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1. INTRODUCTION 

 

This report describes the performance of a feedback active isolation system using 

multiple inertial actuators based on initial studies by [1] and [4]. In particular, the 

effect of adding more independent feedback control channels on the stability and 

active vibration reduction of a single-degree of freedom system is studied. In the first 

instance, the single-channel problem considered consists of the active isolation of 

some sensitive equipment from a vibrating base structure through a compliant mount 

attached between them. The results and limiting factors of using an inertial actuator 

are clearly introduced and compared to the literature. 

 

In the second instance, the single-channel active isolation system is extended to a two-

channel feedback active control system, using two independent inertial actuators. The 

purpose here is to study the effect of adding more inertial actuators on the stability 

and performance of the isolation system. In order to achieve this aim the equation 

representing the system open-loop response of the two-channel system is derived. The 

effect of coupling of the actuators to the equipment is also demonstrated. The results 

for the two-channel feedback isolation problem using multiple inertial actuators are 

then generalized for the multi-channel case.  

 

After the general theory is developed, a simple application to the control of the first 

vibration mode of a finite plate is presented. An approximate expression for the 

maximum gain for stable closed-loop operation is derived as well as the expected 

theoretical vibration attenuation. It is shown that the feedback gain can be accurately 

predicted for the assumption of a decoupled actuators-plate system as well as the 

passive reduction in total kinetic energy of the plate. The study shows that increasing 

the number of actuators increases passive attenuation. However, the reduction due to 

control alone decreases as the number of control channels increases. The combined 

passive and active control performance is shown to increase with an increase in 

inertial control actuators. 
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2. REVIEW OF SINGLE-CHANNEL CASE 

 

In this section a brief review of the main results for the single-channel feedback active 

isolation problem using an inertial actuator is summarised. The frequency response of 

a typical system and its Nyquist plot are presented in an example as described in [1]. 

The approximate maximum gain for closed-loop stability and resulting vibration 

attenuation are also given. 

 

Figure 2.1 shows the block diagram of the system considered with a single inertial 

actuator. An inertial actuator is attached to the equipment and generates a secondary 

force acting on the latter. In Fig. 2.1, the base is assumed flexible and with uncoupled  
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Figure 2.1 Schematic of active vibration isolation using an inertial actuator. 

 

mobility bM , the mechanical driving point mobility of the equipment is eM  and the 

mount is assumed massless but with a finite mechanical impedance mZ . For this 

system it can be shown that the velocity ev  of the equipment per unit actuator force 

af  [1] which is proportional to the plant response is given by [2] 
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e
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a

v T M
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=     (1) 

where aT  is the blocked response of the actuator and ccM  is the input mobility of the 

coupled system including the passive mount with the inertial actuator attached to it. 

These are given by the equations [1] 
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ω
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where am  is the inertial mass, aZ  the impedance of the actuator suspension given by 

 

a
a a

kZ c
jω

= +     (5) 

 

and ac  and ak  are the damping constant and stiffness of the actuator suspension 

respectively. ω  is the angular frequency. eeM  is the input mobility of the equipment 

when it is coupled to the mount and base structure and is given by [1] 

 

( )
( )

1

1
e b m

ee
e b m

M M Z
M

M M Z
+

=
+ +

  (6) 

 

It has been shown previously [1] that because the actuator response is not free of 

phase shift, the feedback control system can become unstable. To maximize the 

feedback gain g , the actuator natural frequency must be designed as low as possible 

compared with the coupled equipment/mount natural frequency. Consider an example 

as described in [1] in which the equipment is modeled as a 1.08 kg  mass, the mount 

as a stiffness of 40,000 N/m  and a damping of 18 /Ns m . Also let the inertial mass 

be 0.91 kg  and the actuator of stiffness 3,900 N/m  and damping 5.8 /Ns m . The 

simulated frequency response ( )G jω  of this single inertial actuator system as given 
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by Eq. (1) is shown in Fig. 2.2. Here the impedance of the mount is assumed to be a 

pure stiffness mk , the mobility of the base as that of a stiffness bk , and the mobility of 

the equipment as a pure mass. It is clear that for a negative feedback control system 

the critical phase shift of 180±   occurs at the phase crossover frequency which is 

around the resonance frequency of the actuator. The maximum feedback gain that can 

be used before instability is thus determined by the magnitude of the frequency 

response shown in Fig. 2.2 at the phase crossover frequency of about 9 Hz. A Nyquist 

plot of the simulated plant response is also depicted in Fig. 2.3. The smaller loop on 

the left with negative real part is due to the actuator resonance which is not well 

damped. If the gain of the feedback control system is increased, this loop will expand 

proportionally and the closed-loop system will become unstable when the ( )1,0−  

point is crossed [3]. 
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Figure 2.2 Magnitude and phase of the simulated open-loop frequency response of the 

system with a single inertial actuator. 
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Figure 2.3 Nyquist plot of the simulated open-loop frequency response of the system 

with a single inertial actuator. 
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Figure 2.4 Block diagram of a negative feedback control system. 

 

If the feedback control system is connected in negative feedback configuration as 

shown in Fig. 2.4, where H  represents the controller, then the closed-loop response is 

given by 

( ) ( ) ( )
1

1
e

ep

v j
v G j H j

ω
ω ω

=
+

  (7) 

where epv  is the primary disturbance velocity of the equipment before active control. 

This equation represents the vibration reduction due to control only excluding the 
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passive attenuation effects of the actuators. Assuming that a simple-gain controller is 

employed, an approximate expression for the maximum gain that can be used to 

guarantee stability can be obtained. This also leads to the approximate maximum 

vibration attenuation that can be achieved by feedback control using the inertial 

actuator. If the natural frequency of the actuator, aω , is much less than that of the first 

natural frequency mω , of the mounted equipment, then the maximum gain is given by 

[1] 

2

max

2 a e m a m

a a

m c kg
k

ξ ω
ω

= =   (8) 

 

where aξ  is the damping ratio of the actuator, em  the mass of the equipment and mk  is 

the stiffness of the mount. The vibration attenuation corresponding to half the 

maximum gain given in Eq. (8) can be obtained using Eq. (7) as 

 

10

2
 ( ) 20log

2
m a

m a a m

Attn dB ξ ω
ξ ω ξ ω

 
= −  + 

 (9) 

Equation (9) shows that the attenuation can be made high provided that the natural 

frequency of the actuator is small compared to the first natural frequency of the 

equipment and also that the actuator must be well damped compared with this 

equipment mode. In the next section a general model of the system with multiple 

inertial actuators is presented in order to obtain the total open-loop frequency 

response of the system. This will subsequently be used to study the performance of 

the control of the first mode of a plate of a system.  

 

 

3. FREQUENCY RESPONSE OF SYSTEM WITH MULTIPLE 

INERTIAL ACTUATORS  

 

In this section the case of using two inertial actuators for feedback active isolation is 

considered. The equations for the frequency responses of the system are derived to 

show the effect of adding one more actuator on its closed-loop stability and the 

vibration attenuation. Figure 3.1(a) shows a schematic of the system studied. 
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Figure 3.1 (a) Schematic of active vibration isolation using two inertial actuators.         

(b) Free-body diagrams of masses. 

 

It is possible to represent the system in Fig. 3.1(a) by the free-body diagrams shown in 

Fig. 3.1(b) in order to derive the equations of motion of each mass. The total 

secondary force sf  acting down on the mass em  is then given by 

( ) ( )1 2 1 1 2 2s a a a a e a a ef f f Z v v Z v v = + − − − −   (10) 

where 1aZ  and 2aZ  are the impedances of the actuators. The equations of motion for 

each inertial mass can also be written as: 

Mass 1am : 

( )1 1 1 1 1a a a e a af Z v v j m vω− − =   (11) 

Mass 2am : 

( )2 2 2 2 2a a a e a af Z v v j m vω− − =  (12) 

Substitution of Eqs. (11) and (12) into (10) results in the following equation. 

1 2 1 1 2 2
1 2

1 1 2 2 1 1 2 2

a a a a a a
s a a e

a a a a a a a a

j m j m j Z m j Z mf f f v
Z j m Z j m Z j m Z j m

ω ω ω ω
ω ω ω ω

      
= + + +      + + + +       

 

          (13) 
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It is possible to define the mechanical input impedance of 1am  and 2am  respectively 

by the equations  

 

1 1
1

1 1

a a
aa

a a

j Z mZ
Z j m
ω

ω
=

+
  and 2 2

2
2 2

a a
aa

a a

j Z mZ
Z j m
ω

ω
=

+
 (14) 

 

If the equipment is held fixed then 0ev =  and the blocked response of the system 

when both actuators are in operation is given by 

 

1 2
1 2

1 1 2 2

a a
sb a a

a a a a

j m j mf f f
Z j m Z j m

ω ω
ω ω

    
= +    + +     

 (15) 

 

Also if only actuator 1 was generating the force on the equipment at any time, then the 

blocked response of actuator 1 can be defined as 

1
1

1 1 1

sb a
a

a a a

f j m T
f Z j m

ω
ω

= =
+

  (16) 

Similarly the blocked response for actuator 2 when it generates the only force is 

defined as 

 

2
2

2 2 2

sb a
a

a a a

f j m T
f Z j m

ω
ω

= =
+

  (17) 

 

The secondary force acting on the equipment as given by Eq. (13) can be simplified 

using the above equations as 

 

[ ]1 1 2 2s a a a a aa ef f T f T Z v= + +   (18) 

 

where aaZ  is the total mechanical input impedance of the inertial actuators as seen at 

the connection point of the equipment. It is given by 

 

1 2aa aa aaZ Z Z= +    (19) 
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If the equipment is assumed rigid and both actuators are driven simultaneously with 

the same input to give a total force 1 2aT a af f f= +  and velocity ev , then it is possible 

to define the frequency responses 1G  and 2G  of the system with respect to each 

actuator as 

 

1
1

e

a

vG
f

=     (20) 

2
2

e

a

vG
f

=     (21) 

 

The velocity ev  will be generated by sf  via the input mobility eeM  as defined in Eq. 

(6) of the equipment on the passive mount. That is, 

 

e ee sv M f=     (22) 

 

The response of the system can be obtained from Eqs. (18) to (22) as 

[ ] [ ]1 1 2 21e ee aa ee a a a av M Z M f T f T+ = +   (23) 

It is possible to derive the frequency responses defined in Eqs. (20) and (21) for the 

two-channel active isolation system by using Eq. (23). They are given by 

[ ]
2

1 1 2
1 11

e ee a
a a

a ee aa a

v M fG T T
f M Z f

 
= = + +  

  (24) 

[ ]
1

2 1 2
2 21

e ee a
a a

a ee aa a

v M fG T T
f M Z f

 
= = + +  

  (25) 

Assuming that the actuators generate identical forces such that 1 2a a af f f= =  and also 

1 2a a aT T T= = , then 1 2G G G= = , given by 

22e
cc a

a

vG M T
f

= =      (26) 

[ ] ( )2

1 21 1
ee ee

cc
ee aa ee aa aa

M MM
M Z M Z Z

= =
+  + + 

  (27) 

2ccM  is an equivalent input mobility of the coupled system including the passive 

mount with the two inertial actuators attached to it. Therefore compared to the single-

channel case (see Eq. (1)) the frequency response of the actuators in the two-channel 
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system is modified by a factor of 2 as well as by a change in the total mechanical 

input impedance aaZ . As a result, the maximum controller gain for each channel will 

need to be reduced to guarantee stability. The effect of adding more than 2 actuators 

to the system can also be studied by extending the study above for the two-channel 

case as shown next. 

 

It is interesting to point out that if the actuators can be assumed decoupled with the 

equipment such that 1 1ee aaM Z   and 2 1ee aaM Z   then Eq. (26) reduces to  

2e
ee a

a

v M T
f
=    (28) 

If a single actuator was employed and the actuator was decoupled with the equipment, 

the response [1] can be obtained from Eq. (1) as 

e
ee a

a

v M T
f
=    (29) 

Hence, with two identical actuators the magnitude of the frequency response is simply 

doubled since eeM  and aT  are constants independent of the number of actuators used.  

 

When more than two actuators are used, it is possible to generalize the results for the 

frequency responses of the system per actuator input force. Consider n  actuators 

mounted on the rigid equipment. Then Eq. (23) can be extended to 

 

( ) [ ]1 1 11e ee aa aan ee a a an anv M Z Z M f T f T + + + = + +    (30) 

 

The frequency response of each actuator j  can then be obtained from the equation 

 

( ) 1 11 11

n n
e ee ai ai ai ai

ccn
i iaj ee aa aa aan aj aj

v M f T f TM
f M Z Z Z f f= =

    
= =    

+ + + +          
∑ ∑


 (31) 

 

where the total input mobility of the coupled system ccnM  is now given by 

 

( )1 21
ee

ccn
ee aa aa aan

MM
M Z Z Z

=
 + + + + 

  (32) 
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The frequency response given in Eq. (31) can further be simplified to 

 

1

 ,   
n

e ai
ccn ij ai ij

iaj aj

v fM r T r
f f=

 
= = 

 
∑   (33) 

 

For the case of n  ideal actuators, 1ijr =  and assuming ai aT T=  the frequency response 

for each individual actuator is given by 

 

e
ccn a

aj

v nM T
f

=   (34) 

 

Therefore, for the general case when multiple inertial actuators are used in an active 

isolation system, the magnitude of the frequency response is increased n  times as 

well as modified by the total mechanical impedance aaZ  of the actuators. 

  

If the equipment and actuators can be assumed decoupled similar to the case of the 

single and two-actuator cases earlier, then Eq. (34) can be simplified to 

  

e
ee a

aj

v nM T
f

=   (35) 

 

Compared to Eq. (29) for the single actuator case, the frequency response magnitude 

of the decoupled equipment/multiple-actuators case is n  times that of the single-

actuator case. It is possible to obtain an expression for the maximum feedback gain of 

the controller for each channel to ensure closed-loop stability and also an expression 

for the corresponding vibration reduction. This is the subject of section 5 after an 

example of the control of the first mode of a plate is presented in section 4. It is shown 

that under the decoupled assumption, a valid expression for the maximum gain can be 

derived as well as an expression for the peak vibration attenuation for a varying 

number of actuators. 
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4. STUDY OF THE CONTROL OF THE FIRST MODE OF A PLATE 

 

In this section, an example of the use of multiple inertial actuators to control the first 

mode of a plate [4] using the model described in section 3 is presented. In section 4.1, 

a simplified model of the open-loop frequency response of the system is presented and 

the effect of adding more actuators studied. Then in section 4.2, the general equation 

for the mobility of the plate including any number of inertial actuators with control is 

derived. This is then used to study the performance of the system with multiple 

actuators in terms of the change in total kinetic energy of the plate mode.  

 

4.1 Open-loop frequency response of simplified plate model  

 

A simplified model of a plate is shown in Fig. 4.1 with the base assumed rigid, i.e. its 

mobility 0bM = . The mass of the equipment is assumed equivalent to that of the 

plate considered including the vibration sensor casing, and with finite plate stiffness 

mk  and plate damping mc . A primary disturbance force pf  is also shown acting on 

the plate causing it to vibrate. All other variables remain as defined in section 3. 
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Figure 4.1 (a) Schematic of simplified active vibration isolation of first plate mode 

using two inertial actuators. (b) Free-body diagrams of individual masses. 
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For this system, the generalized open-loop frequency response is still given by 

Eq.(34) but with eeM  given in Eq.(6) modified assuming 0bM =  to 

 

1
e

ee
e m

MM
M Z

=
+

  (36) 

 

Equation (34) can then still be used to study the open-loop frequency response of a 

multi-actuator system. Consider an example of a physical system with the parameters 

given in Table 4.1 [4].  The plate is assume to be a rigid mass em  (including sensor 

casing mass cm ) connected to a fixed base with a stiffness mk  and damping mc . The 

actuators are assumed identical with mass am , stiffness ak  and damping ac . For the 

purpose of analysis and simulation the force constant of the linear current amplifier is 

assumed to be equal to 1 /N A . 

 

Table 4.1    Table of physical system parameters. 

 

Parameter Value 

em  2.226 kg  

mk  126897 /N m  

mc  18 /Ns m  

cm  0.050 kg  

am  0.032 kg  

ak  140 /N m  

ac  1.39 /Ns m  

Force constant 1 /N A  

 

In the absence of the primary disturbance pf  it is possible to obtain the open-loop 

frequency response of the system in Fig. 4.1 fitted with 1, 5, 10 and 25 actuators with 

respect to the input actuator force. The frequency response and Nyquist plots for any 
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actuator-sensor pair are identical and as depicted in Figs. 4.2 to 4.9 respectively. It is 

clear that the magnitude of the frequency response changes around the resonances and 

the loops of the Nyquist plots expand compared to the single channel case in Fig. 4.2. 

The plots are useful in determining the maximum gain that can be used to optimize 

the performance of the system while ensuring robust stability of the closed-loop 

system. 

  

Around the first resonance of about 11 Hz the magnitude increases almost 

proportionally with the number of actuators. This actuator-related resonance also 

shifts slightly towards lower frequencies although this is not clearly visible for the 

well-damped actuator used here. The second resonance around 38 Hz is related to the 

coupled mounted resonance frequency of the plate. This plate-related resonance shifts 

slightly to higher frequencies and also becomes a bit more damped such that its peak 

magnitude changes relatively less. As a result the net effect on the frequency response 

is such that the right-hand loop in the Nyquist plots tends to expand at a relatively 

slower rate compared to the left-hand loop. Therefore, in order to keep this system 

stable the maximum feedback gain of each channel will depend mainly on the 

magnitude at the first resonance frequency at the phase-crossover frequency.  The 

maximum vibration attenuation however, is limited by the fact that the right-hand 

loop which is related to the plate first resonance increases at a slower rate than the 

left-hand loop which is related to the actuator resonance. This effect would have been 

more prominent if the actuator damping was smaller such that the first resonance 

frequency was of similar magnitude to the second resonance. The model shows that 

for good stability it is clearly desirable to keep the actuator damping high. 

 

 14 



0 20 40 60 80 100 120 140 160 180 200
-80

-60

-40

-20

0

M
ag

ni
tu

de
  (

dB
)

0 20 40 60 80 100 120 140 160 180 200
-180

-90

0

90

180

Frequency (Hz)

P
ha

se
  (

de
g)

 

Figure 4.2 Magnitude and phase of the simulated open-loop frequency response of the 

system when one inertial actuator is used. 
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Figure 4.3 Nyquist plot of the simulated open-loop frequency response of 

the system when one inertial actuator is used. 
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Figure 4.4 Magnitude and phase of the simulated open-loop frequency response of the 

system when five identical inertial actuators are used. 
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Figure 4.5 Nyquist plot of the simulated open-loop frequency response of the system 

when five identical inertial actuators are used. 
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Figure 4.6 Magnitude and phase of the simulated open-loop frequency response of the 

system when ten identical inertial actuators are used. 
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Figure 4.7 Nyquist plot of the simulated open-loop frequency response of the system 

when ten identical inertial actuators are used. 
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Figure 4.8 Magnitude and phase of the simulated open-loop frequency response of the 

system when twenty-five identical inertial actuators are used. 
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Figure 4.9 Nyquist plot of the simulated frequency response of the system when 

twenty-five identical inertial actuators are used. 
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4.2 Analysis of control performance of simplified plate model  

 

The free-body diagrams in Fig. 4.1 (b) can be used to derive an expression for the 

mobility of the first plate mode including control. The following frequency domain 

equation can be obtained for each actuator. 

( )a a e a a af Z v Z j m vω+ = +    (37) 

A force balance of the plate mass leads to Eq. (37). 

( )2 2 2p a a a a m ef f Z v Z Z j mω− + = + +  (38) 

If the sensors are assumed ideal and the amplifiers to drive the actuators have a unit 

force constant, the control force for a given feedback gain g  is 

a ef gv=   (39) 

Manipulation of the above equations leads to the mobility of the plate for the case of 2 

actuators given by 

[ ] ( )
( )

1

2 2

e

p a a
a m e

a a

v
f Z g Z

Z Z j m g
Z j m

ω
ω

=
 +

+ + − − + 

 (40) 

For the case of n  identical inertial actuators the above derivation can be easily 

extended to get the general equation for the mobility of the plate with control as given 

in Eq. (41). 

[ ] ( )
( )

1e

p a a
a m e

a a

v
f Z g Z

nZ Z j m n g
Z j m

ω
ω

=
 +

+ + − − + 

 (41) 

This equation can be used to study the change in the total kinetic energy ( *1 .2 a e em v v ) 

of the plate mode per unit primary disturbance for several cases including the effect of 

control ( 1n ≥ , 0g ≠ ) and without control but with actuators attached ( 1n ≥ , 0g = ). 

Also, when 0n = , the kinetic energy of the plate per unit disturbance without any 

actuators attached can be obtained. 

 

Before the performance of the multiple-actuators control system can be studied for the 

simplified system, the gain required to guarantee stability and achieve some 

predefined gain margin must be obtained. An approximate expression for the 

feedback gain is presented in the next section. The performance of the control system 

in terms of reduction in total kinetic energy of the plate is then discussed in section 6. 
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5. APPROXIMATE EXPRESSION FOR MAXIMUM FEEDBACK GAIN 

 

It is possible to derive an approximate maximum equal gain for each channel by 

assuming that the actuators are decoupled to the plate. That is, when the actuator 

resonance frequency aω  is much less than the mounted resonance frequency mω  of 

the first plate mode [1]. The frequency response plots shown in section 4.1 show that 

the stability of the system is dependent upon the actuator resonance frequency. The 

total open-loop response of the control system for n  actuators, assuming a decoupled 

system, is then given by the equation 

 

ee aGH nM T g=   (42) 

 

where H g=  is the feedback controller gain for each channel. Following a similar 

approach to that described in [1] it can be shown that for the case of multiple 

actuators, the corresponding maximum gain can be derived as 

 

2

max

2 a e m a m

a a

m c kg
n nk
ξ ω
ω

= =    (43) 

 

Hence compared to the single-channel case, the maximum gain maxg  is now n  times 

less than that given in Eq. (8). This tends to agree with the fact that the magnitude of 

the frequency response at the first resonance has increased by a factor of n . The 

approximate maximum vibration attenuation due to the effect of control alone for half 

the gain given in Eq. (43), that is when 

2

6 2
a e m a m

dB
a a

m c kg
n nk

ξ ω
ω

= =   (44) 

 can also be obtained from Eq. (7) at nω ω=  . This is given by 

10

2
 ( ) 20log

2
m a

m a a m

Attn dB ξ ω
ξ ω ξ ω

 
= −  + 

 (45) 
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It is exactly the same as the expression given in Eq. (9) for the single channel case. 

Hence for the case studied here and the decoupled assumption made, the expression 

given in Eq. (45) suggests that the performance of the system stays the same 

irrespective of the number of independent control channels used. Clearly this simple 

expression breaks down for the example given here since the frequency responses and 

Nyquist plots show that the maximum attenuation is not constant. In fact, it tends to 

decrease with an increasing number of actuators. The assumption that the actuators do 

not affect the response of the structure does not hold for the system considered here 

and the expression for maximum vibration reduction with multiple actuators as given 

in Eq. (45) needs to be modified.  

 

The peak vibration attenuation can be plotted as a function of the number of actuators 

used for a given gain margin of say 6 dB. For this case the negative real intercept on 

the Nyquist plots is fixed at 0.5 by adjusting the feedback gain of each channel. This 

can easily be done in simulation and the peak attenuation then obtained using Eq. (7). 

An approximate expression for the peak attenuation at the second resonance 

frequency can be calculated using the equation 

10
max

1
 ( ) 20log

1
Attn dB

R
 

= −  + 
  (46) 

where maxR  is the real intercept of the optimised right-hand loop of the Nyquist plot as 

depicted in Fig. 4.9. A plot of the simulated peak vibration attenuation is given in Fig. 

5.1 for the number of actuators varying from 1 to 25. 
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Simulated Maximum Attenuation from Nyquist plots

 

Fig. 5.1 Maximum attenuation from Nyquist simulations due to control only as a 

function of the number of actuators for 6 dB gain margin. 

 

As the number of actuators increases, the peak attenuation that can be achieved for a 

gain margin of 6 dB decreases. This result can be explained from the fact that the 

addition of more actuators, changes the frequency response of the system by 

modifying the coupled mobility of the plate-actuators system as discussed previously. 

The frequency response and Nyquist plots shown in Figs. 4.2 to 4.9 also confirm the 

result of Fig. 5.1 since the magnitude of the second resonance becomes more damped. 

 

In order to obtain a more realistic approximate expression for the vibration attenuation 

of the multiple-actuator system it is possible to represent the decoupled actuators-plate 

system for a mω ω , as depicted in Fig. 5.2. During operation at mω ω=  the actuators 

are assumed to be well above their natural frequency aω , so that they are stiffness and 

damping controlled, and the actuator masses can be assumed to be at rest. The 

actuators stiffness and damping thus appear connected to an inertial ground shown on 

the left hand side of Fig. 5.2 and incorporated into the plate stiffness and damping on 

the right hand side. The plate mass with actuators attached thus behaves like an 

equivalent system with the plate stiffness and damping altered by the actuators 

stiffness and damping.  
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Fig. 5.2 Equivalent representation of the system with multiple actuators for a mω ω . 

 

For the equivalent system, the mount stiffness and damping are modified by the 

addition of n  times the stiffness and damping of each actuator. The resonance 

frequency and damping ratio of this equivalent system are given by 

 

m a
m

e

k nk
m

ω +
=    (47) 

( )2
m a

m
e m a

c nc
m k nk

ξ +
=

+
  (48) 

 

These equations represent the change in the stiffness and damping of the plate due to 

the addition of the undriven actuators. In particular Eq.(48) gives an indication of the 

‘passive’ attenuation effect before control is even applied. The approximate peak 

vibration reduction can then be calculated from Eq. (45) with the modified parameters 

given in Eqs. (47) and (48). The resonance frequency and damping ratio given by 

these equations can be plotted as a function of the number of actuators for the plate 

example considered earlier. Figure 5.3 shows the results for the number of actuators 

varying from 1 to 25. As n  increases, the resonance frequency and the damping ratio 

increase almost linearly as well. This result is consistent with the frequency response 

plots given previously in section 4. 
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Fig. 5.3 Predicted variation of resonance frequency and passive damping ratio of the 

equivalent plate system from Eqs. (47) and (48). 

 

If the coupled system is approximated as an equivalent system with modified stiffness 

and damping given by Eqs. (47) and (48), then the new gain for a 6dB gain margin is 

given by 

( )2

6 2
a m aa e m

n dB
a a

c k nkmg
n nk

ξ ω
ω

+
= =   (49) 

Figure 5.4 shows a comparison of the simulated gain from the Nyquist plots and those 

predicted by Eqs. (44) and (49) above. It is clear that the predicted gains from both 

Eqs.(44) and (49) predict the simulated gain from the Nyquist plots with good 

accuracy. The gains predicted can barely be distinguished for the example of the well 

damped actuators as shown in Fig. 5.4. This figure is consistent with the results 

obtained in [4] showing a reduced gain for an increasing number of actuators. 

 

The new expression for maximum attenuation with the parameters given in Eqs. (47) 

and (48) is then given by 
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( )
( ) ( )10 10

22
 ( ) 20log 20log

2 2
a m am a

m a a m a m a a m a

k c nc
Attn dB

k c nc c k nk
ξ ω

ξ ω ξ ω
 + 

= − = −     + + + +   
(50) 

 

This expression can be plotted against the number of actuators and compared to the 

attenuation in Fig. 5.1 as shown in Fig. 5.5. Also shown is the constant attenuation 

which results if Eq. (45) is used without the modified parameters given by Eqs. (47) 

and (48).  
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Fig. 5.4 Comparison of simulated (from Nyquist plots) and predicted gains from 

Eq.(44) and Eq.(49) for a 6 dB gain margin. 
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Fig. 5.5 Vibration attenuation for a 6 dB gain margin using the equivalent plate 

analysis of Fig. 5.2. The solid line shows the attenuation achieved in the simulations 

using the Nyquist plots as shown in Fig. 5.1. 

 

 

Figure 5.5 shows the predicted attenuation for 1 to 25n =  from Eq. (50) compared to 

that from the Nyquist simulations. The prediction tends to overestimate the simulated 

attenuation but is relatively accurate. One source of discrepancy is the way in which 

the feedback gains are obtained in both cases. In the simulated case, they are obtained 

directly from the frequency response calculations whereas in the second instance it is 

approximated by Eq. (50). The assumptions made in deriving Eqs.(45) and (50) are 

that the equipment and actuators are decoupled such that 1ee aaM Z   when a mω ω . 

In the example used here for the plate the ratio 0.28a mω ω ≈ . If this ratio was much 

smaller it is expected that the predicted and simulated attenuations would be much 

closer. In the next section a study of the performance of the control of the first plate 

mode with several inertial actuators is presented in terms of the total kinetic energy of 

the plate. 
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6. PERFORMANCE OF CONTROL SYSTEM 

Once the feedback gain to achieve a 6 dB gain margin is obtained as given in Eq. (49) 

the performance of the control system as described in section 4 can be studied. In 

particular, the relative change in total kinetic energy of the first plate mode can be 

investigated from the mobility given by Eq. (41). In this section the effects of passive 

attenuation of the actuators only ( 0n ≠ , 0g = ), that of the control system alone 

( 0n ≠ , g  given by eq. (49)) and finally that of the combined effect of the actuators 

and control on the plate total kinetic energy is presented (i.e. control performance 

compared to plate without actuators when 0n = , 0g = ). The ratio of the total kinetic 

energies of the plate in decibels gives an indication of the change in kinetic energy 

due to one cause. For example, when the plate does not have any actuators attached, 

0n =  and 0g =  and the mobility of the plate given by Eq. (41) reduces to 

[ ]
1ena

p m e

v
f Z j mω

=
+

   (51) 

When actuators are attached and no control on, the mobility is given by 

[ ] ( )
2

1enc

p a
a m e

a a

v
f ZnZ Z j m n

Z j m
ω

ω

=
 

+ + −  + 

  (52) 

Hence it is possible to calculate the ratio of the total kinetic energy of the plate per 

unit primary force with and without actuators and this gives an indication of the 

change in total kinetic energy due to the addition of the actuators. Similarly the effect 

of control can be studied compared to the case of the plate without and with actuators. 

Figure 5.6 summarises the three cases mentioned above. The addition of the actuators 

to the plate introduces passive damping to the plate and hence reduces the plate 

vibration. As the number of actuators increases the passive reduction increases. On 

the other hand, the effect of control using multiple actuators has an opposite effect on 

the attenuation. Initially a large attenuation is obtained with a single actuator which 

then decreases as the number of actuators increases. This result is consistent with the 

peak attenuation result obtained in Fig. 5.5. The combined attenuation due to the 

passive and active effects however shows that there is a net increasing reduction 

(albeit small) in the total kinetic energy of the plate as the number of actuators 

increases. This result is also consistent with the results obtained in [4] with the 

exception of the change in kinetic energy due to control for a small number of 
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actuators. In the previous study the attenuation due to a single actuator is small and 

increases to a maximum before decreasing again as the number of actuators increases. 

The difference is mainly due to the fact that the previous study included up to 53 plate 

modes whereas a single plate mode is considered in the example given here. 
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Fig. 5.6 Change in the total kinetic energy of the first plate mode due to passive 

control, active control and combined passive and active control. 

 

6. SUMMARY 

In this report the feedback active isolation problem using an inertial actuator is 

extended from the single-channel to the multiple channel case. In the first instance an 

example of a two-actuator system is considered and the equation for the frequency 

response derived. The result shows that the response per unit actuator input is 

dependent on the number of actuators as well as the total mechanical input impedance 

of the coupled system. The magnitude of the frequency response tends to increase 

almost proportionally with the number of actuators when the number of actuators is 

small. In this case the response is almost doubled in magnitude. If the number of 

actuators is more than 2, the response changes in a more significant way via the sum 

of the mechanical impedance of all the actuators. If the equipment/plate and actuators 

are such that a mω ω  they can be assumed decoupled and the magnitude of the open-

loop frequency response is mainly proportional to the number of actuators. 
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The system response consists of two resonance peaks with the first one related 

directly to the actuator resonance. This resonance frequency changes only slightly 

with an increasing number of actuators. However, its magnitude increases almost 

proportionally. The second resonance is that due to the complete coupled system 

mainly associated with the equipment/plate resonance. As more actuators are added 

the corresponding resonance frequency increases indicating a stiffer system. At the 

same time the damping of this frequency also increases. The net effect of the addition 

of more actuators on the system response can be understood from the Nyquist plots. 

The left-hand loop which determines stability tends to expand faster than the right-

hand loop which determines the peak vibration attenuation. Therefore, increasing the 

number of actuators requires a reduction in feedback gain for a given stability margin 

but at the same time a reduced peak vibration attenuation results. 

 

An example application consisting of the first mode of a plate as the equipment with 

multiple inertial actuators was investigated. Simulation from the frequency response 

calculations shows that the peak attenuation that can be achieved with more actuators 

tends to decrease. An approximate representation of the coupled system by an 

equivalent single-degree-of-freedom system shows that the natural frequency and 

damping of the system increase with more control channels. This also indicates that 

the multi-channel system behaves as a stiffer and more damped system. An expression 

for the peak vibration reduction could be approximated from the decoupled system 

equation with modified parameters. The predicted results are in good agreement with 

the simulated results from the Nyquist plots provided that the actuators-plate can be 

assumed decoupled for a mω ω . 

  

Finally the performance of the simple one-degree-of-freedom system revealed that the 

total kinetic energy of the plate mode reduced after addition of the passive actuators. 

When control is introduced however, the kinetic energy of the plate increases as the 

number of actuators increases. Hence the performance due control alone tends to 

decrease. This is due to the fact that the addition of the actuators changes the open-

loop frequency response of the system in such a away that to maintain a given 

stability margin the feedback gain has to be reduced. This has been verified by the 

Nyquist plots of the system as well as from the gain equations. The combined 

 29 



passive/active control performance shows that the kinetic energy of the plate mode 

decreases as the number of actuators increases.  

 

The example used in this report is limited due to the fact that a single plate mode was 

considered. Although the results are consistent with the previous study given in [4] 

where a plate including 53 modes is used, there are some differences with regards to 

the control results. A future study can use the general model developed in this report 

with the mobility of the base equivalent to that of the plate in [4]. The equipment and 

mount parameters can be replaced by those of the vibration sensor casing mass and its 

dynamic parameters. In practice for a securely fixed casing the casing stiffness and 

damping can be assumed very large such that the casing acts as if it is attached 

directly to the plate.  For this more realistic system, the generalized open-loop 

frequency response is still given by Eq.(34) but with eeM  given in Eq.(6) modified to 

1
e

ee
e b

MM
M M

=
+

 for the impedance of the casing mZ →∞ . Here bM  is the mobility 

of the plate. Using this model with a given plate mobility it will be possible to study 

the system performance by simulation as described in this report for any number of 

plate modes. A more direct comparison with the results in [4] can then be obtained 

and conclusions drawn. 
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