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Abstract. In some energy harvesting systems, the maximum displacement of the seismic mass 
is limited due to the physical constraints of the device. This is especially the case where energy 
is harvested from a vibration source with large oscillation amplitude (e.g., marine environment). 
For the design of inertial systems, the maximum permissible displacement of the mass is a 
limiting condition. In this paper the maximum output power and the corresponding efficiency of 
linear and rotational electromagnetic energy harvesting systems with a constrained range of 
motion are investigated. A unified form of output power and efficiency is presented to compare 
the performance of constrained linear and rotational systems. It is found that rotational energy 
harvesting systems have a greater capability in transferring energy to the load resistance than 
linear directly coupled systems, due to the presence of an extra design variable viz. the ball 
screw lead. Also, in this paper it is shown that for a defined environmental condition and a 
given proof mass with constrained throw, the amount of power delivered to the electrical load 
by a rotational system can be higher than the amount delivered by a linear system. The criterion 
that guarantees this favorable design has been obtained.  
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1. Introduction 

 

Generating electricity from ambient vibration has been the subject of significant research and 

development in the last decade. Piezoelectric [1, 2] ,electrostatic [3] and electromagnetic [2, 4-8] 

transducers are the most commonly used methods that are utilized to convert ambient vibrations to the 

electrical energy. However, due to the limitation of geometry and limited permissible deformation of 

electrostatic and piezoelectric transducers, the electromagnetic induction method is the more appropriate 

choice for large scale applications [9]. Movement of a backpack carried by a human during walking [10], 

all-terrain-vehicle vibration [11], vertical movement of a sailing boat [12] are some examples of 

relatively large scale vibration resource. 

However, in addition to the configuration of energy conversion device, maximizing the output power and 

efficiency are the main concerns in the process of design and optimization of vibration energy harvesters. 

Efficiency is a fundamental parameter used to compare all kinds of energy harvesters with various sizes 

and designs [13-15].  Usually the main goal of an energy harvesting system is to extract the maximum 

power from the environment. In this paper, the efficiency of such systems when achieving maximum 

power is studied. To achieve the maximum power condition, the parameters of the system need to be 

selected and tuned carefully. Tuning the load resistance to its optimum value to ascertain impedance 

matching in electromagnetic energy harvesters is reported in many research works to have improved 

energy capture [16-18]. However, none of these works considered the maximum allowable displacement 

of the oscillating mass as a constraint in the process of calculating the optimum load resistance. More 

specifically, the optimum load resistance for harvesting maximum amount of energy is generally 

calculated regardless of its effect on the relative displacement of the oscillating mass. However, it is 

known that the load resistance can influence the overall system damping and hence the relative 

displacement of the mass. In many transducers that are used in large size applications, due to size 

limitations, the oscillating mass only moves within a specified range. Now, if the load resistance of the 

transducer is selected without considering the maximum permissible through of the seismic mass, there is 

a risk that the amplitude of the oscillating mass will exceed the physical dimensions of the transducer 

Output Power and Efficiency of Electromagnetic Energy 

Harvesting Systems with Constrained Range of Motion 



2 
 

thus affecting the performance of the device. Therefore, for these cases, at the design stage, the physical 

parameters such as load resistance should be selected with regard to the constraints on the oscillating 

mass.  

In this paper, the maximum output power and the corresponding efficiency of two types of 

electromagnetic energy harvesting systems (i.e. linear and rotational) for those with constraints on their 

range of motion are studied. In linear electromagnetic energy harvesting systems (henceforth referred to 

as linear system) such as those studied in [11, 19-21] a linear generator is employed. However, in a 

rotational energy harvesting system (henceforth referred to as rotational system), an intermediate 

mechanism, such as rack and pinion[7, 10, 22] or a ball screw[23-26], is utilized to convert linear motion 

of the mass to rotational one to drive a rotary generator.  

The paper is distinguished by three main contributions. First it investigates the optimum load resistance 

for both constrained linear and rotational systems to address the maximum output power condition. It is 

shown that for constrained systems the optimal load resistance is different from that of unconstrained 

energy harvesting systems that is reported in literature [16]. Then the efficiency of both systems 

corresponding to their maximum output power is obtained. For each system, an expression for the load 

resistance corresponding to maximum efficiency is also derived. It is shown that for linear systems it is 

not possible to achieve maximum efficiency when the maximum power is extracted from the transducer. 

However, for rotational systems maximum efficiency occurs at maximum output power point. 

The second contribution is the derivation of equations for power and corresponding efficiency of both 

systems in unified forms so that proper comparison between them can be made. These unified forms are 

developed based on the non-dimensional electromechanical coupling coefficient of systems introduced 

by Elliott and Zilletti [27]. The comparison reveals that in the case of a linear system, the maximum 

amount of power that can be transferred to the load is half the mechanical power transferred by the 

harvester and the efficiency of system is always less than 50%. However, a rotational system can be 

designed so as to have an efficiency greater than 50%. The criterion that guarantees the efficiency of a 

rotational system is more than 50% is derived.  

The third contribution is studying the effect of scaling the size of electromagnetic generator component 

of the energy harvesting system on the output power and efficiency. It is shown that by increasing the 

size of energy harvesting system the efficiency is increased for both constrained linear and rotational 

systems.  
 
2. Power generation from a constrained inertia system 

 

2.1 Power Generation from a constrained linear energy harvesting transducer  

 

A schematic diagram of a linear energy harvesting system using an electromagnetic generator is shown in 

figure 1. In this diagram, m is the seismic mass, k is the spring stiffness, mc  represents the mechanical 

viscous damping coefficient, and ec is the electrical damping coefficient corresponding to the combined 

power dissipated in the generator’s internal resistance and the power delivered to the load.     

 

 
 

Figure 1. Schematic diagram of a linear energy harvesting system  
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The governing differential equation of motion for the system shown in figure 1, with respect to the 

relative displacement of the seismic mass z x y  , is    

  .e mm z c c z k z m y      (1) 

For a harmonic base excitation  sin yy Y t   , when the driving motion is assumed to be independent 

of the mechanical loading due to the harvester, the amplitude of the relative displacement Z, can be 

shown to be 

    
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 Figure 2. Equivalent circuit of an electromagnetic generator connected to a resistive load. 
 

In many papers on generating energy from vibrations, the effect of the generator’s internal inductance is 

ignored. Cammarano et al. [17] show that even in cases where the effect of internal inductance cannot be 

ignored, due to a high oscillation frequency, the undesirable effect of the internal resistance can be 

compensated by adding a capacitor in series with the circuit. The equivalent electrical circuit of the 

energy harvesting device is shown in figure 2, in which a capacitor is added in series with the load 

reactance to cancel the effect of the generator's inductance.  Assuming that an electrical generator with an 

emf constant ,tK is directly coupled to the seismic mass, then the generated emf voltage is given by 

.emf tV K z  (3) 

Also, the electrical damping coefficient ( ec ), corresponding to the power dissipated in the generator’s 

internal resistance and transferred to the electrical load, is  

where 

and 

where i ijL   and 1/l ljC  . In [17] it is shown that to deliver the maximum power to the load 

lR , the effect of internal inductance should be compensated by tuning the capacitor such that l i   .   

For a spring stiffness of k, the natural frequency of system is equal to the base excitation frequency 

when 2k m at which the corresponding relative displacement rZ  can be derived from (2) (for n  ). 

2

,t
e

l i

K
c

Z Z



  (4) 

,i i iZ R     (5) 

,l l lZ R     (6) 
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Then sin( )r n zz Z t   and cos( )r n n zz Z t    , by substituting the electrical damping coefficients 

from (4) and considering 21/ nl iC L , the amplitude of the relative displacement is 

2
.nr

t
m

i l

mZ

Y K
c

R R







 
 (7) 

The power delivered to the load resistance is 
2 2

21 1 1
.

2 2 2

emf t
l out l l l

l i l i

V K z
P R i R R

R R R R


   
     

   
 (8) 

 

Substituting the maximum value for z , which is r nZ  in (8), the power supplied to the load is given by 

 

2 2 2

2

1
.

2

l
l out n t r

l i

R
P K Z

R R
 


 (9) 

Equation (9) shows the relationship between the relative displacement, excitation frequency, load 

resistance and the harvested power from a given generator.  

Now, we design an optimum energy harvesting system to extract maximum energy from a given 

vibration source with known amplitude and frequency of oscillation. This design will be accomplished 

based on the parameters of a given generator that has given tK and iR values. It is also assumed that, due 

to the transducer size limits, the maximum displacement of the oscillating mass is specified. Therefore, 

the aim of design is the optimal selection of system parameters including k, lR and m to harvest the 

maximum power from the given generator within the specified range of motion. To this end, considering 

0r
Z as the maximum allowable relative displacement of mass (i.e., 

0r rZ Z is constant), the maximum 

value of (9) is obtained when the load resistance is equal to the internal resistance of the generator in 

which the output power is 
0

2 2 2 / 8n t r ik Z R . The mass can then be selected from (7) to limit its maximum 

displacement to
0r rZ Z , 

The natural frequency of system is equal to the excitation frequency when 2k m , considering n   

in this condition the spring stiffness is given by 

 

2.2 Power Generation from a constrained rotational energy harvesting transducer  

 

  A rotational energy harvesting system comprising a sprung mass coupled to an electrical generator 

through a motion transmission system. The Ball screw is a conventional mechanism that converts linear 

motion to the rotational one. A schematic diagram of this type of system is shown in figure 3. In this 

device the base movement causes the mass to vibrate. The ball screw then converts the low frequency 

linear motion of the seismic mass to high speed rotation. The governing differential equation of motion, 

having an ideal ball screw, igure 3 is written as  

 
2 2

2 2
.e bgm J z c c z k z my

l l

     
              

 (12) 
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Figure 3. Schematic diagram of an energy harvesting system consisting of a sprung mass coupled to a 

generator through a ball screw 
 

Considering l as the ball screw lead, the equivalent reflected moment of inertia of the ball screw and the 

generator is given by  
2

2 /J l , where J refers to the total moment of inertia of the system including the 

moment inertia of the ball screw bJ  and generator gJ  and is defined as 

Also bgc  includes the mechanical viscous damping of the combined ball screw connections mbc and 

generator mgc , i.e., 

For a harmonic base excitation  sin yy Y t   , the amplitude of the relative displacement is  

The systems operates at its natural frequency when n  where n  is given by 

In this condition, the relative displacement of the mass is given by 

where iT is the rotary generator emf-constant which is equivalent to tK in linear systems. Then the 

output power is therefore expressed as 

.g bJ J J   (13) 

.bg mb mgc c c   (14) 
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                                 
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Now, we assume that we wish to determine the parameters of a rotational system (i.e., l, m and Rl), based 

on a specific generator and given mass (i.e., known iT , iR  and m), such that the maximum energy can be 

extracted from a specified vibration source (i.e., known Y and ). 

Considering the maximum allowable displacement of mass
0r rZ Z ,  

2
2 / l  is then obtained from (17) 

as  

By replacing (19) in (18), the output power for the constrained system is obtained from the following 

equation 

From (20), the optimum load resistance to harvest the maximum power is obtained from / 0,b out lP R     

which results in 

the optimum ball screw lead can be derived as 

and the spring stiffness can be calculated from (16).  

 

 

3. Power and efficiency comparison between linear and rotational systems 

 

3.1 Power and efficiency of an electromagnetic constrained transducer  

 

Efficiency is a fundamental term that has been studied for different energy harvesting systems. Relying 

solely on the assessment of the output power of energy harvesters does not reflect their quality of 

performance and their capability to harvest the maximum amount of power. However, in the context of 

vibration harvesting systems, the concept of efficiency has received less attention in the literature than 

that of maximizing output power. Traditionally, efficiency is defined as the ratio of the electrical power 

output to the mechanical input power; whilst, in a vibration-based energy harvester, the input 

mechanical power itself is related to the device characteristics. Also, the efficiency cannot be defined in 

terms of the potential mechanical power available from the source as, in some applications, the loading 

by the harvester does not influence the dynamics of the source of vibration. Hence, the potential 

mechanical power available from the source is effectively limitless [14]. To compare the power output 

of various transducers, a dimensionless figure of merit, called effectiveness e, is introduced  by Roundy 

[28] which is defined as 
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2
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where, Q is the quality factor and is related to the damping ratio of the system,  is the coupling 

coefficient of the transduction mechanism,  is the actual density of the device, 0 is a baseline density, 

 is the actual transmission coefficient and max is the maximum transmission coefficient. However, in 

the “effectiveness” index, Q is related to the damping ratio of the system and does not have a 

fundamental limit. Hence, this metric comparison does not reveal how well the device is optimized [8]. 

To investigate how close a device is to its optimum performance and distinguish between different 

proof mass densities and geometries, Mitcheson et al. [14] introduce  a “volume figure of merit”, 

defined as 

4

33
0 0

.

1

16

out
V

Au

P
FoM

Y V 

      

(24) 

This dimensionless ratio compares the performance of the device with that of an ideal device. The device 

has the same total package volume but with a proof mass equal to the density of gold ( Au ), occupying 

half of this volume ( 0V ). The proof mass oscillates in the other half of this package. The power output 

harvested by this hypothetical device is considered as the maximum possible output for the based 

vibration with amplitude of 0Y at frequency of . The power output of the transducer is compared with 

the maximum possible output to evaluate the performance of a device as a function of its overall size. 

Although the “volume figure of merit” facilitates the comparison of a harvesting device performance with 

a reference ideal energy harvesting system, it does not enable the calculation of input power absorbed by 

the system to produce a certain amount of output power.  

Elliott and Zilletti [27] conducted research into scaling of linear electromagnetic transducers for power 

harvesting and shunt damping. In this study the efficiency is defined as the ratio of output power to the 

sum of the mechanical dissipated power, electrical power loss and electrical output power. This definition 

is closer to the original definition of efficiency. This study shows that the efficiency of a linear 

electromagnetic transducer depends on a non-dimensional electromechanical coupling coefficient which 

will be discussed later in this paper. The coupling coefficient scales with the transducer’s size. However, 

this research does not consider the constraint on the displacement of the proof mass. The mechanical 

input power absorbed by the energy harvesting structure is given by 

Here, we define the efficiency of a linear system, lE , as the ratio of the electrical power harvested from 

(9) to the supplied mechanical power from (25), which is  

 

The load resistance corresponding to the maximum efficiency of the system, as opposed to the maximum 

power output, can be obtained from / 0l lE R   , i.e,.  differentiation of (26), which results in 

By comparing the optimum load resistance for maximum output power (
max, ,l linear P iR R ), and the load 

resistance corresponding to the maximum achievable system efficiency derived in (27), it is realized that 

the latter is always greater than the former. Therefore, in a practical linear system it is not possible to 

achieve maximum efficiency at the maximum output power point. The mechanical input power absorbed 

by the rotational system can be calculated as 
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The harvesting efficiency, bE , is defined as  

 

Also, from (29), the load resistance corresponding to the maximum efficiency of the system can be 

obtained from / 0b lE R   , which is  

Comparison of (21) and (30) reveals that in the rotational system, the optimum load resistance to obtain 

the maximum efficiency is the same as the load resistance corresponding to the maximum power. In the 

other words, for a constrained rotational system the maximum efficiency occurs at the maximum output 

power.  

 

3.2 Comparison of output power and efficiency of systems 

 

By replacing (7) in (9) for 
0r rZ Z the load power of a constrained linear energy harvesting system for 

the load resistance corresponding to the maximum output power (
max, ,l linear P iR R ), is 

where em is a non-dimensional electromechanical coupling coefficient of an energy harvesting system 

and is defined as [27]  

for linear systems and  

for rotational systems. By increasing this coefficient (i.e., em  ) the maximum output power, given 

by (31), approaches the following expression  

This shows that the maximum theoretical power is determined by the environmental vibration 

characteristics ( n , Y ) and also the system mass and the maximum allowable displacement. Note that 

n  is a characteristic of the transducer, but here the system is designed such that the undamped natural 

frequency of the device is equal to the frequency of excitation. 

Considering (26), the efficiency of a constrained linear system for the load resistance corresponding to 

the maximum output power (
max, ,l linear P iR R ), can readily be shown to be [27]  

For weak linear coupled systems, the efficiency is low. By increasing em  the efficiency increases until 

it reaches a maximum value of 50%, i.e. 
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However, considering the optimum load resistance for rotational systems from (21), the output power of 

such systems from (20) can be written as 

and for the case when em  , the power is  

Also, the efficiency of rotational systems corresponding to the maximum output power can be obtained 

by replacing (30) in (28) and using (22),  (32-a) and (32-b), which results in 

 

  

Equation (38) indicates that in the case of a rotational system, it is possible to achieve an efficiency of 

more than 50%. To achieve such favourable design, the condition below must be met   

 

This condition is satisfied if 8em  . Selecting the parameters according to this condition can lead to a 

system with an efficiency above 50%. For the case when em  , the efficiency of the rotational 

system is 

 

 

In the case that the a linear and a rotational system have same seismic mass, by replacing (7) in (25) and 

(17) in (28), for
0r rZ Z , it an be shown that the mechanical input power for both systems 

is
0

31/ 2 n rm Y Z , however, the linear system in the optimum condition can only transfer less than half of 

this power to the load, while, the rotational system under certain condition, i.e. 8em  , can harvest 

more power.  

 
 

3.3. Effect of the Scaling of constrained electromagnetic harvesters on the output power and 

efficiency  

 

It was shown earlier that by increasing em , the efficiency of a typical energy harvesting transducer is 

improved. A question that arises here is “how do the output power and efficiency of a system change by 

increasing the size of the generator?”. 

Elliott and Zilletti [27] studied the relation between em and the characteristic length of a transducer [L]. 

In this study, assuming that wA  is the cross-sectional area of the wire used for the coil of the 

electromagnetic transducer and w is its resistivity, the resistance of the coil is given by 

 

Here h is the coil’s wire length, which is approximately given by 
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1
lim .

2em

b out P n rP m Y Z
 

  (37) 

 

   
max, 2

1
,

1 1 1 1

em em

b P

em em em

E
 



       

 (38) 

 2 1 1 .em em     (39) 

max,lim 1.
em

b PE
 

  (40) 

.i w
w

h
R

A
  (41) 

,C

w

V
h

A
  (42) 
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where CV  is the volume of the coil. For a well-designed transducer with saturated magnetic flux density 

B, the emf-constant ( tK for linear systems and iT  for rotational systems) is proportional to the magnetic 

flux density times the length of the wire in the coil (i.e., tK or iT =Bh). Therefore, the electromechanical 

coefficient of the transducer can be re-written as 

The magnetic flux density (B) and wire resistivity ( w ) of the transducer depend on their material 

properties, but not on the transducer dimensions. In general, the scale of the volume of the coil   ( CV ) is 

[ 3L ], whereas the mechanical damping coefficient ( mc  for linear systems and bgc  for rotational systems) 

is related to the structure and the detailed mechanism of the transducer, but generally scales as [ L ][29]. 

Therefore, the electromechanical coefficient shown in (32-a) and (32-b) is proportional to the square of 

the characteristic length of the transducer [ 2L ]. Hence, an option in increasing the coupling coefficient of 

a transducer is to increase its overall size. From (33) and (37) it is evident that, for both systems, by 

increasing the size of device the electromagnetic coefficient and consequently the output power of the 

system is increased. 

In the case of a rotational system, considering the combined ball screw, mass, spring and the rotary 

generator as the transducer assembly, the coupling coefficient related to the generator part of the 

transducer can be defined as 

where mgc is the mechanical damping associated with the rotary generator. According to the discussion 

presented above, it is expected that emg will scale with the square of the characteristic length of the 

generator [L2]. This assumption will be examined in the next section by studying the specifications of a 

set of commercial generators. For the rotational transducer assembly, the coupling coefficient defined in 

(32-b) can be rewritten as  

where mbc is the mechanical damping due to the presence of other transducer’s mechanical components 

such as  ball screw, bearings and  coupling shafts. Here, by increasing the size of the rotary generator, the 

quantity 2 /i iT R  scales as [L3], but mgc scales as [L], while, mbc  does not scale up. Hence, it can be 

understood that by increasing the generator size, the coupling coefficient of the overall transducer 

assembly is increased but due to constant mbc , the rate of scaling is higher than [L2]. For instance if two 

rotational systems are designed based on two different rotary generators with electromechanical 

coefficients 
1emg and 

2emg , the ratio of the non-dimensional electromechanical coefficient for these 

generators scales as [L2], i.e.,     

and from (45) the ratio of the overall electromechanical coefficient of the designed transducers is 

 
2 2

.C
em

w m
w m

w

Bh B V

h c
c

A




    
(43) 

2

,i
emg

mg i

T

c R
   (44) 

 

2

,i
em

mg mb i

T

c c R
 


 (45) 

2

2 2 2

1 1

1 1

2

2

2
,

i

emg mg i

emg i

mg i

T

c R
L

T

c R


  
 

 (46) 
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Therefore, if 
1

/mb mgc c is greater than 
2

/mb mgc c , then in comparison with 
1em , 

2em scales with a ratio 

greater than [L2].  

 

 

4. Numerical study 

 

4.1. Linear system examples 

 

This section investigates the relation between size and efficiency of energy harvesting devices under 

constrained condition brought about by the employed commercial generator. It is assumed that a source 

of vibration (for example a vertical movement of a boat) with a frequency of 0.5 Hz (  rad/sec) and 

amplitude of 1 m ( 1Y m) is available. We are required to design an energy harvesting device such that 

the maximum displacement of the seismic mass does not exceed 0.3 m.  

First case is dedicated to the design of a linear energy harvesting structure based on figure 1. Table 1 lists 

the parameters of a variety of linear electromagnetic actuators presented in [27] that are sorted in the 

order of small to large scales. The last system represents a hypothetical case in which the size of the 

actuator is much larger than model ASP400 (~8 times).  

 

Table 1 Parameters of a number of linear electromagnetic inertial actuator models[27] 

 

 tK  iR  mc  em  m  
max,l out PP  

Type (N/A) (Ω) (Ns/m)  (kg) (W) 

Trust headphone actuator 0.74 8 0.38 0.18 0.03 0.007 

Micromega(IA-01) 1.6 3.0 1.4 0.61 0.17 0.09 

Aura 7 4.4 9 1.23 1.39 1.23 

Motran (IFX 30-100) 10 1.6 44 1.42 7.18 6.93 

Micromega (ADD-45N) 20 4 35 2.86 8.11 11.10 

ASP 400 21 1.6 30 9.19 16.02 30.60 

Hypothetical case 42 0.8 60 36.75 111.01 224.8 

 

For each presented linear actuator type, the proof mass is calculated such that the oscillation at excitation 

frequency (  rad/sec) occurs within the given constraint (i.e., 
0

0.3rZ   m). For each inertial 

generator em and the seismic mass are calculated from (32-a) and (10), respectively. Then, at optimum 

load resistance (
max, ,l linear P iR R ), the output power is obtained from (9). As table 1 shows, by increasing 

the transducer dimensions, em  is increased and that is in agreement with the result presented in section 

3. Also, by increasing the size of the linear actuator, the overall damping of the system gets larger, thus, 

requiring a bigger mass to reach the same displacement (i.e., 
0

0.3rZ  ). In addition, it is seen that by 

increasing the size of the linear actuator, the output power increases. However, as in this case, mass is the 

design variable (and for hence the absorbed mechanical power is different for each design), system 

efficiency would therefore be a more appropriate criterion to be used in order to compare the different 

harvesters.  Figure 4 shows the efficiency of the designed system corresponding to their maximum output 

power calculated from (26). It is seen that by increasing em due to the increase of the transducer size, the 

 

 

2

2 22 2 1

1 11

2
1 1

2

2

1

.

1

i
mb

mg mb iem emg mg

mbem emgi

mg
mg mb i

T c

c c R c

cT

c
c c R


 

  
 





 (47) 
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efficiency of the energy conversion system is improved. However, even in the case of a hypothetical 

system where the size has been increased dramatically, the efficiency of the system does not exceed 50% 

which is in agreement with the result obtained from (35).  

 

 
Figure 4. Efficiency of linear electromagnetic energy harvesting systems versus em for the linear 

actuator shown in table 1 

 

 

4.2. Rotational system examples  
 
Table 2 presents the size and specifications of a number of commercial PM (permanent magnet) 

generators where h and r, respectively, are the length and the radius of the rotary generator coupled to the 

ball screw as presented in figure 3. Here, for each generator, emg  is calculated from (44), see table 2. 

Figure 5 shows the variation of the coupling coefficients of the generators in comparison with the size of 

the reference generator (Model a). A reasonable fit to emg shows that it is linearly proportional 

to  
2

31/iV V , where 1V is the volume of generator model a, and iV is the volume of the selected generator. 

This result validates the statement made in section 3 that the electromechanical coupling coefficient of a 

generator scales up with the square of the characteristic length of the device [L2]. Also in each case 

em which represents the electromechanical coefficient of the transducer assembly is calculated from 

(45). Note that mbc is not a function of the generator size and is assumed to be 3.0E-3 (mN.m.s.rad-1) for 

all the designed transducers. A comparison of em and emg reveals that the em scales with a ratio 

higher than that of emg . This agrees with the discussion presented in section 3. 
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Table 2. The parameters of PM motors from Faulhaber [30]    
  

 
h  r  iT  iR  mgc  emg   

em  l  
max,b out PP   

Type (mm) (mm) (mNm/A) (Ω) ( mN.m.s.rad-1)    (mm) (W) 

a 6 20 1.13 9.1 6E-5 2.33  0.05 1.2 0.4 

b 12 26 2.77 2.3 4.2E-4 6.78  0.95 1.5 6.2 

c 16 28 3.86 4.3 4.8E-4 7.22  0.99 1.6 6.4 

d 20 36 6.34 3.4 1.3E-3 9.20  2.75 2 12.0 

e 30 56 12.74 1.6 6E-3 16.20  10.80 3.8 20.6 

f 35 64 14.52 0.6 1.4E-2 24.40  20.20 6.1 24.2 

g 44 90 23.83 0.23 6E-2 39.94  38.4 13.5 27.3 

 

 
Figure 5.  The coupling coefficient of rotary generators presented in table 2 versus ratio of their sizes to the 

reference generator in power of two over 3. 

 

Now, it is assumed that the environmental vibration condition and the constraint on the maximum 

allowable displacement of the seismic mass are the same as the values considered in the first case 

( 0 1Y  m,  ). In this case, based on each of the PM generators presented in table 2, a rotational 

harvesting system is designed. It is assumed that the energy harvester has a mass of 8.1 kg, and the 

design variables are l and lR . The optimum load resistance for each case is obtained from (21), and then 

the optimum lead size for the ball screw is calculated from (22). Table 2 presents the ball screw lead 

values and the generated power of each system corresponding to the relevant selected PM generator in 

each case. It is seen that by increasing the size of the generator, em and consequently the output power 

of the system is increased which is in agreement with (37).  

Figure 6 shows the efficiency of the designed rotational systems versus em . It is seen that by increasing 

the size of PM generators, the efficiency of the system increases. Here, in contrast with linear systems, an 

efficiency above 50% is achievable. This occurs for those systems whose em meet the criterion 

presented in (39), i.e., systems designed based on generators e, f and g. However, if em does not satisfy 

the condition presented in (39), i.e. 8em  , designing a rotational energy harvesting system may result 

in a sub-optimum energy harvesting device in comparison with the linear system. For instance 

comparison of the designed systems based on the generators a, b and c with the linear system designed 

based on Micromega (ADD-45N), reveals that although the rotational systems utilize the same mass, they 

produce less power compared with the linear system. Therefore, for constrained applications, in the 
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design process of the energy harvesting systems, a rotary generator should be selected carefully to allow 

the designer to take advantage of the superiority of the rotational systems over the linear systems.  

 

 

 

 
Figure 6.  Efficiency of rotational electromagnetic energy harvesting systems versus em for the rotary 

generators shown in table 2 

 

 

5. Discussion and conclusion 

In some energy harvesting systems, the maximum displacement of the oscillating mass will be limited 

due to the physical constraints of the device. In systems where this limitation does not exist, choosing the 

optimum load resistance with the goal of maximizing the energy harvested from the environment is a 

process that takes place after the machine design. This is why, in these cases, the phrase “tuning” is used 

to refer to the selection of the resistance load. However, in systems where the maximum displacement of 

the mass is limited (constrained systems), choosing the optimum load resistance is part of the actual 

design process and cannot be done independently of choosing other parameters. 

In this article, the maximum power condition and the corresponding efficiency for constrained vibration 

based linear and rotational energy harvesting devices were presented. For convenience, and for enabling 

the comparison of different systems, the definition for the coupling coefficient of an energy harvesting 

device given by (32) is employed [27].  

In a linear system, electromechanical coupling coefficient ( em ) is shown to increase with the size of the 

transducer according to its characteristic length squared. However, in the case of a rotational system, 

although emg of the rotational generator, itself, increases as [L2], the value of em  for the whole 

transducer assembly (including the ball screw) scales by a ratio greater than [L2].  

It is shown that in a system with linear motion and constrained throw, even with the assumption of 

negligible mechanical losses, the maximum harvestable power (at optimum condition, i.e., 

max, ,l linear P iR R ) is half of the mechanical power that can be absorbed by the transducer. 

Also, it is shown that the output power and efficiency of linear systems increase by increasing the size of 

the structure. However, the maximum efficiency for such devices cannot be more than 50%.   

In contrast, rotational systems with a constrained throw show greater capability in transferring energy to 

the resistance load. In these systems, the ratio of the optimum load resistance and the internal resistance 

of the generator can be written according to equation (21) and (32) as follows: 

 

Therefore, by increasing em , this could be achieved by the enlargement of the rotary generator size, the 

ratio of the generator internal resistance to the load resistance increases. 

 

max, ,
1 .

l rotational P

em
i

R

R
    (48) 
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Figure 7 shows the logarithmic plot of em  against the generator volumes over reference volume to the 

power of two over three for both linear and rotational transducers, respectively presented in tables I and 

II. The generators volume and the related reference volume for the linear transducers have been obtained 

from [27]. It is seen that em for rotational systems scales with a greater ratio in comparison with the 

linear systems. Hence, scaling the generator part in a rotational system, can be more beneficial in terms 

of improvement the system efficiency and output power.   

 

 

 
 

Figure 7.  Log-log plot of em versus volume over the reference volume to the power of two over three for 

linear and rotational systems presented in tables I and II. 

 

It is demonstrated that these transducers can be designed to operate with efficiencies above 50%. The 

criterion that guarantees this superior efficiency was derived in (39) which can be used in the design 

process. This superiority of rotational systems over linear systems is due to the presence of an 

intermediate mechanism viz ball screw that can provide an extra design variable, thus enabling us to 

optimize the power output of the system subject to displacement constraint more desirably. 

 For a defined environmental condition and a given proof mass with constrained maximum allowable 

displacement, the amount of power delivered to the electrical load by a rotational system can be as high 

as twice the amount delivered by a linear system. 
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