International Conference on Pattern Recognition
International Conference on Pattern Recognition
In this paper, we explore a new approach for enriching the HoG method for pedestrian detection in an unconstrained outdoor environment. The proposed algorithm is based on using gait motion since the rhythmic footprint pattern for walking people is considered the stable and characteristic feature for the detection of walking people. The novelty of our approach is motivated by the latest research for people identification using gait. The experimental results confirmed the robustness of our method to enhance HoG to detect walking people as well as to discriminate between single walking subject, groups of people and vehicles with a detection rate of 100%. Furthermore, the results revealed the potential of our method to be used in visual surveillance systems for identity tracking over different camera views.
3097-3100
Bouchrika, Imed
584a502f-829f-4acc-9200-e42f60e42bf0
Carter, John N.
e05be2f9-991d-4476-bb50-ae91606389da
Nixon, Mark S.
2b5b9804-5a81-462a-82e6-92ee5fa74e12
Mörzinger, Rudolf
bdee5ed9-7ea3-489e-af27-4a43932a88e5
Thallinger, George
ef71bac4-36af-4b7b-a624-2f87fb79b99b
2010
Bouchrika, Imed
584a502f-829f-4acc-9200-e42f60e42bf0
Carter, John N.
e05be2f9-991d-4476-bb50-ae91606389da
Nixon, Mark S.
2b5b9804-5a81-462a-82e6-92ee5fa74e12
Mörzinger, Rudolf
bdee5ed9-7ea3-489e-af27-4a43932a88e5
Thallinger, George
ef71bac4-36af-4b7b-a624-2f87fb79b99b
Bouchrika, Imed, Carter, John N., Nixon, Mark S., Mörzinger, Rudolf and Thallinger, George
(2010)
International Conference on Pattern Recognition.
International Conference on Pattern Recognition, Ä°stanbul, Turkey.
.
Record type:
Conference or Workshop Item
(Paper)
Abstract
In this paper, we explore a new approach for enriching the HoG method for pedestrian detection in an unconstrained outdoor environment. The proposed algorithm is based on using gait motion since the rhythmic footprint pattern for walking people is considered the stable and characteristic feature for the detection of walking people. The novelty of our approach is motivated by the latest research for people identification using gait. The experimental results confirmed the robustness of our method to enhance HoG to detect walking people as well as to discriminate between single walking subject, groups of people and vehicles with a detection rate of 100%. Furthermore, the results revealed the potential of our method to be used in visual surveillance systems for identity tracking over different camera views.
Text
05597287.pdf
- Accepted Manuscript
More information
Published date: 2010
Venue - Dates:
International Conference on Pattern Recognition, Ä°stanbul, Turkey, 2010-01-01
Organisations:
Vision, Learning and Control
Identifiers
Local EPrints ID: 359526
URI: http://eprints.soton.ac.uk/id/eprint/359526
PURE UUID: fa5be65a-1d58-43ec-b014-82d66d4339d7
Catalogue record
Date deposited: 01 Nov 2013 17:36
Last modified: 15 Mar 2024 02:35
Export record
Contributors
Author:
Imed Bouchrika
Author:
John N. Carter
Author:
Rudolf Mörzinger
Author:
George Thallinger
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics