The University of Southampton
University of Southampton Institutional Repository

G-Functions for multiple interacting pile heat exchangers

G-Functions for multiple interacting pile heat exchangers
G-Functions for multiple interacting pile heat exchangers
Pile heat exchangers – where heat transfer pipes are cast into the building piled foundations – offer an opportunity to use ground energy systems without the additional construction costs related to the provision of special purpose heat exchangers. However, analysis methods for pile heat exchangers are still under development. In particular there is an absence of available methods and guidance for the amount of thermal interaction that may occur between adjacent pile heat exchangers and the corresponding reduction in available energy that this will cause. This is of particular importance as the locations of foundation piles are controlled by the structural demands of the building and cannot be optimised with respect to the thermal analysis. This paper presents a method for deriving G-functions for use with multiple pile heat exchangers. Example functions illustrate the primary importance of pile spacing in controlling available energy, followed by the number of piles within any given arrangement. Significantly it was found that the internal thermal behaviour of a pile is not influenced appreciably by adjacent piles.
ground heat exchanger, pile, ground energy system, ground source heat pump system
0360-5442
747-757
Loveridge, F.A.
fb5b7ad9-d1b8-40d3-894b-bccedf0e8a77
Powrie, W.
600c3f02-00f8-4486-ae4b-b4fc8ec77c3c
Loveridge, F.A.
fb5b7ad9-d1b8-40d3-894b-bccedf0e8a77
Powrie, W.
600c3f02-00f8-4486-ae4b-b4fc8ec77c3c

Loveridge, F.A. and Powrie, W. (2014) G-Functions for multiple interacting pile heat exchangers. Energy, 64, 747-757. (doi:10.1016/j.energy.2013.11.014).

Record type: Article

Abstract

Pile heat exchangers – where heat transfer pipes are cast into the building piled foundations – offer an opportunity to use ground energy systems without the additional construction costs related to the provision of special purpose heat exchangers. However, analysis methods for pile heat exchangers are still under development. In particular there is an absence of available methods and guidance for the amount of thermal interaction that may occur between adjacent pile heat exchangers and the corresponding reduction in available energy that this will cause. This is of particular importance as the locations of foundation piles are controlled by the structural demands of the building and cannot be optimised with respect to the thermal analysis. This paper presents a method for deriving G-functions for use with multiple pile heat exchangers. Example functions illustrate the primary importance of pile spacing in controlling available energy, followed by the number of piles within any given arrangement. Significantly it was found that the internal thermal behaviour of a pile is not influenced appreciably by adjacent piles.

Text
multiple Gfunct rev2 clean.pdf - Accepted Manuscript
Download (4MB)

More information

Accepted/In Press date: 6 November 2013
e-pub ahead of print date: 8 December 2013
Published date: 1 January 2014
Keywords: ground heat exchanger, pile, ground energy system, ground source heat pump system
Organisations: Infrastructure Group

Identifiers

Local EPrints ID: 359691
URI: http://eprints.soton.ac.uk/id/eprint/359691
ISSN: 0360-5442
PURE UUID: 339ffdc1-bbd3-4343-8cf3-c0a6c4872abc
ORCID for F.A. Loveridge: ORCID iD orcid.org/0000-0002-6688-6305
ORCID for W. Powrie: ORCID iD orcid.org/0000-0002-2271-0826

Catalogue record

Date deposited: 29 Nov 2013 13:35
Last modified: 15 Mar 2024 02:48

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×