmol-1 – Hartmann Analytics GmbH, Germany) was 

added at a concentration of 0.1 nmol-1 and diluted with non-labelled (cold) Na2HPO4 using 

a dilution series of 0.4, 0.8, 1.6, 2.4, 3.2 and 4.0 nmol-1. For all DOP and DIP samples 

quadruplets of 1.6 ml for each addition were incubated in 2 ml screw top sterilised 

polypropylene micro-centrifuge tubes. DOP samples were fixed for 1 hour using 

paraformaldehyde (PFA) solution (to give a final concentration of 1 %) at 15, 30, 45, and 

60 min or 20, 40, 60 and 80 min (no statistically significant differences were found 
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between data from different timings, thus results were treated the same in further 

analysis). DIP samples were incubated for 20, 40, 60, and 80 min. PFA was added to give a 

final concentration of 1 % and fixed for one hour.  

Samples were collected onto 0.2 µm (anything smaller than this size fraction was assumed 

to be a virus) polycarbonate filters (Poretics Corporation, autoclaved in deionised water 

prior to harvesting). After the sample was collected on the filter, the filter was washed 

twice with 2 ml of deionised water. DIP samples were also collected with 0.2 µm 

polycarbonate filters (Poretics Corporation, autoclaved in the following buffer) and 

washed with two 5-ml aliquots of a solution of 0.5 mol-1 LiCl and 1 mmol-1  phosphate 

(LiCl-PO4 buffer). Radioactivity remaining on the filters was measured the same day as 

disintegrations per minute (DPM) using a liquid scintillation counter (Tri-Carb 3100, 

Perkin Elmer).   

Calculations of turnover time, substrate concentration and uptake rate were performed as 

described previously (Zubkov et al. 2007). The rate of DOP and DIP uptake was calculated 

as the slope of the linear regression of radioactivity against incubation time (see example 

in Appendix, Figure A.1a). This was then used to calculate turnover time by dividing it by 

total radioactivity per sample by the rate of its uptake per hour. The resulting turnover 

times were plotted on the y-axis against the corresponding concentration of DOP or DIP on 

the x-axis and extrapolated using linear regression (see example in Appendix, Figure 

A.1b). The slope divided by the intercept of this regression line gives an estimate of DOP or 

DIP microbial uptake rate. The y-intercept of the regression line gives an estimate of 

turnover time of the ambient concentration plus the transport constant (Wright and 

Hobbie 1966). The concentration plus the transport constant is estimated by the x-axis 

intercept. The transport constant is a measure of the affinity of the microbial uptake 

system for P, the lower the constant the more effective the uptake at low concentrations. 

The bioavailable concentration should therefore be treated as upper estimates, as 

oligotrophic plankton should be adapted to living at nanomolar concentrations. The 

transport constant is therefore assumed to be negligible compared with the concentration.  

When a poor linear regression (r2 < 0.9) between added P concentration and P turnover 

time was achieved using the above method (example of regression in the Appendix, Figure 

A.1b), the turnover time could still be calculated from the mean of the slopes of the 

regression of the radioactivity against incubation time (Figure A.1a), divided by total 

activity per sample by the rate of its uptake per hour (Pers. Comm. M Zubkov, see linear 
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regressions in Appendix, Figure A.1a).This is called here the t2 method. To check that this 

turnover time estimate (t2) was reliable, where available, the turnover time was calculated 

using the first method (t1) and were compared to t2. All t1 were within three-sigma’s of the 

mean turnover time calculation (t2), so can be assumed here as equivalents (Pers. Comm. 

M Hartmann). Turnover times calculated using the t2 method are labelled accordingly in 

the raw data table in the Appendix, Tables A.3 and A.4. 

Bioassay concentration and uptake data included in the analysis are only those with 

correlation coefficients such that r2 > 0.9 (see example Appendix, Figure A.1b, Pers. Comm. 

M Zubkov). This reduces uncertainty in the results, as those with low r2 are assumed to be 

at or below the detection limit of the method (Pers. Comm. M Hartmann). All raw data 

used within the following analysis are shown in Appendix Tables A.3 and A.4. 

3.2.3. Data Analysis 

All statistical and computational analysis was completed in SigmaPlot 12.0 and GraphPad 

Prism 5 software. All data failed a normality test (Shapiro-Wilk, p < 0.05). Therefore non-

parametric Mann-Whitney Rank Sum Test, Spearman Rank Correlation’s and Kruskal-

Wallis Analysis of Variance (ANOVA) on ranks were performed. Results were tested for 

statistical significance at p < 0.05.  

The following results and discussion is on the measurements made within cluster region a 

(see Chapter 2). The turnover time and concentration are thought to be the more robust 

measurements (Pers. Comm. M Zubkov), as these are calculated from the intercept and 

slope (see Appendix Figure A.1b), whereas the uptake rate is a product of both the slope 

and the intercept and as such has twice the uncertainty. Therefore it will be discussed only 

in the context of supporting evidence.  

3.3. Results 

All data tested were located within cluster region a, defined in Chapter 2. Figure 3.2a-c 

details the average results and Figure 3.2d-f details the results by latitude, to show the 

spread of the nucleotide data within cluster region a 
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a 

 

d 

 
 

b 
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f 

 

Figure 3.2. a-c Mean (a) turnover time, (b) concentration and (c) uptake rate of 
plankton for ATP, AMP, UMP and DIP in cluster region a (defined in Chapter 2), in 
autumn 2009. Figures 3.2 d-f Latitudinal distribution of (d) turnover time, (e) 
concentration and (f) uptake rate of plankton for ATP, AMP, UMP and DIP along the 
latitudinal AMT19 transect during autumn 2009. Standard error bars are shown. 
Note all y-axes (a-f) are logged and the symbol legend applies to all relevant plots.  
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The mean turnover times for samples (n) for DOP (ATP 504 ± 95  h, n = 20, AMP 336 ± 82 

h, n = 11 and UMP 488 ± 196 h, n = 10, see Figure 3.2) were between 3 and 5 times longer 

than for DIP (115 ± 58  h, n = 11). The most variation in turnover time across the transect 

(coefficient of variation, calculated from data  detailed in Appendix Table A.3) was found 

in DIP (1.7) and the least in AMP and ATP (0.81 and 0.84 respectively). The highest mean 

concentration and uptake rate measured were in DIP (respectively 5.5 ± 1.1  nmol-1 and 6 

± 2.1 nmol d-1). Tested DOP nucleotides’ mean concentrations were all < 1.2 nmol-1 and 

DOP mean uptake rates were all < 0.7 nmol d-1. 

3.3.1. DOP as an Alternative Source of Phosphate  

DOP (ATP, AMP and UMP) measurements of turnover time, concentration and uptake rate 

were all significantly different to equivalent DIP measurements (Mann Whitney U tests, all 

p < 0.05).  

By comparing the turnover times of DOP and DIP, it can be seen that DOP nucleotides (ATP 

and UMP) turnover time is significantly longer (often by an order of magnitude) than DIP’s 

turnover time (Mann Whitney U tests, all p < 0.03 and see Figure 3.3). This is despite the 

mean concentration of all DOP fractions tested being lower than the mean DIP 

concentration (see Figure 3.2 a-b). If DOP was being exploited as an alternative 

phosphorus source one would expect a short turnover time in combination with a low 

concentration. Here, however, a long turnover time and a low concentration is seen. DOP 

turnover time is often an order of magnitude more than DIP turnover time (see Figure 3.2 

a, d and Figure 3.3).   

To support DOP turnover time being significantly longer than DIP turnover time, no 

significant correlation between concentration of DIP and uptake rate of DOP is observed 

(Spearman Correlation, all p > 0.05 and see Figure 3.6 in Discussion section). Thus, the 

evidence contradicts the hypothesis that DOP is being utilised as a significant alternative  

phosphate source (to DIP) by plankton.  
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Figure 3.3. Comparison of DIP turnover time and DOP (ATP, AMP and UMP) turnover 
time. Bi-directional error bars show standard error of independent point 
measurements. The dashed line indicates the unity line. Note axes are logged. 

3.3.2. Comparison of DOP Nucleotides 

All comparisons between nucleotides were carried out at single stations and not between 

stations, therefore only concurrent stations were directly compared (see raw data in 

Appendix, Table A.3 ). For the three DOP nucleotides studied, turnover time (ATP - AMP, p 

= 0.4; ATP – UMP, p = 0.52 and AMP – UMP, p = 0.86), concentration (ATP – UMP, p = 0.3) 

and uptake rates (ATP – UMP, p = 0.9) are not significantly different (Mann Whitney U 

tests); as previously noted AMP concentration and uptake rate sample number was 

insufficient to run statistical analysis. Significant positive correlations (Spearman 

Correlations) were found between DOP nucleotide turnover times: ATP - UMP, ρ = 0.8; 

AMP - UMP, ρ = 0.7 (both p < 0.04). ATP - AMP was also positive (ρ = 0.5), although not 

significant (p = 0.1, graph not shown), see Figure 3.4 for significant correlations. These 

results therefore agree with the hypothesis that the three DOP nucleotides tested are not 

significantly different in utility as a substrate (as p > 0.05) and moreover indicate that a 

single nucleotide may be able to be used as a proxy for the others, due to the positive 

correlations.  
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Figure 3.4. Comparison of UMP turnover time versus AMP and ATP turnover times. 
Error bars show standard error of independent point measurements. Turnover 
times of	AMP	and	ATP	are	significantly	positively	correlated	(ρ	=	0.7	and	ρ	=	0.8	
respectively, p < 0.05) to turnover time of UMP.  ATP and AMP are also positively 
correlated	(ρ	=	0.5,	p	=	0.1,	non-significant, data not shown). The black line indicates 
an independent linear regression of data in the plot (r2 = 0.58, slope = 0.7 and 
intercept = 0.66). Note that both axes were logged.  

3.3.3. ATP Inter-annual Variability and 

Seasonality 

Examining the nucleotide ATP alone for three different years, the longest mean turnover 

time in ATP was observed on AMT19 (504 ± 93 h, n = 20) and the shortest on AMT18 (92 ± 

14 h, n = 7). Both of these cruises took place in the autumn. The mean concentrations of 

ATP are between 0.7 ± 0.2 nmol-1 on AMT14 (n = 8) and 0.8 ± 0.1 nmol-1  on AMT19 (n = 5). 

Mean uptake rates were between 0.17 ± 0.04 nmol-1  on AMT14 (n = 8) and 0.26 ± 0.1 

nmol d-1 on AMT19 (n = 5), see Figure 3.5 and raw data in Appendix, Table A.4. The highest 

coefficient of variation (calculated from data in Appendix Table A.4) was found in AMT19 

turnover time and uptake rate (0.84 h and 0.96 nmol d-1 respectively), and the lowest in 

AMT14 turnover time (0.5 h).   
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Figure 3.5. a-c Mean (a) turnover time, (b) concentration and (c) uptake rate for ATP 
in cluster region a (defined in Chapter 2), for AMT14 (spring 2004), AMT18 (autumn 
2008) and AMT19 (autumn 2009). Figures d-f show latitudinal distribution of (d) 
turnover time, (e) concentration and (f) uptake rate along the same transects (see 
Figure 3.1). Standard errors bars are shown.  Note that all y-axes (a-f) are logged 
and the symbol legend applies to all relevant plots.   

AT
P 

Tu
rn

ov
er

 (h
)

1

10

100

1000

10000

-20 -10 0 10 20 30 40 50
1

10

100

1000

10000

AT
P 

Co
nc

en
tr

at
io

n 
(n

m
ol

-1
)

0.01

0.1

1

10

100

-20 -10 0 10 20 30 40 50
0.01

0.1

1

10

AMT14 AMT18 AMT19

AT
P 

U
pt

ak
e 

ra
te

 (n
m

ol
 d

-1
)

0.001

0.01

0.1

1

Latitude (oN)

-20 -10 0 10 20 30 40 50
0.001

0.01

0.1

1

AMT14 
AMT18 
AMT19 



 

51 

None of ATP turnover, concentration or uptake were significantly different between any of 

the three years (ANOVA, p = 0.09, p = 0.97 and p = 0.93). ATP turnover, concentration or 

uptake between seasons (AMT14 versus AMT18 and AMT19), were not significantly 

different (Mann Whitney U test, p > 0.05), except for turnover time between AMT14 and 

AMT19 (p = 0.01), this was due to a large difference in mean and coefficient of variation 

values, which may be due to sampling error (also seen in the large coefficient of variation 

for this measurement). This also meant that there was no significant difference between 

the nucleotide labelling used ([γ33P]ATP on AMT14 and [α33P]ATP, on AMT18 and 

AMT19).  

Furthermore, there was no significant difference in concentration or uptake rate between 

years where measurements were taken in the same season (autumn - AMT18 and 

AMT19), using the same nucleotide (Mann Whitney U test, p > 0.05). However there was a 

difference between AMT18 and AMT19 turnover time (Mann Whitney U test, p < 0.05). 

This again is attributed to the large difference in means between AMT18 and AMT19 

turnover time and the larger coefficient of variation seen in AMT19, which is suggestive of 

sampling error. As this difference in turnover time was not seen between spring AMT14 

and autumn AMT18, it is assumed that the data with the lowest variability is more 

accurate. Therefore the turnover time between seasons is not significantly different.  

3.4. Discussion 

3.4.1. DOP as an Alternative Source of Phosphate  

This Chapter presents experimental evidence, collected from the oligotrophic subtropical 

and tropical north and central Atlantic Ocean, that DOP is not being readily exploited by 

plankton as a significant alternative to DIP. It should be noted, that the in situ 

measurements presented in this Chapter do not completely rule out DOP utilisation, 

nonetheless these measurements provide an indication of whether DOP is being exploited 

in significant amounts (or not) by plankton in the NAG. The mean turnover times of all 

DOP nucleotides (ATP 504 ± 95 h, AMP 336 ± 82 h and UMP 488 ± 196 h) are 3 to 5 times 

longer than mean DIP turnover time  (115 ± 58 h), despite all DOP nucleotide 

concentrations being considerably lower (all < 1.2 nmol-1, ATP was 0.73 ± 0.3 nmol-1) than 

DIP concentrations (5.5 ± 1.3 nmol-1). The majority of DOP turnover times are 

approximately an order of magnitude greater than those for DIP. Furthermore, the mean 
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DOP uptake rates in this study were all < 1 nmol d-1 (see Appendix Table A.3), over six-fold 

lower than the mean DIP uptake rate of 5.98 ± 2.1 nmol d-1 (n = 11).  These measurements 

are in reasonable agreement with those published estimates of uptake and concentration 

of ATP and DIP in the same location in Spring 2004 (Zubkov et al. 2007)  and illustrate that 

the DOP is not being significantly exploited for P.  

 
Figure 3.6. (a) Scatter plot comparisons of DIP concentration and DOP uptake rate 
(AMP, ATP and UMP). (b) Scatter plot comparisons of DOP concentration (ATP and 
UMP, no samples for AMP) and DIP uptake rate. Black line indicates a linear 
regression, with an r2 value of 0.55. Error bars show standard error of independent 
point measurements. Note that only y-axis, uptake rate, is logged.  
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To help put DOP utilisation as a secondary source of phosphate to DIP into context, the 

uptake rate measurements can be examined in conjunction with concentrations. If DOP 

was being utilised consistently in significant (even small) amounts when DIP 

concentrations were low, at low concentrations of DIP, a high relative uptake of DOP 

would be expected to be seen (a negative correlation). Here, however, no relationship is 

present in the data (see Figure 3.6a). Conversely a positive correlation (although 

insignificant) was found between DOP concentration and DIP uptake. As DOP 

concentration increased, so did DIP uptake (Figure 3.6b). This increase in DOP 

concentration may be coincidental or due to the exudations of DOP from plankton 

(through messy feeding, excretion etc.), resultant from an increase in DIP uptake. Zubkov 

and Leakey (2009) for example found that in culture, one-third of phosphorus being 

consumed is remineralised.  

Previously, different techniques have been used to examine phosphate concentration and 

planktonic uptake rate of phosphate in the central Atlantic. These include the standard 

colorimetric techniques which have reported large and varying concentrations of DOP (e.g. 

in autumn in the NAG, 210 ± 10 nmol-1, Mather et al. 2008 and in the Sargasso Sea, 6.9 ± 

2.2 nmol-1, Lomas et al. 2010), higher than this study’s autumn bioassay mean maximum 

ambient concentration (sum of ATP and UMP only as no AMP concentration data) of 2.1 ± 

0.7 nmol-1. These chemical techniques have also been used to infer enhanced DOP 

utilisation in the NAG, based upon alkaline phosphatase activities (APA, the enzyme that 

hydrolyses DOP, Kuenzler and Perras 1965), leading to an estimate that 12 - 30 % of 

autotrophic demand is being fulfilled by DOP (Mather et al. 2008). The accuracy and 

applicability of these measurements, however, can be questioned, as these chemically 

derived quantities include the entire DOP pool and not just the relevant bioavailable 

fraction. A strong gradient of decreasing DOP concentration from east to the central 

subtropical Atlantic (based on increasing APA estimates) has also been argued. It is 

thought that the DOP is produced in regions of high productivity (i.e. the Mauritanian 

upwelling) and then laterally transferred to the adjoining oligotrophic regions where it 

can be utilised (Reynolds et al. 2012). If these APA measurements are accurate, higher 

DOP utilisation in the centre of the gyre would be expected (as enzyme APA activity, that 

hydrolyses DOP, is higher).  

ATP utilisation in this study has, however, been shown to be relatively and consistently 

low in all three years of this study (Figure 3.5 and raw data in Appendix Table A.4), as was 

found by Zubkov et al. (2007) in the region. The differences in estimates (between APA 
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and bioassay) are most likely due to the sensitivity of the techniques used and the 

assumptions underlying the calculations. Both Mather et al. (2008) and Lomas et al. 

(2010) calculated DOP by subtraction, as the difference between total dissolved 

phosphorus and DIP - measured respectively by ultraviolet photo-oxidation (Armstrong et 

al. 1966) and MAGIC-SRP method (the Soluble reactive phosphorus by magnesium 

induced co-precipitation protocol, see Karl and Tien, 1992, for details). However, these 

techniques are not considered sensitive enough for oligotrophic environments such as the 

NAG. For example, the MAGIC-SRP detection limit is reported as being above the 

oligotrophic concentrations reported here, of 10 - 15 nmol-1 (Lomas et al. 2010). The 

methods presented in this Chapter were chosen because ambient concentrations are 

characteristically at or below the detection limit of these standard colorimetric methods. 

Dilution series radioactive bioassays more accurately measure concentrations at < 1 nmol-

1  than analytical chemical techniques and should be the method of choice for DOP studies 

in the NAG. Work published for the region using these chemical techniques therefore 

needs to be interpreted with care and future work should focus on those methods 

employed in this Chapter. In addition, it may be useful for further investigations to 

compare bioassay and alternative methods (APA and MAGIC-SRP) on in situ live samples 

to aid understanding of discrepancies between them. 

Uptake of DIP alone is insufficient to satisfy the microbial physiological requirements for 

phosphate (Hartmann et al. 2011) and this study and that of Zubkov et al. (2007) have 

shown that DOP is not being readily exploited for phosphate. An alternative means of 

phosphate acquisition is the topic of this thesis – mixotrophy. However, it should also be 

noted that there are alternative methods that the microbial community may be employing 

to negotiate the problem of phosphate scarcity. First, symbionts could help to obtain 

phosphate (Cole 1982). However, these symbionts (most likely to be bacteria) would take 

up phosphate in a similar way to their host and therefore should be measurable with the 

method used here. Second, ATP may not be an adequate molecule to model other sources 

of phosphate, such as biogenic phosphonates which make up ~ 25% of DOP (Clark et al. 

1998). However, the C-P bond is very strong and the ability to degrade it has only been 

found in prokaryotes (Adams et al. 2008). Phosphonates are therefore unlikely to 

contribute to eukaryote phosphate acquisition in large quantities. A third approach could 

be reducing cellular phosphorus demand by incorporation of non-phosphorus lipids (such 

as sulphur or nitrogen based lipids) into membranes  by phytoplankton, both eukaryotes 

and cyanobacteria (Van Mooy et al. 2009). However, phosphorus demand still remains for 

other necessary cell components, such as DNA and RNA. Unfortunately, cell sorting was 
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not undertaken on our samples, so it is not possible to state explicitly which organisms 

dominate DOP uptake, to help ascertain if any were specifically using an alternative 

phosphate acquisition technique or source. Bacterioplankton, however, have been shown 

to play the dominant role (60 %) in DIP acquisition in comparison to picoplanktonic algae 

(0.3 %) (Zubkov et al. 2007, Hartmann et al. 2011). This is because prokaryotes are more 

efficient than protists at acquiring nutrients due to their higher cell surface-area-to-

volume ratio. Therefore it is reasonable to expect that the majority of DOP being taken up 

in this study, is by the bacterioplankton. Further cell sorting experimentation would be 

required to confirm this. A low uptake of phosphate (both DOP and DIP) by eukaryotes is 

further evidence for the existence of an alternative means of phosphorus acquisition, via 

the predation of phosphorus-rich bacterial cells (Zubkov and Tarran 2008, Hartmann et al. 

2012), i.e. mixotrophy - the overarching subject of this thesis.  

3.4.2. Comparison of DOP Nucleotides 

Most previous studies on DOP using the bioassay technique have concentrated on ATP as a 

model compound (e.g. Zubkov et al. 2007, Casey et al. 2009, Bjorkman et al. 2012).  Here, 

two additional DOP nucleotides have been investigated in situ. All three show low 

utilisation by plankton in comparison to DIP. Furthermore, this study shows that UMP 

turnover time is significantly positively correlated with both ATP and AMP turnover time 

(see Figure 3.4). Additionally ATP and AMP are positively correlated, if not significantly. 

This suggests that individual nucleotides may be used as an uptake proxy for others (e.g. 

UMP for ATP). This is perhaps unsurprising, as the chemical structure of the three 

nucleotides in this study are similar. Each comprises a ribose sugar, a purine base (uracil, 

UMP or adenine, AMP and ATP) and one (UMP and AMP) or three (ATP) phosphate 

groups. Consequently the transport mechanism necessary for each nucleotide is 

comparable (Bengis-Garber and Kushner 1982, Bengis-Garber 1983).  

The low utilisation and bioavailable concentration of the three nucleotides tested can also 

be considered in terms of percentages. The mean uptake rate of ATP calculated as a 

percentage of all the nucleotide bioavailable uptake measured (DIP, AMP and UMP, AMP 

data was insufficient to include) was 9 ± 3 %. To compare to previous studies, that have 

only measured ATP, percentage bioavailable uptake can be calculated without the 

additional nucleotides investigated in this Chapter (i.e. just DIP plus ATP), as such ATP 

uptake as a percentage of P uptake was 5 ± 2 %. These results are consistent with the 
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previous study in the region that estimated spring ATP uptake rate as 13 ± 6 % of the P 

pool (Zubkov et al. 2007). Despite this relatively low specific uptake rate, culture 

experiments on flagellate taxa have shown that growth can be sustained on ATP, AMP or 

UMP alone (Wang et al. 2011). However, these were bloom-causative phytoplankton from 

Chinese coastal waters and therefore the results are not necessarily applicable to open 

ocean oligotrophic waters. The findings of this Chapter therefore support previous 

conclusions that DOP (ATP and UMP) plays a secondary role in phosphate microbial 

dynamics (Zubkov et al. 2007, Casey et al. 2009, Michelou et al. 2011) in the subtropical 

and tropical Atlantic ocean.  

3.4.3. ATP Inter-annual Variability and 

Seasonality 

No significant difference was found between years or seasons for ATP concentration or 

uptake rate measured on the three AMT transects. This is despite AMT14 measurements 

being made in austral spring (Julian day -132 to 149) and AMT18 and AMT19 (Julian day – 

262 to 300 and 288 to 317 respectively) in austral autumn in this study’s region (p > 0.05). 

Mather et al. (2008), however, reported seasonality in DOP uptake, as APA activities were 

significantly greater (three times higher) in the NAG in June than in November (t-test, p < 

0.05). The data presented here, estimates DOP uptake by a more sensitive procedure 

(bioassay), and does not support these findings.  

Coincidentally by looking at inter-annual and seasonal differences of ATP utilisation, the 

use of different labelling of the ATP nucleotides could be addressed. On AMT14, ATP was 

labelled on the [γ33P]ATP  and on AMT18 (and AMT19) ATP was labelled on the [α33P]ATP. 

In seawater (pH 7.9 - 8) non biological hydrolysis of P groups is believed to occur quickly 

(< 1 minute), however [γ33P]ATP  is thought to be hydrolysed slower than [α33P]ATP  

(Bengis-Garber and Kushner 1982, Bengis-Garber 1983). To avoid underestimation of ATP 

uptake, α33P (the phosphate group closest to the adenine base) was specifically used on 

AMT18 (and AMT19). Although no significant difference between the α-labelled (AMT18) 

and the γ-labelled (AMT14) turnover time, concentration and uptake rate is observed (p > 

0.05), and no significant difference between AMT14 and 19 concentration and uptake rate 

is found. This was not unexpected, as the shortest time interval in this experiment 

reported in this Chapter is 10 minutes. In other words, there is no difference in uptake for 

the different terminal phosphate groups of ATP as the external (that furthest from the 
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purine base) [γ33P]ATP appears to be cleaved at the same rate as the internal (that closest 

to the purine base) phosphate group [α33P]ATP. Simultaneous station replicates were 

lacking however and would be required to test this further. 

3.5. Summary and Implications 

The ability of ultraplankton to utilise DOP as an alternative phosphate source to DIP would 

be an important ecological strategy for survival and competition. There is some evidence 

for it occurring in the Sargasso Sea (e.g. Casey et al. 2009, Michelou et al. 2011), but this 

Chapter (and work from Zubkov et al. 2007) indicates that it is not an important process in 

the oligotrophic subtropical and tropical, north and central Atlantic ocean. Therefore the 

plankton community must be adapted in other ways to living in this P depleted 

environment (Hartmann et al. 2011). The results of this Chapter support evidence for the 

role of mixotrophy. Therefore it can be concluded that it is not necessary to include DOP 

within a model representing the oligotrophic Atlantic. 

From the results presented in this chapter and considering the  

four stated hypothesis to be tested  the  following can be 

concluded: 

 This Chapter provides supporting evidence to Zubkov et al. (2007) that DOP is not 

significantly utilised as an alternative source of P by plankton in the subtropical 

and tropical north Atlantic.  

 Turnover time, concentration and uptake by plankton of the three DOP nucleotides 

measured (ATP, AMP and UMP) were not significantly different.  

 There was no significant difference between turnover time, concentration or 

uptake for the three years studied. There was also no significant difference 

between turnover time, concentration or uptake rate across two (AMT14 and 

AMT18) seasons. Therefore inter-annual variability and seasonality is not present 

in this dataset.  

 DOP does not need to be included in an ultraplankton model of the oligotrophic 

Atlantic as an important alternative source of P.  
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4. Mixotrophy:	Is	a	Simple	Steady	
State	Data	Driven	Model	able	to	
describe	the	Mixotrophic	
Ecosystem? 

4.1. Introduction 

4.1.1. Motivation for Approach to Modelling 

Mixotrophy 

A modelling approach is useful to aid understanding of the broader implications of 

mixotrophy in the north Atlantic subtropical gyre, as direct observations of mixotrophic 

uptake are difficult to obtain; models are a useful tool to investigate the fluxes through the 

ecosystem. Simple ecosystem models such as NPZD (Nutrient-Phytoplankton-

Zooplankton-Detritus) models (e.g. Fasham et al. 1990) segregate planktonic groups by 

well-defined trophic level. Within this structure, it is not clear where mixotrophs should 

be placed, as they straddle traditional trophic levels. Previous models incorporating 

mixotrophy have been largely theoretical explorations of whether coexistence of mixed 

populations of mixotrophs, heterotrophs and/or phototrophs is possible or of the effect of 

different levels of mixotrophy on fluxes through an ecosystem (see review in Chapter 1, 

Section 1.3.2). In addition, parameterisation is strongly limited by the lack of available 

data. At present quantitative observations of relevant processes and internal elemental 

composition in mixotrophs are insufficient for a data-driven physiological mechanistic-

stoichiometric model to be configured for practical use.  

The majority of previous models have been zero-dimensional, with a single common 

inorganic nutrient (e.g. Thingstad et al. 1996; Hammer and Pitchford 2005) or 
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concentrating on the modelling of a particular mixotrophic species (e.g. Hood et al. 2006b). 

However, as qualitative advances in microbiology have been made, complexity has also 

increased in theoretical physiological mixotroph models. The paper ‘Building the "perfect 

beast": modelling mixotrophic plankton’ by Flynn and Mitra (2009) argued that a 

physiological mechanistic stoichiometric model is necessary to model the possible types of 

mixotroph (i.e. type I, II or III and the gradients between, see Chapter 1 for mixotroph 

explanation).  Quantitative data, however, is currently insufficient for parameterisation of 

such relatively complex models. No models thus far have been developed using an 

alternative approach: directly using in situ measurements. This Chapter attempts this for 

the first time, presenting a model that is simple yet data-driven. 

4.1.2. Steady state 

“Make things as simple as possible, but not simpler”  (Einstein 1934).   

“Plurality should not be posited without necessity” - Ockham’s razor or the law of 

parsimony (attributed to William of Ockham, 14th-century, Britannica, 2012) 

The present modelling approach is motivated by the above principles, as a simple model 

works best when variables, parameters and sensitivities of parameters are not fully 

understood (Anderson 2005). Specifically, the minimum number of fields and fluxes will 

be modelled, whilst still capturing the key components and processes, and the simplest 

context will be assumed valid - a zero-dimensional steady state system. A zero 

dimensional model is a mixed layer model which has two boxes: an upper layer assumed 

to be homogenously mixed and biologically active, and a lower layer with a constant 

nutrient concentration which is biologically inactive. This is an approximation of the 

system, admittedly not strongly supported by data, as ultraplankton are known to reside 

below the mixed layer (Tarran et al. 2006). However, this first order approach has a 

robust history, being one of the first approaches to plankton ecosystem modelling (Riley 

1946) and it has been used consistently and successfully for over 60 years (e.g. Evans and 

Parslow 1985, Fasham et al. 1990, Steele and Henderson 1992) for modelling 

investigations of marine ecosystems.  

The assumption of steady-state is also one with some history (e.g. Taylor and Joint 1990, 

Stickney et al.  2000, Anderson and Ducklow 2001, Anderson and Turley 2003). Steady 

state is further supported to some extent by observations of the region. In the Atlantic 
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gyres a pronounced seasonal cycle in chlorophyll is not displayed in satellite observations 

(ocean colour is revisited in Chapter 6), and primary production is relatively constant all 

year round (Lutz et al. 2007, Cole et al. 2012). In addition, in this thesis evidence has 

already been presented for consistent planktonic uptake rates between seasons (see 

Chapter 3). This minimal seasonality is echoed by the variability of the mixed layer depth 

(MLD). The changes between summer and winter MLD in high latitudes (~ 50 - 60○N) are 

tenfold, whereas in the north Atlantic subtropical gyre (~ 20 - 40○N) they are only two-

fold (Monterey and Levitus 1997). As a starting point it is therefore reasonable to 

approximate the system as being in steady state. 

The assumption of an approximate state of equilibrium (steady state) enables network 

analysis techniques (Wulff et al. 1989) to be applied to the available observational data, 

allowing algebraic solutions to be used to estimate unknown fluxes from known fluxes. 

This Chapter seeks to constrain the simplest model including mixotrophy based on the 

available direct observations.  

This Chapter addresses the following hypothesis:  

 It is possible to construct a simple steady state model incorporating mixotrophy 

from in situ observational data from the subtropical north Atlantic.  

4.2. Observational Data 

Previously collected observational data will be used to build the model. Ultraplankton 

samples were taken from three CTD casts in the subtropical north Atlantic gyre by M 

Zubkov on AMT17 along a southbound transect from Govan, Scotland to Port Elizabeth, 

South Africa from 15th October to 28th November 2005 aboard the RRS Discovery in the 

boreal autumn and austral spring (see Figure 4.1 and Table 4.1). All CTD casts were 

located within the same biogeochemical region (> 90 % similarity) as defined by 

ultraplankton distribution analysis in Chapter 2.  
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Figure 4.1. CTD station positions for cell number and uptake rate measurements, 
taken on AMT17, October - November 2005.  See Table 4.1 for accompanying 
metadata.  

The following ultraplankton groups were enumerated and their inorganic phosphate 

uptake rates measured: total bacteria (B, including Prochlorococcus spp., Synechococcus 

spp. and low nucleic acid heterotrophic bacteria), picoeukaryotes (following Zubkov and 

Tarran, 2008, attributed as mixotrophs, M) and heterotrophic flagellates (grazers, G). For 

data see Table 4.2. The three groupings (B, M and G) also reflect the model structure 

introduced in the following Section.  

Table 4.1. CTD number, station position, Julian day (JD) and mixed layer depth 
(MLD) from which data were collected from 2 m depth in situ at 1100 h local time by 
M Zubkov (see accompanying Figure 4.1) on AMT17, October - November 2005.  

CTD Latitude (°N) Longitude (°E) JD MLD (m) 
10 30.85 -33.11 303 58.5 
14 26.70 -38.23 305 58.5 
23 14.26 -31.87 309 48.5 

Concentrations of bioavailable phosphate and microbial phosphate uptake rates were 

estimated using a concentration series bioassay of isotopically labelled 

[33P]orthophosphate following the methodology detailed in Zubkov et al. (2007). This 

combined with enumeration of groups with flow cytometry allowed specific microbial 

group uptake rates to be determined (see Tables 4.2 and 4.3). This method measures the 
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total phosphate taken up by a microbial group, without distinguishing where phosphate is 

taken up from (i.e. if it is of phagotrophic or autotrophic origin). MLD was measured at 

each CTD’s location (Table 4.1).  

Table 4.2. Data collected on AMT17, by M Zubkov (unpublished data) at the CTD 
stations (detailed in Table 4.1). Phosphate uptake rate (amol P cell-1 h-1) for each 
microbial variable. SE is experimental error in amol P cell-1 h-1. n.d, no data. 

CTD 

Bacteria (B) 
(amol P cell-1 h-1) 

Mixotrophs (M) 
 (amol P cell-1 h-1) 

Grazers (G) 
(amol P cell-1 h-1) 

Uptake SE Uptake SE Uptake SE 

10 0.75 ± 0.04 0.38 ± 0.02 0.40 ± 0.12 
14 3.04 ± 0.28 1.36 ± 0.26 3.02 n.d. 
23 1.14 ± 0.11 1.05 ± 0.09 1.07 ± 0.03 

 

Table 4.3. Data collected on AMT17, by M Zubkov (unpublished data) at the CTD 
stations, detailed in Table 4.1.  Bioavailable phosphate (P) concentration (Conc. 
nmol P l-1) and cell count (Abund. cell ml-1) for each model variable measured. SE for 
P is experimental error, SE for B, M and G is assumed to be 5 % (see Chapter 5, 
Section 5.2.3.4 for explanation). *Note that for CTD10 Grazer (G) abundance, the 
number of cells were not counted. It was estimated by dividing total uptake on 
CTD10 by mean specific uptake from CTD14 and 23. 

CTD 

P  
(nmol P l-1) 

B 
(cell ml-1) 

M 
(cell ml-1) 

G 
(cell ml-1) 

Concn. SE Abund. SE Abund. SE Abund. SE 

10 1.45 ± 0.38 360387 ± 18019 1343 ± 67 83* ± 4 
14 2.96 ± 0.52 344423 ± 17221 11942 ± 597 316 ± 16 
23 4.25 ± 0.35 492229 ± 24611 2748 ± 137 333 ± 17 

4.3. Theoretical Mixotroph Model Design 

A  four box simple steady state model was designed with the following variables – 

phosphate (P), bacteria (B), mixotrophs (M) and grazers (G), all modelled explicitly.  

The reasoning behind this structure is as follows. The model was constructed using 

phosphorus (P) as its currency for several reasons. Within the gyres, P is understood to be 

co-limiting with nitrogen (Wu et al. 2000, Mather et al. 2008). P is also less complex than 

nitrogen to model. There is evidence to suggest it is not necessary to model the organic 

form (see this thesis Chapter 3), and there is only one inorganic form, unlike inorganic 

nitrogen which can be present in a number of compounds, such as ammonium and nitrate. 

The B variable in the model comprises phototrophic (PB) and heterotrophic bacteria (HB). 
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Both were included in B to ensure total bacterivory (mixotrophy) by M and G was 

captured and because preferences for either HB or PB by M and G are unknown. Here it 

should be noted that separate data (uptake rates and abundances) were available for PB 

and HB. However when these were modelled as separate variables the model could not be 

solved explicitly analytically as there were too few known fluxes to deduce unknown 

fluxes. Thus a simpler 4-box model was employed. This 4-box model assumption is 

appropriate as light is not limiting to ultraplankton within the oligotrophic region (Pers. 

Comm. M. Zubkov). Therefore both HB and PB can be treated the same within the model, 

as they both take up inorganic P to make new cells and are then both consumed by M and 

G. The G variable was the only obligate predator within the model. The number of grazers 

within the oligotrophic environment is low and the G variable encapsulated the entire 

grazer community, with the ability to feed on a range of sized organisms from B to M. 

There is no explicit obligate phytoplankton variable within the model, with the M variable 

representing the oligotrophic picoeukaryotic algae community which has the ability to 

take up nutrients and/or undertake bacterivory. For simplicity there is only one source 

(Δ(Po - P)) and one sink (ΦG) in the model at steady state. The source represents 

remineralisation and the turbulent mixing (Δ) in of deep P (Po) into the mixed layer. The 

sink is the loss from the mixed layer, which can be due to excretion, messy feeding or 

death. There is no mixing of B, G and M for simplicity. Such fluxes are assumed small 

relative to Δ(Po - P) and if included would preclude an algebraic solution. This is revisited 

in Chapter 5. The mixing of individual variables due to changes in the MLD is excluded 

here given that the assumption of steady state precludes an annual cycle in MLD.  

The simplest possible parameterisations were used to describe the fluxes in the system - 

first-order, non-linear Lotka-Volterra interactions, these assume implicitly that the fluxes 

never saturate. The flux increases linearly as either the source or the target increase (i.e. 

αPB in Figure 4.2, would increase as P, the source, increases and/or as B, the target, 

increases).  This approach means that additional (unconstrained) parameters are not 

required, such as would be the case if Michaelis-Menten kinetics was applied. Previous 

mixotroph studies have also used this simple method (e.g. Hammer and Pitchford 2005).   
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Figure 4.2. A schematic of the simple steady state model incorporating mixotrophy 
(see Equations 4.1 to 4.4 in the text).  

The structure of the steady state mixotroph model can be described as follows (Figure 4.2 

and Equations 4.1 - 4.4). Bacteria are modelled as the only variable reproducing using 

inorganic nutrients alone and limited by P (αPB). Mixotroph growth via their two modes of 

nutrition is limited by both prey (γBM) abundance and P (τPM) respectively, and bacteria 

and mixotrophs are both grazed on by the grazers (ΩBG and θMG respectively). As there is 

no detritus variable, messy feeding and excretion by the grazers are simplified into the 

loss term (ϕG). As larger predators are infrequent in the oligotrophic gyre, consumption of 

G by higher predators is taken to be negligible and so this loss flux can be used as a proxy 

for export. This is a suitable point to note that the flows within this system are net. 

Therefore although the arrows have been place in Figure 4.2 in the ecological perceived 

correct net direction (i.e. bacteria are predated upon by grazers, therefore the P flows 

predominantly from B to G), some P may also be flowing in the opposite direction (e.g. 

through B acting as detritivores, P could flow from G to B). The implication of this will be 

discussed further in Section 4.4.1. The source of P into the system is through the influx of 

deep phosphate (Po) by mixing across the base of the mixed layer (Δ). For simplicity 

dilution of other variables by mixing is assumed to be negligible.  
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At steady state, taking each variable (P, G, B and M) in turn, the fluxes into and out of each 

variable must sum to zero, such that: 

Equation 4.1   ૙ = –	࢕ࡼ൫ࢤ ൯ࡼ	 − −࡮ࡼࢻ  ࡹࡼ࣎	

Equation 4.2   ૙ = ࡳࡹࣂ	 + –	ࡳ࡮ࢹ	  ࡳࢶ	

Equation 4.3   ૙ = –		࡮ࡼࢻ −ࡹ࡮ࢽ	   ࡳ࡮ࢹ

Equation 4.4   ૙	 = 	ࡹࡼ࣎	 + –	ࡹ࡮ࢽ	    ࡳࡹࣂ	

4.4. Mixotroph Model Construction  

4.4.1. Flux Observations 

Figure 4.3 shows the theoretical model schematic modified to demonstrate which fluxes 

have in situ observations (known measured fluxes F1, F2 and F3, solid lines, and unknown 

fluxes to be modelled - dashed lines).  

The Equations relating modelled to observed fluxes are in summary: 

Equation 4.5   ࡲ૚ = ࡹ࡮ࢽ +    ࡹࡼ࣎	

Equation 4.6   ࡲ૛ =     ࡮ࡼࢻ	

Equation 4.7   ࡲ૜ = ࡳࡹࣂ	    ࡳ࡮ࢹ+

Measured from observations, flux 1 (F1, Equation 4.5) is the total amount of phosphate 

going into the mixotrophs (M), coming from both bacteria (γBM) and phosphate (τPM). As 

stated in Section 4.2, due to methodological constraints, the source of phosphate for 

mixotrophs cannot be distinguished. This is also true for measured flux F3. F2, is the 

uptake of phosphate by bacteria and is the only individual flux in the present model (αPB, 

Equation 4.6) that is directly constrained by the observational measurements. Finally, flux 

3 (F3, Equation 4.7) is the measured net flux of phosphate taken up by the grazers, 

through predation on bacteria ( ΩBG) and mixotrophs (θBG).   
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Figure 4.3. Summary of in situ measurements available for the steady state 
mixotroph model. Black solid lines and blue filled circles indicate known net fluxes 
(F1, F2 and F3) and dashed lines, unknown fluxes (see Equations 4.5 to 4.15 in the 
text for explanation).  

Measured uptake (the observed flux) taken up by the variables, M, B and G (F1, F2 and F3 

respectively, µmol P l-1 d-1) are calculated from the in situ measurements for abundance 

(cell ml-1) and uptake rate (amol P cell-1 h-1), according to Equation 4.8 (see Tables 4.2 and 

4.3). It was necessary to obtain the uptake rate per volume (of P, G, B and M), rather than 

per cell, to match model units. 

Equation 4.8 ࢛ࢋ࢑ࢇ࢚࢖	࢘ࢋ࢖	࢒࢒ࢋࢉ	࢞	࢒࢒ࢋࢉ	ࢋࢉ࢔ࢇࢊ࢔࢛࢈ࢇ =  ࢋ࢓࢛࢒࢕࢜	࢚࢏࢔࢛	࢘ࢋ࢖	ࢋ࢑ࢇ࢚࢖࢛

Table 4.4 details the uptake observations for each CTD. The relative sizes of the observed 

uptake are consistent across the CTD’s within their respective maximum possible 

uncertainty (calculated using the maximum and minimum error of both uptake per cell 

and abundance).  F2 is consistently bigger, by at least an order of magnitude, than both F1 

and F3 (e.g. CTD14, F2 = 2.5 x 10-2 ± 7.1 x 10-3 µmol P l-1 d-1, F1 = 3.9 x 10-4 ± 1.9 x 10-4 µmol 

P l-1 d-1 and F3 = 2.3 x 10-5 ± n.d µmol P l-1 d-1). F3 is always smaller (again by an order of 
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magnitude) than both F1 and F2. The impact on the relative modelled fluxes is detailed in 

Table 4.4. 

Table 4.4. Steady state mixotroph four box model observed fluxes for each CTD, 
calculated using Equation 4.8 and data in Tables 4.2 and 4.3. All units µmol P l-1 d-1. 
For abbreviations see the text. Maximum uncertainty (±), as correlation between 
errors ignored. n.d. is no data.  

CTD F1 ± F2 ± F3 ± 
10 1.2 x 10-5 2.7 x 10-6 6.5 x 10-3 1.3 x 10-3 8.1 x 10-7 5.8 x 10-7 
14 3.9 x 10-4 1.9 x 10-4 2.5 x 10-2 7.1 x 10-3 2.3 x 10-5 n.d. 
23 7.0 x 10-5 1.9 x 10-5 1.4 x 10-2 3.9 x 10-3 8.5 x 10-6 1.3 x 10-6 

4.4.2. Solving the Model 

As the model is assumed to be in steady state (input balances output), the known 

observational net fluxes (F1, F2, F3, see Figure 4.2 and Equations 4.5 to 4.7) can be used to 

calculate the model’s unknown fluxes (Equation 4.9 to 4.15). It is possible to explicitly 

solve the model (as sink balances source and because there are as many Equations as 

unknown fluxes) given the observations.  

So that: 

Equation 4.9   ࡮ࡼࢻ =  ૛ࡲ

Equation 4.10   ࡳࢶ =   ૜ࡲ		

Equation 4.11    ࢕ࡼ)ࢤ− (ࡼ =   ૜ࡲ	

Equation 4.12    ࣎ࡹࡼ = ૜ࡲ −  ૛ࡲ

Equation 4.13   ࡳࡹࣂ =   ૚ࡲ	

Equation 4.14    ࡳ࡮ࢹ = ૜ࡲ	 −   ૚ࡲ

Equation 4.15   ࡹ࡮ࢽ = ૛ࡲ	 − ૜ࡲ +   ૚ࡲ
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Table 4.5. Model fluxes for each CTD, calculated from observations F1, F2 and F3. 
Calculated using Equation 4.9-4.15. All units µmol P l-1 d-1. For abbreviations see the 
text. Negative modelled fluxes are highlighted in bold.  

Modelled flux CTD10 CTD14 CTD23 
αPB 6.46 x 10-3 2.51 x 10-2 1.35 x 10-2 
τPM -6.46 x 10-3 -2.51 x 10-2 -1.35 x 10-2 
γBM 6.47 x 10-3 2.55 x 10-2 1.36 x 10-2 
ΩBG -1.14 x 10-5 -3.66 x 10-4 -6.1 x 10-5 
θMG 1.22 x 10-5 3.89 x 10-4 6.96 x 10-5 
ΦG 8.1 x 10-7 2.29 x 10-5 8.52 x 10-6 

Δ(Po-P) 8.1 x 10-7 2.29 x 10-5 8.52 x 10-6 

The network analysis shows that the model can only be solved if two of the fluxes are 

negative (e.g. CTD14 ΩBG = -3.7 x 10-4 µmol P l-1 d-1 and τPM = -2.5 x 10-2 µmol P l-1 d-1, see 

Table 4.5), i.e. in the opposite direction to that expected. First, for uptake rate of phosphate 

by mixotrophs (τPM, Equation 4.12), according to the model, the excretion to the 

phosphate pool was therefore more than the uptake by mixotrophs from the phosphate 

pool. Second, phosphate obtained through predation of bacteria by grazers (ΩBG, Equation 

4.14), indicated that grazers were excreting more to be remineralised by the bacteria pool 

than they were gaining through bacterivory (see Figure 4.3). Prior to model development, 

the consequences of the observed fluxes (F1, F2 and F3, Table 4.4) on the modelled fluxes 

(Table 4.5) were unknown.  

4.5. Model Performance 

Ockham’s razor or the law of parsimony was stated at the beginning of this Chapter. This 

principle of simplicity guided by the available measurements was the motivation for this 

mixotroph steady state model construction. Unfortunately this approach was not 

successful. The simple steady state model was constructed using in situ observational data 

but two of the fluxes were found to be in the opposite direction to that expected 

ecologically – the phosphate uptake by mixotrophs (τPM) and the grazing of bacteria by 

grazers (ΩBG).  

First, if the flux from phosphate to mixotrophs was negative (τPM), mixotrophs would be 

exuding more inorganic phosphate than they were taking up. This is inefficient and such 

waste is very unlikely to occur under these oligotrophic conditions. Second, the negative 

ΩBG flux in the model indicates that the recycling of phosphate from grazers to bacteria is 

higher than the phosphate gained through the predation of bacteria by the obligate 
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grazers, a sign that the bacteria pool may be dominated by a community of detritivores. 

This model result, however, contradicts previous culture work results of Zubkov and 

Leakey (2009), that found that approximately one third of phosphate is remineralised (by 

bacteria) from grazing. More than this is unfeasible in the oligotrophic system as once 

again it is very inefficient.  

The outcome of the ecologically incorrect flux directions could be an anomalous result that 

has happened by chance. However, despite having so few data points here it can be argued 

that this is unlikely, as the relative sizes of the three fluxes are consistent between CTD’s, 

even when accounting for the maximum uncertainty (see Tables 4.3 and 4.4). The reversal 

of the perceived ecologically correct directions for these fluxes is robust and shows 

therefore that this simple steady state model is inappropriate to describe the system and 

suggests that a more complex model is required to describe it accurately. This could 

include a departure from steady state and/or additional fluxes. The observations, 

however, can still be used to constrain the model. This next stage of model development 

(Figure 5.1) is discussed in Chapter 5. 

4.6. Summary and Implications 

A simple four box steady state model incorporating mixotrophy was constructed for the 

first time from in situ measurements from the subtropical north Atlantic. Two of the net 

fluxes in the model (mixotrophs to phosphate, and bacteria to grazers) are found to be in 

the ecologically perceived incorrect direction. To rectify the incorrect directionality in 

these fluxes, it is necessary to construct a more complex model (in Chapter 5). 

From the results presented in this chapter and considering the 

stated hypothesis to be tested  the  following can be concluded: 

 It is not possible to construct a representative simple steady state model 

incorporating mixotrophy from the in situ observational data from the subtropical 

north Atlantic.
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5. Mixotrophy:	Can	a	Simple	
Dynamic	Model	be	Consistent	with	
Observational	Data? 

The structure of a simple steady state ecosystem model incorporating mixotrophy was 

described in Chapter 4. This model forms the basis of the dynamical model presented in 

this Chapter.  Due to methodological constraints, data on mixotrophy from oligotrophic 

ecosystems is very limited. Despite this small dataset, an assessment of the mixotrophic 

model structure can be made. The selection of model parameters in an attempt to fit to the 

very limited in situ observations of organism abundances (detailed in Chapter 4, Table 4.2-

4.3) using a stochastic optimisation technique is described. Model performance is further 

assessed through comparison of model output to observed fluxes (described in Chapter 4, 

see Figure 4.1 and Table 4.2) and to previously published literature.   

This Chapter addresses the following hypothesis:  

 A simple dynamic zero-dimensional seasonal cycle model incorporating 

mixotrophy can be configured to maintain variable coexistence and be consistent 

with the limited in situ observations from the north Atlantic oligotrophic gyre. 

5.1. Mixotroph Model Development  

A steady state model incorporating mixotrophy was presented in Chapter 4. Through 

network analysis, using in situ observations of fluxes, two of the model fluxes were found 

to be in the opposite direction to those ecologically expected (phosphate uptake by 

mixotrophs, τPM, and bacterivory by grazers, ΩBG, see Figure 4.3). Two changes were 

consequently made to the model. Fluxes that had been diagnosed as going in the ecological 

incorrect direction were replaced with explicit fluxes in both directions to allow the net 
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flux to be decomposed. The model also became a dynamic one, representing an annual 

cycle to test whether the assumption of steady state hindered attempts to characterise the 

ecosystem. 

5.1.1. Model Structure and Equations 

This section describes the structure of a simple dynamic model developed for the study of 

mixotrophy. This dynamic model is also (such as the model presented in Chapter 4) a 

zero-dimensional mixed layer model with four components, representative of the 

interaction between a nutrient (phosphate, P), an obligate heterotroph (grazers, G), 

bacteria (both autotrophic and heterotrophic bacteria, B) and a mixotroph (M), see 

Chapter 4, Section 4.3 for reasons for model structure. The model presented in this 

Chapter, however, is now time varying, forced by a seasonally varying mixed layer. It is 

effectively a two box model. The upper layer is assumed to be homogenously mixed and 

biologically active. The lower layer is assumed to be abiotic with a constant nutrient 

concentration of deep phosphate (Po). The model conserves mass. The structure of the 

biological model including the flows between the four state variables is presented in 

Figure 5.1. 

Changes in the modelled ecosystem are forced by seasonal variation in the mixed layer 

(ML). As the ML deepens, P is mixed into the ML from more nutrient rich deeper water, but 

there is a dilution of bacteria, mixotrophs and grazers as their concentrations below the 

ML are assumed to be zero (see Figure 5.1 and Equations 5.1-5.7). A reduction in mixed 

layer depth (MLD) leads to no change in nutrient or microbial groups concentration, as no 

new water is entrained into the ML. Unlike other similar simple plankton models (e.g. 

Fasham et al. 1990), when the ML shoals the grazers do not concentrate within it, as they 

are small within oligotrophic gyres and thus assumed to be effectively non-motile. Light 

forcing is also not included, as it is not considered a limiting factor within the oceanic 

subtropical gyres (Pers. Comm. M. Zubkov). The simple model structure allows the 

biological dynamics in the model to be understood without being confused by more 

complex physical forcing (Fasham 1993). For simplicity, horizontal advection is also not 

considered in the model. Consequently it is implicitly most relevant to large uniform areas 

of open ocean (Evans and Parslow 1985), such as the oligotrophic Atlantic. The issue of 

homogeneity in the gyre is returned to in Chapter 6. 
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Figure 5.1. A schematic of the dynamic model incorporating mixotrophy. Note 
additional	fluxes	compared	with	Figure	4.3	(βG	and	εM).	See	Equations	5.1 – 5.7. 

The Equations for the model are: 

Equation 5.1  ࢓ାࢎశ

ࡰࡸࡹ
= ∆	 

Equation 5.2  ࡰࡸࡹࢊ
࢚ࢊ

=  (࢚)ࢎ

Equation 5.3   ࢎା(࢚) = ܠ܉ܕ (࢚)ࢎ)	 ,૙) 

Equation 5.4  ࡼࢊ
࢚ࢊ

= ∆൫࢕ࡼ	– +	൯ࡼ	 –	ࡹࢿ	 –	࡮ࡼࢻ	  ࡹࡼ࣊	

Equation 5.5  ࡳࢊ
࢚ࢊ

= ࡳࢼ–	ࡳ࡮࣒+ࡳࡹࣂ	 − –	ࡳࢶ	  	ࡳ∆	

Equation 5.6  ࡮ࢊ
࢚ࢊ

= ࡮ࡼࢻ + –	ࡳࢼ −ࡹ࡮ࢽ	 –	ࡳ࡮࣒	  	࡮∆	

Equation 5.7  ࡹࢊ
࢚ࢊ

= 	ࡹࡼ࣊	 + –	ࡹ࡮ࢽ	 −ࡳࡹࣂ	 	ࡹࢿ	  	ࡹ∆	−
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The model was coded in Fortran 90. Equations 5.2 and 5.3 describe the changes in MLD. 

Mixing between the mixed and deeper constant layer due to turbulence is also represented 

explicitly in the Equations as m (Equation 5.1). For a variable ݔ, the combined effects of 

changes in the MLD and mixing is ௠ା௛శ

ெ௅஽
×  is zero in the lower layer (see Fasham et ݔ if ,ݔ

al. 1990).  

Equations 5.4 to 5.7 describe the evolution of the model biogeochemical fields. The 

parameters α and π control the uptake rate of phosphate (P) by bacteria (B) and 

mixotrophs (M) respectively. ε is the rate of exudation/excretion by mixotrophs directly 

back to the P pool. γ and ψ control the grazing rates of mixotrophs and heterotrophic 

flagellates (grazers, G) on bacteria respectively. θ sets the rate of grazing of mixotrophs by 

grazers and β is rate of the excretion by grazers, assumed taken up instantaneously 

directly into the bacterial pool. Φ represents export from the system through the grazers, 

whether as waste, dead organisms or to higher trophic levels. A full list of parameters in 

the model is given in Table 5.2. 

These coupled differential equations were solved using a fourth-order Runge-Kutta 

algorithm (see Press et al. 1992). The model was run using a time step of 0.01 days. A time 

step bigger than this led to instability in the system. The model was initially run for 30 

years to ensure coexistence of all variables and that a repeating annual cycle was reached.  

However when coexistence was present, the model was found to reach equilibrium  in less 

than 3 years. The tenth year of a model run was thereafter used for analysis for safety.  

As an additional two parameters (ε, exudation of P by mixotrophs directly into the P pool 

and β, remineralisation of P from grazer mortality, excretion, messy feeding etc. directly 

into the bacterial pool) are present relative to the initial seven used in the steady state 

model (presented in Chapter 4), the observational flux data are insufficient to use network 

analysis to constrain the unknown parameters under an assumption of steady state, as 

was done in Chapter 4. For this reason, both changes (extra fluxes and dynamic model) 

were made at the same time. Parameter values were estimated instead using objective 

model optimisation techniques (see Section 5.2). 
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5.2. Model Optimisation 

Parameters of planktonic ecosystem models can be especially hard to determine 

accurately and precisely. Many parameter values are poorly constrained (see large range 

of parameter values from literature in this study for example, Table 5.2) and 

immeasurable and/or unrepresentative of tangible physiological functions (Franks 2009). 

Difficulties in parameterisation are also exacerbated by the simplifications of numerous 

species into broad microbial functional groups (Hood et al. 2006a). The parameterisation 

of these groups is often based on axenic cultured species ex situ (Pahlow and Oschlies 

2009), which may not represent the microbial group in a natural diverse in situ sample.  

Using an objective optimisation technique it is possible to use observational in situ data 

(Section 4.2) to estimate parameter values. Parameter optimisation techniques aim to 

adjust the model parameters to the data, by minimising the misfit between a set of 

observations and the model’s predictions for those observations. The benefit of estimating 

parameters through optimisation is that it enables parameters that could not be measured 

directly or in situ to be estimated, by utilising the available observations and known 

parameter ranges and assuming that the structure and interactions within the model are 

representative (Ward et al. 2010). A number of optimisation techniques for ecological 

model fitting are available that enable a set of parameter values to be found that minimise 

the misfit between observations and model output, such as the variational adjoint 

technique (Friedrichs et al. 2007), genetic algorithms (Schartau and Oschlies 2003a, 

Schartau and Oschlies 2003b) and annealing algorithms (Kidston 2010).  

5.2.1. The µ-Genetic Algorithm  

In this study the parameter values were estimated using a micro-genetic algorithm (µGA) 

stochastic optimisation technique analogous to evolution by natural selection, following 

Schartau and Oschlies (2003a) and Ward et al. (2010). A flow diagram is used to illustrate 

the general process of µGA (see Figure 5.2) in conjunction with the following short 

description. 
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Figure 5.2. Flow diagram illustrating the µ-Genetic Algorithm (µGA).  

The µGA begins with n (population size) randomly generated model parameter sets 

(parents) chosen from within the predefined parameter range (see Table 5.2 and Section 

5.2.4 on applying the µGA). The model is run independently for each parameter set. Each 

parameter set is assigned a misfit value using a cost function (see Section 5.2.2) which 

evaluates model output against the observations. The best fit (lowest cost) parameter set 

is retained for the next generation. The parameter vectors are then randomly paired, the 

probability of their choice weighted according to cost (the lower the parameter vector 

cost, the higher the likelihood of selection) to give n-1 pairs. The two parameter sets in 

each pair are then encoded as single strings of binary digits equivalent to their numeric 

value, here using 6-bit accuracy. 

Initialisation - 'Parent' parameter values randomly generated 
within literature ranges, to give a population of n parameter 

sets each containing N parameters.

Evaluation – model run independently for each parameter set 
and assigned a misfit value (cost function) against observations.

Lowest cost parameter set (offspring) retained.

Selection – Parameter sets are randomly paired weighted 
according to misfit value, the lower the misfit the higher the 

chance of being passed on (n-1 pairs are matched).

Encoding – each selected parameter set encoded as a single 
string of binary numbers.

Recombination – Parameter set pairs perform a process akin to 
genetic crossover to produce 'offspring' at a randomly selected 

point in their 'code'.

n parameter sets for next generation

Obtain optimised parameter set ('individual') after assigned 
number of repeated generations.
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A process analogous to genetic crossover is then applied. For each paired parameter set, a 

single point along the ‘code’ is selected at random and all points occurring after this point 

are exchanged between the parameter sets. One of the two new parameter sets is then 

chosen at random to pass to the next generation. This ‘genetic’ crossover ensures that 

subsequent generations explore parameter space more fully. The µGA cycles through a 

predefined number of iterations (generations), with the parameter sets of lowest cost at 

the end being the optimised one. In order to prevent the parameter search from getting 

trapped in a small region of parameter space, if the binary codes describing the n 

parameter sets (individuals) contain < 5 % difference between each other, only the 

currently best parameter set is retained and n-1 parameter sets are regenerated at 

random. Further information regarding this technique is given by Ward et al. (2010).  

5.2.2. Cost Function 

The cost function used within the µGA optimisation technique provides a non-dimensional 

value representing the misfit between the model output and observational data. It is a 

quantitative assessment of model performance and provides an indication of ‘goodness of 

fit’ (e.g. Allen et al. 2007). The cost function is defined here as the sum (over the four 

model components) of the weighted least square misfits between the model result and 

observations (Schartau and Oschlies 2003a). The nearer the cost function (J) is to zero, the 

better the model is said to perform.  

 Equation 5.8    ࡶ = 	૚
ࢀ
∑ ૚

ࡺ
∑ ૛(࢔ࡰ	ି࢔ࡹ)

࢔ࡰ࣌
૛

ࡺ
ୀ૚࢔

ࢀ
࢚ୀ૚  

Equation 5.8 defines how the cost function J quantifies misfit between observations (D) 

and model output (M). Misfits are summed over the number of data types T (here there 

are 4; phosphate, grazers, bacteria and mixotrophs) and the number of observations (N, 

here there is 1) for each data type. σDn is the error associated with the observational data. 

The cost function can be very sensitive to the uncertainty estimate (σDn) on the observed 

data (Dn), as a large uncertainty estimate on an observation will lead to a lower cost than if 

there was a small uncertainty estimate for the same model output and data. Uncertainties 

used in the optimisation will be discussed further in Section 5.2.3.4. Note that the 

contributions to the cost of each of the model variables can be used individually to assess 

how well the model reproduces that field (see Section 5.2.3.4 for details of observations 

used in cost function), ଵ
்

 can be used to provide the mean cost, see Table 5.4.  
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5.2.3. Data Input to Model 

Physical forcing of the system was provided by changes in MLD. Cellular phosphate 

content (necessary to convert model concentration in units of µmol P l-1 to cell abundance 

for fitting to the observations) and the parameter ranges were determined from a review 

of the literature. The following Sections describe these data.  

 Mixed Layer Depth 5.2.3.1.

Seasonal variation in MLD was obtained using profiling Argo float data, sourced from 

www.coriolis.eu.org. Data were extracted within the predefined oligotrophic gyre area 

(39oN to 15oN and 40oW to 20oW) for 2005, to coincide with the CTD uptake observations 

(see details in Section 4.2). MLD was calculated using temperature data from extracted 

profiles. MLD was defined as the depth where there is 0.2°C difference in temperature 

from that at 10m below the surface (de Boyer Montégut et al. 2004). This has been shown 

to provide better approximations to MLD than the 0.5°C benchmark of Monterey and 

Levitus (1997).  Salinity, temperature and density can all provide the measureable 

gradient to detect the base of the ML (de Boyer Montégut et al. 2007). Temperature was 

used here as salinity sensors are not present on all Argo floats, therefore potential density 

data was not consistently available either.  The monthly averaged data have been linearly 

interpolated to daily values (see Figure 5.3). These interpolated data were used to force 

the model, repeating for all years of the model run. Mixing rate (m) was set to 0.1 m d-1 

according to Fasham et al. (1990). 
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Figure 5.3. Mixed layer depth (MLD) used to force the model, using temperature 
data from Argo profiles. Red circles are the monthly averaged MLD within the region 
in 2005. Error bars indicate ± 1 standard deviation for the monthly means. Dashed 
line shows linearly interpolated values. 

 Cellular Phosphate Content 5.2.3.2.

Data was required from the literature for the amount of phosphate per cell for each of the 

model’s microbial groups (B, G and M). This was necessary to estimate cell abundance 

from the model output for comparison to observations, as elemental analysis was not 

undertaken on the AMT17 cells. Data was collated from the literature and then the mean, 

minimum and maximum cellular phosphate content (g P cell-1) was calculated for each 

microbial group. Published estimates were taken from studies on cultures of oligotrophic 

origin (natural or cultured) or of organisms of an oligotrophic species size (M and G, cell 

diameter < 6 µm and B < 1.5 µm). Bacterial cultures had to be P-limited (defined as < 50 

µmol P l-1) for data to be used.  
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Table 5.1. Literature values  for grams of phosphorus per cell for (mean, minimum 
and maximum) heterotrophic flagellates  or Grazers (G), bacteria (B) and 
mixotrophs (M). SD is standard deviation and n is sample number, source 
references are shown 

g P cell-1 Mean Min Max SD n Reference 
M 3.5 x 10-13 3 x 10-13 4 x 10-13 7.1 x 10-14 2 Legrand et al. (2001) 

G 9.3 x 10-13 1.2 x 10-13 2.2 x 10-12 9.9 x 10-13 4 Eccleston-Parry and 
Leadbeater (1995) 

B 1.3 x 10-15 9.8 x 10-16 1.75 x 10-15 2.4 x 10-16 19 

Grob et al. (2011); 
Bertilsson et al. (2003); 

Heldal et al. (2003);  
Gundersen et al. (2002) 

Table 5.1 details the results of the literature review on cellular phosphate content. As 

expected phosphate content was highest in the largest organism, the heterotrophic 

flagellates, the only obligate heterotroph within the model (G, mean phosphate content of 

9.3 x 10-13 g P cell-1). The mixotrophs (M) had a mean content of 3.5 x 10-13 g P cell-1. It was 

necessary to calculate a representative bacteria cellular phosphate content to reflect the 

fact that different types of bacteria vary in their phosphate content. Therefore the relative 

abundances measured at the CTD stations of Prochlorococcus spp., Synechococcus spp. and 

heterotrophic bacteria (average of 32%, 66% and 2% respectively) and the associated P 

content from the literature were used to calculate a weighted bacterial cellular phosphate 

content mean of 1.3 x 10-15 g P cell-1. Bacteria, due to their small size, have the lowest 

cellular phosphate quotient.  

 µGA Parameter range 5.2.3.3.

Parameter ranges were defined from the literature, see Table 5.2. It was necessary to 

convert the units reported by published study’s to match the model units. An example of 

parameter calculation for α, using Michelou et al. (2011) is as follows. The paper provided 

a P per cell uptake rate and a cell abundance. Therefore αPB could be calculated (as, 

uptake per cell x cell abundance = P uptake rate, µmol P l-1 d-1). Using the paper’s specific P 

and B concentration (µmol P l-1, calculated by multiplying the cell abundance with cellular 

P content), α could then be deduced (α = αPB / PB). Where the cellular phosphate content 

(g P cell-1, Table 5.1) was required for a calculation and was not provided in the paper the 

parameter value was calculated using the relevant microbial groups minimum, maximum 

and mean g P cell-1 (Table 5.1) to provide a maximum parameter range. This is reflected in 

the large parameter ranges (some several orders of magnitude) obtained from the 

literature. However, as the optimisation of an oligotrophic mixotrophic ecosystem had not 
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be undertaken previously and the literature reported wide ranging values, it was 

necessary for the optimisation to explore a large amount of parameter space. All 

parameters in Table 5.2 were optimised (see applying the µGA, Section 5.2.4), with the 

exception of mixing rate at the base of the ML (m), which was set according to Fasham et 

al. (1990), where it’s variation was shown to have little effect on the model output. 

Phosphate concentration (Po) below the ML (deep phosphate) was not set, as the deep 

phosphate observation for the region region was sourced from the World Ocean Atlas 

(Garcia et al. 2006, Garcia et al. 2010). For autumn at 150 m (below the ML at all times of 

year) this ranged between 0 and 0.6 µmol P l-1.  

Table 5.2. A description of model parameters and the parameter ranges defined 
from the literature for use within parameter optimisation. Note that m had a set 
value and was not included in the optimisation.  

 Parameter Range Unit Ref1 
Min Max 

α Phosphate uptake by bacteria 32.91 1090.55 d-1(µmol P l-1)-1 9 

γ Grazing by Mixotrophs on Bacteria 0.57 258.08 d-1(µmol P l-1)-1 2, 7, 
15 

ψ Grazing by Grazers on Bacteria 0.01 287.4 d-1(µmol P l-1)-1 1, 2, 7, 
15 

θ Grazing by Grazers on Mixotrophs 0.01 0.51 d-1(µmol P l-1)-1 7 
π Phosphate uptake by Mixotrophs 0.7 158.77 d-1(µmol P l-1)-1 11,14 

β 
Material from Grazers due to natural 
mortality, excretion and messy feeding 
taken directly into Bacterial pool 

0 0.3 d-1 3, 4, 8 

ε 
Material from Mixotrophs 
remineralised directly into Phosphate 
pool 

0 0.88 d-1 4, 5, 8, 
10, 13 

Φ Loss rate for Grazers 0 0.25 d-1 4, 5, 8, 
12, 16 

Po Phosphate in deeper abiotic layer 0 0.6 µmol P l-1 6 
m Mixing rate set to 0.1 m d-1 5 

 Observations for use in Cost Function 5.2.3.4.

To calculate misfit through the cost function (Section 5.2.2) in situ observations were 

compared to the modelled cell abundance (cell ml-1 for M, B and G) and P concentration 

(µmol P l-1) from the same day of the year (see Section 4.2, Tables 4.2 and 4.3 for data). 

                                                             
1 Reference key: 1. Barcina et al. (1992); 2. Bennett et al. (1990); 3. Edvardsen et al. (2002); 4. Fasham (1993); 
5. Fasham et al. (1990); 6. Garcia et al. (2006, 2010); 7. Hall et al. (1993); 8. Kriest et al. (2010); 9. Michelou et 
al. (2011); 10. Obayashi and Tanoue (2002); 11. Rothhaupt (1996b); 12. Sarthou et al. (2005); 13. Six and 
Maier-Reimer (1996); 14. Stibor and Sommer (2003); 15. Tsai et al. (2011); 16. Turner (2002) 
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The flux data (F1, F2 and F3, µmol P l-1 d-1) detailed in Section 4.4.1 and Table 4.4 were 

used after optimisation for independent testing of the model (this will be explained 

further in Section 5.2.6). As the units of the modelled variables are in µmol P l-1, a 

conversion was required to convert M, B and G model output to cell abundance. This was 

done using the mass of cellular phosphate (detailed in Table 5.1) and the molecular mass 

according to Equation 5.9. 

Equation 5.9   

(૚ି࢒	࢒࢕࢓)	ࢋ࢓࢛࢒࢕࢜	࢚࢏࢔࢛	࢘ࢋ࢖	ࡼ	࢒ࢋࢊ࢕ࡹ × (૚ି࢒࢕࢓	ࢍ	૜૙.ૢૠ)	࢙࢙ࢇ࢓	࢘ࢇ࢒࢕࢓	ࡼ
(૚ି࢒࢒ࢋࢉ	ࢍ)	࢚࢔ࢋ࢚࢔࢕ࢉ	࢘ࢇ࢒࢛࢒࢒ࢋࢉ	ࡼ

=  (૚ି࢒	࢒࢒ࢋࢉ)	ࢋࢉ࢔ࢇࢊ࢔࢛࢈ࢇ	࢒ࢇ࢏࢈࢕࢘ࢉ࢏ࡹ

To calculate the cost function, an error estimate was required for each of the observations. 

In this study a standard error of 5 % for each microbial group cell count observation (M, B 

and G) was used. This was made up from the following – 2 % flow cytometer (laser 

alignment, flow rate); 1 % flow cytometric gating; 1 % pipette and 1 % scintillation 

counter error (Pers. Comm. R. Holland). For P concentration the experimental error 

derived from the methodology (Zubkov et al. 2007) was used (see Table 4.2). It should be 

noted that error may have also arisen from the g P cell-1 used in the model variable 

conversion calculation (Equation 5.9). Unfortunately, for this study the optimiser could 

not be used to fit the g P cell-1 as well as the variable concentrations, as one was dependent 

on the other.  Thus, to allow the model to explore different cellular P contents, separate 

optimisations were run with different g P cell-1 applied (see Section 5.2.4 for details on 

applying the µGA).  

Despite all three locations where data were available (see Figure 4.1 and Table 4.1) being 

located within the same oligotrophic region, delineated by multivariate analysis in Chapter 

2, model output was only compared to observational data from CTD14 for the following 

reasons. Firstly, CTD10 was unsuitable as it was missing grazer abundance. Secondly, 

there was a large variability between the CTD14 and CTD23 despite being only 4 days 

apart (e.g. B abundance - CTD23, 492,229 cell ml-1 and CTD14, 344,423 cell ml-1). 

Consequently it would have been too difficult to ‘fit’ the model through both observations. 

This may have been due to ultraplankton spatial variability (this is discussed and 

investigated further in Chapter 6). At CTD14, the mixotrophs were the most abundant 

(CTD14 M, 11,942 cell ml-1 and CTD23 M, 2,748 cell ml-1). Therefore the role of mixotrophy 

should be the most evident at this location. Consequently CTD14 was selected as the 
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observations to fit the model output too. Observations for just one day does not 

necessarily make it trivial to fit a model too, as will be shown.  

5.2.4. Applying the µ-Genetic Algorithm 

The µGA has a number of its own parameters, such as the number of generations used and 

the  population size (n). These parameters can be adjusted to improve convergence on a 

solution. Standard practice is to set the μGA population size to equal the number of free 

parameters and that is done here, n = 9 (Schartau and Oschlies 2003a).  The model 

optimisation was carried out for 10,000 generations, using a 30 year model run, more than 

the 5,000 generations of Ward et al. (2010) and 2,000 generations of Schartau and 

Oschlies (2003a). This greater number of optimisations was necessary as despite the 

observations being much more limited, it took more iterations to obtain coexistence of all 

variables and an acceptable cost function. Optimisations were initially run for 2,500 and 

5,000 generations, and the optimised cost function was considerably higher. No 

improvement in cost was seen when more than 10,000 generations were run. 

The µGA used randomly selected initial parameter sets, as a limitation of µGA is that it can 

be sensitive to the initial parameter values. In addition, the randomly generated initial 

parameters maximised the search over the parameter space (Ward et al. 2010), which was 

restricted to the parameter ranges in Table 5.2. In total 150 independent µGA 

optimisations were run each for 10,000 generations, this number were run, due to the 

difficulty in obtaining a low cost from the observations (see Sections 5.2.3.4). To take into 

account the wide range in measurements from the literature, the minimum, maximum and 

mean g P cell-1 were used to calculate model cell abundance for 50 runs each of the 

optimiser. An example of the difficulty fitting a model to even the very limited set of 

observations here is that out of the 150 optimisations, only 9 had M, B and G coexisting 

and had a total cost function of less than 100 (which is still high, see Section 5.3.1).  

Each 10,000 generations run of the µGA took approximately 16 hours. Thus the 

optimisation required ~ 2,400 hours of computation. The actual time necessary was 

reduced considerably by the use of the Condor High Throughput Computing (HTC) 

environment, which enabled numerous optimisations to be run in parallel on a pool of 

machines (Thain et al. 2005). Notwithstanding this reduction in computation time attained 

by the Condor HTC, the 27 additional permutations that would be required to optimise to 

the different combinations of minimum, maximum and mean g P cell-1, would take 
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~21,600 hours (non-stop optimisations for 2.5 years) if completed for 50 optimisations, 

this is beyond what could be realistically completed in this study’s time frame.  

5.2.5. Sensitivity analysis 

Model sensitivity of the optimised parameter set determined by the µGA technique was 

also assessed. The model was run varying each of the parameters in turn, whilst all other 

parameters were held constant at their optimised value.  Model runs were performed for ± 

10 % and ± 20 % of each optimised parameter value, leading to 36 model permutations. 

All runs used parameter values within the literature defined range (see Table 5.2), except 

for α + 20 %, which was outside of this range, at 1127.35 d-1(µmol P l-1)-1, which was 

included for completeness. Changes in total cost and the individual contributions to this by 

each model variable were assessed for each permutation. A large increase in cost as a 

parameter is varied indicates the model is sensitive to that parameter. Here it should be 

noted that a stipulation was placed upon the model (here and previously when applying 

the µGA), such that if coexistence of all variables was not achieved a large cost of 500, was 

imposed.  

5.2.6. Independent Model Testing 

The measured in situ uptake rates detailed in Chapter 4 (F1, F2 and F3 - see Table 4.4 in 

Section 4.4.1), were not used in the µGA optimisation. The model could not be solved 

algebraically unlike in Chapter 4. It was therefore decided to adopt the most likely future 

approach to modelling these regions, optimising to observations. For reasons given, flux 

data will remain very sparse but abundances are much easier to obtain. For this reason 

abundances are used for fitting, but fluxes are still used as an independent test.  

The flux data, although quantitative, present some difficulties in their use. Firstly, as 

detailed in Chapter 4, the uptake rate experiments measure the entire uptake rate and 

cannot distinguish from where it is arising. Therefore the model fluxes have to be 

combined for comparison. Secondly, and perhaps more importantly, the P uptake flux 

measured during the time period of the experiment, 45 - 60 minutes (see Zubkov et al. 

2007 for methodology) may also be including excreted P or P passed to another microbial 

group, for example through predation. As such the F1 - F3 measurements are net, 

measuring P going in, as well as P going out during the time frame of the experiment, not 
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measuring just the total gross P uptake. It is currently not possible to separate these 

processes within the experiment or to say which processes are definitively occurring 

during the period of the experiment, although the experiments were designed to make the 

flux as close to gross as possible. However for completeness both ‘gross’ and ‘net’ model 

output is compared to the observed fluxes. For clarity this is outlined in Table 5.3. Mixing 

across the base of the ML was not included, as this is not present in the bioassay sample. 

Observed flux errors displayed in Figure 5.11 were compound (derived from the 

observations of cell count  and uptake rate per cell ± their respective error). Correlations 

between errors were ignored so that maximum uncertainty is displayed.  

Table 5.3. Breakdown of gross and net modelled fluxes to be compared to observed 
fluxes F1 - F3, see Figure 5.11.  

Observed flux Compared to: 
Gross Modelled Flux Net Modelled Flux 

F1  Uptake by M πPM + γBM πPM + γBM – θMG -εM  

F2 Uptake by B αPB αPB + βG – γBM – ψBG 

F3 Uptake by G ψBG + θMG ψBG + θMG – βG - ϕG  

5.3. Model Assessment 

5.3.1. Overall Model Performance 

The best overall mean cost achieved by the 150 optimisations was 0.76 (see breakdown in 

Table 5.4). This was obtained using the maximum cellular phosphate content in Table 5.1. 

Optimal parameter values are shown in Table 5.5. 

Table 5.4. Breakdown of calculated misfit (cost function) between model output and 
observational data for the individual model components 

Phosphate Grazer Bacteria Mixotroph Mean Cost 

1.98 0.06 0.63 0.35 0.76 

This model performance was evaluated according to the Radach and Moll (2006) criteria 

for cost functions. The criteria are:  J < 1  very good; 1 – 2  good; 2 – 3  reasonable; > 3  

poor. The model therefore attains a very good fit (with a mean cost of 0.76), with the 
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microbial variables achieving a better fit (< 1, very good), than phosphate concentration (< 

2, good).   

Table 5.5. Optimised parameter values corresponding to the lowest cost function. 

 Parameter Optimised 
value Unit 

α Phosphate uptake by bacteria 939.46 d-1(µmol P l-1)-1 
γ Grazing by Mixotrophs on Bacteria 12.83 d-1(µmol P l-1)-1 
ψ Grazing by Grazers on Bacteria 9.13 d-1(µmol P l-1)-1 
θ Grazing by Grazers on Mixotrophs 0.215 d-1(µmol P l-1)-1 
π Phosphate uptake by Mixotrophs 3.21 d-1(µmol P l-1)-1 

β 
Material from Grazers due to natural 
mortality, excretion and messy feeding 
taken directly into Bacterial pool 

0.04 d-1 

ε Material from Mixotrophs remineralised 
directly into Phosphate pool 0.24 d-1 

Φ Loss rate for Grazers 0.14 d-1 
Po Phosphate in deeper abiotic layer 0.5 µmol P l-1 

5.3.2. Model System Dynamics 

Figures 5.4 and 5.5 show the 10th year of model output and observation for each variable 

and the associated physical forcing (the MLD). The model was successful in allowing 

coexistence, which previous mixotroph models have found difficult (e.g. Thingstad et al. 

1996) with a repeating annual cycle. There is a low percentage difference between model 

and observations of the modelled grazer (1 %), bacteria (4 %) and mixotroph (3 %) cell 

counts to the abundance observations on Julian day 305 (corresponding to CTD14 

observation day). The model fit to phosphate concentration is still reasonable, despite 

being the worst overall fit (33 % lower than the observation), though the model output is 

not within the uncertainty estimate of the observation.  
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Figure 5.4. a-d Optimised model output (dashed lines). Observational data from 
CTD14 are also shown (observation and error described in Section 5.2.3.4), as is 
mixed layer depth, the solid lines (MLD, m). Note different units for (a) Phosphate 
concentration (µmol P l-1) compared to (b) Grazers, (c) Bacteria and (d) Mixotroph 
abundance (cell ml-1). X-axis, denotes Julian day.  

Figure 5.5 is model output as in Figure 5.4b-d but in comparable units to P concentration 

(Figure 5.4a, µmol P l-1) in order to demonstrate the relative variable sizes. Figures 5.4a 

and 5.5a-c show that the majority of the P within the system is located within the 

mixotroph variable and the least P is located within the modelled P pool. The majority of 

the P within the ecosystem is therefore within the microbial groups and not ‘freely’ 

available within the ML. The observations plotted on Figure 5.5 are calculated from 

microbial abundance observations converted to µmol P l-1 using a rearranged version of 

Equation 5.9. The error bars shown are as described in Section 5.2.3.4.  
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Figure 5.5. Optimised model output in µmol P l-1. Also shown are observational data 
from CTD14 and associated error described in Section 5.2.3.4), (a) Grazers, (b) 
Bacteria and (c) Mixotrophs. MLD (m) on secondary y-axis is also shown. See Figure 
5.4a for P concentration. 

The optimised model output (Figures 5.4 and 5.5) demonstrates a ‘seasonal’ cycle 

throughout the year for P, G and M. The model output exhibits a peak in P, M and G in the 

autumn. Somewhat strikingly the bacteria varies little throughout the year in comparison 

to the other variables, see Figure 5.6.  

Simulated phosphate concentrations are highest during the autumn months. The 

deepening of the ML in autumn causes an entrainment of deep P concentration. The 

mixotroph seasonal cycle very closely echoes the phosphate concentration with peaks and 

troughs at the same points. The peak in grazers is steeper than the peak in phosphate and 

mixotroph components and the grazers peak which is (< 1 month) after the mixotrophs.  
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Figure 5.6. Mixed Layer Depth (MLD, solid line) and changes in h+ (dotted line). X-
axis is Julian day. 

In addition to  minimal ‘seasonality’ in bacteria in comparison to the other model variables 

(just ± 20 % over the year), the model output for bacteria also displays a ‘step effect’ upon 

even slow deepening of the ML (such as around Julian days 100 and 250, see Figure 5.4c in 

conjunction with Figure 5.6). This occurs due to the linear interpolation of MLD used to 

force the model. When the ML deepens, a step effect in h+ is observed (see Figure 5.6 and 

Equations 5.1, 5.3 and 5.6). The variable h+ controls both the influx of nutrients to the ML 

from the abiotic constant nutrient layer below and a dilution with bacteria free waters, 

hence the signal in B. It is visible in B but not in B, M and G because of the much weaker 

seasonal cycle.  

To investigate the dynamics of the modelled ecosystem further the model fluxes are 

shown. Figure 5.7 shows the individual fluxes affecting each variable. The most striking 

observation is the symmetry in the dominant losses and gains shown in the plots on the 

left-hand side. The larger fluxes in the system essentially cancel each other out. The 

biggest loss from P is through direct bacterial uptake (αPB, Figure 5.7a), but this is 

balanced by the remineralisation of phosphate from mixotrophs (εM). The latter is also the 

largest loss out of the mixotroph variable (Figure 5.7g), despite the optimised ε parameter 

being in the lower half of the parameter range (see Table 5.2). This flux out of the 

mixotrophs is balanced by bacterivory, which in turn is the biggest loss for bacteria (γBM, 

Figure 5.7e). Importantly this indicates that mixotrophs are the primary control on 

bacteria and that, in this model, bacterivory is the mixotrophs principal phosphate source 

(Figure 5.7g). For B, bacterivory is balanced by P uptake (αPB, Figure 5.7e). Figure 5.7c 

shows that even the largest fluxes in and out of the grazers are of a relatively lower 
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magnitude, but the largest fluxes once again balance with export (ΦG) balancing grazing 

on bacteria (ψBG).   

 

Figure 5.7. Individual model fluxes for (a, b) phosphate, (c, d) grazers, (e, f) bacteria 
and (g, h) mixotrophs. Each flux in the model is plotted as positive and negative 
depending on whether it is a source or a sink for each variable. Note y-axis scales in 
plots on the left hand side are a larger scale, than plots on the right hand side. Black 
dashed line is mixing across the ML. 

The symmetry of the larger fluxes conceals the fact that the smaller fluxes (shown in plots 

on the right hand side of Figure 5.7) are crucial to the seasonal dynamics of the system. A 

small influx of P in autumn unbalances the system (without mixing, the model outputs 
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constant values for all variables and fluxes). This influx of P is due to the deepening of the 

ML around Julian day 240 (Figure 5.7b), providing a kick-start to the direct uptake of P by 

mixotrophs (πPM, Figure 5.7h) and bacteria P uptake (αPB, Figure 5.7e). Predation shortly 

follows and an increase in remineralisation is seen from G to B (βG, Figure 5.7d), due to 

the small increase in predation by grazers (ψBG, Figure 5.7d and θMG, Figure 5.7c), which 

is responsible for the depression in the system shortly after the peak. Therefore the 

system could be viewed as being both top-down (peak M depressed by predation by G and 

consequently remineralisation of P through G) and bottom-up (peak initiated by mixing in 

of P) controlled throughout the year.  

 

Figure 5.8. Net fluxes into each state variables (a) Phosphate, (b) Grazers, (c) 
Bacteria and (d) Mixotrophs. Note, P variable y-axis is an order of magnitude 
smaller than plots b-d. Also note that all axis are at least an order of magnitude 
smaller than the left hand side fluxes in Figure 5.7. X-axes are Julian days.   

Figure 5.8 shows the balance of the system from the perspective of the net fluxes summed 

into each of the variables. The deepening of the ML causes a sharp decrease in P, because 

of the influx of deep P (Figure 5.8a). The introduced P is sharply taken up by B and M 

(Figure 5.8c-d). Any increase in the bacteria is quickly depressed by increases in M and G 

grazing (Figures 5.8b and 5.8d). The mixotrophs decline as P is consumed and as they are 

predated upon (although decreasingly rapidly) by grazers. From Figure 5.8, it can be seen 

that the system is tightly coupled and any P is quickly utilised, as would be expected in the 
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nutrient economical oligotrophic regions. Note the net fluxes are an order of magnitude 

smaller than the individual model fluxes, presented in Figure 5.7. 

5.3.3. Model sensitivity 

Sensitivity analysis was carried out on the optimised model parameters (see Table 5.2) 

and results are shown in Figures 5.9 and 5.10. These Figures show that the model cost is 

most sensitive to the parameters for grazing of bacteria by mixotrophs (γ), the grazing of 

bacteria by grazers (ψ), the remineralisation from mixotrophs directly into the phosphate 

pool (ε ) and the export out of the mixed layer from grazers (ϕ). The model was not very 

sensitive to parameters involved in the direct phosphate uptake rate by bacteria (α) and 

mixotrophs (π).  

 

Figure 5.9. Model sensitivity to perturbation in individual parameters. While a 
single parameter was varied by ±10 % and ± 20 %, other parameters were held 
constant at the optimised value. The red dot and dashed line indicates the original 
optimised parameter value and blue line indicates changes in cost as the parameter 
was perturbed. A cost value over 500 indicates no co-existence of microbial groups 
(see Section 5.2.5). 
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The sensitivity analysis further showed that when ψ was perturbed above a value of 10 d-

1(µmol P l-1)-1 or ε  was increased beyond 0.26 d-1, all variables could not co-exist.  Likewise 

if γ was reduced below 11.6 d-1(µmol P l-1)-1 and ϕ below 0.13 d-1 co-existence for all 

variables could not be maintained. In each of these cases the mixotroph was outcompeted 

and became extinct within the model. It is interesting to note that mixotrophs and then 

grazers were the most sensitive variables within the model, as the largest proportion of 

change in total cost came from these two variables (see Figure 5.10).  

 

Figure 5.10. Model sensitivity to perturbation in individual parameters. While a 
single parameter was varied by ± 10 % and ± 20 %, other parameters were held 
constant at the optimised value. The red dot and dashed line indicates the original 
optimised parameter value, coloured solid lines indicates changes in individual 
variable (P, G, B and M) cost as the parameter was perturbed. A cost value over 500 
indicates the variable had become extinct, therefore no co-existence was achieved 
in the model with those parameters. 
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5.3.4. Independent Model Assessment using Flux 

Data 

Figure 5.11 presents a cross-validation of the model output to the independent flux data, 

described in Chapter 4 (Section 4.4.1). In Section 5.2.6, it was noted that it was uncertain 

which model fluxes describe the observational fluxes (F1-F3). Therefore both gross and 

net modelled flux output is plotted (see Table 5.3).  

 

Figure 5.11. Model output in terms of fluxes (F1, F2 and F2, see Figure 4.3). Solid 
lines are gross uptake, dashed lines are net uptake (see Table 5.3). (a) F1, uptake by 
M, (b) F2, uptake by B, (c) F3, uptake by G.  Black dots are the flux observations and 
error bars indicate compound errors for maximum uncertainty, present in plots a 
and c, although small. Note smaller scale for plot c.  

Figure 5.11a is the uptake of P by M. The independent measurement is in reasonable 

agreement with the modelled net flux (dashed line). However the gross flux (solid line) is 

two orders of magnitude larger in places than the net flux (e.g. coinciding with 

observation, modelled net flux was 4 x 10-4 µmol P l-1 d-1, whereas modelled gross flux was 

4 x 10-2 µmol P l-1 d-1). P uptake by B (Figure 5.11b), is closer to the modelled gross uptake 

(i.e. no losses included, the solid line). The modelled net flux is much smaller. For example, 

annual mean F2 net flux is 1 x 10-4 µmol P l-1 d-1, while annual mean modelled gross flux is 
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2 x 10-2 µmol P l-1 d-1. P flux into G (Figure 5.11c) is the worst fit to either the modelled net 

or gross fluxes, with the independent flux measurement below even the model’s net flux 

estimation. The annual mean modelled net flux (1 x 10-4 µmol P l-1 d-1) is an order of 

magnitude higher than the flux observation (2.3 x 10-5 µmol P l-1 d-1). This may be an 

indication that the G processes are not being completely caught during the time scale of 

the experiment, as the G uptake observation (F3) is so much lower than the model 

predicted G uptake. 

The uncertainty displayed is as large as possible (compound errors), to include the biggest 

possible potential range of the flux observations. Both gross and net model fluxes are 

plotted, as the relative rates at which processes (fluxes) are occurring over the 

experiments’ timescale (< 60 minutes) is not known. In reality the observations are 

probably somewhere between the modelled gross and net uptake. This is discussed 

further in Section 5.4.1.  

5.3.5. Modelled Bacterivory 

The eating of bacteria (bacterivory) by mixotrophic algae has been shown to be ubiquitous 

within the oligotrophic Atlantic (Zubkov and Tarran 2008, Hartmann et al. 2012). 

Modelled output can be used to calculate the proportion of bacterivory undertaken by 

mixotrophs (algae) in the system. The percentage mixotrophic bacterivory has been 

calculated using Equation 5.10. The amount of phosphate obtained by mixotrophs through 

mixotrophy has also been calculated (see Equation 5.11), as this demonstrates how much 

of the nutrient acquired is through ‘eating’ rather than direct uptake. 

Equation 5.10 ࢟࢘࢕࢜࢏࢘ࢋ࢚ࢉࢇ࡮	࢔ࢋ࢑ࢇ࢚࢘ࢋࢊ࢔࢛	࢟࢈	࢙ࢎ࢖࢕࢚࢘࢕࢞࢏࢓	(%) 	= ࡹ࡮ࢽ
(ࡳ࡮࣒	ାࡹ࡮ࢽ)

	× ૚૙૙ 

Equation 5.11 ࢎ࢖࢕࢚࢘࢕࢞࢏ࡹ	ࡼ	ࢊࢋ࢔࢏ࢇ࢚࢈࢕	࢟࢈	࢟࢘࢕࢜࢏࢘ࢋ࢚ࢉࢇ࢈	(%) 	= ࡹ࡮ࢽ
(ࡹࡼ࣊	×ࡹ࡮ࢽ)

	× ૚૙૙ 
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Figure 5.12. (a) The proportion of bacterivory undertaken by mixotrophs (%); (b) 
percentage of phosphate obtained by mixotroph through bacterivory (%). Note y-
axis scales are different.  

The fraction of bacterivory undertaken by mixotrophs varies between 77.6 and 94.4 % 

(17.3 %) over the year (Figure 5.12a). However the amount of P obtained by mixotrophs 

through bacterivory only varies 2.6% throughout the year, 97.1 to 99.7 % (Figure 5.12b). 

This demonstrates that obtaining P through the bacterivory pathway is the dominant 

process of P uptake for mixotrophs, even when the proportion of bacterivory undertaken 

by them declines.  

In times of low phosphate concentration (around day 100), the fraction of phosphate 

obtained by mixotrophs from bacterivory is at its highest. The grazing of mixotrophs on 

bacteria may be reducing the competition (eating your competitor, as suggested by 

Thingstad et al. 1996) for phosphate and thus contributes to the increase in phosphate 

concentration thereafter. Percentage bacterivory by mixotrophs (in terms of total 

bacterivory) is, however, at this time at its lowest. There is strong competition from 

grazers for bacteria. The relatively steady-state nature of bacterial abundance throughout 

the year is because bacterial communities are continually under heavy grazing pressure 

(Jost et al. 2004), see Figures 5.4c and 5.5b. 
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5.3.6. Modelled Primary Production  

Primary production is of interest, firstly for the reason that the calculation of primary 

production from the model output gives an indication of the impact of mixotrophy on the 

ecosystem functioning and dynamics. Secondly, because calculating primary production 

enables a comparison of the model output to previously published modelled estimates and 

observations that are and are not inclusive of mixotrophy.   

Primary productivity (PP) is defined as in Stickney et al. (2000) as the total amount of 

dissolved inorganic nutrient uptake (P) by bacteria (αPB) and mixotrophs (πPM), see 

Figure 5.13. The PP in the model peaks in the autumn (echoing the peak in mixotrophs, 

Figure 5.4d). Throughout the year P uptake by mixotrophs is lower than by bacteria by a 

factor of over 10 (see Figure 5.13b). Therefore if the mixotrophs’ contribution to modelled 

PP was only from direct P uptake (not including bacterivory), mixotrophs are contributing 

on average only 3.4 x 10-4 µmol P l-1 d-1, almost two orders of magnitude less to PP than 

bacteria (average, 1.9 x 10-2 µmol P l-1 d-1).  

 

Figure 5.13. (a) PP, Primary Production; (b) PP component fluxes. The primary y-
axis	is	P	uptake	by	bacteria	(αPB	in	blue),	the	secondary	y-axis is P uptake by 
mixotrophs	(πPM	in	green).	Note	different	scales	of	y-axes and both x-axis are Julian 
day. 

50 100 150 200 250 300 350
0

0.01

0.02

0.03

0.04

0.05

PP
 (

m
ol

 P
 l-1

 d
-1

)

a

50 100 150 200 250 300 350

0
20
40
60
80
100
120

M
LD

(m
)

0 50 100 150 200 250 300 350
0

0.01

0.02

0.03

0.04

0.05


PB

 (
m

ol
 P

 l-1
 d

-1
)

b

days
0 50 100 150 200 250 300 350

0

0.5

1

1.5

2
x 10-3

P
M

 (
m

ol
 P

 l-1
 d

-1
)



 

98 

The presented model, however, cannot be used to determine explicitly if phosphate 

obtained from bacterivory is being utilised by mixotrophs for primary production (see 

Chapter 1). It has no light forcing component and therefore cannot model photosynthesis 

and production of biomass directly. Nevertheless, it is possible to consider the 

contribution of bacterivory by algae to primary production through a simple thought 

experiment.  

Here n % of the phosphate obtained from bacterial grazing was arbitrarily included as 

being utilised for PP.  Therefore PP labelled PPn, is the total amount of direct nutrient 

uptake by bacteria and mixotrophs plus n % of phosphate obtained through bacterivory, 

assumed used in PP. This can be compared to PP from direct uptake of P alone, in Figure 

5.14.  

 

Figure 5.14. PP model output showing alternative scenarios for primary production 
with (dashed lines) and without (solid line) bacterivory derived phosphate 
utilisation. PP (µmol P l-1 d-1, thick black line), only dissolved nutrient uptake 
utilised in PP. PP20, PP + 20 % of bacterivory derived phosphate utilised in PP; PP40, 
PP + 40 % of bacterivory derived phosphate utilised in PP; PP60, PP + 60 % of 
bacterivory derived phosphate utilised in PP; PP80, PP + 80 % of bacterivory derived 
phosphate utilised in PP and PP100, PP + 100 % of bacterivory derived phosphate 
utilised in PP. Days, is Julian days. 

Figure 5.14 shows the increase in primary production when 20, 40, 60, 80 and 100% of 

phosphate taken up through bacterivory contributes to primary production. If 100% of 

phosphate obtained by mixotrophs through bacterivory is utilised in primary production 

(PP100), primary production almost doubles. At its peak in autumn, total primary 

productivity from PP is 4.2 x 10-2 compared to PP100 8.1 x 10-2 µmol P l-1 d-1. The average 
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PP over the year is 1.9 x 10-2 µmol P l-1 d-1, just over half of the PP100 mean of 3.6 x 10-2 

µmol P l-1 d-1. 

5.3.7. Modelled Export 

As an initial cautionary note, grazer losses in the model (ΦG), are not explicitly export in 

the sense of material sequestered at depth. They include contributions from faecal matter, 

excretion, messy eating, mortality and consumption by higher predators. Hence here ΦG 

can only be used as a first order  proxy for export and not as a direct estimate. 

 

Figure 5.15. Export (ϕG),	dashed	line,	primary	y-axis. MLD, solid line, secondary y-
axis. Note, timescale is Julian day. 

Export (annual average, 1.8 x 10-3 µmol P l-1 d-1, Figure 5.15) is low in comparison to the 

balanced larger fluxes in the model (e.g. αPB mean 1.9 x 10-2 µmol P l-1 d-1), yet high 

amongst the important unbalanced smaller fluxes (e.g. θMG mean 2.4 x 10-4 µmol P l-1 d-1, 

see all fluxes in Figure 5.7). Export varies between 0.7 x 10-3 and 4 x 10-3 µmol P l-1 d-1 

throughout the year (see Figure 5.15). In comparison, the equivalent range for phosphate 

input into the ML by deepening and mixing is 0.4 x 10-3 to 6.9 x 10-3 µmol P l-1 d-1 with a 

mean of 2.5 x 10-3 µmol P l-1 d-1. This is higher than export because of ‘mixing’ losses on B, 

G and M (Figure 5.1). Export peaks in the late autumn (at the same time as G and slightly 

after M peaks) and is depressed throughout the summer. The modelled export is 

dependent upon the grazer state variable, and therefore tightly follows its yearly cycle 

(see Figure 5.4). If a conversion to carbon is made using the Redfield ratio (C:P, 106:1) 
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(Redfield 1934), the mean export is 0.2 µmol C l-1 d-1 (~ 70 µmol C l-1 y-1). This will be 

discussed further in the next Section. 

5.4. Discussion 

A simple dynamic model including mixotrophy has been constrained to limited 

observations from the oligotrophic north Atlantic. A µGA technique was used to optimise 

parameters using ranges defined from the literature.  

5.4.1. Model Performance 

 General Performance 5.4.1.1.

The optimisation process successfully generated parameters to obtain a fit to the in situ 

observations that could be classified as good to very good and enabled coexistence of all 

variables. It might a priori be thought trivial to fit 4 data points to 4 variables. However 

this is clearly not the case. Calibration of the model was challenging and no solution was 

found that matched all data simultaneously, despite there being only one observation for 

each variable. Only nine parameter sets arising from 150 optimisations provided a cost 

less than 100 and out of these, only two had a total cost of less than 10. This is despite the 

optimisation running for double the number of generations of previous studies using µGA, 

such as Ward et al. (2010). In theory it should have been easier to optimise a model to 

fewer observations, as the model output has less points to fit through.  

The modelled inorganic phosphate had the highest cost of 1.98, when compared to the 

observation. Although this is still a good fit it was 33 % lower than the observation, with 

the model output not even being within the uncertainty estimate of the observation (see 

Figure 5.4). This may be due to the experimental error used on this measurement in 

reality being significantly larger (the likelihood of this is unknown), and an increase in 

uncertainty would have led to a lower cost. In retrospect the uncertainty of 5 % employed 

for the other data observations (B, G and M cell ml-1) may also have been too small. The 

conversion of model output to cell ml-1 (Equation 5.9) utilising the cellular phosphate 

content, necessary to calculate the cost function, will also have introduced uncertainty, 

due to the range of possible cellular P contents (Table 5.1). However, only one could be 
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used. An equal number of optimisations were undertaken with minimum, maximum and 

mean cellular P quotient to attempt to account for this, allowing the model the chance to 

optimise to the complete spread of phosphate cellular content data (see Section 5.2.3.3). 

The differences between these estimates from the three optimisations were more than the 

5 % uncertainty used in the cost function calculation (Table 5.1), with the standard 

deviation being ~20 % of the mean for M and B and 106 % for G. Conversely the best 

optimisation achieved was using maximum cellular P content. This was somewhat 

unexpected, as within the oligotrophic regions, ‘survivalist’ algae are expected to 

dominate. These have a high N:P ratio (> 30). They can sustain growth when resources are 

low as they contain a lot of resource-acquisition machinery within the cell (e.g. 

pigments/proteins which have a high N:P ratio) (Arrigo 2005). This model success of high 

P content cells may be explained by the cellular phosphate content taken from the 

literature being based primarily on oligotrophic measurements. Regardless a larger 

spread of data (both for estimates of phosphate cellular content and cell abundance) and 

refined associated uncertainties would be beneficial to future optimisations. 

The difficulty shown in fitting even this very small dataset, means that the model may not 

have been appropriate for the system, as parameter sets with a sufficiently low cost were 

difficult to obtain. This problem may have arisen from potential deficiencies in the model 

structure, such as oversimplification (Schartau and Oschlies 2003a), in terms of the 

number of model variables. For example there is no obligate autotrophic algae in the 

model. This group is included in the model presented by Thingstad et al. (1996) to study 

mixotrophy. However, the Thingstad et al. (1996) model failed to allow coexistence of all 

variables, whereas the model structure presented here did. Another alternative is to refine 

the model by making it one-dimensional (1D). A 1D model would allow vertical processes 

to be better resolved, for example, it would no longer be necessary to assume there is no 

life below the ML. The further step of including horizontal spatial variability would allow 

advective effects to be included. Heterogeneity of ultraplankton will be investigated in the 

next Chapter. The main challenge in increasing the complexity (i.e. number of parameters) 

of the system is the increased need for data to constrain the model. In situ data are simply 

at present not available in sufficient quantities for the oligotrophic Atlantic. 

The cost function should be interpreted with caution, as the mismatch between the low 

number of observations used to calculate the cost function and the large number of data 

points from the model can reduce the reliability of its result (OSPAR 2008). More data 
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points at different times of year would help to rectify this (whilst making optimisation 

even more challenging). Unfortunately these were not available for this study. 

 Seasonal Cycle 5.4.1.2.

The timing of the peak in mixotrophs in autumn in the model is consistent with previous 

research in the oligotrophic north Atlantic region. SeaWiFS chlorophyll maxima have been 

observed  over autumn and winter (Siegel et al. 2002, Henson et al. 2009) and previous 

models (that exclude mixotrophy) have estimated that in the subtropical regions (south of 

45°N) blooms occur in autumn or winter (Dutkiewicz et al. 2001).  

Although the model timing appears to be broadly correct, the amplitude of the seasonal 

cycle model variables varies between microbial groups (e.g. bacteria does not demonstrate 

seasonality, but mixotrophs and grazers do, see Figures 5.4 and 5.5). The oligotrophic 

regions have previously been described as relatively constant throughout the year (Lutz et 

al. 2007, Cole et al. 2012). This is also supported partly by the results of this Chapter (the 

bacteria variable has a weak seasonal cycle) and by the result presented in Chapter 3 of 

this thesis (no significant difference between measurements of dissolved organic 

phosphate in opposing seasons). A recent study has used a low coefficient of variation in 

satellite sensed chlorophyll to characterise a region as having a weak seasonal cycle (< 

0.35, Cole et al. 2012). The model output can be assessed using the same criteria. The 

coefficient of variation over the model output year was almost double the seasonality 

criterion for the phosphate, grazer and mixotroph variables (0.63, 0.64 and 0.65 

respectively). For bacteria it was much lower (0.07). Here however the coefficient of 

variation is calculated using the model variables. In the aforementioned study, the 

coefficient of variation was calculated using the remotely sensed chlorophyll a 

concentration. Given the varying seasonal response, it is therefore necessary to decide 

which organism is of primary interest. If it is mixotrophs then comparison of model to data 

requires that satellite chlorophyll a be closely related to the abundance of pigmented 

organisms represented by the model; the mixotrophic algae and the bacteria, the latter of 

which encompasses phototrophic cyanobacteria. There is however some evidence that 

satellites may not accurately detect ultraplankton abundances (Zubkov and Quartly 2003). 

Therefore the ultraplankton abundance coefficient of variation in the oligotrophic gyres 

may be higher than the ocean colour data suggests for mixotrophic algae. The reliability of 

remotely sensed data for measuring ultraplankton and variability in ultraplankton will be 

addressed in Chapter 6.  
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Ideally, to test if the amplitude and the timing of the model’s yearly cycle is correct, in situ 

monthly observations could be obtained to constrain the parameters. However due to field 

expenses, logistics and methodological limitations this is not practical. Furthermore, 

spatial variability may cause an additional problem. Large variability was seen between 

CTD points ~ 1400 km apart (CTD14 and CTD23). Despite the oligotrophic Atlantic being 

consistent with one microbially defined region of > 90 % similarity (see Chapter 2), 

mixotroph cell numbers were over an order of magnitude higher at CTD14 (11,942 cell ml-

1) than at CTD23 (2,748 cell ml-1). One explanation for this, is that if (returning to Chapter 

2) similarity was increased to 91%, it is evident that CTD14 and CTD23 would be in 

different sub-clusters (Figure 2.3a and Figure 4.1). Therefore as the model is optimised to 

CTD14, the mixotroph model results may be more indicative of the subtropical north 

Atlantic gyre (cluster region aii) than the equatorial and southern Atlantic (cluster region 

ai).  This has been taken into consideration when comparing the model output with 

previous studies model output and observations. If computing time was not a limitation 

(Section 5.2.4 indicated 2,400 hours to optimise to CTD14), it would be interesting to also 

optimise the model to CTD23. Therefore ideally any future monthly observations may be 

better limited to the vicinity of the same location. However there may still be variability at 

smaller scales, e.g. due to eddies, which could give anomalous observations at a site. The 

issue of spatial variability in microbial group abundances will be discussed further in 

Chapter 6.  

 Parameters 5.4.1.3.

The parameter ranges from which the optimisation procedure could assign parameter 

values were intentionally large (Table 5.2) to ensure any potential values were not 

omitted. The optimised parameter value for α (direct phosphate uptake by bacteria) and 

Po were the only parameter values towards the higher end of their literature defined 

range (see Table 5.5). The majority of the other parameters were low within their 

literature defined range. This was true even for ε (remineralisation from mixotrophs to 

phosphate) and γ (bacterivory by mixotrophs), despite being associated with the largest 

fluxes within the system (see Figure 5.7). The model therefore implies that the parameter 

ranges described from the literature may be higher than in situ oligotrophic ocean 

observations. This might be taken to suggest that the literature ranges had to rely heavily 

on culture values due to the lack of in situ data and as a result are too broad. In the future 

conducting further in situ grazing and uptake experiments would help to narrow the 

parameter ranges. An alternative explanation is that limitations in the model structure are 
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pushing parameter values to the edges of their ranges through inadequately representing 

some processes. 

The optimised model was particularly sensitive to a number of parameters, relatively 

small independent variations in a few causing mixotrophs to become extinct during a ten 

year model run (Figures 5.9 and 5.10). The sensitivity analysis results show that the model 

is mainly sensitive to grazing of bacteria by mixotrophs (γ) and grazers (ψ) and to a lesser 

extent to remineralisation from mixotrophs to the phosphate  pool (ε) and export of 

phosphate out of the model through grazers (ϕ). Two of the most sensitive parameters (γ 

and ε) are associated with some of the largest phosphate fluxes within the model (εM and 

γ BM, see Figure 5.7). When γ is decreased by 10% or more or ε is increased by 10% or 

more, mixotrophs become extinct within the system. This is an indication of the sensitivity 

of the mixotroph variable, as well as demonstrating the importance of bacterivory by 

mixotrophs within the system. It also helps to explain why optimisation was so difficult 

(9/150 optimisations allowed coexistence with a cost function, J ≤ 100) as these two 

parameters (responsible for a large proportion of the cycling in the system) are extremely 

sensitive. As for the model’s closure term (ϕ), the form and the value of the model’s 

closure terms have been shown previously to strongly influence model dynamics (Steele 

and Henderson 1992a, Edwards and Yool 2000). Further measurements for model 

parameterisation (especially to describe the most sensitive parameters, e.g. γ, ψ, ε and ϕ) 

would help to rectify this, by reducing the uncertainty in the amplitude of the model 

variables at other times of year, thus aiding the model calibration.   

 Comparison to Fluxes 5.4.1.4.

The optimised model output has been independently compared to the observational flux 

data presented in Chapter 4 (Section 4.4.1). Figure 5.11 shows the model output fit to the 

data. As previously stated, two model flux lines are presented, the solid line is gross, and 

the dashed line net flux, as it is not possible to state explicitly what processes are 

occurring during the timescale of the bioassay experiment (< 1 hour) used to obtain 

microbial group uptake rates.  For example regarding Figure 5.11b, it is not known if 

significant grazing of bacteria (by M or G) is occurring within the same time frame as the 

uptake of P by bacteria. In reality the answer is probably somewhere between the two (net 

and gross) and may be different for each variable.  
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Figure 5.11a shows the uptake flux of P into M. It shows that the independent 

measurement (F1) is quite well fitted to the modelled net flux (dashed line), but not to the 

modelled gross flux. The grazer predation on mixotrophs is relatively small within the 

model (Figure 5.7h). If this is excluded from the modelled net flux calculation, the fit to the 

flux observations is very similar. Therefore it is the exudation of P back to the P pool which 

dominates the difference between net and gross, but unfortunately little is known of this 

process. Uptake of P by bacteria (F2), is the only flux observation that fits the gross flux 

observation, indicating that uptake of P by bacteria is accurately captured during the 

experiment, assuming that the model is correct. The P flux into grazers (F3) is the worst fit 

to the model output, with the independent flux measurement below even the modelled net 

flux estimation. This may be due to the majority of predation undertaken by the grazers 

occurring over longer time scales than the experiment (> 1 hour) used to make the 

observations, perhaps because of the relatively low grazer abundance (Table 4.3) causing 

a lower encounter rate with bacteria and mixotrophs. The independent comparison of the 

model with flux observations, therefore might indicate that contributing processes are 

caught occurring over different timescales during the experiment. Unfortunately, at 

present, it is not possible to separate and measure these fluxes simultaneously. Future 

methodological advances will hopefully rectify this, and clearly limitations of the model 

should not be ruled out. 

 Modelled Bacterivory 5.4.1.5.

The optimised model enables an estimate of the amount of mixotrophy taking place within 

the system throughout the year. Mixotrophy is a dominant nutritional strategy within the 

system and this can be clearly demonstrated. The percentage bacterivory undertaken by 

algae (mixotrophs)  is high (ranging between 78 and 95 % throughout the year) and 

mixotrophs obtain the majority (97 – 100 %) of their phosphate in this way (Figure 5.12) 

and thus have less dependence on dissolved inorganic phosphate. The percentage of 

bacterivory by mixotrophs is slightly higher (78 – 95 %) yet consistent with previous 

oligotrophic regions in situ observations, such as 37 - 70 % for the north Atlantic gyre, 

(Zubkov and Tarran 2008), 60 – 77 % across the subtropical and tropical Atlantic ocean 

(Hartmann et al. 2012), 35 – 65 % in the Mediterranean Sea (Unrein et al. 2007) and 40 % 

off the southwest coast of New Zealand (Hall et al. 1993). This model therefore supports 

previous observations of the importance of mixotrophy in oligotrophic regions. The model 

also shows that bacterivory is the main nutrient strategy even when nutrients are not 

strongly depleted (see Figures 5.12 and 5.13b), as bacterivory by mixotrophs is highest in 
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the model when phosphate concentration is at its highest.  This suggests that mixotrophy 

is not a survival mechanism as previously suggested (Nygaard and Tobiesen 1993), but a 

competitive mechanism within the system. This model therefore shows that mixotrophs 

are not strictly the Type IIa mixotrophs, that is ‘phagotrophic when nutrients are limiting’ 

(Stoecker 1998), as they were thought to be. Perhaps another Type is required in Figure 

1.2; Type IId, ‘phagotrophic for an ecological advantage’? 

 Modelled Primary Production 5.4.1.6.

Primary production in the model peaks in the autumn, following the cycle of mixotrophs, 

which are major contributors to it (see Figures 5.4 and 5.13). To enable comparisons to 

the literature to be made the Redfield Ratio (C:P, 106:1) is used (Redfield 1934). The 

Redfield ratio will also be used for carbon export comparison. Primary production in the 

model, excluding any bacterivory from mixotrophs, ranges between 5.79 and 192.78 mol C 

m-2 y-1 over the year. Including varying amounts of phosphate obtained from bacterivory, 

the values range from 6.77 (PP20) to 369.12 (PP100) mol C m-2 y-1 (see Figure 5.14). These 

estimates are much higher than the Oschlies and Garcon (1998) coupled ecosystem-

circulation model (without mixotrophy) result of 0.26 to 0.62 mol C m-2 y-1 for the north 

Atlantic subtropical gyre. However, the lower end of the model output range is closer to in 

situ measurements of 8.02 mol C m-2 y-1 for the north Atlantic gyre (Marañón et al. 2003) 

and from the euphotic zone near Bermuda of 3.7 mol C m-2 y-1 (Jenkins 1988).  

 Modelled Export 5.4.1.7.

The loss rate of grazers is used as the proxy  for export (ΦG), with caveats already 

described. The mean modelled export is 32.89 mmol P m-2 yr-1 (see Figure 5.15) This is 

higher than the modelled particulate phosphorus export in the north Atlantic subtropical 

gyre of 5 – 12 mmol P m-2 yr-1 (Torres-Valdés et al. 2009). The discrepancies may be 

explained by the fact that the Torres-Valdés et al. (2009) model is (unlike this model) a 3D 

physical-nutrient model based on the model of Roussenov et al. (2006), and does not 

explicitly model the microbial community.  

Carbon export can be estimated as previously for primary production by using the 

Redfield ratio. The model’s carbon export equates to a mean of 3.5 mol C m-2 y-1. This is 

slightly higher than observational estimates. For example in April/May time, Thomalla et 

al. (2006) calculated zero carbon export in the oligotrophic north Atlantic from the water 
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column 234Th/238U disequilibria, but they observed export of the same order of magnitude 

as that presented here in the oligotrophic south Atlantic (2.19 mol C m-2 y-1). This 

mixotroph model also estimated the lowest export in April-May time (Figure 5.15). 

Therefore it is feasible that export may have been below their detection level. Richardson 

and Jackson (2007), using observations and network analysis, reported that 1.83 to 4.38 

mol C m-2 y-1 is exported directly by picoplankton throughout the year in the tropical and 

subtropical Pacific. It should, however, be noted that Redfield ratios within microbial 

groups have been well documented to be variable. For  example C:P ratios within 

picoeukaryotes can range between ≈ 70 and ≈ 200 (Arrigo 2005). Furthermore this range 

in stoichiometry is much wider in nutrient limited cells (Geider and La Roche 2002). 

Unfortunately, DNA analysis was not undertaken on this study’s samples, so an estimate 

according to species composition cannot be made for export or primary production.  

Despite the nutrient cycling through the grazer variable in the presented model being 

relatively low in comparison to the other fluxes (e.g. ϕG, export mean flux 1.8 x 10-3 

compared to γBM mean flux of 1.2 x 10-2 µmol P l-1 d-1, see Figure 5.7), the export estimate 

remains similar and in some cases higher than other estimates from models and 

observations.  

5.4.2. Comparison to Previous Models: 

Incorporating Mixotrophy 

For the model presented here, mixotrophy is a significant link in the phosphorus cycle, as 

the majority of bacterivory within the system is being performed by mixotrophs (see 

Figure 5.7). This extra trophic link (in comparison to a standard Nutrient-Phytoplankton-

Zooplankton model) reduces the amount of phosphate being passed on to higher trophic 

levels (the average grazing of mixotrophs, θMG, is 2.5 x 10-4 µmol P l-1 d-1), as a large 

amount of the phosphate is recycled back around the system through the bacterivory 

performed by mixotrophs and ensuing remineralisation (average εM is 1.7 x 10-2 µmol P l-1 

d-1, Figures 5.7 and 5.8).  

The theoretical Baretta-Bekker et al. (1998) model also presented mixotrophy as a 

significant link in the carbon and phosphorus budgets with mixotrophs responsible for 

more than 40 % of the grazing of bacteria in low nutrient waters. They concluded that 

explicitly including mixotrophs within a model, rather than incorporating them within the 

heterotrophic or autotrophic functional groups, actually increased total primary 
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production levels in waters of oligotrophic status, as primary production was supported 

by nutrients obtained through bacterivory. Hammer and Pitchford (2005) also 

theoretically modelled mixotrophs, in that case as a fraction of the predation in the system 

being involved in primary production. Their simple model also found that a system 

becomes more productive in the presence of mixotrophy.   

In this Chapter we cannot explicitly state that mixotrophy is increasing primary 

production, but if even a small percentage of the phosphate obtained through bacterivory 

was being utilised for primary production, it would substantially increase the inferred 

primary production (see Figure 5.14). The Stickney et al. (2000) theoretical model (a 5-

box model with a dissolved inorganic nitrogen variable, obligate phytoplankton and 

zooplankton, detrital pool and mixotrophs), however, suggests that the inclusion of 

mixotrophs decreases overall net primary production, measured by dissolved inorganic 

nitrogen uptake. Stickney et al. (2000) does state that the total photosynthetic rate may be 

maintained through direct recycling of organic nitrogen (i.e. predation on phytoplankton 

and mixotrophs themselves). Yet, the Stickney et al. (2000) model does not include 

bacteria as a food source, with mixotrophs instead predating on phytoplankton. 

Mixotrophic bacterivores are recognised to dominate the oligotrophic Atlantic region 

(Zubkov and Tarran 2008, Hartmann et al. 2012).  

A number of previous theoretical mixotroph models have also suggested that mixotrophs 

act as a stabilising link in the ocean planktonic system (Thingstad et al. 1996, Stickney et 

al. 2000, Jost et al. 2004), as their grazing on autotrophs reduces the competition for 

nutrients. This is also seen in the present model, in the relative stability of bacteria 

throughout the year and the coexistence of all the microbial variables. As the bacterial 

community is under continued grazing pressure, it does not appear to be able to take 

advantage of the increase in phosphate concentration (see Figures 5.4c and 5.7e-f). This 

supports the steady state assumption made in Chapter 4 for bacteria, as for bacteria 

microbial growth approximately equals death (Fuhrman and Hagström 2008). Thingstad 

et al. (1996), however, used a model to argue that mixotrophic persistence (and thus 

stability) occurs only when mixotrophs have a high affinity for nutrient uptake (i.e. 

phosphate) combined with an intermediate affinity for bacteria. In this Chapters model 

almost the opposite is demonstrated, with coexistence and stability in bacteria when 

mixotrophs have a high affinity for bacteria and a low affinity for phosphate uptake (γ, 

grazing on bacteria by mixotrophs, is approximately four times larger than π, P uptake by 

mixotrophs, see Table 5.5). The difference in results may arise from Thingstad et al. 
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(1996) having an additional and obligate autotroph (phytoplankton) in their system, 

whereas here we assume all the picoeukaryotes have the ability to be mixotrophic 

(supported by the work of Zubkov and Tarran 2008).  

5.5. Summary and Implications 

A simple zero-dimensional model including mixotrophy has been used to simulate a yearly 

cycle in the ecosystem of the north Atlantic oligotrophic gyre in 2005. The model gives a 

good agreement with the very limited observational data. It has been shown that recycling 

between mixotrophs, bacteria and the phosphate variable is a dominant process within 

the model (see Figures 5.7 and 5.8). This is an important process as fast nutrient turnover 

is crucial to sustaining the oligotrophic ecosystem. In addition, this optimised model 

supports previous evidence (Zubkov and Tarran 2008, Hartmann et al. 2012) that the 

majority of phosphate obtained by mixotrophs is through bacterivory. The model further 

indicates that bacterivory by mixotrophs need not be a survival mechanism (Nygaard and 

Tobiesen 1993), as they undertake it in significant quantities throughout the year, even 

when phosphate concentrations are at their highest (> 95 %, see Figure 5.12). Primary 

production estimates, including bacterivory by mixotrophs is slightly higher than 

suggested by previous models and observations (see Figure 5.13 and 5.14), an indication 

that it may be important to include mixotrophy in future ecosystem models of the region. 

Modelled export is similar, although the upper range is slightly higher than previous 

observed and modelled estimates for this region (see Figure 5.7 and Figure 5.15).  

From the results presented in this chapter and considering the  

stated hypothesis to be tested  the  following can be concluded: 

 A simple zero-dimensional dynamic mixotroph model was created that maintained 

variable coexistence and was consistent with in situ abundance observations from 

the north Atlantic oligotrophic gyre.
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6. Ultraplankton	Spatial	
Variability	–	Flow	Cytometry	and	
Remotely	Sensed	Ocean	Colour 

6.1. Introduction  

Spatial variability in phytoplankton is not a recently discovered phenomenon. Since the 

time of Captain James Cook’s HMS Resolution voyage (in 1773) localised patches of 

coloured water have been observed and attributed to microscopic organisms (Bainbridge 

1957). More recently satellite images of ocean colour and ship-borne surveys have 

affirmed the ‘patchiness’ of phytoplankton distributions (see for example review by 

Martin, 2003). However remotely sensed images only infer indirect estimates of 

chlorophyll concentrations, that in particular may not reflect ultraplankton (plankton < 5 

µm) abundances (Zubkov and Quartly 2003). Strong spatial variability of ultraplankton 

has, however, been observed through in situ flow cytometry measurements in shelf 

(Martin et al. 2005, Martin et al. 2008) and temperate seas  (Martin et al. 2010), but little is 

currently known about the degree and manner of ultraplankton spatial variability in 

tropical and subtropical regions that cover > 60 % of the ocean surface (Longhurst et al. 

1995). There is some evidence that these small important organisms display as much 

spatial variability as other larger planktonic organisms (Zubkov et al. 2002, Martin et al. 

2005). The subtropics have been previously considered homogenous and stable habitats, 

but increasingly research has shown that these environments actually display 

considerable variability on a variety of time and space scales (e.g. Karl 1999, Marañón et 

al. 2003, McClain et al. 2004). Yet looking at the remotely sensed chlorophyll a (chl a) 

concentration in Figure 6.1 this spatial heterogeneity seems hard to discern. 
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Figure 6.1. An ocean colour image of chlorophyll concentration (colour key in mg m-

3) from the SeaWiFS satellite. Temporal resolution is a 32-day composite (30th April 
– 31st May 2004) and spatial resolution is 9 km, Source, oceancolor.gsfc.nasa.gov. 

The issue of ultraplankton variability is not only key to ocean primary productivity and 

global cycling estimates, but also has relevance in relation to previous assumptions made 

in this thesis. One of the model assumptions was of steady state and stability of the 

Atlantic Oligotrophic gyres (Chapter 4). This assumption was partly based on Chapter 2’s 

multivariate analysis of ultraplankton abundances, the result in Chapter 3 of no significant 

difference in DOP between seasons, and supported by remotely sensed ocean colour 

images (such as that in Figure 6.1), which suggest homogeneity (in terms of chl a 

concentration) throughout the gyres (see Section 4.1.2 for justification of steady state). 

This Chapter will use a high resolution in situ sampling dataset to examine ultraplankton 

variability in the tropical and subtropical Atlantic Ocean and also assess the suitability of 

using satellite data for estimating the concentration and variability of ultraplankton 

groups in the surface waters. 

Spatial variability at the mesoscale (1 to 100 km) is difficult to measure in situ, as ship and 

time-series sites are often spatially and/or temporally limited and advanced sampling and 
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measurement techniques (such as flow cytometry) are time consuming, yet required to 

observe the smallest scale organisms (ultraplankton, < 5 µm) in the oceans. Until recently 

the degree of variability in abundance around a station or along a transect was rarely 

measured, as the assumption was made that local heterogeneity was not as great as daily 

or seasonal variability. Studies in the Celtic sea (Martin et al. 2005, Martin et al. 2008) and 

at the temperate Porcupine Abyssal Plain (PAP) site (Martin et al. 2010) have disputed 

this, showing strong spatial variability. They also indicate that different ultraplankton 

groups may be spatially distibuted in significantly different ways from one another. For 

example, strong interactions (e.g. between a predator and a prey) may not manifest itself 

as a strong spatial correlation. Thus spatial variability needs to be regarded as a potential 

source of error when analysing time series and transect data, especially where averaging 

or extrapolation for estimates have been employed. Also estimates (such as for export or 

primary production) derived from models of the region that assume homogenity (such as 

those presented in Chapters 4 and 5) may not be appropriate, if horizontal variability is 

present. In previous Chapters of this thesis the tropical and subtropical Atlantic ocean has 

been considered as one region (cluster group a determined in Chapter 2, and used to 

analyse dissolved organic uptake in Chapter 3 and build models in Chapters 4 and 5). The 

definition of this cluster did not probe spatial variability within it. However, previous 

evidence for spatial variability in shelf and temperate seas suggests that to have faith that 

uniformity can be assumed when building a model this assumption should be tested. 

Therefore results presented in this chapter attempt to examine this conjecture.  

The population densities of phytoplankton can be remotely measured as ocean colour by 

satellites. ‘Chlorophyll a concentration’ is estimated as the sum of chl a and pheophytin a, 

which is used as a proxy for phytoplankton (algae and cyanobacteria) biomass (Martin 

2004). Picoeukaryotes (PicoEuk) and cyanobacteria (Pro and Syn) contribute equally to 

ultraphytoplankton biomass (Zubkov et al. 2000). Therefore it would be reasonable to 

expect that these organisms (algae and cyanobacteria) would both affect the surface 

water’s light attenuation and reflection (Morel et al. 1993) and therefore that their 

presence and variability can be observed by ocean colour satellites (see Figure 6.1.). 

However, despite ultraphytoplankton dominance and influence in tropical and subtropical 

oceanic waters (Li and Harrison 2001, Marañón et al. 2001) there has only been one study 

to the author’s knowledge that has compared satellite measurements with in situ 

ultraplankton abundance data. This research, in the Mozambique Channel, compared flow 

cytometry data with SeaWiFS daily and weekly chl a composites. Zubkov and Quartly 

(2003) reported a high correlation of Syn chl a concentration and satellite data, but a poor 
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correlation to Syn abundance and biomass and found no relationship at all between Pro 

abundance or chl a concentration and satellite data. One conclusion drawn is that SeaWiFS 

may not be detecting chl a from Pro, which is believed to be the most abundant 

photosynthetic organism on Earth (Partensky et al. 1999b) and a significant contributor to 

primary production (Goericke and Welschmeyer 1993, Li 1994, Liu et al. 1997). This 

potentially means a significant underestimate in oceanic primary production from 

calculations based on remotely sensed chl a (e.g. Behrenfeld et al. 2005). More specifically 

Pro is the numerically dominant phototroph in the subtropics  

This Chapter addresses the following hypothesis:  

 The ultraplankton community in the surface waters of the subtropical and tropical 

Atlantic are not as spatially variable as in shelf and temperate seas and so 

homogeneity can be assumed when building a model. 

 Different ultraplankton groups in the surface waters of the subtropical and tropical 

Atlantic, do not vary at significantly different spatial scales 

 Remotely sensed satellite chl a concentration can be used to estimate the 

abundances, biomass or chl a of phototrophic ultraplankton (Pro, Syn and PicoEuk) 

in the surface waters of the tropical and subtropical Atlantic (cluster region a) 

6.2. Method 

6.2.1. Data collection 

Ultraplankton samples were collected, as stated in Chapter 2, by M Zubkov’s team along a 

northbound transect from the Falkland Islands to the UK (~ 40°S to 49°N) on AMT14 (part 

of the Atlantic Meridional Transect Programme) from 28th April to 1st June 2004 on-board 

RRS James Clark Ross, in boreal spring and austral autumn. The following ultraplankton 

groups were sorted and enumerated (see Zubkov et al. 2007 for sampling and microbial 

enumeration protocol) and will be discussed in this Chapter: Prochlorococcus (Pro) spp., 

Synechococcus spp. (Syn), picoeukaryotes (PicoEuk) and heterotrophic bacteria that was 

separately characterised as low DNA content bacteria (LNA), high-nucleic acid bacteria 

with a low 90o light scatter (HNAls) or high-nucleic acid bacteria (HNAhs) with a high 90o 



 

115 

light scatter. Beads of 0.5µm diameter were used as an internal standard of red 

fluorescence, which was consequently used as a substitute for mean cellular chlorophyll 

(chl a) content (Li 1995). Biomass was calculated using the following approximations 

multiplied by the sample abundances of each microbial group: 29 fg C per cell for Pro; 100 

fg C per cell for Syn; 11.5 fg C per cell for heterotrophic bacteria (LNA, HNAhs, HNAls and 

ttl) and 1.5 pg C per cell for PicoEuk (Zubkov et al. 2000). Previous studies conducted in 

the oligotrophic Atlantic gyres have found consistent estimates of biomass through the 

size fractionation method (Zubkov et al. 1998, Zubkov et al. 2000). In addition, to confirm 

constituent weights were applicable for this study, variance of size scatter (an indirect size 

measurement) was calculated and found to be very low for all groups (variance < 0.005), 

except for PicoEuk were it was moderately low (variance < 0.5). As biomass was a simple 

conversion from abundance for Syn, Pro and PicoEuk (i.e. multiplied by a constant weight 

per cell) it will only be discussed in terms of total measured ultraphytoplankton biomass 

(summed Syn, Pro and PicoEuk).  A thermosalinograph (Sea-Bird, SBE45) was used 

underway to measure sea temperature and salinity at a depth of 6 metres (calibrated 

against CTD data).  

To investigate the accuracy of estimating ultraphytoplankton abundances from ocean 

colour, two satellites are used in this study. The SeaWiFS (Sea-viewing Wide Field-of-view 

Sensor) launched in 1997 gathered data for thirteen years before failing. MODIS (or 

Moderate Resolution Imaging Spectroradiometer) was launched aboard the Aqua (EOS 

PM) satellite in 2002 (Esaias et al. 1998) and is still running today. The sea surface was 

imaged approximately once daily by SeaWiFS at a 1.1 km resolution in 8 frequency bands 

spanning 412 to 865 nm (Esaias et al. 1998, Robinson 2004). MODIS images the entire 

earth every 1 to 2 days and utilises 9 frequency bands from 411 nm to 866 nm at a 1 km 

resolution (Esaias et al. 1998). In this study, daily and weekly (8 days) and monthly (32 

days) composites of chl a concentrations computed by the NASA Goddard Space Flight 

Centre at resolutions of 4 km (MODIS) and 9 km (SeaWiFS and MODIS) are used, see 

review in Robinson (2004) for further details. Data were downloaded for the time period 

of the cruise (26th April to 2nd June 2004) from http:/oceancolor.gsfc.nasa.gov/.  

6.2.2. Data analysis 

The analysis performed in this Chapter focuses solely  on those samples defined in Chapter 

2 as in cluster group a (> 90 % similarity, n = 566) which encompassed the north and 
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south Atlantic gyres and the equatorial region (see Chapter 2, Figure 2.3).  As in Chapter 2, 

all abundance, chl a content and biomass per ml-1 data were normalised, then fourth root 

transformed to improve gaussianity. Temperature, salinity and satellite chl a were square 

root transformed prior to analysis (see Section 2.2.2 for explanation). The coefficient of 

variation was calculated without transforming the data, as this was used to assess if 

variability was present within cluster group a and transforming it would dampen this 

variability. Running coefficient of variations were calculated (over 25, 50 and 100 

concurrent data points) using MATLAB.  

Spearman’s rank correlation coefficients were calculated in GraphPad Prism 5 for each 

ultraplankton group. The following interpretation of strength of correlation was used – < 

0.2 very weak to negligible; 0.2 – 0.4 weak, low correlation; 0.4 - 0.7 moderate correlation; 

0.7 – 0.9; strong correlation; > 0.9 very strong correlation (Fowler et al. 1998). This scale is 

also used in the interpretation of the correlation of satellite data and ultraphytoplankton 

abundances. 

 Autocorrelation 6.2.2.1.

Sample autocorrelation measures the correlation between the same series of observations 

(e.g. ultraplankton groups) offset by a given distance (Chatfield 2004). This was used to 

assess length scales of variability for each of the groups and to examine if the 

ultraplankton groups had similar dominant length scales. Autocorrelation also gives an 

indication of the appropriateness of sample frequency on the AMT transect (average 

spatial resolution 18 km), by comparing it to full resolution satellite data (4 km and 9 km). 

The autocorrelation coefficients were calculated for all sample variables for group a: the 

six ultraplankton groups, temperature, salinity and satellite chl a concentration (SeaWiFS 

and MODIS 4 and 9 km for 1, 8 and 32 day composites). It was necessary to interpolate the 

transect data to the regular intervals spaced by the mean separation between samples 

prior to computation, which may have had a smoothing effect. The sample autocorrelation 

was completed in MATLAB with 95 % confidence following the formula of Box et al. 

(1994).  
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 Semivariogram analysis 6.2.2.2.

Semivariograms are a measure of the amount of variability expected between two samples 

a given distance apart. This provides information on how a parameter (e.g. an 

ultraplankton group) varies spatially, such as fluctuating more at shorter than at larger 

length scales (Martin et al. 2008). To allow a clear comparison between semivariograms 

data (the ultraplankton groups, temperature, salinity and satellite chl a concentrations) 

are only used from positions where all variables were measured. Analysis was also carried 

out using matched satellite observations. Sample number, n were as follows for: 1 day, n = 

24; 8 day composite, n = 224 and 32 day composites, n = 459.  

Semivariograms were calculated for each ultraplankton group, temperature, salinity and 1, 

8 and 32 day satellite chl a composites (MODIS 4 km and 9 km and SeaWiFS 9 km 

resolution) in Fortran 90. Semivariograms have been utilised rather than power spectra 

because of the unequal spacing of samples along the AMT14 transect (ranged ~ 10 – 20 

km). To calculate the semivariograms a modified form of that detailed in Cressie (1993) 

was used (see Equation 6.1). This form reduces the effect of outliers.  

Equation 6.1  ࢽ(࢘) = 	 [∑ ห(࢏࢞)ࢆ− ൫࢞࢐൯หࢆ
૚
૛/࢐࢏(࢘)ࡺ ]૝/[૙.૝૞ૠ+ ૙.૝ૢ૝/ࡺ(࢘)] 

The semivariogram, γ(r), is the cumulative sum of variability, at scales less than or equal to  

r. The field of interest is Z and the sum is over all pairs of points (xi, xj) that are r distance 

apart. N(r) is the number of paired points (Cressie 1993). As it is a cumulative sum, the 

semivariogram should increase or remain static with increasing length scales.  

A linear regression is then carried out on the log of the distance (r) and the semivariable 

(γ).  Assuming the relationship γ(r) = arb, b is the slope of the regression line of In(r) 

against In(γ), whilst a is the intercept. Several maximum distance (100 to 200km) and 

resolution combinations (10 to 20 km) were tried and 40 km ≤ r ≤ 100 km, with 20 km 

resolution was found to be the best, giving highest r2 for the regressions. The steeper the 

slope, the larger b, indicating a greater contribution to the variability from larger spatial 

scale. If b is equal to zero, there is no variability at spatial scales larger than that where the 

semivariogram becomes horizontal. Prior to semivariogram analysis, data were also de-

trended by removing a multiple linear regression for time, latitude and longitude of the 

form y = a1 + a2 ∗ time + a3 ∗ latitude + a4 ∗ longitude. This removed the effect of any large-

scale structures.  
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A bootstrap method was used for robust estimations of the semivariogram. A number of 

data points equal to 90 % of the total dataset were drawn with repetition allowed. The 

calculation was repeated with 10,000 such ‘bootstrapped’ datasets.  Semivariograms were 

not very sensitive to number of repetition of bootstraps or the number of points used 

(analysis was also conducted on 95 % and 90 % of the dataset bootstrapped 1,000 times 

and 95 %, 10,000 times, data not shown). Pairs of points separated by more than 1 day in 

time were excluded, to minimise the effect of water mass movement over intervening 

time. Semivariogram slopes of all data sets were calculated concurrently for each pair of 

variables and a t-test in MATLAB was used to calculate significance of the difference 

between the slopes.  

 Correlation coefficients  6.2.2.3.

Spearman’s rank correlation were performed for comparison of satellite chl a and flow 

cytometry data sets at 95 % confidence, using MATLAB and GraphPad Prism 5. Satellite 

measurements were compared only with matched daytime measurements of 

ultraplankton groups, to minimise the effect of diel variability. Night time data were 

removed according to the sunrise and sunset times detailed in the cruise report (Holligan 

2004). Ocean colour was assumed not to change during the daylight period (Zubkov and 

Quartly 2003).   

Daily, 8 day and 32-day composites of SeaWiFS and MODIS 4k and 9km resolution were 

compared to Syn, Pro, PicoEuk, phototrophic bacteria (Syn and Pro) and 

ultraphytoplankton (sum of Syn, Pro and PicoEuk) abundances, cellular chlorophyll (chl a) 

content (measured by flow cytometry FL3 measurement multiplied by abundance) and 

biomass (abundance multiplied by ultraplankton group weight, see Section 6.2.1).  

6.3. Results 

6.3.1. Spatial Variability 

The region’s bacterioplankton (LNA, HNAls and HNAhs) are observed in Figure 6.2 to be 

relatively stable in terms of abundance, in comparison to the phototrophic ultraplankton 

(ultraphytoplankton, - Syn, Pro and PicoEuk).  The coefficient of variation across the whole 
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of the region (cluster region a) is highest in Syn, Pro and PicoEuk (1.21, 0.64 and 0.64 

respectively, Table 6.1) and lowest in LNA (0.28, Table 6.1). Temperature and salinity also 

have relatively low coefficients of variation in comparison to ultraplankton (0.13 and 0.02, 

Table 6.1).   

Table 6.1. The coefficient of variation for the entire cluster region a for each 
ultraplankton group, temperature, salinity and satellite chl a concentration (1D, 
daily data; 8D, 8 day composites; 32D, 32-day composites. See associated Figures 6.2 
and 6.3 

  Coefficient of Variation 
 Syn 1.21 
 Pro 0.64 
 Pico 0.64 
 LNA 0.28 
 Hhs 0.31 
 Hls 0.40 
 Temp 0.13 
 Sal 0.02 

32 day 
 

Mod4 0.51 
Mod9 0.51 
Sea 0.89 

8 day 
 

Mod4 0.49 
Mod9 0.48 
Sea 1.05 

1 day  
 

Mod4 0.46 
Mod9 0.48 
Sea 0.57 

MODIS variability is approximately 0.5 for each temporal composite, however SeaWiFS is 

higher in 32-day (0.89) and 8-day (1.05) temporal composites, than in 1 day (0.57), this is 

likely due to the effect of smoothing.  

Figure 6.2 shows the variability throughout the transect of the different variables. With 

salinity depressed at the equator and Syn and PicoEuk increasing slightly. Showing that 

even though they are in the same defined cluster region (Chapter 2), they are still variable 

(this is also shown in the coefficient of variation, Table 6.1).   
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Figure 6.2. Latitudinal plot of (a) phototrophic ultraplankton abundances, (b) 
bacterioplankton abundances, (c) temperature and (d) salinity. 

Figure 6.3 displays satellite data corresponding to the AMT14 transect. MODIS (4 and 

9km) coefficient of variation is high (for 4 km and 9 km respectively – 0.46 and 0.48 for 

daily data; 0.49 and 0.48 for 8 day composites and both 0.51 for the 32-day composite), 

but not as high as for the ultraphytoplankton. SeaWiFS coefficient of variation is higher 

than MODIS and similar to ultraphytoplankton abundances (0.57 for daily data; 1.05 for 8 

day composites and 0.89 for 32 day composites). 
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Figure 6.3. Latitudinal plot of chlorophyll a concentration measured from (a) MODIS 
4 km resolution, (b) MODIS 9 km resolution and (c) SeaWiFS satellites. Different 
colour symbols indicate 1 day, 8 day and 32 day composites. 

A running coefficient of variation was calculated for every 25, 50 and 100 samples (450, 

900 and 1800 km). This highlighted the increased degree of variability in both Syn and 

PicoEuk towards the ends of the region and of the Syn increase around the equator and 

Pro increase at the northern end of the transect region (Figure 6.4a, c and e). The 

coefficient of variation was lowest between latitudes 10○N to 20○N and 12○S to 30○S. 

Heterotrophic bacteria is also plotted to show the lower coefficient of variation, that is 

similar to that of PicoEuk (< 0.5), see Figure 6.4b, d and f. 
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Figure 6.4. Running coefficients of variations calculated for abundances of (a, c and 
e) phototrophic ultraplankton and (b, d and f) bacterioplankton, running over (a, b) 
450 km, (c,d) 900 km and (e, f) 1800 km.  

Spearman correlation coefficients were also calculated for all pairs of variables within the 

cluster region a (see Table 6.2). PicoEuk was moderately significantly correlated with Syn 

(0.57) and moderately to weakly positively correlated with LNA and HNAls bacteria (0.43 

and 0.33 respectively). The correlations of physical properties (temperature and salinity) 

were negative or weak with the ultraplankton groups. Salinity was significantly 

moderately to strongly negatively correlated to Pro and Syn (-0.78 and -0.57).  Other 

strong correlations between the ultraplankton groups were Syn - LNA (0.72), HNAls - LNA 

(0.72) and Pro - HNAhs (0.73). No obvious predator-prey correlations (e.g. PicoEuk versus 

bacteria) were seen.   
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Table 6.2. Spearman rank correlation	coefficient	(ρ)	for ultraplankton group 
abundances from cluster region a.  Those in bold are statistically significant (p < 
0.01).  

 Syn Pro PicoEuk LNA HNAls HNAhs Temp Sal 
Syn         
Pro 0.32        
PicoEuk 0.57 -0.17       
LNA 0.72 0.38 0.43      
HNAls 0.61 0.28 0.33 0.72     
HNAhs 0.40 0.73 0.18 0.53 0.51    
Temp -0.19 0.33 -0.06 0.03 0.08 0.36   
Sal -0.57 -0.78 -0.02 -0.5 -0.35 -0.55 0.11  

 Autocorrelation 6.3.1.1.

Autocorrelation length scales were calculated with the aid of correlogram’s (where 

correlation r is plotted against the lag k).  

 

Figure 6.5. Correlograms of (a) phototrophic ultraplankton abundances, (b) 
bacterioplankton abundances and (c) temperature and salinity. r = 0 is indicated by 
a thick black line. Grey dashed lines are the mean 95 % confidence limits (0.18), 
values outside of these lines are significantly different from zero. 
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Correlations are strong over short distances. The length at when rk ≃ 0, is where the 

samples are no longer correlated (Chatfield 2004), gives a typical length scale of variability 

for the organism or field. For reference the distances spanned by cluster region a is ~ 

8,500km 

 
Figure 6.6. The correlogram for different frequency satellite chlorophyll a 
concentrations  - (a) daily data, (b) 8-day and (c) 32-day composites for SeaWiFS 
and MODIS 4 km and 9 km resolution. All data were interpolated to AMT14 spatial 
resolutions. rk = 0 indicated by thick black line. Grey dashed lines are the mean 95% 
confidence limits, values outside of these lines are said to be significantly different 
from zero.  

The longest ultraplankton autocorrelation length scale (see Figure 6.5 and Table 6.3) was 

PicoEuk (2121 km), longer than all satellite data by ~ 700 km. The shortest was seen in 

Pro (1312 km). This was similar to the satellite autocorrelations. The temperature length 

scale (2841 km) was higher than all of the ultraplankton groups and satellite chl a data 

and salinity (1294 km) had a similar resolution to Pro and the ocean colour data (32 day 

data ranged from 1190 to 1596 km). Different temporal composites of satellite  (MODIS 4 
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km, 9 km and SeaWiFS) chl a concentrations length scales did not significantly differ (see 

Figure 6.6 and Table 6.3).  

Satellite chl a concentration (32 day composites) extracted to be coincident with the 

AMT14 transect samples were used to check if the AMT14 sampling resolution  was 

sufficient to capture the ultraplankton structure. This showed that the sampling resolution 

(~ 18 km) was slightly too low to capture the complete picture, as the full resolution 

autocorrelation rk = 0 was just outside of the AMT resolution confidence bounds  (see 

Figure 6.7 and Table 6.3), this is most likely due to fewer samples (n ≤ 513) for 

interpolation in the lower resolution (AMT) datasets than the full resolution satellite 

datasets (n ≤ 2036). A higher sampling resolution would have been more robust, but it was 

not possible to do this here, therefore it will not be discussed further. 

 
Figure 6.7. The correlogram of chlorophyll satellite concentrations for SeaWiFS and 
MODIS satellites extracted at full resolution (Full, dashed coloured lines - 4 km 
MODIS, 9 km MODIS and SeaWiFS ) and for the same satellites extracted at AMT14 
sampling resolution (AMT, solid coloured lines). rk = 0 indicated by a thick black 
line. Grey solid lines are the mean 95 % confidence bounds for AMT sampling 
resolution and grey dashed lines are the mean 95 % confidence bounds for full 
satellite resolution, values outside of these lines are said to be significantly different 
from zero.  
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Table 6.3. The autocorrelation length scale for each ultraplankton group, 
temperature, salinity and satellite chl a concentration (1D, daily data at AMT14 
sampling resolution; 8D, 8 day composite at AMT14 sampling resolution; 32D AMT, 
32-day composite at AMT14 sampling resolution; 32D Full, 32 day composite at full 
satellite sampling resolution of 4 or 9 km). The 95% confidence intervals (C.I.) are 
also reported, as is the upper and lower distances of the C.I. See associated Figures 
6.5 to 6.7. 

  rk = 0 
(km) 95% C.I. C.I. distance (km) 

    Upper Lower 

 

Syn 1510 ± 0.18 1294 1843 
Pro 1312 ± 0.18 1081 1861 
PicoEuk 2121 ± 0.18 1510 2810 
LNA 1546 ± 0.18 1120 1852 
HNAls 1564 ± 0.18 1043 2103 
HNAhs 1888 ± 0.18 1025 2427 
Temp 2841 ± 0.18 2330 3236 
Sal 1294 ± 0.18 1115 1460 

MODIS 4k 

1D 1445 ± 0.52 740 2095 
8D 1257 ± 0.25 907 1640 
32D AMT 1212 ± 0.18 924 1555 
32D Full 1572 ± 0.1 1277 1830 

MODIS 9k 

1D 1391 ± 0.47 742 2096 
8D 1232 ± 0.24 905 1638 
32D AMT 1190 ± 0.18 922 1560 
32D Full 1587 ± 0.13 1325 1805 

SeaWiFS 

1D 1726 ± 0.53 885 - 
8D 1433 ± 0.23 1109 1755 
32D AMT 1333 ± 0.18 1060 1625 
32D Full 1596 ± 0.13 1380 1805 

The autocorrelations are different for all the ultraplankton variables. Therefore 

unmeasured physical factors (e.g. eddies) are not controlling there variability, otherwise 

the ultraplankton would have corresponding length scales.  

 Semivariogram analysis 6.3.1.2.

The 32 day dataset had the highest sample number and the best mean goodness of fit 

(indicated by high r2 value, see Table 6.4) and lowest mean standard deviation for the 

slope. Thus the 32 day dataset was used for comparison to in situ data. The 1 day datasets 

sample number, however, was too low for acceptable accuracy. Therefore the 1 day 

dataset will not be referred to in terms of semivariograms.   

Here the semivariogram slope b is used to quantify the changes in spatial variability with 

length scale for each of the variables, Figures 6.8 and 6.9. Table 6.4 gives the relevant 
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statistics for the slope, b and an r2 value to indicate the strength of the scaling relationship 

between 40 and 100 km.  

PicoEuk has the shallowest slope of all the ultraplankton groups (0.4) and Pro had the 

steepest (1.4). Syn had a slope of 0.8 and heterotrophic bacteria (LNA, HNAhs, HNAls) have 

slopes between 0.7 and 1.1. The ultraplankton groups (except for PicoEuk) and 

temperature and salinity have a high r2 (> 0.8). The 32 day satellite data have shallow (~ 

0.2 - 0.4) slopes similar to PicoEuk, but have a low r2 of ~ 0.5. The 8 day chl a satellite data 

r2 is higher (0.5 SeaWiFS and 0.8, MODIS 9k) and the slope ranges between 0.5 (SeaWiFS) 

and 1.2 (MODIS 9k).  

Table 6.4. Mean and standard deviation calculated from 10,000 bootstraps for slope 
(b) and r2 for	a	fit	to	line	γ(r)=arb to plot	of	log	γ(r) versus log(r), where r is the 
separation	distance	and	γ(r) is the semivariogram (see Figures 6.8 and 6.9). The 
amount of increase in variablity over 40 – 100 km is labelled as the increase in 
length scale. 

  Slope 
(b) r2 ↑	length 

scale   mean SD mean SD 
 Syn 0.80 0.30 0.83 0.19 2.08 
 Pro 1.42 0.29 0.93 0.08 3.67 
 Pico 0.41 0.24 0.59 0.29 1.46 
 LNA 0.74 0.24 0.83 0.17 1.97 
 Hhs 1.12 0.26 0.89 0.10 2.79 
 Hls 0.84 0.29 0.82 0.18 2.16 
 Temp 1.61 0.43 0.90 0.12 4.37 
 Sal 1.31 0.29 0.87 0.11 3.32 
32 day 
(n = 459) 

Mod4 0.24 0.30 0.50 0.33 1.25 
Mod9 0.20 0.31 0.42 0.32 1.20 
Sea 0.38 0.31 0.46 0.31 1.42 

8 day 
 (n = 224) 

Mod4 0.92 0.43 0.67 0.27 2.32 
Mod9 1.17 0.41 0.77 0.20 2.91 
Sea 0.48 0.40 0.50 0.32 1.56 

1 day  
(n = 24) 

Mod4 0.94 1.19 0.47 0.34 2.37 
Mod9 0.96 1.24 0.48 0.34 2.41 
Sea 0.89 1.44 0.44 0.34 2.25 
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Figure 6.8. Semivariograms for the six ultraplankton groups (abbreviation in the 
text) and salinity (Sal) and temperature (Temp) for the range of 40 km to 100 km. 
The line represents the least-square	fit	with	the	form	γ(r)=arb. See slope b estimates 
in Table 6.3. Note differing y axis. 

In essence, the slope is a measure of how much more variable each group is at separation 

scales of 100 km and smaller, than at 40 km or less. For example, Pro has 3.7 times more 

variability at 100 km, whilst PicoEuk only has an increase in variability of 1.5 from 40 km 

to 100 km (see final column of Table 6.4). The slopes of each variable were compared and 

all were significantly different, including satellite data (t test, p < 0.005). 
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Figure 6.9. Semivariograms for 8 day and 32 day chl  a composites from MODIS 4km 
resolution (blue dots, dashed line) and 9 km resolution (red dots, solid line) and 
SeaWiFS satellites (green dots, solid line). The lines represent the least-square fit 
with	the	form	γ(r)=arb. See slope b estimates in Table 6.3. Note differing y axis for 
SeaWiFS and MODIS. 

6.3.2. Satellite and Ultraplankton Correlation 

SeaWiFS and MODIS (4 and 9 km) chl a daytime direct measurements (1 day) and daytime 

8 and 32 day composite chl a measurements were compared to abundance (cell ml-1), 

biomass (fg C ml-1) and chl a  content (chl a mg m-3) for ultraplankton. To allow a clear 

comparison between satellites, data were only used for days when data from both 

satellites were available. Only MODIS 9 km resolution is presented here, as MODIS 4 km 

and 9 km results were very similar.   
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Figure 6.12. Correlation plots of Chl a concentrations (mg m-3, x-axis) from MODIS 
9km (red dots, black dashed lines) and SeaWiFS (green, solid black lines) satellites 
versus total ultraphotoplankton biomass weighted to abundance (fg C ml-1, x axis). 
Lines indicate linear regression. See Table 6.4 for correlation coefficients, 
significance and r2. 

The Spearman correlation coefficients (ρ) for abundance versus satellite chl a 

concentration were typically positive and significant in all but SeaWiFS daily composites 

(see Table 6.5 and Figure 6.10.). The MODIS and SeaWiFS 32 day composites had slightly 

higher ρ than 8 day composites and both these temporal resolutions gave a weak to 

modest correlation for all the ultraphytoplankton groups. However the highest significant 

correlation overall was found in abundance of PicoEuk and Syn versus MODIS 1-day data 

(ρ = 0.75 and ρ = 0.6, respectively, p < 0.05). Pro abundance had consistently the lowest 

significant correlation to satellite data across all of the temporal ranges (ρ = 0.37 - 0.45). 

Correlation was also high in 1-day MODIS versus PicoEuk chl a content (ρ = 0.62, p < 0.01), 

see Figure 6.11. Spearman correlation with biomass was also calculated. As this was 

essentially a simple clear conversion (multiplying femtograms of C by abundance), the 

result echoes abundance correlations with satellite chl a. Therefore only correlation with 

total ultraphytoplankton biomass is shown here (Figure 6.12) and this gave some of the 

highest correlations, with a strong significant correlation for 8 and 32 day  (1 day was not 

significant) composites, ρ = 0.6-0.7, p < 0.001.  
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Table 6.5. Spearman	correlation	coefficients	(ρ)	and	significance	(p), see associated 
Figures 6.10, 6.11 and 6.12. Blank indicates not significant (p > 0.05), Significance 
indicated by stars - * p < 0.05, ** p < 0.005 and *** p < 0.001. UPP, is 
ultraphytoplankton (summed Syn, Pro and PicoEuk) and PB is phototrophic 
bacteroa (summed Syn and Pro). 

 
MODIS 9k SeaWiFS 
Daily 8 day 32 day Daily 8 day 32 day 

n = 13 129 200 13 129 200 

 ρ p Ρ p ρ p ρ p ρ p ρ p 
Abundance 

Syn 0.60 * 0.47 *** 0.47 *** -0.05  0.44 *** 0.53 *** 
Pro 0.16  0.45 *** 0.45 *** -0.31  0.37 *** 0.43 *** 
PicoEuk 0.75 ** 0.50 *** 0.43 ***   0.17  0.50 *** 0.52 *** 
PB 0.13  0.46 *** 0.47 *** -0.37  0.38 *** 0.45 *** 
UPP 0.14  0.47 *** 0.47 *** -0.37  0.39 *** 0.46 *** 

Chl a content 
Syn 0.44  0.52 *** 0.65 ***   0.21  0.48 *** 0.62 *** 
Pro 0.14  0.51 *** 0.52 *** -0.22  0.44 *** 0.52 *** 
PicoEuk 0.62 * 0.35 *** 0.36 ***   0.09  0.34 *** 0.37 *** 
PB 0.11  0.36 *** 0.45 ***   0.00  0.28 *** 0.39 *** 
UPP 0.10  0.37 *** 0.42 *** -0.22  0.30 *** 0.36 *** 

Biomass 
UPP 0.43  0.68 *** 0.71 *** -0.22  0.60 *** 0.71 *** 

Here it should also be noted for Pro and ultraphytoplankton that in Figures 6.10, 6.11 and 

6.12 a split in the data can be seen. The cluster closer to the y-axis (lower abundance, chl a 

content or biomass) corresponds to samples located approximately > 25°N and those to 

the right are samples from approximately < 24°N. This is the same split that can be seen in 

cluster region a (Chapter 2, Section 2.3.1) when similarity is increased to 91%. This will be 

discussed further in the following Section.   

6.4. Discussion 

6.4.1. Ultraplankton Spatial Variability 

Are ultraplankton communities in the surface waters of the subtropical and tropical 

Atlantic as spatially variable as in the shelf and temperate seas? The ultraplankton 

variability over the region as a whole was highest in phototrophic ultraplankton 

abundances (Syn, Pro and PicoEuk, coefficient of variation 1.21, 0.64 and 0.64 

respectively) and lowest in LNA (0.28). The variability within the region is slightly higher 
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here than for measurements of ultraphytoplankton abundances made at the PAP site 

(0.51-0.65) or in the Celtic Sea (0.38-0.78) (Martin, unpublished data). However, the 

heterotrophic bacteria coefficient of variation is a little smaller than at the PAP site (0.4), 

and substantially higher than the Celtic Sea (0.6) (Martin, unpublished data). Therefore 

variability could be said to be higher for phototrophic ultraplankton in the subtropical and 

tropical Atlantic than in the temperate Atlantic and shelf Celtic Sea 

To put this further into context with studies from shelf and temperate seas, the n-fold 

range over the region can be considered (by taking the maximum abundance and dividing 

it by the minimum abundance for each ultraplankton group). In the Celtic Sea region 

(Martin et al. 2005), the Syn population fluctuated by more than 60-fold (spatial resolution 

of study 1.5 km) and in the Mozambique channel (resolution ~ 19 km) the maximum 

fluctuation in Syn was 13-fold (Zubkov and Quartly 2003). This study shows a  greater 

fluctuation when looking at the entire subtropical and tropical gyre region. Syn fluctuated 

by 95-fold and Pro even more (105-fold) and PicoEuk by 29-fold despite being in a 

coherent grouping (see Chapter 2). Conversely heterotrophic bacteria only varied by 4-

fold over the entire region, around the same amount as the 3-fold fluctuation measured in 

the Celtic Sea (Martin et al. 2005). Thus, there is higher variability in phototrophic 

ultraplankton in the Atlantic subtropical and tropical ocean than in shelf and temperate 

seas. 

This comparison of variability nevertheless could be argued to be irrelevant as it took 

place over a ~ 10,000 km transect. This can be disputed however for two reasons. Firstly, 

the area has previously been defined as having 90% ultraplankton similarity (see Chapter 

2 for details) and secondly, even adjacent samples were found to vary. In other words, 

variability is inherent even between adjacent samples and fluctuations are present 

throughout the transect. Neighbouring samples vary by as much as 135,000 cell ml-1 for 

Pro (a 150 % increase from the mean), 10,000 cell ml-1 for Syn (240 %) and 5,000 cell ml-1 

for PicoEuk (a 600 % increase). These point increases are supported by sustained spikes 

in the running coefficient of variation over these locations (see Figure 6.4), indicating that 

an increase in abundance occurred over a number of samples, giving confidence that these 

spikes are genuine. It is impossible however to tell from this study if the full variability has 

been captured, as it is a linear transect (like the Mozambique Channel study by Zubkov 

and Quartly, 2003) and it is not possible to determine if the variability seen along the 

transect would have been witnessed at the smallest scales if a more detailed local survey 

had taken place (such as that in the Celtic Sea study sampling every ~ 1.5 km, by Martin et 
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al. 2008). These results nevertheless demonstrate that spatial ultraplankton variability is a 

persistent feature and, although more focused in the equatorial region, does extend well 

into the subtropical gyres. These findings indicates that the initial assumption of spatial 

uniformity in the subtropical and tropical gyres in the modelling Chapters 4 and 5 may 

have been inappropriate.   

Correlation of ultraplankton groups were used to examine the source of this variability 

within this statistically similar cluster region. A correlation between predator and prey 

(i.e. mixotrophic PicoEuk and bacteria) might be expected. A strong significant correlation 

(0.57) is seen between PicoEuk and Syn, with the remaining correlations of PicoEuk to 

bacterial groups moderate to weak (except for Pro where the relationship is weakly 

negative, see Table 6.2). Correlations of this nature have been observed previously in the 

temperate regions, between PicoEuk and Syn (0.8) (Martin et al. 2010). Temperature and 

salinity correlations have also be tested, to see if variability is associated with large scale 

physical gradients . No significant strong correlations were found between temperature 

and any of the ultraplankton groups (see Table 6.2). However Pro and salinity were 

strongly negatively correlated (-0.78). This is thought to be due to the dip in the salinity 

from the south equatorial current  and the increase in Pro towards the equator. However, 

the reason for such a relationship is not clear. Correlations between ultraplankton groups 

and physical fields, go some way to explaining the variability within a statistically similar 

region. However, physical processes on the whole clearly do not dictate their variability 

(Table 6.3). This supports findings in Chapter 2, which argued that physical features 

should not be used to define distinct ultraplankton provinces. 

The first law of geography, or Tobler’s Law, is that “Everything is related to everything 

else, but near things are more related than distance things” (Tobler 1970). 

Autocorrelation, bears this out (see Figure 6.5 and Table 6.3), although the ultraplankton 

groups have different length scales. It was expected that all ultraplankton groups would 

autocorrelate over a similar distance as they are all within cluster region a. However, 

PicoEuk distance (2121 km) was longer than all other ultraplankton groups (1312 - 1888 

km). This may be due to the lower abundance causing a higher sampling error, but as yet 

no robust conclusions can be draw from this. Temperature and salinity autocorrelation 

supported the correlation coefficient results as temperature autocorrelation length bore 

little resemblance to those of ultraplankton abundances (2841 km), but salinity was 

similar to the ultraplankton groups (1219 km). In terms of satellite, data 8-day and 32-day 

temporal resolution had the most comparable (1232 - 1433 km and 1190 – 1333 km 
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respectively) large scale structure to phototrophic ultraplankton abundances except for 

PicoEuk (2121 km). Therefore autocorrelation showed that large scale ultraplankton 

structure, salinity and remotely sensed satellite chl a were relatively comparable (except 

for PicoEuk, although even this, at the lower end of its autocorrelation confidence interval 

was similar to the other ultraplankton groups) and all had a dissimilarity with 

temperature.  

Semivariogram analysis was conducted to see how the spatial distribution of variability 

contrasts between the various ultraplankton groups (Table 6.4, Figure 6.8). In the range 

40 - 100 km, all variables (except PicoEuk) show a strong relationship of γ = arb (see 

Section 6.3.1.2) indicated by the high r2 value. Out of all the ultraplankton groups, PicoEuk 

had the shallowest slope (~ 0.4) and Pro the largest (~ 1.4). Amongst the over variables, 

physical fields exhibited some of largest slopes (1.3 – 1.6, similar to Pro) and the 32-day 

satellite composites the smallest (similar to PicoEuk, 0.2 - 0.4). To put these differences in 

slopes into perspective, a few examples will be given. With a slope of b = 0.41, the PicoEuk 

distribution has 1.5 times more variability at separation scales of 100 km or smaller than 

at 40 km or smaller. In contrast Pro has 3.7 times more variability at 100 km and smaller, 

than at 40 km and smaller. To appreciate this difference, if Pro and PicoEuk had the same 

degree of variability at a separation distance of 40 km, then Pro distribution would have 

almost two and a half times more variability than PicoEuk at scales from 40 to 100 km. 

These increases in variability with distance are much smaller than those reported by 

Martin et al. (2008) in the Celtic Sea, for example that study reported PicoEuk as having 

2.3 times more variability at 15 km than at 3 km and Syn (Pro was not measured) had 15 

times more variability at 15 km than at 3 km, making Syn over five times more variable 

than PicoEuk. In contrast this study found Syn only 1.4 times more variable than PicoEuk 

although over a larger distance (40 to 100 km). All ultraplankton groups in this study had 

smaller mean slopes than the Celtic Sea study (Martin et al. 2008), indicating that 

variability was less at the longer length scales measured here. For example, the mean 

slope of Syn in this study was 0.80 (see Table 6.4), less than the slope for Syn found within 

the Celtic Sea of 1.68 (Martin et al. 2008). This implies that variability at scales 40 – 100 

km (this study) contributes less to the total variability, than at smaller scales of 3 – 15 km 

(Celtic Sea study). However, this is only an indication, as these studies cannot be directly 

compared due to the very different physical environments.   

The use of semivariograms complements the preceding analysis of spatial variability. 

Ultraplankton abundance varies considerably within the tropical and subtropical gyre 
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(shown by the coefficient of variation). Although this variability autocorrelate over similar 

scales, the distribution of spatial variability over 40 to 100 km is significantly different for 

all variables tested. A study on the Celtic shelf (Martin et al. 2008) found little evidence for 

difference in slope between variables, although there was a significant difference between 

Syn and PicoEuk. The fact that differences are found here may be an indication that some 

of the ultraplankton groups in temperate regions have a closer relationship (in terms of 

spatial variability over distance) and are more tightly coupled than those seen here, in 

subtropical and tropical regions, with the caveat that these observations were made at 

different scales. The main result of the Celtic Sea study was that microbial groups can have 

a very tight relationship in a model and yet show weak correlations and variability on 

different scales (Martin et al. 2008), therefore a model with ‘tight’ relationships, such as 

that presented in Chapters 4 and 5, may not necessarily be inappropriate to simply model 

these spatially varying ultraplankton, whereas here it may be. Also the investigation in this 

Chapter uses abundances, whereas uptake rates were used to constrain and independently 

test the models in Chapters 4 and 5 respectively, therefore, it would be necessary to 

investigate if uptake rates vary at the same spatial scale as abundance to completely 

disregard this structure. Unfortunately current methodological and practical constraints 

prevent a high resolution transect of uptake rates to be measured, therefore abundances 

have been used as a proxy.  

6.4.2. Satellites and Ultraplankton Correlation 

Oceanographers were limited to physical sampling for centuries, unable to study vast 

areas and variability within them. Remotely sensed observations from satellites changed 

this. The oceans could be viewed as dynamic, changing and varying spatially and 

temporally on daily to decadal time scales and many studies have relied upon them (e.g. 

Platt and Sathyendranath 1988, Longhurst et al. 1995,  McClain et al. 2004, Tilstone et al. 

2009). A previous study in the Mozambique channel (Zubkov and Quartly 2003) has 

suggested that ocean colour (SeaWiFS specifically) may not be adequate to assess the 

contribution of ultraplankton groups. The data set in this Chapter therefore provided a 

unique opportunity to examine whether this is true for the subtropical and tropical 

Atlantic (Figures 6.10 and 6.11 and Table 6.5). The correlations between phototrophic 

ultraplankton groups abundance and chl a concentration and 8-day and 32-day satellite 

temporal resolutions were modest to strong (0.35 - 0.65) and total biomass of 

phototrophic ultraplankton strongly correlated with 8 day (0.6 - 0.7) and 32 day satellite 
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data (0.71). Strong significant correlations were also seen in the MODIS 1 day data  and 

abundances of PicoEuk (0.75) and Syn (0.6). However, very weak or negative correlations 

of phototrophic ultraplankton were also observed with the 1 day data (e.g. Pro). Although 

the strong 1-day correlations were significant, the paucity of the data (n = 13) means that 

further surveys are needed to ensure 1 day data is robust. The biomass calculation is a 

summed conversion (using the abundance multiplied by the weights detailed in the 

method). Therefore this is not a direct measurement, but seems to provide a stronger 

correlation than abundance or chl a concentration for longer temporal resolution data (8 

and 32 day). This result may indicate that the smoothing in temporal variability of the 

satellite composites reduces the correlations as the variability that this study has shown to 

be present, is being smoothed out (also supported by linear regression, see raw data in 

Appendix, Table A.5, where r2 was low, all < 0.5). The correlation results found here are 

similar to those in the Mozambique Channel (Zubkov and Quartly 2003) which showed a 

strong correlation between daily SeaWiFS composite and PicoEuk and Syn chl a and a low 

correlation with Pro. Contrastingly, although they found a negative correlation to 

abundance of Pro and a strong correlation with weekly composites and Syn and PicoEuk 

chl a  whereas here that was not found. Therefore ultraplankton abundances, biomass and 

chl a concentration can at best be modestly well predicted and the key ultraphotoplankton 

Pro, only poorly from satellite concentrations in the subtropical and tropical Atlantic. 

Figures 6.10, 6.11 and 6.12 show a divide in the scatter of Pro and total 

ultraphytoplankton (summed Syn, Pro and PicoEuk) in MODIS and SeaWiFS satellite data, 

most pronounced in the 8 day resolution. The sample points located close to the y-axis 

(lower abundance/biomass/chl a content and higher chl a concentration) are from 

samples taken towards the northern end of the transect > 25○N. Those to the right of the 

plot, are samples from < 24○N of the equator and in the southern hemisphere. This is the 

same cluster ‘split’ that was seen in Chapter 2 (Figure 2.3). The cause of this gap cannot be 

determined for certain here, but it can be speculated upon. It may be that seasonality is 

affecting the ultraplankton at the northern end of the transect more than previously 

thought, specifically the seasonal effects on cell pigmentation (specifically Pro). Pro cells in 

spring have been shown to have more pigment (Veldhuis and Kraay 2004). In other words 

the satellite is over estimating the amount of Pro. A correction for this would move this 

group down the y-axis. Alternatively satellites could be under estimating Pro cell 

abundance elsewhere, as culture studies have shown that Pro cells under higher 

irradiances (in this case those cells in the tropics and subtropics) decrease in size and 

chlorophyll pigment (Morel et al. 1993), so that they could be ‘missed’ by the satellite but 
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‘caught’ by the flow cytometer. If they were ‘seen’ by the satellite it would shift this 

grouping up the y-axis.  Both these processes add to the uncertainty in the correlation and 

lead to the conclusion that Pro is not being accurately measured by satellites (this was also 

concluded by Zubkov and Quartly, 2003). If this is the case, why is this discrepancy also 

not seen in PicoEuk or Syn? What Pro pigmentation (or variability therein) leads to the 

difficulty in its satellite measurement? Unfortunately that is outside the remit of this work.  

The semivariogram results of this study also raise concerns over use of satellite data to 

study the subtropics. The slopes of semivariograms (spatial variability over 100 km) for 

MODIS and SeaWiFS at all temporal resolutions were significantly different to all 

ultraplankton groups (see Figure 6.9 and Table 6.4), thus suggesting that the satellites are 

not sufficiently capturing the ultraplankton variability.  The semivariogram’s r2 also varied 

between temporal resolutions and perhaps unsurprisingly the 8 day composites had the 

highest r2.  As the smoothing effect on fronts and eddies in the longer (32-day) temporal 

scale data would have caused more scatter around the slope. The 1-day data does not 

improve the situation as the number of measurements were too low (n = 24) to robustly 

produce a semivariogram. Thus, from this study it can be established that current ocean 

colour algorithms do not provide enough information about ultraplankton groups that are 

of key importance to ocean biogeochemical cycles (Li and Harrison 2001). This study 

emphasises the need for in situ observations and experiments at small spatial scales to be 

used to guide future ocean sensor development. 

6.5. Summary and Implications 

The ultraplankton abundances in the Atlantic subtropical and tropical gyre region have 

been shown to have as high variability as ultraplankton abundance in temperate and shelf 

regions. These groups also vary at different spatial scales, although these differences may 

not be as great as those in  shelf seas. The marked spatial variability in ultraplankton 

abundances are present despite being within the same ultraplankton defined region (> 90 

% similar, Chapter 2). The presence of such heterogeneity suggests that the simple zero-

dimensional model constructed and parameterised in Chapter 5, may not be sufficient to 

describe the system. A model that can explicitly capture this variability might be required. 

This Chapter also demonstrated that satellite detection of ultraphytoplankton is somewhat 

limited (Section 6.3.2). The choice of satellite (MODIS or SeaWiFS) made little difference to 
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the correlations; 8-day and 32-day correlations were similar and modest. One-day direct 

estimates were slightly better for MODIS detection of PicoEuk. However the limited 

number of data points due to cloud cover prevented a robust conclusion. Therefore 

models, provinces and primary production estimations based upon remotely sensed 

chlorophyll in the subtropics should be interpreted with care.  

From the results presented in this chapter and considering the  

three stated hypothesis to be tested  the  following can be 

concluded: 

 The ultraplankton community in the surface waters of the subtropical and tropical 

Atlantic have as high spatial variability as ultraplankton in the shelf and temperate 

seas and so homogeneity cannot be assumed. 

 Different ultraplankton groups in the surface waters of the subtropical and tropical 

Atlantic, vary at significantly different spatial scales. 

 Remotely sensed satellite chl a concentration cannot be reliably used to estimate 

the abundances, biomass or chl a of phototrophic ultraplankton (Pro, Syn and 

PicoEuk) in the surface waters of the tropical and subtropical Atlantic.  
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7. Overall	Conclusions 

The work presented in this thesis aimed to ‘to explore how mixotrophy may be 

modelled in the subtropical Atlantic using a data driven approach’ by constructing 

and parameterising a mixotroph model for the subtropical Atlantic using in situ 

measurements (Chapters 4 and 5). This thesis further addressed questions and 

assumptions related to model structure (Chapters 2, 3 and 6). This investigation has been 

undertaken using a combination of observations and computer modelling.  

This Chapter summarises and synthesises the results from each Chapter (Chapters 2 to 

6), relating them back to the overarching aim and the objectives of this thesis set out in 

Chapter 1. The wider implications of the main findings are then considered. Finally, the 

limitations of the study and possible future directions for further research are outlined. 

7.1. Summary of Research Findings 

7.1.1. Objective 1 

To ascertain if the subtropical Atlantic ocean can be considered as 

a single oceanographic province. 

Ultraplankton in the subtropical Atlantic includes the picoeukaryotic algae, which have 

been found to be predominantly bacterivorous (Zubkov and Tarran 2008, Hartmann et al. 

2012). Picoeukaryotes, their prey (cyanobacteria and low and high nucleic acid bacteria) 

and their predators (heterotrophic flagellates) were used to assess  oceanographic 

regions. 

In Chapter 2 oceanographic provinces were delineated through multivariate analysis 

based on ultraplankton abundances.  Samples taken between 49°N and 40°S were found to 
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group statistically (at > 90 % similarity level, p < 0.05) into four provinces. The largest 

ultraplankton defined biogeographic province (a) incorporated both the north and south 

subtropical gyres, as well as the central tropics, 36°N to 39°S. These findings indicate that 

in terms of ultraplankton assemblages this region can be considered distinct. This analysis 

did not reveal any seasonality within the subtropical gyres, as the opposing hemispheres 

(in opposing seasons) were considered statistically similar.  

An assessment of a priori defined oceanographic provinces that had been based on the 

modelling of plankton (Follows et al. 2007), remotely sensed chlorophyll a concentrations 

(McClain et al. 2004) and physical boundaries (Longhurst 1998, 2007) revealed that the 

ultraplankton community was not different between or similar within these regions 

(except for in the temperate north Atlantic). In particular, ultraplankton assemblages 

between regions defined using the McClain et al. (2004) criteria barely differed, this led to 

further investigations of the suitability of using remotely sensed chlorophyll a 

concentrations to determine phototrophic ultraplankton abundances in Chapter 6.  

The multivariate defined province a (Chapter 2), was used in subsequent analysis to 

demarcate the study region of interest (Chapters 3 and 6), and to motivate the 

development of a single model for the region (Chapters 4 and 5). 

7.1.2. Objective 2 

To investigate dissolved organic phosphate (DOP)  utilisation by 

ultraplankton in the Atlantic oligotrophic ocean. 

In nutrient poor environments it has previously be thought that organic nutrients may be 

an important alternative to inorganic nutrients (Casey et al. 2009, Lomas et al. 2010). This 

was investigated to identify if an organic nutrient (specifically dissolved organic 

phosphate) component needed to be included explicitly in models of the subtropical 

Atlantic (Chapters 4 and 5).  

In Chapter 3,  measurements collected in situ were used to determine if DOP was being 

utilised as a significant alternative source of P. Plankton uptake rates of three different 

DOP nucleotides – ATP, AMP and UMP – were measured simultaneously for the first time. 

The results showed that none of the DOP nucleotides tested were being significantly 
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utilised (p > 0.05), supporting previous evidence of insignificant planktonic ATP uptake by 

Zubkov et al. (2007). Therefore it was not considered necessary to include DOP in a model 

focusing on mixotrophy in this region (Chapters 4 and 5). ATP uptake and concentration 

were also compared for three different years which encompassed differing seasons. No 

significant differences between season or years were found (p > 0.05), giving further 

tentative support to the assumption of steady state made in Chapter 4.  

7.1.3. Objective 3 

To develop and to parameterise from in situ observations a 

simple zero-dimensional model of the Atlantic microbial 

ecosystem incorporating mixotrophy. 

A simple model structure of dissolved inorganic P, bacteria, mixotrophs and grazer 

variables was used due to the limited amount of data. The insignificant utilisation of DOP 

by plankton, found in Chapter 3, meant the model did not need to explicitly contain a 

dissolved organic phosphate variable. Initially in Chapter 4, a simple zero-dimensional 

mixotroph model was constructed, assuming steady state. This was solved analytically 

using in situ observations of uptake fluxes. The model assumption of steady state was 

initially supported by the lack of seasonality found in the results from Chapter 2 and 

Chapter 3.  

Through network analysis of the steady state mixotroph model, two of the net fluxes 

constrained by the data were found to be in the incorrect direction from an ecological 

perspective. It was possible that representing the two fluxes as a single net flux, rather 

than as independent components in each direction, may have placed too strong a 

constraint. Therefore, in the revised model (Chapter 5), each was modelled explicitly. 

However this meant the system could no longer be solved analytically. The model was 

further developed to be time-varying, allow a seasonal cycle to be described and for the 

measurements to be not in equilibrium. The steady state model developed in Chapter 4, 

therefore formed the basis of the dynamic model presented in Chapter 5.  

Unable to use flow analysis on the time-varying model, the model parameters were 

instead estimated using a stochastic optimisation technique and the in situ observations 

(Chapter 5). Despite the limited number of observations, maintaining the coexistence of 
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all model variables and achieving a fit to data was difficult to attain. Nevertheless, a good 

fit to the data was eventually achieved.   

The resulting model allowed the role of mixotrophy in an oligotrophic ecosystem to be 

explored. The dynamics of the modelled ecosystem were dominated by the mixotrophs, 

with the largest flux of P flowing through the mixotroph variable from bacterivory. The 

recycling of P through mixotrophs and bacteria to the P pool was also a central feature of 

the system. The majority of bacterivory performed in the system was by mixotrophs, 

which agrees with previous observations (Zubkov and Tarran 2008, Hartmann et al. 

2012). The model further indicated that bacterivory was not a survival mechanism, as 

even when P concentrations were at their highest, bacterivory was a significant 

mechanism for obtaining nutrients by mixotrophs. Despite the bacterivory being 

performed by algae, primary production and export were slightly higher than previous 

estimates for the region. It was previously thought that the inclusion of mixotrophy would 

decrease energy transfer efficiency because of the extra trophic link in the system.  

A lack of data to constrain the model, however, makes it difficult to determine how 

sensitive the model results were to its structure and parameterisation. To help assess if a 

simple zero-dimensional mixotroph model without horizontal variations was appropriate, 

microbial spatial variability was assessed in Chapter 6. 

7.1.4. Objective 4 

To explore microbial spatial distribution and variability 

throughout the subtropical Atlantic Ocean. 

In Chapter 6, the spatial variability of microbial groups within the region, defined when 

Objective 1 was addressed (Chapter 2), was explored. This demonstrated that despite the 

ultraplankton assemblages being > 90 % similar, significant internal spatial variability was 

present. The phototrophic ultraplankton were shown (by coefficient of variation and n-

fold increase comparisons) to be as spatially variable as in temperate shelf seas. The 

microbial groups were also shown to vary significantly over different spatial scales, 

indicating that there was no single factor causing their variability. The variability observed 

in the ultraplankton abundances was not seen in remotely sensed data for the region. This 



 

 145   

led to the investigation of the applicability of satellite observations to detect ultraplankton 

(also in Chapter 6). 

The inherent heterogeneity observed may explain the difference seen in the microbial 

uptake rate measurements (Chapter 4 ). This suggests that a larger number of 

observations would be needed to obtain an accurate mean and associated uncertainty for 

the region for key fluxes. Unfortunately current methodological constraints make this 

impractical.  

This spatial heterogeneity also implies that the dynamic mixotroph model may have been 

too simple to describe the ecosystem. The model was a single box and did not describe the 

inherent ultraplankton variability found in Chapter 6.  As such a spatial model with 

horizontal resolution capable of representing the physical processes that cause the 

advection and diffusion of plankton horizontally would be desirable to reproduce this 

heterogeneity within the system. Although differing length scales for the ultraplankton 

groups suggest biological processes may be equally important. Nevertheless, the model 

still provides information about the ecosystem, if viewed as a specific point model, i.e. a 

model for this specific location (CTD14, 27°N -32°E).  However, the model result cannot 

necessarily be extrapolated over the wider region. 

7.1.5. Objective 5 

To investigate if remotely sensed satellite chlorophyll a 

concentration can be used to estimate the abundances, biomass or 

chlorophyll a content of phototrophic ultraplankton.  

As length scales for remotely sensed satellite chlorophyll concentrations were significantly 

different from ultraphotoplankton variability and did not display the heterogeneity that 

was seen in the in situ observations the adequacy of ultraphotoplankton detection by 

satellites is questioned.  

In Chapter 6, satellite measurements of chlorophyll a concentration (at different temporal 

resolutions and from different satellites) were evaluated against in situ abundances, 

biomass and chlorophyll a content of phototrophic ultraplankton groups and types (Pro, 

Syn, Picoeukaryotes, total phototrophic bacteria and total ultraphotoplankton). Remotely 
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sensed measurements were overall only modestly correlated with in situ observations. Pro 

correlations were consistently low and weak (all ρ < 0.45, p < 0.001), despite being 

probably the most abundant photosynthetic organism in the oceans (Partensky et al. 

1999a). Syn and PicoEuk in situ measurements showed a stronger correlation with 

satellite observations. Overall the strongest correlation found in this study was between 

MODIS 1-day estimates and picoeukaryotic abundance (ρ = 0.75, p < 0.005), although this 

measurement had a low number of samples (n = 13). These findings support a previous 

study of SeaWiFS (1 and 8 day composites) comparison to observations in the 

Mozambique channel (Zubkov and Quartly 2003). The conclusion is that remotely sensed 

chlorophyll observations may be incorrectly estimating ultraphotoplankton in the 

oligotrophic Atlantic.  

7.2. Wider implications 

7.2.1. Ultraplankton Biogeographic Provinces 

The multivariate analysis used to define the ultraplankton provinces in this thesis 

demonstrated that ultraplankton communities do not always adhere to physical 

boundaries or coincide with remotely sensed chlorophyll distributions (Chapter 2). In 

addition, demonstrated differences between the results of three alternative means of 

defining provinces (Longhurst 1998, McClain et al. 2004, Follows et al. 2007), show there 

is a lack of consistency and applicability to ultraplankton in previous province delineation. 

The findings of this thesis therefore suggest that for future oceanic studies, where a large 

enough data set is available, previously published regions (e.g. Longhurst Provinces) 

should not be used for inter/intra specific data comparisons without question. Ideally a 

multivariate analysis technique would be applied to confirm or deny the region is 

coherent and the boundaries are relevant to the data of interest (i.e. fish distributions 

should not be used to define boundaries to investigate bacteria). However, it is 

appreciated that this is not normally possible due to field expense, logistics and 

methodological limitations.   
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7.2.2. Mixotroph Modelling 

Mixotrophy within the oligotrophic Atlantic is a dominant and ubiquitous process (Zubkov 

and Tarran 2008, Hartmann et al. 2012). Here it has been shown for the first time that it is 

possible to fit a simple dynamic model incorporating mixotrophy to albeit very limited in 

situ data and maintain coexistence of all components of the ecosystem (Chapter 5).  

In theory the inclusion of mixotrophy in an ecosystem model should reduce nutrient 

export and maintain or even increase nutrient turnover in the mixed layer, as the fraction 

of nutrients passed on to higher trophic levels decreases due to the extra trophic link in 

the system. The model presented here demonstrated that the majority of P was being 

recycled and not passed on to a higher trophic level. However, estimates of export (1 - 18 

mol C m-2 y-1) were slightly higher than previous observations and modelled estimates. 

The model also has shown the potential importance of mixotrophs within the oligotrophic 

ecosystem, with the largest fraction of nutrients being cycled through them, relative to the 

other variables. Consequently, future ecosystem models of oligotrophic regions should 

consider including mixotrophs as a basic ecological element.  

7.2.3. Ultraplankton Spatial Variability in the 

Subtropics 

This thesis has presented evidence for spatial variability in ultraplankton in the subtropics 

and tropics of the same order of magnitude as that observed in temperate and coastal seas 

(Martin et al. 2005, Martin et al. 2008, Martin et al. 2010), with PicoEuk varying 29-fold, 

Syn 95-fold and Pro 105-fold within this region. Variability of this size is not apparent in 

remotely sensed data, possibly due to the modest ability of satellites to detect 

ultraphytoplankton. Different dominant length scales of variability were seen between 

different ultraplankton groups, implying that no single process (such as eddies) was 

causing the patchiness. This variability is potentially a significant source of error for 

observations, as to estimate a mean abundance for a region a large number of samples 

may be required. It is also an indication that zero-dimensional models (such as those used 

in Chapters 4 and 5) may not be entirely appropriate to model the oligotrophic Atlantic 

ecosystem; despite a conventional view of such regions as homogenous, variability is 

widespread and marked. To accurately model plankton this patchiness, horizontal 

advection and other physical processes that can influence population dynamics locally 
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needs to be taken into account.  It is as yet unknown if the variability in abundances will be 

seen in uptake rate measurements (such as those measurements used in model 

constraining in Chapter 4 and verification in Chapter 5). Although such uptake 

measurements would take a large amount of time and effort, it would considerably aid the 

understanding of the consequences of spatial variability.  

7.2.4. Remote Sensing of Ultraplankton  

In Chapter 6, it was shown that MODIS and SeaWiFS satellites at 8 and 32-day temporal 

resolutions only have a modest correlation with in situ ultraphytoplankton abundances (ρ 

= 0.37 – 0.53, p < 0.001) and chlorophyll concentration (ρ = 0.28 – 0.65, p < 0.001). 

SeaWiFS 1-day and 8-day composites had previously been investigated in the Mozambique 

Channel (Zubkov and Quartly 2003). However, to the author’s knowledge this is the 

largest study of its kind to date, using two satellites and three temporal resolutions. One of 

the most concerning results of this study was the poor ability of the satellites to detect Pro, 

which is thought to be the most abundant phototrophic organism on earth (Partensky et 

al. 1999b) and responsible for a significant fraction of total primary production, 

particularly in the subtropics and equatorial regions (Liu et al. 1997). As Pro is not being 

accurately detected by satellites, any models or estimates of primary production (and in 

turn export, carbon sequestration or oxygen production) based upon satellite chlorophyll 

concentration are potentially significantly in error in the oligotrophic oceans which are 

dominated by these organisms and cover vast areas (the Atlantic oligotrophic region is in 

excess of 10 million square kilometres, Polovina et al. 2008). Attempts to fit models should 

therefore allow for this discrepancy and interpret their results with care. Further 

technological and algorithm developments are necessary in satellite remote sensing to 

ensure all ultraphytoplankton functional types are observed accurately. 

7.3. Study Limitations and Future Directions 

This Section provides an outline on the main limitations of the study. In the light of these, 

it also highlights priorities for future research. 
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7.3.1. Data  

The foremost limitation of the mixotroph model and its further development is the lack of 

in situ observational data available to constrain the model parameters and to 

independently validate the model output. Further experimental analysis of individual 

processes, especially those shown to be sensitive within the model (for example 

bacterivory undertaken by grazers and mixotrophs, and remineralisation of P by 

mixotrophs) would improve the model and the confidence in its results. Enhancements in 

modelling the mixotrophic dynamics within an oligotrophic ecosystem will in turn 

advance forecasting of primary production and export in these vast regions.   

Although time-consuming and harder to perform in the field, uptake rate measurements 

are stronger than state variable concentrations in constraining a model (Franks 2009). 

Simply having more rate measurements would constitute a major step forward in 

constraining microbial ecosystem models, not least those including mixotrophs. 

Observations throughout the year would considerably help to verify that the ecosystem 

dynamics are being correctly represented within the model. Ideally an increased temporal 

resolution dataset of uptake rates would be collected, with monthly means and errors 

calculated for provinces. This, however, would clearly be an expensive operation. 

An alternative way to obtain uptake rate data could be flow cytometry derived 

abundances. Although they require in situ ship based measurements they are less time 

consuming and can be collected at a higher spatial resolution.  However, as already stated, 

variable concentrations are not as strong in constraining models (Franks 2009). In 

addition, they also require a conversion factor  (in terms of P content of the cell) for 

comparison to models, which can introduce another level of uncertainty into the data.  In 

the future, advances in satellite detection of plankton functional groups may allow the 

detection of ultraphytoplankton (Aiken et al. 2009) concentrations that could then be used 

for constraining models. However this is not currently possible using the data in this thesis 

(Chapter 6).   

7.3.2. Model Structure 

At present the simplicity of structure of the mixotroph model may hinder its predictive 

skill. The model currently has a very simple structure of a single nutrient, P, a single pool 
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of carnivores, G, with an additional bacterial component (B) and phytoplankton modelled 

as mixotrophs (M). It therefore lacks a detrital pool, with the waste material of the 

organisms being directly remineralised into the P pool or assumed to be consumed by 

bacteria, acting as detritivores. This may be restricting the accurate simulation of nutrient 

recycling (Anderson 2010), which is important in oligotrophic regions where the 

availability of nutrients is dependent upon the recycling of nutrients within the surface 

layer (also seen in the present mixotroph model). Therefore the inclusion of a detrital pool 

in the mixotroph model could be an informative development. The simple model 

presented here also did not have an obligate photosynthetic organism, which previous 

models incorporating mixotrophy have included (e.g. Thingstad et al. 1996, Crane and 

Grover 2010). This would introduce further competition and help understand why 

mixotrophs are dominant. In addition, there is evidence suggesting that models have 

greater portability when multiple phytoplankton types (e.g. obligate phytoplankton and 

mixotrophs) are included (Friedrichs et al. 2007). However, the inclusion of an obligate 

phototroph does not guarantee coexistence of all variables in a model incorporating 

mixotrophy (Thingstad et al. 1996). The possible predictive benefits gained from 

increasing the number of parameters and variables in the model need to be weighed 

against the cost (in time and finances) of constraining the model, as discussed above. 

There are also physical structure limitations to the model. It assumes homogeneity in the 

horizontal resolution and nothing below the mixed layer. In addition it excludes the 

influence of neighbouring or deeper populations and this prevents the model from directly 

simulating all but the simplest physical processes of mixed layer deepening and turbulent 

mixing across the mixed layer. The physics are a key factor controlling nutrient supply and 

advection of plankton. More detailed physics could help to describe the plankton 

patchiness observed and the role it plays in the ecosystem.  

In future the integration of a mixotroph model into a 3D ocean general circulation model 

(GCM) might address these limitations and help to elucidate the wider and global impact 

of mixotrophy. As this thesis has shown, due to the degree of spatial heterogeneity, 

observations from one point in the subtropical Atlantic (Chapter 6) cannot be easily 

extrapolated to its entirety. Added complexity will accomplish nothing if the resulting 

model is poor (Fulton et al. 2003), or the data is insufficient. Therefore striking the balance 

between complexity and data will be the key to progress. 
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7.4. In Conclusion 

Modelling of mixotrophy in oligotrophic regions is extremely challenging, primarily due to 

the lack of in situ data available from these remote regions of the world. The mixotroph 

model presented in this thesis is a considerable oversimplification of reality. Nonetheless, 

such simple models have been shown numerous times to be able to accurately represent 

first-order dynamics and biogeochemical cycling (Hood et al. 2008) and this thesis has 

demonstrated this for mixotrophy. A dynamic mixotrophic model was able to describe the 

dynamics of the system, albeit constrained by very few data. The difficulty even of this 

illustrates that even so few data exert strong constraints on a model including mixotrophy. 

This model highlighted the key role of mixotrophy in the cycling of nutrients within the 

surface of the subtropical ocean and this fast nutrient turnover is crucial for the sustained 

functioning of the oligotrophic ecosystem. The model also indicated that mixotrophy was 

not a survival mechanism, and was more likely an adaptive strategy, as bacterivory is the 

predominant route of P acquisition even when P concentrations are relatively high.  

In addition to explicitly building a model incorporating mixotrophy, this thesis has also 

tested the assumptions underlying model structure to give guidance to future models 

building on this work. For example, dissolved organic P has been ruled out as a necessary 

inclusion in future models. Also the relatively high degree of ultraplankton spatial 

variability has indicated that zero-dimensional models are not suited to draw conclusions 

for this entire oligotrophic region. Furthermore the limited ability of remote sensing to 

detect ultraphytoplankton has been recognised making use of remote sensing data in 

model building difficult. It is therefore hoped that these findings will significantly 

contribute to future development of models for the Atlantic oligotrophic ecosystem and 

our ability to understand and predict the role of this vast region in global biogeochemical 

cycles.   
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Appendix 

Table A.1.  AMT cruise data  used within this thesis; dates and principle scientists. 
NOC, National Oceanography Centre, Southampton, UK. PML, Plymouth Marine 
Laboratory  

Cruise Route Dates Principle scientist Cruise report 

AMT14 Falkland 
Islands–UK 

26/04/04–
02/06/04 Patrick Holligan, NOC Holligan (2004) 

AMT17 UK–South Africa 12/10/05–
22/11/05 Patrick Holligan, NOC Holligan (2005) 

AMT18 UK-Falkland 
Islands 

04/10/08-
10/11/08 

Malcolm Woodward, 
PML 

Woodward 
(2008) 

AMT19 UK-Chile 13/10/09-
01/12/09 Andy Rees, PML Rees (2009) 

 

Table A.2.  AMT cruise data utilised in this thesis, with associated Chapter reference 
and acknowledgement of collectors. In addition to those specific data collected (as 
listed below), measurements of temperature, salinity and mixed layer depth were 
also used. See specific Chapter referenced for details. Abbreviations here are as 
follows. ATP, Adenosine triphosphate; AMP, Adenosine monophosphate; UMP, 
Uridine monophosphate and DIP, dissolved inorganic phosphate. See Table A.1.2 for 
affiliation abbreviation. 

Cruise Data collected Thesis 
Chapter Collected by 

AMT14 Ultraplankton microbial group 
abundances 2, 6 M Zubkov, NOC 

AMT14 Plankton ATP uptake, concentration 
and turnover time 3 M Zubkov, NOC 

AMT17 
Specific ultraplankton groups 
phosphate uptake rates and associate 
cell counts 

4, 5 M Zubkov, NOC 

AMT18 Plankton ATP uptake, concentration 
and turnover time 3 M Zubkov, NOC;                

M Hartmann, NOC 

AMT19 
Plankton ATP, AMP, UMP and DIP 
uptake, concentration and turnover 
time 

3 S Herrington, NOC;          
M Hartmann, NOC 
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Figure A.1. Characteristic bioassay estimation of maximum DOP (in this instance 
ATP) concentrations and uptake rates from AMT19 (November 2009), CTD31. (a) 
Time series at different ATP concentrations with corresponding regression lines 
(dashed lines). ATP uptake was estimated in a dilution series, in which [α33P] ATP at 
0.2 nmol-1 was diluted with non-labelled ATP (amounts indicated). (b) The 
relationship between added ATP concentration and ATP uptake time. Error bars are 
single standard errors. The y-axis intercept of the regression is an estimate of 
turnover  time (6.7 h) at maximum ambient concentration of ATP which is the x-
intercept (0.14 nmol-1). See details in text. 
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Dynamic Mixotroph Model Code 
Module ODE 
 
 Use accuracy 
 Use Parameters  
 Use nrtype 
 Use Mixedlayer 
 Use Force 
 
 Implicit None 
  
 Contains  
 
   Subroutine Derivs (x,y,dydx)!x is time  
 

Real(SP), Dimension (:), Intent(in):: y 
Real(SP), Dimension (:), Intent(out):: dydx 
Real(SP),intent(in) :: x  
Real(SP) ::  M, M2, t, yrlen 
Real(SP) :: h, hplus, mixcoP,mixcoG,mixcoB,mixcoM        
Real(SP):: aPB, yBM,psiBG,thetaMG,pieMP,bG,eM,phiG,source 

 
      yrlen=365 
 
      t=ceiling(x)  
      

call MLDepth(t,M,M2) 
 

h=(M2-M)/1 
hplus=max(h,0.0) 
 

    
! yin(1)=P, yin(2)=G, yin(3)=B, yin(4)=M  
 
 aPB = alpha*y(1)*y(3) ! Bacterial P uptake 
 yBM = gamma*y(3)*y(4) ! M bacterivory 
 psiBG = psi*y(3)*y(2) ! G bacterivory 
 thetaMG = theta*y(4)*y(2) ! G grazing on M 
 pieMP = pie*y(4)*y(1) ! M autotrophy 
 bG = beta*y(2) ! G excretion/exudation of P taken up by B 
 eM = episilon*y(4) ! M excretion/exudation of P directly toP 
 phiG = phi*y(2) ! G excretion/sink of P from G 
       
 
!Calculation of mixing coefficients 
! NB all too small to be motile  
  
 mixcoG=(y(2)*(mix+hplus))/M !G 
 mixcoB=(y(3)*(mix+hplus))/M !B 
 mixcoM=(y(4)*(mix+hplus))/M !M 
 mixcoP=((Po-y(1))*(mix+hplus))/M !P 
 
 
!Biological Equations 

 
dydx(1)=eM-aPB-pieMP !Phosphate 
dydx(2)=thetaMG+psiBG-bG-phiG !Grazers 
dydx(3)=aPB+bG-yBM-psiBG !Bacteria 
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dydx(4)=pieMP+yBM-thetaMG-eM !Mixotrophs 
       
 
!Addition of effects due to entrainment (mixing coefficient) with 
mixed layer and background mixing 
      dydx(1)=dydx(1)+mixcoP 
      dydx(2)=dydx(2)-mixcoG 
      dydx(3)=dydx(3)-mixcoB 
      dydx(4)=dydx(4)-mixcoM 
 
 
      return 
 
   End Subroutine Derivs 
 
End Module ODE 
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