The University of Southampton
University of Southampton Institutional Repository

The structure, fluid distribution and earthquake potential of the Makran Subduction Zone, Pakistan

The structure, fluid distribution and earthquake potential of the Makran Subduction Zone, Pakistan
The structure, fluid distribution and earthquake potential of the Makran Subduction Zone, Pakistan
The Makran subduction zone (offshore Pakistan and Iran) has the largest accretionary prism of any margin worldwide, formed due to the thick incoming sediment section of up to 7.5 km. This margin has been relatively understudied, and this thesis presents a new, detailed structural and hydrological interpretation and seismogenic hazard assessment for the Makran. The accretionary prism is dominated by simple, imbricate thrusts which form seaward verging, anticlinal ridges up to 200 km long. The prism has a low average taper angle of 4.5°. Two oceanic basement features intersect the deformation front: The Little Murray Ridge (LMR), a discontinuous, largely buried seamount chain, and the Murray Ridge, a large transtensional ridge. The subduction of the LMR causes an increase in fault spacing, a seaward step in the position of the deformation front, and may segment earthquake rupture. The Murray Ridge influences the incoming sediment stratigraphy and reduces sediment thickness in the east. Fault activity in the Makran is widely distributed within the prism, with over 75% of faults showing some evidence for recent activity. This may be the result of the high levels of frontal accretion causing the Makran to behave as a sub-critical prism. The décollement in the outer prism occurs within the sediment section and is unreflective. There is extensive evidence for fluid and fluid migration in the Makran, with a widespread hydrate BSR, high amplitude gas zones in the shallow sediment, reflective fault sections (indicating high porosity and likely high pore pressure), and surface seeps. The spatial distribution of these features appears to be controlled by changes in the incoming section and fault activity, and significant fluids are trapped within anticlinal hinge zones. Reflective fault sections are concentrated in the upper sediments, and there is no evidence for a significant fluid contribution from the deeper (>4 km) sediment section. This may indicate that the lower sediment section is largely dehydrated, prior to accretion.

The Makran experiences low seismicity compared to many global subduction zones, but produced a Mw8.1 tsunamigenic earthquake in 1945. Thermal modelling suggests that temperatures at the plate boundary are over 150°C at the deformation front due to the thick sediment section. These results suggest that the plate boundary may have the potential to be seismogenic to shallow depths. Thermal modelling also indicates that the shallow dip of the subducting plate produces a wide potential seismogenic zone, which when combined with along-strike rupture scenarios produces potential earthquake magnitudes of Mw8.7-9.2 with significant regional hazard implications.
Smith, Gemma Louise
b7a65fcd-0bfc-48ef-8d9c-a68aa6cddd39
Smith, Gemma Louise
b7a65fcd-0bfc-48ef-8d9c-a68aa6cddd39
Mcneill, Lisa
1fe6a1e0-ca1a-4b6f-8469-309d0f9de0cf

(2013) The structure, fluid distribution and earthquake potential of the Makran Subduction Zone, Pakistan. University of Southampton, Ocean and Earth Science, Doctoral Thesis, 142pp.

Record type: Thesis (Doctoral)

Abstract

The Makran subduction zone (offshore Pakistan and Iran) has the largest accretionary prism of any margin worldwide, formed due to the thick incoming sediment section of up to 7.5 km. This margin has been relatively understudied, and this thesis presents a new, detailed structural and hydrological interpretation and seismogenic hazard assessment for the Makran. The accretionary prism is dominated by simple, imbricate thrusts which form seaward verging, anticlinal ridges up to 200 km long. The prism has a low average taper angle of 4.5°. Two oceanic basement features intersect the deformation front: The Little Murray Ridge (LMR), a discontinuous, largely buried seamount chain, and the Murray Ridge, a large transtensional ridge. The subduction of the LMR causes an increase in fault spacing, a seaward step in the position of the deformation front, and may segment earthquake rupture. The Murray Ridge influences the incoming sediment stratigraphy and reduces sediment thickness in the east. Fault activity in the Makran is widely distributed within the prism, with over 75% of faults showing some evidence for recent activity. This may be the result of the high levels of frontal accretion causing the Makran to behave as a sub-critical prism. The décollement in the outer prism occurs within the sediment section and is unreflective. There is extensive evidence for fluid and fluid migration in the Makran, with a widespread hydrate BSR, high amplitude gas zones in the shallow sediment, reflective fault sections (indicating high porosity and likely high pore pressure), and surface seeps. The spatial distribution of these features appears to be controlled by changes in the incoming section and fault activity, and significant fluids are trapped within anticlinal hinge zones. Reflective fault sections are concentrated in the upper sediments, and there is no evidence for a significant fluid contribution from the deeper (>4 km) sediment section. This may indicate that the lower sediment section is largely dehydrated, prior to accretion.

The Makran experiences low seismicity compared to many global subduction zones, but produced a Mw8.1 tsunamigenic earthquake in 1945. Thermal modelling suggests that temperatures at the plate boundary are over 150°C at the deformation front due to the thick sediment section. These results suggest that the plate boundary may have the potential to be seismogenic to shallow depths. Thermal modelling also indicates that the shallow dip of the subducting plate produces a wide potential seismogenic zone, which when combined with along-strike rupture scenarios produces potential earthquake magnitudes of Mw8.7-9.2 with significant regional hazard implications.

PDF
Smith, Gemma_PhD_2013.pdf - Other
Download (11MB)

More information

Published date: 1 May 2013
Organisations: University of Southampton, Ocean and Earth Science

Identifiers

Local EPrints ID: 359131
URI: http://eprints.soton.ac.uk/id/eprint/359131
PURE UUID: 80e66c77-a0bb-4713-b14b-2be709d520cd

Catalogue record

Date deposited: 24 Oct 2013 13:15
Last modified: 18 Jul 2017 03:23

Export record

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×