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FORECASTING OF OCEAN STATE IN A COMPLEX ESTUARINE ENVIRONMENT: THE
SOLENT-SOUTHAMPTON WATER ESTUARINE SYSTEM

By Niall Quinn

Coastal flooding is a natural hazard causing devastation to many regions throughout
the world, induced by the coincidence of high spring tides, large storm surges and
waves. To reduce the risk posed by coastal inundation, warning systems have been
developed to enable preparations to an expected threat. Although current operational
predictions provide invaluable warnings, uncertainty in model formulations and input
datasets, can lead to errors in forecasts. In order to provide coastal managers with the
best possible information with which to make decisions, recent research has begun to
focus on the movement from deterministic to probabilistic forecasting, which aims to

explicitly account for uncertainty in the system.

This research described the implementation of a regional tide-surge-wave model for
the Solent-Southampton Water estuarine system, a region that is likely to experience
increased risk of coastal flooding in the coming century. The accuracy of the model
predictions were examined relative to in-situ measurements and those obtained from
independent systems. Using the model, sources of error were examined and their
effects upon the model predictions quantified, with particular reference made to the
spatial variability throughout the region. In light of recent research, a probabilistic
modelling approach, utilising a Monte Carlo technique used to provide a forecast
capable of representing the uncertainty in the system, within a suitable time-frame for
real-time flood forecasting that included an hourly Kalman filter data assimilation
update.

The findings presented in this thesis will be of interest to coastal modellers working in
complex estuarine environments where the influences of tide-surge-wave interactions
upon model predictions are uncertain. Furthermore, the application of a
computationally efficient model, presented here, will provide a useful comparison with
traditional physically-based systems to those wishing to quantify uncertainty in

regions where computational resources are low.
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Introduction

Chapter 1: Introduction

1.1. Background

1.1.1. The coastal flooding hazard: Causes and consequences

Coastal flooding due to extreme sea level events is a natural disaster affecting coastal
communities all over the world. The costs, in terms of monetary loss and human
casualties, can be devastating, killing thousands annually. For instance, The National
Oceanic and Atmospheric Administration (NOAA,
http://www.nhc.noaa.gov/surge /#FACTS) highlight a selection of significant
inundation events impacting the USA since 1900, in most of which damage into the
billions was estimated (Table 1.1). Notable examples include hurricane lke in 2008,
which led to surges of up to six meters devastating the Boliver Peninsula of Texas, and
the Galvestone hurricane (1900) in which storm surge inundation was estimated to be
responsible for 8,000 deaths. Hurricane Katrina in 2005 created storm surges of up to
six meters, causing destruction along the Mississippi coast and the south-eastern
region of Louisiana, while breaching and overtopping of levees in the New Orleans
metropolitan area inundated much of the city and its eastern suburbs. Similarly, other
regions, such as the Bay of Bengal, consistently suffer from storm induced coastal
flooding. In just two events occurring in 1970 and 1991, 300,000 and 140,000 people,
respectively, were killed (Flather, 1994).

Table 1.1. Significant storm surge events since 1900 impacting America (NOAA,

http://www.nhc.noaa.gov/surge/#FACTS)

~ = g 9 Z Y £ 7 8
Event ™ o e > IS e 3 a s =
S =4 o - o = a ik @
o » o < S 4
Q o
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o
Date 2008 2005 2005 2003 1995 1989 1969 1957 1938 1900
Costs ($US 19.3 75 2.2 3 3 8 1.4 0.15 0.31 0.3

billion)

Deaths 48 1200 42 17 50 45 256 390 600 8000

*Values given represent damages for the given hurricane event, however, in each event

the storm surge was recognised as the primary hazard.
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The occurrence of coastal flooding is a natural process. Where the coast is
uninhabited, this is often not considered a problem. However, large urban centres and
important infrastructures, such as oil refineries and nuclear power stations, are often
located in coastal regions (Stern, 2007). Large flooding events in such regions can be
disastrous (Smith and Ward, 1998). It is for this reason that flood risk is often defined
as the product of the probability of a given flood event and the consequential damage;
highlighting that there is an important human element involved (Hall et al., 2006). In
their study, Zang and Tooley (2003) remarked how recent land reclamation in the
south east of the UK, and rapid coastal settlement developments in the south west,
have led to greater risk from coastal inundation, relative to the west, which has seen
less extensive development. Unfortunately, coastal areas worldwide represent some of
the most densely populated regions, putting many at risk from flooding. From 1990-
2008, population density increased by 32% in Gulf coastal counties of America, while
half of the United States economic productivity is located within coastal zones (NOAA,
http://www.nhc.noaa.gov/surge/#FACTS). Stern (2007) suggests that over 200 million
people live in coastal floodplains, while two million km2 of land and one trillion dollars’
worth of assets lie less than 1 m elevation above current sea level. Furthermore, the
fastest growing populations in less developed countries show very strong migratory
tendencies towards coastal plain cities (Spencer and French, 1993; Hunt, 2005).

The sea conditions required to inundate an area of coast will be conditional on
the form of the coast as well as any defences that may be in place. The level of the sea
at a given location is conditioned by the combination of the mean sea level, tides, wave
conditions and the presence of storm surges (Inter Agency Committee on Marine
Science and Technology 2004). The coincidence of storm surges and high tides,
together with a strong onshore wind, can raise the local sea elevation above the high
tide level, leading to overtopping of defences (Zang and Tooley 2003, Hunt 2005). The
difference in the two high water levels is referred to as the ‘skew-surge’ (Brown and
Wolf 2009; Royston et al., 2012).

In many regions, where the tidal range represents the largest contributor to the
water surface elevations, the presence of high spring tides can be fundamental in the
occurrence of coastal inundation. Tides occur daily as a result of the gravitational
attraction between the Earth, Moon and Sun (Thurman, 1988; Kantha and Clayson,
2000). Spring tides are those generated when the tide generating forces of the Sun and
the Moon are acting in the same direction and the solar and lunar equilibrium tides
coincide, causing very large tidal ranges.

A storm surge, associated with local low pressure systems and the force of high
winds upon the ocean surface, can cause further localised heightening of the sea level
(Thurman, 1988). Surge magnitudes are affected by the size and track of the storm,

proximity to the coast, and wind fetch and direction which push the surge up onto the
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coast (Open University, 1989). In addition, in enclosed areas, the basin shape and the
nearshore bathymetry can be very influential upon the surge characteristics of the
surge experienced in a coastal region (Zang and Tooley, 2003).

Where strong winds blowing over a long fetch are present, large waves can be
created, increasing the likelihood of flooding at the coasts (Zang and Tooley, 2003;
Hunt, 2005). Waves not only increase the local sea surface height but are also the
primary suppliers of energy to the coast (Battjes, 2006). The energy contained within a
wave breaking upon the coast is substantial, increasing the risk of flooding through
the destruction of coastal defences, especially where sea levels are high enough to
enable the waves to overtop defences, thereby attacking the rear face and increasing
the likelihood of failure (Wolf and Flather, 2005).

The extreme risk posed to many regions, such as the Bay of Bengal, is generally
not found in the UK, however, coastal inundation still poses a very serious threat to
many coastal populations. For instance, it is estimated that in the UK, 5 million people
and 1.85 million homes are at risk from coastal flooding (Penning-Rowsell et al.,
2006); while over 60% of grade | agricultural lands in the South lie below +5m
Ordnance Datum (OD), yet the mean high water level in many areas is +5 m OD. In
England and Wales, the expected annual damage due to coastal flooding is expected to
increase to between £1.0 and £13.5 billion by 2100 (Hall et al., 2010). Although rare,
significant loss of life has occurred, most notably during the storm surge event of
1953 in which 307 and 1836 people died in the UK and Netherlands, respectively
(Gerritsen, 2005; Wolf and Flather, 2005). Exceptionally strong winds over the North
Sea created the surge which funnelled down into the southern North Sea, impacting
much of eastern UK, raising sea levels more than 2.5 m (Gerritsen, 2005), in addition
to the 3 m increase caused by the presence of spring tides. 150 defences were broken
and over 100,000 people needed to be evacuated. Zang and Tooley (2003) suggest
24,000 homes and 200,000 acres of farmland were destroyed causing an equivalent of
£5billion in damages (today’s equivalent).

Due to the high value of assets at risk and the large scale disruption caused by
coastal floods, the government invests a large amount of money in coastal
management. Between 2001 and 2006, investment into flood defences rose from
£303million to £550million (House of Commons, 2007), with a further £5billion
allocated for investment over the subsequent 15 years (DEFRA, 2004). In their most
recent report (Environment Agency, 2009a) the Environment Agency suggested that
investment will need to increase to more than £1 billion per year by 2035 for building

and maintaining new and existing flood and coastal risk management assets.
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1.1.2. Reducing vulnerability: Forecasting

Due to the risks posed by coastal inundation, many regions throughout the world have
attempted to increase their resilience through the implementation of warning systems.
The ability to prepare for a severe flooding event can be vital in the prevention of loss
of life and reduction to property damage. Forecasting systems often contain a suite of
coupled models, linking predictions of atmospheric, hydrodynamic and wave
conditions, for example, see Allard et al. (2008). Typically, the models used in ocean
forecasts are of two varieties, empirical or physically-based numerical models, while
some forecasting systems may contain components of both.

Physically-based modelling strategies have become widely utilised in operational
forecasting systems. As the name suggests, these models aim to model explicitly the
physics of the natural processes of interest, commonly over a computational mesh.
Flather (2000) provides an assessment of the operational forecasting systems across
Europe, all of which are based predominantly on the use of distributed physically-
based models in which atmospheric predictions drive hydrodynamic and spectral wave
model components. Numerous physically-based modelling software packages are
available. Wavewatch Ill (Tolman, 2009) and Simulating WAves Nearshore (SWAN, Booij
et al., 1999) for instance, are commonly utilised spectral wave models, while MIKE-21
(Warren and Bach, 1992) and ADCIRC (Luettich and Westerink, 2004) are two of the
most well-known hydrodynamic model packages. Although some formulation
differences will be present between the various models, most are based upon the same
fundamental principles. Most commonly used wave models attempt to propagate wave
energy across the computational domain in the form of an energy spectrum, which
grows and decays in response to changes in the wind field (Liu et al., 2002). Similarly,
two-dimensional (2D) hydrodynamic models attempt to propagate a boundary
elevation fluctuation through the computational domain using vertically integrated,
fully dynamic equations of continuity and conservation of momentum, based upon the
numerical solution of the two-dimensional incompressible Reynolds averaged Navier-
Stokes equations (Cafizares et al., 2001).

The use of physically-based numerical models has become extremely popular in
recent years due to advances in computational resources and the ability to provide
forecasts over large domains. This is particularly important in many nearshore regions
as the variables of interest (e.g. currents, wave fields) often contain a high degree of
variability (Bolanos and Sanchez-Arcilla, 2006). Furthermore, once constructed, the
model can be utilised to provide ‘what-if’ assessments. However, large costs in terms
of input datasets (e.g. high resolution bathymetric maps) and computational resources,
often not widely available, are required where such models need to be utilised
(Logemann et al., 2004).
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Empirical models (sometimes referred to as statistical models) do not attempt to
model real world processes. Instead, a relationship between a dependent variable and
a set of independent variables is established. When producing the empirical model, the
dependent variable usually represents the process one wishes to model (for instance,
the wave height at a given location) and is represented by a measured dataset.
Alternatively, the independent variable(s) represent the input datasets (for example,
the forecasted local wind velocity will often be influential to the wave conditions
experienced in a region). A variety of empirically-based forecasting tools have been
developed, for instance see Deo and Naidu (1999); Cox et al. (2002); Sfetsos (2002);
Bazartseren et al. (2003); Huang et al. (2003); Steidley et al. (2003); Kobayashi and
Yasuda (2004); and Prouty (2007). Although the way in which the models map the
transition from the independent variables to the dependent variable may vary between
methods, for example Prouty (2007) utilised an artificial neural network approach
(ANN), while Kobayashi and Yasuda (2004) used multiple regression, the underlying
basis remains the same.

The relative simplicity of empirical approaches provides some potential benefits,
relative to physical-based numerical models. Most notably, the computational
demands from empirical models, typically, are significantly lower, as are the
requirements for extensive amounts of data. This may be an important factor in
resource—-poor areas as, often, it is the regions where large computational and data
resources are not available that are most in need of forecasting tools (Tilberg and
Garvine, 2004). Kobayashi and Yasuda (2004) suggest that in some instances, such as
when modelling very uncertain regions, empirical-based approaches may provide more
accurate predictions due to their ability to create a direct cause - effect relationship
between the independent and dependent variables, whereas a physical-based
numerical model may use formulations or parameters that are not certain for those
conditions. However, many empirical methods, typically, are designed to provide a
forecast at a given location, where dependent variable measurements can be obtained.
Therefore, uncertainty may arise when forecasts are required at un-gauged locations,
given the complexity of many nearshore regions. Furthermore, empirical model quality
is conditioned upon the quality and length of the datasets used to define them.
Therefore, considerable time-series of measurements, including periods of particular
interest (e.g. extreme events) are essential in creating a useful forecasting tool.

All model predictions will contain inherent uncertainty as no model of the real
world is perfect (Maybeck, 1979). Model processes and structures are simplifications of
an unknown reality, which has only been partially sampled by measured data, which
themselves contain errors (Neal, 2007) and, therefore, can only be regarded as
approximations of the truth (Kantha and Clayson, 2000). Errors may be introduced into

most model predictions through a variety of sources, such as inaccurate estimations of
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initial conditions, inaccurate forcing datasets (Kantha and Clayson, 2000), and a lack of
complete knowledge of the system, leading to uncertainty in the ability to describe
fully its physical properties (Madsen and Canizares, 1999). For instance, it is
recognised widely that the prediction of tidal elevations from physically-based
numerical models become increasingly uncertain in complex nearshore regions,
leading to the use of harmonic analysis-based predictions in their place (Flowerdew et
al., 2007; Bocquet et al., 2009; Hawkes et al., 2009). Similarly, various authors have
reported that commonly used spectral wave models tend to over-predict wave heights,
while under-predicting periods, due to an over-prediction of the high frequency
energy, particularly in shallow, short fetch areas (Ris et al., 1999; Rogers et al., 2002).
Uncertainty in one component of a forecasting system can propagate through the
model chain, reducing the reliability of a given prediction. For this reason,
acknowledging uncertainty, and quantifying it, is an essential component of any

prediction system.

1.1.3. Uncertainty: Probabilistic modelling and data assimilation
Uncertainty is a crucial factor in the provision of forecasts for coastal flooding. In order
for coastal managers to make informed decisions they require information pertaining
to the likelihood of a given event occurring, within a time frame that allows for action
to be taken. The presence of uncertainty clearly inhibits this goal from being reached.
It is for this reason that recent research has highlighted a desire to quantify and
constrain uncertainty in model forecasts (Bocquet et al., 2009).

The movement from deterministic to probabilistic forecasts is a key way in which
one can attempt to quantify the uncertainty within a model forecast. A probabilistic
forecast provides an ensemble of predictions, by sampling from an estimated
uncertainty distribution for a given variable (most commonly given as the uncertainty
within the input variables such as wind velocity), often using a Monte Carlo approach
(Hammersley and Handscomb, 1964). Providing the uncertainty distributions are
representative of the errors influential to the forecast, the resulting ensemble mean
can be given as the ‘best guess’, while the ensemble spread can be used to provide
valuable information, such as the magnitude of variance and the uncertainty in the
forecast. This can also be essential in predicting low likelihood events that a
deterministic approach might miss.

Data assimilation techniques, commonly used in atmospheric predictions, have
recently been introduced into oceanographic systems in an attempt to increase the
accuracy and reduce the uncertainty in forecasts (Kantha and Clayson, 2000). Data
assimilation is a technique in which modelled and observed data are integrated in an
optimal way taking into account uncertainty in both (Prandle, 2000) such as to reduce

forecast error (de las Heras et al., 1995). In the context of surge and wave forecasting,
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a ‘filtering’ assimilation approach is most commonly used, in which an update is
applied to the independent variable estimates to increase the accuracy of the datasets
used to force the model (Mclaughlin, 2002). Alternatively, the prediction of the
dependent variable can be updated to provide more accurate initial conditions for
subsequent forecasts. A variety of data assimilation approaches have been utilised, for
instance Miller (1985), Voorrips (1999) and Greenslade (2001) outline the use of
optimal interpolation techniques which employ a relatively straightforward sequential
methodology, while de las Heras et al. (1995) used an adjoint method. Siddons et al.
(2008) provides a useful comparison between a variety of assimilation techniques used
to integrate real-time radar based wave measurements into the SWAN nearshore wave
model. The Kalman filter (Kalman, 1960), and more recent extensions of it (such as the
ensemble Kalman filter, Evensen, 2003), is a particularly well established approach to
data assimilation (Madsen and Canizares, 1999). It enables the optimal estimation of
the state of a system that has a minimum error variance, considering both a predicted

and measured value, and their respective uncertainties (Kantha and Clayson, 2000).

1.1.4. The Solent-Southampton Water estuarine system

The Solent lies between the south coast of England and the Isle of Wight, in the UK. It
includes 12 separately defined estuaries and harbours, a high degree of spatial
variability in water depths, ranging from artificially deepened channels for shipping, to
inter-tidal mudflats, and contains a wide range of coastal habitats (Fletcher et al.,
2007). The region has various stakeholders, including protected habitats, a dense
coastal population and two of the largest shipping ports in the UK.

The tidal hydrodynamics in the region are unique. The irregular geometrical
shape, narrow channel configuration and shallow depth of the estuary results in an
amplification of the shallow water tidal constituents, M, and M, ,creating a tidal
elevation with a double high water and young flood stand, most prominent in the
Southampton Water region (Rantzen, 1969; Levasseur, 2008).

Storm surges in this region most frequently occur due to low pressure systems
from the Atlantic propagating eastwards, or as a result of surges propagating south
from the North Sea (Law, 1975; Haigh et al., 2004). The region is prone to coastal
flooding, with 2 particularly large events occurring between the 14" and 18" of
December 1989 (Wells et al., 2001; Ruocco et al., 2011) and on the 10* March 2008
(Haigh et al., 2010).0n average the region is flooded (defined as requiring significant
pumping and affecting more than 15 properties) approximately every 2 years, for
instance, between 1935 and 2005 34 events were recorded at Portsmouth (Ruocco et
al., 2011).

A high degree of spatial variability exists in the region’s exposure to storm
waves. Much of the Solent, particularly the west and Southampton Water regions, are
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protected from extreme wave events by the Isle of Wight and Hurst Spit. The greatest
risk is found in the eastern Solent, which can be affected by large swells propagating
through the English Channel. The Channel Coastal Observatory (CCO,
http://www.channelcoast.org/) considers the region to have low-to-medium exposure
to waves.

Due to the variety of nearshore conditions, the spatial variability in the exposure
to extreme wave events, and the complexity of the tidal hydrodynamics, the Solent
provides an interesting setting in which to investigate the accuracy of model
predictions and model sensitivity to data uncertainty. Furthermore, the dense
distribution of in-situ measurements enables the accuracy of predictions to be
assessed throughout the region, while also providing measurements for updating

using data assimilation.
1.2. Aims and objectives of this research

The wider contextual aim of this research was to provide a regional tide-surge-wave
model for the provision of real-time probabilistic forecasts through the transformation

of Mid-Channel forecasts to the nearshore regions of the Solent.

The more specific research objectives were to:

1. Assess the accuracy of a regional model for the prediction of tide, surge and
wave states in the Solent-Southampton Water estuarine system, examining the
spatial variability in accuracy across the domain.

2. Quantify the uncertainty in the wind field and boundary condition input
datasets used to force the regional model, and assess the sensitivity of the
model predictions to them.

3. Examine the influence of tide-surge-wave interactions upon the model
predictions, particularly during storm conditions, examining the conditions
under which the interactions are likely to be of greatest significance.

4. Develop a computationally efficient approach to the transformation of mid-
channel ocean states to the Solent coastline, contrasting predictions accuracies
and computational demands with those associated with the regional model
developed using the MIKE-21 software.

5. Investigate the degree to which uncertainty in the model predictions can be
quantified and reduced through the use of a Monte Carlo-based approach to
probabilistic modelling, and the assimilation of in-situ measurements using the
Kalman filter.

The aims and objectives presented coincide with current research interests in

operational forecasting, particularly, the importance of signal interactions in complex
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estuarine environments where model predictions are inherently uncertain, and the
desire to move towards probabilistic modelling strategies in an attempt to quantify

uncertainty in forecasts.

1.3. Chapter Overview

Chapter two reviews the relevant literature relating to the prediction of ocean states,
expanding upon the concepts highlighted in the introduction. The important physical
processes of wave, tide and surge generation, propagation and dissipation are
discussed. The forecasting of the ocean using physical and empirical techniques are
highlighted with particular detail given to MIKE-21, regression based modelling and
the Kalman filter.

Chapter three provides an assessment of the spatial variability in the sensitivity
of the wave and surge predictions to the local wind stress and boundary condition
datasets provided by the Previmer system, a pre-operational hydrodynamic and
spectral wave modelling system, currently under development, which aims to provide
users with short-term forecasts of ocean state through the English Channel
(http://www.previmer.org/en.). The Previmer datasets are contrasted with those from
another operational system and the influence of the divergence within the datasets,
upon the regional model predictions, is examined.

Chapter four assesses accuracy of the regional model predictions of tide and
surge elevations in the Solent, contrasting its accuracies with those from operational
forecasts. The tide-surge interactions are examined and the uncertainty in the surge
prediction due to the errors in the modelled tidal amplitudes is quantified.

Chapter five assesses the accuracy of the regional model wave predictions
throughout the domain. The accuracy of the predictions is contrasted with those
expected from other systems. The sensitivity of the predictions to uncertainty in the
modelled water levels, and the sensitivity of the surge prediction to the inclusion of the
waves during storm events are examined. The spatial variability in prediction accuracy
and the significance of wave-water level coupling is quantified.

Chapter six contrasts predictions from the MIKE-21-bassed regional model
described in the previous chapters with those obtained using a computationally
efficient empirical model, considering the prediction accuracy and computational
demands. The empirical model is used to demonstrate how a probabilistic prediction
and data assimilation scheme can be used to quantify and reduce uncertainty in the
model predictions, providing valuable information to coastal managers interested in

real-time forecasting.
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Chapter seven provides a discussion of the research findings and highlights
future research that could be conducted to extend the work in the thesis.
Chapter eight highlights the main conclusions that can be drawn from the

research conducted.
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Chapter 2: Literature review

2.1. Ocean waves

Waves are the most recognisable features in the ocean. They are the undulatory motion
of the water surface, transporting energy over large distances without significant
movement to the water particles themselves, which move in circular orbits. A wave
form propagates after an initial energy source displaces water particles from their
equilibrium position providing a source of potential energy. A restoring force (gravity)
then returns the particle to its original position, producing kinetic energy (Knauss,
1996). The kinetic energy of the returning particle provides the displacement energy
acting on the next water particle, therefore, producing a means of energy propagation
without significant water movement.

Ocean waves are most commonly described using the idealised progressive

sinusoidal wave form given in Fig. 2.1.

Fig. 2.1. Wave characteristics. Open University (1989). Where wave height (H) is the
overall vertical change in height between crest and trough. This is twice the amplitude
(a). Wavelength (L) is the distance between successive peaks, and steepness is defined
as the height divided by wavelength. Frequency (f) is the number of peaks passing a

fixed point per second.

Ocean waves can display a wide range of sizes and speeds. For instance, capillary
waves usually contain periods (the time taken to be moved through one wavelength) of
less and half a second and amplitudes of less than 1 cm, while tidal waves have

periods of several hours and amplitudes can be more than 10 m. Waves can be

11
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categorized broadly by the generating force acting upon them and their magnitudes.
Wind waves (described in more detail in Section 2.1.1) are those obtaining energy from
the wind blowing over the ocean surface, while tides (Section 2.1.2) contain an
astronomical forcing from the moon and the sun, and surges (Section 2.1.3) are casued

by the combination of local atmospheric pressure changes and wind stress.

2.1.1. Wind generated waves

Wind generated surface waves can contribute significantly to the risk of coastal
inundation as they can overtop and weaken defensive structures, and contribute to the
alteration of local sea levels, particularly during storm events. Surface waves occur at
the air-ocean interface due to the influence of wind moving over the ocean at a
differing speed to that of the water, thus creating a frictional stress as well as the
direct push upon an existing wave moving at a slower speed to that of the wind
(Kinsman, 1965). This results in the displacement of a water particle from its
equilibrium position (providing it with potential energy required for the generation of
wave motion). Typical wind waves can vary in size drastically from location to location
depending upon the wind speed, the length of time the wind has been blowing and the
distance of unobstructed sea available for build-up (Open University, 1989). At the
Channel Lightvessel, situated in the central English Channel, wind wave periods
typically less than a few minutes while wave heights can be exceed 10 m. The ocean
surface consists of a vast array of waves, each with characteristics shaped by the winds

from which they derived their energy.

2.1.1.1. Wave growth and propagation

Wave growth from initial surface ripples is complex and numerous mechanisms have
been proposed to describe it (WISE group, 2007). A commonly used mechanism is the
‘resonance mechanism’ of Phillips (1957) and the ‘feedback mechanism’ of Miles
(1957) which together highlight that growth occurs in both linear and exponential
forms (Rogers et al., 2002). The resonance mechanism states that wind blowing over
the sea produces harmonic pressure waves that propagate at wind speed (WISE group,
2007). Where this pressure wave remains in phase with a surface wave then energy can
be transferred to the surface wave and growth continues. The minimum wind speed
required to promote resonance waves is 23 ¢m s (Kinsman, 1965). The feedback
mechanism acknowledges that surface waves will influence the water-air interface thus
impacting the wind profile over the sea surface (Bolanos and Sanchez-Arcilla, 2006).
This mechanism complements Phillips resonance model. As waves grow they will
induce corresponding waves in air flow over the surface (Kinsman, 1965). This creates
‘over pressure’ on the wind ward side of the wave crest and ‘under pressure’ on the lee

side which in turn results in pressure energy being transferred to the wave (Delft
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University, 2008). An assumption made is that air and water motion is inviscid and
incompressible, and that wave speed is unaltered by the influence of the wind
(Kinsman, 1965). Unlike in the resonance mechanism, the energy transfer is
proportional to the energy in the wave itself and therefore the higher the wave grows
the larger the energy transfer becomes. This mechanism therefore is an exponential
effect (Delft University, 2008).

The model of Phillips is most applicable during initial stages of the wave field
generation, whereas the work of Miles explains the wind-wave interaction process
(Jones and Toba, 2001). Commonly both processes are combined to estimate the
energy available for wave growth; for instance, see SWAN (Booij et al., 1999) and MIKE-
21 SW (DHI, 2009¢). Snyder et al. (1981) suggest that the overall work done on waves

by wind at a wave number is given by:

f 0, >
W(k) = ZE® _ 0.2%{“%%0593-1} WE(k) _or Hw €05 Ya = € @.1)
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Where: W(k) is the rate of energy input per unit area per unit range of k, E(k) is the
spectral density of the waves in terms of energy per unit area per unit range of k, u is
wind speed (given here at a height of 5m), 6, is the angle between wind direction and
wave travel direction, p_is the air density, pis the water density, c is the phase speed
of the waves, w is the absolute angular frequency (21t/T), and k is the wave number
(21r/L)

The energy within a wave can be estimated by (Lamb, 1932):

_1 2
E=-pga 2.2)

Where: Eis the energy per unit area of sea surface and g is the acceleration due to

gravity.

Waves propagate following the direction of the wind that formed them. When
discussing the speed at which a wave propagates, it is common to use the concept of
the phase speed which is defined as the velocity at which the phase of a given
frequency component of the wave travels. Commonly one might use the crest of a
wave as the reference phase. This speed is influenced by the water depth: wavelength
ratio (Knauss, 1966). In the open ocean waves are normally considered deep water
waves, and become shallow waves as they approach coastlines. Deep water waves
occur where water depth is deeper than half the wavelength, while waves are
considered to be shallow when found in water depths of less than 1/20 of their
wavelength. Deep water wave phase speed (c, ) can be given by Eq. 2.3 whereas

eep’

shallow water wave phase speed (c__ ) is given by Eq. 2.4.

shallow’
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Caeep =/ 9L/2T (2.3)
Cshallow = +/ gd (2.4)

where d is the still water depth.

The sea surface is a confusing mixture of waves with varying heights and
velocities. The waves found in a given location will often consist of waves generated
from local wind conditions (local wind sea) as well as those propagating in from other
regions, independent of local wind conditions (swells). Waves propagating through a
given section of the ocean will gradually separate based upon their relative
wavelengths and speeds; a process known as dispersion. Although the motion of one
wave is considered to be independent of another, where two waves pass through one
another, and the difference in wavelengths is small, they can combine to create a
single resultant set of waves (a ‘wave group’). This superposition of waves can result in
an increase in the wave amplitude (constructive interference) where the respective
wave crests fall in phase with each other, while a reduction in amplitude (destructive
interference) occurs where the crests fall out of phase. The result is that the sea
appears to consist of groups of waves separated by areas of calm water. Wave groups
propagate more slowly than the individual wave components. The envelope which
carries the energy of the wave group travels at group velocity (Tucker, 1991). The
group speed (C) can be estimated by Eq. 2.5 (Janssen, 2004):

_ 0w _1g
Tk 2w

C (2.5)

Wave group speed and individual component speeds are identical in shallow water
regions and therefore dispersion ceases to occur (Janssen, 2004).

A sea state that consists of a confusing mixture of continually varying wave
heights and speeds is commonly defined as a function of time (t) by the summation of

a number of harmonic wave forms (Delft University, 2008; Young, 1999) by:

n(t) =Y a;cos(o;t + cmndi) 2.6)
Where : N is the surface elevation, o is the relative angular frequency of the i wave

component, and c_ is the random phase of the i wave component.

Amplitude components defined from a Fourier transform can be related to the
energy contained within a wave profile to give a wave energy density spectrum (Fig.
2.2) which describes the sea surface elevation as a function of wave energy distributed
over a range of frequencies, Ef) or frequencies and directions, E(f, ©) (Delft University,
2008; Tucker, 1991):
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Fig 2.2. 1D and 2D wave spectrums. Delft University (2008).

It is also common to use averaged parameters such as the significant wave
height (H)when describing the wave spectrum at a given time and place. This is
usually considered as four times the square root of the zeroth-order moment of the
wave spectrum (Tucker, 1991). The most commonly used term for describing the wave
period is the mean wave period (or zero-crossing wave period) (Tz) (Palmer, 2011).

During propagation, waves will be influenced by a variety of processes which can
reduce the total energy within a wave (dissipation), affect the distribution of energy
over the spectrum (nonlinear interactions), and alter the shape and direction of the

wave (refraction, diffraction, and reflection).

2.1.1.2. Dissipation of wave energy

Dissipation is the loss of energy from a wave and can occur due to a number of
processes. Whitecapping is the partial breaking of the wave crest due to the wind
accelerating it forward at a faster rate than the rest of the wave, occurring in deep
water. The result is a loss of energy from the wave system, some of which is
transferred into turbulent energy for ocean currents (WISE group, 2007). Whitecapping
is not easily measured, which has made it hard to produce models and formulas with
which to describe it. Theoretical understanding of the problem remains uncertain.

Attempts to describe the dissipation by whitecapping have often utilised the theory of
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a limiting wave. This is a theoretical wave height past which waves are assumed to
become unstable and break, until stability in the wave profile is re-established (Young
1999; WISE group, 2007). Tucker (1999) quotes a crest-to-trough height: wavelength
ratio of 1:7 as the limiting value for progressive waves in deep water. Kinsman (1965)
suggests that a breaking angle is also important in determining the point at which
whitecapping is induced, stating that at an angle of 120° breaking begins, as at this
point crest particle motion is accelerated at the rate of gravity, making it accelerate
faster than the wave profile. As the wave breaks it exerts a downward pressure on the
upcoming particle motion of the moving water, thereby conducting negative work. This
results in a linear dissipation function with the wave spectrum energy (WISE group,
2007). Whitecapping in deep waters only affects the upper part of the wave profile,
with the main body left to roll on (Kinsman, 1965). Palmer (2011) suggests that there
are a number of approaches that have been put forward to quantify dissipation by
whitecapping, the most frequently utilised being the linear term proposed by
Hasselmann (1974) which assumes that dissipation will occur once a significant
steepness value, S (Eq. 2.7) is exceeded

SZ=27H,/gT/} 2.7

In shallow water conditions waves start to contact the bottom and dissipate
energy by various mechanisms (Luo and Monbaliu, 1994), such as percolation, bottom
friction, and bottom motion (Padilla-Hernandez and Monbaliu, 2001; Wolf, 2009), all
of which transfer momentum form the orbital motion of the water particles just above
the boundary layer into the turbulent motion in the boundary layer (Palmer, 2011). The
relative strength of the mechanisms will vary from place to place, depending upon the
conditions of the bottom that are present.

Bottom friction is caused by the drag upon the flow of the water particles as they
propagate over the ocean bottom and can be seen to relate to shear stress and orbital
velocity of the wave component. DHI (2009c¢) represent the process of bottom friction
using the formulation of Weber (1991) while Booij et al. (1999) state that many models
have been proposed and, therefore, offer three different options in the SWAN model
defined by Hasselmann et al. (1973), Collins (1972) and Madsen et al. (1988). Cooper
(2005) suggest that the influences upon the rates of dissipation due to bottom friction
include water depth, incident wave conditions, the orbital velocity at the bottom and a
friction factor which is commonly based upon the bed roughness.

Damping due to percolation in a permeable bed layer (e.g. sands), can lead to
dissipation through the creation of a wave-induced pressure field at the bottom which
will induce flow in the permeable sediment layer. The wave energy lost is proportional
to the permeability of the sediment layer. Where a mud bottom dominates a surface

wave can induce a wave at the mud-water interface which in turn causes flow in the
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mud layer. The viscosity of the mud results in the rapid dissipation of wave energy to a
greater extent than sand bottoms (WISE group, 2007). Méller et al. (1999) utilised the
formulation defined by Sleath (1984) to represent the dissipation due to percolation
which was a function of the wave period, wavelength, water depth, thickness of the soil
layer, and the permeability of the sediment (Cooper, 2005).

Bottom motion refers to the physical movement of material to and from the sea
bed by the wave, utilising a portion of the energy contained within the water body
(Open University, 1989). Battjes (2006) suggests that wind generated waves are the
primary drivers of sediment movement in coastal areas making them responsible for
shaping the coasts. Hsiao and Shemdin (1978) discuss previous experiments which
show attenuation characteristics that could not be explained by refraction, shoaling,
bottom friction or bottom percolation, which was instead attributed to bottom motion.
They conclude that dissipation due to bottom motion as great as that from either
percolation or bottom friction in shallow water conditions flowing over a mud bottom.

Perhaps the most recognizable feature of wave dissipation is that of breaking
waves in coastal zones. As waves propagate into shallow, coastal regions, they become
classified as shallow water waves (Knauss, 1996). In these conditions the rate of wave
propagation is no longer characterised by wavelength but purely by water depth,
represented by Eq. 2.4. Under these circumstances, the shallower the water becomes,
the slower the wave propagates, and therefore, the greater the energy density
becomes, often termed shoaling (Jones and Toba, 2001). This results in an increase in
the height and angle of the wave, leading to instability and collapse, causing complete
scrambling and loss of form (Open University, 1989; Kinsman, 1965). This process is
often referred to as depth induced breaking (Booij et al., 1999) as the instability is
caused by a reduction to water depth. Knauss (1996) suggests that a wavelength:
depth ratio between 0.7-0.8 causes instability leading to breaking. The formulation
provided by Battjes and Janssen (1978), commonly used to represent depth-induced
breaking in spectral wave models such as MIKE-21 SW and SWAN, is given as a
function of the ratio of the root mean squared wave height to the maximum wave
height a given water depth can sustain.

A variety of formulations have been developed to model the process of
dissipation in coastal regions. For instance, Padilla-Hernandez and Monbaliu (2001),
and Luo and Monbaliu (1994) both compare a variety of commonly used formulations
for bottom friction in the North Sea, which vary significantly in terms of complexity and

processing time.

2.1.1.3. Non-linear interactions
In deep water situations, the wave spectrum can be influenced by non-linear
interactions, called quadruplet interactions, which occur between waves which have

similar frequencies, speeds and directions (Booij et al., 1999; Rogers et al., 2002;
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Palmer, 2011). Where the resonance conditions between the wave sets are close an
exchange of energy can occur which will result in the transfer of energy from the
spectral peak to higher and lower frequencies, without any overall loss or addition of
energy (Delft University, 2008). These interactions are described by the WISE group
(2007) as being dominant in the evolution of wave spectrums in deep water as well as
playing a major role in the occurrence of unusually large waves. A full expression has
been given by Hasselmann (1962); however, an approximation by Hasselmann et al.
(1985a, 1985b) is commonly used in modelling systems due to computational
constraints (Palmer, 2011).

Quadruplet wave-wave interactions are important in the dissipation process in
deep water waves as they cause a shift in energy to higher frequencies. This is caused
as waves can be non-linear, and when certain resonance conditions are met, can create
instability and therefore modulation in the wave train (Janssen, 2008). Quadruplet non-
linear interactions don’t directly dissipate energy but energy will gradually be reduced
as the shift to higher frequency waves will result in greater levels of whitecapping.

In shallow water, non-linear triad interactions can develop. In much the same
way as quadruplet interactions, triads transfer energy from incident wave components
away from the spectral peak to higher and lower frequency components. These
transfers can occur over very short periods and dramatically change single peaked
spectra into multiple peaked spectra (Delft University, 2008). In addition to
broadening of the spectra, transfers of energy result in higher levels of phase coupling
of waves, leading to the steepening and pitching forward of crests (WISE group, 2007)
which can increase dissipation of the wave energy. The approximation developed by
Eldeberky and Battjes (1995) is commonly used to represent triad approximations in

wave models.

2.1.1.4. Refraction, Diffraction and reflection

Abrupt changes in water depths in nearshore regions can alter the form of the wave as
it propagates towards the coast without altering the energy contained within it (WISE
group, 2007). Diffraction of waves is caused by the scattering of wave energy due to
interaction of waves with objects in their path (Palmer, 2011), and can be particularly
important in nearshore areas containing headlands, bays and man-made structures,
around which the waves will bend, spreading energy laterally, perpendicular to the
principle direction of propagation (Kinsman, 1965; Young, 1999).

Reflection of waves can occur where the wave propagates into an obstacle such
as a sea wall, thus preventing the forward propagation (WISE group, 2007). Waves will
rebound off the obstruction in a new direction. Depending upon the nature of the
obstacle (i.e. whether its surface is rough or smooth), the reflected wave field can be
more or less scattered than that originally approaching the obstacle (Delft University,

2008).
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Refraction also results in the alteration of crest direction. Where wave speed is
controlled by water depth, a variable bathymetry may cause refraction (Kinsman,
1965). As shown in Fig. 2.3 (top), the section of the wave that enters shallower waters
becomes slower moving than those in the deeper water, thus resulting in a realignment
of the crest with contours of water depths. Refraction can lead to defocusing or
focussing of waves (Fig 2.3, bottom). Refraction does not alter the energy contained in
a wave crest; therefore, a change in crest length will result in a change in wave height.
Where focussing occurs, the wave height will increase. Defocusing, alternatively, will
reduce wave height. These processes are vital to consider when predicting incoming
wave profiles as they will modify the amount of energy that will be found at any

particular location, especially within harbours (Kinsman, 1965).
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Fig. 2.3. Refraction leading to defocussing (top) and focussing (bottom). Kinsman
(1965).
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2.1.2. Tides

Tides can be described as long oceanic waves characterising the rhythmic increase and
decrease in sea level about the mean (which is assumed static at a specific location),
and a resulting horizontal current generation (Dyke, 1996; Pugh, 2006). Tides are
driven by astronomical forcing, rather than atmospheric conditions, generated from
the gravitational forces exerted on the Earth’s oceans by the Moon and the Sun. Tide
wavelengths exceed thousands of kilometres and heights can reach to more than 15 m
globally. Unlike surface wind waves, they can affect every particle of water in the ocean
basin. Due to their large wavelengths, tides are always considered as shallow water

waves (Thurman, 1988).

2.1.2.1. Tide generating forces: The Earth-Moon-Sun system

It has long been known that there has been a strong connection between the tides, Sun
and the Moon (Rantzen, 1969; Flather, 2000). Tidal elevations, for example, are shown
to be highest when the Moon is full or new. Marchuk and Kagan (1984) highlight that
the key theory underlying this relationship is that of Newton’s Law of gravitational
attraction; which states that two bodies attract each other with a force that is
proportional to the product of their masses and inversely proportional to the square of

the distance between them. This can be represented by:

F=g (0102) (2.8)

Where: Fis the attractive force between two bodies, O, and O,are the two bodies in

question, R is the distance between the bodies.

The primary driver of the common semi-diurnal tides is the gravitational forces
exerted by the Moon upon the Earth. The Earth and the Moon rotate around a common
centre of mass, situated within the Earth’s radius, with a periodicity of 27.3 days. The
centre of mass of the Earth describes a very small ellipse around this common centre
of mass while the centre of mass of the Moon describes a much larger ellipse about
this point.

The tide-generating force (TGF) experienced on the Earth’s tides is caused by the
differential force of the spatially variable gravitational attraction of the astronomical
body (i.e. the Moon) over the Earth and the inertia forces acting upon the Earth, which
are assumed to be spatially constant and equal (Pugh, 2006). This TGF (rather than
simply the gravitational attraction given in Eq. 2.8) is inversely proportional to the cube
of the distance between the two bodies; therefore, the force will vary spatially over the
Earth. Assuming a uniform layer of water, the resulting TGF (i.e. the differential force)
can be seen in Fig. 2.4.

20



Niall Quinn Literature Review
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Fig.2.4. Resulting TGF on the Earth due to the gravitational attraction of the Moon.

The simplified example presented in Fig. 2.4 demonstrates that the TGF perpendicular
to the line joining the Earth and Moon centres do not contribute to the tidal effect
which, instead, is generated by the horizontal components which move water towards
point A and point D. These horizontal components are called the tractive forces and
are at a maximum along the line running 45° from the line connecting the Earth and
Moon centres (Boon, 2004). For this reason, Bowden (1983) includes the angle of the
force when defining the horizontal component of the differential force. An

approximation of its magnitude at point P is given in Fig. 2.5 and Eq. 2.9.

Fig. 2.5. The horizontal component of the tractive force. Bowden (1983)

, 30M (oE 3
Tractive force = SOF (?) gsin 260g y (2.9)
m

Where O,I,V{ is the Moon’s mass, 0#; is the Earth’s mass, 0,{3 is the Earth’s radius, R is

the distance between the centres of the Moon and the Earth, and 6, is the angle
between the line joining the centre of the Earth and the Moon and the radius vector

from Earth’s centre to the point on the surface.
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Were the Earth composed only of infinitely deep water, and the response of the
ocean to tidal forces was instantaneous, these tractive forces would result in the
movement of water directly towards and away from the Moon (points A and D in Fig.
2.4) producing an ellipsoid with two bulges. As the Earth requires 24 hours to
complete one roatation, point A (Fig. 2.4) would encounter each of the tides with each
full rotation. However, as the Earth and Moon are rotating around a common centre of
mass, while the Earth rotates on its own axis, a lunar day (the time taken for the Moon
to make successive passages across point A on the Earth) is actually 24 hours and 50
minutes (Boon, 2004).

The Moon is not the only astronomical body imposing a force upon the Earth.
The Sun too creates a gravitational pull upon the Earth’s oceans. As with the Moon, the
Earth’s rotation around the Sun and the gravitational attraction between the two bodies
results in the production of tractive forces which create two tides. Their calculation is
carried out in the same manner as for the Moon (Open University, 1989). This
produces a semi-diurnal tidal cycle of 24 hours, with a high tide every 12 hours.
Although the Sun is very large, due to the distance from the Earth (and recalling that
the TGF produced is inversely proportional to the cube of the distance between two
bodies), its relative impact upon the tides is only 0.46 the magnitude of the Moon
(Thurman, 1988; Boon, 2004).

The interaction of the Earth, Sun and Moon orbits produces a semi-diurnal tide
with a fortnightly modulation termed the spring neap cycle. Where the Sun and the
Moon act in the same direction then a large tidal range is created termed a spring tide.
This can be where the Sun and Moon are in conjunction or opposition (collectively
termed in syzygy). Alternatively where the Sun and the Moon are at right angles then
the Sun acts against the force of the Moon and a small tidal range is produced. In this
instance the Moon is said to be in quadrature and the resulting tides are termed neap
tides (Open University, 1989).

The relationship between the Earth, Sun, and Moon is more complicated than the
outline given above which assumes that the astronomical bodies remain at the same
distance from one another, and that the Sun and Moon remained above the Earth’s
equator.

Declination is a term used to describe the angular distance of the Sun or the
Moon above or below the equatorial plan of the Earth. As the Earth roates around the
Sun, its axis is tilted 23.5° from vertical relative to the ecliptic, causing us to
experience the seasons each year. At the same time the plane of the Moon’s orbit is at
an angle of 5° to the ecliptic. This plane rotates over an 18.61 year period in which the
amplitude of the lunar declination increases and decreases steadily (Boon, 2004;
Thurman, 1988), with a maximum value of 28.5°. As a result of declination, it can be
seen that the tidal bulge would not be expected to be consistently aligned with the

equator, rather an 18.51 year cycle in which they lie between 28.5° north and south of
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the equator would emerge. The impact of this cycle on lunar semi-diurnal tides is a
modulation of approximately 3.7%.

The Moon’s orbit of the Earth-Moon common centre of mass is elliptical and
therefore its distance from the Earth varies, which in turn, will produce variations in the
TGF exeperienced. When the Moon is at its closest position to the Earth this is termed
perigee. Apogee is used to describe the period where the Moon is furthest away. The
interval between two successive perigee periods is 27.5 days and can create a variance
in tide producing force up to 20% of the average. Like the Moon, the Earth’s orbit of
the Sun is also elliptical which creates a similar modulation. Perihelion describes the
period where the Earth is furthest away from the Sun and Aphelion where it is closest.
The effect is usually to create a 4% difference between the two extremes. Because of
these movements, spring tides have greater ranges during the Northern Hemisphere

winters then in summer (Thurman, 1988).

2.1.2.2. Dynamic tides

The description thus far has been based on the use of an ‘equilibrium tide’ which
is a theoretical tide that would be expected to occur were the ocean of uniform depth
and no friction occurred at the ocean floor (Pugh, 2006). However, in reality this model
would not work for a number of reasons, for instance, in order for the equilibrium
tides to remain in the same position relative to the Moon they would need to travel at
the same rate at which the Earth rotates with respect to the Moon. As shallow water
wave propagation velocity is proportional to the square root of the water depth, the
depth of the idealised ocean would need to be 22 km, far deeper than the average
depth found on Earth. Furthermore, real world oceans are enclosed by continents,
creating seven major basins. As tidal waves approach coastal regions they will be
shaped by the same shallow water processes as those influencing shallow water
surface wind waves, as discussed in Section 2.1.1.

Within the enclosed basins on Earth, the tidal movements act as Kelvin waves in
which oscillations occur in two horizontal directions rather than one, such as seen
when one swirls liquid in a glass (Flather 2000; Boon, 2004). Within an enclosed basin,
based on the theory of superposition, it can be seen that the pull of the tractive forces
on a water body which then reflects back off an obstacle will create a section of water
in which no waves appear (where the return waves amplitude cancels out the amplitude
of the wave following it if they are out of phase) creating a ‘standing wave’ called an
amphidromic point. As the Earth spins the water within a basin builds up against the
west side of the basin and then sloshes back towards the centre of the ocean as the
continent spins under the Moon. The movement of the water from west to east is also
impacted by the Coriolis effect which in the Northern hemisphere induces an
acceleration force causing the wave to bend to the right, creating a counter clockwise

circulation, which is opposed to the tidal current which propagates in a clockwise
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direction in the Northern hemisphere. The opposite is found in the southern
hemisphere (Open University, 1989; Dyke 1996). Nodal lines are created in which no
vertical motion occurs but their positions constantly rotate around the amphidromic
point (where water level doesn’t change). The range of the tide will increase with radial
distance outwards from such a point so that lines of equal range (co-range lines)

encircle it (Fig. 2.6).
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Fig. 2.6. The development of M, co-range and co-tidal lines around the UK. Bowden

(1983).

2.1.2.3. Harmonic analysis

The unchanging nature of the astronomical forces acting to create a tide allows
for high prediction accuracies when one considers the tide as a summation of
harmonic constituents, each with a particular amplitude and phase at a given location
(phase in this sense is often given relative to lunar transit of the equilibrium tide).
Harmonic analysis has become the most widely utilised method with which to do this
(Bowden, 1983; Boon, 2004; Pugh, 2006). Harmonic analysis represents the tidal
elevation at a given place and time by the summation of n constituents, each with a

regular oscillating wave with an amplitude and frequency (Eq. 2.10)

{=Zy+ Y a,cos(w,t — P, — pL (2.10)
where T is the tidal elevation, Z is the reference water level, often given as the
difference between mean sea level and chart datum, ¢ is the constituent phase relative
to lunar transit of the equilibrium tide, and ¢" is the phase lag of the real tide to the
equilibrium tide, often taken as the phase lag on the equilibrium tide phase at the

Greenwich Meridian.
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All frequencies and constants relating to the equilibrium tide are known,
therefore, tidal predictions can be made once the values of g, ¢, and Z are
established for a given location. To do this a least squares fitting procedure can be
used to obtain the set of constituent amplitude and phases (and reference water level)
which return the lowest sum of squared errors relative to an elevation time series. Eq.
2.10 can be used to give a combined surface elevation represented by any number of
constituents, each representing a particular astronomical influence. For example, a
primary harmonic would describe the Moon revolving around the Earth, creating a tidal
oscillation with a 12 hour 25 minute periodicity. Each cycle will be identical to the last.
This constituent is termed the M, tide. Solar tides also produce a known cycle (12 hours
period). This constituent will be termed S,.The recognition that differing constituents
have different speeds is central to understanding that during summation of their
curves, constituent amplitudes will fall in and out of phase (Fig. 2.7). For example,
summation of the Mzand S, tides (with their individual amplitude and phases) will
create a new combined tidal cycle which would be representative of the spring-neap

cycle (Fig. 2.7).

30—

HIHHIIHIHHIHHIHHHHIHIIHHHHHHH
'lHH!!|!HH!HHHHHHH!H!lH|HH!HHI!W‘!‘!‘!‘!‘!l

2.0 M2+S2

!l'l'l'l'l,ltl'l'ltl’l'a'a't'x'l’1’I‘I'l‘I’l'l’l!l!l’l!W’l‘l'I'I'I'I'I!I'l'n'i'n'n'n1HlHH’l’l’l‘l

-3.0 —

Fig. 2.7. The superposition of constituents, Pugh (2006). Note in particular the output

tidal range where the two constituents fall in and out of phase.

As previously discussed, numerous factors will lead to modulations of the tidal
cycle in a given region, including declination, elliptical orbits, and the propagation of
tides in shallow water depths within enclosed basins with irregular coastlines. To
represent such variability ‘phantom satellites’ are used (Pugh, 2006). Each will produce
its own tide with a respective amplitude and phase. These can then be combined with
other constituents to bring the overall tidal oscillation in line with observed data.
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Examples of such constituents used to replicate modulations caused by the Moon’s
elliptical orbit around the Earth are the N, and L, constituents (Boon, 2004). Ducarne et
al. (2006) found that terms were also required to account for tide modulations in
shallow water regions in which non-linear behaviour occurred. Potentially there are
several hundred constituents that make up a tidal signal (Doodsen, 1922). Mattocks
and Forbes (2008) suggested that just eight were required to represent 90% of the tidal
signal in their model for the North Carolina region, while Bowden (1983) lists ten
constituents deemed as the most influential (Table 2.1). Proudman Oceanographic
Laboratory (POL) defines 25 key constituents with which they define their operational

model boundaries for a forecasting model of the UK.

Table 2.1. The most influential tidal constituents. Bowden (1983)

Species Constituent Symbol Period
Semidiurnal Principal Lunar M, 12.42 hrs
Principal Solar S, 12.00 hrs
Larger lunar Elliptic N, 12.66 hrs
Luni-solar K, 11.97 hrs
Diurnal Luni-solar K. 23.93 hrs
Principal Lunar O, 26.87 hrs
Principal Solar P, 24.07 hrs
Long Period Lunar fortnightly M, 13.66 days
Lunar monthly M 27.55 days
Solar semi-annual S 182.70 days

The accuracy of the tidal harmonic technique has been shown to be very robust
and has been used for over 70 years. Boon (2004) for example demonstrated that
using just nine constituents, a 29 day sea level sample and the SIMPLY TIDES software,
that 99% of the total variance could be accounted for in the River Mersey. Operationally
within the UK, forecasts of sea levels still use harmonic based predictions of tidal
surface elevations from long standing gauges, which are then interpolated through a
region (Flowerdew et al., 2007). However, it is an approximation and depending on the
length of sample data used and the number of constituents included, one will find that
the ‘constants’ produced will vary slightly, as will the accuracy of the tidal predictions.
Boon (2004) for instance, found residual peaks in predictions relative to observed

records at cycles of two, three, four and six a day. These periodicities related to

26



Niall Quinn Literature Review

shallow water constituents not used in the original analysis representing short-term

modulations produced by L,, MK, and 2MS_ constituents.

2.1.3. Surge

The water surface elevation at a given point is not only influenced by tides and surface
wind waves. Atmospheric forcing and wind stress can lead to an additional ‘surge’
elevation, which is a meteorological induced long wave motion capable of increasing or
decreasing the sea level at a given location by several meters.

Large surges superimposed onto the tide are usually the result of wind stress
and pressure variations on coastal shelf region associated with unusual storm weather
conditions (Flather, 2000; Cafizares et al., 2001). Where the wave moves at a similar
speed to the meteorological system resonance can occur resulting in the continual
build-up of the surge wave (Bowden, 1983).

An alteration in air pressure induced by the storm event can create a dome
shaped depression in the sea surface which, when combined with strong onshore
winds, can be pushed towards the coastline adding to the water height. The inverted
barometer effect is fundamental in describing the raising or lowering of the sea surface
due to atmospheric pressure variation. It states that the addition of a local variance in
atmospheric pressure (A p) about the ocean mean will cause the level of the sea
surface to change relative to the mean sea level (Pugh, 2006) by

Ad = — 222 (2.11)
pg

Where p_is the atmospheric pressure.

Assuming typical values of 1026 kgm™ for seawater density and 9.80 ms™ for gravity
this equates to approximately one millibar increase in local pressure causing sea level
to decrease by one centimetre under steady forcing conditions.

Accompanying winds can create a drag on the sea surface, thereby creating
heightened sea levels at the downwind and ‘push’ existing surge waves towards the
coast (Smith and Ward, 1998). This effect increases inversely with water depth so will
be most important when winds blow over extensive regions of shallow water. The
influence of winds upon the water surface is termed the wind stress. Moon et al.
(2009) suggest that the wind stress is a key energy source to the storm surge and that
it is dependent upon the wind speed, sea state and atmospheric stability. The drag
coefficient of the air is a key term in defining the wind stress. An empirical formula by
Wu (1980, 1994) is commonly used (e.g. in MIKE-21) in which a linear relationship is
defined between the drag coefficient and wind speed, however, Moon et al. (2009)
highlight that a variety of formula exist to estimate the drag coefficient, the selection

of which can lead to significant changes to the model prediction of surge.
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The surge moves as a wave and therefore is influenced by depth limited
processes and friction terms, in the same way as the tides and surface wind waves,
leading to changes in local height and direction. For this reason, the local bathymetry
and coastal configuration can be influential upon the resulting surge elevations
experienced at a section of coast from a given storm event. For instance, the National
Hurricane Centre (http://www.nhc.noaa.gov/surge/) suggest that a category 4 storm
occurring along the Lousiana coastline in the USA could produce a surge of
approximately 6 m due to its wide, shallow continental shelf, wherease the same storm
approaching a continental shelf with a rapid change in depth, such as Miami Beach in
Florida, would be expected to produce a surge roughly half the size.

Although the surge elevation outlined above, induced by pressure variations and
strong winds, can be considered as being independent of surface wind waves and tidal
fluctuations, the term surge is commonly used to describe the difference between the
predicted tide (based on harmonic analysis) and the measured water level. In this
instance what is actually being referred to is the change to the expected tidal forced
water levels (the residual) due to the presence of surge and waves, as well as the
interaction of all three signals (discussed further in Section 2.1.4). The National
Hurricane Center (http://www.nhc.noaa.gov) defines two commonly used terms; the
storm surge (the non-tidal change in elevation) and the storm tide (the total surface
elevation experienced due to all influences). Where peak water levels are of most
interest, the skew-surge is often used (Fig. 2.8). This is defined as the difference
between the observed peak water level in a given tidal cycle and the corresponding
peak tidal elevation (Brown and Wolf, 2009; Royston et al., 2012).
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Fig. 2.8. Schematic of the components of the total water level in a tide gauge record
(Royston et al., 2012).
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2.1.4. Tide-surge-wave interactions

Astronomical tides, meteorologically induced surge, and wind waves all contribute to
the timing and amplitude of the water levels experienced during high tide, known as
the storm tide (Graber et al., 2006). These components are not independent; rather
they have been shown to interact with one another.

The importance of the tidal elevations upon the predictions of wave states, most
importantly relating to rates of dissipation and the speed at which the waves
propagate, due to the alteration of water depth (Wolf, 2009), has been described in
Section 2.1.3. Furthermore, water over which the waves propagate, is itself in motion
(a current), and acts upon the wave form. Where there is a strong opposing current to
the waves, then wave steepness and height can be increased rapidly (Delft University,
2008). The increase in wave height is a response to the reduction in wave speed
imposed by the counter current (WISE group, 2007) and from direct energy transfer
from the current to the wave. Alternatively, where a current is moving in the same
direction as the waves, then wavelength can be increased, with a resultant decrease in
height. As the strength of a current increases, so too does its impact upon the waves,
however, a larger effect occurs where currents move against wave propagation
(Kinsman, 1965). Current-wave interactions often occur along a limited section of the
wave crest, resulting in a local change to crest speed, which results in refraction and
alteration to wave direction (WISE group, 2007; Wolf, 2009).

Brown et al. (2011) found that offshore waves in their model responded solely to
the local wind field, whereas those in the nearshore regions responded both to the
winds and to tidal oscillations. Tolman (1990) investigated the influence of the tide and
surge upon wave conditions in the North Sea. He demonstrated that the presence of
tides and surges created an unsteady medium within which waves propagate, with
tides resulting in oscillations of mean wave parameters, and surges resulting in
systematic ones. In general he suggested that the interactions are small, leading to
modulation in mean wave parameters such as H and T by 5 to 10 %. Funakoshi et al.
(1994) also found that the influence of the long-wave motion of the tide upon the
short-wave dynamics was relatively weak, and for this reason, suggest that a one-way
coupling between hydrodynamic and spectral wave models is often sufficient.

Alternatively, the importance of the waves upon the surge component of the
water level elevations has also been highlighted by a variety of studies. Their influence
upon the surge is via two mechanisms. First, in nearshore regions, particularly on
coastlines parallel to the direction at which the waves travel, when a wave breaks, the
water particles can have momentum enough to transport a significant distance up the
beach. This may result in movement above the tide only water level. This is often
termed ‘wave run-up’. In addition, the influence of wave-induced radiation stresses

(the additional forcing due to the presence of the waves which changes the horizontal
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momentum in the fluid layer) can lead to an increase in the water levels experienced in
the surf zone relative to those experienced offshore. This is referred to as ‘wave set-
up’. Kim et al. (2010) demonstrated that measured typhoon-induced peak sea levels
could not be modelled without the inclusion of radiation stresses. The influence upon
sea levels was shown to be comparable with that due to wind stress and pressure
changes. Funakoshi et al. (2008) found that the influence of coupling wave and
hydrodynamic models could lead to an increase in surge heights of up to 15 %, due
primarily to the transfer of momentum from the dissipation of short waves to the long
wave motion of the storm surge. Wolf (2008) found that wave set-up accounted for up
to 10% of the maximum surge magnitude in Liverpool Bay. Similarly, Mastenbroek et al.
(1993), Davies and Lawrence (1994), Brown and Wolf (2009), and Wolf (2009) have all
suggested that the inclusion of surface waves plays an important role in defining the
surface drag, which is influential upon surge predictions. By coupling wave and
hydrodynamic models, a variable Charnock parameter can be obtained which has been
shown to provide a more accurate prediction of storm surge elevations.

The tide and surge can also be viewed as two separate, yet interacting signals
(Wolf, 2009). Recent research in the North Sea and English Channel has been
fundamental in describing this interaction. Horsburgh and Wilson (2007) provide a
particularly detailed assessment of water level elevations at a variety of tide gauges in
the North Sea, establishing mathematical explanations for the surge clustering
presented. Their results demonstrated that phase shifts were created in both the surge
and the tide signals due to their interactions, the result of which was that large surge
events would generally avoid the high tide period by three to five hours, with
secondary clustering within one to two hours. This is thought to be because both
signals are shallow water waves whose phase speed is given as a function of depth.
Therefore, negative surges have been shown to slow tidal progression while a positive
surge can advance it (Rossiter, 1961; Wolf, 1981). Prandle and Wolf (1978), and Wells
et al. (2001) have both reported tide-surge interactions resulting in a decrease of the
peak surge elevations and that the effect can be localised, increasing in direct
proportion to surge height and tidal range (Horsburgh and Wilson, 2007). Brown et al.
(2010) found that the interaction could increase or decrease the surge significantly,
altering peak levels by more than a metre. The processes leading to the alteration of
water levels, due to tide-surge interactions, can be classified into three non-linear
effects: non-linear advective effects, non-linear bottom stress effects, and non-linear
shallow water effects (Bernier and Thompson, 2007; Zhang et al., 2010).

The understanding of the interactions between the tide, surge and wave
processes is important in order to enable coastal modellers to provide better estimates

of storm conditions that may lead to inundation.
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2.2. Forecasting ocean states

Forecasting systems have been developed to aid coastal managers in increasing the
resilience of coastal populations to flooding. After the flooding in the east of the UK in
1953, operational forecasting and warning systems were introduced. The ability to
prepare for an ensuing flood event is vital in reducing the costs both financially and to
loss of life. It is for this reason that many countries invest heavily in such systems, in
addition to development of defences.

Forecasts can be made using a variety of different approaches, although
generally the models can be divided into empirical (data driven) modelling approaches
and those utilising physically-based distributed models. Often forecasts combine
physically-based numerical models for some processes with empirically derived

estimates for others.

2.2.1. Physically-based modelling approaches

Physically-based numerical models have become the most commonly utilised tools in
coastal flood forecasting. This has been due to advances in computational resources
and the ability to provide forecasts over large domains (Hsu et al., 2005). This is
particularly important in nearshore regions as the variables of interest (e.g. currents,
wave fields) often contain a high degree of spatial variability (Bolanos and Sanchez-
Arcilla, 2006).

Various ocean prediction systems based on differing ocean models and data
analysis schemes have been developed (Ko et al., 2008). Many operational systems
share a common form. Nearly all include spectral wave models coupled with
hydrodynamic models (e.g. Chueng et al., 2003; Allard et al., 2008).

Spectral wave models such as the Wave Action Model (WAM; Hasselmann et al.,
1988) or Wavewatch Ill (Tolman, 2009), which propagate wave energy across the
computational domain in the form of an energy spectrum, which grows and decays in
response to changes in the wind field (Liu et al., 2002). Commonly a wave action

density spectrum N(o,#) is related to the energy density spectrum E(g,0) by Eq.2.12
(DHI, 2009c).

N —

E
— (2.12)
O

Where 6 is the direction
The energy within the waves is increased or decreased during propagation over
the computation domain due to the influence of a variety of source terms. Common

source terms represented in many of the most widely used spectral wind wave models
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include: wind energy input, nonlinear wave-wave interactions, depth-induced
breaking, whitecapping, and bottom friction. In WAM, for example, this is done using
Eg. 2.13 (Hasselmann et al., 1988),

on 19 ¢, 9 (i 9 (oN) =
plns (cosp) ” (¢coseN) + 3 (AN) + 5 (HN) =S (2.13)

where N is the action density ocean wave spectrum with respect to wave frequency and
direction as a function of latitude ¢ and longitude A. The dotted variables represent
the rate of change of the positions, the dispersion relation and propagating direction
of waves travelling globally, while S represents the sum of various energy sources and

sink terms.

Hydrodynamic models such as ADCIRC (Luettich and Westerink, 2004) and MIKE-
21 HD (DHI, 2009b) are used to make predictions of tide and surge surface elevations
by propagating boundary water level elevations (derived as a summation of harmonic
constituents and the addition of atmospheric effects) throughout the computational
domain, under the influence of air pressure, wind, and wave stresses (DHI, 2009b).
Commonly, hydrodynamic models solve Navier-Stokes equations which describe the
motion of fluids based on Newton’s laws of motion, maintaining conservation of
momentum, mass and energy (Cafizares et al., 2001). Six dependant variables
(pressure, temperature, density, and three velocity vectors (in x, y, z directions)), and
four independent variables (the x, y, z spatial coordinates in a domain, and time) are
central to the Navier-Stokes equations. The dependant variables are functions of each
of the four independent variables, therefore, the equations are considered as partial
differential equations. Hydrodynamic models also commonly account for external
forcing (e.g. wind stresses or bottom friction). A useful overview is given by Knauss
(1996).

In many systems, only two dimensions (x, y) are used in an effort to reduce
computational demands. In such instances it is assumed that the vertical variation of
the current can be simplified into a depth-averaged value without significant impacts
upon model accuracy where surface elevation is of primary interest. However, with
increasing computational resources, 3D models are now being used in numerous
systems.

In order to implement the hydrodynamic and spectral wave equations in a
computer model, only capable of performing discrete calculations, the flows occurring
in the real world are required to be broken down into specified ‘parcels’ of time and
space that can be solved by a computer. This is referred to as spatial and temporal
discretization (DHI, 2009b,c). To do this, a region of interest is represented by the
construction of a computational domain. Two approaches are commonly used, defined

by the way in which the computational domain is discretized into a number of units;
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structured or unstructured grids. Structured grids (using finite difference algorithms)
have been the traditional approach to defining a computational domain. This method
divides the domain into a set of equal sized cells. Unstructured grids (using finite
element or finite volume methods) employ a variable mesh, often using triangular
elements that can be of varying sizes in order to increase spatial resolution in
nearshore environments without a corresponding increase in offshore regions.
Recently, the use of unstructured approaches has become popular due to the ability to
more accurately represent complex coastal processes and the removal of a need to
provide nested model domains, through the ability to locally increase model grid
resolution.

In either approach, the spatial and temporal parcel sizes are related by the
Courant-Friedrichs-Lewy condition (CFL) which ensures convergence when solving the
partial differential equations used in such models. The condition states that the
selected time step must be large enough to allow for the propagation of the modelled
wave from one grid point to the next during each set of calculations. In this way, the
greater the spatial resolution of the model domain, the shorter the required time step
will be.

For a fuller description of the forces acting upon hydrological models and their
numerical implementations the reader is referred to Knauss (1996), Dyke (1996), and
Kantha and Clayson (2000), while a detailed description of the formulations in the
MIKE-21 software used in this research is provided in Section 2.4.3.2.

Table 2.2 provides a summary of a variety of hydrodynamic and spectral wave
software packages currently available, while Flather (2000) provides an overview of the

operational forecasting systems used throughout Europe.

Table 2.2. A selection of commonly utilised hydrodynamic and spectral wave models.

Name Type Reference

WAM 3" generation waves Hasselmann et al. (1988)
Wavewatch Ill 3" generation waves Tolman (2009)

SWAN 3 generation waves Booij et al. (1999)

MIKE-21 (SW) 3 generation waves Warren and Bach (1992)
ADCIRC Hydrodynamics Luettich and Westerink (2004)
MECO Hydrodynamics Herzfeld et al. (2002)
MIKE-21 (HD) Hydrodynamics Warren and Bach (1992)
POLCOMS Hydrodynamics Holt and James (2001)
TELEMAC Hydrodynamics Moulinec et al. (2011)
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Currently, most operational forecasting systems employ physically-based
numerical models in which the hydrodynamic and spectral-wave models use outputs
from (and are often coupled with) atmospheric models which provide mean sea level
pressures, wind speeds and directions. For instance, the Coupled Ocean / Atmospheric
Mesoscale Prediction System (COAMPS; Hodur, 1997) model produces forecasts of
winds at a 0.2° spatial resolution for the Distributed Integrated Ocean Prediction
system (DIOPS, Allard et al., 2008, Fig. 2.9). Battjes and Gerritsen (2002), and Vatvoni
et al. (2002) provide descriptions of linked model systems in the Netherlands and
India, respectively, while Williams and Horsburgh (2006), Flowerdew et al. (2007), and

Bocquet et al., (2009) describe the operational systems currently used in the UK.

Offshore object Nearshore object Surf zone object
Deep water | | Sea surface
sea staFe tlt_ie and Shallom_; water sea state Surf state dynamics
dynamics wind effects dynamics
SWAN Delft3D or
WAM or PCTIDES NSSM
Wavewatch Il Shallow water
waves Surfzone
Basin-scale Tide and wind
and nested driven mean
regional scale water level
waves changes
Atmospheric Littoral object
object

Global and regional weather
forecasts from Navy
NOGAPS, COAMPS models

Fig. 2.9. Overview of the DIOPS nearshore wave and current forecasting system.
Adapted from Allard et al. (2008).

2.2.2. Empirical modelling approaches

The use of physically-based numerical models, such as MIKE-21, WAM and SWAN has
become very common in operational forecasting in many regions of the world. In the
UK, for example, the current operational forecast couples numerous models, of varying
resolutions, to model tide, surge, wave and atmospheric conditions over a variety of
scales, including global and continental shelf domains. Such systems have been shown
to provide forecasts which have significantly reduced risk from coastal flooding,
through the provision of advanced warnings to coastal managers. However, such
systems are computationally demanding and require large amounts of data in order to
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model the processes contained within their code (Logemann et al., 2004). To run these
systems very large clusters of computers are often required. For such reasons, the use
of empirical modelling approaches can be preferable, particularly where exhaustive
computer resources may not be available. Empirical methods do not attempt to
explicitly model the real world processes as the physically-based numerical models do.
Instead, a series of independent variables are used to define a function that estimates
a dependent variable. Once the function is produced, the model can normally provide a
prediction of the dependent variable, given an input of independent variables, at a
fraction of the computational processing time as physical-based numerical models.
The near instantaneous nature of such techniques makes them especially useful in
dealing with probabilistic approaches to modelling as very large ensembles can be
simulated in a short period of time. Another potential benefit of using such an
approach is found in complex regions. Where a model operating in a region is very
uncertain, due to uncertainty in the parameter values or in the model’s ability to fully
describe the processes occurring, a data driven approach may provide more accurate
predictions, due to the ability to ignore explicit modelling of real world processes and
instead define an input - output relationship (Kobayashi and Yasuda, 2004).

Regression analysis is a commonly used empirical approach for making
predictions. It aims to define a relationship between a dependent variable and one or
more independent variables, in order to enable a prediction of the dependent variable,
given a set of independent variable inputs. An example in ocean forecasting may use
wave measurements at a coastal point as the dependent variable; while offshore wave
predictions are used as independent variables (for instance see Kobayashi and Yasuda,
2004). Alternatively, where one wishes to provide an approximation of a complex
model itself, the dependant variable will be the complex model predicted wave state in
the nearshore region (O’Hagan, 2006; Conti et al., 2009). Both approaches have
benefits and drawbacks. The benefit to utilising in-situ data sources as the dependent
variable is that the meta-model is being created towards a known, correct value
(although in reality even measured variables have some uncertainty). When utilising a
model output as the dependent variable on the other hand, another uncertainty source
is included, as the model output which one is trying to recreate will have error relative
to the real variable output (usually derived by measurements in-situ) as well as error
between the meta-model prediction and the source code-based prediction (code
uncertainty). However, observation-based regressions rely completely on the quality
and length of the historical record with which they are trained, whereas a regression of
a model output would not normally face this problem as the source model could be
used to generate an extensive training dataset. A training set which does not include
many extreme events for example, may find it hard to produce a model that is capable
of forecasting such events. In addition, it is likely that the parameter space used to

condition the model will be very densely represented in ‘average’ conditions. By
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definition, the number of training points representing extreme conditions will be
relatively low. In a study aiming to provide forecasts of extreme flooding events, this
could be problematic

The basic linear regression model can be regarded as a function of a vector of
inputs representing an independent variable (Y) and a set of unknown parameters
which are used to estimate a dependent variable (Y) (Bates and Watts, 1988). The
unknown parameters can be represented by two terms representing the slope of the
independent variable (8s) and a constant (8) so that the dependant variable is

estimated as,

Y =B+ B Y, (2.44)

The regression analysis aims to find the solution for the unknown parameters that will
minimise the distance (error) between the predicted value and the dependant variable
observed value. Fig. 2.10 provides a typical example of a linear regression in which a
relationship is defined which provides the best fit between the observed and predicted
values for the dependent variable as a function of the independent variable. Using this
function, future predictions of the state of the dependent variable can be given based

on the state of the independent variable.

An example of a regression function

Jali]

y=0.8808x-4.607

+ Training points
= Linear {Training points)

Y (depen dant variable)

¥ (independant variable)

Fig. 2.10. An example of a linear regression function.

In reality, a regression model will often require many independent variables to
accurately represent the complexity of a physical system. In this case, the dependent
variable becomes a linear combination of the independent variables, each associated
with individual unknown parameters (O’Hagan, 2006). This can be represented by

extending Eqg. 2.14 to give
Y=ﬁo+ﬁsl*yil+ﬁsz*yi2+"'+,Bsn*yi (2.14)

Where n = 1 to the number of independent variables.
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The estimate of the unknown parameters is provided through a least squares estimator,
which aims to provide the best estimate, in terms of minimising the root mean squared
distance between the observed and predicted dependent variable.

Various adaptations have been made to this function. Deo and Naidu (1999) for
example, highlight the use of historical states of the variable when using the auto
regressive function to predict wave heights. In this instance the wave height was the
dependent variable in the regression, and the independent variable was the preceding
wave height, consisting of a product of the states over the past n time steps, each with
a weight. In this way, the regression function was based upon the historical change in
the variable of interest, rather than using variables at a given time step to predict the
dependent variable at the same time.

When defining a regression, Wu and Hamada (2002) highlight that the selection
of variables to include is crucial. The goal is to identify the smallest subset of
covariates that explains the data well. Those covariates whose regression coefficients
are not significant should be removed. To achieve this, three strategies are commonly
available (Wu and Hamada, 2002):

e Backwards elimination - The process starts with the full model, containing all
covariates. Using a predefined threshold value, gradually covariates are
dropped if their influence is too small. In this way only the most important
covariates remain.

e Forward selection - The process starts with a model containing an intercept and
then one covariate is added at a time. At each step the covariate with the
largest influence is added to the model. Again, a predefined threshold should
be employed to define when a covariates influence is too small to add to the
model.

e Stepwise selection - This process combines both backwards and forwards
elimination methods but using a two-backward step, followed by a single
forward step routine, again utilising some predetermined threshold of
influence.

Regression modelling contains important assumptions. The sample with which one
trains the function should be representative of the population one wishes to predict. In
addition, the variables are assumed to be error free and the relationship between them
is predominantly linear. Where a large degree of curvature is found within the
relationships, linear transformations may be required. Finally, all residuals are
assumed to be normally distributed with a mean of zero (Mason et al., 2003).

Various empirically based approaches exist, of which regression is one option, all
of which aim to build a relationship with a dependent variable that is conditioned on a
set of training data. A vast array of literature surrounding a variety of empirical-based
approaches to modelling physical processes can be found. See, for example, Deo and
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Naidu (1999), Cox et al. (2002), Sfetsos (2002), Bazartseren et al. (2003), Huang et al.
(2003), Steidley et al. (2003) Kobayashi and Yasuda (2004), and Prouty (2007). For
more information on Bayesian analysis and the use of emulators (models of complex
source codes), O’Hagan (2006), Conti and O’Hagan (2010), Conti et al (2009), Kennedy
and O’Hagan (2000), Logemann et al (2004) and Oakley and O’Hagan (2004) is

recommended.

2.3. Uncertainty

No numerical model of the real world is perfect (Maybeck, 1979). Model processes and
structures are simplifications of an unknown reality that has only been partially
sampled by measured data, which itself contains errors (Neal, 2007), and therefore,
can only be regarded as approximations of the truth (Kantha and Clayson, 2000).
Errors may be introduced into model predictions through a variety of sources
including; inaccurate estimations of initial conditions, inaccurate forcing, and lack of
complete knowledge of the system, leading to uncertainty in the ability to fully
describe its physical properties (Madsen and Canizares, 1999; Kantha and Clayson,
2000). The result will be a divergence from reality in model predictions.

Tremendous progress has been made in storm-tide prediction, however,
substantial prediction errors still exist (Peng et al., 2007). For example, prediction of
tidal elevations from operational forecasts is considered to become increasingly
uncertain in complex nearshore regions. For this reason, harmonic predictions of the
tides are substituted in the place of outputs from physically-based numerical models
in many operational systems due, to their greater accuracy (Flowerdew et al., 2007;
Bocquet et al., 2009; Hawkes et al., 2009). Recent research has shown that the tide
and surge signals are not independent, rather, they influence upon one another, often
with significant effects (Prandle and Wolf, 1978; Wells et al., 2001; Horsburgh and
Wilson, 2007). Where the modelled tides are very uncertain, this uncertainty may
propagate through the system via the influence of tidal errors upon the prediction of
the surge.

Spectral wave models also contain known uncertainties, in addition to unknown
errors that may be induced from the error in the input datasets. For example, all waves
are assumed to follow linear wave theory. However, often waves can be regarded as
weakly non-linear, and focussing of wave energy in space and time can occur (Janssen,
2008). The interactions between wave trains that are non-linear (termed quadruplet
and triad interactions) are highly complex and are not feasible to compute in a
forecasting system. To include such interactions into the model, approximations are

used to reduce the computational demand (Hunt, 2005). Of the methods produced, the
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Discrete Interaction Approximation (DIA) of Hasselman et al. (1985) has become one of
the most widely used.

The uncertainty in spectral wave models is thought to increase in complex
nearshore regions. Palmer (2011) highlights that there is uncertainty in how well
current spectral wave models predict bimodal spectra resulting from the interaction of
swell and local wind-sea due to a poor understanding of the physical processes
relating to swell transformation in shallow tidal areas such as the English Channel.
Furthermore, previous research has described a tendency of such models to over-
predict H, while under-predicting T, due to an over-prediction of the high frequency
energy, particularly in shallow, short fetch areas (Ris et al., 1999; Rogers et al., 2002).
An assessment by Moeini and Etemad-Shahidi (2007) found Scatter Index (SI) errors of
up to 20% in both H and T when hindcasting with SWAN and MIKE-21 SW models in an
enclosed basin, despite using measured wind conditions.

The spatial and temporal variability in accuracy, and the variety of sources from
which errors may emerge, make uncertainty a difficult issue to address. However, in
order for coastal managers to make informed decisions, a measure of the accuracy of
forecasts is required. A vital component of this is the ability to understand the
uncertainty in a given prediction. Recent research has tended towards addressing
uncertainty in predictions through two means; quantifying it through the sampling of
uncertainty in probabilistic predictions, and reducing it, with the application of data

assimilation strategies.

2.3.1. Quantifying uncertainty: probabilistic predictions

The use of an ensemble-based approach enables a probabilistic output based on
several forecasts (rather than one), each with slightly different initial conditions,
boundary conditions, and/or model physics, with the aim of sampling the range of
forecast results consistent with the uncertainty in the observations and the modelling
system itself (Bocquet et al., 2009). Each forecast is driven using datasets that are
perturbed to sample from defined uncertainty distributions, often using a Monte Carlo
approach (Hammersley and Handscomb, 1964). In this way one can attempt to account
for, rather than ignore, uncertainty in the forecast. The use of ensemble-based
probabilistic approaches is of interest operationally. For example, it has recently been
considered for forecasts within the UK (Flowerdew et al., 2007). Bocquet et al. (2009)
provide a useful overview of the intended Met Office probabilistic forecasting set-up
(Fig. 2.11) in which each of the input variables can be considered as uncertain, and
therefore, represented by a probability distribution. Using a large number of
simulations, where each input variable value is drawn from its respective distribution, a
large ensemble of possible outcomes can be generated, from which a mean and range

is normally used to define the hazard. The application of probabilistic forecasting
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approaches has become popular due to the potential benefits they offer to coastal
managers, for instance, the ‘best guess’ magnitude of a given event (given as the mean
of the ensemble) and the likelihood of the event in question exceeding magnitudes of
varying degrees. This can be particularly useful in aiding in the preparation for
extreme events that may be not have been predicted where a single deterministic
approach was used.

Given a set of error distributions, representing the uncertainty in each parameter
that is considered to provide a source of error to a model output, one would ideally
provide an ensemble of outputs, sampling every point in the multi-parameter space.
However, particularly when running complex, computationally expensive models, this
cannot be the case. Consider a model that contains ten parameters, each with some
degree of uncertainty which the modeller wished to represent in an ensemble. Where
just three levels were used in representing the potential range in the variable, the
number of simulations required to represent the parameter space would be an
ensemble of 3™ (over 59,000). Even using just two levels, perhaps representing upper
and lower bounds of the potential variable value, would require an ensemble of over
1000 simulations. Clearly, where the model simulation takes hours to run, it becomes
infeasible to generate so many simulations in a forecasting setting (Conti et al., 2009).
With their vast computational resources, the Met Office operational oceanographic
forecast currently aims to provide a 25 member ensemble (Bocquet et al., 2009) while
the European Centre for Medium-Range Weather Forecasts (ECWMF) forecast contains
50 (Persson and Grazzini., 2007). A trade-off clearly exists between the size of the
ensemble desired, the complexity of the modelling approach, and the computational
resources available. When considered in a real-time forecasting situation, the
additional requirement to provide simulations within reasonable output time frames is
an important consideration, particularly where data assimilation strategies wish to be

used to provide real-time updates as often as possible.
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Fig. 2.11. Met Office probabilistic forecast pilot scheme, adapted from Bocquet et al.
(2009).
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2.3.2. Reducing uncertainty: data assimilation and the Kalman filter

Many forecasting systems implement data assimilation schemes to increase forecast
accuracies (Kantha and Clayson, 2000). Data assimilation is a technique in which
modelled and measured data are integrated in an optimal way, taking into account
uncertainty in both (Prandle, 2000) in order to reduce forecast error. Mclaughlin (2002)
highlights that there are three categories of assimilation; interpolation (a time invariant
system at a single measurement time), smoothing (a time dependent system through a
time interval), and filtering (a time dependent system at the most recent measurement
time). In most systems aspects of each will often be used, for example, interpolation of
a bathymetry layer from point measurements is common in order to provide a full grid
that a numerical model can use (for more information refer to Longley et al., 2005 and
Lam, 1983). In terms of short-term ocean forecasting, focus often lies on filtering, in
order to update model predicted states. Neal (2007) highlights four categories of
filtering applications commonly used: input updating, parameter updating, error
prediction, and state updating. Prandle (2000) suggests that within operational storm
surge forecasting, such assimilation techniques are commonplace, usually utilising tide
gauge measurements. Flather (2000) emphasises this, suggesting that the use of real-
time assimilation of measurements is vital for accurate predictions, in a review of
European operational oceanographic forecasting systems. In weather centres, forecasts
are commonly updated in a similar way (Kantha and Clayson, 2000). The techniques
used in filtering of states for update all aim to include state measurements with
modelled outputs, in order to improve the prediction. They can range from very simple
insertion techniques (i.e. replacing the predicted value with the observed value) to
complex techniques that include model dynamics.

In an oceanographic modelling perspective, the majority of assimilation uses two
measured data sources; in-situ and satellite or ground-based remote sensing
measurements. Satellite sensor-based data over the oceans have become widely
available. Numerous satellite sensors offer altimeter and Synthetic Aperture Radar
(SAR) data, which estimate ocean surface state due to the impact that surface
roughness (waves) has on the backscatter coefficient of the sensor signal (Krogstad
and Barstow, 1999; Campbell, 2002). The accuracy of such measurements has been
found to compare well with in-situ buoy measurements (Steabs and Bauer, 1998). The
global coverage of various ocean viewing satellites, such as TOPEX/POSEIDON (Fu et
al., 1994), ERS-2 (Crapolicchio et al., 2012) and Seasat (Evans et al., 2005) have
become appealing options for providing data sources with which to update ocean state
predictions. Numerous studies have assessed the potential to reduce error in predicted
ocean states, most commonly wave fields, using satellite sensor-based remote sensing

data, assimilated into model predictions.
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Foreman et al. (1994), Lionello et al. (1995) and Dunlop et al. (1998) provide
examples in which satellite sensor-based altimeter data have been assimilated with
WAM ocean wave predictions. These, and many other studies, including operational
systems such as those used by the Met Office (Krogstad and Barstow, 1999) tend to
agree that the impacts are positive in terms of reduction of bias and scatter, but the
reductions tend to be small when assessing impacts upon commonly used wave
statistics such as H_and T . Where the swell component of the wave field was large, the
level of error reduction in the predicted wave fields was greater due to the under-
prediction of swell by the model. Siddons et al. (2008) provides a comparison between
various assimilation techniques used to integrate real-time radar-based oceanographic
measurements into the SWAN nearshore wave model.

The use of satellite sensor-based data suffers from coarse spatial and temporal
resolution, inhibiting greater use in many operational forecasting models. The return
period of many ocean based satellites is often in the region of 10 days (e.g. TOPEX).
This allows for only infrequent updates of a wave field forecast, rather than the near-
continuous update available from a fixed buoy. Furthermore, the standard altimeter
data capture period is one second. This relates to approximately 7 km spatial
resolution over which the wave measurement is averaged (Krogstad and Barstow,
1999). It is for these reasons that such data assimilation strategies have been used
only in deep water ocean models, where spatial variability is significantly lower than in
shallow, coastal regions. Siddons et al. (2008) assimilated radar-based data into the
nearshore model SWAN at Holderness. They were able to do so using two stationary HF
radars, enabling a continuous 1 km spatial resolution output of wave height and
currents. Until satellite sensor spatial resolutions increase and techniques to account
for the impact of landforms upon the altimeter waveform are improved, the use of
such data sources for updating in coastal shallow water regions will be restrained.
Recent research, however, has indicated that altimeter data previously flagged as ‘bad’
due to the complexities of data capture in coastal zones (due to uncertainty in the
interpretation of land effects upon altimeter waveforms) may be recoverable using new
techniques, thereby expanding the use of satellite sensor-based data into the coastal
zone for assimilation purposes (see the COASTALT project which aimed to address
these issues, http://www.coastalt.eu/).

In areas where buoys are abundant, such as the English Channel and the Solent,
assimilation of jn-situ wave and water level measurements may prove useful. Buoys are
considered to give very accurate observations. In Greenslade’s (2001) study in
Australia, buoy estimates were assumed to have errors no larger than 2% for H. The
high accuracies and stationary nature (allowing for many more measurements
compared to satellite sensor data) makes the assimilation of buoy data appealing to
modellers. An additional benefit found from the assimilation of buoys, in terms of
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wave field updating, is that many buoys can provide measurements in terms of a
directional spectrum. Where such information is available, spectral partitioning can be
used to gain a greater understanding of the model prediction accuracies. For example,
many studies using such techniques have found that wave models, such as SWAN, tend
to under-predict low frequency energy and over-predict high frequency energy (Rogers
et al., 2002). Voorrips (1999) presented an insightful account of wave buoy
assimilation in the North Sea. In this study, data from seven wave buoys were used to
update predictions from the WAM model. Spectral partitioning was used to allow the
update of multiple portions of the energy spectrum independently from another. Over
one year, tests were conducted comparing accuracies with and without assimilation.
The data demonstrated that assimilation reduced the error in mean wave height and
period. The increase in accuracy was significantly higher where wave propagation was
more important than wave generation. Swell dominated seas experienced error
reductions of up to 20% in mean wave height predictions.

A variety of different approaches to assimilating buoy measurements for storm-
surge updating have been used ranging from simple updating of boundary conditions
(Williams et al., 2008) to more complex domain state updating procedures (Canizares
et al., 1998; Siek and Solomatine, 2011; Butler et al., 2012).

Sequential techniques have gained significant popularity in oceanographic
applications, of which the Kalman filter has become the standard approach (Madsen
and Canizares, 1999; Sgrensen et al., 2006). The Kalman filter (Kalman, 1960) provides
an unbiased estimate for current state of a system that has a minimum error variance
(Kantha and Clayson, 2000). It is described as an optimal linear predictor, accounting
for the state of the predicted variable of interest, the measurement of it, and the
uncertainty in both (Maybeck, 1979). The model error covariance statistics are
calculated dynamically at each time step replacing the single fixed value utilised in
more basic sequential methods (Miller, 1985; Voorrips, 1999).

The Kalman filter works in a two-step feedback system (Neal, 2007). The
‘predictor’ stage includes the simulation of a state vector (and its uncertainty) at a
future point in time, based upon the system state (and its uncertainty) at a previous
time step, by advancing a deterministic estimate of the system state and adding noise
to the estimate of uncertainty. The next stage, the ‘analysis’ aims to increase the
accuracy of this prediction by assimilating measured data (which are also uncertain)
using a ‘Kalman Gain’, which weights the observed and predicted values based upon
their relative uncertainties. In this way the Kalman filter can provide a best estimate of
the current state of a system as well as providing a prediction at a future point based
on the dynamics of the model. The following section outlines the Kalman filter in more
detail.
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Let Xfand X refer to the forecasted value and observed value of a state,
respectively, and the best estimate of the true value of the state (X) is given as X . Both
Xfand X will have an error from the true state value. The errors are represented by

e, =X, —X; and e,=X,—X, (2.15)

where efand e refer to the error in the forecast and observation, respectively.

Alternatively this can be described in terms of variance (denoted here by V) by

\ :(xf _xt)2 and Vo :(Xo _Xt)2 (2.16)

Finally, covariance can be established as

P, =ee; and P, =¢€e, 2.17)

where Pf is the forecast error covariance and P is the observed error covariance.

The best guess of the value of X is given combining the forecasted and observed
estimates, including their relative uncertainties using a weighting factor, referred to as
the Kalman gain (K) by

X, =X, +K(X,X,) e
The Kalman gain is a relative weighting given after considering the accuracy of both X
and X The addition of both weights will equate to 1. Therefore, the weight associated

with X can be rewritten as K by

K:i[i+i} A, 2.19)
Vo |V VY, A +A,

Where A is the accuracy (given as the inverse to the variance).

The error associated with this new analysed value can be given by

Kle, +e, )—e 020

and the error covariance of it (Pa) will equate to

P, =1-K)P; 2.21)

This demonstrates the ability of the Kalman filter to update a single point in
which no time element has been included. A relatively straightforward example can be
viewed in the Appendix. The representation of the Kalman filter prediction and update
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sequence in a matrix based multi-state variable situation is presented by Neal (2007)
in Fig. 2.12.

Time Update (Predictor) Measure Data

. S : F XgandPg
X/ =B°X’, +B"u"

P/ =B'PY{B" +0,,

A

A

Measurement Update (Corrector)

K=P' HT(HP'H" + P°)"'
Initial Estimates of X = Xf + K(XO — HX f)
X and P P¢ = (] — KH)Pf

Fig. 2.12. The Kalman filter. Neal (2007).

Where, lis an n by nidentity matrix, His the m by n measurement operator, X' is the
forecasted state vector at time (1), Pfr is the error covariance matrix associated with the
forecasted state vector, B_is an n by n state transition matrix describing the state of
system changing from the previous time step, "is a transpose of a matrix, Q  isan n
by n process noise covariance matrix describing system state errors at t , X°_is the
state vector of the previous period, P  is the error covariance matrix associated with
the previous state vector, u_is a forcing term, B_is a n by 1 matrix relating the forcing
term to the state vector, K is the Kalman gain matrix, P is an m by m measurement
noise covariance matrix describing covariance of the measurement errors at time step

t, and X isam by 1 vector of measurement values.

The Kalman filter has been shown to be effective when used to describe systems
based on linear dynamics (Evensen, 2002). In practice, however, various difficulties
face a modeller, most importantly, the estimation of the modelled and measured error
covariance, which are essential elements in the updating methodology. Sgrensen et al.
(2006) discuss this and other important data assimilation parameters, concluding that
the better the observation network used, the less influence poorly represented
assimilation parameters have.

In recent years extensions of the Kalman filter have been designed to address
limitation within the original. The Ensemble Kalman filter is such an example (Evensen,

1994), which utilises a Monte Carlo prediction of the modelled state. Statistical
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properties of the system state vectors are represented by an ensemble of possible

state vectors, providing the basis for estimating both the forecasted state vector and
its error covariance (Madsen and Canizares, 1999, Sarensen et al., 2006). For instance,
the forecasted state can be given as the mean of the ensemble, while the variance
associated with it can be time varying as it is estimated from the ensemble spread. The
Kalman filter and the Ensemble Kalman filter have been immensely popular due to their
simple conceptual frameworks and relative ease of implementation. An exhaustive

review of studies that have used it can be found in Evensen (2003).
2.4. Study site, data and software selection

2.4.1. The Solent - Southampton water estuarine system

The Solent lies between the south coast of England and the Isle of Wight, in the UK
(Fig. 2.13). It includes 12 separately defined estuaries and harbours and contains a
wide range of coastal habitats and inter-tidal zones (Fletcher et al., 2007). The region
has various stakeholders, including conservation organisations for protected habitats,

a dense coastal population and two of the largest shipping ports in the UK.
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Fig. 2.13. The location of the Solent-Southampton Water estuarine system (Levasseur,
2008)
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The region lies in the English Channel, in which the M, tide is the dominant tidal
component and tidal ranges typical are in the order of 6 to 10 m. The M, is also the
dominant forcing within the Solent. However, the irregular geometrical shape, narrow
channel configuration and shallow depth of the estuary results in an amplification of
the shallow water tidal constituents, M, and Ms(Levasseur, 2008). For example, at the
Southampton tide gauge the M,, M, and M_tidal constituent amplitudes are
approximately 1.34, 0.24 and 0.17 m, respectively. At Newhaven, further east, in a
more exposed coastal location in the English Channel, the constituent amplitudes are
approximately 2.19, 0.08 and 0.02 m, respectively. Within the Solent these
amplifications create a tidal elevation with a double high water and young flood stand,
most prominent in the Southampton Water region (Rantzen, 1969; Levasseur, 2008).

Storm surges in this region most frequently occur due to low pressure systems
from the Atlantic, propagating eastwards, or as a result of surges propagating south
from the North Sea (Law, 1975; Haigh et al., 2004). Large storm surge events have
influenced the English coast in the past, the most notable occurring in 1953, which
resulted in significant loss of life (Gerritsen, 2005; Wolf and Flather, 2005). During this
event the surge propagated from the North Sea increasing in intensity as it moved
south into shallow waters. Other notable events to have caused flooding, within the
Solent region specifically, include those occurring on 14" to 18" December 1989 (Wells
et al., 2001; Ruocco et al., 2011) and 10™ March 2008 (Haigh et al., 2010). A review of
flood events within the Solent since 1935 can be found in Ruocco et al. (2011).
Generally, coastal flooding within the Solent is considered frequent, occurring once
every two years on average, but with no recorded loss of human life (Wadey et al.,
2012). Previous attempts at modelling the hydrodynamics have shown significant
errors in the western Solent and Southampton Water regions. Levasseur (2008), for
instance, quote errors in the mean spring range (MSR) and mean neap range (MNR) at
Southampton, of 0.44 m and 0.39 m, respectively. This uncertainty is exacerbated by a
limited amount of information available on the major sediment depositional areas of
the system, such as the tidal deltas and offshore banks (Velegrakis, 2000).

The English Channel is fairly sheltered from extreme waves, with a long-term
average H_of 1.5 m (Inter-Agency Committee on Marine Science and Technology,
2004) and T of typically 6 -10 s. The largest waves that occur usually arrive from
either 240 ° due to storm waves and swells from the Atlantic (Dix et al., 2007), or
occasionally, storm waves propagating from 40-50 °. The Solent and Hampshire
coastline is protected from extreme wave events by the Isle of Wight and Hurst Spit.
The CCO (http://www.channelcoast.org/) considers the region to have low-to-medium
exposure to waves due to the sheltering influences and the fetch-limited conditions. At
Lymington and Sandown Pier, for example, the average 5% exceedence height for H_in

2003 and 2008 was 0.8 m and 0.5 m, respectively. However, the eastern region,
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particularly Hayling Island, is less sheltered and can be affected by storm waves
propagating through the English Channel. For example, over the same period, the
average 5% exceedence value for H was 1.59 m, while events greater than 3.8 m were
recorded. Recent research by Palmer (2011) has examined the propagation of waves
through the English Channel, revealing that refraction of waves due the Channel’s
topography, leads to a focussing of wave energy in the eastern Solent.

The coastal population has increased steadily, reaching 835,731 in 2001 with
nearly 4000 ha of land, supporting 17,000 dwellings and a population of 37,600
considered at risk from coastal flooding (Hampshire County Council, 2006). The
southern coast of the UK is expected to experience some of the largest increases in
flood risk during the 21* century in the country (Evans, 2004). This is likely to be due
to a variety of reasons including an increase in the number of assets at risk in coastal
zones (Zang and Tooley, 2003), subsidence of the southern English coast by
approximately 0.3 mm a™* over the last 1ka in the Hampshire region (Shennan et al.,
2012), and the alteration of the land height itself. Evidence suggests that sea levels will
rise in the future as a result of thermal expansion and the melting of land-based ice,
caused by warming over the last century and expected to continue in the future
(Houghton, 2005; Hall et al., 2006; Haigh et al., 2009). Even relatively small changes in
mean sea level, due to changes in the land and sea heights are predicted to increase
the likelihood of extreme sea level events. Haigh et al. (2011) for instance, estimated
potential future extreme high sea levels throughout the English Channel during the 21*
century based on expected sea level increases of 12, 40 and 81 cm. They reported that
the exceedence frequency of extreme high sea levels in the region would, on average,
increase by a factor of 10, 100 and 1800, respectively, due only to mean sea level
changes.

Moreover, intensification of wave conditions within the North Atlantic-North Sea
shelf has been linked to an increase in storminess and mean wind speeds over the last
30 years (Bacon and Carter, 1991; Zang and Tooley, 2003; Inter Agency Committee on
Marine Science and Technology, 2004), although research by Wolf and Woolf (2006)
indicates that the latter is likely to be the most significant factor contributing to an
increase in wave heights. Changes in global mean sea levels have been found to
further intensify wave conditions. Chini et al. (2010) highlighted that an increase in
water levels, due to surge or an increase in mean sea level, results in waves breaking
later and, therefore, more energy reaching the coast. They suggest that within the
south east of the UK, an increase in sea level of 7 mm year™ could result in a 4%
increase in height of a 100 year event by 2090.

As a result, funding into flood defence within the UK has increased from £303
million to £550 million between 2002 and 2006, and continues to increase each year
to cope with heightened risks (Environment Agency, 2007). Due to the complexity of

the region, and the large errors found in previous research, there is a strong desire for
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the establishment of a regional model for the Solent region, capable of transforming
offshore predictions of wave and water levels from the English Channel to the coast.
Quantifying the most significant sources of uncertainty in the system, and developing
ways to reduce it, is an important consideration when attempting to improve the

quality of forecasts in the region.

2.4.2. Boundary forcing and /n-situ measurements

The central English Channel, in particular the Solent, contains numerous in-situ
gauges measuring water levels, atmospheric conditions and wave states, both in
offshore and nearshore conditions; vital in the calibration of a regional tide-surge-
wave model. Datasets can be obtained free of charge from the National Tidal and Sea
Level Facility (NTSLF, at http://pol.ac.uk/ntslf/), the Centre for Environment, Fisheries
and Aquaculture Science (CEFAS, www.cefas.defra.giv.co.uk) and the CCO.
Furthermore, three temporary wave buoys provisioned from EMU
(http://www.emulimited.com/) for a three month period from October to December
2009 provided data for this research.

A new forecasting system (Previmer) is currently under development in the
English Channel region which could provide boundary forcing datasets to a regional
model of the Solent. Previmer is a pre-operational hydrodynamic and spectral wave
modelling system, currently under development, which aims to provide users with
short-term forecasts of ocean state over a variety of model domains, including global
and North East Atlantic models, with smaller nearshore nests at selected regions along
the French coast (http://www.previmer.org/en.). The North East Atlantic model
generates forecasted water level elevations and wave states throughout the English
Channel, with higher spatial resolutions (under 6km) than are currently available from
the present shelf scale operational forecasting in the UK. Tide and surge components
are modelled using the Model for Application at Regional Scale (MARS 2D) system
(Lazure and Dumas, 2008) while wave conditions a predicted using the the Wavewatch
Il model (Tolman, 2009). More information regarding the partners involved in the
development of Previmer, and its current operational status can be found at

http://www.previmer.org/en.

2.4.3. Software selection: MIKE-21

2.4.3.1. Justification

The MIKE-21 hydrodynamic and spectral wave modelling software has been used in this
research to model the Solent- Southampton Water region. The MIKE-21 software is a

comprehensive modelling system, developed by the Danish Hydraulic Institute (DHI),
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applicable to oceanographic, coastal and estuarine environments. It includes a wide
variety of modules ranging from the core hydrodynamic module (used to simulate
water level variations and flows) to more specialist modules such as the oil spill
module and the sediment transport module. This research utilised the hydrodynamic
(HD) and spectral wave (SW) modules. This software was selected for a variety of
reasons. First, the software provides a user friendly GUI feature, particularly useful
during domain mesh generation and optimisation. Furthermore, at the University of
Southampton there is a history of MIKE-21 use, providing a useful support structure.
Both these factors were important in enabling the software to be used to model the
region of interest. In addition, MIKE-21 has been designed to be applicable to both
offshore and nearshore regions, while also allowing for both 1-way and 2-way
coupling between the HD and SW modules. The applicability to both deep and shallow
water regions is of importance when modelling through the English Channel where
depths range from approximately 100 m to less than 10 m, while the ability to couple
the models is essential in the examination of the tide-surge-wave interactions.

In addition to the applicability and ease of use, the MIKE-21 software was also
considered to be acceptable as the fundamental equations used in both the HD and SW
modules are common among other widely used software. MIKE-21 HD is based on the
numerical solution of the Navier Stokes equations and consists of continuity,
momentum, temperature, salinity and density equations. Such equations are standard
among other widely utilised hydrodynamic models, for instance, TELEMAC (Moulinec et
al., 2011; http://www.opentelemac.org/) and ADCIRC (Luettich and Westerink (2004);
http://www.adcirc.org/document). Similarly, MIKE-21 SW was developed from the WAM
3" generation wave model (Hasselmann et al., 1988) which is widely regarded as the
state of the art wave model (Wolf, 2009). MIKE-21 SW propagates the wave spectrum
using the action balance equation in a similar manner to SWAN (Booij et al., 1999) and
is applicable in both deep and shallow water applications by incorporating shallow
water source terms into the model equations. Both employ explicit Euler schemes and
utilise finite volume approaches in their numerical implementations.

The common usage of the fundamental equations found in the MIKE-21
software implies that the model approach and formulations should be robust. This is
further suggested by its wide application in research and industry, including the
Federal Emergency Management Agency (FEMA, 2001) and many others, such as
Johnson and Kofoed-Hansen (2000), Cafizares et al. (2001), Madsen and Jakobsen
(2004), Sgrensen et al., (2004), Serensen et al., (2006), and Dix et al. (2007). Such
research has validated MIKE-21’s modelling capabilities. For instance, Cafizares et al.
(2001) used MIKE-21 HD to model tidal elevations through the North Sea and Baltic Sea
regions, reporting root mean squared errors (RMSE) in predicted peak tidal amplitudes
of between 0.07 m to 0.97 m. At 4 class A coastal tide gauges along the Eastern coast

of the UK, the model predicted the tidal amplitudes with a normalised RMSE of between
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8 - 13 %. Within the English Channel, Dix et al., (2007) were able to accurately recreate
the tidal currents in order to force a sediment mobility model using the HD module.
Serensen et al., (2004b) and Rugbjerg et al., (2006) used coupled HD and SW modules
to forecast wave conditions in the German Blight and the eastern North Sea
respectively. Both report very good correlations with in-situ measurements in depths
between 15 m and 10 m. Rugbjerg et al., (2006), for instance, report Sl values of 20 %
and 12 % in the H_and T respectively, which are reasonable relative to other currently
operational forecast accuracies (Bradbury et al., 2004; Bidlot et al., 2007) .
Furthermore, Sarensen et al., (2006) have demonstrated that the ability to vary the
degree of coupling between the MIKE-21 HD and SW modules can be used to examine
the wave-tide interactions in their study of the Bristol Channel, crucial to the proposed
research contained in this thesis. These studies indicate that the MIKE-21 HD and SW

module should be suitable to meet the aims of this thesis.

2.4.3.2. Model formulations

The follow section provides an overview of the fundamental default terms used in the
HD and SW modules in the MIKE-21 software. Further details relating to the
formulation descriptions, numerical implementations, and the vast array of user
options can be found in the DHI scientific documentation (DHI, 2009a, 2009b, 2009c¢)
from which the following summary was provided.

MIKE-21 HD is central within the system as it drives all the other models within the
MIKE package (such as the transport and wave models). The HD model solves vertically
integrated, fully dynamic equations of continuity and conservation of momentum in
two horizontal directions, using an explicit scheme, in either Cartesian or Spherical
coordinate systems (Caiizares et al., 2001). The system is based on the numerical
solution of the two-dimensional incompressible Reynolds averaged Navier-Stokes
equations (DHI, 2009a). The spatial discretization is performed using a cell-centred
finite volume method. The governing equations for the two-dimensional model in
shallow water conditions are given by integrating the horizontal momentum equations
and continuity equation over the depth (in Cartesian coordinates) using Eq. 2.22 (DHI
2009b), where x, y are Cartesian co-ordinates; h=n+d is the total water depth; u, v are
the velocity components in the x, y direction; S S, S, S, are components of the
radiation stress tensor; p, is the reference density of water; f is the Coriolis
parameter; and (TSXY Tsy), (Tbx, Tby) are the x and y components of the surface wind and
bottom stress. S is the magnitude of the discharge due to point sources and (u, v) is

the velocity by which the water is discharged into the ambient water.
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The overbar indicates a depth average value. The U and V depth averaged velocities
are defined by

n n
hu = Iudz hv = jvdz
-d and ~d (2.23)
Lateral stresses (TL,-,-) include viscous friction, turbulent friction and differential

advection. They are estimated using an eddy viscosity formulation based on the depth
averaged velocity gradients

ou
Txx = 2Aev &

ou ov
T, =A| —+— 2.24
Xy Aev(ay—l—axj ( )
ov
TWZZAEVE

where A_is the sub-grid scale horizontal eddy viscosity (after Smagorinsky, 1963)
given by
A, =c2I? [2S,.S,, (2.25)

where Sis a constant, !is a characteristic length and the deformation rate is given by
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1(ou, ou; . .
S, ==|—+—1|i,j-12 (2.26)

Bottom stress is determined by a quadratic friction law (Eq. 2.26) in which Cs is the

drag coefficient and Uy = (ub’vb) is the flow velocity above the bottom.

il Cfub|ub| (2.26)

The friction velocity associated with the bottom stress is given by

Upp = /CfllTblz (2.27)

For 2D calculations Up is the depth averaged velocity and c_can be determined from the

Manning number, M

g
c, = m (2.28)

In areas not covered by ice the surface stress is determined by the winds above the

ocean surface. This wind stress (7,) is given by the empirical relation

Ts = PaCqliiy | (uwx,uwy) (2.29)

where ¢ is the wind drag coefficient, and u_and u, are wind speed components along

x and y axes.

The friction velocity associated with the surface stress is given by

27 12
U, = /PaCdle 2.30)
Po

and drag coefficient is parameterised using the empirical formula proposed by Wu
(1980; 1994),

C, e u, < W,
C; =1Cq + W’;_M‘; w, —W,) W,<u, <W, (2.31)
Cb . u,, < Wb

where ¢, ¢,, w_and w, are empirical factors and u_is the wind speed ( given here at 10
m above the sea surface). The empirical factors are given as c = 1.255-1073, c,=
2.425-10%, w = 7ms’ and w, = 25 ms' as default and are suggested to provide good

results for open sea conditions.
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The time integration of the shallow water equations utilises an explicit scheme.
In order to retain stability, a restriction is used in the implemented numerical scheme
so that the time step used ensures the CFL number is below a value of 1. Within MIKE-

21 HD a variable time step interval is used. The CFL number is defined by

CFLu, = (o + )3, + (an + )

(2.32)

where AXand Ay are a characteristic length scale in the x- and y- direction for an

element, Aljs the time step interval, u and v are velocity components in the x- and y-

direction.

It can be shown that as grid points become closer (i.e. grid spatial resolution increases)
then the upper limit for acceptable time steps decreases for stability of the explicit
numerical solution.

MIKE-21 SW is a third generation spectral wind-wave model that simulated the
growth, decay and transformation of wind-generated waves and swells in offshore and
coastal areas, based upon the wave action density spectrum, which varies in time and
space as a function of wave direction and frequency (DHI, 2009¢). The governing
eqguation is the wave action balance equation, formulated in Cartesian co-ordinates,

and given, after Komen et al., (1994) and Young (1999), as

N s

+V-(\7N):g (2.33)

Where N(x, f, 6, t) is the action density, ¥ = (x,y) is the Cartesian co-ordinates, V =

(cx,cy,ccce) is the propagation velocity of a wave group in the four dimensional phase

space X, gand 6. Vis a four dimensional differential operator in the X, f, 6 -space.

The model is applicable for propagation of the wave field from deep to shallow-

water regions by incorporating shallow water terms into the energy source term,

S = Sin + SnI + Sds + Sbot + Ssurf (2.34)

where S is the generation of energy by wind, S is wave energy transfer due to non-
linear wave-wave interactions, S_is the dissipation of wave energy due to
whitecapping, S, is the dissipation due to bottom friction and S_Wfis the dissipations of

wave energy due to depth induced breaking.

The wind input, S , is given by
Sin(f,0) = a +yE(f,6) (2.35)
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where S is the energy input from the wind, a (linear wave growth) and y (nonlinear

wave growth) factors depend on wave frequency and direction and wind speed and

direction.

The non-linear growth is defined after Janssen (1991) who suggests that

Y = efox,’ (2.36)
where € is the ratio of density of air to water and x  is given by Eq. 2.37 in which u, is

the wind friction velocity and 8 and 8 are the wave and wind directions, respectively.

Xp = u? cos(6 —6,,) (2.37)
Finally, B is given by

p = %uln‘*u u<sl (2.38)

=0 u>1 (2.39)

where k is von Karman’s constant (0.41) and u is the dimensionless critical height given

by

u=kz (2.40)

where z_is the critical height defined as the elevation above sea level where wind

speed is exactly equal to phase speed.

The linear growth, a, is given after Ris (1997) as

‘lg (—(u*cos(e - Hw))4> exp (— (L)_4) cos(80 —6,) >0

a = 9227-[ opMm (241)
0 cos(6—-6,)<0
where = 1.5-107 and o, is the Pierson-Moskowitz frequency, defined by
__0.13g
Opy = 250 (2.42)

The friction velocity is given using Eq. 2.43 and the drag coefficients are defined after
Wu (1982)

2 _ 2 _
U = Cq Uy Cq = Agrag + Barag * Uw (2.43)

where u is the wind speed and . and B,., are two constants.

The non-linear interactions, S, include quadruplet-wave interactions and triad
interactions. The quadruplet-wave interactions are not computed in an exact manner
due to computational time constraints. Instead, an approximate of the DIA is used
(developed by Hasselmann et al., 1985a, 1985b) after Komen et al. (1994), who found

55



Niall Quinn Literature Review

that an exact estimation of the non-linear interactions could be simulated by one

mirror-image pair of intermediate range interaction configurations (Eq. 2.44)

N -2
%(M) = <+1> Cug 8f°[N?(N, + N_) — 2NN,N_]Ak, (2.44)
N_ +1

Where dN/ 0t,0N,/0t,0N_/dt are the rates of change in action at wave numbers k, k+, kﬁ
within the interaction phase-space element Ak, and C is a constant. Summation of Eq.
2.44 over all wave numbers, directions and interaction configurations provides the net

source function, S . For a detailed axamination of quadruplet interactions see DHI
(2009 o).

The shallow water triad-interactions are modelled using the simplified approach
proposed by Eldeberky and Battjes (1995, 1996),

Snl(O', 9) = SnH_(O-, 6) + Snl_(O', 9) (245)

where

0, agg2mcy]?|sin(Beri) | (cE*(a-,6) _)> (2.46)

2c_E(0o_,0)E(0,0)
Snl_(o-, 9) = _ZSnl+(O-+, 9) (247)

Here 0 = 0/2, 0,= 20, and ¢ = o /k is the phase velocity, where k is the wave number

Sni+(0,0) = max<

corresponding to 0. a, is a tuning parameter, B _is a parameter relating to the biphase

and Jis an interaction coefficient, given by

k2(gd+2c2)
J= T (2.48)
—kd(gd+2Bgd3k2—(B+§)02d2)

where B=1/15.

The dissipation due to whitecapping, S, , based on the theory of Hasselmann
(1974), and adapted after Janssen (1989)

Suo(f,0) = —Cyq (%)m {(1 L (%)2}55(]2 0 (2.49)

where C , 6 and m are constants, of which C , and 6 are tuneable, and @ is the overall

wave steepness

The rate of dissipation due to bottom friction is given after Weber (1991) by

Spoc(F,0) = =(C; + fo(@ - k) k) ——E(f, 6) 2.50)
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where C is a friction coefficient, uis the current velocity and f is the friction coefficient
for the current which can be calculated based upon a constant geometric roughness
size (k) by

Cf = fwuwb (2.51)

where u_ is the rms wave orbital velocity at the bottom and the friction factor (f ) is

calculated after Jonsson and Carlsen (1976)

£, = e—5.977+5.213(ab/kN)_0'194 ap/ ky = 2.016389

fiw =0.24 ap/ ky < 2.016389 (2.52)

where a is the orbital displacement at the bottom.

Depth-induced breaking is calculated using the formulation of Battjes and
Janssen (1978), written in MIKE-21 as

2ap;Qpf
Seurf(f,0) = —TE(f, 0) (2.53)
where x, is a constant =1, Q, is the fraction of breaking waves, f is the mean

frequency, and x is the ratio of the total energy in the random wave train to the energy

in a wave train with the maximum possible wave height, given by

_ Etor (Hrms)z 554
= Was8) Ut (&.5%)

where E_ is the total wave energy, H is the maximum wave, and H = /8. In

shallow water the maximum wave height can be given as H =y,d, where y,; is the

breaking parameter.

Within MIKE-21 SW, the numerical propagation step is carried out by an explicit
Euler scheme. In order to overcome the CFL stability restrictions a multi sequence
integration scheme is employed (based on the work of Vilsmeier and Hanel, 1995), in
which the maximum time step can be altered locally by employing a series of
integration steps, where the number of steps may vary element to element (DHI,
2009¢). Using this method the CFL criteria differs from that given in the HD module

and is represented by

At
AX |

At|, o, A |
AY, | AG, |

where Cr, is the Courant number and Ax and Ay are characteristic length scales in the

At|

C +
7 A |

Cr\m =|Cy C, <1 (2.55)

x and y- directions for the i element. C, C, C, C, are propagation velocities of a wave

group in four dimensional space.
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Chapter 3: Modelling waves and water levels
in the Solent and surrounding waters:
sensitivity to local wind stress and boundary
conditions

Abstract

The sensitivity of a regional wave and surge model to local wind stress and boundary
condition input datasets is examined in the Solent, a complex nearshore region
containing an array of water depths, wave conditions, and unique tidal hydrodynamics.
The prediction of the surge was most sensitive to the boundary surge elevations, with
the local wind stress accounting for less than 10% of the magnitude of the surge
during the largest events. Predictions of the wave state, on the other hand,
demonstrated that despite the limited domain extent, the local winds contributed a
significant amount of energy to the waves, accounting for 60.6% of the H_during two
storm events in November 2009. Spatial variability in the model sensitivity was high,
particularly when predicting wave conditions, due to the sheltering effect provided to
the western Solent by the Isle of Wight and Hurst Spit.

The Previmer wind and boundary condition datasets, used to force the regional model,
were contrasted with those from another, currently operational system, during a three
month period from October to December 2009. The datasets from both systems were
broadly similar on average, with the substitution of one not resulting in a significant
change to the accuracy of the three month predictions of surge and wave states.
However, short-term divergence in the datasets was high, particularly during an event
on the 14™ November 2009, leading to divergence in the two predictions of surge and
wave peak magnitudes by up to 10%.

The findings presented in this research provide information, relating to the sensitivity
of nested regional coastal models to dataset uncertainty, which will be of interest to
coastal managers working in the Solent and other, similar, environments. Furthermore,
the assessment of the Previmer datasets during the three month period, and the
corresponding sensitivity of the predictions to divergence from other systems,

provides valuable information to those interested in the Previmer products.

3.1. Introduction

Coastal flooding is a threat to many regions around the world, responsible for the

deaths of thousands, and millions of dollars’ worth of damages each year. For
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instance, two flooding events in the Bay of Bengal, occurring in 1970 and 1991,
resulted in the deaths of 440,000 people (Flather, 1994). To protect against the threat
of coastal flooding, numerical models have been utilised in many regions around the
world to provide forecasts of ocean water levels and wave states. Ocean forecasting
systems usually involve a suite of models, often coupling tide, surge, and wave
predictions with atmospheric models that provide forecasts of wind and air pressures
through the region of interest (e.g., Allard et al., 2008). Flather, (2000) provides a
summary of a variety of operational systems that have been utilised throughout
Europe. Such systems commonly provide forecasts over global and continental-shelf
scale domains (e.g. Williams and Horsburgh, 2006). To reduce computational
demands, relatively coarse spatial resolutions are often used in deep water regions
where spatial variability in the ocean state is limited, while nearshore nests are utilised
in specific nearshore regions where finer spatial discretization is required.

Where a nested modelling approach is used, the predictions made will often be
influenced significantly by the state of the ocean entering the domain, due to the
limited size of the regional model. For instance, it has been shown that for extreme
wave conditions to develop, a sufficiently long fetch is often required (Knauss, 1966).
Many small-scale, regional nests will not be sufficiently large to enable realistic
representations of the wave field to develop. For this reason regional nests require
boundary conditions to be specified, representing the state of a system outside the
immediate model domain. Depending on the size of the domain, the additional
influence of the local atmospheric conditions may also strongly modulate the incoming
boundary conditions. As both the boundary conditions and the internal atmospheric
conditions are usually outputs from larger scale modelling applications, the quality of
these datasets will be an important influence upon the accuracy of the solutions
obtained from the regional model to which they are applied. Quantifying data quality
and the sensitivity of the model to errors in the datasets can provide end users with
greater understanding of model predictions and their inherent uncertainty, while also
highlighting in which datasets uncertainties can be of greatest significance to the
model predictions.

Previmer is a pre-operational ocean modelling system, currently under
development, which aims to provide users with short-term forecasts of ocean state
over a variety of model domains, including global and North East Atlantic models, with
smaller nearshore nests at selected regions along the French coast
(http://www.previmer.org/en). The North East Atlantic model generates forecasted
wave states and water level elevations throughout the English Channel, providing a
potential source for boundary driving conditions for a regional model of the Solent and
Hampshire coastline, on the south coast of the UK, an area thought likely to be
affected by increased flood risk in the future (Evans, 2004).
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This region provides a unique setting in which to examine the sensitivity of
regional surge and wave models to boundary conditions and local wind stresses. It is a
complex region, containing a large range of environments within which to examine
model sensitivity, ranging from artificially deepened channels for shipping, to inter-
tidal mudflats (Levasseur, 2008). Furthermore, it is a region that can be susceptible to
large storm surge and wave events, most commonly propagating west from the North
East Atlantic. The protection offered to the western Solent from large swells by the Isle
of Wight provides an interesting mixture of regions exposed to large swells and those
experiencing only local, fetch-limited, wave action. Due to the complexity of the
coastal environment, this region requires a relatively fine spatial resolution model
domain to accurately recreate the variability in the coastal ocean state. The assessment
of the prediction sensitivity in the variety of conditions found within the region, to
uncertainty in the boundary and local wind forcing, therefore, could provide
information of value to the understanding of regional models in the Solent, while also
being applicable to nested models in other coastal environments.

This research aimed to assess the sensitivity of the regional wave and surge
predictions to the local wind and boundary condition input datasets. By meeting this
aim, this research highlighted the temporal and spatial variability in model sensitivity,
in order to provide coastal managers with an indication of the datasets in which high
accuracy is of greatest importance in estuarine environments, such as those contained
in the Solent. Furthermore, the research also aimed to quantify the errors within the
datasets provided by Previmer (relative to another operational system) and assess the
influence of the ‘dataset selection uncertainty’ upon the prediction of the surge and
wave states in the Solent region. This aimed to provide coastal modellers with a case
study with which to assess the quality of the wind, wave and surge data products
currently available from the Previmer system in the English Channel.

The datasets, model set up, and analysis used are described in Sections 3.2, 3.3,
and 3.4, respectively. The results are given in Section 3.5. A discussion is provided in

Section 3.6 and the conclusions are drawn in Section 3.7.

3.2. Study Site and Data

3.2.1. The Solent
The Solent is a body of water that lies between the south coast of England and the Isle

of Wight in the UK (Fig. 3.1). It includes 12 separately defined estuaries and harbours
and contains a range of coastal habitats and inter-tidal zones (Fletcher et al., 2007).
The region has various stakeholders, protected habitats, a dense coastal population
and two of the largest shipping ports in the UK.
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The irregular geometrical shape, narrow channel configuration and shallow
depths, results in the amplification of shallow water tidal constituents, M, and M,
(Levasseur, 2008). These amplifications create a tidal elevation with a double high
water and young flood stand, most prominent in the Southampton Water region
(Rantzen, 1969; Levasseur, 2008). Previous attempts at modelling the tidal
hydrodynamics within the region have shown relatively large errors in the western
Solent and Southampton Water regions (Levasseur, 2008).

Storm surges in this region most frequently occur due to low pressure systems
from the Atlantic propagating eastwards, or as a result of storm surges propagating
south from the North Sea (Law, 1975; Haigh et al., 2004). Notable events have caused
flooding within the region include those occurring on 14" - 18" December 1989 (Wells
et al., 2001) and 10" March 2008 (Haigh et al., 2010).

The region is generally considered to be sheltered from extreme waves, with
long-term average H_of 1.5 m or less (Inter-Agency Committee on Marine Science and
Technology, 2004) and T of typically 6 -10 seconds. The largest waves that occur
usually arrive from either 240° due to storm waves and swells from the Atlantic (Dix et
al., 2007) or occasionally 40-50° (storm waves from the eastern English Channel). The
eastern Solent regions, particularly Hayling Island, and Milford to the west of the
Solent, are the most exposed areas to significant wave energy within the region of
interest (Palmer, 2011). A review of flood events in the Solent since 1935 can be found
in Ruocco et al. (2011).

3.2.2. Data

Tidal elevations, surge elevations, wave and wind conditions, derived from the
Previmer group (http://www.previmer.org/en) were used in this research to force the
regional models. These datasets were outputs from a pre-operational system,
currently under development, which aims to provide users with short-term forecasts of
the state of the ocean along French coastlines bordering the English Channel, the
Atlantic Ocean, and the Mediterranean Sea. Tide and surge components of the water
surface elevation (velocities were not specified) were provided at 5.5 km spatial
resolution, and 1 hour temporal resolution throughout the English Channel. These data
were model outputs created using the Model for Application at Regional Scale (MARS
2D) system (Lazure and Dumas, 2008). Wave conditions (HS, T, direction and
spreading) were provided at 3.5 km spatial and 3 hour temporal resolution from
forecasts made using the Wavewatch Il model (Tolman, 2009). The Previmer models
utilise modelled wind fields at 3 hour temporal and 4 km spatial resolution provided by
the European Centre for Medium Range Weather Forecasts (ECMWF,
www.ecmwf.int/about). These wind field datasets were supplied via the Previmer group
for this research. Atmospheric pressure fields were interpolated from measurements
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provided by the Channel Coastal Observatory (CCO). Measurements at seven sites
located along the south coast of England, between longitudes of -3.48° and -0.48°
were used; Teignmouth, West bay Harbour, Portland Harbour, Swanage, Lymington,
Sandown and Arun Platform. Data were available at 10 minute intervals at each site and
interpolation was used to provide estimates over the computational domain.

In-situ measurements of water level, wave and wind conditions were given at the
sites in Fig. 3.1, provided online by the NTSLF (at http://pol.ac.uk/ntslf/), CEFAS
(www.cefas.defra.giv.co.uk) and the CCO. Further measurements were provided by
three temporary buoys provided for this research by EMU
(http:/ /www.emulimited.com).

Further modelled wind fields, boundary wave conditions, and boundary surge
elevations from the Met Office operational Wavewatch Ill model (Bradbury et al. 2004;
Tolman, 2009) and storm surge model (Flather, 2000; Williams and Horsburgh, 2006),
respectively, were obtained to enable comparisons with the Previmer datasets to
ascertain the suitability of the Previmer data for use in the regional model. Data were
supplied at 12 km spatial and 1 hour temporal resolutions through the English
Channel.

When utilised in the MIKE-21 model, all datasets were interpolated to provide

temporal resolutions matching the simulation time step of the model.
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Site Location Site Location
(decimal (decimal
degrees) degrees)
Bramble -1.28,50.78 Hayling Island  -0.95, 50.72
Chich. Harbour  -0.88, 50.78 Lymington -0.51, 50.74
Chich. Bar -0.93, 50.75 Milford -1.6, 50.7
C.L.Vessel* -2.9,49.9 Poole Bay -1.72, 50.63
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Fig. 3.1. The location of the Solent and in-situ measurements.

3.3. Model set-up

The MIKE-21 software was used to model the domain of interest. MIKE-21 is a widely
used 2D modelling package designed by the DHI group. MIKE-21 has a history of use
in research and industry, including FEMA (FEMA, 2001) and many others, such as
Johnson and Kofoed-Hansen (2000), Cafizares et al. (2001), Madsen and Jakobsen
(2004), Serensen et al. (2004), Serensen et al. (2006), and Dix et al. (2007), who have
used the software in both offshore and coastal environments.

The hydrodynamic (HD) module used in this research is central within MIKE-21. It
solves a full set of vertically integrated, equations of continuity and conservation of
momentum in two horizontal directions using an explicit scheme in either a Cartesian
or Spherical coordinate system (Cafizares et al., 2001). The system is based on the
numerical solution of the two-dimensional incompressible Reynolds averaged Navier-

Stokes equations. The horizontal eddy viscosity is given after Smagorinsky (1963).
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Bottom stress is estimated using a quadratic friction law, in which the drag coefficient
can be determined from the Manning number (given in MIKE-21 as the reciprocal of
the value used in many textbooks). Wind stress is given as a function of the air density,
the wind speed 10m above the sea surface, and a drag coefficient, parameterised after
Wu (1980; 1994).

MIKE-21 SW is a third generation spectral wind-wave model that simulated the
growth, decay and transformation of wind-generated waves and swells in offshore and
coastal areas, derived from the WAM formulation (Hasselmann et al., 1988). The
governing equation is the wave action balance equation, formulated in Cartesian co-
ordinates, is given, after Komen et al. (1994) and Young (1999). The model is
applicable to offshore and coastal environments as it includes shallow water sources
terms for wave generation by the wind (after Janssen, 1991), quadruplet nonlinear
interations (after Komen et al., 1994), triad nonlinear interactions (after Eldeberky and
Battjes., 1995; 1996), as well as dissipation due to whitecapping (Hasselmann, 1974),
bottom friction (Weber, 1991) and depth-induced breaking (Battjes and Janssen,
1978). Further information regarding the MIKE-21 HD and SW models can be found in
DHI (2009b) and DHI (2009c).

Fig. 3.2 demonstrates the model domain mesh and bathymetry. Bathymetry data
of 100 m resolution provided by the National Oceanographic Centre (NOQC),
Southampton (http://www.noc.soton.ac.uk) were interpolated to the domain mesh.
Boundary tide, surge and wave time-series provided by Previmer, were given at the two

domain boundaries, located along the -3.5° and -0.1° lines of longitude.
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Fig. 3.2. Model domain mesh and bathymetry.
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Sensitivity of the model to the domain mesh resolution was examined over a
series of tide and wave predictions, utilising model mesh designs with increasing
spatial resolution in the nearshore regions. Mesh resolution was limited through the
use of maximum element area constraints, ranging from le-3°° to 5e-6°, representing
approximate element centre distances of between 1500 - 1800 m and 50 - 100 m,
respectively. The upper limit of 5e-6°° was used due to computational demands. The
predictions from October to December 2009 obtained using the different mesh
designs were compared. The results indicated that the mesh resolution required to
recreate the model predictions given using the highest mesh resolution was dependent
upon the location and output parameter of interest. Table 3.1 provides examples from
a selection of the assessed sites, indicating the error (%) in a variety of model outputs
relative to those given using the highest mesh resolution.

The results indicated that the surface elevation was relatively insensitive to the
mesh resolution relative to the other model outputs considered. When considering the
impact upon modelled currents, Hs'and T, many of the sites were shown to provide
model outputs within 2 % of those obtained from the 5e-6°2 mesh when using mesh
designs with maximum element sizes of 1e-5°° and 2.5e-5°* (corresponding to
approximately 150-200 m and 225 - 300 m resolution). Three sites (Portsmouth,
Lymington, Sandown) in particular demonstrated more significant deviations from the
5e-6°? simulation, of as much as 12 %, even when using the next highest resolution
mesh (1e-5°%) were found. These findings indicated that in particular regions, for
instance, the entrance into harbours such as Portsmouth, or shallow bathymetries such
as those found near the Lymington gauge, the use of a high resolution mesh would be
required, while in deeper offshore areas such as the EMU Nab site a lower resolution
would suffice. For this reason, the domain was divided into ‘nearshore’ and ‘offshore’
regions, with a maximum element size of 5e-6° restriction applied to the former only.
Further analysis examined the relaxation of mesh resolution constraint that could be
applied to the ‘offshore’ areas (containing the deeper mid-Solent areas and the English
Channel), while retaining convergence (given as 2 % deviation from the 5e-6°2 mesh
outputs). Final mesh resolution was approximately 2 km, 150 - 200 m and 50 - 100 m
in the English Channel, mid-Solent, and harbours and coastal regions, respectively.

Within the MIKE-21 HD model, the user is able to make decisions relating to
three formulations of particular interest to this research; the eddy viscosity, the bed
roughness, and the wind drag.

The default wind stress empirical coefficients of c = 1.255-107, c, = 2.425-10°3,
w =7ms" and w, =25 ms™ provided by DHI were used in this research as they are
considered to be robust when modelling in most open sea conditions (DHI, 2009b),

which is representative of the majority of the domain of interest.
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Table. 3.1. Errors (%) in model outputs at a selection of measurement sites relative to

those obtained using a mesh with a maximum element area of 5e-6°°.

Mesh area = o N = ~ o N =
constraint & A rl%-l IS ".%1 ¢ rl%-' o
(degrees?) = v v
Surface Elevation (m)
Poole Bay 0.89 0.89 0.77 0.45 0.42 0.35 0.23 0.07
Sandown 0.20 0.00 0.02 -0.13 0.19 0.12 0.00 0.00
EMU Nab -0.02 -0.23 -0.36 -0.46 -0.12 -0.08 -0.16 -0.05
Lymington -0.41 -1.09 -1.39 -2.72 -0.10 -1.00 -0.84 -0.26
Portsmouth -0.50 -0.82 -0.99 -2.69 -1.99 -0.39 0.22 0.07
Current Speed
(ms™)
Poole Bay 23.02 20.91 20.72 20.05 16.47 12.03 1.93 0.61
Sandown -40.04 -44.14 -45.69 -49.78 -36.53 -48.78 -36.94 -11.64
EMU Nab -0.12 -4.15 -10.06 -6.55 -6.84 -2.85 -1.01 -0.32
Lymington -12.08 -12.10 -11.61 -67.84 -54.68 -33.90 -24.55 -7.74
Portsmouth 12.94 11.09 11.48 431 6.51 17.11 1.92 0.61
H,(m)
Poole Bay 9.32 7.19 5.67 5.47 491 4.84 3.49 1.10
Sandown -41.38 -40.21 -37.74 -26.20 -31.42 -38.35 -22.87 -7.20
EMU Nab -2.91 -1.68 -1.96 -0.39 -0.04 0.39 0.35 0.11
Lymington -9.28 -10.30 -6.50 -9.65 -4.96 -4.66 -3.46 -1.09
Portsmouth -32.58 -29.14 -28.35 -25.02 -25.56 -22.17 -15.84 -4.99
T, (s)
Poole Bay 2.18 0.86 0.85 -0.54 -0.42 0.37 0.06 0.02
Sandown -10.10 -9.11 -6.56 -3.72 -8.18 -8.06 -2.31 -0.73
EMU Nab -4.59 -4.39 -4.21 -1.19 -1.52 -1.41 -0.69 -0.22
Lymington -59.45 -59.62 -53.49 -33.76 -19.61 -29.35 -22.00 -6.93

Portsmouth -3861 -21.35 -39.74 -28.54  -25.13  -26.12 6.44 2.03

Previous research by Dix et al. (2007), which utilised MIKE-21 HD to model tidal
elevations and current velocities in the English Channel, demonstrated that an accurate
representation of the hydrodynamics in the region could be obtained through the
alteration of the Mannings coefficient. They found that the most accurate model
outputs were obtained when the default value of 32 was increased to 39, while the
alteration of the Smagorinski coefficient from the default of 0.28 did not result in any
increase in model accuracy. Based on these findings, the calibration of the HD model in
this research focussed on the optimisation of the Mannings coefficient. To do this, a
series of tidal simulations were conducted over the period between 1* November and
30" November 2009, in each case altering the Mannings coefficient value. A range of
values between 29 and 59 were used. The model outputs were compared to tidal
elevations obtained from the in-situ measurements in the Solent region. The RMSE of
the model outputs, relative to the tidal elevations extracted from the tide gauges, was
used to define the best fit. Fig. 3.3, for instance, provides an example of the sensitivity

to the Mannings coefficient at the Portsmouth and Lymington gauge sites. The results
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indicated that the best results, on average, were obtained given a Mannings coefficient
of 42.

Subsequent assessment of the impact of the Smagorinsky coefficient was also
conducted. Recommended values from DHI range from 0.25 to 1, with a default setting
of 0.28. Tidal simulations were conducted with the coefficient values of 0.25 to 0.75.
The results indicated that the coefficient had relatively little impact upon the model
outputs. For instance, at Portsmouth, Lymington and Southampton the maximum
change in tidal elevation (at any point in the predicted time series) was less than 6 cm,

while changes to the high tide elevations were consistently less than 2 cm.

= = Portsmouth ——Lymington
0.24
022 1> o
0.2 ~

0.18 =~ -
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0.14
0.12

0.1
0.29 0.34 0.39 0.44 0.49 0.54 0.59

Manning coefficient

Fig. 3.3. Tidal accuracy plotted against Mannings coefficient value at the Portsmouth

and Lymington tide gauges during a one month simulation of November 2009.

Within the SW model, numerous processes were considered. Diffraction was
included as it was expected to be of significance due to the variability in the Solent
coastline, and in particular, when modelling wave propagation into the various
harbours found in the region. Similarly, non-linear interactions were included in order
to properly represent both the quadruplet and triad interactions that can form between
waves in both offshore and nearshore regions. In order to estimate the remaining
parameters, primarily relating to the wave breaking, bottom friction, and whitecapping,
a previously calibrated model of the Severn estuary, provided by DHI, was referred to
(Serensen et al., 2006), the parameters for which are available with the download of
the software from http://www.dhisoftware.com/Download/MIKEByDHI2012.aspx. The
Severn model was used as a starting point due to the perceived similarities between
the Severn model domain and that used in this research. Both models, for instance,
aimed to propagate offshore waves, most commonly southwesterlies from the north
east Atlantic, from depths of approximately 100 m into complerx nearshore estuarine

environments which included a variety of nearshore conditions. From this starting
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point, the bottom friction coefficient was used as the initial calibration parameter
(Table 3.2). The November 2009 period was simulated using a variety of bottom
friction coefficient values ranging from 0.1 to 0.001. The accuracy of the model
predictions of peak H_and average T were examined relative to in-situ measurements.
The results indicated that the optimal value was dependent upon location and model
output parameter of interest. However, when considering both model outputs, on
average, throughout the domain, the most accurate predictions were obtained when

using a constant value of 0.06.

Table 3.2. Model accuracies relative to in-situ wave measurements for a selection of
Nikuradse constant values. H and T values relate to the average accuracies across all
measurement sites. The ‘average’ row refers to the average of the H and T rows. All

accuracies are given in terms of % error.

Nikuradse  0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
constant

H; peak 21.39 19.70 18.58 16.75 15.53 14.35 14.68 14.79
T, mean 17.87 15.52 13.17 10.82 11.32 11.82 12.32 12.99
Average 19.63 17.61 15.87 13.78 13.43 13.09 13.50 13.89

Further sensitivity tests examined the supplementary influence of the
whitecapping delta (influential in determining the weighting of dissipation across the
range of frequencies in the wave spectra) and wave breaking gamma (influential to the
depth-induced dissipation to waves) coefficients to the model predictions. Both
parameters can be influential to wave heights and periods as they propagate into
shallow coastal waters. A range of simulations considered values of these coefficients
within a range of 0.1 to 0.9, and 0.1 to 1.5 for the whitecapping and wave breaking
coefficients respectively. These simulations were particularly interested in addressing
large predictions errors found in some very shallow (less than approximately 5 m water
depth) sites, such as EMU Portsmouth and Lymington, relative to the accuracies
obtained elsewhere (discussed in more detail in Chapter 5). The results indicated that
alteration to either coefficient was not able to provide a solution to such errors. The
wave breaking coefficient was the most influential upon the model predictions,
particularly H. Reducing the coefficient value resulted in a decrease in the predicted
peak H, improving the model accuracy at sites such as Lymington. However, the
decrease to peak H_occurred throughout the domain, resulting in a reduction in
prediction accuracies in many of the other sites. As alteration to either coefficient was
not able to increase the average accuracy of the model outputs considered, nor
address the relatively large errors found in the shallowest gauge sites, the model set-
up retained the values specified in the Severn model (representing default MIKE-21

estimates for both coefficients).
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The final formulations and parameter value choices used in the regional model
are given in Table 3.3. Using the model set-up and data sources described, the
regional model was capable of providing predictions of the tide-surge-wave conditions
with accuracies broadly consistent with those expected from other model accuracy
assessments in similar conditions (as discussed in more detail in subsequent chapters).
For instance, tidal errors were significant, but closely resembled those from a 3d
hydrodynamic model of the Solent presented by Levesseurr (2008), while surge
residuals contained an average RMSE of 0.1 m which is broadly consistent with
accuracies obtained from the operational storm surge model
(http://www.pol.ac.uk/ntslf/model.html) at the Portsmouth gauge (Chapter 4).
Similarly, waves, particularly in depths greater than approximately 10 m, performed
within the common accuracy levels of assessments of operational systems (e.g.
Bradbury et al., 2004; Bidlot et al., 2007), while larger relative errors have been
reported in a variety of other systems (e.g. Moeini and Etemad-Shahidi, 2007; Brown et
al., 2011) in shallow (< 5 m) depths when using spectral wave models (Chapter 5).

Due to computational resource constraints, the calibration procedure used was
not able to sample a vast proportion of the parameter space associated with the
coupled HD-SW model. Given greater resources, it may be that a more exhaustive
examination of the parameter space, for instance, through the use of a Generalised
Likelihood Uncertainty Estimation (GLUE) approach (Beven and Binley, 1992), could
enable more accurate model predictions to be made. However, given the constraints
present in the research, and the findings that the model predictions compared broadly
with those expected from other systems in similar locations, it is proposed that the
current model adequately represents the tide-surge-wave conditions in the region,

and therefore, provides a suitable tool with which to meet the aims of the thesis.
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Table 3.3. Key formulation and parameter values for the coupled MIKE-21 HD and SW

model

Parameter Value
MIKE-21 HD

Bathymetric resolution 100 m

Mesh resolution

Flood and dry

Drying depth, flooding depth, and wetting

depth respectively

Eddy viscosity formulation
Eddy viscosity coefficient
Bed roughness formulation
Bed roughness coefficient
Coriolis forcing

Wind forcing

Wind drag coefficients: ¢, ¢, ,w_and w,
respectively

Precipitation and evaporation
Wave radiation from SW model
Boundary conditions

2000 m in the central Channel, refined to
approximately 100 -200m through most of
the Solent, and 50 - 100 m in the harbour
entrances

On.

0.005 m,

0.05 m,

0.1 m,

Smagorinkski

0.28

Mannings

42

Varying in domain

Varying in time and across the domain. Wind
speed, direction and atmospheric pressures.
0.001255,

0.002425,

7,

25,

After Wu (1980; 1994)

No. No.

Yes.

Varying along boundaries and through time.
Tide and surge water level elevations.

MIKE-21 SW

Spectral formulation

Time formulation

Frequency discretization (number of
frequencies)

Directional Discretization (number of
directions)

Water level conditions from HD model
Current conditions from HD model
Wind forcing formulation

Wind forcing air-sea interaction

Wind forcing Charnock parameter
Diffraction

Quadruplet interactions formulation /
inclusion

Triad interactions formulation / inclusion

Wave breaking formulation
Wave breaking coefficients: a, and yy;

Bottom friction formulation

Bottom friction Nikuradse roughness
coefficient

White capping formulation

White capping coefficients: C,, and 6

Boundary conditions

Fully spectral
Instationary
25

16

Yes

Yes

Janssen (1991)
Coupled

0.01
Yes.
Komen et al. (1994) / Yes

Eldeberky and Battjes (1995, 1996) / Yes

Battjes and Janssen (1978)
11

0.8

Weber (1991)

0.06

Janssen (1989)

4.5,

0.5

Varying along boundaries and through time.
H, Tp, mean wave direction, and directional
spreading
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3.4. Analysis

To meet the objectives of the research, three sets of experiments were undertaken.
The first experiment examined the uncertainty in the wind, boundary wave, and
boundary surge datasets. The wind predictions were contrasted with in-situ
measurements and predictions provided by the Met Office, while the boundary surge
and wave uncertainty was considered relative to the datasets provided by the Met
Office. Comparisons were made for the three month period from October to December
2009.

The second set of experiments examined the sensitivity of the model-based
surge and wave predictions to wind and boundary conditions (specifically boundary
surge and boundary waves). Three simulations were conducted in each case, for the
October to December 2009 period, as well as an event on the 10" March 2008.

The first simulation predicted the surge elevations obtained when both the wind
and boundary surge conditions were included, while in simulations ii and iii the winds
and boundary surge conditions were removed, respectively.

i. Tidal elevations + Previmer winds + Previmer boundary surge

ii. Tidal elevations + no winds + Previmer boundary surge

iii. Tidal elevations + Previmer winds + no boundary surge
The sensitivity of the surge predictions to winds and boundary surge was explored by
calculating the difference between the model predictions obtained from simulation |,
from those obtained from ii and iii.

Simulation iv predicted the state of the waves when both the wind and boundary
wave conditions were included, while in simulations v and vi the winds and boundary
wave conditions were removed, respectively.

iv. Water level elevations + Previmer winds + Previmer boundary waves

v. Water level elevations + no winds + Previmer boundary waves

vi. Water level elevations + Previmer winds + no boundary waves
The sensitivity of the wave predictions to winds and boundary waves was explored by
calculating the difference between the model predictions obtained from simulation iv
from those obtained from v and vi.

The third set of experiments assessed the uncertainty in the surge and wave
predictions, given the selection of the Previmer datasets over those provided by the
Met Office. Two simulations were conducted in each case, for the October to December
2009 period, as well as the 10" March 2008 event.

Simulations vii and viii predicted the surge elevations where the Met Office winds
and boundary surge elevations, respectively, were utilised in place of those provided
by the Previmer system.

vii. Tidal elevations + Met Office winds + Previmer boundary surge
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viii. Tidal elevations + Previmer winds + Met Office boundary surge
The sensitivity of the surge predictions to the input datasets was calculated as the
difference between the model predictions obtained from simulation i and those
obtained from simulations vii and viii.

Simulations ix and x predicted the state of the waves where Met Office winds and
boundary waves, respectively, were utilised in place of those provided by the Previmer
system.

ix. Water level elevations + Met Office winds + Previmer boundary waves

x. Water level elevations + Previmer winds + Met Office boundary waves
The sensitivity of the wave predictions to the input datasets was calculated as the
difference between the model predictions obtained from simulation iv and those
obtained from simulations ix and x.

Clearly, the above sets of experiments represent a large number of comparisons.
Therefore, to increase clarity over which datasets are being contrasted, the subscripts .
.»and are used to represent input data, hindcast predictions and in-situ measured
data, respectively. For example, the RMSE describing the error between a model

hindcast and in-situ measurements is given as RMSE, .

3.5. Results

3.5.1. Model sensitivity to the winds

3.5.1.1. Uncertainty in the wind fields
The uncertainty in the Previmer wind forcing data was assessed by comparing model

outputs with wind gauge measurements and with a second predicted dataset provided
by the Met Office (Table 3.4). The results indicate the error in the Previmer wind field
relative to in-situ measurements and the Met Office dataset. Relative to the measured
data, the Previmer wind speed resulted in an average RMSE, of 3.42 ms™, while wind
direction contained a RMSE | of 54.29°. At each location the wind speed was over-
estimated in the Previmer dataset on average. The errors were smaller when the
Previmer and Met Office data were contrasted, with an average RMSEH of 1.55 ms™ and
22.51° for wind speed and directions, respectively, with the Met Office speeds shown
to be greater on average, during the period considered. Local variation was shown to
be small. For example, the Met Office - Previmer RMSEsi’i in wind speeds, at each
location, were within 0.2 ms™ of the domain average. During the event on 14"
November 2009, the timing of the wind speed peak occurred approximately three
hours later in the Met Office-based wind field, relative to that in the Previmer dataset.
Relative to the in-situ measurements, the Met Office-based wind field, particularly the

timing of the peak, was the more accurate of the two input datasets.
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Table 3.4. Comparison of wind fields modelled using Previmer inputs with those
utilising Met Office inputs (bottom) and measured (top)

Previmer v. Measured

Wind Speed Wind Direction U Stress (Nm™) V Stress (Nm™)

Location (ms™*) RMSE (degrees) RMSE RMSE RMSE
Bramble Bank 2.78 41.25 0.122 0.08
Chichester bar 2.55 37.9 0.22 0.18
Chich. Harbour 3.37 46.3 0.29 0.2
Lymington 2.76 - - -
Sandown Pier 4.19 80 0.29 0.18
Southampton 4.85 66 0.32 0.23
Average 3.42 54.29 0.25 0.17

Previmer v. Met Office

Wind Speed Wind Direction U Stress (Nm™) V Stress (Nm™)

Location (ms™) RMSE (degrees) RMSE RMSE RMSE
Bramble Bank 1.5 21.9 0.07 0.09
Chichester bar 1.58 22.9 0.14 0.18
Chich. Harbour 1.5 21.9 0.16 0.2

Emu Hay Buoy 1.58 22.9 0.13 0.16
Emu Nab Buoy 1.71 24.5 0.07 0.08
Emu Ports Buoy 1.55 22.5 0.09 0.11
Lymington 1.47 21.7 0.12 0.15
Portsmouth 1.55 22.4 0.08 0.01
Sandown Pier 1.56 22.3 0.1 0.12
Southampton 1.47 22.1 0.12 0.15
Average 1.55 22.5 0.11 0.13

The wind stresses, revealed that, on average, the largest errors were contained
within the U component of the wind stress, when contrasting the Previmer and
measured datasets, while the opposite was shown when comparing the Previmer and
Met Office data. In both comparisons, differences of up to 1.5 Nm~ were revealed at
times. The errors in both the Met Office and Previmer datasets, relative to the in-situ
measurements, were shown to be similar, suggesting that both datasets were able to

recreate the measured wind fields with comparable accuracies.
3.5.1.2. Influence upon model predictions

3.5.1.2.1. Removal of the wind fields

The exclusion of wind stress input data (Table. 3.5) led to a domain average RMSE
and Pbiashyh of 0.03 m and 6.5%, respectively, (i.e., contrasting surge predictions with
and without the inclusion of wind stresses).
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Some spatial variability was present, with the largest changes shown to occur at
Southampton. The exclusion of wind forcing data during the event on March 10" 2008
resulted in the smallest change in terms of RMSE,  at the Nab Buoy site during the
three month winter simulation and the event on the 10" March 2008. During this
event, the change to peak surge magnitudes at Southampton was 13.9%,
approximately 8% greater than that found at the Nab Buoy. The exclusion of the wind
data resulted in a decrease to peak water levels of up to 0.2 m, while the skew-surge
was decreased by up to 15.6%.

The wave model prediction was heavily modified by the local wind data. Domain
average RMSEs between model predictions without local wind data and those forced
with Previmer wind fields were 0.69 m and 2.66 s for H and T, respectively, while
Pbiashyh,
propagation contained larger Pbiashyh than others, due to the proportion of the wave

in both cases, was greater than 60%. The regions most sheltered from swell

field generated by the local winds. For example, at Southampton, Bramble and
Lymington, the reduction in the H_event peak was up to 91% of the incident height.
Similar results were found when the wind field was removed from the prediction of the
event on 10" March 2008, with reductions to peak wave heights greater than 90% at
Southampton and Bramble, while the changes were reduced to 43% and 57.9% at the

Poole Bay and Hayling Island sites, respectively.

Table 3.5. Change in model predictions due to the exclusion of wind stress, October to
December 2009.

Location Surge H T,
RMSE PBIAS Peak Error RMSE PBIAS Peak Error RMSE PBIAS
(m) (%) (m) (m) (%) (m) (s) (%)
Bramble Bank 0.03 7.3 0.02(2.7) 0.44 96.14 0.94(90.3) 1.36 -37.4
Channel vessel - - - 0.77 21.5 1.52(21.4) 2.9 -44.7

Chichester Bar 0.03 5.1 0.03(4.9)

Emu Hay Buoy 0.02 2.5 0.04(5.1) 0.71 55.07 1.39(56.7) 2.5 -57.6
Emu Nab Buoy 0.02 4.2 0.02(2.3) 1.10 53.7 2.2(53.4) 2.65 -53.6
Emu Ports Buoy  0.03 10.6 0.02(2.9) 0.5 76.2  0.84(63.6) 2.43 -83

Hayling Island - - - 095 56.1 1.8(54.3) 29  -64.9
Lymington 003 814 0.03(46) 033 748 0.78(78.8) 4.16 -160.8
Milford - - - 088 462 1.7(51.5) 2.05 -43.4
Poole Bay - - - 1.15 47.11 251(52.7) 2.88 -54.16

Portsmouth 0.03 5.5 0.02(3.5) - - - -
Sandown Pier 0.03 4.5 0.03(3.9) 0.58 59.4  1.08(52.5) 2.66 -64.4
Southampton 0.04 10.7 0.03(3.9) o0.17 98.9 0.51(91.1) - -
Average 0.03 6.5 0.03(3.8) 0.69 62.28 1.39(60.6) 2.66 -68

3.5.1.2.2. Sensitivity to dataset selection
Table 3.6 indicates that the difference between the Met Office and Previmer forced
prediction of the surge contained a RMSE, | of 0.02 m on average, while the average

change to peak surge elevations was 0.04 m. The Pbias,, indicated that the surge was
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larger, on average, when using the Met Office data. However, Pbias  between the two
simulations was less than 3.5% at each location. The largest changes were shown to
occur at Southampton, although, local variability was small generally, (for example, all
locations contained a RMSE, | within 0.01 m of the domain average).

Fig. 3.4 plots the change in wind conditions in the Previmer and Met Office
simulations, and the corresponding change in the predicted surge, during the event on
the 14" November 2009. During this event, the Previmer dataset did not reproduce a
peak in the wind stresses that was present in both the Met Office and measured
records, resulting in an under-estimation of the wind stress. The peak in the Met
Office V component of the wind stress (of 0.7 Nm™) corresponded with an increase in

peak surge elevation not contained in the Previmer-based prediction.

Table 3.6. Change in model predictions due to the differences in the wind stress
datasets provided by Previmer and the Met Office, October to December 2009.

Location Surge Hs T,
RMSE  PBIAS Peak Error RMSE PBIAS Peak Error RMSE PBIAS
(m) (%) (m) (m) (%) (m) (m) (%)

Bramble Bank 0.02 -3.4 0.04(6.1) 0.10 -4.30 0.05(4.8) 0.25 -5.60

Channel vessel - - - 0.23 1.40 0.44(6.2) 0.20 0.44

Chichester Bar 0.02 -3.1 0.03(4.4) - - - - -

Emu Hay Buoy 0.02 -3.8 0.03(4.3) 0.15 -0.90 0.05 (2) 0.58 -5.27

Emu Nab Buoy 0.02 -4.1 0.02(2.5) 0.24 1.25 0.32 0.59 -4.80
(7.76)

Emu Ports Buoy  0.02  -3.3 0.03(4.8) 0.14 -840  0.13(9.8) 0.42 -6.37

Hayling Island - - - 0.21 -0.16 0.18 0.57 -5.10
(5.43)

Lymington 002 -44 0.05(7.7)  0.08 320  0.05 0.32 -0.60
(5.05)

Milford - - - 0.16 0.48 0.11(3.3) 0.28 -0.97

Poole Bay - - - 0.29 -1.38 0.03 0.40 -0.84
(0.63)

Portsmouth 0.02 -3.3 0.04(6.1) - - - - -

Sandown Pier 0.02 -3.1 0.04(5.8) 0.19 -8.80 0.20(9.7) 0.53 -5.40

Southampton 0.03 -2.8 0.07(9.4) 0.10 -45.60 0.14 (25) - -

Average 002 -35 0.04(5.6)  0.17 633  0.15(7.2) 0.41 -3.45

The differences in the wind stresses resulted in an increase to the accuracy of the
event peak when using the Met Office dataset, the largest of which occurred at
Southampton, where peak error was reduced by an average of 0.06 m over the two
events in November 2009. The analysis also helps explain the relatively small changes
shown between the surge predictions when comparing the Previmer wind and wind
excluded simulations, during the event on the 14" November 2009. Due to the missing
peak within the Previmer dataset, the change between the Previmer and Met Office
stresses was approximately equal to the stress found within the Previmer data at this

time. A more useful estimate of the influence of wind stress upon the model solution
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during the events is, therefore, given by contrasting the Met Office-based solution and
that using no wind stress. In this instance, over the two events, the domain average
change over the two events was 0.07 m, with the largest single change of 0.16 m (over
20%) observed at Southampton, during the event on 14" November 2009.

Based upon the three month comparison of wind conditions (Table 3.4), it was
found that the average error between the Previmer and Met Office wind stresses was
14%. This uncertainty, when applied to the event on the 10" March 2008, resulted in a
normalised change to peak surge magnitudes at the Southampton gauge of 6.3%, while
the smallest change was at the Nab Buoy (2.4%).
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Fig. 3.4. The differences in wind stresses during the event on 14" November 2009 at
Chichester Bar (top). The differences in wind stress and modelled surge during the
event on 14" November 2009 at Portsmouth (bottom). A negative value in the stress
change refers to a period in which the Met Office value was larger than that of

Previmer, and vice versa.

During the October to December 2009 period, the substitution of the Met Office
dataset did not provide an improvement in RMSE, accuracy, relative to the measured
record, of more than 0.01 m on average. Domain average absolute Pbias, was shown

to reduce by 3% using the Met Office winds, with local variance present. The larger
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wind stresses found in the Met Office forcing increased accuracies relative to the
Previmer-based predictions at Sandown (9% reduction in Pbiash‘m), while at Portsmouth
the Pbias was increased.

The relative influence of the local wind stress and local pressure variation upon
the surge was also examined. A simulation in which no winds or atmospheric pressure
variation was included was considered. The results indicated that the average RMSE, |
across the domain increased to 0.13 m, while Pbiashyh increased to 20.5%. During the
two larger events in November 2009, considerable changes were shown, with peak
heights being reduced, on average, by 0.26 m. The results indicated that the wind
stress contribution to the internal surge was smaller than that of the atmospheric
pressure.

The domain averaged RMSE_ between the Previmer and Met Office-based wave
predictions was 0.17 m and 0.41 s, for H_and T, respectively. Local variability within
the HSRMSEh‘h ranged from 0.1 m to 0.29 m, while T at each location lay between 0.2
and 0.59 s. All Pbiashyh errors were less than 10% with the exception of the H_at
Southampton, where a value of 45.6% resulted despite a RMSE, | of only 0.1 m, due to
the relatively small predicted H_compared to other regions.

Domain averaged change to the H_event peak was 0.15 m, with no change
greater than 0.44 m. The largest change, normalised to the size of the event, occurred
at Southampton, where a 0.14 m (25%) increase in the H. peak resulted from the use of
Met Office winds, rather than those from Previmer, on the 14™ November 2009. In
addition to a change in peak height, a timing shift was demonstrated, in which the Met
Office-based H_peak occurred later than that of the Previmer record. This helped to
correct a timing error, relative to the measured data, found in the Previmer-based
prediction of the event. An example of the change in the wind speed and H_at Poole
Bay is given in Fig. 3.5. During the March 10" 2008 event, winds were perturbed based
on the averaged errors between the Met Office and Previmer datasets. The uncertainty
applied to the winds resulted in an average H, peak change of 10.7%, with the largest

normalised changes occurring at the Southampton site.
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Fig. 3.5. Modelled wind speed and H_using Previmer and Met Office data products at

Poole Bay. See also Fig. 3.4 for a comparison of the wind stresses during this event.

3.5.2. Model sensitivity to boundary conditions

3.5.2.1. Uncertainty in the boundary conditions
The uncertainty in the boundary surge elevations was represented as the difference

between the Met Office and Previmer datasets. Comparisons were made along a series
of mid-channel locations at each boundary. Fig. 3.6 plots the surge elevations at a
central point on both boundaries and gives the boundary average RMSE | and Pbiasi’i.

The Previmer surge elevations were larger on average than those provided by the
Met Office, with a Pbias  of 22.65%. Both boundaries contained similar RMSE,  and
Pbiasiyi values. The largest divergence occurred during the event on the 14" November
2009, during which the Met Office predicted elevations were significantly larger and
contained a double high feature. The average difference in the peak surge elevation
during the two event peaks, along both boundaries, was 0.13 m. However, the majority
of this divergence was contained within the first event.

Boundary wave datasets (H_and T) were also contrasted. Time-series plots are
given in Fig. 3.7 for the western boundary from which the majority of the external
energy originates. Fig. 3.7 indicates that the Previmer and Met Office datasets were
similar, particularly at the western boundary from which the majority of wave energy
originated within the English Channel. H and T, Pbiasiyi were below 3% and the RMSEs
were 0.49 m and 0.77 s, respectively. During the event on 14" November the H_event
peak contained a 3 hour and 1.3 m shift between the two datasets at the Western

boundary.

79



Niall Quinn Sensitivity to local wind stress and boundary conditions

Boundary surge elevations: Western boundary RMSE -0.05 m
Pbias - 23.20 %
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Fig. 3.6. Met Office and Previmer surge elevations at two mid-channel locations on the
western boundary (top) and eastern boundary (bottom) during November 2009.

10
——Previmer

Wactarn Rnundarv Pravimar and Mot Offiroa H. X
9 = = Met Office

Hs (m)

07/10/2009 00:00 22/10/2009 15:00 07/11/2009 06:00 22/11/2009 21:00 08/12/2009 12:00 24/12/2009 03:00
16

A A —Previ
Western Boundary. Previmer and Met Office 7; N;E:'::
- = Me ice

07/10/2009 00:00 22/10/2009 15:00 07/11/2009 06:00 22/11/2009 21:00 08/12/2009 12:00 24/12/2009 03:00

Fig. 3.7. Western boundary wave conditions from the Met Office and Previmer datasets.

80



Niall Quinn Sensitivity to local wind stress and boundary conditions

3.5.2.2. Influence upon model predictions

3.5.2.2.1. Removal of the boundary conditions
The sensitivity of the model outputs to the exclusion of the boundary condition
datasets is provided in Table 3.7.

As might be expected, the influence of the external surge on the nearshore surge
predictions was high. Over the October to December 2009 period the change to the
surge prediction, in terms of RMSE, , was 0.18 m on average across the domain, while
the Pbiashyh indicated a reduction in the surge of 30.93%. During the two largest peaks
in November 2009, the exclusion of the boundary surge resulted in a decrease in peak
heights of 87.8%.

Table 3.7. The impact of the removal of boundary surge and boundary wave datasets,

on the predicted surge and wave states, respectively, October to December 2009.

Location Surge H, T,

RMSE PBIAS  Peak Error RMSE PBIAS Peak Error RMSE PBIAS

(m) (%) (m) (m) (%) (m) (m) (%)

Bramble Bank 0.19 3217 0.57(84.2) 0.03 4.73 0.06(5.8) 0.01 5.37
Channel vessel - - - 1.78 50.57 3.8(53.4) 2.68 37.32
Chichester Bar 0.19 27.96 0.60(88.9) - - - - -
Emu Hay Buoy 0.18 26.68  0.59(85.3) 0.02 14.39 0.15(6.12) 0.11 19.02
Emu Nab Buoy 0.19 28.15 0.62(94.9) 0.31 20.60 0.61(14.8) 0.06 16.60
Emu Ports Buoy 0.19 29.07 0.59(86.8) 0.03 8.40 0.11(8.3) 0.62 10.42
Hayling Island - - - 0.23 17.94 0.46(13.9) 0.97 15.60
Lymington 0.14 41.11 0.54(88.4)  0.02 430  0.02(2.02) 0.6 9.78
Milford - - - 0.38 21.30 0.48(14.5) 0.82 11.30
Poole Bay - - - 0.55 25.09 1(21) 1.02 18.06
Portsmouth 0.19 28.61 0.58(84.8) - - - - -
Sandown Pier 0.19 32.00 0.59(94.3) 0.14 14.20 0.2(9.7) 0.81 13.36
Southampton 0.17 32.64 0.57(82.5) 0.01 0.95 0.1(1.78) - -
Average 0.18 30.93 0.58(87.8) 0.32 16.59 0.63(13.8) 0.76 15.68

During the event on the 10" March 2008, the predicted surge peaks were
reduced by 58.5% on average, during the storm events considered. Spatial variability
was small, for instance, a decrease in peak surge elevations of between 56.5% and
61.2% occurred at all gauged sites during the event. At Portsmouth, the exclusion of
the boundary surge dataset resulted in a decrease in peak water levels of 0.6 m, while
the skew-surge was decreased by 47%.

Domain averaged RMSEs, between wave predictions with no boundary wave
input and those utilising Previmer boundary datasets were 0.32 m and 0.76 s for H_
and T, respectively. Pbiashyh was approximately 16% in both cases. On average, the
removal of boundary wave inputs reduced the height of the H_event peak by 0.63 m.
Model sensitivity was spatially variable. Regions largely protected from swells, such as

Southampton, Lymington and Bramble, were relatively insensitive to the removal of the
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boundary wave data. At other sites, for instance Poole Bay and EMU Nab Buoy, the

sensitivity was high, resulting in a reduction to the H_event peak , of more than 0.5 m.
During the event on 10" of March 2008, the same trends were shown, with

domain average changes in the peak H of 16.4%, while alterations in the nearshore

areas of the western Solent and Southampton Water regions did not exceed 5%.

3.5.2.2.2. Sensitivity to dataset selection
The changes to the model predictions due to the use of the Met Office derived

boundary datasets are presented in Table 3.8.

Table 3.8. The impact of the substitution of Met Office-derived boundary surge and
boundary wave datasets, on the predicted surge and wave states, respectively, October
to December 2009.

Location Surge H, T,

RMSE PBIAS Peak Error RMSE PBIAS  Peak Error  RMSE PBIAS

(m) (%) (m) (m) (%) (m) (m) (%)

Bramble Bank 0.07 12.34 0.11(16.7) 0.01 0.10 0.00 (0) 0.00 -0.11
Channel vessel - - - 0.43 2.07 1.10 (15.5) 0.65 -1.05
Chichester Bar 0.07 10.54 0.14(21.3) - - - - -
Emu Hay Buoy 0.07 9.86 0.15(21.7) 0.00 0.08 0.06 (2.44) 0.02 -1.09
Emu Nab Buoy 0.07 10.70 0.15(22.9) 0.08 1.06 0.17 (4.12) 0.01 -0.12
Emu Ports Buoy 0.07 11.08 0.13(19.2) 0.02 0.26 0.07 (5.3) 0.10 -0.40
Hayling Island - - - 0.06 0.68 0.10 (3.02) 0.17 -0.55
Lymington 0.06 15.88 0.09(14.5) 0.01 0.15 0.00 (0) 0.20 -1.70
Milford - - - 0.07 0.46 0.14 (4.24) 0.28 -13
Poole Bay - - - 0.12 1.12 0.30 (6.3) 0.34 1.1
Portsmouth 0.07 10.92 0.11(16) - - - - -
Sandown Pier 0.07 12.17 0.15(24.2) 0.05 -0.85 0.05 (2.43) 0.20 0.70
Southampton 0.07 11.99 0.16(22.6) 0.00 -0.28 0.00 (0) 0.00 -0.23
Average 0.07 11.72 0.13(19.9) 0.08 0.44 0.17 (3.94) 0.18 -0.64

Variation between surge predictions, due to the differences between the Previmer and
Met Office boundary surge input datasets, resulted in an average RMSE, | of 0.07 m and
Pbiash‘h of 11.72% within the regional model. Local variability was shown to be small,
with RMSE, and Pbias_ at all locations falling within 0.01 m and 5% of the domain
averages, respectively.

During the two surge events in November 2009 the average change to peak
surge height was 0.13 m. The largest change was shown to occur at Southampton
(0.16 m) while the smallest occurred at Lymington (0.09 m). Relative to the size of the
average incident height, all locations resulted in an average change of between 14%
and 25%. The change in the modelled surge, occurring on 14" November 2009,
utilising the two different boundary conditions, is presented in Fig. 3.8. It indicates

that the Met Office dataset provided a more accurate representation of the peak
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measured surge elevation. This was demonstrated at each location and corresponds to
the differences in boundary conditions given in Fig. 3.6.

Using the average uncertainty in the boundary surge input (as represented by the
difference between the two datasets), the March 10" 2008 event was simulated with
increased boundary elevations of 22%. The results revealed that the average change to
the peak surge elevation was 9% across the gauge sites. Spatial variability was small,
with all site values falling within 1% of this mean.

Relative to the measured observations, the inclusion of the Met Office boundary
surge resulted in a domain averaged increase in peak surge elevation accuracy of 0.05
m during the two November 2009 events. Over the October to December 2009 period
the average RMSE, accuracy was not changed by more than 0.01 m relative to the
Previmer-forced prediction accuracy. Pbiashym increased by 12% on average where Met
Office data were used. This indicated that the inclusion of the Met Office boundary
conditions resulted in an increase in the under-estimation of the surge elevations on
average. However, during the larger events, particularly that occurring on the 14"
November 2009, the Met Office boundaries provided a more accurate representation of
both the size and shape of the measured surge.

A further simulation was conducted for the October to December 2009 period,
using both Met Office boundary surge and wind datasets, and the predictions were
contrasted with the Previmer-forced simulation. The results indicated that the
predictions diverged less than when only the Met Office boundary was substituted in,
for instance, domain average Pbiashyh between the Previmer and Met Office-forced
predictions was less than 5% when both boundary and wind Met Office data were used.
Peak surge elevations were shown to diverge by 14.3% on average across the domain.
The largest change was shown to occur at the Portsmouth gauge during the event on
the 14™ November 2009 with a change of 19%.

The domain averaged RMSE, | between the wave predictions using the Previmer
and Met Office wave boundary datasets was 0.08 m and 0.18 s for H and T,
respectively, while Pbiash‘h remained below 2% in each case. The largest alteration to
the H_event peak (excluding the Channel Light Vessel) occurred at Poole Bay (0.3 m)
equating to 6.3% of the incident height. No change greater than 0.17 m was found
elsewhere in the region. Similarly, during the March 10" 2008 event, the ‘expected’
error, due to input dataset selection, resulted in an average change in peak H_of 4.2%,
while no change exceeding 0.25 m was found at any gauged site, with the exception
of the Channel Light Vessel.
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Portsmouth: Modelled and Measured surge
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Fig. 3.8. Modelled and measured surge elevations during the event occurring on 14"
November 2009 at Portsmouth

The sensitivity of the model to external and internal forcing upon the wave field
during the 14" November 2009 event was demonstrated. During the event local winds
had the greatest influence on the model prediction. This was shown most clearly in the
alteration of the wave H_between the Channel Light Vessel and the nearshore regions
(Fig. 3.9). Despite considerable deviation of the H_between the three simulations at the
Channel Light Vessel, the predictions closely converged by the time the waves
propagated to sites outside of the Solent (e.g., Poole Bay and EMU Nab Buoy). Where no
external component was included, upon reaching the EMU Nab Buoy the H_event peak
was within 0.6 m of the predictions including boundary wave inputs, despite a 3.8 m
difference between the predictions at the Channel Light Vessel, indicating that the
main component shaping the H_time-series was the local wind field rather than the
waves propagating in from the domain boundaries.

Where the Met Office-based boundary wave datasets were used in conjunction
with the Met Office winds, the results indicated a high degree of similarity with those
obtained using the Previmer datasets, in terms of errors relative to in-situ
measurements. The domain averaged prediction H and T, RMSEs, , when forcing the
model with Met Office data products, were 0.34 m and 0.88 s, respectively. These
errors were similar to the RMSEs,_ of 0.32 m and 0.81 s contained within the
predictions forced with Previmer datasets. Domain averaged changes to peak H,
between the two predictions was less than 10%.

Relative to in-situ measurements both predictions over-predicted H_and under-
predicted T in the shallow, nearshore regions. The largest deviation between the
predictions was observed during the event on 14™ November 2009. Throughout the

domain the H_event peak occurred approximately three hours later in the Met Office-
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based prediction than in the Previmer-based prediction. The later timing more closely
corresponded with the timing shown within the wind field comparisons and the in-situ
measurements of H. However, the size of the event peak was under-predicted in the
Met Office-based prediction, while the larger H_within the Previmer-based prediction

more accurately recreated the measured heights.
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Fig. 3.9. Modelled H_at the Channel Light Vessel (top) and EMU Nab Buoy (bottom)
using the three wave boundary data options.

3.6. Discussion

The sensitivity of regional hydrodynamic and spectral wave models of the Solent to
uncertainty in the wind and boundary condition input datasets was examined. The

wind fields and the boundary conditions from the Previmer system were contrasted
with those derived from the current Met Office operational system in the UK for the
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period from October to December 2009. In addition, the accuracy of the winds was
also compared to in-situ measurements.

Previmer and Met office wind stresses were shown to be well correlated on
average over the three months, with little local variation present in the differences
between them. On average, the Previmer dataset predicted smaller wind speeds than
the Met Office data. Both datasets produced similar errors when compared to in-situ
measurements, with RMSE_in the stress components lying within 0.1 Nm™ of each
other throughout the domain, indicating that neither dataset was significantly more
accurate than the other over the three month period. The size of the errors in the wind
speed predictions, relative to in-situ measurements, were larger than expected based
upon previous accuracy assessments of operational systems. Bidlot et al. (2007), for
example, found that the RMSE from the ECMWF, SHOM and Met Office global systems
was approximately 1.5 ms™ at offshore locations; roughly half the average error found
here. The larger errors in both datasets given in this research may relate to the
proximity to the coast relative to the results given by Bidlot et al. (2007), while
Bradbury et al. (2004) also suggest that the English Channel itself is problematic for
wind modelling due to a possible misrepresentation of a funnelling effect of shore
parallel winds. In addition, the relatively coarse temporal resolution of the input
datasets (three hours and one hour in the Previmer and Met Office datasets,
respectively) may have contributed to this error, particularly during peak events. For
instance, the smoothing that would be contained in datasets of such resolutions would
be expected to reduce peaks in the time-series. Contrasting the Previmer, Met Office
and measured time-series provided evidence of this, with the Met Office record more
accurately recreating the peak wind speeds.

The role of wind stress upon the surge was particularly relevant during the event
on 14" November 2009, where short-term deviations between the two wind fields
resulted in a change to peak surge heights of more than 0.9 m (14.4%) at
Southampton, while a 6.3% change was shown during the 10" March 2008 event where
the ‘expected error due to dataset selection’ (i.e. 14% in terms of wind stress) was
applied. These results indicated that on average the sensitivity of the surge to wind
dataset selection was relatively low (e.g. an average Pbiashyh of less than 5% was realised
between October and December 2009) across the gauged sites, but periodic shifts in
storm timing and intensity created larger discrepancies in peak surge magnitudes of
up to 6% at Southampton.

Previous research has reported a significant influence of the wind field on the
predicted surge. For instance, Davis et al. (2010) suggested that the wind field is one
of the most important factors in an accurate prediction of surge, while Wells et al.
(2001) stated that the local wind stress resulted in a significant contribution to the
model solution during an extreme surge in the English Channel. Furthermore, Wortley
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et al. (2007) stated that a 10% change to the wind field could lead to a change in surge
magnitudes of 0.5 m. This estimate was considerably larger than the changes
presented in this research. However, it was related to extreme surges, under the
influence of very strong winds, which are generally larger than those considered in this
research, such as those that affected the English south coast in 1989, where the surge
exceeded 1.32 m at Dover.

The influence of the wind stress upon the regional model solution was shown to
be smaller than the atmospheric pressure, which when removed, increased average
Pbiashyh across the gauges from 4% to over 20%. The results demonstrated that
although the local wind stress was an influential additive source to the surge
magnitudes within the region, the accurate representation of the atmospheric pressure
is likely to be of more importance to modellers in similar environments.

RMSE | between the two boundary surge input datasets was, on average 0.06 m,
with significant divergence during the event on the 14™ November 2009. Despite the
RMSEh,h between the two surge predictions of 0.07 m, their accuracies relative to the
measured data were similar, with the Previmer predictions more accurately reproducing
the measured surge elevations, on average, by only 0.01 m. However, Pbias, was
increased by 12% when utilising Met Office datasets, due to an overall reduction in
surge size. Despite this, during the event on the 14™ November 2009, the use of the
Met Office data resulted in both an increase to the size of the surge peak and an
increase in the accuracy of its shape, resulting in a reduction in error of over 0.15 m at
Southampton. This indicated that although, on average, both forecasting systems
provided similar estimates of the external surge, divergence, if during storm surge
conditions, could result in significant changes to the model predictions, during the
periods of greatest relevance to flood risk.

The boundary surge elevations provided a considerable contribution to the
model prediction. The removal of the boundary surge input data resulted in an average
RMSE, | of 0.18 m between the two predictions (with and without boundary surge input
datasets), while during the two events in November, the peak surge heights were
reduced by 87.8% on average, and 58.5% during the March 10" 2008 event. These
findings demonstrated the importance of the accurate representation of the surge
entering the computational domain, particularly during large storm events. This is
particularly important in the Solent as the movement of the surge through a narrowing
passage such as the English Channel, combined with a long fetch, enables the
continual build-up of the surge as it propagates through to the regional model domain
boundaries. Smith and Ward (1998) highlighted that the funnel shape and extended
fetch conditions within the North Sea were key factors in the occurrence of seven
‘disastrous’ floods in the region, including the 1953 event.

Contrasting the wave model sensitivity to the wind field and boundary wave

datasets revealed that, despite the local extent of the model domain, the local wind
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was the most influential force upon the wave predictions. This was most clearly
demonstrated when the boundary wave dataset was removed. During the event on 14"
November 2009, despite the removal of the boundary wave input, the predicted H_
peak at the EMU Nab site was within 15% of that predicted with the boundary waves
included (Fig. 3.9). The boundary wave dataset was most influential in the less
sheltered regions (e.g. the EMU Nab Buoy and Poole Bay) which were more exposed to
large waves developing over relatively large fetch conditions. At the sheltered sites,
changes to the peak H was up to 1 m while the T, RMSE,  was 1.02 s during the event
on the 14" of November 2009. Domain averaged Pbias  between model predictions of
H_and T, with and without local winds was greater than 60% in both instances. The H_
event peak decreased by 60% on average, while in the most sheltered regions, such as
Southampton, this value rose to 90% during the events on November 14" 2009 and
March 10" 2008. These findings indicated that the model prediction was highly
sensitive to the local wind field which, despite the regional extent of the domain, was
able to contribute a significant amount of energy for wave growth (after Miles, 1957;
Phillips, 1957; Janssen, 2008).

Where both the boundary wave and wind field datasets supplied by the Met
Office were used, in place of those from Previmer, the resulting model predictions
contained a high degree of similarity to those given by the Previmer-forced model in
terms of error relative to in-situ measurements. Domain average predicted H_and T,
RMSEsh,m,when forcing the model with Met Office data products, were 0.34 m and 0.88
s, respectively. These errors were similar to the RMSEs, of 0.32 mand 0.81 s
contained within the predictions forced with Previmer datasets. Over the October to
December 2009 period both simulations over-predicted H_throughout the region,
while the opposite was shown for T. This may have been due to the over-prediction of
the wind speeds from both sources used within the model. For instance, domain
average Pbiasiym in the Previmer-based wind speeds was 30%, while the domain average
H Pbiashvm was 28.4%. Furthermore, Met Office-based winds speeds were larger than
those from Previmer (containing a Pbias  of 5%) while the domain average Pbias
between the two wave predictions of H was 6.9%.

The largest divergence in the wind and boundary wave datasets occurred during
the event on 14" of November 2009. During this event the Met Office-derived peak
wind speed and boundary H_occurred three hours later than in the Previmer data. This
resulted in the predicted H_peak occurring later in the regional model, increasing the
accuracy, relative to in-situ measurements, compared to the predictions derived from
the model when forced with Previmer datasets. Although the accuracy of the timing of
the peak H was increased, the magnitude was under-predicted when compared with
in-situ measurements in the exposed regions (e.g. Hayling Island) to a greater degree

than for the Previmer-forced model prediction due to smaller H_in the Met Office
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boundary wave dataset. Bradbury et al. (2004) also found that the Met Office model
under-predicted H when modelling conditions above 2.5 m at Hayling Island.

The relatively large divergence between the input datasets during the largest
storm event on the 14" November 2009 is of particular interest as the greatest risk of
flooding occurs during storm events, and therefore, where the highest prediction
accuracies are required. Further research should build upon the findings presented in
this research, by extending the length of time over which comparisons are made, in
order to more robustly assess the degree to which the datasets diverge during large
storm events.

The findings presented in this research quantified the sensitivity of the regional
model to input datasets provided by the Previmer system. The findings will be of
interest to those working in the Solent specifically, but are also capable of providing
general indications related to prediction uncertainty in nested regional models.
Furthermore, the assessment of the Previmer datasets, relative to another operational
system, and the quantification of the uncertainty in model predictions due to dataset
selection will provide valuable information to coastal managers interested in the

Previmer system.

3.7. Conclusion

This research utilised regional hydrodynamic and spectral wave models of the Solent
region to investigate the uncertainty within the wind, boundary surge, and boundary
wave forcing datasets provided by the Previmer system, and examined the influence
such uncertainties have upon the model predictions. The results indicated that:

e The Previmer input datasets examined were broadly consistent with those
provided by the Met Office, resulting in similar RMS errors when contrasting
modelled surge and wave outputs, forced by the respective datasets, with in-
situ measurements. However, during the largest event, divergence was greatest
and the Met Office predictions more accurately resembled the measured event
magnitude, likely due to the coarser temporal resolution (and resultant
smoothing) of the Previmer datasets.

e The boundary surge characteristics were found to be the dominant influence
upon the modelled surge conditions throughout the region, accouting for more
than 80% of the modelled surge elevation during storm events.

e Modelled wave conditions were most sensitive to alteration to the local wind
fields (increasing peak H_ by more than 60% on average throughout the
domain). However, a high degree of spatial variability was demonstrated in the
additional influence of boundary wave conditions, with the eastern Solent
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region, less sheltered by the Isle of Wight from swells, found to be most

sensitive to the boundary wave input datasets.
The complexity of the Solent region provided a useful case study with which to assess
the spatial variability in model prediction sensitivity to input data uncertainty. The
research highlighted the importance of accurate boundary forcing and local winds
upon model predictions of waves and surge that will be of interest to coastal managers
interested in sources of prediction uncertainty in nested coastal models, applicable to
a variety of environments, while the comparison of the Previmer and Met Office data
products will be of interest to those wishing to use similar products to force other
coastal models. Furthermore, the research provided a greater understanding of the

processes occurring in the region, upon which subsequent research could be based.
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Chapter 4: Modelling Tide and Surge
Elevations in the Solent and Surrounding
Waters: Importance of Tide-Surge

Interactions

Quinn,N., Atkinson, P., Wells, N., 2012. Modelling of tide and surge elevation in the
Solent and surrounding waters: The importance of tide-surge interactions. Estuarine,
Coastal and Shelf Science, http://dx.doi.org/10.1016/j.ecss.2012.07.011

Abstract

A regional 2D hydrodynamic model using the MIKE-21 software and data from a pre-
operational forecasting system of the English Channel is described and applied to the
Solent-Southampton Water estuarine system. The regional model was able to predict
surge heights with a RMSE accuracy of 0.09 m during a three month hindcast in the
winter of 2009, comparing closely with accuracy assessments from other independent
systems. However, consistent under-prediction of tidal harmonic constituent
amplitudes was present throughout the region leading to errors in the prediction of the
total water level elevations. Despite the complex nature of the Solent tidal regime,
interpolation of tidal elevations from harmonic analysis at fixed tide gauge locations
was shown to be effective in reducing this uncertainty at gauged and un-gauged sites.
The degree to which tide-surge interactions were taking place was examined. Of
particular interest was the quantification of the sensitivity of the predicted surge to the
levels of uncertainty expected in the prediction of the tide within a complex nearshore
region such as the Solent. The tide-surge interaction during three surge events was
shown to be greatest in the Western Solent and Southampton Waters regions, where
the tidal uncertainty was greatest. Interaction between the tide and surge resulted in a
change of up to 0.3 m (11%) in the predicted total peak water level when the surge was
added to the harmonic analysis-based tidal prediction. Despite the significant effect of
removing the tide-surge interactions, tests indicated that the error in tidal range
expected in the regional models tidal prediction altered the prediction of the surge
only enough to induce changes in peak total water elevations by up to 0.03 m during
an event on 10" March 2008. The findings suggest that the current tidal predictions in
complex estuarine systems, such as the Solent, are of high enough quality to
reproduce the majority of the tide-surge interactions taking place and that the error in
the surge due to uncertainties in the predicted tide are expected to be relatively small.
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4.1. Introduction

In the UK, it is estimated that 5 million people and 1.85 million homes are at risk from
coastal flooding (Penning-Rowsell et al., 2006). Although rare, significant loss of life
has occurred, most notably in 1953 in which 307 and 1836 people died in the UK and
Netherlands, respectively (Gerritsen, 2005; Wolf and Flather, 2005). Such events
usually occur when the local sea surface is elevated above the predicted tidal levels
due to large atmospheric induced surges (Bowden, 1983; Boon, 2004).

To protect against the threat of coastal flooding numerical models of the shelf
seas have been utilised in many regions around the world to provide forecasts of ocean
surface elevations. A change in surface elevation is usually referred to as the change in
height from the mean sea level at a given location and is composed of two influences,
the astronomical tidal elevation and the non-tidal residual (often termed ‘storm
surge’). Tides are the change in sea levels resulting from the combined impact of
gravitational forces from astronomical bodies and the rotation of the Earth. An
estimation of tidal elevations can be achieved through the summation of a series of

harmonic terms, using Eq. 4.1 (Boon, 2004).

{=2Zy+ Y a,cos(w,t — P, — PL) 4.1)
where Tis the tidal elevation, Z is the reference water level, often given as the
difference between mean sea level and chart datum, w is the angular frequency, ¢ is
the constituent phase relative to lunar transit of the equilibrium tide, and ¢" is the
phase lag of the real tide to the equilibrium tide, often taken as the phase lag on the

equilibrium tide phase at the Greenwich Meridian.

The additional non-tidal residual, or surge, can be defined as a meteorological
long wave motion, which produces an elevation of the water surface above (or below)
the level caused by astronomical forcing alone. It is the result of the influence of wind
stress, atmospheric pressure, and waves on the shallow coastal shelf regions (Smith
and Ward, 1998; Caiizares et al., 2001; Kim et al., 2010).

Systems for storm surge prediction usually involve a suite of models, often
coupling atmospheric models that provide forecasts of wind forcing and air pressures
to hydrodynamic models for a region of interest (e.g., Allard et al., 2008; Wolf, 2009).
Flather (2000) provides a summary of a variety of operational systems that have been
utilised throughout Europe. Such models are based on the solution of the two or three-
dimensional incompressible Reynolds averaged Navier-Stokes equations, subject to the
assumptions of Boussinesq and of hydrostatic pressure.

Operational storm surge forecasts have been used in the UK since 1953 (Wolf,
2009). Present accuracy assessments are available from
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http://www.pol.ac.uk/ntslf/model.html. Forecasting systems are continually being
improved to provide more accurate warnings and greater information content to
coastal managers and decision makers. For example, recent research has investigated
the progression from deterministic to probabilistic modelling (Flowerdew et al., 2007;
Bocquet et al., 2009; Davis et al., 2010) and the use of data assimilation techniques
(Prandle, 2000; Mclaughlin, 2002).

The degree to which uncertainty in the predicted tidal elevations may influence
the prediction of surge through tide-surge interactions is of interest, and recent
research in the English Channel has demonstrated the existence of an interaction
between the two signals. Prandle and Wolf (1978), and Wells et al. (2001) have both
reported tide-surge interactions resulting in a decrease of the peak surge elevations
and that the effect can be localised, increasing in direct proportion to surge height and
tidal range (Horsburgh and Wilson, 2007). Brown et al. (2010) found that the
interaction could increase or decrease the surge significantly, altering peak levels by
more than a metre. The timing of the surge has also been shown to be influenced by
the tide. Horsburgh and Wilson (2007) demonstrated that due to the interaction of the
two signals, the peak of large surge events would typically avoid the high tide period
by 3 to 5 hours, with a secondary clustering within 1 to 2 hours. Phase shifts occur in
both the tide and the surge signals due to tide-surge interactions. This is because
both signals are shallow water waves whose phase speed is given as a function of the
water depth. Therefore, negative surges have been shown to slow tidal progression
while a positive surge can advance it (Rossiter, 1961; Wolf, 1981; Horsburgh and
Wilson, 2007). The processes leading to the alteration of water levels due to tide-surge
interactions can be classified into three nonlinear effects: nonlinear advective effects,
nonlinear bottom stress effects, and nonlinear shallow water effects (Bernier and
Thompson, 2007; Zhang et al., 2010).

Predicting tidal elevations from operational forecasts is considered to become
increasingly uncertain in complex nearshore regions. For this reason, harmonic
predictions of the tides are substituted in the place of outputs from physically-based
numerical models in many operational systems due to their greater accuracy
(Flowerdew et al., 2007; Bocquet et al., 2009; Hawkes et al., 2009). In regions where
the tidal elevations are the main component of the combined water level elevations it is
often best practice to use this substitution. However, particularly in complex nearshore
regions, a high degree of uncertainty in the predicted tides may induce uncertainty in
the surge if tide-surge interactions are significant. This error will still then be
propagated through to the combined water level elevation predictions when the surge
is added to the harmonic-based estimate of the tides. Horsburgh and Wilson (2007)
commented on this issue, suggesting that due to the difficulty in separating the tide
and surge signals, forecasting systems would benefit from increasing the accuracy of
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the predicted water level elevations, avoiding the need to separate the two signals. For
this reason, even where substitution is used, quantification of the uncertainty in the
modelled tide-surge interaction due to error in the prediction of the tide can be useful
in evaluating the confidence in the model forecast, particularly in complex tidal
regions.

Previmer is a pre-operational hydrodynamic modelling system currently under
development which aims to provide users with short-term forecasts of ocean state
over a variety of model domains, including global and North East Atlantic models, with
smaller nearshore nests at selected regions along the French coast
(http://www.previmer.org/en.). The North East Atlantic model generates forecasted
water level elevations throughout the English Channel, providing a potential source for
boundary driving conditions for a regional model of the Solent and Hampshire
coastline, on the south coast of the UK, an area thought likely to be affected by
increased flood risk in the future (Evans, 2004).

This region is important to numerous stakeholders, including a variety of
protected habitats, a dense coastal population and two of the largest shipping ports in
the UK. The coastal population has increased steadily reaching 835,731 in 2001 with
nearly 4000 ha of land, supporting 17,000 dwellings and a population of 37,600
considered at risk from coastal flooding (Hampshire County Council, 2006). The
southern coast of the UK is expected to experience some of the largest increases in
flood risk during the 21* century in the country (Evans, 2004). This is likely to be due
to a variety of reasons including an increase in the number of assets at risk in coastal
zones (Zang and Tooley, 2003), changes of wave conditions (increasing frequency and
intensity of large wave events) in the North Atlantic and North Sea shelf in recent
decades (Bacon and Carter, 1991; Zang and Tooley, 2003; Inter Agency Committee on
Marine Science and Technology, 2004;) and subsidence of the southern English coast
by approximately 0.3 mm a* over the last 1ka in the Hampshire region (Shennan et al.,
2012). In addition to the alteration of the land height itself, evidence suggests that sea
levels will rise in the future as a result of thermal expansion and the melting of land-
based ice, caused by warming over the last century (Houghton, 2005; Hall et al., 2006;
Haigh et al., 2009). Even relatively small changes in mean sea level due to changes in
the land and sea heights are predicted to increase significantly the likelihood of
extreme sea level events. Haigh et al. (2011) for instance, estimated potential future
extreme high sea levels throughout the English Channel during the 21* century based
on expected sea level increases of 12, 40 and 81 cm. They reported that the
exceedence frequency of extreme high sea levels in the region would on average
increase by a factor of 10, 100 and 1800, respectively, due only to mean sea level
changes. As a result of the above, funding into flood defence within the UK has
increased from £303 million to £550 million between 2002 and 2006 and is likely to

increase in the future to cope with heightened risk (Environment Agency, 2007).
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There is a strong desire for a regional real-time flood forecasting system for the
Solent and Hampshire coastline. Thus, this research contained two primary aims. The
first was to assess the accuracy of a regional hydrodynamic modelling system for
predicting water level elevation within the Solent region utilising boundary datasets
from the Previmer forecasting system. The second aim was to assess the influence of
the local tide-surge interaction upon the predicted surge and, therefore, the water
level elevations propagating between the domain boundaries and the nearshore region.
Furthermore, the degree to which uncertainties in current tidal predictions might
induce uncertainties in the final predicted water level elevations was investigated.

The study site and datasets are described in Section 2, followed by a description of the
model set up and analysis structure in Sections 3 and 4, respectively. Section 5
presents the results which are discussed in Section 6. The main conclusions are drawn

in Section 7.

4.2. Study Site and Data

4.2.1. The Solent

The Solent lies between the south coast of England and the Isle of Wight, in the UK
(Fig. 4.1). It includes 12 separately defined estuaries and harbours and contains a wide
range of coastal habitats (Fletcher et al., 2007). The region has various stakeholders,
including protected habitats, a dense coastal population and two of the largest
shipping ports in the UK. The region lies in the English Channel, in which the M, tide is
the dominant tidal component and tidal ranges typical are in the order of 6 to 10 m.
The M, is also the dominant forcing within the Solent. However, the irregular
geometrical shape, narrow channel configuration and shallow depth of the estuary
results in an amplification of the shallow water tidal constituents M, and M_(Levasseur,
2008). For example, at the Southampton tide gauge the M,, M, and M_tidal constituent
amplitudes are approximately 1.34, 0.24 and 0.17 m, respectively. At Newhaven,
further east, in a more exposed coastal location within the English Channel, the
constituent amplitudes are approximately 2.19, 0.08 and 0.02 m, respectively.
Previous studies have also noted that within the central English Channel the M and M,
over-tides become increasingly important (Pugh, 1987; Wells et al., 2001). Within the
Solent these amplifications create a tidal elevation with a double high water and young
flood stand, most prominent in the Southampton Water region (Rantzen, 1969;
Levasseur, 2008). Previous attempts at modelling the hydrodynamics within the region
have shown increasing uncertainty in the western Solent and Southampton Water
regions (Levasseur, 2008).
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Fig. 4.1. The location of the Solent and jn-situ measurements

Storm surges in this region most frequently occur due to low pressure systems
from the Atlantic propagating eastwards or as a result of storm surges propagating

south from the North Sea (Law, 1975; Haigh et al., 2004). Large storm surge events

have influenced the south coast in the past, the most notable occurring in 1953, which

resulted in significant loss of life (Gerritsen, 2005; Wolf and Flather, 2005). During th
event the surge propagated south from the North Sea increasing in intensity as it

moved south into shallow waters. Other notable events to have caused flooding with
the region include those occurring on 14" to 18" December 1989 (Wells et al., 2001;

is

in

Ruocco et al., 2011) and 10™ March 2008 (Haigh et al., 2010). A review of flood events

within the Solent since 1935 can be found in Ruocco et al. (2011). Generally, coastal
flooding within the Solent is considered frequent, but usually involving small water

depths, and with no recorded loss of human life (Wadey et al., 2012).
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4.2.2. Data

Tidal elevations, surge elevations and wind conditions derived from the Previmer group
(http://www.previmer.org/en) were used in this research. These datasets were outputs
from a pre-operational system currently under development which aims to provide
users with short-term forecasts of the state of the ocean along French coastlines
bordering the English Channel, the Atlantic Ocean, and the Mediterranean Sea. Tide
and surge components of the water surface elevation (velocities were not specified)
were provided at 5.5 km spatial resolution, and 1 hour temporal resolution throughout
the English Channel. These data were model outputs created using the Model for
Application at Regional Scale (MARS 2D) system (Lazure and Dumas 2008). The
Previmer models utilise modelled wind fields at 3 hour temporal and 4 km spatial
resolution provided by the European Centre for Medium Range Weather Forecasts
(ECMWF, www.ecmwf.int/about). These wind field datasets were supplied via the
Previmer group for this research. Atmospheric pressures fields were interpolated from
measurements provided by the Channel Coastal Observatory

(http:/ /www.channelcoast.org/) which is the data management and regional
coordination centre for the Regional Coastal Monitoring Programmes (see Isle of Wight
Council (2005) for a useful overview). Measurements at seven sites located along the
south coast of England, between longitudes of -3.48° and -0.48° were used;
Teignmouth, West bay Harbour, Portland Harbour, Swanage, Lymington, Sandown and
Arun Platform. Data were available at 10 minute intervals at each site and interpolation
was used to provide estimates over the computational domain.

In-situ measurements of water surface elevations (supplied as separated tide and
surge components where the surge was defined as the residual between the harmonic
prediction of the tide and the measured water levels) throughout the Solent were used
to assess the accuracy of the model predictions (Fig. 4.1). Data were available at a
variety of tide gauge and buoy sites provided online by the CCO, the National Tidal and
Sea Level Facility (NTSLF, at http://pol.ac.uk/ntslf/) and three temporary buoys
provided for this research by EMU (http://www.emulimited.com/). The temporal
resolution of the datasets was greater than 15 minutes at all sites.

Data for the periods from 7" October to 30" December 2009 and 5" March to
12" March 2008 were used. The autumn 2009 period coincided with the deployment of
three buoys measuring the water level, while the 10" March 2008 event was also
considered as it was the most extreme event in recent years and led to coastal

inundation. All data were quality checked prior to use.
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4.3. Model Set-up

The MIKE-21 software package was used to model the domain of interest. MIKE-21 is a
widely used 2D modelling package designed by the Danish Hydraulic Institute (DHI)
group. Among its many users is the FEMA National Flood Insurance Programme using
both the hydrodynamic and wave modules (FEMA, 2001).

The hydrodynamic (HD) module solves a full set of vertically integrated equations of
continuity and conservation of momentum in two horizontal directions using an
explicit scheme in either a Cartesian or Spherical coordinate system (Cafizares et al.,
2001). The system is based on the numerical solution of the two-dimensional
incompressible Reynolds averaged Navier-Stokes equations subject to the Boussinesq
and hydrostatic assumptions.

The MIKE-21 software has been used to model coastal hydrodynamics for
numerous conditions, for example, see Cafizares et al. (2001), Madsen and Jakobsen
(2004), and Dix et al. (2007). Further information regarding the MIKE-21 modules can
be found on the download section of the DHI website at
http://www.mikebydhi.com/Download/DocumentsAndTools/ShortDescriptions.aspx.
An unstructured mesh was used to avoid the problem of ‘staircase’ coasts (Jones and
Davies, 2007a, 2007b). Bathymetry data of 100 m resolution, provided by the National
Oceanography Centre, Southampton (http://www.noc.soton.ac.uk) was interpolated to
the domain mesh (Fig. 4.2.). Boundary tide and surge time-series provided by
Previmer, were given at the two domain boundaries, located along the -3.5° and -0.1°

lines of longitude.
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Fig. 4.2. The model domain and Solent bathymetry.
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Sensitivity of the model to the domain mesh resolution was examined over a
series of predictions, forced with only the boundary tidal elevation datasets, utilising
model mesh designs with increasing spatial resolutions in the nearshore regions. The
tidal elevation time-series predicted from October to December 2009 obtained using
the different mesh designs were contrasted. Convergence was reached when increases
in resolution no longer resulted in a significant root mean squared error (RMSE)
between the tidal predictions at the locations given in Fig. 4.1. Final mesh resolution
was approximately 2 km, 200 m and 100 m in the English Channel, Solent and
harbours, respectively. The Mannings coefficient, defining the resistance of the bed of
a channel to the flow of water in it, was shown to be highly influential upon the tidal
solution. Calibration of this parameter based on the RMSE of the tidal solution relative
to the tidal elevations extracted from the in-situ measurements of water levels was
used to estimate the optimal value. An inverse Mannings coefficient of 42m'*s™* and a

Smagorinsky coefficient (related to the eddy viscosity) of 0.28m?s™ was used.

4.4. Analysis

Two sets of tests were used to meet the aims given in the introduction. The first
assessed the regional models ability to recreate water levels in the Solent region. A
three month hindcast of tide, surge and combined water levels was conducted between
October and December 2009. The accuracy of the tidal predictions at three tide gauges
located in the East Solent (Portsmouth), West Solent (Lymington) and Southampton
Waters (Southampton) regions was assessed using harmonic analysis. The predicted
amplitudes and phases for eleven of the most significant constituents (after Levasseur,
2008) and the errors relative to those obtained from measured water level elevations
were examined. The T-TIDE tidal package (Pawlowicz et al., 2002) was used to extract
the constituents from the predicted tide and the tidal elevations derived from the
measured time-series. Modelled surge elevations (defined as the total water level
elevations minus the astronomical tidal elevations) and combined water levels were
contrasted with those from jn-situ measurements at the sites given in Fig. 4.1. The
RMSE was used as a measure of overall accuracy while the percentage bias (Pbias)
indicated the bias relative to the average size of the factor considered (Brown et al.,
2010).

The second set of experiments was used to assess the degree to which tide-
surge interaction influenced the surge throughout the region. The regional model was
used to hindcast three events occurring on 14" November 2009, 29" November 2009
and 10™ March 2008. For each event the model was used to predict the surge with and
without the inclusion of the tide. The difference between the predictions indicated the

influence of the tide-surge interactions upon the predicted surge. The sensitivity of the
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surge predictions to uncertainty within the modelled tide was also examined. Using the
event on 10" March 2008, the tidal range was reduced at 10% intervals for a set of
simulations. The changes to the predicted surge elevations as a result of the
alterations to the tidal elevation were assessed. Particular focus was placed on the 10"
March 2008 event as it was the most extreme in recent years and led to significant
coastal inundation.

The simulations used in the two experiments reported in this paper included the
following datasets:
A) Tidal boundaries only
B) Tidal boundaries + Surge boundaries + Atmospheric forcing
C) No tidal boundaries + Surge boundaries + Atmospheric forcing
D) Tidal boundaries (of decreasing range from 100% to 0% at 10% intervals) + Surge
boundaries + Atmospheric forcing
Simulations A and B were run for the 10" March 2008 event and for the October to
December 2009 period. Simulations in group C were conducted for the three events
occurring on 14" November 2009, 29" November 2009 and 10" March 2008, while

simulations in group D were conducted for the event on 10" March 2008 only.

4.5. Results

4.5.1. The regional model hindcast

4.5.1.1. The tide

The harmonic constituent phases and amplitudes extracted from the modelled tides,
and their errors relative to those from the measurement-based time-series are
presented in Table 4.1. Relative to the size of the harmonic amplitudes extracted from
the measured water levels, the predicted semi-diurnal components N, M,, S, and most
shallow water components contained errors less than 15% at Portsmouth and
Lymington, and 18% at Southampton. Exceptions were found in the M_and 2MS,
constituents with errors being between 30 and 40% at all tide gauges. Larger
discrepancies, ranging from 45 to 55% in amplitude between the model and
measurements were obtained for constituent K . Constituent phase errors were
consistently less than 20° at all three tide gauges in the semi-diurnal, quarter-diurnal
and sixth-diurnal constituents, resulting in relatively little phase error in the tidal
elevations relative to those derived from measurements. However, the error for the K
constituent was up to 25°, while the O, constituent contained errors as large as 55°.
Constituent amplitudes were underestimated in most instances by the model. This
resulted in Mean Spring Range (given as 2(M, + S)) errors of 0.34, 0.15, and 0.48 m at
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Portsmouth, Lymington and Southampton tide gauges, respectively. Mean Neap Range
(given as 2(M, - 52)) errors were 0.21, 0.16 and 0.44 m.
Tidal elevations, on average, were underestimated by 19%. At Lymington the error was

notably higher, with errors up to 29%.

Table 4.1. Harmonic constituents extracted from predicted tidal elevations. Errors are

given relative to harmonics extracted from POL and CCO tidal elevations at the tide

gauges.
Portsmouth Amplitude Phase

Modelled (m) Error (m) Modelled (°) Error (°)
0} 0.06 0.02 53.53 39.75
K. 0.03 -0.04 254.12 24.93
N, 0.20 -0.04 56.5 11.46
M. 1.22 -0.14 90.81 9.38
S. 0.53 -0.04 33 14.27
MN 0.06 0 253.45 0.9
M. 0.16 -0.01 295.79 14.73
MS, 0.14 -0.02 243.15 8.62
2MN_ 0.04 0 157.46 6.9
M. 0.06 -0.04 176.46 13.19
2MS 0.09 -0.05 131.27 2.98
Lymington
0} 0.06 0.01 225.87 25.61
K. 0.04 -0.03 58.72 25.36
N, 0.14 -0.01 29.74 16.46
M. 0.72 -0.08 63.31 11.65
S, 0.33 0 342.92 17.08
MN 0.06 -0.01 230.04 3.71
M. 0.16 -0.02 262.39 9.49
MS. 0.13 -0.03 194.49 2.29
2MN_ 0.04 0 109.96 20.09
M. 0.05 -0.04 122.11 5.77
2MS 0.08 -0.04 57.59 5.83
Southampton
o} 0.05 0.02 330.71 55.51
K. 0.05 -0.05 143.36 9.4
N, 0.19 -0.04 355.77 14.23
M, 1.15 -0.2 281.18 12.95
S, 0.36 -0.02 342.71 14.89
MN 0.07 -0.02 30.81 13.1
M, 0.22 -0.03 321.87 12.37
MS. 0.16 0.02 43.67 12.41
2MN_ 0.07 -0.01 116.44 4.58
M. 0.10 -0.07 31.19 9.49
2MS 0.10 -0.07 109.1 9.87

4.5.1.2. The surge

Table 4.2 gives the RMSE and Pbias statistics between the predicted surge and those
obtained from the measured time-series. The surge elevation accuracy on average
contained a RMSE of 0.09 m. RMSE ranged from 0.08 m to 0.12 m, while the absolute
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Pbias lay between 10.1 and 23.2% at all locations. The bias was positive at all sites with
the exception of Lymington, where the predicted surge was smaller than that
estimated by the CCO. Fig. 4.3 is a time-series of surge elevations extracted from
predicted and measured water levels at Portsmouth. The figure indicates that the
pattern of the surge, including two main peaks was reproduced by the model.
However, the predicted surge was generally smoother than that in the measured time-
series, consistently underestimating the positive and negative peaks, accounting for
much of the RMSE given in Table 4.2. These findings were consistent throughout the
domain. Despite this, across all tide gauges, the predictions of the two highest peak
surge elevations lay within 15% of those from the measured record on average. Similar
accuracy was found when considering the skew-surge, for instance, at Lymington the
error in the skew-surge (the difference between the observed peak water level in a
given tidal cycle and the corresponding peak tidal elevation) was 0.9 m (17.2%) on

average during the two events.

Table 4.2. RMSE and absolute Pbias accuracy of the predicted surge during the October

- December 2009 simulation period.

EMU Hayling
EMU Nab
Portsmouth
Lymington
Portsmouth
Sandown
Southampton
Average

RMSE (m) 0.1 0.09 0.12 0.11 0.09 0.08 0.08 0.09

Pbias (%) 13.1 11.6 17.1 23.2 18.4 10.1 13.1 15.2
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Fig. 4.3. Surge elevations extracted from modelled and measured water levels at
Portsmouth, October to December 2009.
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4.5.1.3. The combined surface elevation

The combination of the tide and surge elevations predicts the total surface elevation at
a given location. Table 4.3 provides an assessment of the accuracy of the combined
water level elevations from the model at the in-situ measurement sites. The average
RMSE at the seven tide gauges was 0.25 m, with errors ranging from 0.31 m at
Southampton to 0.2 m at Sandown. The averaged absolute Pbias over all of the tide
gauges was 6% during all measured time steps, and 13.4% at the high tide points.
Pbias was negative at every measurement site when considering the high tide periods.
The largest Pbias was at Lymington (-17.7%). Under-prediction of the tidal ranges,
outlined in Section 4.5.1.1 contributed significantly to the errors, particularly during
the high tide periods. However, it has been reported that model-based tidal
predictions, particularly in complex nearshore regions, can contain a high degree of
uncertainty. Therefore, tidal predictions from harmonic analysis at tide gauge sites are
utilised and the predicted surge added in operational systems. Interpolation or
regression can then be used to estimate the tide at un-gauged sites. This approach
was tested in this study, the results of which are given in the bracketed values in Table
4.3. At the permanent tide gauge locations, harmonic analysis was used to predict the
tidal elevations. The temporary EMU buoys were used to demonstrate the suitability of
predicting tidal elevations from those based on harmonic analysis at the permanent

tide gauges.

Table 4.3. RMSE and absolute Pbias accuracy of the combined water levels. Values in

brackets represent the accuracies where tidal substitution was utilised.

EMU Hayling
EMU Nab
EMU
Portsmouth
Lymington
Portsmouth
Sandown
Southampton

Accuracy over full time-series
RMSE  0.28 0.22 0.26 0.23 0.25 .
(m) (0.14) (0.12) (0.14) (0.14) (0.12) (0.12) (0.11) (0.13)

o
()
o
w
=
o
N
o]

(9]
oS
o

Pbias 9.7 5.2 2.5 13.5 1.4
(%) (3.4) (2.1) (1.2) (7) (2.7) (1.8) (2.6) (2.9)

Accuracy at high tides
RMSE  0.23 0.22 0.27 0.26 0.30 0.22 0.3 0.26
(m) (0.16) (0.12) (0.14) (0.15) 0.12) (0.12) (0.12) (0.13)

—_

Pbias  12.5 9.8 13.1 17.7 14.6 11.4 15.3 13.4
(%) (5.3) (2.6) (3) (8) (1) (2.2) (1.2) (3.3)
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The results indicate that the substitution of the tide removed much of the tidal
uncertainty in the signal, reducing the averaged RMSE error in the water levels by half
in both the full time-series analysis and when considering only the high tide points at
all of the tide gauges. These findings were consistent at both the stationary tide gauge
sites and the EMU buoys where tides were predicted using regression from the values

at the permanent tide gauges.

4.5.2. Tide-surge interaction

4.5.2.1. Removal of the tide

Across the seven tide gauges, the averaged RMSE between the surge predictions with
and without the tidal signal was 0.07 m during the three events. The spatial variability
in the tide-surge interaction was similar across all of the events. The influence of the
tide-surge interaction was greatest at the Southampton site, resulting in an averaged
RMSE of 0.11 m and change of surge peak heights of 0.07 m. Relative to the size of the
surge events, the change of surge peak heights at Southampton ranged from 7 to 11%
during the three events. The smallest influence occurred at the EMU Nab Buoy and
Sandown sites with RMSEs of 0.05 m and changes of surge peak heights of 0.02 m at
both sites. The changes were no larger than 5% of the surge elevation at either site
during the three events.

Fig. 4.4 a, b and ¢, demonstrate the effect of the tide-surge interaction on the
maximum predicted surge height, the RMSE between the two predicted surge
elevations, and the change in the peak total water level elevations when the two surge
predictions were added to the tidal elevations on March 10" 2008, respectively.
Although the change to the predicted surge peak height was relatively small (e.g. never
larger than 0.11 m or 11% of the surge magnitude, Fig. 4.4a), the combination of the
shift in timing and magnitude led to significantly larger absolute alterations (up to 0.3
m) to the combined peak water levels predicted (Fig. 4.4c¢). In this instance, the
inclusion of the tide caused the peak of the predicted surge to arrive later, occurring
very near the high tide, particularly further into the Solent region. This created
differences in the two predicted water level elevation peaks of up to 0.3 m at the
Southampton tide gauge (Fig. 4.5). Relative to the size of the “normal” peak water
levels at Southampton, this represented a 10% change in magnitude. This change in
the peak water levels can also be considered in terms of the change to the skew-surge,
which is often of great interest to coastal managers. Relative to the “normal” skew-
surge, the exclusion of the tide-surge interaction component of the surge resulted in
changes of up to 32% in the predicted skew-surge, with the greatest change occurring

at the Southampton tide gauge. Considering all seven tide gauges, the averaged
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change of the peak water level elevation was 0.15 m during this event, while the

smallest change occurred at Sandown (0.1 m, or 4% of the peak water level).
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Fig. 4.4. The effect of the tide on the predicted surge. (A) Difference in peak surge
height between the predicted surge with and without the tide. (B) The RMSE between
the predicted surge with and without the tide. (C) Difference in peak combined water
levels when the predicted surge with and without the tide was added to the “normal”

tide and contrasted.
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Fig. 4.5. Predicted surge and water levels at Lymington during the event on 10" March
2008. (Surge A) The surge predicted with the influence of the tide. (Surge B) The surge
predicted without the influence of the tide. The difference between the two surge
peaks was 0.07 m. However, due to the difference in timing, the resulting change in
the peak water levels was 0.18 m.

During the November events the inclusion of the tide resulted in the surge
moving away from the high tide slightly, occurring very near the end of the flood tide,
while the surge predicted without the inclusion of the tide usually occurred during the
high tide period. There was not a considerable difference between the size of the
change in the peak surge height and the size of the change in the peak water levels.
This appeared to be due to the shift away from the high tide in the “with tide” surge
taking the surge peak only just off the high tide, therefore, the difference between the
tidal elevations between the two surge peaks remained small. The resulting change in
the skew-surge (and peak water levels), therefore, broadly resembled the difference in
the peak surge heights. For instance, during the 29" November 2009 event the largest
change to the total water elevation was at Southampton (0.08 m, 4.1%) while the
corresponding change to the peak surge elevations was 0.07 m (8.5%). Relative to the
“normal” skew-surge, this equated to less than a 10% change in magnitude. This
contrasts with the 10" March 2008 event where the larger “with tide” surge lay very
near the high tide, while the “without tide” surge fell earlier on the flood tide resulting
in an alteration to the skew-surge and peak water levels due to both a direct change in
surge height and a change in the position of the surge peak relative to the high tide. In

this instance, the change in the skew-surge was as large as 20%.
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4.5.2.2. Sensitivity of the model to uncertainty in the predicted tide

Across the domain, the largest RMSE between the “normal” surge prediction and that in
the presence of 30% smaller tidal ranges was 0.03 m, while the largest change to the
peak surge heights under the same conditions was less than 3%. The largest shift in
the timing of the peak surge elevation was no greater than 20 minutes. The resulting
influence upon the skew-surge or the total combined water level elevations was never
greater than 0.03 m (or 3% of the skew-surge magnitude) during the high tide on 10"
March 2008.

Fig. 4.6 plots the RMSE between the “normal” surge prediction and those given
with alterations in the tidal range (hashed line) at Southampton during the event on
10" March 2008. The surge predictions, forced with the reduced tidal ranges, were
added to the “normal” tidal elevations to give the combined water levels (solid line).
The change in the peak water levels, relative to the “normal” water level prediction, is
given by the solid line. The RMSE appears to increase linearly with a reduction in the
tidal range, whereas the influence upon the maximum combined water level elevation
does not. This was due to the effect of the tide-surge interaction has upon the timing
of the surge. When tidal ranges were decreased by 30%, the timing of the surge peak
occurred earlier, by approximately 20 minutes. The relatively short time shift meant
that the peak of the surge was still located near to the high tide point. As the tidal
range was further reduced, the surge peak moved further away from the high tide
point. With no tide included, the surge peak occurred approximately 1 %2 hours earlier

than the “normal” surge peak, and lay on the flood tide (as demonstrated in Fig. 4.5).
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Fig. 4.6. The influence of the alteration to the tidal range at Southampton during the

event on 10" March 2008. The RMSE given contrasts the predicted surge with each

tidal dataset with the “normal” surge predicted using the unaltered tides. The peak

level error is the change in peak combined water levels during the event relative to the

level given where the “normal” surge prediction was used.
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4.6. Discussion

A regional 2D hydrodynamic model using the MIKE-21 software and data from the
Previmer system has been described and applied to the Solent - Southampton Water
estuarine system. To assess the accuracy of the tide, surge, and combined water level
elevation predictions, a three month hindcast was undertaken using operational data
outputs from Previmer. Model predictions were contrasted with tide and surge
elevations extracted from in-situ water level measurements.

The model consistently underestimated the amplitude of the tide throughout the
region, with errors in the semi-diurnal constituents of up to 18% at the Southampton
tide gauge. However, the predictions of the tidal constituents were broadly consistent
with previous attempts at modelling through the region. Levasseur (2008) utilising a
3D modelling package also reported errors of up to 15% in the semi-diurnal
amplitudes, while K and some shallow water constituents (particularly 2MS_and 2MN)
contained errors greater than 40%. Furthermore, Levasseur (2008) quotes errors in the
MSR and MNR at Southampton, of 0.44 m and 0.39 m, respectively. These errors are
very similar to the 0.48 m and 0.44 m errors found in this research. The uncertainty in
the predicted tides was shown not to be due to the spatial resolution of the mesh or
the simulation time step as increasing the resolution of both did not alter the model
predictions at the in-situ measurement sites. The similarities in the tidal errors and the
convergence of the model set-up, implies that the use of the 2D rather than 3D model
was reasonable. The uncertainty in the predicted tide may, therefore, have been due to
uncertainty in the datasets used to force the model, such as the tidal predictions at the
domain boundaries. Levasseur (2008) also suggested that most of the error associated
with diurnal and semi-diurnal constituents could be attributed to tidal inputs at the
boundaries. Furthermore, issues relating to the accuracy of predicted tides from
numerical models within complex nearshore regions have been noted in previous
research and for this reason, in operational forecasting systems, predicted tides are
replaced with those defined from harmonic analysis at class A tide gauges (Flowerdew
et al., 2007; Hawkes et al., 2009).

The substitution of the modelled tide with those estimated from harmonic
analysis was tested at the permanent tide gauges (Portsmouth, Southampton,
Lymington and Sandown). At the temporary EMU buoys, tidal elevations were predicted
from the values at the permanent tide gauges using regression. The addition of the
modelled surge to the substituted tide resulted in considerable reductions in the error
of the predicted combined water level elevations, reducing the RMSE compared to the
“normal” predicted water levels by around half. The distribution of the EMU buoys,
lying in water depths ranging from 5 m to 15 m, indicated that predictions at un-

gauged sites, based on tides at the permanent tide gauges, were suitable in both very
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nearshore and more offshore areas. However, the EMU buoys were located within the
Eastern Solent, and yet tidal complexities (such as the development of double high
waters and young flood stands) were more pronounced within the West and
Southampton Water regions. For this reason the prediction of tidal elevations may not
spread as well in these regions, particularly where only class A gauges are used (i.e.
Portsmouth and Bournemouth in the West). The inclusion of the Lymington and
Southampton tide gauges may be useful in the prediction of tidal elevations within
these regions. When tidal substitution was utilised, the predictions of total water level
elevations produced a RMSE of 0.13 m on average throughout the region during the
October to December 2009 period.

The predicted surge elevation was given as the difference between the tidal
elevations and the combined tide and surge elevations. During the three month
assessment from October to December 2009, the averaged RMSE of the seven tide
gauges was 0.09 m while absolute Pbias was 15.2%. RMSE and absolute Pbias
accuracies at each site lay within 0.03 m and 8% of the averages obtained from all of
the tide gauges, respectively. Time-series plots indicated that much of the error was
related to the smooth nature of the predicted surge relative to that extracted from the
measured record. Previous research by Horsburgh and Wilson (2007) found that due to
small errors in harmonically predicted tides, the surge elevations given at tide gauges
could often contain tidal patterning. Bocquet et al. (2009) found similar discrepancies
in the surge smoothness between predicted and measured surges. They suggested
that the harmonic estimation of tidal elevations can contain a RMSE of up to 0.1 m and
suggest accuracy assessments of surge predictions are likely to be penalised due to
such uncertainty in the measured record. For this reason, alternative statistics, such as
the accuracy during specific event peaks, were also considered.

Predicted surge accuracies from the regional model were comparable with those
obtained from the operational storm surge model developed by Proudman
Oceanographic Laboratory (archives of accuracy assessments are available to download
from http://www.pol.ac.uk/ntslf/model.html). Over the period between October 2009
and December 2009, the accuracy of the operational storm surge model at Portsmouth
was an average RMSE of 0.07 m. Data from the operational model was not available at
other locations used in this research. The regional model was able to reproduce two
peak surge heights in November 2009 and the event on 10" March 2008 with an
accuracy of 0.12 m (15%) on average across the domain. Although the operational
model accuracy over the same events is not known, previous technical reports, such as
Wortley et al. (2007) have stated that average accuracy over 25 ‘alert’ events at
Portsmouth was a RMSE of 0.11 m.

Using the regional model, the influence of the local tide-surge interaction on the
predicted surge was assessed during the surge events from 10" March 2008, 14"

November 2009, and 29" November 2009. Contrasting the predicted surge elevations
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with and without tidal influence, the tide-surge interaction was shown to be greatest in
the Western Solent and Southampton Water regions. The largest uncertainty in the tidal
predictions was also found in these regions. Over the three events the largest average
RMSE between the two time-series was 0.11 m, occurring at Southampton. The
predicted surge amplitude and timing was influenced by the tide-surge interaction.
The largest alteration of the peak surge elevations and timing were found to occur at
the Lymington and Southampton tide gauges during the event on 10" March 2008.
Predicted peak surge elevations were reduced by 9.9% and 11%, respectively, at the two
tide gauges.

Previous research has reported tide-surge interactions. Wells et al. (2001)
demonstrated that during an extreme surge event, the tide-surge interaction resulted
in a reduction of the peak surge elevations predicted within the English Channel.
Prandle and Wolf (1978) also noted that the tide-surge interaction routinely led to the
reduction of the surge magnitude. In addition, they also stated that the spatial
distribution of the magnitude of the interaction could be highly localised. The results
presented in this research concur with previous research indicating that the tide-surge
interaction can alter the surge magnitude and timing (Horsburgh and Wilson, 2007;
Wolf, 2008; Wolf, 2009), and that the magnitude of the influence can vary spatially.
However, during the event on 10" March 2008 in particular, the results indicate that
the tide-surge interaction increased the size of the surge peak rather than reducing it.
Similar results were found by Brown et al. (2010) who stated that the tide could
significantly enhance or reduce the surge.

The importance of the tide-surge interaction upon the combined water level
elevations varied between the events considered. The most important factor was not
just the change in the peak surge magnitude but also the alteration to the timing of
the surge relative to the timing of the high tide as demonstrated in Fig. 4.5. Where the
surge peak fell on or very near to the high tide, the tide-surge interaction was most
important as shifts of more than an hour were capable of moving the surge peak away
from high tide resulting in alteration to the skew-surge and peak water level elevations
by up to 30% and 10%, respectively, at Southampton. Therefore, it is apparent that
accurate representation of the local tide-surge interaction can be essential in the
provision of high quality flood warnings, particularly when the surge occurs on or near
to the high tide. Brown and Wolf (2009) discussed the tide-surge interaction and its
implications for coastal managers. They too acknowledged that the change to the
overall water level elevations was due to a combination of both magnitude and timing
changes, and suggested that an important factor for coastal managers was the skew-
surge.

Using the event on 10" March 2008, the uncertainty in the predicted surge as a
result of the uncertainty in the predicted tidal range was investigated. This event was

used as it: was the largest in recent years; led to coastal inundation; and was the most
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sensitive to alteration in the timing of the surge peak of the three events considered.
Reductions to the tidal range at 10% intervals were considered. Alteration of the tidal
range by 30% (the largest uncertainty found in the predicted tides) did not alter the
timing of the surge peak closest to the high tide by more than 20 minutes at any of the
measurement sites. As a result, the impact upon the combined predicted water levels
never exceeded 0.03 m (and less than 4% of the skew-surge magnitude). These results
suggest that the uncertainties expected in predicting tidal ranges within the Solent
using current hydrodynamic models should not result in significant errors in the
predictions of peak surge elevations relative to the 0.1 m uncertainty attributed to tidal
predictions from harmonic analysis in previous research.

This research utilised a regional case study to assess the levels of uncertainty in
predicted surge elevations that might arise from errors in tidal predictions. Quantifying
uncertainty is important in any modelling system. The present results indicate that
expected tidal uncertainty in the Solent is unlikely to lead to significant uncertainty in
the prediction of surge elevations. This indicates that the accuracy of current tidal
predictions from numerical models is not expected to be a significant limiting factor to
the provision of accurate surge forecasts in operational systems. Although the research
is based within the Solent, the results will be of interest to modellers in other regions.
The magnitude of the influence of the tide-surge interaction and the spatial variability
demonstrated that it could be used as a useful first indication of the type and size of
interactions one might expect to see in other regions, particularly those experiencing
similar typical surge conditions.

Further research could validate the findings within the region and provide more
widely applicable results. This research considered tide-surge interactions over only
three events, one of which resulted in significant inundation, and only the tidal range
uncertainty was examined. To extend this research, the influence of both the tidal
range and phase errors, upon events of a variety of sizes, could be considered. By
doing so one could validate the findings from the events already considered, or find
instances where the influences revealed in this research are not representative.
Furthermore, by perturbing both tidal range and phases, a more holistic assessment of
tidal uncertainty upon surge predictions could be obtained. This could be particularly
useful in predicting tide-surge interactions in other regions, such as those in which
tidal phases contain the most significant errors. Similarly, using methodologies
presented in previous research, for instance Bernier and Thompson (2007) or Zang et
al. (2010), a detailed assessment of the factors contributing to tide-surge interactions
could be made to foster the understanding of the nonlinear processes taking place in

complex estuarine systems.
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4.7. Conclusion

A regional hydrodynamic model of the Solent-Southampton Water estuarine system,
forced with data from the pre-operational Previmer system, was used to examine the
tide-surge interactions and the influence of data uncertainty to model predictions in
the region. The research conducted indicated:

e The regional model was capable of predicting surge elevations with accuracies
similar to those derived from alternative operational forecasting systems,
indicating that the model and forcing datasets were suitable for representing
the processes occurring in the region.

e Under-prediction of the tidal range throughout the region, consistent with
previous research, was significantly reduced through the replacement of the
modelled tide with those derived from harmonic analysis at permanent tide
gauges and interpolated to un-gauged sites.

e Tide-surge interactions in the region were shown to be influential upon both
the height and timing of the surge peak and resultant peak water levels,
accounting for up to 10 % of the total water elevation during an event on the
10" March 2008. However, the expected errors in the tidal predictions were
found to lead to an insignificant (0.03 m maximum) change to the modelled
peak water levels throughout the region.

These findings indicate that current hydrodynamic models commonly utilised in
coastal regions, such as the one described in this research, are unlikely to contain
errors in the predictions of tidal elevations that will induce significant uncertainty in
surge predictions even in a complex estuarine environment. Furthermore, the use of
tidal substitution should still be considered ‘best practice’ even in complex estuarine
environments such as the Solent where tidal prediction uncertainty is expected to be
greatest; a finding that will of value to coastal modellers working in a wide variety of

regions.
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Chapter 5: Modelling wave and water levels
in the Solent and surrounding waters:
importance of wave-surge interaction and

tidal uncertainty

Abstract

A regional 3" generation spectral wave model, using the MIKE-21 software and data
from a pre-operational forecasting system of the English Channel, is described and
applied to the Solent-Southampton Water estuarine system. This region was used as a
case study to highlight the accuracy of the wave model and the importance of tide-
wave interactions in a complex region which contains a wide range of water depths,
irregular tidal regimes, and high degree of spatial variability in the exposure to waves.
The regional model was able to predict H and T conditions with an average root mean
square error (RMSE) accuracy of 0.32 m and 0.81 s, respectively, during a three month
hindcast in the winter of 2009. Model accuracies in depths greater than 10 m
contrasted well with accuracy assessments from other systems, while larger errors
were demonstrated in shallower nearshore areas. The significant uncertainty in the
very shallowest regions has been attributed to uncertainty in the bathymetric and
atmospheric datasets. The sensitivity of the wave model to uncertainty in the predicted
water level elevations was assessed. The results indicated that the inclusion of accurate
water level elevations was most important in the eastern Solent region, where the
largest wave heights were found. Bathymetric depth also played an important role, with
the greatest sensitivity found in the shallow, nearshore regions of the domain. The
exclusion of the water level elevation datasets resulted in reductions to predicted H,
peaks by up to 16.3%, while alterations to the water level elevations of 30% induced
change in the model predictions by up to 6%. The influence of the wave upon the surge
was also examined. Sensitivity was greatest in nearshore regions exposed to relatively
large wave conditions, for instance, the eastern Solent. The inclusion of the waves was
shown to be a vital component in the prediction of peak surge elevations, resulting in
an increase of up to 9% relative to those where waves were excluded.

Despite the local nature of the research, the variability in conditions found in the
region provided a useful setting in which to assess the spatial variability in model
accuracy and tide-wave coupling. The findings are expected to be of interest to coastal
managers in the Solent, while also being applicable to other estuarine environments.

The relatively large errors in shallow, nearshore regions, indicates a strong
113



Niall Quinn Importance of wave-water level interactions

requirement for high resolution bathymetric datasets, potentially indicating drawbacks
in current wave model formulations when considered in the light of other research in
similar conditions. This research quantified the interaction between the HD and SW
model outputs, clearly indicating that the influences upon both signals can be
significant, particularly during extreme events, often of most interest to coastal

managers.

5.1. Introduction

Where strong winds blow over a long fetch, large waves can be created, increasing the
likelihood of coastal flooding, particularly when coupled with high spring tides and
storm surge events (Zang and Tooley, 2003; Hunt, 2005). Waves increase the local sea
surface height, supplying vast amounts of energy to the coast (Battjes, 2006). The
energy contained within a wave breaking upon the coast can destroy coastal defences,
especially where sea levels are high enough to enable waves to overtop defences,
thereby attacking the rear face and increasing the likelihood of failure (Wolf and
Flather, 2005). Furthermore, the influence of wave-induced stresses can be influential
upon storm surge water levels (Wolf, 2009). Kim et al. (2010), for example,
demonstrated that measured typhoon-induced peak sea levels could not be modelled
without the inclusion of wave-induced radiation stresses. The influence on sea level
was shown to be comparable with that due to wind stress and pressure changes.
Funakoshi et al. (2008) found that the coupling of wave and hydrodynamic models
could lead to an increase in surge heights of up to 15%, due primarily to the transfer of
momentum from the dissipation of short waves to the long wave motion of the storm
surge. Similar findings have been reported by Mastenbroek et al. (1993), Choi et al.
(2003), Xie et al. (2008), and Wolf (2009). Therefore, the accurate prediction of wave
states, and the quantification of their contribution to the predicted surge elevations,
within coastal regions, can be a vital component of coastal flood forecasting systems.
Forecasting wave conditions has become commonplace in many areas of the
world, usually as part of a multi—-component system, coupling the outputs of
atmospheric, hydrodynamic and wave models (e.g., Battjes and Gerritsen, 2002;
Vatvani et al., 2002; Allard et al., 2008; Bocquet et al., 2009). Model accuracies vary
between systems and the regions modelled. Bidlot et al. (2007) compared the
accuracies of a variety of operational forecasting systems at numerous offshore sites
and found that they routinely predicted significant wave heights (H) with a root mean
squared error (RMSE) of between 0.25 and 0.4 m, relative to in-situ measurements.
Scatter Index (SI) values (where the RMSE is normalised by the average size of the
incident) of mean wave period (T) and H_lay within 20% in the same study. National

Oceanic and Atmospheric Administration (NOAA) online assessments of their system
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(http://polar.ncep.noaa.gov/waves/valid_wna.html) demonstrated accuracies within a
SI of 25%.

Validation accuracies presented in the literature generally refer to offshore sites
as the model domains used in operational systems are often of too coarse a spatial
resolution to accurately model the complexity found in coastal regions. For example,
the Met Office provides operational shelf-scale forecasts of wave state at 12 km spatial
resolution as outputs from their UK Waters Wave Model for the entire UK coastline.
Where desired, for example, for flood forecasting warnings, projects have been
undertaken to develop site-specific transforms of the offshore predictions to the
nearshore. The TRITON system is an exemplar nearshore flood forecasting system in
the NW region, in which, offshore wave conditions provided by the UK Waters Wave
Model are transformed to the nearshore using pre-defined look up tables (Saulter,
2007; Tozer et al., 2007; Environment Agency, 2009b). The tables were generated
using a dedicated high resolution, nearshore spectral wave model; Simulation WAves
Nearshore (SWAN; Booij et al., 1999).

As operational systems routinely consist of coupled physically-based models,
relatively large errors in the water level elevations, obtained from the hydrodynamic
components (Flowerdew et al., 2007), may lead to uncertainty in nearshore wave
predictions. Waves in shallow waters are influenced by water depth and tidal
oscillations (Knauss, 1996; Brown et al., 2011), and so, significant errors in predicted
water levels could lead to uncertainty in predictions of wave states in such regions.
Quantifying such uncertainty is an important element when evaluating the confidence
of a model forecast particularly in complex nearshore regions.

Previmer is a pre-operational hydrodynamic modelling system, currently under
development, which aims to provide users with short-term forecasts of ocean state
over a variety of model domains, including global and North East Atlantic models, with
smaller nearshore nests at selected regions along the French coast
(http://www.previmer.org/en.). The North East Atlantic model generates forecasted
wave states and water level elevations throughout the English Channel, providing a
potential source for boundary driving conditions for a regional model of the Solent and
Hampshire coastline, on the south coast of the UK, an area thought likely to be
affected by increased flood risk in the future (Evans, 2004).

This region is important to numerous stakeholders, including a variety of
protected habitats, a dense coastal population and two of the largest shipping ports in
the UK. The coastal population has increased steadily reaching 835,731 in 2001 with
nearly 4000 ha of land, supporting 17,000 dwellings and a population of 37,600
considered at risk from coastal flooding (Hampshire County Council, 2006). Concerns
exist over increased risk of coastal flooding in the future due to (i) a rise in the number
of assets located in the coastal zones (Brown et al., 2010) and (ii) sea level rise from

eustatic and isostatic change (Inter Agency Committee on Marine Science and
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Technology, 2004; Houghton, 2005; Hall et al., 2006; Haigh et al., 2009; Shennan et
al., 2012). Moreover, intensification of wave conditions within the North Atlantic-North
Sea shelf has been linked to an increase in storminess and mean wind speeds over the
last 30 years (Bacon and Carter, 1991; Zang and Tooley, 2003; Inter Agency Committee
on Marine Science and Technology, 2004), although research by Wolf and Woolf (2006)
indicates that the latter is likely to be the most significant factor contributing to an
increase in wave heights. Changes in global mean sea levels have been found to
further intensify wave conditions. Chini et al. (2010) highlighted that an increase in
water levels, due to surge or an increase in mean sea level, may result in waves
breaking later and, therefore, more energy reaching the coast. They suggest that
within the South East of the UK, an increase in sea level of 7 mm year™ could result in a
4% increase in height of a 100 year event by 2090. Evans (2004) states that the
southern coast of the UK is expected to experience some of the largest increases in
flood risk during the 21 century in the country. There is, thus, a strong desire for a
regional real-time flood forecasting system for the Solent and Hampshire coastline,
while at the same time, there is a push for quantifying uncertainty in forecasting
systems (Davis et al., 2010).

This research had two aims. The first was to demonstrate the accuracy of a
regional model for predicting wave states within the Solent region, utilising boundary
datasets from the Previmer forecasting system. The second aim was to use the Solent
region as a case study with which to assess the interactions between the hydrodynamic
and spectral wave components of the regional model, quantifying both the influence of
the water level elevations on the predictions of the wave states, and the sensitivity of
the hydrodynamic model to the wave fields generated from the spectral wave model.

The study site and datasets are described in Section 5.2, followed by a
description of the model set up and analysis structure in Sections 5.3 and 5.4,
respectively. Section 5.5 presents the results which are discussed in Section 5.6. The

main conclusions are drawn in Section 5.7.

5.2. Study Site and Data

5.2.1. The Solent
The Solent lies between the south coast of England and the Isle of Wight, in the UK
(Fig. 5.1). It includes 12 separately defined estuaries and harbours and contains a wide
range of coastal habitats (Fletcher et al., 2007). The region has various stakeholders,
including protected habitats, a dense coastal population and two of the largest
shipping ports in the UK.

The region lies in the English Channel, in which the M, tide is the dominant tidal

component and tidal ranges typical are in the order of 6 to 10 m. The M, is also the
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dominant forcing within the Solent. However, the irregular geometrical shape, narrow
channel configuration and shallow depth of the estuary results in amplification of the
shallow water tidal constituents, M, and M_(Levasseur, 2008). Storm surges in this
region most frequently occur due to low pressure systems from the Atlantic
propagating eastwards, or as a result of storm surges propagating south from the
North Sea (Law, 1975; Haigh et al., 2004).
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Fig. 5.1. The location of the Solent Estuary and in-situ data sources

The English Channel is fairly sheltered from extreme waves, with a long-term
average H_of 1.5 m (Inter-Agency Committee on Marine Science and Technology,
2004) and T, of typically 6 -10 s. The largest waves that occur usually arrive from
either 240° due to storm waves and swells from the Atlantic (Dix et al., 2007) or
occasionally 40-50° (storm waves from the North Sea). The Solent and Hampshire
coastline is protected from extreme wave events by the Isle of Wight and Hurst Spit.
The Channel Coastal Observatory (http://www.channelcoast.org/), the data
management and regional coordination centre for the Regional Coastal Monitoring
Programmes (see Isle of Wight Council (2005) for a useful overview), considers the
region to have low-to-medium exposure to waves due to sheltering influences and the
fetch-limited conditions. At Lymington and Sandown Pier, for example, the average 5%

exceedence height for H_between 2003 and 2008 were 0.8 m and 0.5 m, respectively.
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However, sites in the eastern region (such as Hayling Island), are less sheltered and can
be affected by large swells propagating through the English Channel. For example,
over the same period the average 5% exceedence value for H was 1.59 m while events
greater than 3.8 m were recorded. Recent research by Palmer (2011) has examined the
propagation of waves through the English Channel, revealing that refraction of waves
due the Channel’s topography, leads to a focussing of wave energy in the eastern
Solent.

A review of flood events within the Solent since 1935 can be found in Ruocco et
al. (2011). Generally, coastal flooding within the Solent is considered frequent, but

usually with no recorded loss of human life (Wadey et al., 2012).

5.2.2. Data

Tidal elevations, surge elevations, wave conditions and winds derived from the
Previmer group (http://www.previmer.org/en) were used in this research. These
datasets were outputs from a pre-operational system, currently under development,
which aims to provide users with short-term forecasts of the state of the ocean along
French coastlines bordering the English Channel, the Atlantic Ocean and the
Mediterranean Sea. Tide and surge components of the water surface elevation
(velocities were not specified) were provided at 5.5 km spatial resolution, and 1 hour
temporal resolution, throughout the English Channel. These data were model outputs
created using the Model for Application at Regional Scale (MARS 2D) system (Lazure
and Dumas, 2008). Wave conditions (H, T, direction and spreading) were provided at
3.5 km spatial and 3 hour temporal resolution from forecasts made using the
Wavewatch Ill model (Tolman, 2009). The Previmer models utilise modelled wind fields
at 3 hour temporal and 4 km spatial resolution provided by the European Centre for
Medium Range Weather Forecasts (ECMWF, www.ecmwf.int/about). These wind field
datasets were supplied via the Previmer group for this research. Atmospheric pressure
fields were interpolated from measurements provided by the Channel Coastal
Observatory. Measurements at seven sites located along the south coast of England,
between longitudes of -3.48° and -0.48° were used; Teignmouth, West bay Harbour,
Portland Harbour, Swanage, Lymington, Sandown and Arun Platform. Data were
available at 10 minute intervals at each site and interpolation was used to provide
estimates over the computational domain.

In-situ water levels and wave conditions were given at a variety of tide gauge and
buoy sites (Fig. 5.1) provided online by the National Tidal and Sea Level Facility (at
http://pol.ac.uk/ntslf/), the Centre for Environment, Fisheries and Aquaculture Science
(www.cefas.defra.giv.co.uk) and the CCO. Further measurements were provided by
three temporary buoys provided for this research by EMU
(http://www.emulimited.com).
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Data for the periods from 7" October to 30" December 2009 and 5" March to 12"
March 2008 were used. The autumn 2009 period coincided with the deployment of
three buoys, while the 10" March 2008 event was included as it was the most extreme
event in recent years and led to coastal inundation. All data were quality checked prior

to use.

5.3. Model Set-up

The MIKE-21 software was used to model the domain of interest. MIKE-21 is a widely
used 2D modelling package designed by the Danish Hydraulic Institute (DHI) group.
Among its many users is the FEMA National Flood Insurance Programme which uses
both the hydrodynamic and wave modules (FEMA, 2001; Cainizares et al., 2001,
Madsen and Jakobsen, 2004; Dix et al., 2007). A coupled model, using both the
hydrodynamic and spectral wave modules, was used in this research.

The hydrodynamic (HD) module is central within MIKE-21. It solves a full set of
vertically integrated, equations of continuity and conservation of momentum in two
horizontal directions using an explicit scheme in either a Cartesian or Spherical
coordinate system (Cafizares et al., 2001). The system is based on the numerical
solution of the two-dimensional incompressible Reynolds averaged Navier-Stokes
equations.

The MIKE-21 Spectral Wave (SW) module (Warren and Bach, 1992) is derived from
the WAve prediction Model (WAM) formulation (Hasselmann et al., 1988) and has been
utilised in a variety of operational and research-based applications (e.g., Johnson and
Kofoed-Hansen, 2000; Sgrensen et al., 2004; Sgrensen et al., 2006). MIKE-21 SW is a
3" generation wind-wave model that simulates growth, decay and transformation of
wind-generated waves and swells in offshore and coastal areas. The evolution of the
wave spectrum in the position (x, y) and time (t) is propagated in horizontal Cartesian

co-ordinates by:

o (5.1)
Where N(x, o, 6, t) is the action density, tis the time, V= (cx, cy, co, cO) is the

propagation velocity of a wave group in the four dimensional phase space x, y, o and 6,

and Sis a source term for the energy balance equation. Vis a four dimensional

differential operator in the x, y, g, 6-space.

The model is applicable for propagation of the wave spectrum from deep to shallow

water regions by incorporating shallow water source terms into the model equations by
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S=S,+S,,+S,+5,,;+9S

surf (5.2)
Where S is the generation of energy by wind, S is wave energy transfer due to non-
linear wave-wave interactions, S, is the dissipation of wave energy due to
whitecapping, S_ is the dissipation due to bottom friction and S_ _is the dissipation of
wave energy due to depth-induced breaking.

Further information regarding MIKE-21 modules can be found on the download
section of the DHI website at
http://www.mikebydhi.com/Download/DocumentsAndTools/ShortDescriptions.aspx.

Fig. 5.2 demonstrates the model domain mesh and bathymetry. Bathymetry data
of 100 m resolution provided by the National Oceanographic Centre, Southampton
(http://www.noc.soton.ac.uk) were interpolated to the domain mesh. Boundary tide,
surge and wave time-series provided by Previmer, were given at the two domain
boundaries, located along the -3.5° and -0.1° lines of longitude. Sensitivity of the
model to the domain mesh resolution was examined over a series of tide and wave
predictions, utilising model mesh designs with increasing spatial resolution in the
nearshore regions. The predictions from October to December 2009 obtained using
the different mesh designs were compared. Convergence was reached when increases
in resolution no longer resulted in a significant RMSE between the tidal or wave
predictions at the locations given in Fig. 5.1. Final mesh resolution was approximately
2 km, 150-200 m and 50-100 m in the English Channel, Solent and harbours,

respectively.
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Fig. 5.2. Model domain mesh and bathymetry.
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5.4. Analysis

Three sets of tests were used to meet the aims given in the introduction. The first
assessed the regional models ability to recreate wave states (H_and T) in the Solent
region. A three month hindcast of the waves was conducted between October and
December 2009 using the regional model. The accuracy of the wave predictions at the
nine in-situ measurement sites (Fig. 5.1) was assessed against measured time-series.
The RMSE was used as a measure of overall accuracy while the percentage bias (Pbias)
indicated the bias relative to the average size of the factor considered (Brown et al.,
2010).

The second set of tests was used to assess the degree to which the water level
elevations, defined from the HD module, influenced the predictions from the SW
model. The regional model was used to hindcast two events, occurring on the 14"
November 2009 and the 10" March 2008. For each event, the model was used to
predict the wave state with and without the inclusion of the water level elevations from
the HD module. The differences between the predictions indicated the degree to which
the water level elevations influenced the wave predictions. The sensitivity of the wave
predictions to ‘expected’ uncertainty in the water level predictions was also examined.
The regional HD model was found to consistently under-predicted water levels by up
to 30% in some regions. The impact of such errors upon the wave predictions were
assessed by hindcasting the events with an increase of 30% to the modelled water
levels and contrasting the outputs with those in the original hindcast.

The third set of tests examined the influence of the waves upon the surge
prediction. The regional model was used to hindcast surge elevations during the two
events occurring on the 14" November 2009 and the 10" March 2008. Surge elevation
was defined as the total water level elevation minus the astronomical tidal elevation. In
each event, the HD model was run with and without the coupling with the wave model
and the differences were used to indicate the sensitivity of the surge predictions to the
state of the waves.

A summary of the simulations used in the research is given as:

i. ‘Normal’ coupled model: HD module + SW module
ii. Exclusion of water level elevations: SW module only

iii. Increasing water level elevations: HD module (with 30% larger boundary
elevations) + SW module

iv. Exclusion of the waves: HD module only
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Simulation i was run for the October to December 2009 period and for the March 10"

November 2009 and the 10" March 2008.

5.5. Results

5.5.1. The regional wave model hindcast
Model prediction accuracies, relative to in-situ measurements at the locations given in

Fig. 5.1, are presented in Table 5.1 for the October to December 2009 period.

Table 5.1. Model errors utilising Previmer datasets relative to in-situ measurements.

Previmer / Measured

H_(m) T (s)
Location RMSE (m) Pbias (%) RMSE (s) Pbias (%)
Channel Light
Vessel 0.76 24.80 - -
Hayling Island 0.25 7.50 0.72 -5.90
Poole Bay 0.27 1.50 0.61 -4.75
Sandown Pier 0.25 32.00 0.60 -0.03
EMU Hayling 0.25 22.20 0.80 -9.50
EMU Nab Tower 0.31 10.60 0.90 14.70
EMU Portsmouth 0.30 87.60 1.55 -36.00
Milford 0.36 22.90 0.69 -1.40
Lymington 0.15 49.50 0.57 -8.80
Average 0.32 28.40 0.81 -6.46

In the hindcast, the domain average RMSE was 0.32 m and 0.81 s for the H and T,
respectively, while average absolute Pbias was 10% and 28.7%. An over-prediction of H,
at the Channel Light Vessel was reduced by more than 50% by the time the waves
propagated to the Poole Bay and EMU Nab sites. Model error, relative to the size of the
event, increased further into the Solent. The largest Pbias errors occurred in the
shallow water regions, at sites where model bathymetry was less than 10 m. At the
Lymington and EMU Portsmouth sites H_Pbias was greater than 49%. H was over-
predicted, while the T was under-predicted throughout most of the region.
Normalising the RMSErevealed a distinction between the nearshore and deeper
regions (e.g. Fig. 5.3). In bathymetry depths greater than approximately 10 m, such as
EMU Nab Tower, Poole Bay and Hayling Island, the average normalised RMSE was 20%
and 21% for H. and T, respectively. However, at sites such as Sandown, EMU Hayling,
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EMU Portsmouth and Lymington, the average normalised RMSE increased to 67% and

33%, respectively.
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5.5.2. The influence of the HD model upon the wave hindcast

5.5.2.1. The removal of the surface elevation data
The influence of the water level elevation upon the prediction from the SW model is

given in Table 5.2.

Table 5.2. Differences in wave states between the normal hindcast and that without
water level elevation datasets. Average values for both events are shown. ‘()" indicate
error as a percentage of the original prediction, while ‘| |’ indicates the average

absolute Pbias.

Previmer Water Levels / Water levels excluded

H_(m) T (s)
Location RMSE Pbias (%) Change to RMSE (s) Pbias (%)
(m) Hspeak (m)
Bramble 0.08 4.95 0.12 (1.9) 0.14 <1
Channel Vessel 0.1 <1 0.1(1.4) 0.1 <1
Emu Hayling 0.14 3.15 0.42 (16.3) 0.32 <1
Emu Nab 0.1 1.15 0.24 (5.53) 0.11 <1
Emu Portsmouth  0.07 1.38 0.17 (10.63) 0.3 -1.76
Hayling Island 0.12 1.62 0.35 (9.90) 0.39 <1
Lymington 0.12 8.15 0.12 (10.45) 0.65 1.14
Milford 0.14 1.55 0.24 (7.21) 0.5 3.67
Poole Bay 0.11 <1 0.12 (2.5) 0.24 <1
Sandown 0.08 <1 0.11 (3) 0.54 5.36
Southampton 0.04 <1 0.09 (13.8) 0.01 <1
Average 0.1 1.94 |2.15] 0.19 (7.51) 0.3 <1 |1.3]

Domain average RMSE was 0.1 m and 0.3 s for H_and T, respectively, while average
Pbias was less than 3% in both when contrasting model hindcasts without water level
input against those obtained including water level elevation datasets. The largest
average change to the H_event peak (0.42 m) occurred at the EMU Hayling Buoy
equating to 16.3% of the incident height. Local variability within the alteration to the H,
event peak ranged from 16.3% to 1.4%.

The relative contribution of the water level change and the inclusion of currents
contained a high degree of local variability (Fig. 5.4). In the deepest regions (e.g., the
Channel Light Vessel or EMU Nab) most of the change to the model hindcast was
contributed by the removal of the currents. However, in the shallower, nearshore
regions, the hindcast was also sensitive to water level fluctuations. The largest changes

to H and T occurred within regions where sensitivity to water level fluctuations was
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present. Sensitivity to the water level datasets was temporally variable. Alteration to

the model hindcast was often largest when the H_was at its peak.
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Fig. 5.4. Comparison of relative influence of current and water depths upon the H,
hindcast at EMU Hayling Island and Channel Light Vessel during the November 2009
event. “Error” refers to the change induced in the model hindcast by excluding a
particular input variable (or variables) relative to that obtained when the variable was

included.

5.5.2.2. Sensitivity of the model to uncertainty in the predicted tide
The effect of increasing water level elevation amplitudes by up to 30% during the wave
hindcasts is given in Table 5.3.

The domain average RMSE for the two events was 0.02 m and 0.06 s when
comparing the two predictions of H and T, respectively. Pbias never exceeded 2% in
the predictions of either H_or T. On average, the increase in water level elevations
increased the peak wave height by 0.03 m. Spatial variability was observed in the
results. For example, at Southampton the peak wave heights were increased by only
0.01 m, whereas at the EMU Hayling Buoy differences of 0.07 m were observed. The
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domain average peak error (as a percentage of the ‘normal’ prediction) was 1.66%. The
largest normalised difference to peak H was found at the Emu Hayling Buoy during the
14™ November 2009 event, where the alteration in the surface elevation led to a 6%

change in amplitude.

Table 5.3. Influence of increasing the water level elevation dataset upon the prediction
of wave state. Errors refer to differences in the prediction from those given by the

model hindcast in experiment A.

Previmer Water Levels / 30% increase to water level elevations

H_(m) T (s)
Location RMSE(m) Pbias (%) Change to RMSE (s) Pbias (%)
H, peak (m)

Bramble 0.01 <1 0.02 (<1) 0.03 <1
Channel Vessel 0.01 <1 0.01 (<1) 0.02 <1
Emu Hayling 0.03 <1 0.07 (2.6) 0.14 <1
Emu Nab 0.01 <1 0.03 (1.03) 0.03 <1
Emu Portsmouth 0.02 <1 0.03 (1.83) 0.04 <1
Hayling Island 0.02 <1 0.05(1.61) 0.05 <1
Lymington 0.02 -1.28 0.04 (4.1) 0.13 <1
Milford 0.03 <1 0.06 (2.1) 0.05 -1.13
Poole Bay 0.02 <1 0.01 (<1) 0.04 <1
Sandown 0.02 <1 0.04 (<1) 0.13 <1
Southampton 0.01 <1 0.01(1.51) O <1
Average 0.02 <1 0.03 (1.66) 0.06 <1

5.5.3. Contribution of the wave signal to the predicted surge
Table 5.4 gives the average peak difference between the prediction of the surge with
and without the influence of the waves, during the two events.

The results indicate that the largest alterations to the predicted surge coincided
with the period of greatest wave activity (the peak in the H_conditions). The average
maximum change upon the surge prediction during the two events, across the in-situ
measurement sites was 0.03 m. Spatial variability was observed in the results, with the
largest absolute differences and normalised differences, shown in the eastern Solent
region. At the Emu Hayling Buoy the largest sensitivity was found, with an average
peak difference of 0.05 m, corresponding to 6.9% of the ‘without waves’ peak surge.
The influence of the waves upon the surge was largest during the 10" March 2008
event, during which the maximum change to the predicted surge height, of 9.2%,
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occurred at the Emu Hayling Buoy. However, during both events, the change to the
predicted skew-surge was smaller, with no change greater than 5% found at any of the

gauged sites.

Table 5.4. Influence of the wave stresses upon the predicted surge. Differences relate
to the average during the two events on the 14" November 2009 and the 10" March

2008 between the predictions of surge with and without the influence of the waves.

Surge with presence of waves / Surge where wave are excluded

RMSE (m) Change (%)
Bramble 0.02 1.72
Emu Hayling 0.05 6.9
Emu Nab 0.01 2.08
Emu Portsmouth 0.03 3.3
Hayling Island 0.02 2.26
Lymington 0.02 2.65
Milford 0.02 1.79
Poole Bay 0.01 1.89
Sandown 0.04 6.3
Southampton 0.03 2.1
Average 0.03 3.88

Fig. 5.5 gives the maximum change to the predicted surge elevations throughout
the model domain during the 14" November 2009 event. The greatest influence of the
waves occurred along the south west coast of the Isle of Wight, where differences

between the predicted surge elevations were as large as 0.11 m (17%).
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Fig. 5.5. Maximum change to predicted surge elevations during the November 2009
event between predictions made with and without the influence of the wave signal.
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5.6. Discussion

A regional coupled spectral wave-hydrodynamic model, using the MIKE-21 software
and data from the Previmer system, was described and applied to the Solent-
Southampton Water estuarine system. To assess the accuracy of the wave predictions,
a three month hindcast was undertaken using operational data outputs from Previmer.
Model predictions were contrasted with wave states from in-situ measurements.

The regional model hindcasts were able to provide predictions of H and T with
domain average RMSE of 0.32 m and 0.81 s, respectively. Pbias and normalised RMSE
statistics indicated that the model performed more accurately at sites located in deeper
waters (greater than 10 m). In the shallower, nearshore regions, particularly Lymington
and the EMU Portsmouth buoys, H_Pbias was greater than 50%. At all in-situ gauge
sites considered, the Pbias indicated that the regional model over-predicted wave
heights. As H_over-prediction was present throughout the domain, it is likely to be
due to uncertainty in the wind datasets used to force the model, which also
consistently over-predicted wind speeds when contrasted with in-situ measurements in
subsequent analysis. It has been well established that wind forcing is the most
significant energy input into surface waves (Knauss 1996).

In depths greater than 10 m, such as EMU Nab Tower, Poole Bay and Hayling
Island, the average normalised RMSE was 20% and 21% for H_and T, respectively.
These errors were comparable with those expected from operational systems. Bidlot et
al. (2007) compared a variety of operational forecasting systems and found that the
Met Office, Service Hydrographique et Océanographique de la Marine (SHOM) and
ECMWF system predictions of H_produced RMSEs of between 0.25 and 0.4 m. Where
the RMSE was normalised by the average size of the incident, the H_and T error was
found to be approximately 20% within the systems. Similarly NOAA online assessments
of their system (http://polar.ncep.noaa.gov/waves/valid_wna.html) demonstrate
normalised RMSE errors of 25%, while Bradbury et al. (2004) analysed the Met Office UK
Waters model through the English Channel and found normalised T _and H_RMSEs of
20%. Recent research by Palmer (2011) found that model predictions well represented
buoy measurements of H_(with an average RMSE of 0.3 m), while T predictions
contained significant errors (e.g. more than 1 second at Hayling Island) when
simulating through the English Channel during a 4 week period in November 2005.
The larger errors found in the very nearshore sites are difficult to contrast with
operational systems as many reports, for example, Bidlot et al. (2007) contrasted
forecasting systems in deeper offshore sites only. Similarly, Bradbury et al. (2004) did
not utilise in-situ measurements in nearshore areas, such as Lymington, due to the
complex bathymetry and an insufficiently fine model spatial resolution to provide a

reasonable comparison.
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Previous research has described a tendency of wave models to over-predict H,
while under-predicting T, due to an over-prediction of the high frequency energy,
particularly in shallow, short fetch areas (Ris et al., 1999; Rogers et al., 2002). Brown
and Wolf (2009) highlight that forecasts from a coupled tide-surge-wave model had
lower accuracies in water depths of 5 m or less. An assessment by Moeini and Etemad-
Shahidi (2007) found Sl errors of up to 20%, in both H_and T, when hindcasting with
SWAN (Simulating WAves Nearshore) and MIKE-21 SW models in an enclosed basin,
despite using measured wind conditions. Brown et al. (2011) contrasted the prediction
accuracy of coupled hydrodynamic and wave models in the Irish Sea region, also
finding that errors were greater in shallow regions (approximately 10 m in depth)
relative to those obtained at offshore (between 20 and 30 m) sites. To reduce model H
within such regions Wolf et al. (2002) altered local bottom friction coefficients while
Lin et al. (2002) adjusted local surface drag coefficients. Research by Johnson and
Kofoed-Hansen (2000) has also indicated that the formulations used in MIKE-21 SW in
shallow water conditions may be innacurate due to an overestimation of the sea
surface roughness where Jannsen’s (1989, 1991) formulation is used (as in MIKE-21
SW).

Additional analysis, not presented, considered the wave model sensitivity to
several model parameters with the aim of increasing the accuracy of H_hindcasts in the
shallow, nearshore regions. Alterations to the C,_(linked to whitecapping) and y (linked
to wave breaking) parameters, as well as local bathymetry depths, were all capable of
reducing model H_in the nearshore regions. However, alteration to both C_and y
coefficients also significantly reduced H_in deep regions, leading to increased errors.
The influence of the alteration of the bathymetric dataset, however, was shown to be
localised to the nearshore regions. This enabled H_to be reduced in the nearshore
without significant changes in the deeper water regions. At Lymington, alteration of
the bathymetry reduced the H RMSE from 0.17 m to 0.09 m. Using the regional model,
the influence of the modelled surface elevations upon the predicted wave state was
assessed during the storm events from 10" March 2008 and 14" November 2009.
Contrasting the predicted wave states, with and without the surface elevation
influence, the sensitivity was shown to be greatest in the shallow, nearshore regions
where both the currents and the change to water levels influenced the model hindcast.
Where water levels increased, so too did the H and T. This corresponds with previous
research by Chini et al. (2010) and Wolf (2009) who found that the inclusion of tide-
surge data was important in the accurate prediction of H, as increased depths enabled
waves to break later, resulting in larger wave heights in shallow regions. Alternatively,
where water level fluctuations reduced depths, H and T were reduced. This
corresponds with previous research concerning waves interacting with the sea bed. In

such instances, linear and non-linear bottom dissipation mechanisms such as
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percolation, bed motion, shear stress and scattering reduce the energy within the wave
(Luo and Monbaliu, 1994; Padilla-Hernandez and Monbaliu, 2001; WISE group, 2002).

Sensitivity was also conditioned by the size of the incident waves, as both depth
and wave heights determine the degree to which the wave interacts with the sea bed.
This is particularly important within the context of coastal flooding as it indicates that
the greatest sensitivity to uncertainty within the input data will occur during extreme
events, which are the events one would wish to model with the highest degree of
accuracy. Previous research within the Southern North Sea (Tolman, 1991), and the
English Channel and Irish Sea regions (Wu et al. 1994), also found that the inclusion of
tides and currents had a relatively small influence upon mean wave parameters.
However, the effects were highly localised. The largest impacts were found in shallow
regions, during storm peaks, in which changes of 10% were generally found. These
findings correspond with the 9.17% average change to the H_event peak at the Emu
Hayling Buoy and the local variability demonstrated presented in this research. Palmer
(2011) indicated that the influence of tidal fluctuations was of particular importance in
the eastern Solent region where wave focussing due to refraction in the English
Channel occurred.

Using the two events, the uncertainty in the predicted wave state, as a result of
‘expected’ uncertainty in the predicted surface elevations, was investigated. The
hydrodynamic model was shown, in previous research, to contain errors in the
predicted surface elevations by as much as 30%. Sensitivity of the regional wave model
to these errors was relatively small, with domain average RMSEs in the H_and T of only
0.02 m and 0.06 s, respectively, while Pbias errors were commonly less than 1% in
both. The largest average change of peak H, during the two events, occurred at the
Emu Hayling Buoy (0.07 m), while the largest normalised influence was shown to occur
at Lymington (4.1%). Although variability between events was present, the largest
normalised difference in peak H_during either event did not exceed 6% at any of the
gauged sites. The results indicate that across the gauges considered, the uncertainty in
the water level predictions was not an important influence upon the wave predictions
in general, except in the eastern Solent, where vulnerability to extreme wave
conditions was greatest.

Quantifying the error in the hydrodynamic predictions, and the uncertainty these
errors propagate to the wave model, has been shown to be particularly useful in
identifying the regions where improved tidal predictions could increase wave
prediction accuracies. The research presented here indicates that the importance of
tidal uncertainty upon the predicted waves will be dependent upon the size of the
waves and the water depth, with the greatest sensitivity found in nearshore regions,
under the influence of large storm waves (when the greatest certainty is usually
desired). In this research, the eastern Solent was found to be the most likely to benefit

from increasing the accuracy of tidal predictions. As previous research has indicated
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that tidal predictions from hydrodynamic models are generally considered to become
increasingly uncertain in complex nearshore regions (Flowerdew et al., 2007), these
findings may be useful in such regions as an indication of the levels of uncertainty one
might expect to find due to ‘expected’ tidal errors, particularly in shallow water
regions experiencing relatively low wave energy events, such as the Solent. Depending
on the vulnerability of a particular region, uncertainties on such scales may be an
important consideration that would require more accurate HD model predictions.

The influence of the wave field on the prediction of the surge was also assessed
by comparing surge predictions with and without the predicted wave field datasets.
The results indicated that a high degree of spatial variability was present in the
sensitivity of the hydrodynamic model to the influence of waves, with the largest
changes to the surge peaks found at the gauges located in the eastern Solent and
along the south west coast of the Isle of Wight, coinciding with the most extreme wave
conditions. During the event on the 10" March 2008, the inclusion of the wave field led
to an increase in predicted peak surge heights of up to 9.2% at the Emu Hayling Buoy.

Previous research has also indicated that coupling of wave and hydrodynamic
models can significantly alter the height of modelled surge elevations and currents
(Wolf, 2009). Kim et al. (2010) found that extreme typhoon-induced surge events
could not be modelled without the inclusion of wave radiation stresses which
accounted for up to 40% of the surge elevation. The conditions of this particular event
were extreme, with wave heights exceeding 18 m. Choi et al. (2003), Funakoshi et al.
(2008) Xie et al. (2008) reported changes to surge predictions of between 10 - 15%
due to model coupling. In each case, the authors note that the influence of the waves
upon the surge displayed high degrees of spatial variability. Mastenbroek et al. (1993)
found both spatial and temporal variability in the change to the predicted surge, while
Wolf (2008) found that wave set-up magnitude was dependent upon water depth and
bottom slope. When considering three independent events, they found that in two of
them the effect of the wave model was negligible, while in the third the increase to
predicted surge heights was in the region of 5%. These results from previous studies fit
well with the sensitivity of the Solent-Southampton Water regional model to wave-
hydrodynamic coupling presented. The spatial variability in the model sensitivity,
correlating to the magnitude of the waves, as well as the 9.2% - 17% increase of peak
surge heights at the Emu Hayling Buoy and along the south west coast of the Isle of
Wight, are particularly similar to those results given by Choi et al. (2003) under similar
wave and surge conditions (e.g. H_heights of 2.5-6 m and surge elevations of 1.5-2 m)
and research by Wolf (2008) in Liverpool Bay. The results of this research, therefore,
support previous studies, indicating that the inclusion of the wave field is an important
component of a storm-surge prediction system, even in the Solent, where wave energy

is relatively low due to the sheltering effects of the Isle of Wight. These findings will be
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of interest to coastal managers, aiding in the quantification of the magnitude and
spatial variability in the expected contribution of the inclusion of waves upon the
prediction of large surge events, which are often of most interest.

Further research could validate the findings within the region and provide more
widely applicable results. This research considered the coupling of the wave and
hydrodynamic models during just two events. Tidal uncertainties were considered only
in terms of 100% and 30% amplitude errors, while no assessment of the influence of
phase shifts in the tidal signal were considered. Similarly, the influence of the waves
upon the surge was considered only during the same two events. Although this
analysis provided a useful assessment of the signal interactions and the conditions
during which the coupling would be of greatest significance, during periods of
particular interest to coastal managers, in both instances, future research could extend
the analysis presented here to provide a more holistic assessment of the signal
interactions. For instance, Monte Carlo techniques could be used to quantify the
influence of one signal upon the other, given a distribution for each parameter (e.g.
tidal uncertainty, wave height and period) given increased computational resources. By
doing so one could validate the findings from the events already considered, or find
instances where the influences revealed in this research are not representative. It might
also be particularly useful in constructing relationships between the signals that can be
applied easily to other regions, of a variety of conditions, such as those in which

considerably larger wave conditions are found.

5.7. Conclusion

A regional model of the Solent-Southampton Water estuarine system was used to
examine the importance of HD-SW coupling in a complex coastal region containing a
variety of tidal characteristics, water depths, and wave conditions. The research
revealed that:

e The wave model accuracies lay within the range reported for operational
forecasting systems, in previous research, at most of the in-situ sites
considered. Accuracy, relative to the size of the event, decreased in some of the
shallowest regions, indicating a requirement for high resolution bathymetric
and accurate local wind datasets, and may also indicate uncertainties in current
wave model formulations, when considered in the light of other research using
3" generation models in similar conditions.

e The influence of the HD-SW coupling to the model predictions was shown to be
spatially variable, with the greatest influence found in the nearshore areas of
the east Solent, where wave energy was greatest. The presence of the waves
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increased surge peaks by up to 9.2 % while the variable water depths from the
HD model resulted in an alteration to peak H by up to 16.3 %.

e The modelled wave field was insensitive to the expected errors in the tidal
elevations throughout most of the region, with the maximum change to peak H,
(6 %) found in the eastern Solent.

These findings indicate that the coupling of HD and SW models can be essential,
particularly during storm events where wave energy is greatest (often the most
important in terms of flood forecasting) and in shallow water regions where wave
energy is greatly influenced by changes in water depth. Despite the importance of
model coupling, the uncertainty in the HD tidal predictions (Chapter 4) was not a
significant constraint to the wave model accuracy throughout much of the region,
indicating that the majority of the errors in the model predictions are likely to be
attributed to uncertainties in other forcing datasets used or formulations in current 3™
generation wave models. These results provide a useful insight into the spatial
variation in tide-wave interactions that can be expected in coastal environments, and
demonstrate the suitability of commonly utilised models in such regions, which will be

of interest to coastal managers in a variety of coastal regions.
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Chapter 6: Modelling Waves and Water levels
in the Solent and Surrounding Waters:

Assessment of an Empirical-Based Approach

Abstract

A regional model, transforming mid-Channel wave and surge conditions through the
Solent-Southampton Water estuarine system, using a multiple regression-based
approach is described in this research. During a three month prediction from October
to December 2009, the regression model was shown to provide similar accuracies to
those obtained from a regional model defined using the physically-based numerical
software MIKE-21. Both approaches provided an average RMSE of 0.1 m in the surge,
while the RMSE in the H was 0.21 m and 0.25 m in the regression and MIKE-21
predictions, respectively. During extreme events the regression model tended to
under-predict the magnitudes of both surge and wave peaks to a greater degree than
the MIKE-21 model. Average error in the prediction of the surge peaks was 0.12 m and
0.14 m in the MIKE-21 and regression predictions, while errors of 0.19 m and 0.39 m
were found in the wave predictions, respectively. Divergence between the model
predictions of peak water levels was less than that shown between the peak surge
elevations, due in part to the tendency for the surge to avoid the high tide periods. The
regression model was highly computationally efficient relative to the MIKE-21 model,
enabling the production of a 2000 member ensemble, at approximately 20,000 mesh
points, for 280 time steps, in less than 40 minutes. A demonstration probabilistic
model prediction, using a Monte Carlo approach was described, with data assimilation
used to update independent variable states every hour, using a Kalman filter. The
research clearly indicates the benefits to coastal managers of using a probabilistic
approach for quantifying uncertainty and the Kalman filter for constraining it. The
benefits of the data assimilation were most significant in short-term forecasts (up to
six hours) after which the predictions demonstrated no significant benefits in terms of
accuracy. Inaccuracies in the ensemble distributions were found due to the uncertainty
in defining the error in the independent variables. It is thought that the use of
ensemble forecasts provided by the Met Office could significantly increase the accuracy
of the ensemble in the regional model. This research will be of interest to a wide range
of modellers interested in the switch from deterministic to probabilistic forecasts,
particularly those in regions where computational resources are low and suitable low-

costs alternatives are sought.
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6.1. Introduction

Coastal flooding is a serious threat to communities throughout the world. The risk of
flooding increases where large surge and wave events coincide with a high spring tide,
resulting in sea levels exceeding above coastal protection structures. It is well
established that coastal flooding events result in financial loss and human fatalities.
Globally, 200 million people live on floodplains, while two million km? and one trillion
dollars’ worth of assets lie less than 1 m elevation above the current sea level (Stern,
2007).

In the UK coastal flooding is estimated to put 5 million people and 1.85 million
homes at risk (Penning - Rowsell et al., 2006). Historically, there have been several
disastrous events; in 1953 when a large surge coincided with high tides in the North S,
the ensuing flood killed 307 and 1836 people in the UK and the Netherlands,
respectively (Gerritsen, 2005; Wolf and Flather, 2005). Future flood risk will increase
due to an increased number of assets in coastal zones (Brown et al., 2010), increased
mean sea levels (Hall et al., 2006; Haigh et al., 2009; Haigh et al., 2010) and
worsening wave conditions (Bacon and Carter, 1991; Zang and Tooley, 2003; Inter
Agency Committee on Marine Science and Technology, 2004; Chini et al., 2010).

To protect against the threat of coastal flooding, forecasting systems have been
developed. Within the UK, operational forecasts have been in use since 1953. Present
systems utilise complex numerical modelling packages, often combining a set of
atmospheric, wave and hydrodynamic modelling systems (e.g. Allard et al., 2008).
Commonly used hydrodynamic and spectral wave models include MIKE-21 (Warren and
Bach, 1992; www.mikebydhi.com), Wavewatch Ill (Tolman, 2009) and Simulating Waves
Nearshore (SWAN) (Booij et al., 1999). Flather (2000) provided a summary of a variety
of operational systems used throughout Europe. Such systems provide forecasts of
future ocean state, warning coastal managers when potential flood-causing conditions
are likely to occur. These warnings enable coastal managers to prepare, reducing the
risk of damage and disruption.

Most operational systems attempt to represent real world physical processes.
To do so, sufficiently complex modelling packages must be developed. The operational
storm surge model within the UK (Flather, 2000; Williams and Horsburgh, 2006) is
required to make predictions of surface elevation across the North East Atlantic at grid
resolutions ranging from 35 km to 1.8 km in selected regions. It considers not only
calculations relating to the hydrodynamic model, but also the changing state of the
wave and atmospheric systems, and their interactions. The number of calculations
required within a modelling system can, therefore, be enormous. This presents
difficulties when modelling nearshore regions as coarse spatial resolution grids,

suitable for largely uniform conditions in the deep sea regions, cannot adequately
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represent the highly variable conditions of coastal locations. Furthermore, data
assimilation techniques, such as the Kalman filter (Kalman, 1960; Kantha and Clayson,
2000; Kobayashi and Yasuda, 2004; Neal, 2007) have become increasingly utilised
(Prandle, 2000; Mclaughlin, 2002) to decrease uncertainty and increase accuracy of
forecasts by providing an optimal estimate of the state of the system through the
combination of a predicted and measured state, with recognition of the uncertainty in
both. Applying a data assimilation scheme, and increasing the spatial resolution of a
model domain, through an increase in the number of cells, can significantly increase
the computational demand of the modelling system. To account for this, it is common
practice for modelling systems to run relatively less demanding, coarse resolution
model domains over the deep water regions that provide boundary conditions to high
resolution nearshore nested grids. Due to the high spatial resolution and the
introduction of numerous additional processes not relevant within deeper water areas
(usually referred to as shallow water processes), the nested components can represent
a significant proportion of the computational burden in the forecasting system. To
enable such modelling systems to exist, extensive computational resources are
required. Previmer for instance, utilises the IFREMER computing cluster (wwz.ifremer.fr)
which contains 256 compute nodes, each containing two quad core processors,
resulting in the availability of 2048 computing cores.

The application of complex numerical models is dependent upon the situation
to which they are to be applied. For instance, where computer resources are limited,
the computational run time to simulate complex model domains may inhibit its use as
a forecasting tool, particularly where high spatial resolutions are required. This is likely
to become increasingly important as current research trends in ocean forecasting have
focused on the transfer from deterministic to probabilistic modelling strategies
(Flowerdew et al., 2007; Bocquet et al., 2009; Davis et al., 2010). To quantify the
uncertainty in a forecast, numerous simulations (an ensemble) are required, increasing
computational demands. Ironically, Tilburg and Garvine (2004) suggest that often the
regions that lack the resources required for such forecasting systems are those that
require them the most. Where exhaustive computer resources may not be available
computationally inexpensive modelling approaches are preferable.

Empirical methods do not attempt to model any real world processes explicitly
as physically-based numerical models do. Instead, a series of independent variables
are used to define a function that estimates a dependent variable. Once the function is
produced, the model aims to provide a prediction of the dependent variable using an
input of independent variables. This uses a fraction of the computational processing
time required by physically-based numerical models. In the light of the present desire
to move from deterministic to probabilistic modelling, such methods may become
increasingly appealing relative to the computationally demanding options used

routinely at present.
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Aside from the data and computational demand benefits, Kobayashi and
Yasuda (2004) suggest that in some instances, such as when modelling very uncertain
regions, statistical-based approaches may provide more accurate predictions. This is
due to their ability to create a direct cause-effect relationship between the independent
and dependent variables, whereas a physical-based numerical model may use
formulations or parameters that are not sufficiently certain for those conditions.

A vast array of literature surrounds statistical-based approaches to modelling
physical processes. See, for example, Cox et al. (2002), Huang et al. (2003), Steidley et
al. (2003), and Prouty (2007) for work relating to artificial neural networks applied to
water levels, while Deo and Naidu (1999), Sfetsos (2002), Bazartseren et al. (2003), and
Kobayashi and Yasuda (2004) provide examples of the use of multiple regression
strategies. Kennedy and O’Hagan (2000), Oakley and O’Hagan (2004), O’Hagan
(2006), Conti et al. (2009), and Conti and O’Hagan (2010) provide examples of the use
of emulators, and how they can be utilised in reduced cost sensitivity and uncertainty
analysis of complex systems.

This research aimed to assess the accuracy of transforming offshore wave and
surge conditions, provided by a shelf-scale, ocean forecasting system, to the
nearshore regions of the Solent and Southampton-Water estuarine system using a
regression-based modelling approach. The region was selected for a variety of
reasons. First, it is a complex system with a highly variable nearshore bathymetry,
where uncertainty in physically-based models is relatively high. Previous research by
Levasseur (2008) and demonstrated in Chapter 3 for instance noted particularly large
errors in predictions of tide, surge and waves in the shallow nearshore areas of the
Western Solent where unique tidal patterns including double high water levels are
found. There is also a requirement for very fine nearshore meshes, and the presence of
a dense jn-situ measurement system which provides a useful opportunity for the
demonstration of the merits of the inclusion of a data assimilation strategy. Prediction
accuracy was contrasted with model outputs derived using physically-based numerical
modelling software and in-situ measurements throughout the region. In addition, the
computational demands of the two approaches were contrasted. A simple Monte
Carlo-based ensemble, with Kalman filter updating, was used to demonstrate how a
computationally efficient approach could enable the generation of a vast ensemble of
predictions in a suitable time for operational forecasts looking to develop probabilistic

outputs
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6.2. Study Site and Data

6.2.1. The Solent

The Solent is a body of water that lies between the south coast of England and the Isle
of Wight in the UK (Fig. 6.1). It includes 12 separately defined estuaries and harbours
and contains a range of coastal habitats and inter-tidal zones (Fletcher et al., 2007).
The region has various stakeholders, protected habitats, a dense coastal population

and two of the largest shipping ports in the UK.

In-situ data sources
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Fig. 6.1. The location of the Solent and in-situ data sources.

The Solent region lies in the English Channel, within which the M, tide is the dominant
tidal component and ranges typical are in the order of 6-10 m. The irregular
geometrical shape, narrow channel configuration and shallow depths of the Solent
estuary, results in the amplification of shallow water tidal constituents M, and M_
(Levasseur, 2008). Previous studies have also noted that within the central English
Channel the M, and M_over-tides become increasingly important (Pugh, 1987; Wells et
al., 2001). Within the Solent these amplifications create a tidal elevation with a double
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high water and young flood, most prominent in the Southampton Water region
(Rantzen, 1969; Levasseur, 2008). Previous attempts at modelling the tidal
hydrodynamics within the region have shown relatively large errors in the Western
Solent and Southampton Water regions (Levasseur, 2008).

Storm surges in this region most frequently occur due to low pressure systems
from the Atlantic propagating eastwards or as a result of storm surges propagating
south from the North Sea (Law, 1975; Haigh et al., 2004). During the 1953 event,
discussed previously, the surge propagated south from the North Sea increasing in
intensity as it moved south into shallow waters of the North Sea. Other notable events
to have caused flooding within the region specifically occurred on 14" - 18" December
1989 (Wells et al., 2001) and 10" March 2008 (Haigh et al., 2010).

The region is generally considered to be sheltered from extreme waves, with
long-term average significant wave heights (H) of 1.5 m or less (Inter-Agency
Committee on Marine Science and Technology, 2004) and mean wave periods (T) of
typically 6 -10 seconds. The largest waves that occur usually arrive from either 240°
due to storm waves and swells from the Atlantic (Dix et al., 2007) or occasionally 40-
50° (storm waves from the English Channel). The Eastern Solent regions, particularly
Hayling Island, and Milford to the West of the Solent, are the most exposed areas
within the region of interest. The Channel Coastal Observatory
(http://www.channelcoast.org/), the data management and regional coordination
centre for the Regional Coastal Monitoring Programmes (see Isle of Wight Council
(2005) for a useful overview), considers these regions to have medium exposure to
wave influence as large swells and relatively large fetch distances increase the risk of
extreme wave events. A review of flood events within the Solent since 1935 can be
found in Ruocco et al. (2011).

6.2.2. Data

Tidal elevations, surge elevations, wave and wind conditions derived from the Previmer
group (http://www.previmer.org/en) were used in this research to force the MIKE-
21land regression models. These datasets were outputs from a pre-operational system
currently under development which aims to provide users with short-term forecasts of
the state of the ocean along French coastlines bordering the English Channel, the
Atlantic Ocean, and the Mediterranean Sea. Tide and surge components of the water
surface elevation (velocities were not specified) were provided at 5.5 km spatial
resolution, and 1 hour temporal resolution throughout the English Channel. These data
were model outputs created using the Model for Application at Regional Scale (MARS
2D) system (Lazure and Dumas, 2008). Wave conditions (HS, T, direction and
spreading) were provided at 3.5 km spatial and 3 hour temporal resolution from

forecasts made using the Wavewatch Il model (Tolman, 2009). The Previmer models
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utilise modelled wind fields at 3 hour temporal and 4 km spatial resolution provided by
the European Centre for Medium Range Weather Forecasts (ECMWF,
www.ecmwf.int/about). These wind field datasets were supplied via the Previmer group
for this research, while winds and atmospheric pressures from the Sandown CCO site
and Channel Light Vessel were used to provide atmospheric conditions when
atmospheric data were unavailable. Atmospheric pressure fields were interpolated
from measurements provided by the Channel Coastal Observatory. Measurements at
seven sites located along the south coast of England, between longitudes of -3.48°
and -0.48° were used; Teignmouth, West bay Harbour, Portland Harbour, Swanage,
Lymington, Sandown and Arun Platform. Data were available at 10 minute intervals at
each site and interpolation was used to provide estimates over the computational
domain.

In-situ measurements of water level, wave and wind conditions were given at the
sites in Fig. 6.1. Additional data not shown in the figure included surge elevations from
two gauges located at Newhaven (-0.05 W, 50.767 N) and Devonport (-4.18 W, 50.37
N), with 15 minute temporal resolutions. Water levels and wave conditions were given
at a variety of tide gauge and buoy sites provided online by the National Tidal and Sea
Level Facility (at http://pol.ac.uk/ntslf/), the Centre for Environment, Fisheries and
Aquaculture Science (www.cefas.defra.giv.co.uk) and the CCO. Further measurements
were provided by three temporary buoys provided for this research by EMU

(http:/ /www.emulimited.com).

6.3. Model Set Up

6.3.1. MIKE-21
A physically-based numerical model, MIKE-21, was used to hindcast the surge and
wave states through the region to provide a baseline methodology against which to
compare the regression approach. MIKE-21 is a widely used 2D modelling package
designed by the Danish Hydraulic Institute (DHI) group. Among its many users is the
FEMA National Flood Insurance Programme which uses both the hydrodynamic and
wave modules (FEMA, 2001; Carizares et al., 2001; Madsen and Jakobsen, 2004; Dix et
al., 2007). Further information regarding MIKE-21 modules can be found on the
download section of the DHI website at
http://www.mikebydhi.com/Download/DocumentsAndTools/ShortDescriptions.aspx.
An unstructured mesh was created for the central English Channel, with
boundaries located along the -3.5° and -0.1° lines of longitude, at which tide, surge
and wave time-series, provided by Previmer, were applied. Bathymetry data of 100 m
resolution, provided by the National Oceanographic Centre, Southampton

(http://www.noc.soton.ac.uk), were interpolated to the domain mesh. Sensitivity of the
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model to the domain mesh resolution was examined over a series of tide and wave
predictions, utilising model mesh designs with increasing spatial resolution in the
nearshore regions. Convergence was reached when increases in resolution no longer
resulted in a significant RMSE between the tidal or wave predictions at the locations
given in Fig. 6.1. Final mesh resolution was approximately 2 km, 150-200 m and 50-

100 m in the English Channel, Solent and harbours, respectively.

6.3.2. The Regression model

The regression model was defined using the Matlab stepwise regression function.
Regression modelling is one of the most widely used empirical modelling techniques
for fitting a quantitative response variable (dependent variable) as a function of one or
more predictor variables (independent variables) (Mason et al., 2003). Previous
research in which it has been utilised includes Deo and Naidu (1999), Sfetsos (2002),
Wu and Hamada (2002), Bazartseren et al. (2003), and Kobayashi and Yasuda (2004).
Where multiple independent variables are used to represent the system, the dependent
variable becomes a linear combination of the independent variables, each associated

with an individual unknown parameter 8. This can be represented by

Y=ﬂ0+ﬁ51*yi1+ﬁ52*yi2+'”+ﬁ5n*Yin (61)
Where Y is the dependent variable, Y isan independent variable, B, is a constant, and

B, is a parameter termed the slope of variable Y, n = 1 to the number of independent

variables.

Wu and Hamada (2002) highlight that the selection of relevant independent variables is
a vital part of the regression model development process. To account for this the
regression function within Matlab utilises a stepwise selection process to remove
independent variables whose influence does not exceed a predefined threshold.

The regression function provided predictions of ocean states at the permanent
gauge locations, using the in-situ measurements as the dependent variables. The
independent variables consisted of atmospheric forcing (wind speed, direction and
atmospheric pressures), tidal elevations at the point of interest (derived from harmonic
analysis) and the state of the ocean (H, T and surge) at the open boundaries. The
ocean can be viewed as a dynamic system. Therefore a regression function should
acknowledge that the state of the dependent variable will be a function not only of the
state of the independent variables at a specific given time, but also of the state of the
system previously (Conti and O’Hagan, 2010). To help account for this, the dependent
variables at a given time step were represented by the sum (or ‘build up’) of the
previous five hours of data for that variable.

Data used for training the regression functions, consisting of time-series of 24

months in length, varied between the models. For the surge regression, data for the
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independent and dependent variables was provided at four sites; Portsmouth,
Southampton, Lymington and Sandown. Data were used for the wave regression from
five locations; Lymington, Sandown, Milford Haven, Poole Bay and Hayling Island..

An advantage of mesh-based numerical models is the ability to make
predictions over extensive domains. This can be particularly important when coupling
ocean and inundation models, where predictions of ocean states are required at
specified intervals along the coast. To provide a prediction surface, a ‘secondary’
regression was created to spread the hindcasts at gauged locations to un-gauged
sites. As in-situ measurements cannot be available at all locations, the spread was
defined by the MIKE-21 model. The MIKE-21 model was used to hindcast the October -
December 2009 period. Time-series data were then extracted from the elements
corresponding to the locations of the permanent gauges and each of the nodes in the
domain mesh. The time-series from the permanent gauges were used as independent
variables, while the data from the remaining mesh nodes represented the dependent

variables, and a regression function for each of the un-gauged nodes was constructed.

6.3.3. The ensemble regression model

Regression functions defined in 6.3.2 were used to create probabilistic model outputs
by generating large ensembles that sampled from pre-defined uncertainty
distributions relating to the errors in the winds, tidal elevations and boundary input
datasets, relative to in-situ measurements. When simulating the ensembles, each time
step prediction used the original input data with a random perturbation to its value
drawn from the relevant distribution. In the method used in this research, each time
step was independent of all others, while the direction and size of the perturbations
were also independent. In order to determine an optimum group size, ensembles of
increasing sizes were generated. Each ensemble was run 10 times and the resulting
means contrasted to define a convergence point. In addition, the time taken to

complete the computations was recorded.

6.3.4. The Kalman filter

The Kalman filter (Kalman, 1960) provides an unbiased estimate of the current state of
a system with minimum error variance (Kantha and Clayson, 2000). It is described as
an optimal linear predictor, accounting for the state of the predicted variable of
interest, the measurement of it, and the uncertainty in both (Maybeck, 1979). This
research utilised the ‘analysis’ step of the Kalman filter to update the independent
variables, using the Kalman Gain, which weights the observed and predicted values
based on their relative uncertainties. In this way, the Kalman filter provides a best

estimate of the current state of the system by
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X, = X, +K(X,X,) 6

Where X is the analysed state, Xf is the forecasted state, K is the Kalman Gain, and X is

the observed state. The Kalman Gain is given as

74
K=-—XL 6.3)
VitVo

Where V. is the variance in the forecast and V. is the variance in the measurement.

The variance of the analysed state can then be estimated by

6.4. Analysis

Three groups of experiments were used to meet the aims given in the introduction.
The first assessed the accuracy of the surge and wave regression model predictions.
Each month of available data was removed systematically and used to validate the wave
and surge regression models, defined using the remaining data points. Four sites were
modelled for surge (Portsmouth, Sandown, Southampton and Lymington) while five
locations were considered for waves (Lymington, Sandown, Milford Haven, Poole Bay
and Hayling Island). The RMSE and Pbias (a measure of bias relative to the average size
of the factor considered, after Brown et al., 2010) were used to define the accuracy of
the predictions.

The second set of experiments contrasted the regression and MIKE-21
hindcasts, during a three month period between October and December 2009, at the
nine locations (four surge and five wave) given above, as well as at the three temporary
EMU buoys. Further comparisons were made during a series of the largest events
extracted from the available time-series. The comparisons of the surge predictions
considered eight events exceeding 0.6 m at the Portsmouth tide gauge, with the errors
given as the difference between the measured peak surge and the predicted peak
surge. The surge from the MIKE-21 model was defined as the difference between two
simulations; one forced with only tidal boundary elevation datasets, the second forced
with tide and surge boundaries and atmospheric forcing datasets. The Hayling Island
site was used to contrast the two models’ abilities to recreate storm wave conditions
during eight events in which H_exceeded 2.6 m.

The third set of experiments attempted to provide a probabilistic model output
whereby a distribution of predictions was provided at each time step that accounted
for the uncertainty within the independent variables. First, the uncertainty distributions
in the independent variables were examined. The upper and lower bounds of the

distributions were given, based on the 95% error bounds between the Previmer
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products and in-situ measurements, between October and December 2009, when
considering wind conditions and boundary forcing. Boundary surge errors were derived
from comparisons between Previmer model outputs and measurements at two tide
gauges located near to the domain boundaries; Newhaven in the east and Devonport in
the west. Wave H_and T boundary errors were obtained by contrasting Previmer
outputs with measurements at the Channel Light Vessel, while error in wind speed data
was given as the average of the differences between the Previmer winds and those
measured at Lymington, Chichester harbour and Sandown Pier. Tidal uncertainty was
given as 0.1 m in line with previous literature discussing uncertainties in the
separation of tide and surge from water level measurements (Horsburgh and Wilson,
2007; Bocquet et al., 2009).

Using the designated distributions, the 2000 member ensemble was generated at
the four surge and five wave gauged sites, as outlined in Section 5.3.3. The ensemble’s
prediction accuracy was assessed by considering the ensemble mean Pbias and RMSE
(relative to the measured time-series), comparing the average RMSE in the prediction
accuracy against the average RMSE in the ensemble spread (used as an indicator of the
suitability of the size of the spread), and the proportion of the measured time-series
contained within the ensemble boundaries. Rank histogram plots (Hamill, 2001) were
also used to investigate the quality of the ensemble distributions, where a flat
histogram indicates a correct average spread, a disproportionally high count at the
extremes indicates an ensemble spread that is too small, and a disproportionally high
count in the central bins indicates an ensemble spread that is too large.

An exemplar event was created, using the H ensemble regression function and
implementing a Kalman filter update. A simulation of 20 hours was run, representing
the ‘measured’ event. The independent variables were then perturbed using values
extracted randomly from the negative half of the uncertainty distributions used to
define the ensembles. A 12 hour ensemble forecast was conducted from each time
step sequentially. For each forecast, it was assumed that measurements would be
available at the given time and for all time steps leading up to it. The states of the
independent variables at T, and earlier, therefore, were updated (along with their
uncertainties) using the Kalman filter. The accuracies of the measurement devices were
given by suppliers in terms of percentage of the measured values. Measured wave state
and wind uncertainty was estimated as 0.5% and 1% of the variable value in each case,
respectively. To provide a similar measure of uncertainty, the input data from Previmer
for the wave states and wind conditions were contrasted with in-situ measurements to
provide a RMSE, which was then given as a percentage of the average incident value.
This percentage could then be used at each time step to estimate the uncertainty in the
predicted independent variable. A diagram outlining the steps in the production of the
ensemble prediction and the Kalman filter updating schemes is given in Fig. 5.2.

145



Niall Quinn Assessment of an empirical-based approach

The ensemble

prediction
Ensemble spread
Input data Addition of {uncertainty)
uncertainty random errors )

fromthe given

distributions o
distributions to

Prediction: mean

Regression
the inputdatato gd | 1 hour time steps, 2000 \
moae
Previmer input cregte 2000 7 member ensemble at
estimates of input each step
data .
variable states for

eachtime step

Time (hours)
Kalman Filter: update
timeline
‘Real’ time
L e T () H 1 B 02:00
New measurements of New measurements of
input variables input variables
Forecast time KF update of input

; KF
Ts Ten variables where T Tets | Updste
measurements

Regression Ensemble forecast ) Regression Ensemble forecast
are available

Input dataset
input datasets Input datasets

Fig. 6.2. Schemes for the ensemble predictions (top) and the addition of a data

assimilation step (bottom).

6.5. Results

6.5.1. Accuracy of the regression predictions
The accuracy of the surge predictions at the four tide gauges and the wave predictions

at five gauges are presented in Table 6.1.

6.5.1.1. Surge

Domain average RMSE over all months was 0.08 m. Variance throughout the domain
was small, with the average RMSE across all sites lying within 0.01 m of the domain
average. Normalising the RMSE by the average surge magnitude indicated that the
average error for all sites lay within 10% of the domain average. No significant
directional bias was found at any site, while, when direction was ignored, average Pbias
was ho greater than 17% at any site. Temporal variability was present, with the largest
RMSE occurring during the winter periods at all sites. However, when the RMSE was
normalised this trend was no longer present. At all sites the average deviation from the
mean RMSE and the mean normalised RMSE over the two year period was no greater

than 0.02 m and 15%, respectively.
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6.5.1.2. Waves

Domain average RMSE for all months was 0.15 m and 0.61 s for H_and T, respectively.
Average Pbias at all sites was less than 10% in both. Spatial variability was relatively
low when considering the normalised errors, with the average errors for all sites lying
within 8% of the domain averages for both H and T . Winter months contained the
largest RMSE in both instances. However, when normalised values were considered the
variability between the months was reduced. On average, monthly normalised RMSE

values lay within 6% and 5% of the two year mean RMSE for H_and T, respectively.

Table 6.1. Surge and wave regression accuracies. Values represent average values from

all predicted months. Brackets indicate the normalised RMSE relative to the average

measured magnitude and ‘||’ indicates the average absolute Pbias.
& < = S S g g z
< 3 = = 3 3 = o
5 5 o o « 2 = S
[t} «Q Q. [vs] 3 E o %
3 2 2 3 3
3 [ d —
= o
=}
Surge RMSE (m) - 0.09 - - 0.08 0.07 0.09  0.08(73.8%)
Pbias (%) - -0.35 - - -0.65 -1.16 -1.3  -0.86[13.8|
H. RMSE(m)  0.17  0.04 0.16 0.22 - 0.15 - 0.15 (31.1%)
Pbias (%) 0.68  0.07 0.85 0.72 - 0.95 - 0.65 6]
T RMSE (s) 0.7 0.56 0.82 0.68 - 0.31 - 0.61 (16.9%)
Pbias (%) 0.4 0.16 0.6 0.12 - 0.8 - 0.1]2.6]

6.5.2. Comparison with MIKE-21

The regression model hindcast of the surge and wave states during the period of
October-December 2009 is compared with that from the MIKE-21 model in Table 6.2.
Values in brackets present errors within the predictions from the MIKE-21 model while

unbracketed values provide the accuracy of the regression model.
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Table 6.2. October - December 2009 surge and wave prediction accuracies. Values in

brackets present errors within the predictions from the MIKE-21 model for the same

period.
Surge H, T

RMSE (m) Pbias (%) RMSE (m) Pbias (%) RMSE (m) Pbias (%)
Permanent
Gauges
Portsmouth 0.09 (0.09) 11.4 (18.4) - - - -
Sandown 0.08 (0.09) 2.5(10.1) 0.19 (0.25) 9.8 (32) 0.4 (0.6) 2.9 (0.03)
Southampton 0.11 (0.1) 10.6 (13.1) - - - -
Lymington 0.12 (0.11) 12.7 (23.2) 0.06 (0.15) 7 (49.5) 0.49 (0.57) 0.16 (8.8)
Poole Bay - - 0.31(0.27) 8.9 (1.5) 0.71(0.61) 1(4.7)
Milford - - 0.25 (0.36) 8.12 (22.9) 0.87 (0.69) 1.26 (1.4)
Hayling - - 0.24 (0.25) 9.3 (7.5) 0.79 (0.72) 1.59 (5.9)
Average 0.1(0.1) 9.3 (16.2) 0.21 (0.25) 8.6 (22.7) 0.65 (0.64) 1.4 (4.2)
Secondary
Gauges
EMU Nab 0.09 (0.09) 12.2 (5) 0.34 (0.33) 13.8 (10.5) 1.17 (1.01) 22 (13.5)
EMU Hayling 0.1(0.11) 8.8 (11.1) 0.24 (0.25) 15.8 (18.7) 0.9 (1.5) 24.3 (36)
EMU Ports. 0.1(0.11) 18.2 (14) 0.26 (0.29) 70.4 (85.4) 1.5 (1.64) 35.6 (38.4)
6.5.2.1. Surge

During the three month comparison, both models recreated surge magnitudes with the
same RMSE accuracy, on average, across the domain, while average Pbias values lay
within 7% of each other, when compared to jn-situ measurements. Fig. 6.3 provides a
comparison of the regression, MIKE-21 and measured time-series at Portsmouth. It
demonstrates that both the MIKE-21 and regression-based approaches recreated the
pattern of the measured surge, including two main peaks. However, both model
outputs appeared to be smoother than the measured time-series, which was likely to
contribute significantly to the RMSEs given in Table 6.2.

Using the secondary regression to provide a prediction surface (as outlined in
sections 6.3.2.) the regression-based predictions of the surge at the three temporary
EMU buoys were also examined. RMSE accuracies at all three buoys fell within 0.01 m
of the domain average (the average of the 4 primary gauge points) and within 9% of the
average Pbias. RMSE accuracies of the regression hindcasts were within 0.01 m of
those obtained using the MIKE-21 model at each site.

The accuracy of both models in predicting the peaks of the eight storm events
exhibited variability, both spatially and between events, with peak surge errors ranging
from less than 0.05 m to more than 0.2 m. On average, over the eight events, the
MIKE-21 model predictions were more accurate than those from the regression model,

with average peak errors of 0.12 m (14%) and 0.14 m (17%), respectively.
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Fig. 6.3. Portsmouth surge elevations. A, measured and regression Oct-Dec 2009, B,
physically-based model (MIKE-21) and regression Oct - Dec 2009.

The regression function was found to under-predict the peak amplitudes in
many cases. Fig. 6.4 provides an example of the greater extent of under-prediction
commonly found in the regression-based approach. The variability in peak water levels
is often related to the timing of the surge rather than the peak, particularly as peak
surge elevations often occur off the high tide (Horsburgh and Wilson, 2007). For this
reason, the differences in the phase of the predicted surge, and the resulting influence
upon the peak combined water levels (often referred to as the skew-surge) were also
contrasted. Over the eight events the peak surge elevations predicted by the
regression model lay within one hour of those predicted using MIKE-21, with a
maximum shift of two hours seen during one event. The average absolute difference in
peak water level accuracies from the two models (given as the difference between the
model predictions and the measured state) was 0.04 m, with the MIKE-21 model
providing the greater accuracies on average. These results were representative of the
accuracies found elsewhere. For instance, peak water level errors during the two

largest surges in November 2009 and an event on the 10" March 2008 were 0.11m
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and 0.15m on average at the Lymington gauge in the MIKE-21 and regression models,

respectively, while the skew-surge error was less than 0.13 m in both.

1 Portsmouth: Measured, Regression and MIKE-21 modelled surge
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Fig. 6.4. Comparison of MIKE-21 and regression predictions of surge on the 23"
January 2009.

6.5.2.2. Waves

During the three month comparison, domain average T RMSE was 0.65 s and 0.64 s in
the regression and MIKE-21 hindcasts, respectively, while Pbias in both was below 5%.
Greater variance between the two models was present in the H_model accuracies. In
the deeper water regions, such as Hayling Island and Poole Bay, the regression and
MIKE-21 H_hindcasts contained similar RMSEs. Further inshore, particularly at
Lymington, the regression function provided higher RMSE accuracies than those
provided by MIKE-21. Correspondingly, the Pbias within the MIKE-21 hindcast was
seven times larger, indicating a consistent over-prediction of the H_in the nearshore
region not present when using the regression function (Fig. 6.5).

Using the ‘secondary’ regression to provide a prediction surface, the
regression-based predictions of the waves at the three EMU buoys were also
examined. Regression accuracies closely resembled those given using the MIKE-
21model, particularly in terms of H. However, the errors were generally larger than
expected compared to the initial regressions at the permanent buoys. For instance, H,
Pbias at the Portsmouth EMU Buoy exceeds 70%, whereas no Pbias larger than 10% was

found at the permanent gauges.
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Fig. 6.5. Physically-based model (MIKE-21) and regression predictions of H_at
Lymington and Hayling Island.

During the eight storm events at the Hayling Island site, errors in the maximum
H_and the T relative to in-situ measurements were examined. The results indicated
that the MIKE-21 model was able to more accurately recreate the peak H. The average
error during all events was 0.19 m and 0.39 m using the MIKE-21 and regression
models, respectively. Average normalised errors equated to 9.1% and 17.2% of the
measured H_peak values on average, respectively. T accuracies between the two
models were more similar. Over the eight events the error in the predicted T was 0.65
s and 0.57 s in the MIKE-21 and regression model outputs, or 12% and 11.3% when
given relative to the size of the measured T. Fig. 6.6 provides an example of the
greater degree of under-prediction at the peaks commonly found in the regression-
based approach. These results were shown throughout the domain, even in the
nearshore regions where the regression reduced significant Pbias contained in the
MIKE-21 model during the October to December comparisons. For instance, at
Lymington, despite the significant reduction in the overall bias provided by the
regression model, the consistent under-prediction of event peak amplitudes resulted
in an under-prediction of the event on the 14" of November 2009 by 0.23 m, while the
MIKE-21 prediction contained an over-prediction of 0.19 m.
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3 Hayling Island: Measured, Regression and MIKE-21 H. predictions

25

\ ! - - Measured
]
—Physical model

1.5 -—-Regression model

Hs (m)

0.5

0
06/01/2011 25/02/2011 16/04/2011 05/06/2011 25/07/2011 13/09/2011

Fig. 6.6. Comparison of MIKE-21 and regression predictions of H_on the 23" January
2009.

6.5.3. Ensemble predictions

6.5.3.1. Uncertainty distributions and ensemble generation

The uncertainty distributions from which the ensemble perturbations were drawn (95
percentile upper and lower boundaries) and the size of the discretisation of the
parameter distributions were given as:

e Tidal elevations - 0.1 m to -0.1 m at 0.01 m intervals.

e Boundary surge elevations (West) - 0.09 m to -0.14 m at 0.01 m intervals.
e Boundary surge elevations (East) - 0.14 m to -0.12 m at 0.01 m intervals.
e Wind speeds - 5.6 ms™ to -4.6 ms™* at 0.01 ms™ intervals.

e Waves (H)-0.13 mto -0.9 mat 0.01 mintervals.

e Waves (TZ) -1.24sto-1.21 s at 0.01 s intervals.

An ensemble size of 2000 members was chosen. It was possible to generate 2000
ensemble members at the four surge and five wave sites, as well as a spatial surface at
20,000 grid points (reproducing the MIKE-21 mesh), for 280 5 minute time steps (i.e.
a 24 hour lead time), in under 40 minutes, using the computational resources
available. With 2000 members, the ensemble means never varied by more than 0.02 m

or 0.01 m in the surge or H_heights at any time step.
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6.5.3.2.. Surge predictions

Table 6.3 gives the RMSE of the mean of the ensemble relative to the in-situ
measurements, the proportion of the measured values that lie within the ensemble
bounds, and the RMSE in the ensemble spread associated with the surge and wave

ensemble predictions. Examples of the rank histograms produced are given in Fig. 6.7.

Table 6.3. Ensemble surge and wave statistics.

S g g < I S ES
z £ 2 3 2 S 5
3 = o 5 3 ™ =
o g 3 Q Q @ a
S S > S <
5 3
=
Ensemble mean RMSE
Surge(m) 0.09 0.1 0.08 0.1 - - -
H (m) - - 0.15 0.04 0.18 0.22 0.19
T.(s) - - 0.29 0.64 0.9 0.69 0.83
Ensemble mean Pbias (%)
Surge 5.5 4.13 2.6 -3.9 - - -
H - - 2 6.6 6 4.4 4.9
T - - <1 <1 <1 <1 <1
Measured points within ensemble spread (%)
Surge 93 93.5 93 91 - - -
H - - 82.5 95 88.9 81.8 77.7
T - - 55 61 66 72 65
RMSE of the ensemble spread (from ensemble mean)
Surge(m) 0.24 0.26 0.23 0.21 - - -
H (m) - - 0.05 0.03 0.08 0.09 0.07
T (s) - - 0.05 0.1 0.22 0.25 0.22

The ensemble mean represents the ‘best guess’ of the prediction. Across the
four tide gauges, RMSE ranged from 0.08 m to 0.1 m, while Pbias was never greater
than 5.5%. The high proportion of the measured points included within the ensemble
spread (always greater than 90%) indicates that the uncertainty in the system was not
under-predicted by the ensemble. However, Table 6.3 also indicates that the average
RMSE in the ensemble spread was more than twice the RMSE when contrasting the
ensemble mean against the measured time-series, indicating that the uncertainty
attributed to the prediction was too large, on average, through the prediction period.
The rank histogram of Portsmouth further indicates that the ensemble spread was too
large as a clear dome form was produced. This was found at each site, with the
exception of Lymington, where the distribution across the ensemble members was

more level, indicating a lesser degree of over-prediction of the ensemble spread
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Fig. 6.7. Ensemble rank histograms of surge, H_and T at selected sites. Note that the

count axis has been truncated at 50 in order to provide a clearer image.

6.5.3.3. Wave predictions

Across the gauge sites considered, the RMSE in the ensemble mean ranged from 0.04
to 0.22 m and 0.29 to 0.9 s in the H and T predictions, respectively. Pbias was always
less than 1% in the T predictions and less than 7% in the H_. Significant proportions of
the measured time-series were not contained within the ensemble spreads, particularly
in terms of T ,where proportions ranged from 55% to 72%. The RMSE of the ensemble
spread was usually two to three times smaller than the RMSE of the mean, relative to
the measured H, while the same comparison of the T ensemble demonstrated
differences of up to six times the RMSE in the ensemble mean.

The rank histogram plots show an increase in counts at the extremes of the
ensemble distribution, indicating that the ensemble spread was too small, confirming
the indications given in Table 6.3. The rank histogram plots were similar across all
gauges. The only exception was some reduction in the severity of the under-prediction

in the Lymington H, as demonstrated by the slightly more level plot given in Fig. 6.7.

6.5.3.4. Updating the independent variables: a Hsexample
Updating the independent variables with values derived from the Kalman filter

estimation, provided a more accurate prediction (relative to the measured values) and
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reduced the uncertainty (e.g. reduced the spread in the prediction ensemble). Fig. 6.8
(top) indicates the average error (relative to the measured data) and the average
ensemble spread for the T to T, time steps from each simulation. The results
demonstrated that the impact of the Kalman filter updating was greatest within the
first two hours, reaching a plateau approximately six hours from the update.

Fig. 6.8 (bottom) provides an example of the influence of the updating at two
of the 12 update points in the time-series, the first, 12 hours prior to the peak, the

second, 5 hours prior.
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Fig. 6.8. The temporal variability in the Kalman filter update in terms of increase in
accuracy and reduction to uncertainty (top), and the corresponding update at 12 hours

and 5 hours prior to the event peak (bottom).
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Fig. 6.8 demonstrates that the update to the ensemble mean was significantly biased
towards the measured value (due to the relative uncertainties attributed to the
modelled and measured states), and the increase in the error and uncertainty as one
moves forward from the respective update point in the prediction. For example, the
results indicated that the peak H, when the update was applied 12 hours prior to the
event peak, contained an error of 0.23 m and the ensemble spread was 0.43 m.
Updating six hours later (at six hours prior to the event peak) increased the accuracy of
the forecast, resulting in an error at the peak of 0.22 m and a spread of 0.4 m, while
values of 0.13 m and 0.28 m, respectively, were found when a subsequent update was

applied three hours prior to the event peak.

6.6. Discussion

This research introduced a simple empirical model for the prediction of surge and
wave states within the Solent and Southampton Waters estuarine system, contrasting
the accuracies of its predictions with that from a physically-based numerical model.
The addition of uncertainty to independent variables using a Monte Carlo approach,
and the introduction of Kalman filter updating, was used to demonstrate the
importance of probabilistic modelling and data assimilation strategies for coastal
managers.

A multiple regression model was defined using the Matlab stepwise regression
function, creating an empirical relationship between the input data (e.g. atmospheric
and boundary conditions) and the measured values at a variety of nearshore gauges.
The regression models for surge, H and T were used to predict the relevant states for
a two year period. The results indicated that the regression models provided consistent
predictions, containing little temporal or spatial variability when evaluated using
normalised errors. For example, the average surge values across the gauges were
always within 0.01 m of the average from all gauges, while the average variance
between months at all gauges was also 0.01 m. The errors given in the surge and T,
predictions compared well with those expected from currently operational systems. At
Portsmouth the regression contained an average error of 0.08 m while results available
from POL (http://www.pol.ac.uk/ntslf/model.html) indicate that the operational storm
surge model also contained an average RMSE of 0.08 m during 2008 and 2009.
Similarly, operational reports generally state the errors in wave predictions as between
20 and 25% of the incident magnitude (NOAA
Onlinehttp://polar.ncep.noaa.gov/waves/valid_wna.html; Bradbury et al., 2004; Bidlot
et al. 2007) which corresponds well the gauge average value of 16.9% from the
regression model. The H_prediction errors were in reasonable agreement, but slightly
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larger than those expected, with a gauge average error of 31%, with the greatest
accuracies found at Poole bay (23%).

The regression model predictions were also contrasted with those from the
MIKE-21 model. Over the winter period between October and December 2009, the two
models performed with similar accuracies in all three cases. For instance, gauge
average RMSE in the surge was 0.1 m in both instances. Some variability was present,
however. For example, the regression model was shown to provide lower Pbias values,
particularly in terms of H, in the nearshore regions such as Lymington, where previous
research has demonstrated a tendency for over-prediction using the MIKE-21 model,
attributed, in part, to bathymetric uncertainty. Model predictions of H_and surge
elevations were also contrasted over a series of eight storm events. The results
demonstrated that the MIKE-21 models predicted the peak H_and surge magnitudes
more accurately. The regression consistently under-predicted the peak magnitude of
the events considered. For example, the MIKE-21 model was able to provide an 8% and
3% increase in accuracy in the prediction of the peak magnitudes in the H_and surge,
respectively. In terms of surge prediction, the ability to model the peak surge
elevations and their timing, relative to the high tide, is of greatest influence to peak
water levels, and therefore, of interest to coastal managers. The modelled surge peaks
were found to diverge by one hour on average between the two predictions. To
investigate the impacts that the changes to amplitude and timing of the surge had on
the resulting peak water levels, the surge predictions were combined with
harmonically-derived tidal predictions. The difference between the tide and the
resulting water levels is termed the skew-surge. Comparison of the two time-series
revealed that on average the prediction accuracies of the two models diverged by an
absolute value of 0.04 m, while relative to the in-situ measurements on average, the
MIKE-21 predictions were only 0.01 m more accurate than those given using the
regression model.

These results indicate that, for storm events, the current regression model may
be too simplistic and require further development before recommendation as a
suitable alternative to the more accurate MIKE-21 system. However, as many surge
peaks fall away from the high tide (Horsburgh and Wilson, 2007), the emphasis is often
not on the peak, but on the elevation of the surge following or just prior to, the surge
peak, during the high tide. In such circumstances, the regression model was shown to
provide predictions with only slightly lower accuracy (0.01 m) than the MIKE-21
predictions.

The analysis of the ‘secondary’ regression points raised an important issue
when contrasting the physical-based and regression models, particularly when
considering the spatial interpolation of the wave predictions. The regression
predictions at the ‘secondary’ gauges showed a strong correlation with MIKE-21

predictions, yet a significantly lower degree of accuracy than those at the primary
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gauge sites. This was due to the ‘secondary’ spatial regression model being defined by
the spatial correlations between the nodes in the MIKE-21 domain. Therefore, errors in
the MIKE-21 model propagated to the regression model. In this instance, the MIKE-21
model was shown to over-predict H_in some shallow regions, such as the EMU buoy
sites, which previous research has highlighted was attributed, in part, to inaccuracies
in the bathymetry datasets. This resulted in similar errors in the regression model. One
way to address this connection might be to remove any requirement of a physical-
based model, for instance, through increasing the complexity of the statistical model
to account for variables such as bathymetry depths, in the expectation of such data
adequately representing un-gauged sites. However, given the expectation that the
errors in the MIKE-21 model were influenced by inaccurate bathymetry data, one would
expect that the same errors would persist in such an updated regression, and this
technique would only be applicable where uncertainty in the formulation of the
physically-based model was the obstacle. The inclusion of additional in-situ
measurement devices would be a way with which to direct a spatial regression without
the need for a physically-based model. Research into the optimal location and number
of such measurements required to fully represent the variability of conditions in
complex nearshore regions could be useful for the development of empirical
forecasting systems in regions such as the Solent. Extending the length of deployment
of the EMU buoys to provide a reasonable dependent variable dataset for regression
training, could aid in reducing uncertainties in the eastern Solent shallow water
regions. Alternatively, in very complex regions, such as the Solent, the ‘fusion’ of the
two methods may be the most appropriate approach. In this approach the physical-
based model may be simulated once, providing the initial forecast of the ocean state
across the region while the empirical model could then sample input uncertainty to
define an ensemble, the spread of which could be applied to the original physically-
based model prediction. This would allow the uncertainty in the predictions to be
quantified without the requirement for vast computational resources, while retaining
the ability to accurately represent the state of the system between in-situ measurement
sites.

The inclusion of the physical-based model could alsoreduce uncertainty
relating to the prediction capabilities of an empirical model to predicting extreme
events where long measurement datasets are not available. In such cases there may
not be a sufficient number or range of extreme events with which to train the empirical
model, leading to uncertainty over its predictive capabilities, until such events take
place. For instance, only a few years of data was available to train the empirical model
in this research, therefore, extreme events larger than those contained in these
datasets, or likely to occur in the future, can not been explicitly considered and may
not necessarily be well represented in the current model. Although the inclusion of the

March 10" 2008 event, one of the largest on record, did provide at least one event that
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sampled from very extreme scenarios, more such events should ideally be included as
they represent the conditions of most interest to coastal managers in the region.
Physically-based models, on the other hand, are based upon formulations that are
assumed to be represent the real-world physics of a system, therefore, once calibrated
to a region, may be expected to more adequately predict a wide range of event types
even if an event larger than found in the calibration period was to occur. Therefore, the
use of a physically-based model to provide the baseline prediction, while the empirical
model defines an ensemble range, may be the best option in such conditions.

A further alternative may be to utilise the physically-based model as the
dependant variable. In such as way, once a physically-based model has been
established for a region it aims to be emulated by the empirical model, thereby
reducing computational demands to enable probabilistic forecasts to be made. This
may be particularly useful in a situation where even a single baseline simulation of the
physically-base d model may require a run-time that is unsuitable for a real-time
forecasting system.

Using a single desktop computer with two 2.13 GHz processors and 4 GB of
RAM, the regression model was able to provide a 280 step forecast (used as it
represents a 24 hour forecast at five minute time steps) of surge, H and T at the same
20,000 points included in the MIKE-21 mesh, in under 40 minutes. This was
considerably faster than the 3.5 hours required by the coupled MIKE-21 HD and SW
model to provide the same output. This demonstrates the ability of the regression
function to provide very large ensemble groups within time constraints that allow for
regular updates (e.g., every one hour) that would be of interest for real-time flood
forecasting.

The generation of probabilistic predictions was also considered, with
uncertainty distributions generated based on the comparison of input datasets with in-
situ measurements. The results demonstrate the importance of quantifying the
uncertainty in the data used to drive a prediction and the increases in accuracy that
can be made from a data assimilation step. Fig. 6.8 (bottom) was particularly useful in
demonstrating how, through the correction of the independent variables forcing the
prediction; the forecasts were able to be brought further in line with the ‘measured’
time-series. Fig. 6.8 (top) indicates that the benefits to both the accuracy of the
prediction, as well as the uncertainty within it, were greatest in the short-term, with
improvements largely negligible after six hours.

The ability of the regression model to create large ensembles, within a short
enough run time to allow for the regular updating of the independent variables, was
shown to be highly valuable to coastal managers. Given the H_example where the
Kalman filter was applied, for instance, the use of the ensemble was paramount in
describing to the modeller the likelihood of a given event occurring, as well as how

that likelihood changed as one approached the event peak. In the example given, six
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hours prior to the event a modeller would predict a peak magnitude of 3.12 m, with a
range of 0.4 m. However, updating a subsequent forecast with a start point three
hours prior to the event, this prediction had changed to 3.21 m, with a range of only
0.28 m. Not only does this allow for increased accuracies and certainties as the event
draws nearer, it also enables quantification of expected magnitudes at given
confidence levels. For example, at three hours prior to the event peak, analysis of the
ensemble would allow a modeller to indicate that 90% and 95% of the ensembles
predicted a magnitude of 3.33 m and 3.35 m, respectively. The importance of the
information from such techniques has been highlighted in other research. Flowerdew
et al. (2007) discuss the development of pilot schemes to update the current
operational forecasting systems in the UK from deterministic to probabilistic systems,
for example, while the migration of data assimilation strategies, commonly used in
atmospheric modelling, into the oceanographic sector, has been discussed increasingly
over the last decade (Kalman, 1960; Lionello et al., 1995; Kantha and Clayson, 2000;
Kobayashi and Yasuda, 2004; Neal, 2007).

Although the research has provided a useful example of how one can quantify
uncertainty and increase accuracies in a forecasting system, it is also important to
validate the ensemble provided. In this case, the ensemble spread was shown to be
poor. Although the proportion of the measured values contained within the ensembles
was generally high, particularly in terms of the surge, other statistics indicated that the
spread was either too large (surge) or too small (waves) at each site. Various factors
might explain the inadequacy of the ensemble estimations. First, the uncertainty
associated with the models themselves was not considered. This can be an important
source of uncertainty to consider as model formulations might be more applicable in
one region than another. The ways in which the uncertainty distributions were
estimated may also be at fault, particularly in the case of the surge boundaries. For
example, model inputs supplied by the Previmer system were contrasted with surge
datasets given at two gauges nearest to the domain boundaries. The nearest Previmer
boundary point to each was used; however, some spatial displacement was present,
which, considering the influence of nearshore bathymetry upon hydrodynamics, and
the relatively large errors that can arise from small phase differences, may lead to
significant discrepancies. Furthermore, only relatively short time-series were used in
the comparisons of the datasets, and only a single value was used to represent the
uncertainty in a given variable at all times, which in reality, may vary temporally.

The errors in the ensemble spread, and the larger errors in the regression
model, relative to the MIKE-21 predictions, should not take away from the findings in
this research, which still highlight key issues, such as the importance of probabilistic
approaches to forecasting, the benefits of data assimilation, and the requirement to
find computationally efficient replacements to allow for the production of sufficiently

large ensembles. What the errors do highlight are areas in which future research could
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provide better probabilistic systems. For instance, to more accurately quantify the
uncertainty in the system, thereby increasing the ensemble spread, the Met Office’s
proposed ensemble forecasts of ocean and atmospheric states (see Flowerdew et al.,
2007) could be utilised. These datasets would enable the real-time updating of
uncertainty distributions, based directly on the Met Office ensemble datasets at a given
time, while data assimilation strategies could still be employed with the use of the
Ensemble Kalman filter (Evensen, 1994; 2003) in which the forecast variance is defined
from the ensemble. This could be particularly useful in acknowledging the temporal
variability in uncertainty.

Further research could assess ways in which the relatively simple regression
models defined here could be developed to provide more accurate predictions during
extreme events, while still retaining their computational demand advantage over the
complex models currently used operationally. A variety of empirical models have been
demonstrated in previous research to provide low cost, high accuracy predictions,
which may be useful in directing future refinement. For example, Deo and Naidu
(1999) describe the use of an autoregressive function for the prediction of wave
heights while Kobayashi and Yasuda (2004) provide an example of the use of multiple
regressions, combined with Kalman filtering, for the transfer of offshore to nearshore
wave states. Similarly, Prouty (2007), who also stressed the need for computationally
inexpensive forecasting tools, found that they were able to provide accurate
predictions of storm surge propagation in the North Sea utilising an artificial neural
network and a series of gauges along the East coast of the UK. Similar approaches may
be useful, particularly when forecasting large surge and wave events propagating from
the Atlantic into the English Channel. Furthermore, in complex regions where
oceanographic data is available and an accurate physically-based model can be
developed, future research could examine the development of a ‘fused’ prediction
system, retaining the advantages of both approaches, or, alternatively, where the
physically-based model is extremely inefficient, assess an emulator-based approach.

The findings from this research will be of relevance to a wide modelling
audience, particularly in light of the current trends toward probabilistic modelling and
the application of data assimilation techniques. The application of an empirical-based
approach will be of most interest to coastal managers working in computationally poor

regions, where the feasibility of running high resolution, data intensive models is low.

6.7. Conclusion

A regional model for the transformation of mid-Channel surge and wave states to the
nearshore, using a computationally inexpensive regression-based approach was

contrasted with a physically-based numerical model of the Solent estuarine system.
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The benefits of utilising a probabilistic forecast, including a data assimilation step,

were also assessed. The research indicated that:

The empirical model prediction accuracies were, on average, equal to those
obtained from the physically-based model at all gauged sites, despite the
variability in conditions between the sites considered. In some instances the
empirical model out-performed the physically-based model.

During a series of storm events, the physically-based model predictions were
more accurate by 3% and 8% when hindcasting surge and H peaks,
respectively, indicating an over-simplification in the empirical approach
considered in the research that should be addressed in future research.

The efficiency of the empirical model approach enabled the simulation of a
large ensemble forecast and hourly data assimilation step, shown to both
quantify uncertainty and reduce error in the short-term forecast.

The choice of forecasting approach in an operational system will depend on
the length of datasets available with which to train an empirical model and the
complexity of the system one wishes to represent. This research suggests that
due to the complexity of the Solent, a fusion of both approaches would be

most suitable when making predictions over the whole region.

These findings provide a strong case for utilising empirical-based approaches to

forecasting in coastal zones (either independently or in addition to physically-based

approaches) due to the similarity in prediction accuracies with those obtained using

physically-based approaches, as well as the quantification and reduction of uncertainty

in the forecasts due to the ability to generate large ensembles and assimilate in-situ

measurements in near real-time. The high computational efficiency of the regression

model proposed will be of particular interest to coastal managers in regions where

resources are limited, particularly where one wishes to quantify and reduce uncertainty

in model forecasts; an area of interest in recent flood forecasting research.
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Chapter 7: Discussion

The contextual aim of this research was to provide a regional tide-surge-wave model
for the provision of real-time probabilistic forecasts through the transformation of
Mid-Channel forecasts to the nearshore regions of the Solent. A series of specific
research objectives (Section 1.2) were used to examine pertinent issues relating to this
aim, such as; the spatial and temporal variability in the accuracy of the model
predictions, the processes occurring in the domain of relevance to coastal flooding and
the model sensitivity to them, the reduction in computational resource requirements
that can be obtained using empirical-based modelling approaches, and the
quantification of uncertainty and the increase in prediction accuracy that can be
obtained through the implementation of probabilistic modelling and data assimilation.

The objectives provided in this research will be of interest to those involved in
operational coastal flood forecasting. Through these objectives, this research
attempted to provide information of value to coastal modellers with interests in, both,
the physical processes in estuarine environments, quantification of uncertainty, and
data assimilation in ocean state predictions.

The Solent-Southampton Water estuarine system was selected as the study site
for this research. The complexity and wide range of environments contained within the
region was particularly useful for the examination of the spatial variability in the
processes (such as tide-surge-wave interactions) taking place, and the influence of the
forcing datasets upon model predictions in the variety of conditions often found in
complex estuarine regions. Such a setting is also of use for increasing the applicability
of the research findings to other regions, due to the ability to draw broad conclusions
relating to the conditions influencing aspects, such as, the degree to which tide-
surge-wave interactions take place.

From an operational perspective, the study site also provided an example of a
region that requires a relatively high resolution, regional nest, in order to adequately
represent the variability in the nearshore conditions. Furthermore, previous research in
the area has reported significant errors in the reproduction of tidal hydrodynamics
(Levasseur, 2008), while it also contains environments where spectral wave models
have been considered to be particularly uncertain (Ris et al., 1999; Rogers et al., 2002;
Brown and Wolf, 2009). These conditions were valuable when examining spatial
variability in prediction accuracies in estuarine environments, and examining the
causes of the errors in regions containing relatively low prediction accuracies.

The presence of current operational forecasting capabilities in the English

Channel, as well as the relatively dense network of jin-situ measurements available in
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and around the Solent, were essential in providing datasets with which to force the

regional model and assess the accuracies of the predictions from it.
7.1. Accuracy of the regional model predictions

Predictions of the tide, surge and wave conditions in the Solent-Southampton Water
region were simulated using the MIKE-21 software and datasets obtained from outputs
in the English Channel, provided by a pre-operational forecasting system, Previmer.
The accuracies of the predictions were assessed relative to in-situ measurements
throughout the region in order to ascertain the locations and event characteristics
during which the model provided relatively high and low accuracies.

Predicted tidal amplitudes were consistently under-predicted throughout the
region, with errors in the semi-diurnal constituents of up to 18% at the Southampton
tide gauge. However, the predictions of the tidal constituents were broadly consistent
with previous attempts at modelling through the region. Levasseur (2008), utilising a
3D modelling package, also reported errors of up to 15% in the semi-diurnal
amplitudes, while K, and some shallow water constituents (particularly 2MS, and 2MN6)
contained errors greater than 40%. Furthermore, Levasseur (2008) quotes errors in the
MSR and MNR at Southampton, of 0.44 m and 0.39 m, respectively. These errors were
similar to the 0.48 m and 0.44 m errors found in this research. The similarities in the
tidal errors implied that the use of the 2D rather than 3D model was reasonable.
Levasseur (2008) suggested that most of the error associated with diurnal and semi-
diurnal constituents could be attributed to tidal inputs at the boundaries. Furthermore,
issues relating to the accuracy of predicted tides from numerical models within
complex nearshore regions have been noted in previous research, and for this reason,
in operational forecasting systems, predicted tides are replaced with those defined
from harmonic analysis at class A tide gauges (Flowerdew et al., 2007; Hawkes et al.,
2009). The substitution of the modelled tide with those estimated from harmonic
analysis was examined. The addition of the modelled surge to the substituted tide
resulted in considerable reductions in the error of the predicted combined water level
elevations, reducing the RMSE compared to the “normal” predicted water levels by
around half.

The predicted surge elevation was given as the difference between the tidal
elevations and the combined tide and surge elevations. During the three month
assessment between October and December 2009, the average RMSE of the seven tide
gauges was 0.09 m while absolute Pbias was 15.2%. Predicted surge accuracies from
the regional model were comparable with those obtained from the operational storm
surge model developed by POL (archives of accuracy assessments are available to
download from http://www.pol.ac.uk/ntslf/model.html). Over the period between
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October 2009 and December 2009, the accuracy of the operational storm surge model
at Portsmouth was an average RMSE of 0.07 m. Data from the operational model was
not available at other locations used in this research. Similarly, the prediction
accuracies during the largest peaks in the modelled time-series suggested that the
regional model was capable of reproducing large surge events with comparable
accuracy to the operational model, based on the findings of Wortley et al. (2007),
although a bias, indicating under-prediction of event peaks, was often present. Time-
series plots indicated that much of the error was related to the smooth nature of the
predicted surge relative to that extracted from the measured record. This may be
related to the relatively coarse temporal resolution of the datasets used to force the
model. Alternatively, previous research by Horsburgh and Wilson (2007) found that due
to small errors in harmonically predicted tides, the surge elevations given at tide
gauges could often contain tidal patterning. Bocquet et al. (2009) found similar
discrepancies in the surge smoothness between predicted and measured surges. They
suggested that the harmonic estimation of tidal elevations can contain a RMSE of up to
0.1 m and suggest accuracy assessments of surge predictions are likely to be
penalised due to such uncertainty in the measured record.

The regional model provided predictions of H and T with a domain averaged
RMSE of 0.32 m and 0.81 s, respectively. H_Pbias was positive (indicating an over-
prediction) throughout the domain, most likely due to uncertainty in the wind datasets
used to force the model, which also consistently over-predicted wind speeds when
contrasted with in-situ measurements. Pbias and normalised RMSE statistics indicated
that the model performed most accurately at sites located in deeper waters (greater
than approximately 10 m), where errors were comparable with RMSEs from three
operational forecasting systems assessed by Bidlot et al. (2007). Similarly, normalised
RMSEs were comparable with the 25% and 20% accuracies given by the NOAA online
assessments of their system (http://polar.ncep.noaa.gov/waves/valid_wna.html) and
by Bradbury et al. (2004). However, at gauge sites in some of the shallower regions, for
instance Lymington and the EMU Portsmouth Buoy, H Pbias was greater than 50%,
indicating a relatively large over-prediction. These errors were difficult to contrast with
operational systems as many reports, for example, Bidlot et al. (2007) contrasted
forecasting systems in deeper offshore sites only. Similarly, Bradbury et al. (2004) did
not utilise in-situ measurements in areas such as Lymington due to the complex
bathymetry and an insufficiently fine model spatial resolution with which to provide
reasonable comparisons. However, previous research has described a tendency of wave
models to over-predict H and under-predict T due to an over-prediction of the high
frequency energy, particularly in shallow, short fetch areas (Ris et al., 1999; Rogers et
al., 2002). Brown and Wolf (2009) highlight that forecasts from a coupled tide-surge-

wave model had lower accuracies in water depths of 5 m or less. An assessment by
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Moeini and Etemad-Shahidi (2007) found Sl errors of up to 20% in both H_and T when
hindcasting in an enclosed basin despite using measured wind conditions, while
Johnson and Kofoed-Hansen (2000) have indicated that the formulations used in MIKE-
21 SW (after Janssen, 1989, 1991) may overestimate sea surface roughness in shallow
water regions. Additional analysis indicated that RMSEs could be reduced in the
regional model by altering the local bathymetry, for instance, at Lymington the
alteration of the bathymetry reduced the H RMSE from 0.17 m to 0.09 m.

The examination of the accuracies in the model predictions provided
information of value, both relating to the other experiments contained in this research,
as well as to coastal modellers working in the Solent and similar environments. The
ability of the model to recreate the measured states with comparable accuracy to
existing operational systems provided an indication that the model set-up adequately
represented the fundamental processes occurring in the domain. In doing so, it
provides a tool with which subsequent analysis could be performed. Furthermore, the
spatial variability in the accuracy of the model predictions, particularly relating to the
tides and nearshore wave conditions, enabled conclusions to be drawn that will be of
relevance to other coastal modellers. The relatively large errors contained in the
predicted tides and waves, particularly in the western Solent, support previous
research which has highlighted that model predictions can become increasingly
uncertain in complex nearshore environments. The comparisons with harmonically
derived tidal elevations revealed that in regions where a dense network of in-situ
measurements are available, more accurate tidal predictions can be obtained using
harmonic analysis of tide gauge time-series. Similarly, the improvements to the wave
predictions obtained through local manipulation of the bathymetry provide an
indication of the importance of high quality datasets, particularly in shallow coastal
regions. These findings are of relevance In light of recent advances in data collection;
for instance, coastal modellers now have the ability to sample bathymetries with very
high (>2 m) resolution, using tools such as Lidar (e.g. the CCO now provides such

datasets at a variety of locations along the south coast of England).

7.2. Accuracy of the Previmer products and the sensitivity

of model outputs to them

The contribution of the local wind and boundary conditions to the regional model
predictions was examined by conducting a series of simulations, systematically
removing the dataset of interest and contrasting the resulting outputs with those
obtained when the dataset was included. Furthermore, the boundary conditions and

local wind datasets, supplied by Previmer were contrasted with those from a well-
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established operational forecasting system in the UK. The influence of the divergence
between the inputs, upon the model predictions, was examined.

This research was conducted in order to provide a more detailed understanding
of the variables of greatest significance to nested model predictions in coastal regions.
In addition, it aimed to assess the quality of the Previmer datasets, quantifying the
error in the predictions that may be attributed to dataset selection.

The sensitivity of the model outputs to the local winds and boundary conditions
varied spatially, temporally, and between the wave and surge variables. The exclusion
of the local wind stress resulted in a domain averaged RMSE, | and Pbiash,h of 0.03 m
and 6.5%, respectively, when contrasting surge predictions with and without the
inclusion of wind stresses during the October to December 2009 period. Reduction to
the peak surge magnitudes reached 13.9% during the 10" March 2008 event, where
wind stress was excluded. Spatial variability in the influence indicated that the
sensitivity to wind-stress was smallest in the offshore Nab Buoy site and greatest at
Southampton. The exclusion of the winds resulted in a decrease to peak water levels of
up to 0.2 m, while the skew-surge was decreased by up to 15.6%. The influence of the
boundary surge datasets upon the coastal surge prediction was greater than that of the
wind stress. Its removal resulted in the reduction to peak storm surge heights of 73.0%
on average.

The opposite trend was shown when contrasting the relative influence of the
local winds and boundary conditions upon the wave predictions. Despite the local
extent of the model domain, the wind was the most influential force upon the
modelled waves. This was most clearly demonstrated when the boundary wave dataset
was removed. During the event on the 14" November 2009, despite the removal of the
boundary wave energy input, the predicted H_peak was within 15% of that predicted
with the boundary waves included at the EMU Nab Buoy site. Although spatial
variability was present in the degree to which the boundary wave conditions influenced
the model predictions (with the greatest sensitivity occurring the in most exposed
sites, such as the EMU Nab Buoy), the local wind field was the most significant
contributor to the model output in the domain. The removal of the local winds resulted
in the H_event peak decreasing by an average of 60%, while in the most sheltered
regions, such as Southampton this value rose to 90% during the November 14" 2009
and March 10" 2008 events.

The results provided broad indications of the sensitivity of the model predictions
to input forcing, providing conclusions which, although basic, were of value to
modellers working in estuarine environments containing a variety of conditions such as
those found in the Solent. The results indicate that both datasets were of significance
to peak storm surge elevations, correlating with previous research. For instance, Wells
et al. (2001), Wortley et al. (2007), and Davis et al. (2010) have also demonstrated that

the local wind field provides an important energy contribution to the surge. Similarly,
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the importance of accurately representing the surge state outside of the immediate
model nest has been suggested to be particularly important in the English Channel,
where the funnelling effect and long fetch conditions enable the continual build-up of
a surge propagating south from the North Sea, providing a considerable influence
upon the state of the surge reaching the coast (Smith and Ward, 1998). Alternatively, it
has been demonstrated that the accurate representation of the local wind field was
considerably more important than the quality of the boundary conditions, when
predicting wave states at the coast, particularly where the fetch was relatively short.
These findings are expected to be broadly representative of conditions in many coastal
regions and, therefore, applicable to a wide variety of nested, coastal modelling
applications.

The local winds and boundary conditions obtained from the Previmer system
were contrasted with those from the operational system currently in use in the UK. The
comparison of the datasets revealed that, on average, they were consistent with one
another. Unsurprisingly, therefore, the model predictions made when substituting the
Previmer datasets with those from the Met Office, provided accuracies that were
consistent with those obtained when forcing the models with the Previmer products.
On the surface, this provides an indication that the products from the Previmer system
were a suitable replacement to those that could be purchased from the Met Office.
Furthermore, when considering the wind fields, both datasets displayed errors, relative
to in-situ measurements, which were significantly larger than those provided in
previous research based in offshore locations (Bidlot et al., 2007). This may highlight
an uncertainty in atmospheric model predictions in coastal regions. Previous research,
for instance Bradbury et al. (2004), has suggested that the English Channel itself is
problematic for wind modelling due to difficulties representing the funnelling effect of
shore parallel winds. In addition, the coarse temporal resolution of the input datasets
may have contributed to the errors. In each of the datasets contrasted, the averaged
time-series given from the two systems were broadly consistent; however short-term
divergence in the magnitude and phase of the variable states, particularly during the
storm conditions, was relatively large. The greatest divergence occurred during the
event on the 14" November 2009. For instance, during this event the wind speed peak
timing diverged by up to three hours, while the magnitude of the surge and H,
contained differences of more than 0.15 m and 1.3 m, respectively. The impact of the
differences in the representations of this event upon the model predictions were more
significant than those revealed when considering the averaged changes during the full
comparison between October and December 2009. During this event, the use of the
Met Office datasets increased the accuracy of the timing of the peak wind speed, surge
and H_events, relative to the predictions made using the Previmer data. Similarly, it
also improved the accuracy of the magnitude of the peak surge elevation, more

accurately recreating a secondary peak in the surge which was not contained in the
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Previmer boundary conditions. Interestingly, the H peak magnitude was under-
predicted, relative to in-situ measurements, when the Met Office datasets were used. In
this case, the substitution of the Met Office datasets did not improve on the prediction
accuracy relative to the Previmer-forced predictions. This may have been due to
inaccuracies in the Met Office model boundary conditions. For instance, Bradbury et al.
(2004) has also reported that the Met Office model under-predicted H when modelling
conditions greater than 2.5 m at Hayling Island.

The evaluation of the Previmer datasets aided in establishing probable causes for
some of the errors found in the regional model predictions. For instance, the under-
prediction of the surge and wave peaks was likely to be partially attributed to the wind
stress, which also under-predicted peaks in the time-series, relative to the Met Office
datasets and in-situ measurements. The broad agreement between the datasets
provides confidence in the Previmer system. However, the divergence during storm
conditions is problematic due to the importance of these periods to coastal inundation.
At present, the results suggest that the Met Office derived products provide a more
accurate source of forcing for the regional model. The difference in temporal
resolution, particularly in the wind and wave conditions (three hour and one hour in
the Previmer and Met Office products, respectively), may have contributed to the lower
accuracies in the Previmer datasets during storm events. The comparisons between the
datasets have not only critiqued the Previmer products, they have also highlighted
uncertainties in those supplied by the Met Office, such as the relatively large errors in
the coastal wind predictions, and the under-prediction of the wave heights
(corresponding well with previous research). Due to the importance of the shelf-scale
model outputs to regional nested model predictions, these findings will be of relevance
to those working in similar conditions, and those interested in the products available

from the Previmer system.

7.3. Tide-surge-wave interactions

The influence of the tide-surge-wave interactions upon the model predictions was
examined, with particular focus on the sensitivity of the wave and surge predictions to
the tidal fluctuations. To quantify these interactions, simulations were conducted in
which a variable of interest was excluded, and the resulting model output was
contrasted to that obtained when the variable was included. Furthermore, the influence
of the errors in the tidal amplitudes obtained from the regional model upon the surge
and wave predictions were assessed by perturbing the tidal boundaries and examining
the effects upon the model outputs.

This research was conducted for three reasons. Firstly, it enabled the

guantification of local tide-surge-wave interactions in coastal environments, providing
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broad insights to be made regarding the conditions which control the magnitudes of
the interactions. Secondly, it quantified the degree to which errors in the modelled
tidal elevations may propagate through the modelling system, due to tide-surge-wave
interactions, despite their replacement, post-simulation, with harmonically derived
tides. Finally, due to the relatively large proportion of the computational run-time
dedicated to the wave component of the regional model, this research aimed to assess
the importance of its inclusion by examining the contribution of the waves to the peak
surge magnitudes.

During three events occurring on the 14" November 2009, the 29" November
2009, and the 10" March 2008, the tide-surge interaction resulted in alteration of the
surge amplitude and timing. The largest changes to the peak surge conditions
occurring at the Lymington and Southampton tide gauges during the event on 10"
March 2008. Predicted peak surge elevations were altered by 9.9% and 11%,
respectively, at the two tide gauges. The importance of the tide-surge interaction upon
the combined water level elevations varied between the events considered. The most
important factor was not just the change in the peak surge magnitude but also the
alteration to the timing of the surge relative to the timing of the high tide. Tide-surge
interactions induced alteration to the skew-surge and peak water level elevations by
up to 30% and 10%, respectively, at the Southampton site. Brown and Wolf (2009)
discussed the tide-surge interaction and its implications for coastal managers. They
acknowledged that a combination of both magnitude and timing of the surge was
important, and suggested that the skew-surge was a useful indicator of risk for coastal
managers. The findings presented in this research demonstrated that accurate
representation of the local tide-surge interaction can be essential in the provision of
high quality flood warnings, particularly when the surge occurs on or near to the high
tide. These results correspond with other studies indicating the importance of tide-
surge interactions upon the magnitude and timing of surge events, including; Prandle
and Wolf (1978), Wells et al. (2001), Horsburgh and Wilson (2007), Wolf (2009) and
Brown et al. (2010).

The sensitivity of the wave predictions to the tidal input was greatest in the
nearshore regions when the waves were at their highest. At the EMU Hayling Buoy, the
peak H was altered by up to 16.3% due to the water level input. Where water levels
increased, so too did the H. and T, and vice versa. This corresponds with previous
research by Chini et al. (2010) who found that the inclusion of tide-surge data was
important in accurate prediction of H, as increased depths enabled waves to break
later, resulting in larger wave heights in shallow regions. Alternatively, research has
found that in depth-limited conditions waves will interact with the sea bed leading to
linear and non-linear bottom dissipation mechanisms such as percolation, bed motion,

shear stress, and scattering reducing the energy within the wave (Luo and Monbaliu,
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1994; Padilla-Hernandez and Monbaliu, 2001; WISE group, 2002). The magnitude and
variability in interaction corresponds with previous research in the southern North Sea
(Tolman, 1991), and the English Channel and Irish Sea regions (Wu et al., 1994). These
studies found that that the inclusion of tides and currents had a relatively small
influence upon mean wave parameters but that the effects were highly localised. The
largest impacts were found in shallow regions during storm peaks in which changes of
10% were generally recorded, corresponding well with the 9.17% average change to the
H_event peak at the Emu Hayling Buoy.

Despite the relatively large influence of the exclusion of the tidal input upon the
surge and wave predictions, the perturbations of the tide (representing the errors
obtained in the regional model predictions) did not cause significant changes to the
modelled states. For instance, the alteration to the tidal boundary during the 10™
March 2008 event shifted the peak in the surge closest to the high tide by no more
than 20 minutes, and did not change the skew-surge elevation by more than 4%.
Similarly, the largest alteration to the peak wave H_induced by the perturbation of the
tidal elevations was 6%.

The sensitivity of the surge prediction to the influence of the state of the waves
contained a high degree of spatial variability, with the largest changes to the surge
peaks found at the gauges located in the eastern Solent and along the south west
coast of the Isle of Wight, coinciding with the most extreme wave conditions. During
the event on the 10" March 2008, the inclusion of the wave field led to an increase in
predicted peak surge heights of up to 9.2% at the Emu Hayling Buoy, corresponding
with previous research which has indicated that coupling of wave and hydrodynamic
models can significantly alter the height of modelled surge elevations. Kim et al.
(2010) found that extreme typhoon-induced surge events could not be modelled
without the inclusion of wave radiation stresses which accounted for up to 40% of the
surge elevation. The conditions of this particular event were extreme, with wave
heights exceeding 18 m. Choi et al. (2003), Funakoshi et al. (2008) and Xie et al.
(2008) reported changes to surge predictions of between 10 - 15% due to model
coupling. In each case, the authors note that the influence of the waves upon the surge
displayed high degrees of spatial variability. Mastenbroek et al. (1993) found both
spatial and temporal variability in the change to the predicted surge, highlighting that
in two of three independent events considered, the effect of the wave model was
negligible, while in the third the increase to predicted surge heights was in the region
of 5%. The spatial variability in the model sensitivity, correlating to the magnitude of
the waves, as well as the 9.2% - 17% increase of peak surge heights at the Emu Hayling
Buoy and along the south west coast of the Isle of Wight, are similar to those results
given by Choi et al. (2003) under similar wave and surge conditions (e.g. H_heights of
2.5-6 m and surge elevations of 1.5-2 m).
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The results indicated that the tide-surge-wave interactions are of greatest
relevance during storm events, while the influence can be highly localised. These
findings correspond with previous research in other regions and will provide coastal
modellers with indications regarding the contribution that the interactions will have
upon model predictions, as well as highlighting the spatial and temporal variability in
their magnitudes. The assessment of the sensitivity of the surge and wave predictions
to the perturbations in the tidal elevations is relevant to current operational forecasts,
in which it is common practice to replace modelled tides with those from harmonic
analysis. This research has indicated that the errors from the tidal predictions will
propagate through the system, due to tide-surge-wave interactions. However, these
errors were shown to be relatively small, therefore, the current accuracy of the tidal
models is not expected to be a limiting factor on the accuracy of the wave and surge
predictions, even in complex estuarine systems such as the Solent. The results also
indicated that the contribution of the waves upon the prediction of the surge is of
greatest significance during storm events. This demonstrated that it would not be
suitable to remove the wave model component from the regional prediction system in
order to reduce computational run-time, even where wave damage to defence
structures was considered to be insignificant. This was an important consideration to
the latter stages of the research which attempted to provide probabilistic predictions.
It will also be relevant to those working in regions experiencing low to medium
exposure to waves, highlighting that the influence of HD-SW coupling may still provide

significant contributions to surge elevation.

7.4. Empirical data-driven approaches to modelling,

ensemble forecasts, and the Kalman filter

The application of an empirical data-driven approach to transforming offshore ocean
states to the coastal regions of the Solent was examined. A regression model was
utilised, the accuracies of which were assessed against in-situ measurements and
predictions made using the MIKE-21-based regional model. Using the regression
model, a probabilistic model forecast was described, randomly perturbing input
datasets from pre-defined uncertainty distributions. The prediction also included a
Kalman filter data assimilation step. An example event, with errors randomly
distributed to the forcing datasets, was used to demonstrate the degree to which
ensemble predictions and Kalman filtering could quantify uncertainty and improve the
accuracy of the forecasts.

This portion of the research had two broad objectives. Firstly, previous literature

has suggested that in some circumstances physically-based numerical models may not
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be appropriate due to formulation uncertainty, in which case, data-driven approaches
may provide more accurate predictions. Due to the complexity of the Solent, the
application of a simple data-driven approach, such as regression, was of interest.
Secondly, the use of probabilistic predictions to quantify uncertainty, and data
assimilation to reduce it, are key research interests in operational oceanography.
Therefore, this research attempted to describe a method by which ensemble
predictions and a data assimilation step could be produced, within a time-frame
suitable for short-term, real-time forecasting.

The regression models provided prediction accuracies containing little temporal
or spatial variability during a two year assessment. The errors given in the surge and T,
predictions compared well with those expected from currently operational systems. At
Portsmouth the regression contained an average error of 0.08 m while results available
from POL (http://www.pol.ac.uk/ntslf/model.html) indicate that the operational storm
surge model also contained an average RMSE of 0.08 m during the same period.
Similarly, operational reports have stated that the the errors in wave predictions are
commonly between 20 and 25% of the incident magnitude (NOAA
Onlinehttp://polar.ncep.noaa.gov/waves/valid_wna.html; Bradbury et al., 2004, Bidlot
et al., 2007), which corresponds well with the gauge average value of 16.9% from the
regression model. The H_prediction errors were in reasonable agreement, but slightly
larger than those expected, with a gauge average error of 31%. The highest accuracies
were found at Poole bay (23%).

The regression model predictions were similar to those obtained using the MIKE-
21 model during the October and December 2009 period. For instance, gauge average
RMSE in the surge was 0.1 m in both instances. At Lymington the regression
predictions of H_contained a lower Pbias than those obtained using the MIKE-21
model, indicating that the over-predictions (attributed in part to bathymetric
uncertainty) could be reduced using the regression approach. However, the MIKE-21
models predicted a series of peak wave and surge magnitudes more accurately than
the regression. These results indicated that for extreme events the current regression
model may be too simplistic and require further development before recommendation
as a suitable alternative to the MIKE-21-based model. On the other hand, the
importance of the reduction in accuracies during storm events will depend on the
application to which the models are assigned. For instance, the MIKE-21 model was
able to provide an 8% and 3% increase in accuracy in the prediction of the peak
magnitudes in the H_and surge, respectively. Depending on the accuracy requirements
of the forecasting system, the 3% difference in surge magnitudes may be acceptable.
For instance, this indicates that during a 1 m surge event, the two model predictions,
on average, would be expected to diverge by only 3 cm. Similarly, in regions where
wave exposure is low, the 8% reduction in accuracy may also be acceptable.
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The difference in computational demands between the two modelling
approaches was considerable. For instance, using a single desktop computer with two
2.13 GHz processors and 4 GB of RAM, the regression model was able to provide a 24
hour forecast at 5 minute time steps, of surge, H and T at the same 20,000 points
included in the MIKE-21 mesh, in less than 40 minutes. This was considerably faster
than the 3.5 hours required by the coupled MIKE-21 HD and SW model to provide the
same output.

The probabilistic predictions were created by drawing on uncertainty
distributions representative of the errors in the input datasets, relative to in-situ
measurements. The ability of the regression model to create large ensembles, within a
short enough run time to allow for regular updating of the independent variables, is of
valuable to coastal managers. In the example given, 6 hours prior to the event a
modeller would predict a peak magnitude of 3.12 m, with a range of 0.4 m based upon
the ensemble spread. However, updating a subsequent forecast with a start point 3
hours prior to the event, this prediction had changed to 3.21 m, with a range of only
0.28 m. Not only does this allow for increased accuracies and reduced ensemble
spreads as the event draws nearer, it also enables quantification of expected
magnitudes at given confidence levels. For example, at 3 hours prior to the event peak,
analysis of the ensemble would allow a modeller to indicate that 90% and 95% of the
ensembles predicted a magnitude of 3.33 m and 3.35 m respectively. The increase in
the accuracy of the prediction, and the reduction to the uncertainty, was greatest in the
short-term, with improvements largely negligible after 6 hours. The importance of the
information from such techniques has been highlighted in other research. Flowerdew
et al. (2007) discuss the development of a pilot scheme to update the current
operational forecasting systems in the UK from deterministic to probabilistic systems,
for example, while the migration of data assimilation strategies commonly used in
atmospheric modelling into the oceanographic sector has been discussed increasingly
over the last decade (Kalman, 1960; Lionello et al., 1995; Kantha and Clayson, 2000;
Kobayashi and Yasuda, 2004; Neal, 2007).

The findings of these experiemnts have indicated that the use of a simple data-
driven modelling approach could provide predictions of ocean state with comparable
accuracies to those obtained using complex, computationally demanding models, in a
fraction of the time. Furthermore, the benefits that could be obtained by utilising a
computationally efficient forecast, for instance, the generation of large ensembles and
the inclusion of data assimilation, at regular intervals (e.g. one hour), have been shown
to provide valuable information to coastal managers interested in flood inundation.
The relatively short duration of the reduction in prediction error obtained from data
assimilation indicated that the techniques presented in this research will be of most
use in the hours directly preceding a storm event. These findings will be of relevance

to a wide modelling audience, particularly in the light of current trends towards
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probabilistic modelling and the application of data assimilation techniques. The
application of the computationally efficient empirical-based approach will be of most
interest to coastal managers working in computationally poor regions, where the

feasibility of running high resolution, data intensive models is low.

7.5. Limitations and future research

The research conducted in chapters three to six have enabled the aims set out in the
introduction to be met. The findings revealed in the thesis are expected to be of
particular interest to ocean modellers working in complex estuarine environments, and
relate to current research interests in ocean forecasting. The errors in the modelled
tidal elevations, the increase to accuracies derived using harmonic analysis, and the
assessment of the significance of expected tidal errors upon surge and wave states,
will indicate to modellers in similar conditions that the use of tidal substitution may
often be best practice. Similarly, the findings related to the spatial variability in the
model prediction accuracy, the influence of the input datasets, and the local coupling
between the wave and water levels, is expected to provide valuable information to
coastal modellers interested in the importance of input data uncertainty upon model
predictions and the magnitudes of signal interactions expected in the variety of
conditions found in coastal environments.

The evaluation of the Previmer data products, relative to those obtained from
the operational forecasting system in the UK, and the expected uncertainty in the
regional model predictions due to divergence between the datasets, will be of interest
to those looking to use Previmer products, while the comparison of the empirical
model predictions with those from the MIKE-21-based model will be of relevance to
modellers working in regions where computational resources are limited.
Furthermore, the demonstration of the ways in which probabilistic predictions and data
assimilation strategies can quantify uncertainty and increase the accuracies of
predictions, will support other research which has highlighted a recent desire to
address uncertainty in model predictions using similar methods.

To expand upon the findings presented in this thesis, further research in three
key areas could be conducted. Firstly, the time-series used could be extended. For
instance, this research provided a comparison of Previmer and Met Office data
products, and quantified the change to the model predictions that would result due to
the divergence between them. Comparisons were made during a three month period
between October and December 2009. The findings were able to demonstrate that on
average the two systems provided broadly consistent datasets, indicating that during
the period of interest in this research, the Previmer datasets were suitable for forcing

the regional model. However, the greatest divergence occurred during storm
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conditions. As only two significant events were present in the time-series considered,
future research should extend the analysis presented in this thesis over longer time-
series to assess if the two systems divergence consistently during storm events. This is
particularly relevant to coastal flood forecasting where extreme ocean conditions are of
most relevance. Furthermore, a ‘dataset selection’ uncertainty was used in this
research, and although this provided a useful means of assessing the quality of the
Previmer datasets, relative to those from a well-established system, it did not explicitly
demonstrate which dataset was the most accurate; rather, it only implied the accuracy
of one over the other by contrasting the predictions of the surge or waves (i.e. the
dependant variable). Further analysis should not only extend the length of the analysis,
but should also contrast both datasets against a measurement, prior to application to
the model. However, this can be difficult as water level measurements are rarely
located in offshore regions where the boundary conditions are supplied. The concept
of ‘dataset selection’ uncertainty could also be extended in future work, perhaps
considering a fusion of data inputs, in which an averaged input value based on a set of
predictions from operational systems could be provided. Alternatively, where ensemble
predictions are available, the inputs from both systems (and their ensemble
distributions) could be used to define the boundary condition uncertainty distributions
from which to draw upon.

Secondly, the presence of tide-surge, and HD-SW interaction was examined
during a three month autumn period between October and December 2009 and during
a relatively small set of storm events. The results indicated the magnitude and spatial
variability of local signal interactions in the region, and provided evidence to suggest
that current uncertainties in predicted tidal elevations were unlikely to lead to
significant errors in wave and surge predictions. The largest interactions were shown
to occur during storm periods, while significant variation between storm events was
often found. Due to the variability between events, and the limited number of events
considered, future research should apply the methodologies presented in this research
to examine the interactions during a larger set of events. Furthermore, the regional
model could be utilised, with a Monte Carlo approach, in which the relevant states
(wave, surge and tidal elevations and phase) could be perturbed to create an ensemble
of conditions in which the interactions could be examined, to more fully assess the
interactions taking place, and their sensitivity to the relevant variables. Such research
would not only validate the findings of this thesis, but would also be useful in
predicting signal interactions in other regions where oceanographic conditions vary
from those in the Solent.

Thirdly, in chapter six, a computationally efficient means of transforming
offshore predictions to the nearshore regions was assessed in order to produce large
ensembles of predictions for probabilistic forecasts, within time constraints suitable

for real-time updating (e.g. one hour), where computational resources inhibited the
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use of numerical models such as MIKE-21. This method was useful in removing the
requirement for computationally demanding, high spatial resolution meshes in the
nearshore region. However, this approach still required inputs provided by larger scale
forecasting systems, such as Previmer, which may not be available to coastal managers
in resource poor regions. Further research could examine the ways in which the
requirement of the Previmer datasets could be removed. Establishing such an approach
could be particularly useful to coastal managers without access to forecasts from
systems such as Previmer. The work of Prouty (2007), in which an ANN was established
utilising a series of in-situ tide gauges along the east coast of the UK, could be
particularly relevant due to the relatively dense network of in-situ measurements along
the south of the UK, and the common propagation of storm surges and waves through
the English Channel from the North Atlantic, provided a substantial lead time could be
obtained to enable warnings to be made and mitigation measures to be undertaken.

In a similar vein, this research highlighted that when one wishes to model
throughout a complex region, such as the Solent, limitations may arise when using a
point-based empirical model approach. Future research could examine this necessity
in more detail, and expand the findings to a variety of coastal environments. For
instance, when forecasting in a harbour in which an in-situ measurement in located
(e.g. Portsmouth Harbour), it may be reasonable to assume that wave and surge
conditions throughout the harbour are relatively constant. In such a situation the use
of the empirical approach defined in this study may be suitable, particularly where
large datasets (such as bathymetric surveys) are not available, limiting the
development of suitable physically-based models. In such conditions, future research
may wish to focus on increasing the accuracy of the empirical model predictions of
storm events, shown in this research to be less accurate than those achieved using the
physically-based model, likely due to the relatively simple nature of the liner
regression approach used. The development of a more complex empirical model, while
assessing the resulting alteration to computationally efficiency would be beneficial
research to such regions. Alternatively, in complex regions such as the whole Solent-
Southampton Water estuarine system, interpolation between point sources is unlikely
to adequately represent the spatial variability in the system. In these instances, future
research may be better off examining the best way to represent the spatial surface in
the system, while minimising computational costs. In this research this limitation in the
empirical model used was addressed by using the MIKE-21 model to inform of the
spatial surface between gauged locations, due to the high degree of spatial variability
in conditions throughout the region. However, this method contained inherent
uncertainties relating to temporal variability in the spatial surface as it was defined as
the relationship between each node and the four in-situ measurement sites was
defined by the average during the event on the 14" November 2009 simulation,

therefore assuming that the relationships between the nodes would be representative
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at other times. However, this is likely to not always be the case. Research into the
optimal way to represent variability in the spatial surface while retaining computational
efficiency would be highly beneficial in this region. Future research may wish to
examine this using a ‘fusion’ of the physical and empirical approaches in which the
physically-based model may be simulated once, providing the initial forecast of the
ocean state while a subsequent empirical model, such as the regression presented in
this research, could then be used to define an ensemble, the spread of which could be
applied to the original prediction. This would allow the user to sample from the
uncertainty in the variables of interest (e.g. the boundary conditions), while retaining
the benefits of using the physically-based model, without the vast computational
requirements. Alternatively, the construction of an emulator of the physically-based
model may achieve a similar goal by constructing relationships linking the physically-
based model outputs throughout the domain with the independent input variables.

Future research into the development of a ‘fused’ modelling approach or
emulator may also be of value in addressing the issues facing the empirical model
when predicting very extreme events, particularly in the case where a wide range of
such events are not available to train the empirical model. For instance, the data used
to train the empirical surge model in this research contained only one event that would
be considered very extreme (that occurring on the 10" March 2008). This can be
problematic when attempting to predict events that lie beyond the limits of the training
data, particularly in complex systems where the relationship between input and output
variables may change as event magnitude increases. In the case of the surge, the
empirical model defined in this research was predominantly based on events with
magnitude between 0.5 and 0.8 m, and therefore, may become increasingly uncertain
when making predictions beyond this range (due to known non-linearity, e.g. in the
role of wind stress on the ocean surface) without further validation or re-training with
a greater variety of more extreme events. To address this in the Solent future research
should examine the accuracy of the current model to a larger number of very extreme
events with further hindcasts, particularly at Portsmouth where long records exist. This
would require the generation of Previmer datasets (as independent variables) for such
periods, which was not available in the current research. In areas where long historical
records are not available, the development of the ‘fused’ or emulator approaches may
be preferable. Although a lack of extreme event datasets with which to train an
empirical model will also hinder the validation of a physically-based model, the ability
of the latter to represent the physics of the system, as well as validation of the
formulations in other regions where such conditions may have been recorded, could
provide more confidence when forecasting very extreme events. With concerns of
increased storm magnitude in the future, due to global climate change, this is likely to
be a particularly pertinent area of research.
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Further research could also examine additional ways in which data assimilation
could be implemented into such a system. In this research a relatively simple update
was applied to the input datasets. Although this provided an effective short-term
increase in accuracy, other techniques exist. For instance, the empirical model
predictions of the state of the surge and waves in the Solent could be updated. A
model could be established describing the covariance between the update time step
and the subsequent time steps in the forecast. By doing so, an update applied at a
given point could be applied to the remainder of the forecast, accounting for the likely
reduction of the relevance of the measurement as temporal gap increases, in an

attempt to increase the accuracy of the forecast.
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Chapter 8: Conclusions

The research presented in this thesis has provided novel findings that will be of

interest to coastal modellers working in a variety of regions, and from which further

research can build upon. The key findings (detailed further in previous chapters)

include:

Previmer derived datasets were of comparable accuracy to those obtained from
the Met Office, providing a valuable tool to future coastal modellers requiring
forcing datasets. However, to more accurately define peak storm events, an
increase in the temporal resolution beyond the 3 hours available in the research
is required.

HD model predictions become increasingly uncertain in the some of the
shallowest regions of the domain. In such conditions the substitution of the
modelled tides with those derived from harmonic analysis was shown to be best
practice for operational forecasts of extreme water levels.

Errors in the wave predictions, particularly in regions such as Lymington, were
reduced partly through the alteration of the local bathymetry, while a consistent
bias throughout the domain was correlated to errors in the wind field datasets.
These results highlight the importance of high quality (accuracy and spatial
resolution) atmospheric and bathymetric datasets, particularly in coastal
regions, while also supporting previous research suggesting that current 3™
generation wave model formulations may be inaccurate in some very nearshore
applications.

Tide-surge-wave interactions were most significant during extreme storm
events, clearly demonstrating that coupling of all three processes is vital in the
provision of accurate model predictions. However, the propagation of the error
in the system, due to the expected errors in the modelled tides upon the local
tide-surge-wave interactions, was relatively small, indicating that current tidal
prediction accuracy is unlikely to be a significant limiting factor on storm tide
level and wave predictions in the region (assuming harmonic tidal substitution).
A simple empirical model was shown to provide accuracies that were
comparable with those obtained from the MIKE-21 regional model on average,
although model development is required to address lower accuracies when
modelling extreme events, while application suitability in other areas will be
highly dependant upon the complexity of the region and the data available.
The vastly reduced computational requirements associated with the empirical
model allowed for the simulation of probabilistic forecasts with a near real-
time data assimilation step. This was found to quantify and reduce uncertainty

in short term forecasts.
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The analysis conducted in this research has enabled the objectives established
in the introduction to be met. In doing so, this work has provided information that will
be of value to those working within the Solent region specifically, although many of the
findings are applicable to other coastal environments and be of relevance to a wide
modelling audience.

The findings provide two clear directions for future research. First, extension of
the number of storm events examined would enable more robust conclusions,
applicable in a wider variety of conditions, to be made when contrasting: the datasets
provided by the Previmer and Met Office systems; the accuracy of the empirical model;
and when examining the significance of the tide-surge-wave interactions in the region.
In particular a Monte Carlo approach could be used to more fully sample the sensitivity
of model outputs and the degree of tide-surge-wave interaction occurring during a
wide range of storm conditions. Second, the utilisation of empirical approaches to
forecasting in a variety of environments could be further developed. In broadly
homogenous regions, such as harbours, where the use of a single in-situ measurement
site is of value, further research could aim to increase the accuracy of the empirical
model during storm events through the development of more complex empirical
approaches than the linear regression used in this research, while also assessing the
computational burden associated with additional complexity. Alternatively, in complex
regions such as the Solent, where a physically-based model is required to adequately
represent the spatial variability in ocean conditions, future research would be best
focussed on finding the optimum method by which an emulator, or model ‘fusion’
could be devleoped in order to represent the spatial variability in the system and retain
prediction accuracy during extreme events (particularly those not yet experienced in
the region) while enabling the simulation of large ensembles without requiring

excessive computational resources.
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Appendix

A simple example of the Kalman filter update, after Neal
(2007): The bucket of water

A television forecast says that rainfall will occur overnight to the amount of 4 cm,
therefore X = 4.
The variance (Vf) associated with the forecast is 1.5 cm.
The bucket is placed outside overnight and is estimated the next morning by eye to
contain 5 cm. Therefore, Xo =5cm.
With no other means to accurately measure this, the variance of this estimate is
assumed to be 1 cm. Therefore, V. =1 cm.
The combination of both estimates is used to get the most accurate estimation using
the Kalman filter:

K= PH'(HPH +P)™

X=X+ K(X°- HX")

Where P is the error covariance matrix associated with the forecasted state vector, H is
the measurement operator, " signifies a transpose of a matrix, P is a measurement
noise covariance matrix describing covariance of the measurement errors, X is the
analysed (‘best guess’) state, X is the forecasted state, K is the Kalman gain, X is the

state measurement.

When considering only a single point case then the operator (H) equals 1 as the
measure maps directly onto the model state. This means that the innovation matrix
(X -HX) equals the difference between the measured and simulated state (which
equates to X - Xf = 1).
For a point model K simplifies to K = V; / V. + V,(i.e. 1.5/ (1.5+1)) = 0.6.
The analysed estimate of X can then be given as:
X =X+KI
X =4+0.6*1
X=4.6
The variance of the analysed state estimate can also be calculated:
P = (I-KH)P(I-KH)"+KP. K"
When applied to a single point bucket example this simplifies to:
V. =V-KV
V. =1.5-0.6%1.5
vV =0.6
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