University
of Southampton

Discussion Papers in
Management

To Train or To Repair? Training and Repair Policies for
Stand-by Systems

Yeek-Hyun Kim
and

Lyn Thomas

Number M04-17
March 2004 ISSN 1356-3548



To Train or To Repair? Training and Repair policies for

stand-by systems
by

Yeek-Hyun Kim, Lyn Thomas

Abstract

This research is concerned with developing repair and training strategies for standby
equipment which maximise the time until the equipment is needed and it is unable
to respond. Equipment can only be used if it is in an operable state and the users
have had sufficient recent training on it. Thus it is necessary to decide when to
maintain/repair the equipment and when to use the equipment for training. Both
actions mean the equipment is not readily available for use in an emergency. We
develop discrete time Markov decision process formulations of this problem in order
to investigate the form of the optimal action policies which maximise the expected
survival time until a catastrophic event when an emergency occurs and the equipment

cannot respond. We also calculate the solution in a number of numerical examples.



1 Introduction

Stand-by equipment is only brought into operation when there is a vital need for it,
for example, a hospital emergency power supply system, military equipment etc. We
call the times when there is a vital need for a stand-by unit on initiating events and if
the unit is not able to respond to an initiating event then it is deemed a catastrophic

event.

This research is concerned with developing repair and training strategies which
maximise the time until a catastrophic event for standby units in an uncertain en-
vironment. Equipment can only be used if it is in an operable state and if its users
have had sufficient recent training with it. Thus as well as repairing and maintaining
the equipment, it is necessary to train users. This is particularly clear in the military
context where soldiers are constantly trained to operate the equipment satisfactorily
under all conditions. However, a problem with training is that it increases the wear
and tear of the stand-by unit even though it enhances the operator’s ability to re-
spond well to an initiating event. Another problem in the military context is that the
training may be done away from where the equipment may be needed and so there is
not time to move it between the training area and the front line say. In this research
we look at the interaction between the need for training and the need to service the
equipment. We develop discrete time Markov decision process formulations of the
problem in order to investigate the form of the optimal action policies which max-
imise the expected survival time until a catastrophic event. The reason for focusing
on the expected survival time rather than on cost is because we assume that the cost

is immeasurably high if the system fails to respond when required.

The literature on maintenance, repair and replacement policies for deteriorating
equipment started with the work of Barlow and Proschan[1965] and others, and as the
surveys and bibliographies of McCall[1965], Pierskalla[1976], Sherif and Smith[1982],
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Monahan[1982], Thomas[1986], Valdes-Flores and Feldman[1989], Dekker[1996] and
Wang[2002] indicate, it has continued apace to the present day. Almost all the liter-
ature concentrate on policies which minimise the average on discounted cost criteria.
The idea of using a catastrophic event criterion to overcome the problem that fail-
ure will result in unquantifiably large cost was suggested first by Gaver, Jacobs and
Thomas[1987], with other instances being considered by Kim and Thomas[2003a].
In all these cases the background environment and hence probability of initiating
event is either fixed or follows a random Markovian process. Other authors such
as Cinlar[1984], Cinlar and Ozekici[1987], Cinlar et al[1989], Shaked and Shanthiku-
mar[1989], Lefévre and Milhaud[1990] and Ozekici[1995][1996] have looked at mainte-
nance in a random environment but in that case the unit is always in use so the changes
in the environment age the equipment at different rates, but do not affect when it is
needed. Wartman and Klutke[1994], Klutke et al[1996], , Yang et al[2000a][2000b] and
Kissler et al[2002] study protective systems, such as circuit breakers, alarms, and pro-
tective relays, as well as standby systems, with non-self-announcing failures where the
rate of deterioration is governed by random environment. Kim and Thomas[2003b],
on the other hand, allow the deterioration of the equipment to be independent of
the environment, but the environment affects the need for the equipment. Yeh[1995]
studied an optimal maintenance model for standby systems focusing on availability
and reliability as the criteria to optimise. None of these papers address the issue
of how does the training of the operators affect the readiness of the unit which this

paper considers.

We develop a Markov decision process model with random loss of learning in
the training level in section 2. Numerical examples of these results are presented in
section 3. In section 4 we examine a modified model where the effect of training does

wear off, and look at when one should train, when one should repair as a function



of the environmental situation, the training level and the state of the equipment. A

numerical example of this situation and conclusions are given in section 5.

2 Training Model with Random Loss of Expertise

2.1 Introduction

In this model, there are several environmental situations which are graded from very
dangerous to completely peaceful. Each environmental situation has its own prob-
ability of an initiating event occurring which increases as the situation gets more
dangerous. There are three actions in this model in that the operator chooses among
doing nothing, repairing, and training. At the end of this section we look at the
special case in which we only consider do nothing and training. This corresponds to
equipment which cannot be repaired though we do not consider the problem of when

to replace such equipment.

2.2 Terminology

Possible Standby Unit Quality State, i Regular inspection of the standby unit
gives information on the operation quality state of the units. This categorisation of
the equipment into various states after inspection is fairly common in the military
context. We assume the standby unit has NV different unit quality states, i.e. 1,2,---, N
where state 1 means that the standby unit is like new. The state N — 1 means that
it is in a poor but still operable state, while in state /N, it is in a “down” condition

which means that it will not work.

The Quality State Transition Probability Matriz(QSTPM), P;; When the
standby unit is in quality state ¢ at the current stage, there is a probability, F;; that
it will be in state j at the next period where i, =1,2,---, N and



N
> Pj=1,wherei=1,2,--,N—-1,N

j=1
We assume that the QSTPM satisfies a first order stochastic ordering condition so
that > jex Pij > > j<k Pli+1);- We assume Pyy = 1 so once the standby unit reaches
the “down” state N, it remains “down” until either it is repaired, or a catastrophic
event occurs. There are several situations where equipment is classified as new, ex-
cellent condition, operable, failed and regular inspection of the equipment allows one

to collect data to estimate the transition probabilities, Fj;.

Possible Environmental Situation, m We assume that there are M different
environmental states, 1,2,-- -, M — 1, M. Environmental state 1 reflects the most
peaceful environment in which there is the smallest probability, b; of an initiating
event occurring. On the other hand, environmental state M is the most dangerous
state with the highest probability, by, of an initiating event occurring. We assume
by, is non-decreasing in the index of the environmental state m and 0 < b,, < 1.
These correspond to military states of readiness, such as the US DEFCON, or the
UK, black/red/amber.

Environment Situation Transition Probability Matrix(ESTPM), Spma) The
dynamics of the environmental situation is also described by a Markov chain with
Environment Situation Transition Probability Matrix(ESTPM), Spm). If the envi-
ronmental situation is m, 1 < m < M in the current stage, this changes to another
environmental situation m(1),1 < m(1) < M with probability Sy.ma) at the next

stage, where

M
Z Smm) = 1, withm and m(1) =1,2,---, M -1, M
=1
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We assume the ESTPM also satisfies a first order stochastic ordering property so
Z’fn(l)zl Smm(1) > Z’fn(l)zl Smt1ym(1) for any m = 1,2, -, M — 1. The data for this

can be obtained by historical analysis.

The Possible Actions There are three possible actions at each period, (1) do
nothing, (2) repair and (3) training. The “do nothing” action means neither re-
pair/maintenance nor training is undertaken. It is assumed the “repair” action which
can be maintenance action, if the unit is still operable, but is a true repair in state
N takes R unit time periods. This action is not perfect in that there is a probability
R, the unit will be in quality state r after the “repair” where Zivzl R, =1.1If an
initiating event occurs during repair period, the standby unit cannot respond to it,

and so a catastrophic event occurs automatically.

Training Level, k The operator of the stand-by unit has L different training levels,
i.e. 1,2,---, L where training level 1 is the best training level and training level L is the
worst training level. If there is no training at the moment, the training level k£ goes to
k(1) at the next time stage with probability of Tjx1) which is the training level tran-
sition probability matrix(TLTPM). We assume there is no spontaneous improvement
in training i.e. Tppq) = 0 if k(1) < k, and our model would allow the deterministic
decrease in operator performance T} ;41 = 1. Training may not be ideal and could
be counter productive in that after a training exercise(which we assume to take one
time period which defines the length of period in the model) the quality of training
is p with probability w, where p = 1,2,--- L — 1, L. Training causes wear and tear
on the equipment to a different extent than when it is not being used. Hence there is
a transition probability matrix for the standby unit quality state variation caused by
the training which is called wear and tear transition probability matrix(WTTPM),
Jgij. If j <4, ]3”- = 0. We assume that the WTTPM also satisfies a first order sto-



chastic ordering condition so that » ., IN’,-J- > ick fN’(iH)j. We assume the wear and
tear caused by training is more than the wear and tear caused by natural conditions
and so require » . Py > > ]Bl-j where [ is arbitrary quality state. If the unit is

being repaired, no training is possible.

Catastrophic Fvent If an initiating event occurs either when the standby unit is
down(in state N) or being repaired, a catastrophic event comes. To allow for the
possibility that training could be aborted when an initiating event occurs, but only
if the equipment is close to where it is needed, we say that if training is occurring
there is a probability (1 — ¢) that the equipment can respond to the initiating event.
Finally at an initiating event it is not enough for the equipment to be operating,
but the training must be of a sufficient quality if there is not to be a catastrophic
outcome. We assume that with training level k, one cannot successfully respond to

an initiating event with probability K} where K} increases with k.

2.3 Model

The state space of this model S has three factors which are the unit quality state,

training level, and environmental state, so
S={(i,k,m)e S, i=1,2,---, NNk=1,2,--- Landm=1,2,---,, M}

where i, k and m mean the unit quality state, training level and the environmental
situation respectively. When the unit is in quality state ¢, training level £ and the
environmental situation is in state m, V (i, k, m) is the maximum expected number of
periods until a catastrophic event occurs. Because we are looking for the best action

policy, the optimality equation selects the best of the three actions.

V(i,k,m) = max{Wi(i, k,m), Wa(k,m),6;xWs(i,k,m)} (1)
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where
oy = 0ifi=N
6;y = 1 otherwise
where Wi (i, k,m) is the expected period until a catastrophic event if nothing is
done now, Wh(k,m) is the expected period until a catastrophic event if a repair is

performed now and Wj(i, k,m) is the expected period until a catastrophic event if

training is selected now. Hence W1 (i, k, m), Wa(k, m), Ws(i, k, m) satisfy

Wl(iv ka m)
N L M
j=1 k(1)=1 m(1)=1

WQ(ka m)
R M
= Y W (1-s+05 0 -5 Y O Thewe (3)
j=1 k(1) k(R)=1
M N
Z Sm(R—1)m(R) Z R V[r, k(R),m(R)]
m(R)=1 r=1
M
where s = by, st = Z Sm(t—l)m(t)bm(t)a m(0) =m
m(t)=1
WS (Za k; m)
N L M
= {1 - bm X [t + (1 - t)ch]}(l + Z Pij pr Z Smm(l)V(Japam(l))) (4)
j=1 p=1  m(1)=1

(2),(3), (4) can be solved by value iteration where the nth iterate satisfies



Vn<27k7m> = maX{Wq71,<Z7k7m)7Wg(k7m)76zNW3(Zakam)} (5)
where

o;n = 1 otherwise, and

Wh(i, k,m)

= (1=bndin)1+D Py D> Tiry Y Smm)V™ (G, k(1),m(1)))  (6)
m(1)=1

=1 k(1)=1

W3 (k,m)
R M
= Y W (1-s)+051-s) Y O Tua-nkn (7)
=1 k(1), k(R)=1
M N
Z Sm(R=1)m(R) Z R.V" " r k(R), m(R)]
m(R)=1 r=1
M
where s° = b,,, s' = Z Sm(t—1)m(t)bme), m(0) =m
m(t)=1
W3(i, k,m) (8)

N L M
= {1 — by X [t + (1 — t)Kk]}(l + ZP” pr Z Smm(l)vnil(japa m(l)))
=1  p=1  m(D)=L

If we define the terminal value, Vi (i, k,m) = 0, V,,(i, k, m) is a bounded increasing
sequence of function and so converges to the limit V (i, k, m). Standard results from
Markov decision processes[Putterman,1994] show that the limit function satisfies the

optimality equation (1) - - - (4).



Lemma 2.1 V(i,k,m)is a
a) non-increasing function of 4
b) non-increasing function of k
¢) non-increasing function of m
where ¢ is the quality state, and & and m are the arbitrary training level and

environment situation state.

Proof The proofs use induction hypothesis on n in V,(i,k,m) and then the re-
sult[Putterman,1994] that V(i,k,m) is the limit of the value iteration functions
Vo(iy k,m). Consider a) and defining Vi (i, k,m) = 0, then the property holds triv-
ially for n = 0. So assume V,, (i, k,m) is non-increasing in i. This together with the

stochastic ordering condition of QSTPM and WTTPM implies

ZPZJ Z Ther(1) Z Smmm V"1 (4, k(1), m(1))

Jj=1 k(1)= m(1)=1

> ZP(erl Z Tkk(l) Z Smm Vn 1 ]ak( )7 (1))

k(1)=1

mezwp Z Smm1)V Jpa m(1))

p=1 m(1)=1
> ZP(PFI)] pr Z Smm 1)V jp7 ( ))

Hence, we can conclude that W} (i, k,m) > Wl(i + 1,k,m) and W2(i,k,m) >
W3(i + 1,k,m). Since W2(i,k,m) = W2(i + 1,k,m) from (7), it follows V,,(i, k,m)
> V,(i+1, k,m). Hence the result holds for V,,(i, k,m) and by convergence the results
hold in the limit for V (i, k,m). The proofs of b) and c) follow in a similar way.
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Theorem 2.1 a) In state (i,k,m), the standby unit is repaired provided i >
i*(k,m).

b) If the stand-by unit is down(in state N), it must be repaired immediately, so
N > i*(k,m).

Proof The proof of a) follows because V (i, k, m) is non-increasing function in 7 and
using stochastic dominance of P, P ensures non-increasing property carries through
to >, PijV (j, k, m). Hence W1 (i, k, m) and W3(i, k,m) are non-increasing in 4. Since
Ws(i, k,m) is independent of i, once Wi(i,k,m) > Ws(i,k,m) and Wy(i,k,m) >
Wi (i, k,m), then the same inequalities must hold for larger i. So one repairs if i >
i*(k,m).

In state i = N, the only allowed options are doing nothing or repair since training is
not allowed in state i = N. Wa(N, k,m) = Wa(k, m) since it does not depend on state
N. For the proof of b), since the lengths of doing nothing(1 time period) and repair(R
time periods) are different, we compare the expected survival period by doing nothing
and repair at every single period during R periods. This is what Putterman[1994]
calls Uniformization. We can let Wy (N, k(t), m(t)),Wau (k(t), m(t)) be the expected
survival time if we do nothing or repair for the next period when we are ¢ periods
into the R-period repair. We also let Vi) (i, k(t), m(t)) = max{Wyq (i, k(t), m(t)),
Waw (4, (t), m(t)), 9Wsq) (4, (), m(t))} where ¢ = 0 if i = N, ¢ = 1 otherwise. Thus
fort=0,---,R—2,

Wy (k(t), m(t))

= (1-5" Z Tlc(t)lc t+1) Z Sm(t)m 1) [1 4 Wagan (k(E + 1), m(t + 1)]

E(t+1)= m(t+1)=

and fort =R — 1,
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Wa(r- 1)(’*?(3 —1),m(R —1))

= (1-—s"" ZTkR 1)k(R) Z Sm le(R)ZR + V(r, k(R), m(R)]

k(R)=1

Firstly we compare Wyg_1)(IN, k(R—1),m(R—1)) and Wyg_1)(k(R—1),m(R—-1))
att=R—-1.

War1y(k(R — 1), m(R — 1)) = Vig_1)(N, k(R — 1), m(R — 1)

> Waguen (B~ 1, n(R = 1) = Wiy (N, KR = 1), (R = 1)

= 1—5 Z TkR k(R Z Sm(R m(R ZR 1—|—VT’]€R) (R)]
m(R) 1

—(1— R Z Th(R-1)k(R) Z Sm(r—1ym(r)[1 + V(N, k(R), m(R))
k:(R)fl m(R)fl

= 1 - S Z Tk R-1)k(R Z Sm(R 1)ym(R ZRT
m(R) 1 r=1

> 0

Hence, repair is better than doing nothing at t = R — 1 since V' (i, k,m) is a non-
increasing function in ¢. Using this result, we also find repair is the optimal action at

t=R-—2:

War2)(k(R — 2),m(R — 2)) — Vig-o)(N, k(R — 2), m(R — 2))

Y

Wa(r- (k‘(R—Q) m(R — ))—W1 2)(N, k(R —2),m(R - 2))

= (1-sf Z Tk(R 2)k(R—1) Z Sm(R-2)m(R-1)

12



[War—1)(k(R = 1), m(R — 1) = Vig—1)(N, k(R — 1), m(R — 1)]

> 0

By induction from ¢t = R — 3 to t = 0, we have same results. This means that , at

quality state N, we should always repair.

Whereas when the equipment is in its worst state, Theorem 2.1 says one needs
to repair it immediately, if the training levels are at their worst, it is not always the
case that one should train. One needs to add same extra condition as Theorem 2.2

implies.

Theorem 2.2 1If K; =1, P; P”, all 7,7 and P;, stochastically dominates R,,
this means that in some sense that repair is not as good as new, then one always

trains in statet =1,k = L.

Proof 1If training level is L with K;, =1 and i = 1, (2),(3), (4) can be rewritten as

Wi(1,L,m) = (1— by 1+ZP1J Z Smm)V (4, L, m(1)))

Wy(1,L,m) = ang1—s)+nfol1—s Z Se(R-1)ym(R ZRTVer R)|

Jj=1 m(R)=1

Ws(1,L,m) = (1— by, 1+ZP1Jpr Z Smm)V (4, p,m(1)))

m(1)=

Comparing do nothing, W7, and training, W3, gives

W(le)—W1(1Lm)
= (1—bn 1+ZP1JprZSmm (4,2, m(1)))
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N M

—(1 — bm)<1 + Zplj Z Smm(l)v<j7 L, m(1>>)

j=1 m(l)—l

= (1—by, }:FL§:%7§:£%m (4,p,m(1))
—ZPUZIUP Z Smm@)V (J, L, m(1))]

m(1)=1
= 1 — b Z Smm(l) pr Zplj .7 b,m Zplj j?L m(l))]
1) 1
= 1 —b Z Smm(l)zwpzplj j b,m 1)) _V(j7 L7m<1))]
m(1)=1

Since (1 —by,) > 0 and V (4, k,m) is a non-increasing function in k, W5(1, L, m) >
Wi(1,L,m).

For the proof for W3(1,L,m) > Wy(L,m), suppose we can consider the case
in which repair only takes 1 time period. It is obvious that the expected survival
time if the repair takes 1 time period, Ws(k,m), is longer than or equal to the
expected survival time if the repair takes R(R > 1) time period, Ws(k, m). Hence,
YWa(k,m) > Wy(k,m). Now compare training with repair, if the latter only takes one

time period, then

W@Lm—wwLm

= 1—b —i—ZPl]pr Z Smm(l)vjpa ( )))
m(1)=1
~(1-b, 1+ZR Z SV (. Lo m(1)))
= (1—bm)[Z]51ijp Z Smm(l)V(Japam(l))
=1 1 m()=t
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M

_ZRTpr Z Smm(l)V(r,L,m(l))]

m(1)=1
L M N . N
p=1  m(1)=1 j=1 r=1

v

Since (1 — by,) > 0, V(i,k,m) is a non-increasing function in k£ and 22:1 =¥
erzl R, (stochastic ordering) where [ is an arbitrary quality state, W3(1, L, m) >
"Wo(L, m). Hence,

Ws(1,L,m) > '"Wa(L,m) > Wa(k,m)

Therefore if the training level k is L with K; = 1 and the quality state is 1 where

P = IN’,-J- for all 1, 7, 23:1 P> Zi:l R, for all [, then training is always optimal.

With slightly stronger conditions we can show we also repair or train in the worst

training state.

Theorem 2.3 If K;, = 1 and P; = ]Sij V.;, then in state (i, L,m) one trains if

i < i*(m) and repairs if i > i*(m).

Proof 1t is enough to show W (i, L, m) < max{Ws(i, L, m), W5(i, L, m)} since then
the non-increasingness in i of Wjs(i, L, m) and the fact W5(i, L, m) is independent of
i gives the rest of the result. Since Pj; = f’ij and > w,V(j,p,m(1)) > V(j, L,m(1))
by the non-increasing property of V (5, k,m(1)) in k, W5(i, L, m) > Wy(i, L, m) for all
¢ and m.

If one considers equipment which is not repairable and so maintenance has no
effect, then the only actions possible are training or doing nothing.

The optimality equation for V (i, k,m) in this case satisfies

V(i,k,m) = max{Wi(i,k,m),6;nW3(i,k,m)} 9)
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where
oy = 0ifi=N

oin = 1 otherwise

and Wi (i, k,m) and W3(i, k,m) are still defined by (2) and (4). In this case one
can show that if one decides to train in state (i, k', m) one should train in all states

(i,k',m), k > k.

Theorem 2.4 In the non-repairable equipment special case, if one trains in state

(i,k,m), one should train in all states (3,k",m),k > k.

Proof

V (i, k,m)
= max{Wi(i, k,m), Wg(i k,m)}

= max{(1 — by, K)( +ZPZJ Z Trr(1) Z SV (4, k(1), m(1))),

m(l

[1— by x (t+ (1 — 1) KR)]( Z pr Z SmmmV (4,0, m(1)))}

If training is optimal at training level k,

WS(iv ka m)

M
> (1= b Kg) 1—1—2 Z Ther(1) Z Smm(l)v<j7k<1)7m<1>>)
k(1)=1

m(1)=1

- Wl <Z7 k7 m)
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If we let 1—by X (t-+(1—) Ki) = A(k), 1430 Py 3 or 0y Y oty—1 SV (G, 2, m(1))
= B, 1= b,Kr = C(k),1+ Z;v=1 Py Zﬁ(l):l Tir(1) Zi’v{(l):l Smm)V (4, k(1), m(1))

= D(k), the above relation can be rewritten by

A(k)B > C(k)D(k)
C(k)
> Y
B = FmP®
If we think of %,
C(k) 1 — b, K

A(k)  1—bpx (t+(1—t)Kp)

Ifb,,t >0, % is a decreasing function of k£ from

level : K =0) to 1 at k = L(worst training level Ky = 1).

1
1—-bmt

at k = 1(perfect training

Because of this and D(k) being a decreasing function in &, hence

L Clk+1)

Ck+1)
_m D(k+1)

D(k) >
Hence,

A(k+1)B>C(k+1)D(k+1)
This means that Ws(i,k + 1,m) > Wi(i,k,m) and so if training is optimal at

(i,k,m), it is also optimal for (i,k,m), k' > k.

3 Examples

Consider a problem with five environment situations, 1(most peaceful environment),
2, 3, 4, 5 (most dangerous environment), two training levels 1,2, 10 unit quality
states, 1(new), 2,---, 9, 10 (down) and with the Quality State Transition Probability
Matrix(QSTPM) and Wear and Tear Transition Probability Matrix(WTTPM) given

17



by Table 1 and 2. We also assume that repair is not perfect but given by R, in
Table 4 and takes 1 time period(R = 1). The probability of an initiating event, by,
is {0.1,0.2,0.4,0.6,0.7} from environmental situation 1 to 5. The value of Kj,w, is
K = (0,1),w, = (1,0) for training level 1,2. The probability that training can not

respond to an initiating event, ¢ is 0.7. We use different versions of this problem with

06 04
different training transitions. For example 1 T}, = , and for example
0 1
0.01 0.99 o o . ) )
2, T = . So training has a positive effect for 53 = 2.5 periods in
0 1 '

1

595 = 1 period in example 2.

example 1 and

The results for example 1 and 2 are shown in Figure 1 to Figure 4. We know that
the expected survival period is a non-increasing function in quality state ¢, training
level k and environment situation m. Because the transition probability from training
level 1 to training level 2 in example 2 is bigger than in example 1, the expected
survival period for example 1 is longer than that for example 2. Since the effect of
training lasts for a shorter time in example 2 than in example 1, training occurs even
when the training level is high in example 2 as we can see in Figure 3, but does not
occur in that state in example 1. However one trains more in the poor training level
state in example 1 than example 2. In Figure 2, training is optimal when k = L(
i.e. level 2 in example 1) and ¢ # N. However, this is not always true as example 2
shows. From Figure 4, repair is optimal even though the training level is k = 2(worst
training level) and the quality state is in working condition(i = 9).

Example 3 is the case of P;; = ]3” In reality this means that training does not
cause any more wear and tear than doing nothing. In this example, F; ;1 = f’,-,iﬂ =1
where ¢ = 1,- - -, 5.0therwise, P,y = Py = 1 where i = 6, — — —, N. We use the T},
used in example 2. The other conditions are the same as in previous examples. The

results for example 3 are shown in Figures 5 and 6. Training is always optimal when
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k = 2(worst training level) and i = 1. For the worst training level(k = 2), the quality
state increases, the optimal action will change from training to repair provided Ky = 1

and PZ] = éj

Example 4 looks only at the do nothing or training problem where repair is not
possible. We assume 5 training levels for this example and Table 5 gives the training
level transition probability whereas the environmental state and quality state transi-
tions stay as in example 2. The values of K}, and w, are Kj = (0.0,0.2,0.5,0.7,1.0),
w, = (0.6,0.2,0.1,0.05,0.05) for training level k = 1,2, 3,4, 5 respectively. Figures 7
and 8 show the results of example 4. In this case once training is optimal at training

level k, training is optimal for all & > k.

Table 1. Quality State TPM, F;

i\Nj| 1 2 3 | 4 5) 6 7 8 9 10
1 02(102]02]0.1(0.08|0.05|0.05|0.05]0.05]0.02
2 0 {02]02(02| 0.1 ] 0.1 |0.08(0.05|0.04]|0.03
3 0]101(02{02]027]01]01]01]0.05]0.05
4 010 01(02]02]021]015| 01 | 0.1 |0.05
) 01010 0102]03]02)]01|01]|O0.1
6 01010 0 0 02103 1]021]02]0.1
7 01010 0 0 0 02103 ] 03] 0.2
8 01010 0 0 0 0 031 04| 03
9 01010 0 0 0 0 0 0.4 | 0.6
10 01010 0 0 0 0 0 0 1
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Table 2. Wear and Tear TPM, ]Sij

i\jg| 1|23 ]4|5|6]|7]8 9 10
1 101(01(02{01({01]0.1}0.1]0.1]{0.05]0.05
2 0 101({01]02(01(01]01(01| 0.1 | 0.1
3 0]01(01]01(02(02]01({01| 0.1 | 0.1
4 0]10(01]01{01(02]02(02]| 0.1 | 0.1
5 0]0[0]01]01101]02(02]0.2] 0.2
6 O] 0[0]0]01]01]02(03]|]02]0.2
7 ojofo0o}|jo0o}]0|0]01(03]03]03
8 ojlofojJojo0o|l0]O0|02W04]|04
9 ojojojorofojoy|oy|o03|o07
0 (000 0]O0O]O0O}|O0]}O0 0 1
Table 3. Environmental Situation TPM, S,
m\m | 1 2 3 4
1 04 103 {02 [0.05]0.05
2 02 104 |023]0.1 |0.07
3 0.1 102 |04 [02 |01
4 005101502 [03 |03
5 005101 [015]0.2 [0.5
Table 4. Repair TPM, R,
r| 1|2 3]|4]5]|6 7 8 9 10
R.102]02(01]01]0.1|0.1]0.08]{0.05]0.05]|0.02
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Table 5. Training Level TPM for example 4, T},

E\E | 1 2 1 3]14]5
1 103(03]0.2]0.1]0.1
2 0 {03]03]02(0.2
3 0 (01]04(03]0.3
4 0O 0] 0 104]06
5 001|010 1
Figure 1. Result of example 1, training level 1
m\i |12 [3|4|5|6|7|8|9]10
1
2 D o
3 N ot hing R
4
5
Figure 2. Result of example 1, training level 2
m\i | 1|2[3]|4|5 [6]|78]9]10
1
2
3 T R
4
5

21




Figure 3. Result of example 2, training level 1

m\i |12 |3|4|5|6]|7|8]9]|10
1 T
2
3 D o R
4 N ot h i ng
)

Figure 4. Result of example 2, training level 2
m\i | 1|23]4|5 [6]|78]9]10
1
2
3 T R
4
5

Figure 5. Result of example 3, training level 1
m\i||1]|2 [3]|4|5|6|7|8]9]10
1 T
2
3 D o R
4 N ot hing
)
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Figure 6. Result of example 3, training level 2

m\i | 1123 [4|5]6]|7[8 9|10
1

2

3 T R

4

d

Figure 7. Result of example 4, environment 1

E\e |1 [2]3]|4 |5|6]7[8]9]10

1 | D o N ot hing

Figure 8. Result of example 4, environment 5

E\ilf1]{2 |34 [5|6]7[8]9]10
1

2 D o

3 N ot hing

4

5 T

4 Training Model with Continuous Loss of Expertise

In this section we consider the problem where the expertise obtained by training on

the equipment is gradually lost over time rather than subject to random changes as
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in section 2. To do this we define an expertise index which shows how well trained
the operator of the stand-by unit has been. An operator with higher values in this
index is likely to perform better. Apart from the modification of an expertise index

instead of a training level, the other conditions are the same as in section 2.

To define the expertise index, we assume that if it is at level T, T > 0, then

a) when no training occurs at the next period, it moves to aT

b) when training occurs at the next period, it moves to aT + 1

So in a sense, expertise obtained through training dissipates geometrically( the
equivalent of exponentially in discrete time) and each period of training of training
adds 1 unit to the expertise level whatever it is. Thus training all the time gives us a
level of 1+ a+a*+a®+--- = (1—a)™!, while no training gives an expertise of 0. In
order to make the index easy to understand, we multiply the above index by (1 — «)
to arrive at one where all values are between 0 and 1, and if we let T' = (1 — «)T,
training changes T into oT + (1 — «), while no training changes T into oT. If the
expertise index is T, the probability the operator can not respond to satisfactorily to

an initiating event is fr where 0 < fr <1, fn < fr it T < T.

The state space of this model S has three factors which are the unit quality state,

training level, and environmental state, so
S={@GT,m)esS i=1,2,——— 0<T<landm=1,2———,, M}

where ¢, T and m mean the unit quality state, expertise index and the environ-
mental situation respectively. When the unit is in quality state ¢, expertise index T’
and the environmental situation is in state m, V(i,7,m) is the maximum expected

number of periods until a catastrophic event occurs.

V(i,T,m) = max{Wi(i,T,m), Wo(T, m),5;nW5(i, T, m)} (10)
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where
oy = 0ifi=N

6;n = 1 otherwise

where

N M
Wi(i,T,m) = (1=bwbin) 1+ Py Y SwmV (G, eT,m(1)) (1)
j m(1)=1

W(Tm)
Zﬂiél—s)—i—ﬂfoll—s Z Sm(R—1)m(R (12)
Jj=1 m(R)=1

" RVIr,a"T, m(R)]

r=1

where s = by, s\ = Z Sm(t=1)m(t)Dm (1) m(0) =

m(t)=1
Ws(i, T, m) (13)
= {1 = by x [t+ (1= ) fr]}( +ZP” > SumV (G, T + (1 — a),m(1)))
j=1 m(1)=1

(9), (10), (11), (12) can be solved using value iteration. The results of the previous
section extend to this model and the proofs follow by induction on value iteration.
The value iteration scheme satisfies equation (9), (10), (11), (12) with V,,, W,, on the
L.H.S. and V,,_; on the R.H.S.
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Lemma 4.1 V(i,T,m)is a
a) non-increasing function of 4
b) non-increasing function of T’
¢) non-increasing function of m
where i is the quality state, T" and m are the arbitrary expertise index and envi-

ronment state.

Proof Asinlemma 2.1, the proofs use induction hypothesis on n in V,,(i, T, m) and
then the result that V (i, T, m) is limit of the value iteration functions V,,(¢,T,m). If
we consider a) and define V(¢,T, m) = 0, then the property holds trivially for n = 0.
So assume V,,_1(i,T,m) is non-increasing in i. This together with the stochastic

ordering condition of F;; and ]Sij implies

W, (i, T,m) > W, (i +1,T,m)

W3, T,m) > W3(i+1,T,m)

Since W2(i, T,m) = W2(i + 1,T,m) from (11), it follows V,,(i,T,m) > V,(i +
1,T,m). By convergence the results hold in the limit for V' (i, 7, m). The proofs of b)

and c) follow in a similar way.
Theorem 4.1 In state N(the down), one should always repair.
Proof The proof follows as b) in Theorem 2.1.

5 Example

In the example of this model, there are also 5 different environmental situation states

and 10 different unit quality states. The probability of an initiating event, b,,, where
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1 <m < 5is (0.1,0.2,0.4,0.6,0.7). Repair takes 1 time period(R = 1) in this
example. The transition matrices for quality state, environment situation are the
same as in previous examples. The probability which training can not respond an
initiating event, ¢ is 0.7. The discount factor for the expertness index, a is 0.6. The

effect of the repairs has the following distributions in Table 6.

Table 6. Repair TPM, R,

r 1 2 31415 6 7 8 9 10
R.{01(01102]02]0.1]0.1]{0.08]0.05]0.05]0.02

The results in Figure 9 shows that the expected survival period is also non-
increasing function in quality state and environment situation and non-decreasing
in expertness index. The results in general show the pattern in that as the quality
state increases(gets worse) one initially trains, then does nothing, and then repairs.

However this pattern is violated in the case of T' = 0.7.

Figure 9. Result of example, environment 3

T\i||1]2 |3|4]|5|6|7|8|9]10

0.0
0.2
0.5 T
0.6 R
0.7
0.8
0.9 D o

1.0 N ot h i ng
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6 Conclusions

The models presented in this paper show that there is a strong interaction between
the quality state of the stand-by unit, the general environment state, the training
level of the operator and the decision on whether to repair or train. In the training
model with random loss of expertise, the expected survival time until a catastrophic
situation decreases as the unit quality states, the training levels and environment
situations worsen. One always repairs when the unit is down. Also, once repair is
optimal for a given quality state, repair is optimal for worse quality states. When
there is no difference between QSTPM and WTTPM, if the training level is at its
lowest which means that it can not respond to an initiating event, one always trains
or repairs. One trains if the quality state is good and there is same quality level below
which one repairs. If one adds the extra condition ), Pi; > > _; R, to the above
condition, one can show one always trains when the quality state is new. If the repair
action is not available and the quality state is in working condition, once training is

optimal at a certain training level, one always trains at worse training levels.

In the training model with continuous loss of expertise, we find that one always
repairs when the unit is down. If the unit is operating then as the expertise index
increases, one moves from training to doing nothing, but this need not always be the

case.
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