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Abstract

Predictions of the active mechanical response in the guinea pig cochlea have been obtained

from an elemental model, having an analytic formulation of the fluid coupling and a lumped

parameter representation of the organ of Corti. The lumped parameter model is derived

from the organ of Corti geometry and has three degrees of freedom, as used by Ramamoor-

thy et al. [1], whose values for the various mechanical parameters were used in the numerical

simulation here. The coupled model has also been expressed in state space form, in order

to assess its stability for different active feedback gains. The analytical model of the fluid

coupling allows the far field and the near field components of to be accounted for separately,

so that the difference between 1D and 2D fluid coupling can be investigated. It is found

that in order to get reasonable agreement with the results of Ramamoorthy et al. [1], a

reduced near field fluid coupling component has to be used, suggesting that the size of this

component, which is controlled by the number of radial fluid modes they accounted for, was

used as a tuning parameter in their work. A simplified model of the active feedback due to

the outer hair cells is also described, which quantifies the electromechanical coupling coeffi-

cient used by various authors. Longitudinal electrical coupling has, however, been ignored

in the present model, which might be the reason why the maximum active gain is about 5

dB less than that reported by Ramamoorthy et al. [1]. The present model reproduces the

realistic difference between the active and passive basilar membrane responses obtained by

these authors in both frequency and time domains.
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1 Introduction

It is important to construct models of cochlear mechanics to test our understanding of the
peripheral hearing system. Using an elemental approach, such models can conveniently be
split into two parts, one concerned with fluid coupling and the other concerned with the
dynamics of the organ of Corti. In this report, a lumped parameter model of the active OC
is developed, which is physiologically reasonable, and its properties are discussed.

Although the OC combines bending and shear motion, this motion is translated into
a single axis using the relations presented by Allen [2], and discussed by Elliott et al.

[3, 4, 5]. The model presented here is based in a three degree of freedom system, in where
the masses can be associated with the BM and the transverse and shear motion of the
TM. Models using similar dynamics have been previously developed by Geisler et al.[6]
and by Ramamoorthy et al.[1], however, these models use a feedfoward approach to the
active pressure due to the OHC forces.

Although the full effect of 3D fluid coupling can be incorporated into the elemental
formulation of the coupled cochlea, it is the near field component of the pressure that has a
significant effect on the local OC dynamics. In order to understand the interplay between
different elements of the OC dynamics, particularly when it is active, it is helpful to include
the added mass due to the near fluid loading in the part of the model associated with the
OC dynamics rather than in the fluid coupling part of the model. In fact, it is found that
the results of Ramamoorthy et al.[1] are best reproduced with a fluid coupling having a
diminished near fluid component of the fluid coupling, compared with the analytic value
for this component.

In Section 2 the individual dynamic responses of the BM and TM are discussed. In order
to provide a concrete example of the response of those components of the OC, numerical
values of the various physical parameters are taken from the publications of the Michigan
group[1], which have been chosen to represent a guinea pig cochlea. In Section 3 the
equations of motion of the model are introduced, and Section 4 describes the distribution
of parameters. The introduction of an active feedback loop into the organ of Corti dynamics
is described in Section 5, and the coupled response described in Section 6. The results of
simulations of the coupled response at various positions along the cochlea are given in
Section 7, before conclusions are drawn in Section 8. A different distribution of cochlear
chamber dimensions is also presented in Appendix A, which uses cochlear chambers with
the dimensions found in a Guinea pig. Appendix B describes the extension of the state space
formulation to include this three degree of freedom micromechanics model. Appendices C
and D discuss the simplification that have been made to the electrical coupling.
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2 BM and TM dynamics

Fig. 1a shows a cross section of the cochlea, including the main components of the OC.
The arch of Corti is believed to pivot about its left bottom corner, which is attached to
the BM and causes this to rotate as a more or less rigid body around this point. Similarly,
the RL is believed to rotate about the top vertex of the arch of Corti. The TM and the
RL are connected via the outer hair cells (OHC) and inner hair cells (IHC). The relative
displacement of the OHC stereocilia is used in the model to recreate the force that simulates
an active cochlea.

(a) (b)

Figure 1: Sketch and lumped parameter model of the OC.

In the passive cochlea, the OHC are not active, and these, together with the TM mainly
act as mass loading in the BM. The passive response of the OC can thus reasonably well
represented as a single degree of freedom system. In order to recreate the active behaviour
that leads to a greater frequency selectivity, it is needed to include one or two extra masses
to create a higher order resonant system.

Fig. 1b shows how the OC can be transformed into a lumped parameter model, where
motion is assumed to be present radially (shear motion) and transversally (bending mo-
tion). This shear motion is then transformed into an equivalent bending motion, which
can be performed by assuming that the RL pivots around the top corner of the tunnel of
Corti. This geometry change was introduced by Allen in 1980 who assumed that BM and
TM move parallel to one another. For the case of the model presented here, this parallel
motion occurs between the TM and RL.

As the two right angle triangles shown in Fig. 2 are similar, the angle of rotation θ is
also similar, which leads to the relation

sin θ =
w

l
and sin θ =

∆

h
, (2.1)
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Figure 2: Relation between shear and bending displacement on the TM.

so that
∆

w
= g =

h

l
, (2.2)

where g is known as the shear gain and depends on the geometry of the OC. Using this
relation, it is possible to relate the transverse motion to the shear motion, i.e,

wRL =
∆RL

g
. (2.3)

As can be observed in Fig. 3b, the radial motion of the TM due to radial pressure pSR is
governed by the equation

pSR = k′

4∆TM + s2m′

3∆TM , (2.4)

where k′

4 and m′

3 are the physical shear stiffnesses and masses of the TM. This pressure is
generated by the relative radial displacements of TM and RL

pSR = k′

3(∆TM −∆RL). (2.5)

We can define an equivalent transverse pressure acting on the RL due to the TM,
pST . Since the work per unit area done by the RL in the shear direction, ∆RLpSR, must
be equal to that in the equivalent transverse direction, wRLpST , then using Eq. 2.3, the
equivalent transverse pressure can be related to the shear pressure by pST = gpSR. Since h
is approximately equal to 1, a value of 1 is used for g here, so that the equivalent transverse
pressure is equal to the physical radial pressure. Using this relation and the relation of Eq.
2.2, pST can be defined as

pST = g2(k′

4wTM + s2m′

3wTM), (2.6)

which can be written as
pST = (k4 + s2m3)wTM , (2.7)

where k4 = g2k′

4 and m3 = g2m′

3 refer to the equivalent transverse stiffness and mass.
Similarly, the equation describing the radial stiffness of the cilia, Eq. 2.5 can be transformed
into transverse motion to give

pST = g2k′

3(wBM − wTM), (2.8)

or
pST = k3(wBM − wTM), (2.9)

where k3 = g2k′

3. The transverse force required to drive the RL must, in addition to pST ,
also include that required to overcome the transverse inertia of the RL and TM masses, m2

3



and the equivalent stiffnesses due to the RL rotation, k5. By the use of these relationships,
the OC model is transformed from having motion in two axes, as shown in Fig. 3a to a
model with motion in only one axis, as in Fig. 3b, where pA is the pressure difference due
to the fluid in the cochlear chambers.

(a) Shear and transversal motion. (b) With motion in only one axis.

Figure 3: Lumped parameter model of the OC. The damping associated with each stiffness is
not shown for notational convenience.

3 Dynamics of the organ of Corti

Three equations of motion are introduced for the system of Fig. 3b,

pA − pOHC = s2m1wBM + k1wBM + k2(wBM − wRL), (3.1)

pOHC = s2m2wRL + k2(wRL − wBM) + k3(wRL − wTM) + k5wRL, (3.2)

s2m3wTM + k3(wTM − wRL) + k4wTM = 0, (3.3)

where m1 represents the mass of the BM and wBM its displacement, m2 represents the
physical mass of the TM and wTM its transverse displacement and m3 represents the trans-
formed mass of the TM due to its radial motion and wTM its equivalent transversal motion
as discussed in Section 2. Each stiffness is also complex and can be written as k+sc where k
is the real stiffness and c the associated damping. The receptance for each mass when these
are driven by pA and pOHC , are obtained here by performing using Gaussian elimination.

The displacement of the TM, wTM , is specified as a function of that of the RL, wRL, by
using Eq. 3.3. A transfer function denoted TTM/RL is created

(s2m3 + k3 + k4)wTM − k3wRL = 0 →
wTM

wRL
= TTM/RL =

k3
s2m3 + k3 + k4

, (3.4)

4



which is referred to as the shear transfer function1. The same operation is performed with
Eq. 3.2, which combined with Eq. 3.4 allows us to express wRL as a function of the
displacements of the BM and TM, wBM and wRL respectively. This transfer function is
denoted as TRL/(BM+TM)

(s2m2 + k2 + k3 + k5)wRL − k3wTM − k2wBM = 0,

[

(s2m2 + k2 + k3 + k5)− k3TTM/RL

]

wRL = k2wBM . (3.5)

Hence

wRL

wBM + wTM
= k2TRL/(BM+TM) = k2

[

(s2m2 + k2 + k3 + k5)− k3TTM/RL

]

−1
. (3.6)

A final relationship is introduced to relate wBM with wRL. This is denominated as TBM/RL

and is obtained directly by equalling to 0 Eq. 3.1

(s2m1 + k1 + k2)wBM − k2wRL = 0,

TBM/RL =
wBM

wRL
=

k2
s2m1 + k1 + k2

. (3.7)

By using these three relationships, the receptance of the three masses of the micromechan-
ical model with respect to pA and pOHC can be obtained.

The receptance of the BM respect to the acoustic driving pressure, GBA = wBM/pA, is
obtained by using Eq. 3.5 and expressing wRL as a function of wBM

pA = (s2m1 + k1 + k2)wBM − k2wRL = (s2m1 + k1 + k2 − k2
2TRL/(BM+TM))wBM ,

GBA =
wBM

pA
=

1

s2m1 + k1 + k2(1− k2TRL/(BM+TM))
. (3.8)

Similarly, the receptance of the BM when driven by the active pressure, GBO = wBM/pOHC,
is obtained by equalling Eq. 3.1 and Eq. 3.2 to pOHC and expressing wRL and wRL

displacements as a function of wBM . When including the active pressure, wRL is related to
wBM as

[

(s2m2 + k2 + k3 + k5)− k3TTM/RL

]

wRL = pOHC + k2wBM ,

wRLT
−1
RL/(BM+TM) = pOHC + k2wBM ,

wRL = k2TRL/(BM+TM)wBM + TRL/(BM+TM)pOHC .

So, for Eq. 3.1

(s2m1 + k1 + k2)wBM − k2
(

k2TRL/(BM+TM)wBM + TRL/(BM+TM)pOHC

)

= −pOHC ,

(

s2m1 + k1 + k2 − k2
2TRL/(BM+TM)

)

wBM = pOHC

(

−1 + k2TRL/(BM+TM)

)

,

GBO =
wBM

pOHC

=
−1 + k2TRL/(BM+TM)

s2m1 + k1 + k2 − k2
2TRL/(BM+TM)

. (3.9)

Other displacement of interest is that given by the relative displacements of RL and TM,
wRL − wTM , which represents the displacement that the OHC stereocillia overcome, wST .

1This denomination was first introduced by Allen[2] to relate bending displacements of TM and BM.
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First we introduce the stereocillia displacement for a given acoustic pressure input at the
BM, GSA = wST/pA. For obtaining this displacement, it is needed first to express wRL as
a function of pA.

wRL

(

(s2m1 + k1 + k2)
T−1
RL/(BM+TM)

k2
− k2

)

= pA,

wRL

pA
=

(

(s2m1 + k1 + k2)
T−1
RL/(BM+TM)

k2
− k2

)

−1

. (3.10)

By using Eq. 3.4 wTM is expressed as a function of wRL,

wST = wRL − wTM = wRL − TTM/RLwRL = (1− TTM/RL)wRL. (3.11)

So that if Eq. 3.10 and Eq. 3.11 are combined

GSA =
wST

pA
= (1− TTM/RL)

(

(s2m1 + k1 + k2)
T−1
RL/(BM+TM)

k2
− k2

)

−1

. (3.12)

The last receptance of interest is the one that relates the displacement of the stereocillia
due to the active pressure, GSO = wST/pOHC. This quantity is obtained by expressing Eq.
3.1 and 3.2 as a function of wRL and pOHC.

For Eq. 3.1

(s2m1+k1+k2)wBM−k2wRL = −pOHC → wBM = (k2wRL−pOHC)(s
2m1+k1+k2)

−1. (3.13)

Eq. 3.13 is now combined onto Eq. 3.2

wRLTRL/(BM+TM) = pOHC + k2wBM ,

wRLTRL/(BM+TM) = pOHC + k2(k2wRL − pOHC)(s
2m1 + k1 + k2)

−1,
(

TRL/(BM+TM) +
k2
2

s2m1 + k1 + k2

)

wRL =

(

1−
k2

s2m1 + k1 + k2

)

pOHC ,

which is reduced by using, TBM/RL, Eq. 3.7

(

TRL/(BM+TM) + k2TBM/RL

)

wRL =
(

1− TBM/RL

)

pOHC ,

so that
wRL

pOHC
=

1− TBM/RL

TRL/(BM+TM) + k2TBM/RL
, (3.14)

which if combined with Eq. 3.11 gives GSO

GSO =
wST

pOHC
=
(

1− TTM/RL

) 1− TBM/RL

TRL/(BM+TM) + k2TBM/RL

. (3.15)

In Section 7 is presented a detailed study of the frequency response of each of these recep-
tances, using the parameters described in Section 4.
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4 Distribution of parameters

In order to understand the dynamic behaviour of the OC model above at different positions
along the cochlea, a distribution of parameter values has to be assumed. Whereas the
values of stiffnesses and damping and TM mass can be taken from the literature[1, 7], the
effective value of the BM mass is affected by fluid loading. If 1D fluid coupling is assumed,
in order to help understand the properties of the OC dynamics[8, 9] the effective value of
the BM mass must be increased to take the near field component of the fluid coupling into
account[10, 11, 7]. In this case the mass per unit area can be expressed as

m1 = mBM +mF , (4.1)

where mBM is the physical mass of the BM given by ρBMhBM , being ρBM the BM density
and hBM its physical thickness, which decreases from 7 µm to 1.7 µm along the length of
the cochlea[1]. mF is the equivalent mass due to 3D fluid loading, given by ρFT , where T
represents the effective thickness of the BM due to fluid loading, and is given by a function
of the BM geometry within the cochlea by Eq 6.14. According with the assumptions of
Ramamoorthy et al. [1] the BM width expanses linearly from 80 µm at the base to 200 µm
at the apex, being the BM placed centrally in the fluid chambers, which have a constant
width and height of 1 mm each, then T can be calculated to be 0.07 µm at the base to
0.14µm at the apex. If the BM is assumed to be placed on one side of the cochlear parti-
tion, rather than in the centre, the near fluid pressure, and the T, is increased by a factor
of two [7]. If the physical weight of the BM and T are added, the final distribution of ef-
fective BM mass increases linearly from 0.08 Kgm−2 at the base to 0.14 Kgm−2 at the apex2.

Ramamoorthy et al. [1] assume that the BM vibrates with a single mode shape in the
radial direction, and coupled into the fluid with a finite number of radial fluid modes. From
their Fig. 18, it would appear that 3 radial modes are typically accounted for in the fluid,
although the results seem to be significantly different if 5 radial modes are included and it
is not clear how many modes are necessary to get the model series for the fluid pressure to
converge. In an earlier discussion of this description of the fluid coupling [12], it is explained
how the transverse variation in the fluid pressure is accounted for with a simplified finite
element formulation with piecewise linear shape functions. It is noted by these authors
that it was necessary to account for 20 fluid radial modes in order to get convergence. It
would thus appear that Ramamoorthy et al. [1] uses the number of radial modes accounted
for in their model as a tuning parameter, perhaps to best match their coupled frequency
responses with experimental results, rather than selecting a large enough number of modes
to ensure convergence of the model they were using of fluid coupling. It has been shown
by Ni [13] that the equivalent BM mass due to the fluid loading is rather sensitive to the
number of fluid elements used in a 3D finite elements (FE) model of fluid coupling. It is
thus difficult to exactly replicate the effective BM mass used in [1]. If however, the BM
mass derived above is used with their BM stiffness, as corrected by Li [14], then the range
of BM natural frequencies is from about 60 kHz at the base to 300 kHz at the apex, in
reasonable agreement with that expected for a Guinea pig [15, 16].

The parameters used in the final version of the model presented here are listed in Table
1, together with indications of how and where they have been derived from. Note that for
kOHC the value used is twice the original value given by Ramamoorthy et al., which are

2See comments of Section. 6.4
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6.08 · 103 Nm−2. The values for the OHC stiffness in vivo are not known exactly, and a
stiffness twice the original one has been used as it has shown to provide better coupled
responses. The values used here are normalized by the area of each element, so that the
input quantity to the model is the acoustic pressure that drives the BM and not a force,
as in the model of Ramamoorthy et al.[1]. The spatial distributions for mass, stiffnesses,
damping and natural frequencies can be observed in Figures 4 and 6.

The three degree of freedom OC model will have three modes, whose natural frequencies
will, in general, depend on the values of all the masses and stiffneses. Since m1, with near
field fluid loading, is significantly larger than m2 and m3, however, the modes are mainly
associated with different parts of the model and simplified approximate values of the natural
frequencies can be calculated, as

fRL(x) =
1

2π

√

k2(x) + k4(x) + k5(x)

m2(x) +m3(x)
. (4.2)

fBM(x) =
1

2π

√

k1(x)

m1(x)
, (4.3)

fTM(x) =
1

2π

√

2k3(x) + k4(x) + k5(x)

m3(x)
, (4.4)

If k1, k3 and k4, are assumed to have an associated damper, the isolated damping ratios
associated to each mass can be calculated as

ζRL(x) =
c3(x)

2m2(x)ωRL(x)
(4.5)

ζBM(x) =
c1(x)

2m1ωBM (x)
(4.6)

ζTM(x) =
c3(x) + c4(x)

2m3(x)ωTM(x)
(4.7)

The relative amplitude and phase of the motions of m1, m2 and m3 for each mode
can be observed in Fig. 5, assuming parameters for x = 5.75 mm and excitation at each
natural frequency. whilst that Fig. 6 shows the natural frequencies as a function of position
obtained from a full analysis of the three degree of freedom system and the approximations
above together with their damping ratios.
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Table 1: Micromechanical parameters (upper table) and geometrical data (lower table) for the model.

Element Original value Original units Conversion Value Units Source

k1 8.40 · 105(h/h0)
3(b0/b)

4 Nm−2 k1/b
(x)
TM 8.40 · 105(h/h0)

3(b0/b)
4 Nm−3 Modified corrections from

Li.[14], KBM

k2 2 · 6.08 · 103e−325x Nm−2 k2/b
(x)
BM 2 · 6.08 · 103e−325x/b

(x)
BM Nm−3 Corrections from Li[14]

,KOHC

k3 3.42 · 104e−325x Nm−2 k3/b
(x)
BM 3.42·109e−325x/b

(x)
BM Nm−3 Ref. [1] ,KHB

k4 6.00 · 103e−220x Nm−2 k4/b
(x)
BM 6.00·109e−220x/b

(x)
BM Nm−3 Ref. [1], KTMs

k5 7.60 · 103e−325x Nm−2 k5/b
(x)
BM 7.60·109e−325x/b

(x)
BM Nm−3 Ref.[1], KRL

m1 0.007(base) to 0.001 (apex) kgm−2 mBM +mF 0.08(base) to 0.14 (apex) kgm−2 Estimated from Ref. [1, 7],
MBM

m2 0.015e50x kgm−1 m2/b
(x)
BM 0.015e50x/b

(x)
BM kgm−2 Adjusted manually

m3 gm2 0.015e50x/b
(x)
BM kgm−2 From [1], assumed g

c1 0.10 Nsm−2 c1/b
(x)
BM 0.10·103/b

(x)
BM Nsm−3 Corrections from Li[14],

CBM

c2 0.00 Nsm−3

c3 0.024 Nsm−2 c3/b
(x)
BM 0.024·103/b

(x)
BM Nsm−3 Ref. [1], CTMs

c4 0.05 Nsm−2 c4/b
(x)
BM 0.05·103/b

(x)
BM Nsm−3 Ref. [1], CTMs

c5 0.00 Nsm−3

Property Value Source
H 1 mm Ref. [1]
W 1 mm Ref. [1]

b
(x)
BM 80(base) to 200 µm (apex) Ref. [1]

h
(x)
BM 7(base) to 1.7 µm (apex) Ref. [1]
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Figure 4: Values of the parameters used in the model plotted against frequency.
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3

TM mode

3

BM mode

3

RL mode

Figure 5: Relative phase of each of the observed modes of vibration of the OC. From left to
right:
1) “BM mode”, where the BM moves to a much greater extent than the RL or the BM.
2) “TM mode”, where the motion of m2 and m3, representing the transverse and shear motion of
the RL and TM, are out of phase and large compared with that of the BM.
3) “RL mode”, where the motion of m2 and m3 are in phase but large compared with that of the
BM.
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Figure 6: Natural frequencies and damping factors of the BM, TM and RL using the parameters
of Table. 1.
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5 Active model of the organ of Corti

5.1 Formulation

The active response of the OC is introduced in the model of Fig. 3b by including a feedback
loop whereby the control pressure, pOHC is related to the shear displacement of the stere-
ocillia, wST . The passive response of the OC is indicated as the responses inside the box in
Fig. 7, in terms of the displacements of the BM, wBM , and the shear displacement of the
stereocillia between the RL and the TM, wST , in response to either the acoustic pressure
along on the BM, pA, and the pressure due to the OHC, pOHC . pOHC is then assumed to
be driven by wST via the feedback response H .

Figure 7: Block diagram of the active amplification that takes place in the OC model of Fig. 3b.

A set of equations for wBM and wST can be obtained according to the block diagrams
of Fig. 7, for the case of the open loop

wBM = GBApA +GBOpOHC , (5.1)

wST = GSApA +GSOpOHC . (5.2)

The closed loop response can be derivated from these equations and the block diagram
of Fig. 7. Given that

pOHC = −HwST , (5.3)

hence

pOHC = −H (GSApA +GSOpOHC) → pOHC =
−GSA

1 +GSOH
pA. (5.4)

So that the closed loop displacement of the BM is given as

wBM =

(

GBA −GBO
HGSA

1 +GSOH

)

pA, (5.5)
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and hence the closed loop mobility as

YBM =
swBM

pA
= s

(

GBA −GBO
HGSA

1 +GSOH

)

, (5.6)

where H represents a suitable controller as the one described in Appendix C, which can be
written such as

H(jω) =
γgH

1 + jω
ωOHC

. (5.7)

6 Coupled model of the cochlea

6.1 Elemental formulation

The cochlea can be modelled as a set of N micromechanical elements, being each of them
tuned to a different resonant frequency depending on its position along the cochlea, and
coupled through the inertia of the fluid in the chambers. For the case of the simulations
presented, these have been calculated using N = 1024 elements. The elements in the
cochlea are assumed to be equally spaced, as shown in Fig. 8.

p1

pN

v1

vN

us

Figure 8: Long wave macromechanical model of the cochlea. Each slice represents one from a
total of N micromechanical elements as the one of Fig. 3b.

We can define vectors of complex pressures and velocities at a single frequency at the
position of each micromechanical element, p and v, as

p = [p(1), p(2), . . . , p(N)]T , v = [v(1), v(2), . . . , v(N)]T . (6.1)

The BM, however, is assumed only to extend from element 2 to element N -1. Element 1
accounts for the stapes velocity, us in Fig. 8, whilst that the final element, N , accounts for
the behaviour of the helicotrema. If the stapes velocity is set to zero, the vector of pressures
due to the vector of BM velocities can be written as

p = ZFCv, (6.2)

where ZFC is the matrix due to fluid coupling. This matrix can be associated with two
components, the one which accounts for the 1D propagation of the fluid and the near field
component, which is associated with the 3D propagation of the fluid near the point of
excitation, so that ZFC = ZF + ZN . In the same way, the vector of BM velocities can be
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written as
v = −YBMp, (6.3)

where YBM is the diagonal mobility matrix, as it is assumed to react only locally. The
diagonal elements represent the admittance of each micromechanical element at a given
frequency, and extend only from 2 to N − 1. It is formed as

YBM = j
ωρ

H















0
Ycp(2)

. . .

Ycp(N − 1)
0















, (6.4)

The total vector of velocities from cam be obtained using linear superposition, so that

v = vS −YBMp, (6.5)

where vS is defined as the sources vector, being its first element equal to the stapes velocity,
and the rest to zero

vs =
[

ust 0 · · · 0
]T

. (6.6)

By combining Equations 6.2 and 6.5 two expressions that account for the coupled response
of the fluid and BM dynamics are obtained.3

v = [I+YBMZFC ]
−1 vs, (6.7)

p =
[

Z−1
FC +YBM

]

−1
vs, (6.8)

6.2 1D Fluid Coupling

The far field component of the pressure difference or 1D fluid coupling, can be obtained by
using a wavenumber analysis[18, 7]. Alternatively, the pressure distribution can be obtained
analytically from the solution of the differential equation for the far field coupling[7], as

pl(n) =
j16ωρ∆2v0

π2

√

B(n0)B(n)
N
∑

n′=n0

1

SF (n′)
, 0 < n < n0 − 1, (6.9)

pl(n) =
j16ωρ∆2v0

π2

√

B(n0)B(n)
N
∑

n′=n

1

SF (n′)
, n0 < n < N, (6.10)

where SF (x) is the effective chamber area, given by

SF (x) =
S1(x)S2(x)

S1(x) + S2(x)
, (6.11)

being S1(x) and S1(x) are the upper (scala media and scala vestibuli) and lower (scala
tympani) chambers, that for the case of this model reduces to be WH as this quantities are
constant along the cochlea (symmetric scalaes), and n′ = |n− no|, where n0 is the element
being excited. For a one dimensional propagation of the fluid, the columns of ZFC can be

3A complete description can be found here[17].
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obtained by normalizing Eqs. 6.9 and Eq. 6.10 by the input velocity, v0.

6.3 3D fluid Coupling

The formulation of the pressure difference due to the fluid can be extended so that the
effects of the near field, or 3D propagation, taking in account higher order fluid modes, are
also considered. In this case, the pressure difference is due to far and near field components,
so that

pFC = pL + pN , (6.12)

where the subscript L stands for long wave and the subscript N stands for near field.
Consequently, the fluid coupling matrix is now formed

ZFC = ZL + ZN , (6.13)

where ZL is given by normalizing by the input velocity Equations 6.9 and 6.10.

The effective thickness th of the BM due to fluid loading can be calculated using[7]

T =
8BH

3π3W
+

∞
∑

n=1

coth(nπH/W )

[

cos(nπC/W ) + cos(nπ(C +B)/W )

1− n2b2/W 2

]2

, (6.14)

where B is the width of the basilar membrane and W and H are the physical width and
height of one cochlear chamber. At a given point along the cochlea, the near field pressure
is given by

pN = jω0ρ0Tv0. (6.15)

The near field pressure distribution along the cochlea is obtained using an approximation
to the averaged near field pressure due to a single element of the BM, obtained from [7], so
that

pN (n) = jω0ρ0

(

Q1e
−n′∆/l1 +Q2e

−n′∆/l2
)

v0, (6.16)

where Q1 = and Q2 are a function of T and l1 equal to W/4.85 and l2 to W/17.924. The
columns of the 3D fluid coupling matrix, ZN , are obtained by normalizing both the far field
and the near field pressures at each position by the input velocity.

6.4 Comparative of fluid coupling configurations

Three different fluid coupling configurations can be used to calculate the coupled response
of the cochlea. This depend on the magnitude of the higher order modes used to account
for the 3D propagation. These configurations are:

1D fluid coupling
In this case the pressure due to the 1D propagation of the fluid is obtained from
Equations 6.9 and 6.10. At the position of excitation, a delta symbolises the added
mass due to the loading of the 3D propagation of the fluid, as can be observed in Fig.
10a, so that

pN(x) = MFCδ(x− x0). (6.17)

3This approximation is used here for convenience, but the same result can be obtained by inverse Fourier
transformation of the wavenumber of the fluid coupling[7].

4Values adapted from[7] for a 25 mm cochlea.
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The mass of the BM is obtained by the original value given by Ramamoorthy et al.[1],
plus the value due to the effective thickness of the BM, which symbolises the delta
function δ(x − x0).This allows the total “effective” mass of the BM, including near
field fluid loading, to be taken in account, allowing the mechanics of the organ of
Corti to be studied. The pressure distribution at an excitation point can be observed
in Fig. 10a, and the coupled response obtained with this fluid distribution is shown
in Fig. 11.

3D fluid coupling
In this case the 3D fluid propagation is given by Eq. 6.14, using the dimensions of the
BM and cochlear box as given by Ramamoorthy et al.[1]. The fluid coupling matrix
is formed as in Eq. 6.13. The BM mass has the value given in Ramamoorthy et

al.[1],which is, mBM=0.007(base) to 0.001 (apex) kg m−2, and the extra mass due to the
fluid near field is implicit included in the fluid coupling. The pressure distribution at
an excitation point using this configuration is shown in Fig. 10b, and the results for
the velocity distribution of the coupled cochlea in Fig. 12.

Diminished 3D coupling with extra mass
This configuration is a combination of the 1D and 3D cases. In this case the fluid
coupling matrix is formed as

ZFC = ZL + 0.2ZN , (6.18)

where ZN has been obtained from Eq. 6.14 with the cochlear box and BM dimensions
given by Ramamoorhty et al.[1]. The BM mass is obtained using the original BM
mass value given combined with a reduced effective thickness of the BM due to fluid
loading

mBM = 0.007− (0.007− 0.001)
x

L
+ 0.87ρfT. (6.19)

The magnitude of the near field pressure is also reduced to a 20% of its expected
value. In the same way the added mass due to the effective width of the BM is also
reduced, to give room to the extra mass due to 20% of higher order fluid modes. This
combination has been determined heuristically, and is chosen because it is believed
that the fluid coupling description used by Ramamoorhty et al.[1] is much smaller
than that which is obtained with Eq.6.14. This is due to the fact that Ramamoorthy
et al.[1] use a FE model, and it has been found that in this kind of models the ex-
tent of the near field fluid coupling loading is very dependant on the number of fluid
elements used[13]. The pressure distributions due to the fluid coupling that can be ob-
tained using this configuration are shown, for some points along the cochlea, in Fig. 9.

The pressure distribution of this fluid coupling configuration is similar to that of the
1D case, in where a delta function of pressure loading at the excitation position sim-
ulates the added BM. However, as the delta is combined with the reduced amount
of higher order modes, its base is broadened, as it can be observed in Fig. 10c. This
fluid coupling configuration leads to the coupled results shown in Fig. 13, which is
most like the results of Ramamoorhty et al.[1].

Interestingly, results that bear a reasonable resemblance to those with a diminished
3D fluid coupling component, but with a fluid chamber area that is uniform along the
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length of the cochlea, can be obtained by assuming a full 3D fluid coupling but with
a more realistic distribution of fluid chamber area along the cochlea, as discussed in
Appendix A.
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Figure 9: Distribution of the pressure difference using a diminished 3D fluid coupling model, in
which variation of the BM width is taken in account. Response at x= 1.2 mm, 4.9 mm, 11.7 mm
13.6 mm, 15.6 mm, 17.6 mm 19.5 mm and 21.5 mm, with a velocity of 10 mm s−1 at a frequency
of 1 kHz.
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(a) 1D fluid coupling
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(b) 3D fluid coupling
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Figure 10: Total pressure distributions, including increased effective BM thickness, for the differ-
ent fluid coupling configurations, with a BM excitation at 17 mm. The delta function components
in blue deltas symbolise the added mass due to the effective thickness of the BM, whilst that the
delta function components in red component are due to fluid coupling.
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Figure 11: Response of the whole coupled active and passive cochlea using 1D fluid coupling.
Response at x= 10.7 mm, 10.2 mm, 9.7 mm, 9.3 mm, 8.8 mm, 8.3 mm, 7.8 mm, 6.8 mm, 6.3 mm,
5.8 mm, 5.3 mm and 4.9 mm.
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Figure 12: Response of the whole coupled active and passive cochlea using full 3D fluid coupling.
Response at x= 10.7 mm, 10.2 mm, 9.7 mm, 9.3 mm, 8.8 mm, 8.3 mm, 7.8 mm, 6.8 mm, 6.3 mm,
5.8 mm, 5.3 mm and 4.9 mm.
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Figure 13: Response of the whole coupled active and passive cochlea using diminished 3D fluid
coupling. Response at x= 10.7 mm, 10.2 mm, 9.7 mm, 9.3 mm, 8.8 mm, 8.3 mm, 7.8 mm, 6.8
mm, 6.3 mm, 5.8 mm, 5.3 mm and 4.9 mm.
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7 The dynamics of the organ of Corti at some posi-

tions in the cochlea

7.1 Introduction

In this section we first discuss the dynamic response of the individual quantities defined
in Section 3, these are: The receptance of the BM when this is excited by the acoustic
pressure, GBA, Eq. 3.8; the receptance of the BM when excited by the force due to the
OHC electromotility, GBO, Eq. 3.9; the displacement of the stereocillia of the OHC, when
excited by the acoustic pressure that drives the BM, GSA, Eq. 3.12; and when the stereocil-
lia is displaced by the contraction of the OHC, GSO, Eq. 3.15. These values are calculated
at different positions along the cochlea: 5.75 mm, 8.75 mm and 11.75 mm, in order to
reproduce the results presented by Ramamoorthy et al.[1].

Also presented, for the same positions along the length of the cochlea, are the exact
parameters of the micromechanical model, together with the natural frequencies and vibra-
tion modes. The Bode and Nyquist diagrams for the closed-loop response, HGSO, are also
shown. These are shown considering H unity and considering H as defined in the Appendix
C, in order to create a feedback loop as the one described in Section 5.

Finally the frequency response of the cochlea is plotted, together with the impulse
response (IR) at each correspondent position for active and passive cases, for the coupled
model with a fluid configuration which uses diminished 3D fluid propagation, together with
an added mass. There are also plotted the frequency glides which correspond for a fully
active case, together with Bode plots of the micromechanical element which corresponds to
the position of study, for both responses, fully active and fully passive.

7.2 5.75 mm

Fig. 14 shows the individual frequency responses due to the excitation of individual modes,
whose natural frequency and mode shapes are listed in Table. 3 at this position. The
responses between the fluid pressure excitation and the BM response, GBA, clearly shows the
BM mode at around 15 kHz, and thus for the OHC excitation to the stereocillia response,
GSO, has a peak at above 16.4 kHz, corresponding to the TM mode. Also shown, for
reference, are the individual responses of the RL and TM, wRL and wTM , when excited by
the OHC, where GSO is the difference between these responses.
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Figure 14: Dynamics of the micromechanical model at 5.75 mm normalized to 1m·Pa−1. wRL

and wTM represent the case when these are excited by pOHC .
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Table 2: Value for the parameters of the micromechanical model at 5.75 mm.

Element Value Units
k1 8.89145·108 Nm−3

k2 1.7439·107 Nm−3

k3 4.9049·107 Nm−3

k4 1.5738·107 Nm−3

k5 1.0900·107 Nm−3

m1 0.1043 kgm−2

m2 0.0110 kgm−2

m3 0.0110 kgm−2

c1 0.9293·103 Nsm−3

c2 0.0000·103 Nsm−3

c3 0.2230·103 Nsm−3

c4 0.4646·103 Nsm−3

c5 0.0000·103 Nsm−3

Table 3: Natural frequencies and vibration modes of the micromechanical model at 5.75 mm.

BM mode TM mode RL mode
Natural frequency, (kHz) 15.0 16.4 6.3

Normalised displacement of m1 -3.05 -0.73 0.14
Normalised displacement of m2 -1.45 7.18 6.00
Normalised displacement of m3 -1.22 -5.77 7.31

The response of the feedback path, H , in Fig. 7, reproduces the action of the OHC, from
stereocillia deflection to OHC pressure. A simplified model of the OHC is discussed in Ap-
pendix C, which suggests that the frequency response of H can be reasonably approximated
by

H(jω) =
γgH

1 + jω
ωOHC

, (7.1)

where γ is a nondimensional OHC gain between 0 and 1, gH is an overall response given by
Eq. C.7 and ωOHC is the cutoff frequency, given by the reciprocal of its electrical resistance
multiplied by its electrical capacitance. The cut-off frequency of the OHC, ωOHC/2π, is
about 270 Hz from the parameters at x=5.75 mm, and so is much less than the natural
frequency of the BM and the TM.

Fig. 15 shows the frequency response of the open loop response in Fig. 7, equal to
HGSO. The low pass characteristic and additional 0.5 cycles of phase lag from H are clear
with the frequency response of GSO in Fig. 14. Also shown are the Nyquist plot of HGSO,
showing that with the adequate gain in H it comes close to the Nyquist point at about 16.4
kHz, and the resulting closed-loop frequency response.

Fig. 16 shows the BM velocity due to the coupled response of the cochlea with γ = 0,
passive, and γ = 1, active, together with its impulse response and frequency glide. In
the same figure there is also shown the frequency response of the micromechanical element
at 5.75 mm from the base, for active and passive cases. The value of the mobility is
slightly decreased for frequencies lower than that of the CF, and observes a big reduction
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Figure 15: The upper plots show the Bode plots of the open loop response, GOL = HGSO,
and the closed loop response, GCL = GBO

HGSA

1+GSOH . The lower plots show the Nyquist diagram of
GOL, and a zoom where it is close to (-1,0). All the responses correspond to the micromechanical
element of 5.75 mm.

for frequencies just above the CF. This contrasts with the results shown by [19] for the
Neely and Kim 1986 model, where the value of the active mobility remained high after
the CF. Similar results are observed for the mobility of the BM, and how this varies
along the length of the cochlea when is excited by a single frequency. The value of the
mobility is slightly decreased in positions basal to the resonance and greatly increased just
at the resonance. After the resonance, it experiments a large reduction.It is also shown
the frequency response of the mobility of the BM, and how this varies along the length of
the cochlea when is excited by a single frequency. As previously observed by Ku[19], the
value of the mobility is slightly decreased in positions basal to the resonance and greatly
increased after the resonance, so that the motion of the BM is decreased at positions apical
to the CF. It is strange that the phase of YBM seems to be between ±0.25 cycles at all
position, so its peak part is positive, even when it is active.
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Figure 16: Coupled response normalised to the stape’s velocity, (a), impulse response, (b), and
frequency glide of the BM’s velocity, (c), being the responses estimated at 5.75 mm from the base.
Graph (d) shows the frequency response of the mobility of the micromechanical element at 5.75
mm, and graphs (e) and (f) show the mobility of the isolated BM dynamics along its length when
excited by the CF of 5.75 mm.
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Figure 17: Dynamics of the micromechanical model at 8.75 mm normalized to 1m·Pa−1. wRL

and wTM represent the case when these are excited by pOHC .
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Table 4: Value for the parameters of the micromechanical model at 8.75 mm.

Element Value Units
k1 2.8276·108 Nm−3

k2 5.8016·106 Nm−3

k3 1.6317·107 Nm−3

k4 7.1742·106 Nm−3

k5 3.6260·106 Nm−3

m1 0.1092 kgm−2

m2 0.0113 kgm−2

m3 0.0113 kgm−2

c1 0.8196·103 Nsm−3

c2 0.0000·103 Nsm−3

c3 0.1967·103 Nsm−3

c4 0.4098·103 Nsm−3

c5 0.0000·103 Nsm−3

Table 5: Natural frequencies and vibration modes of the micromechanical model at 8.75 mm.

BM mode TM mode RL mode
Natural frequency, (kHz) 8.2 9.3 3.6

Normalised displacement of m1 -2.99 -0.48 0.14
Normalised displacement of m2 -0.86 7.18 5.93
Normalised displacement of m3 1.29 -5.81 7.22
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Figure 18: The upper plot show the Bode and diagrams of and HGSO and the closed loop
response, GBO

HGSA

1+GSOH . The lower plots show the Nyquist diagram of HGSO, and a zoom where
it is close to (-1,0). All the responses correspond to the micromechanical element of 8.75 mm.
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Figure 19: Coupled response normalised to the stape’s velocity, (a), impulse response, (b), and
frequency glide of the BM’s velocity, (c), being the responses estimated at 8.75 mm from the base.
Graph (d) shows the frequency response of the mobility of the micromechanical element at 8.75
mm, and graphs (e) and (f) show the mobility of the isolated BM dynamics along its length when
excited by the CF of 8.75 mm.
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7.4 11.75 mm

0 2 4 6 8 10
−180

−160

−140

|G
B

A
|, 

(d
B

)

Frequency, (kHz)

0 2 4 6 8 10
−1

−0.5

0

∠
 G

B
A
, (

cy
cl

es
)

Frequency, (kHz)

0 2 4 6 8 10
−200

−180

−160

−140

|G
S

A
|, 

(d
B

)

Frequency, (kHz)

0 2 4 6 8 10
−1

−0.5

0

0.5

∠
 G

S
A
, (

cy
cl

es
)

Frequency, (kHz)

0 2 4 6 8 10
−180

−160

−140

|G
B

O
|, 

(d
B

)

Frequency, (kHz)

0 2 4 6 8 10
−1

−0.5

0

∠
 G

B
O

, (
cy

cl
es

)

Frequency, (kHz)

0 2 4 6 8 10
−160

−150

−140

−130

|G
S

O
|, 

(d
B

)

Frequency, (kHz)

0 2 4 6 8 10
−0.5

0

0.5

∠
 G

S
O

, (
cy

cl
es

)

Frequency, (kHz)

0 2 4 6 8 10
−180

−160

−140

−120

Frequency, (kHz)

|w
R

L|, 
(d

B
)

0 2 4 6 8 10
−1

−0.5

0

Frequency, (kHz)

∠
 w

R
L, (

cy
cl

es
)

0 2 4 6 8 10
−180

−160

−140

−120

Frequency, (kHz)

|w
T

M
|, 

(d
B

)

0 2 4 6 8 10
−1

−0.5

0

Frequency, (kHz)

∠
 w

T
M

, (
cy

cl
es

)

Figure 20: Dynamics of the micromechanical model at 11.75 mm normalized to 1m·Pa−1. wRL

and wTM represent the case when these are excited by pOHC .
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Table 6: Value for the parameters of the micromechanical model at 11.75 mm.

Element Value Units
k1 9.2575·107 Nm−3

k2 1.9573·106 Nm−3

k3 5.5049·106 Nm−3

k4 3.3165·106 Nm−3

k5 1.2233·106 Nm−3

m1 0.1166 kgm−2

m2 0.0117 kgm−2

m3 0.0117 kgm−2

c1 0.7331·103 Nsm−3

c2 0.0000·103 Nsm−3

c3 0.1760·103 Nsm−3

c4 0.3665·103 Nsm−3

c5 0.0000·103 Nsm−3

Table 7: Natural frequencies and vibration modes of the micromechanical model at 11.75 mm.

BM mode TM mode RL mode
Natural frequency, (kHz) 4.5 5.3 2.0

Normalised displacement of m1 -2.89 -0.38 0.15
Normalised displacement of m2 -0.64 7.07 5.82
Normalised displacement of m3 1.13 -5.73 7.08
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Figure 21: The upper plot show the Bode and diagrams of and HGSO and the closed loop
response, GBO

HGSA

1+GSOH . The lower plots show the Nyquist diagram of HGSO, and a zoom where
it is close to (-1,0). All the responses correspond to the micromechanical element of 11.75 mm.
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Figure 22: Coupled response normalised to the stape’s velocity, (a), impulse response, (b), and
frequency glide of the BM’s velocity, (c), being the responses estimated at 11.75 mm from the
base. Graph (d) shows the frequency response of the mobility of the micromechanical element at
11.75 mm, and graphs (e) and (f) show the mobility of the isolated BM dynamics along its length
when excited by the CF of 11.75 mm.
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8 Conclusions

A simplified version of the cochlear model of Ramamoorhty et al.[1] has been implemented.
An elemental approach is used, with an analytic formulation for the fluid coupling and a
lumped parameter model of the micromechanics.

The frequency response of the coupled response of the model, show a reasonable agree-
ment with that of Ramamoorthy et al.[1]. The distribution of frequency with length in the
BM is, however, slightly different from that of these authors, i.e., whilst for their results a
point 11.75 mm away from the base presents a resonance at around 6.5 kHz, in the case
of the results presented here this resonance is present at around 4 kHz. This shifting in
frequency is thought to be caused by differences in the value of the total mass of the BM
used.

It is also noted that the near field component of the fluid coupling impedance has had
to be reduced in order to obtain similar results to Ramamoorhty et al.[1]. Careful reading
of their paper suggests that the extent of their near field component, which is given by
the number of radial modes accounted for, has been used by these authors as a tuning
parameter to obtain realistic results.

The model presented here also includes a simplified piezoelectric model for the OHC, as
justified in Appendix C, but also does not include longitudinal electrical coupling. This is
shown in Fig. 15 of Ramamoorhty et al.[1] to significantly increase the stable active gain,
and perhaps explains why the model described in this report has a maximum gain which
is about 5 dB less than in [1].

With respect to the time response, the obtained velocity impulse responses predicted
at different points in the cochlea show that the zero-crossings of the responses, are almost
invariant of the active gain level used, especially for the first few cycles, in agreement with
impulse response obtained from recorded measurements in a guinea-pig cochlea[20]. The
plotted frequency glides also seem to be in qualitative agreement with those obtained from
measurements in a guinea-pig cochlea[21], and are similar to that shown by the model of
Ramamoorthy et al.[1].
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Appendices

A Response of the model using realistic cochlear cham-

ber dimensions

This appendix presents the response of the model using different cochlear chamber dimen-
sions, which are based on the real dimensions of the cochlear chambers of a guinea-pig. By
the use of the parameters presented here it is possible to use a 3D fluid coupling configura-
tion, such as the one described in Section 6.4.

The dimensions used have been these obtained by Fernández[22] and those by Salt[23],
whose values are much smaller of that used by Ramamoorhty et al.[1]. Fig. 23 shows
the areas of upper (scala media and scala vestibuli) and lower (scala tympani) cochlear
chambers, as given by Salt[23]. These values, however, have been extended from 15 mm
until 25 mm.
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Figure 23: Variation in the upper and lower cochlear chamber areas, as assumed by Salt until
15 mm. From 15 mm to 25 mm the values have been assumed.

The width of the cochlear partition,W , has been estimated from that given by Fernández[22].
The height of the chambers, H , has been obtained from diving the effective area, SF , as
defined in Eq. 6.11, by the width of the cochlear partition. The width of the BM is that
given by Ramamoorhty et al.[1]. The distribution of these parameters along the length of
the cochlea can be observed in Fig. 24.

The pressure distribution along the basilar membrane is obtained using Eqs. 6.9 and
6.10 for calculating the far field pressure component, and Eqs. 6.14 and 6.16 for calculating
the near field pressure component. The pressure distribution results using the dimensions
here defined is shown in Fig. 25. For this configuration the value of the pressure due to the
far field is much bigger than that if the parameters given by Ramamoorthy et al. are used
(shown in Fig. 9). This is caused by the fact for the parameters used in this section, the
BM width is more similar to that of the cochlear chambers, keeping a ratio bBM/H much
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Figure 24: Calculated effective area for the pressure difference, SF , (left y axis, blue graph).
The right y axes graphs, plotted in black, show the effective height and width of the cochlear
chambers, and the width of the BM.
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Figure 25: Distribution of the pressure difference using full 3D fluid coupling, in which the
variation of the BM width and the change in fluid chamber area along the cochlea are taken in
account. Response at x= 1.2 mm, 4.9 mm, 11.7 mm 13.6 mm, 15.6 mm, 17.6 mm 19.5 mm and
21.5 mm, with a velocity of 10 mm s−1 at a frequency of 1 kHz.

bigger than that used by Ramamoorhty et al.[1].

The coupled response is shown in Fig. 26, and in Fig. 27 using a 3D coupling con-
figuration. The responses have been calculated using also different values for the dynamic
elements from that for the results presented in the main document. The value used for
kOHC is three times the value given in Table 1. mTM (0) has been selected to be of 0.018 kg
m−2 and mRL to be 0.7mTM , as originally used by Ramamoorthy et al.[1].

May be that in the case of the model presented here, with three masses, it is needed
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Figure 26: Response of the whole coupled active and passive cochlea using 1D fluid coupling
with realistic cochlear chamber values. Response at x=10.2 mm, 9.7 mm, 9.3 mm, 8.8 mm, 8.3
mm, 7.8 mm, 6.8 mm, 6.3 mm, 5.8 mm and 5.3 mm.

to take in account the effect of the fluid loading in the mass of the TM, although, this
is however, difficult to model. The results with 3D fluid coupling presented here show a
frequency response slightly different from that presented by Ramamoorhty et al [1], but one
which is not too far away from measurements in guinea-pig cochleas[20].
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Figure 27: Response of the whole coupled active and passive cochlea using full 3D fluid coupling
with realistic cochlear chamber values. Response at x=10.2 mm, 9.7 mm, 9.3 mm, 8.8 mm, 8.3
mm, 7.8 mm, 6.8 mm, 6.3 mm, 5.8 mm and 5.3 mm.
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B State space model: Coupled stability

The state space formulation rearranges the discrete set of micromechanical elements taking
also in account the effect of the fluid coupling. By the use of this formulation the stability of
the coupled cochlea can be assessed. This is of quite importance, as it can be the case that
even when the isolated micromechanics of each element are stable, the coupled response
results to be unstable. The formulation here introduced has been adapted from [24, 25].

The OC dynamics of each mass are defined as

pA − pOHC = m1ẅBM + k1wBM + k2(wBM − wRL),

pOHC = m2ẅRL + k2(wRL − wBM) + k3(wRL − wTM + k5wRL),

0 = m3ẅTM + k3(wTM − wRL) + k4wTM .

pOHC is described using the actuator of Appendix C

POHC

wST

=
γkA

1 + jω/ωA

, (B.1)

where
kA = g′ε3ZmV0Ga, ωA = RmCm. (B.2)

pOHC can then be expresses as

pOHC = ωA (−pOHC + γkAwST ) . (B.3)

The state space form for each micromechanical element of the cochlea is

ẋn(t) = Anxn(t) +Bnpn(t) (B.4)

ẇn(t) = Cnxn(t), (B.5)

where ẋn(t) is the vector of state variables associated with the nth micromechanical model.
At a given time instant, these matrices are defined as

ẋn =
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ẋ6

ẋ7
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ẇRL

ẇTM
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, (B.6)

An =


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. (B.7)
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B.1 Poles of the organ of Corti model

The poles of the organ of Corti model can be obtained by performing the eigenvalue de-
composition of the state space matrix, defined in Eq. B.7. Fig. 28 shows the poles for the
mechanical system at 5.75 mm from the base for different active gains, between γ=0 and
γ=1.
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Figure 28: s plane plot of the poles of the isolated dynamics of the organ of Corti, at x = 5.75mm

for different OHC gains.

It is possible to observe how the poles move in a direction almost perpendicular to
the jω axis for different amplification levels, as previously shown by Shera[26], so that the
OHC feedback forces not significantly alter the natural frequencies of the cochlear partition.
This causes that the zero crossings of the impulse response remain almost invariant with
the amount of feedback gain used, similarly to what have been found in measurements in
live Guinea pig cochleas[20].

B.2 Poles of the coupled cochlea

The matrices defining each uncoupled micromechanical element can be rearranged together
to form matrices containing the whole set of micromechanical elements

ẋ(t) = AEx(t) +BEp(t) (B.8)

ẇ(t) = CEx(t), (B.9)

where the matrices which are block diagonal, are defined as
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
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. (B.10)
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Figure 29: Poles of the coupled cochlea for different OHC gain configurations.

The pressure of vectors along the BM can also be expressed as

p(t) = Gẅ(t) +Gq, (B.11)

where G = ZFC/jω, ẅ = jωv and q = jωvS. For the case of 1D fluid coupling ZFC = ZL

and for the case of 3D fluid coupling ZFC = ZL+ZN . Using Eq. B.9 the vector of pressures
p can be rearranged into

p(t) = GCEẋ(t) +Gq(t). (B.12)

Substituting into Eq. B.8 leads to an state space expression for the coupled cochlea, ex-
pressed as

ẋ(t) = Ax(t) +Bu(t), (B.13)

where
A = [I−BEGCE]

−1AE, (B.14)

B = [I−BEGCE]
−1BE, (B.15)
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u = F−1q. (B.16)

The matrix A is called the system matrix and it determines the transient response of
the system. The eigenvalues of A are the poles of the system’s transfer function and hence
they can be used to determine the stability of the coupled cochlea. The real parts of every
single eigenvalue must be negative if the transient response is to decay away, so that the
system is stable.

Figure 29 shows the positions of the poles of the model with different gain configurations,
where the value of γ refers to the point where the open loop response HGSO crosses the
negative real axis. It is important to say that the state space analysis shows a pole with 0
real part at 0 Hz.
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C Simplified OHC model

C.1 Formulation

The following assumptions are performed here with respect to the OHC model of Ra-
mamoorhty et al.[1]:� A single row of OHC is used instead of three rows as in the original model.� No longitudinal coupling on the BM. The current flowing on a single OHC is due to

the current of the OHC itself and not by potential differences on any of the scales.

By modifying Eq. 21 of[1] pOHC can be defined as

pOHC = k2(wRL − wBM) + γε3φOHC, (C.1)

where γ allows us to select the level of active amplification, ε3 represents the electromechani-
cal coupling coefficient and φOHC represents the voltage across the OHC. As no longitudinal
coupling is modelled here, this last quantity is defined as the product of the current through
the OHC, IOHC , by the OHC electrical impedance, Zm,

φOHC = ZmIOHC , (C.2)

where Zm = (1/Rm + jωCm)
−1. IOHC is proportional to the steady voltage at the OHCs,

V0, to the conductance function, Ga, which varies with the position along the cochlea, and
to the stereocillia displacement, wST = wTM − wRL

IOHC = V0GawST , (C.3)

where Ga is defined by Ramamoorthy et al.[1], based on numerical experiments, as

Ga = Ga(0)
(

−105x3 + 5.9103x2 − 109x+ 1
)

e−150x (C.4)

pOHC is then defined as

pOHC = k2(wBM − wRL) + γε3ZmV0GawST ;

pOHC = k2(wBM − wRL) +HwST , (C.5)

where H is defined as

H =
γg′ε3ZmV0Ga

1 + jωRmCm
=

γgH

1 + jω
ωOHC

, (C.6)

where ωOHC = (RmCm)
−1, and gH is defined as the MET overall gain

gH = g′ε3ZmV0Ga. (C.7)

The value of the parameters used in the formulation, obtained from Ramammorthy et al.[1]
are presented in Table. 8.
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Table 8: Value for the electrical parameters used in the OHC compensator.

Element Value Units
ε3 (−8 · 10−6 · 10−5x) N/m/mV

1/Rm 5100(base) to 360 (apex) µS/m
Cm 1800 (base) to 4200 (apex) nF/m

Ga(0) 5.447·106 S/m2

V0 150− 1000x mV
ωOHC/2π 450(base) to 13.7 (apex) Hz

C.2 Controller dynamics

The required gain to apply to H in order to obtain an active amplification, g′, is obtained

g′ =
1

ℜ{H(fp)GSO(fp)}
, (C.8)

where fp represents the point of the response which its phase is -0.5 cycles and hence will
be closer to the (-1,0) point. The aspect of g′ is shown in Fig. 30. The magnitude and
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Figure 30: Gain function in order to place the response of HGSO close to (-1,0).

phase of the controller H against position along the cochlea and against frequency can be
observed in Fig. 31. The response at the positions of the analysis of Section 7 are shown
in Fig. 32.
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Figure 31: Controller dynamics.
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Figure 32: Responses of the controller H at different positions along the length of the cochlea.
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D The coupling factor for piezoelectric activity in outer

hair cells

D.1 Introduction

The electromechanical properties of the outer hair cells in the ear are central to their
action as part of the cochlear amplifier, which significantly amplifies the motion of the
basilar membrane. These electromechanical properties are defined in different ways in
different parts of the literature and the purpose of this report is to compare these different
formulations so that comparisons can be made of the assumed outer hair cell parameters
across different models. Of particular interest is the nondimensional coupling factor for
outer hair cell models and how the magnitude of this affects the representation of the outer
hair cell in cochlear models in which the outer hair cell is coupled to the organ of Corti.

D.2 Piezoelectric equations

The constitutive equation of a piezoelectric material can be expressed as[27]

D = εT + dT (D.1)

S = dE + sET (D.2)

where D is the charge per unit area, E is the electric field, T is the stress and S the strain.
The dielectric permittivity under constraint stress is denoted εT , sE is the inverse of the
Young’s modulus under constant electric field and d is the piezoelectric constant for the
material.

The electromechanical coupling factor for the piezoelectric material, which is a nondi-
mensional number between 0 and 1 that quantifies the conversion of mechanical to electrical
energy and vice versa, is given by

k2 =
d2

sEεT
. (D.3)

Equations D.1 and D.2 are simplifications of a full matrix set of equations in the general
case that assume that the electric field and strain are only measured in a single direction. If
both of these are aligned with the poling direction of the piezoelectric material, along which
the electric dipoles are aligned, then the corresponding piezoelectric constant is denoted d33.
If the electric field is aligned with the poling direction but the strain is measured in a direc-
tion at right angles, the corresponding piezoelectric constant is denoted d31. Piezoelectric
materials such as lead zirconate titanate (PZT) have significant values for both d33 and d31
and a electromechanical coupling coefficient, k2, of the order of 0.7.

It is convenient to describe the piezoelectric models for the OHC within the framework
of a two port network, as shown in Fig. 33, which links the overall electrical variables of
charge, q, and voltage, v, to the mechanical variables of displacement, w, and force, f . For
small excitations the electrical and mechanical variables can be defined as perturbations on
larger mean values and the relationships between these variables becomes linear. There are
a number of ways in which the relationship between the electrical and mechanical variables
can be expressed. Initially we choose a representation that is common for engineering
piezoelectric actuators [27] and express q and w as functions of v and f , so that in matrix
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form
[

q
w

]

=

[

CP dP
dP 1/KP

] [

v
f

]

. (D.4)

Where CP is the free capacitance, i.e. with no applied force, KP is the short circuit
stiffness, i.e. with the applied voltage set to zero and dP is the piezoelectric constant, which
is equal to both the charge per unit force when the voltage is zero and the displacement
per unit voltage when the force is zero, since the action is assumed to be reciprocal. The
validity of the reciprocity condition for the outer hair cells has been examined by Dong et

al.[28] and found to be satisfied.

An advantage of the formulation in Eq. D.4 is that while CP and KP depend on the
geometry and dimensions of the OHC, dP is a material property of the piezoelectric, inde-
pendent of size and shape.

The displacement of the transducer per unit applied voltage will vary depending on the
mechanical loading that it is subject to. With no mechanical loading, so that if f is zero
in equation Eq. D.4, then w/v, is, by definition, equal to dP . If, however, we assume that
a force is applied such that the charge generated exactly cancels the charge due to voltage,
then q in Eq. D.4 is equal to zero, so that the force must be

f |q=0 = −
CP

dP
v, (D.5)

w

v
|q=0 = dP

(

1−
CP

d2PKP

)

. (D.6)

If we define the nondimensional coupling factor for the transducer as being

k2
P =

d2PKP

CP
, (D.7)

then Eq. D.2 becomes
w

v
|q=0 = dP

k2
P − 1

k2
P

. (D.8)

If this coupling factor is comparable with unity, then Eq. D.8 will be significantly
different from dP and the displacement per unit voltage will be very dependent on the
electrical and mechanical conditions imposed on the transducer. If the coupling factor in
Eq. D.7 is small compared to unity, however, then the displacement will not be depen-
dent on the electrical and mechanical conditions imposed on the transducer and can be
assumed to be constant in models where the OHC is coupled to the dynamics of the organ
of Corti. It is thus important to estimate the magnitude of the nondimensional coupling
factor given by Eq. D.7 in the case of the OHC, since it will have an important bearing
on the complexity of the electrical model that needs to be used in a coupled cochlear model.

If the transducer was made of a solid element of piezoelectric material, of length l and
cross sectional area A, and the electrical and mechanical variables are measured along the
poling axis, the piezoelectric constant, dP , would be equal to d33. The capacitance, CP ,
would then be equal to εTA/l, where εT is the dielectric permittivity defined in Eq. D.1
and the stiffness, KP , would be equal to A/sEl, where (sE)−1 is the Young’s modulus in
Eq. D.1. In this case the quantity k2

P in Eq. D.8 is equal to the electromechanical coupling
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factor for the piezoelectric material, k2, as defined in Eq. D.3[27].

In the case of the outer hair cell, however, the geometry is more similar to an open
cylinder, as shown in Fig.33. The piezoelectric constant, dP , would be equal to d31, for
the piezoelectric material in this case. The outer hair cells are not entirely made up of
piezoelectric material, which is the protein prestin in this case, but if we assume that the
capacitance of the outer hair cell is dominated by the piezoelectric material then it can be
approximated by εTACtC , where AC is the effective area of the capacitor, which is 2πrl for
the cylinder in Fig.33, and tc is its thickness, which is ∆r for this cylinder, so that

CP =
2πrεT l

∆r
. (D.9)

Similarly, if the stiffness of OHC, KP is dominated by the piezoelectric material then it
is given by AK/SElK , , where AK is the cross sectional area, which is approximately equal
to 2πr∆r for the cylinder in Fig. 33, and lK is the length, equal to l for this cylinder, so
that

KP =
2πr∆r

sEl
. (D.10)

The coupling factor for a cylindrical transducer, which has an electromechanical coupling
factor of the piezoelectric material, k2, is now equal to

d2PKP

CP

= k2

(

∆r

l

)2

. (D.11)

So, if the capacitance and stiffness of the outer hair cell are primarily determined by
the properties of the piezoelectric material, which must have a material electromechanical
coupling factor, k2, which is less than one, the overall coupling factor, when acting as a
transducer, must be small if the OHC is long compared with the thickness of the cell wall,

so that
(

∆r
l

)2
is much less than unity.

r

l

Δr

f

w

v
f v

w q
q

Figure 33: An idealisation of a cylindrical outer hair cell subject to a force, f , and being
compressed by a displacement, w, when driven by a charge, q, generating a voltage across the cell
wall of v, and a the two port representation of this.
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D.3 Parameter values of the outer hair cells

The piezoelectric equations are expressed in different ways by different authors, so some
transformation is needed in order to compare the parameter values, Iwasa [29] emphasises
that the parameters are non-linear functions of the membrane potential across the outer
hair cell, as also discussed by Deo and Grosh[30], but they estimate that the largest value
of the linearised parameters for the outer hair cell is about

CP ≈ 3.7 · 10−11 F, KP = 8 · 10−3 Nm−1,

so that
dP ≈ 2 · 10−5 mv−1 or CN−1

The the coupling factor for this model can be directly calculated as

d2PKP

CP
≈ 0.086,

although Iwasa [29] chooses, in his Fig. 3, to plot kP rather than k2
P in our notation. It

is noteworthy that the piezoelectric constant estimated for the outer hair cell, 20µm/V, is
about a factor of 105 greater than PZT, for which d3, is about 150 pm/V, and a factor
of about 106 greater than the polyvinylidene fluoride (PVDF), for which dS, is about 15
pm/V. The coupling factor of the outer hair cell, in equation (3.2), however, is much less
than the coupling factor of a solid piezoelectric device made of PZT, for which k2 would be
about 0.7, or PVDF, for which k2 would be about 0.1, since KP/CP is significantly smaller
for the OHC than in the PZT case.

Ramamoorhty et al. choose to express their linearised piezoeletric equations, 21 and 22
of their paper, in a form equivalent to

f = KOHCwST + ε3v (D.12)

q = −ε3wst + Cmv. (D.13)

Where the symbols above have been used for force, f , displacement, w, voltage, v
and charge q, and the low frequency approximation has been taken for their Zm. Those
equations may be re-written, in the same form as Eq. D.4, as

q =

(

Cm −
ε23

KOHC

)

v +
ε3

KOHC
f (D.14)

w =
ε3

KOHC
v +

1

KOHC
v (D.15)

The values of the parameters used by Ramamoorthy et al.[1] at the base of the cochlea are
ε3 equal to −8 · 10−6 Nm −1mV −1, Cm equal to 1.8·10−6 Fm−1 and KOHC equal to 7.6·103

Nm−2, which are all per unit length.

The parameters corresponding to CM and KOHC in Eqs. D.14 and D.15 thus cannot
be directly compared to those above, but dP , which equals ε3/KOHC is independent of and
directly comparable to the piezoelectric constant, above, and has a value of about 10−9 m
V−1, which is much smaller than that assumed by Iwasa[29]. The length-dependence of CP
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and KP are cancelled out, however, when the overall coupling coefficient is calculated in
this case as

d2PKP

CP

=
ε23

KOHC(Cm − ε23/KOHC)
≈ 4.6 · 10−9,

which is much lower than the value described by Iwasa[29].

Maoiléidigh and Jülicher[31] express the piezoeletric relationship for the outer hair cell
model in the form

[

v
f

]

=

[

1/Cohc p
p Kohc

] [

q
w

]

. (D.16)

Where again the symbols for voltage, force, charge and displacement are as used above,
and the sign convention for w is opposite to the one they use for displacement. This matrix
equation can be inverted to give one in the same form as Eq. D.4 above, so that

[

q
w

]

=

(

Kohc

Cohc

− p2
)[

Kohc −p
−p 1/Cohc

] [

v
f

]

. (D.17)

With the values used by Maoiléidigh and Jülicher[31] , of p equal to 1.6·104 Vm−1 (Table
I), Cohc equal to 2.0 10−11 F, (Table I), and Kohc equal to 10−2 Nm−1,(Table V), then the
equivalent value of dp is about 1.2·10

−4 mV−1, rather larger than that assumed by Iwasa[29].
The coupling factor for the outer hair cell model in their case is thus given by

d2PKP

CP
=

p2Cohc

Kohc
≈ 0.5,

which is significantly larger than that assumed by Iwasa [29] or Ramamoorhty et al.[1].
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