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Abstract

Hidden variables are ubiquitous in practi-
cal data analysis, and therefore modeling
marginal densities and doing inference with
the resulting models is an important problem
in statistics, machine learning, and causal
inference. Recently, a new type of graphi-
cal model, called the nested Markov model,
was developed which captures equality con-
straints found in marginals of directed acyclic
graph (DAG) models. Some of these con-
straints, such as the so called ‘Verma con-
straint’, strictly generalize conditional inde-
pendence. To make modeling and inference
with nested Markov models practical, it is
necessary to limit the number of parameters
in the model, while still correctly capturing
the constraints in the marginal of a DAG
model. Placing such limits is similar in spirit
to sparsity methods for undirected graphical
models, and regression models. In this paper,
we give a log-linear parameterization which
allows sparse modeling with nested Markov
models. We illustrate the advantages of this
parameterization with a simulation study.

1 Introduction

Analysis of complex multidimensional data is often
made difficult by the twin problems of hidden vari-
ables, and a dearth of data relative to the dimension
of the model. The former problem motivates the study
of marginal and/or latent models, while the latter has
resulted in the development of sparsity methods.

A particularly appealing model for multidimensional
data analysis is the Bayesian network or directed
acyclic graph (DAG) model [10], where random vari-
ables are represented as vertices in the graph, with

directed edges (arrows) between them. The popular-
ity of DAG models stems from their well understood
theory, and from the fact that they elicit an intuitive
causal interpretation: an arrow from a variable A to
a variable B in a DAG model can be interpreted, in a
way which can be made precise, to mean that A is a
‘direct cause’ of B.

DAG models assume all variables are observed, and
a latent variable model based on DAGs simply re-
laxes this assumption. However, latent variables intro-
duce a number of problems: it is difficult to correctly
model the latent state, and the resulting marginal den-
sities are quite challenging to work with. An alter-
native is to encode constraints found in marginals of
DAG models directly; a recent approach in this spirit
is the nested Markov model [15]. The advantage of
the nested Markov model is that it correctly captures
the conditional independences and other equality con-
straints found in marginals of DAG models. However,
the discrete parameterization of nested Markov mod-
els has the disadvantage of being unable to represent
constraints in various marginals of DAGs concisely,
that is with few non-zero parameters. This implies
that model selection methods based on scoring (via
the BIC score [13] for instance) often prefer simpler
models which fail to capture independences correctly,
but which contain many fewer parameters [15].

More generally, in high dimensional data analyses
there is often such a shortage of samples that clas-
sical statistical inference techniques do not work. To
address these issues, sparsity methods have been de-
veloped, which drive as many parameters in the sta-
tistical model to zero as possible, while still providing
a reasonable fit to the data. Sparsity methods have
been developed for regression models [16], undirected
graphical models [8, 9], and even some marginal mod-
els [4].

It is not natural to apply sparsity techniques to ex-
isting parameterizations of nested Markov models, be-
cause the parameters are context (or strata) specific.
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Figure 1: (a) A DAG with nodes 6 and 7 represent-
ing hidden variables. (b) An ADMG representing the
same conditional independences as (a) among the vari-
ables corresponding to 1, 2, 3, 4, 5.

In this paper, we develop a log-linear parameteriza-
tion for discrete nested Markov models, where the pa-
rameters represent (generalizations of) log odds-ratios
within ‘kernels’ (informally ‘interventional’ densities).
These can be viewed as interaction parameters, of the
kind commonly set to zero by sparsity methods. Our
parameterization allows us to represent distributions
containing ‘Verma constraints’ in a sparse way, while
maintaining advantages of nested Markov models, and
avoiding the disadvantages of using marginals of DAG
models directly.

2 Disadvantages of the Möbius
Parameterization of Nested Markov
Models

One drawback of the standard parameterization of
nested Markov models is that parameters are variation
dependent; that is, fixing the value of one parameter
constrains the ‘legal’ values of other parameters. This
is in direct contrast with parameterizations of DAG
models where parameters associated with a particu-
lar Markov factor (a conditional density for a variable
given all its parents in the DAG) do not depend on
parameters associated with other Markov factors.

We illustrate another difficulty with an example. Here,
and in subsequent discussions, we will need to draw
distinctions between vertices in graphs, and corre-
sponding random variables in distributions or ‘kernels.’
We use the following notation: v (lowercase) denotes
a vertex, Xv the corresponding random variable, and
xv a value assignment to this variable. Likewise A
(uppercase) denotes a vertex set, XA the correspond-
ing random variable set, and xA an assignment to this
set.

Consider the marginal DAG shown in Fig. 1 (a). We
wish to avoid representing this domain with a DAG
directly, in order not to commit to a particular state
space of the unobserved variables X6 and X7, and be-
cause, even if we were willing to make such an assump-
tion, the margin over (X1, X2, X3, X4, X5) obtained
from a density that factorizes according to this DAG
can be complicated to work with [7].

To use nested Markov models for this domain, we first
construct an acyclic directed mixed graph (ADMG)
that represents this DAG marginal, using the latent
projection algorithm [17]. This graph is shown in Fig.
1 (b); directed arrows in the resulting ADMG repre-
sent directed paths in the DAG where any intermediate
nodes are unobserved (in this case there are no such
paths, and all directed edges in the ADMG are directly
inherited from the DAG). Similarly, bidirected arrows
in the ADMG, such as 2↔ 5, represent marginally d-
connected paths in the DAG which start and end with
arrowheads pointing away from the path, in this case
2← 6→ 5.

If we now use the nested Möbius parameters, described
in more detail in subsequent sections, to parameter-
ize the resulting ADMG, we will quickly discover that
this results in a model of higher dimension relative to
the dimension of DAG models which share their skele-
ton with this ADMG. For example, the binary nested
Markov model of the graph in Fig. 1 (b) has 16 param-
eters, while both binary DAG models corresponding to
graphs in Fig. 7 (a) and (b) have 11 parameters each.

This leads to a worry that a structure learning al-
gorithm that tries to use nested Möbius parameters
to recover an ADMG from data by means of a score
method, such as BIC [13], which rewards fit and pa-
rameter parsimony, may prefer at low sample sizes in-
correct independence models given by DAGs in pref-
erence to correct models given by ADMGs, simply be-
cause the DAG models compensate for their poor fit
of the data with a much smaller parameter count. In
fact, this precise issue has been observed in simulation
studies reported in [15].

Addressing this problem with a Möbius parameteriza-
tion is not easy, because Möbius parameters are strata
or context-specific; in other words, the parameteriza-
tion is not independent of how the states are labeled.
For instance, some of the Möbius parameters repre-
senting confounding between X2,X4 and X5 are: 1

θ{2,4,5}(x1, x3) = p(04, 05|x3, 02, x1) p(02|x1)

for all values of x1, x3. In a binary model, this gives 4
parameters. The kinds of regularities in the true gen-
erative process, which we may want to exploit to cre-
ate a dimension reduction in our model, typically in-
volve a lack of interactions among variables, or a latent
confounder with a low dimensional state space. Such
regularities may often not translate into constraints
naturally expressible in terms of Möbius parameters.

To avoid this difficulty, we need to construct parame-
ters for nested Markov models which represent various

1To save space, here and elsewhere we will write 1i for
an assignment of Xi to 1, and 0i for an assignment to 0.



types of interactions among variables directly. In fact,
parameters representing interactions are well known in
log-linear models, of which undirected graphical mod-
els and certain regression models form a special case.

3 Log-linear Parameters for
Undirected Models

We will use undirected graphical models, also known
as Markov random fields, to illustrate log-linear mod-
els. A Markov random field over a multivariate binary
state space XV , is a set of densities p(xV ) represented
by an undirected graph G with vertices V , where

p(xV ) = exp

 ∑
C∈cl(G)

(−1)‖xC‖1λC

 ;

here cl(G) is the collection of (not necessarily maximal)
cliques in the undirected graph, ‖ · ‖1 is the L1-norm,
and λC is a log-linear parameter. Note that the pa-
rameter λ∅ ensures the expression is normalized.

Consider the undirected graph shown in Fig. 2. In this
graph, all subsets of {1, 2, 3}, {2, 4}, and {4, 5, 6} are
cliques. The model represents densities where, condi-
tional upon its adjacent nodes, each node is indepen-
dent of all others. The log-linear parameter(s) corre-
sponding to each such subset of size k can be viewed
as representing k-way interactions among appropriate
variables in the model. Setting some such interaction
parameters to zero in a consistent way results in a
model which still asserts the same conditional indepen-
dences, but has a smaller parameter count, and with
all strata in each clique treated symmetrically. For in-
stance, if we were to set all parameters for cliques of
size k > 2 to zero, so that there remained only param-
eters corresponding to vertices and individual edges,
we would obtain a model known as a Boltzmann ma-
chine [1]. A similar idea had been used to give a sparse
parameterization for discrete DAG models [12].

In the remainder of the paper, we describe nested
Markov models, and give a log-linear parameteriza-
tion for these models which contains similar parame-
ters that may be set to zero. While in Markov ran-
dom field models the parameters are associated with
sets of nodes which form cliques in the corresponding
undirected graph, in nested Markov models parame-
ters will be associated with special sets of nodes in the
corresponding ADMG called intrinsic sets. Further,
log-linear parameterizations of this type can often in-
corporate individual-level continuous baseline covari-
ates [5].
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Figure 2: An undirected graph representing a log-
linear model.

4 Graphs, Kernels, and Nested
Markov Models

We now introduce the relevant background needed to
define the nested Markov model.

A directed mixed graph G(V,E) is a graph with a set of
vertices V and a set of edges E, where the edges may
be directed (→) or bidirected (↔). A directed cycle
is a path of the form x→ · · · → y along with an edge
y → x. An acyclic directed mixed graph (ADMG)
is a mixed graph containing no directed cycles. An
example is given in Fig. 1 (b).

Let a, b and d be vertices in a mixed graph G. If b→ a
then we say that b is a parent of a, and a is a child of
b. If a↔ b then a is said to be a spouse of b. A vertex
a is said to be an ancestor of a vertex d if either there
is a directed path a → · · · → d from a to d, or a = d;
similarly d is said to be a descendant of a. The sets of
parents, children, spouses, ancestors and descendants
of a in G are written paG(a), chG(a), spG(a), anG(a),
deG(a) respectively. We apply these definitions dis-
junctively to sets, e.g. anG(A) =

⋃
a∈A anG(a).

4.1 Conditional ADMGs

A conditional acyclic directed mixed graph (CADMG)
G(V,W,E) is an ADMG with a vertex set V ∪ W ,
where V ∩W = ∅, subject to the restriction that for all
w ∈ W , paG(w) = ∅ = spG(w). The vertices in V are
the random vertices, and those in W are called fixed.

Whereas an ADMG with vertex set V represents a
joint density p(xV ), a conditional ADMG represents
the Markov structure of a conditional density, or kernel
qV (xV |xW ). Following [8, p.46], we define a kernel to
be a non-negative function qV (xV |xW ) satisfying:

∑
xV

qV (xV | xW ) = 1 for all xW . (1)

We use the term ‘kernel’ and write qV (·|·) (rather than
p(·|·)) to emphasize that these functions, though they
satisfy (1) and thus most properties of conditional den-
sities, are not in general formed via the usual operation
of conditioning on the event XW = xW . To conform
with standard notation for densities, for every A ⊆ V



let

qV (xA|xW ) ≡
∑
V \A

qV (xV |xW ),

qV (xV \A|xW∪A) ≡ qV (xV |xW )

qV (xA|xW )
.

For a CADMG G(V,W,E) we consider collections
of random variables (Xv)v∈V indexed by variables
(Xw)w∈W ; throughout this paper the random vari-
ables take values in finite discrete sets (Xv)v∈V and
(Xw)w∈W . For A ⊆ V ∪W we let XA ≡ ×u∈A(Xu),
and XA ≡ (Xv)v∈A. That we will always hold the
variables in W fixed is precisely why we do not permit
edges between vertices in W .

An ADMG G(V,E) may be seen as a CADMG in which
W = ∅. In this manner, though we will state sub-
sequent definitions for CADMGs, they also apply to
ADMGs.

The induced subgraph of a CADMG G(V,W,E) given
by a set A, denoted GA, consists of G(V ∩A,W∩A,EA)
where EA is the set of edges in G with both endpoints
in A. In forming GA, the status of the vertices in A
with regard to whether they are in V or W is pre-
served.

4.2 Districts and Markov Blankets

A set C is connected in G if every pair of vertices in C is
joined by a path such that every vertex on the path is
in C. For a given CADMG G(V,W,E), denote by (G)↔
the CADMG formed by removing all directed edges
from G. A set connected in (G)↔ is called bidirected
connected.

For a vertex x ∈ V , the district (or c-component) of
x, denoted by disG(x), is the maximal bidirected con-
nected set containing x. For instance in the ADMG
shown in Fig. 1 (b), the district of node 2 is {2, 4, 5}.
Districts in a CADMG form a partition of V ; vertices
in W are excluded by definition. In a DAG G(V,E)
the set of districts is the set of all single element sets
{v} ⊆ V .

A set of vertices A in G is called ancestral if a ∈ A⇒
anG(a) ⊆ A. In a CADMG G(V,W,E), if A is an
ancestral subset of V ∪W in G, t ∈ A∩V , and chG(t)∩
A = ∅, then the Markov blanket of t in A is defined
as:

mbG(t, A) ≡ paG

(
disGA(t)

)
∪
(

disGA(t) \ {t}
)
.

4.3 The fixing operation and fixable vertices

We now introduce a ‘fixing’ operation on a CADMG
which has the effect of transforming a random vertex
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Figure 3: (a) The graph from Fig. 1 (b) after fixing 3.
(b) An ADMG inducing a non-trivial nested Markov
model.

into a fixed vertex, thereby changing the graph. How-
ever, this operation is only applicable to a subset of
the vertices, which we term the (potentially) fixable
vertices.

Definition 1 Given a CADMG G(V,W,E) the set of
fixable vertices is

F(G) ≡ {v | v ∈ V,disG(v) ∩ deG(v) = {v}} .

In words, v is fixable in G if there is no vertex v∗ that
is both a descendant of v and in the same district as
v. For the graph in Fig. 1 (b), the vertex 2 is not
fixable, because 4 is both its descendant and in the
same district; all the other vertices are fixable.

Definition 2 Given a CADMG G(V,W,E), and a
kernel qV (XV | XW ), with every r ∈ F(G) we associate
a fixing transformation φr on the pair (G, qV (XV |
XW )) defined as follows:

φr(G) ≡ G∗(V \ {r},W ∪ {r}, Er),

where Er is the subset of edges in E that do not have
arrowheads into r, and

φr(qV (xV | xW );G) ≡ qV (xV | xW )

qV (xr | xmbG(r,anG(disG(r))))

Returning to the ADMG in Fig. 1 (b), fixing 3 in the
graph means removing the edge 2 → 3, while fixing
x3 in p(x1, x2, x3, x4, x5) means dividing this marginal
density by q1,2,3,4,5(x3 |x2) = p(x3|x2). The resulting
CADMG, shown in Fig. 3 (a), represents the resulting
kernel q1,2,4,5(x1, x2, x4, x5|x3).

We use ◦ to indicate composition of operations in the
natural way, so that: φr ◦ φs(G) ≡ φr(φs(G)) and

φr ◦φs(qV (XV |XW );G)

≡ φr (φs (qV (XV |XW );G) ;φs(G)) .

4.4 Reachable and Intrinsic Sets

In order to define the nested Markov model, we will
need to define special classes of vertex sets in ADMGs.



Definition 3 A CADMG G(V,W ) is reachable from
an ADMG G∗(V ∪W ) if there is an ordering of the ver-
tices in W = 〈w1, . . . , wk〉, such that for j = 1, . . . , k,

w1 ∈ F(G∗) and for j = 2, . . . , k,

wj ∈ F(φwj−1
◦ · · · ◦ φw1

(G∗)).

A subgraph is reachable if, under some ordering, each
vertex wi is fixable in φwi−1(· · ·φw2(φw1(G∗)) · · · ).

Fixing operations do not in general commute, and thus
only some orderings are valid for fixing a particular set.
For example, in the ADMG shown in Fig. 1 (b), the
set {2, 3} may be fixed, but only under the ordering
where 3 is fixed first, to yield the CADMG shown in
Fig. 3 (a), and then 2 is fixed in this CADMG. Fixing
2 first in Fig. 1 (b) is not valid, because 4 is both a
descendant of 2 and in the same district as 2 in that
graph, and thus 2 is not fixable.

If a CADMG G(V,W ) is reachable from G∗(V ∪W ),
we say that the set V is reachable in G∗. A reachable
set may be obtained by fixing vertices using more than
one valid sequence. We will denote any valid compo-
sition of fixing operations that fixes a set A by φA if
applied to the graph, and by φXA

if applied to a kernel.
With a slight abuse of notation (though justified as we
will later see) we suppress the precise fixing sequence
chosen.

Definition 4 A set of vertices S is intrinsic in G if it
is a district in a reachable subgraph of G. The set of
intrinsic sets in an ADMG G is denoted by I(G).

For example, in the graph in Fig. 1 (b), the set {2, 4, 5}
is intrinsic (and reachable), while the set {1, 2, 4, 5} is
reachable but not intrinsic.

In any DAG G(V,E), I(G) = {{x}|x ∈ V }, while in
any bidirected graph G, I(G) is equal to the set of all
connected sets in G.

4.5 Nested Markov Models

Just as for DAG models, nested Markov models may
be defined via one of several equivalent Markov prop-
erties. These properties are all nested in the sense that
they apply recursively to either reachable or intrinsic
sets derived from an ADMG. In particular, there is
a nested analogue of the global Markov property for
DAGs (d-separation), the local Markov property for
DAGs (which asserts that variables are independent of
non-descendants given parents), and the moralization-
based property for DAGs. These definitions appear
and are proven equivalent in [11]. It is possible to as-
sociate a unique ADMG with a particular marginal
DAG model, and a nested Markov model associated

with this ADMG will recover all independences which
hold in the marginal DAG [11].

We now define a nested factorization on probability
distributions represented by ADMGs using special sets
of nodes called ‘recursive heads’ and ‘tails.’

Definition 5 For an intrinsic set S ∈ I(G) of a
CADMG G, define the recursive head (rh) as: rh(S) ≡
{x ∈ S | chG(x) ∩ S = ∅}.

Definition 6 The tail associated with a recursive
head H of an intrinsic set S in a CADMG G is given
by: tail(H) ≡ (S \H) ∪ paG(S).

In the graph in Fig. 1 (b), the recursive head of the
intrinsic set {2, 4, 5} is equal to the set itself, while the
tail is {1, 3}.

A kernel qV (XV |XW ) satisfies the head factorization
property for a CADMG G(V,W,E) if there exist kernels
{fS(XH |Xtail(H)) |S ∈ I(G), H = rhG(S)} such that

qV (XV |XW ) =
∏

H∈JV KG
S:rhG(S)=H

fS(XH |Xtail(H)) (2)

where JV KG is a partition of V into heads given in [14].

Let G(G) ≡ {(G∗,w∗) | G∗ = φw∗(G)} for an ADMG
G. That is, G(G) is the set of valid fixing sequences
and the CADMGs that they reach. The same graph
may be reached by more than one sequence w∗. We say
that a distribution p(xV ) obeys the nested head factor-
ization property for G if for all (G∗,w∗) ∈ G(G), the
kernel φw∗(p(XV );G) obeys the head factorization for
φw∗(G) ≡ G∗. We denote the set of such distributions
by Pnh (G). Nested Markov models have been defined
via a nested district factorization criterion [15], and a
number of Markov properties [11]. The head factor-
ization is another way of defining the nested Markov
model due to the following result.

Theorem 7 The set Pnh (G) is the nested Markov
model of G.

Our decision to suppress the precise fixing sequence
from the fixing operation applied to sets is justified,
due to the following result.

Theorem 8 If p(xV ) is in the nested Markov model
of G, then for any reachable set A in G, any valid fixing
sequence on V \A gives the same CADMG over A, and
the same kernel qA(xA|xV \A) obtained from p(xV ).

4.6 A Möbius Parameterization of Binary
Nested Markov Models

We now give the original parameterization for binary
nested Markov models. The approach generalizes in



a straightforward way to finite discrete state spaces.
Multivariate binary distributions in the nested Markov
model for an ADMG G may be parameterized by the
following:

Definition 9 The nested Möbius parameters associ-
ated with a CADMG G are a set of functions: QG ≡{
qS(XH = 0 |xtail(H)) for H = rh(S), S ∈ I(G)

}
.

Intuitively, a parameter qS(XH = 0|xtail(H)) is the
probability that the variable set XH assumes values
0 in a kernel obtained from p(xV ) by fixing XV \S ,
and conditioning on Xtail(H). As a shorthand, we
will denote the parameter qS(XH = 0|xtail(H)) by
θH(xtail(H)).

Definition 10 Let ν : V ∪ W 7→ {0, 1} be an as-
signment of values to the variables indexed by V ∪W .
Define ν(T ) to be the values assigned to variables in-
dexed by a subset T ⊆ V ∪W . Let ν−1(0) = {v | v ∈
V, ν(v) = 0}.

A distribution P (XV | XW ) is said to be parameter-
ized by the set QG, for CADMG G if:

p(XV =ν(V ) |XW =ν(W )) =
∑

B : ν−1(0)∩V⊆B⊆V

(−1)|B\ν
−1(0)|×

∏
H∈JBKG

θH(Xtail(H) = ν(tail(H))) (3)

where the empty product is defined to be 1.

For example, the graph shown in Fig. 3 (b) rep-
resenting a model over binary random variables
X1, X2, X3, X4 is parameterized by the following sets
of parameters:

θ1 = p(01)

θ2(x1) = p(02|x1)

θ1,3(x2) = p(03|x2, 01)p(01)

θ3(x2) =
∑
x1

p(03|x2, x1)p(x1)

θ2,4(x1, x3) = p(04|x3, 02, x1)p(02|x1)

θ4(x3) =
∑
x2

p(04|x3, x2, x1)p(x2|x1).

The total number of parameters is 1+2+2+2+4+2 =
13, which is 2 fewer than a saturated parameterization
of a 4 node binary model, which contains 24 − 1 = 15
parameters. The two missing parameters reflect the
fact that θ4(x3) does not depend on x1, which is a
constraint induced by the absence of the edge from 1
to 4 in Fig. 3 (b). Note that this constraint is not
a conditional independence. In fact, no conditional
independences over variables corresponding to vertices
1, 2, 3, 4 are advertised in Fig. 3 (b).

This parameterization maps θH parameters to prob-
abilities in a CADMG via the inverse Möbius trans-
form given by (3), and generalizes both the standard
Markov parameterization of DAGs in terms of param-
eters of the form p(xi = 0 |pa(xi)), and the parame-
terization of bidirected graph models given in [3].

5 A Log-linear Parameterization of
Nested Markov Models

We begin by defining a set of objects which are func-
tions of the observed density, and which will serve as
our parameters.

Definition 11 Let G(V,E) be an ADMG and p(xV )
a density over a set of binary random variables XV

in the nested Markov model of G. For any S ∈ I(G),
let M = S ∪ paG(S), A ⊆ M (with A ∩ S 6= ∅), and
let qS(xS |xM\S) = φV \S(p(xV );G) be the associated
kernel. Then define

λMA =
1

2|M |

∑
xM

(−1)‖xA‖1 log qS(xS |xM\S),

to be the nested log-linear parameter associated with
A in S. Further let Λ(G) be the collection

{λMA |S ∈ I(G),M = S ∪ paG(S), rhG(S) ⊆ A ⊆M}

of these log-linear parameters. We call Λ(G) the
nested ingenuous parameterization of G.

This parameterization is based on the graphical con-
cepts of recursive heads and corresponding tails. We
call the parameterization ‘nested ingenuous’ due to
its similarity to a marginal log-linear parameterization
called ingenuous in [6], and in contrast to other log-
linear parameterizations which may exist for nested
Markov models. Marginal model parameterizations of
this type were first introduced in [2]. This definition
extends easily to non-binary discrete data, in which
case some parameters λMA become collections of pa-
rameters.

As an example, consider the graph shown in Fig. 3
(b) which represents a binary nested Markov model.
The nested ingenuous parameters associated with the
marginal p(x1) and conditional p(x2|x1) are

λ11 =
1

2
log

p(01)

p(11)

λ212 =
1

4
log

p(02|01) · p(02|11)

p(12|01) · p(12|11)

λ2121 =
1

4
log

p(02|01) · p(12|11)

p(12|01) · p(02|11)



whereas parameters associated with the kernel
q4(x4|x3) =

∑
x2
p(x4|x3, x2, x1)p(x2|x1) are

λ434 =
1

4
log

q4(04|03) · q4(04|13)

q4(14|03) · q4(14|13)

λ4343 =
1

4
log

q4(04|03) · q4(14|13)

q4(14|03) · q4(04|13)

A parameter λMA , where M is the union of a head H
and its tail T , can be viewed, by analogy with similar
clique parameters in undirected log-linear models, as a
|A|-way interaction between the vertices in A, within
the kernel corresponding to M . For instance the kernel
q2,4(x2, x4|x1, x3) = p(x4|x3, x2, x1) p(x2|x1),2 makes
an appearance in 4 parameters in a binary model:
λ123424 , λ1234124 , λ1234234 , and λ12341234. If we set λ12341234 to
0, we claim there is no 4-way interaction between
X1, X2, X3, X4 in the kernel.

It can be shown that while the Möbius parameteriza-
tion of the graph in Fig. 3 (b) is variation dependent,
the nested ingenuous parameterization of the same
graph is variation independent. This is not true in
general. In particular both parameterizations for the
graph in Fig. 1 (b) are variation dependent.

6 Main Results

In this section we prove that the nested ingenuous pa-
rameters indeed parameterize discrete nested Markov
models. We start with an intermediate result.

Lemma 12 Let H ⊆ M and q(xH |xM\H) be a ker-
nel. Then q is smoothly parameterized by the col-
lection of NLL parameters {λMA |H ⊆ A ⊆ M} to-
gether with the (|H| − 1)-dimensional margins of q,
q(xH\{v} |xM\H), v ∈ H.

Proof: The proof is essentially identical to the proof
of Lemma 4.4 in [6]. �

6.1 The Main Result

We now define a partial order on heads and use this
order to inductively establish the main result.

Definition 13 Let ≺I(G) be the partial order on
heads, Hi, of intrinsic sets, Si, in G such that Hi ≺I(G)
Hj whenever Si ⊂ Sj.

Theorem 14 The nested ingenuous parameterization
of an ADMG G with nodes V parameterizes precisely
those distributions p(xV ) obeying the nested global
Markov property with respect to G.

2This kernel, viewed causally, is p(x2, x4|do(x1, x3)).

Proof: Let ≺I(G) be the partial ordering on heads
given in Definition 13. We proceed by induction on
this ordering. For the base case, we know that sin-
gleton heads {h} with empty tails are parameterized
by λhh. If a singleton head has a non-empty tail, the
conclusion follows immediately by Lemma 12.

Now, suppose that we wish to find the kernel with a
non-singleton head H† and a tail T † corresponding to
the intrinsic set S†. Assume, by inductive hypothe-
sis, that we have already obtained the kernels with
all heads H such that H ≺I(G) H†. We claim this is

sufficient to give the (|H†| − 1)-dimensional marginal
kernels qS†(xH†\{v}|xT †), for all v ∈ H†.

Fix a particular v ∈ H†. The set S† \{v} is reachable,
since V \ S† is a set with a valid fixing sequence, and
any v ∈ H† has no children in S† in φV \S†(G) so is
fixable in φV \S†(G). Theorem 7 and Theorem 8 imply
that for every reachable set A, (2) holds. Hence:

qS†(xS†\{v}|xV \(S†\{v})) =
∏

H∈JS†\{v}KG
S:rhG(S)=H

qS(xH |xtail(H)).

(4)

For any S such that rhG(S) = H, and H ⊆ S† \ {v},
H ≺I(G) H†, hence by the induction hypothesis, the
kernel qS(xS |xpa(S)\S) is already obtained, and all ker-
nels which appear in (4) can be derived by condi-
tioning from some such qS(xS |xpa(S)\S). The desired
kernel qS†(xH†\{v}|xT †) can itself be obtained from
qS†(xS†\{v}|xpa(S†)\S†) by conditioning.

We can repeat this argument for any v ∈ H†. Fi-
nally, the nested ingenuous parameterization contains

λH
†∪T †

A for H† ⊆ A ⊆ H†∪T †. The result then follows
by Lemma 12. �

7 Simulations

To illustrate the utility of setting higher order parame-
ters to zero (‘removing’), we present a simulation study
based on the ADMG in Fig. 5 (b). This graph is a
special case of two bidirected chains of k vertices each,
with a path of directed edges alternating between the
chains, for k = 4. The number of parameters in the
relevant binary nested Markov model grows exponen-
tially with k in graphs of this type.

Consider also the latent variable model defined by re-
placing each bidirected edge with an independent la-
tent variable shown in Fig. 5 (a), so that 1 ↔ 3 be-
comes 1← 9→ 3. If the state space of each latent vari-
able is the same and fixed, then the number of param-
eters in this hidden variable DAG model grows only
linearly in k. This suggests that the nested Markov
model may include higher order parameters which are
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Figure 4: Histograms showing the increase in deviance associated with setting to zero any nested log-linear
parameters with effects higher than orders (from left to right) seven, six and five respectively. This corresponds
to removing 6, 18 and 35 parameters respectively; the relevant χ2 density is plotted in each case.
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Figure 5: (a) A hidden variable DAG used to generate
samples for Section 7. (b) The latent projection of this
generating DAG.

not really necessary in this case (though the higher
order parameters may become necessary again if the
state space of latent variables grows).

We generated distributions from the latent variable
model associated with the DAG in Fig. 5 (a) as fol-
lows: each of the six latent variables takes one of three
states with equal probability, and each observed vari-
able takes the value 0 with a probability generated
as an independent uniform random variable on (0, 1),
conditional upon each possible value of its parents.

For each of 1,000 distributions produced independently
using this method, we generated a dataset of size 5,000.
We then fitted the nested model generated by the
graph in Fig. 5 (b) to each dataset by maximum like-
lihood estimation, using a variation of an algorithm
found in [5], and measured the increase in deviance
associated with zeroing any nested ingenuous param-
eters corresponding to effects above a certain order.
If these parameters were truly zero, we would expect
the increase to follow a χ2-distribution with an ap-
propriate number of degrees of freedom; the first two
histograms in Fig. 4 demonstrate that the distribution

of actual increases in deviance looks much like the rele-
vant χ2-distribution if we remove interactions of order
6 and higher. The third histogram shows that this
starts to break down slightly when 5-way interactions
are also zeroed.

These results suggest that higher order parameters
are often not useful for explaining finite datasets, and
more parsimonious models can be obtained by remov-
ing them; a similar simulation was performed for the
Markov case in [6].

7.1 Distinguishing Graphs

The use of score-based search methods for recovering
nested Markov models had been investigated [15]. It
was found that relatively large sample sizes were re-
quired to reliably recover the correct graph, even in
examples with only 4 or 5 binary nodes and after en-
suring that the underlying distributions were approx-
imately faithful to the true graph. One phenomenon
identified was that incorrect but more parsimonious
graphs, especially DAGs, tended to have lower BIC
scores than the correct models, which include higher
order parameters. Although BIC is guaranteed to be
smaller on the correct model asymptotically, in finite
samples it applies strong penalties for having addi-
tional parameters with little explanatory power.

Here we present a simulation to show how the new
parameterization can help to overcome this difficulty.
Using the method described in the previous subsec-
tion, we generated 1,000 multivariate binary distribu-
tions which were nested Markov with respect to the
graph in Fig. 1 (b). For each distribution we gen-
erated a dataset, and fitted the data to the correct
model, which has 16 parameters, as well as the two
DAGs given in Fig. 7 (a) and (b), which each have
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Figure 6: From the experiment in Section 7.1: in red,
the proportion of times graph in Fig. 1 (b) had lower
BIC than the DAGs in Fig. 7, for varying sample sizes;
in black, the proportion of times some restricted ver-
sion of this model had a lower BIC than any restricted
versions of either DAG.

11 parameters. This was repeated at various sample
sizes.

The plot in Fig. 6 shows, in red, the proportion of
times in which the BIC score for the correct model
was lower than that for each of the DAGs, at various
sample sizes. The correct graph only has the lowest
BIC score of the three graphs on less than 3% of runs
at sample size of n = 1,000, increasing to around 50%
for n = 20,000.

In addition to the full models, we fitted the datasets
to versions of the models with higher order parameters
removed; the graph in Fig. 1 (b) can be restricted by
zeroing the 5-way parameter (leaving 15 free parame-
ters), the 4-way and and above (13 params), or 3-way
and above (10 params). Similarly we can restrict the
DAGs to have no 3-way effects, giving each model 10
free parameters. Fig. 6 shows, in black, the proportion
of times that one of these restricted versions of the true
model had a lower BIC than any version of either DAG
model. We see that the correct graph has the lowest
score in 40% of runs at n = 1,000, rising to around
70% at n = 20,000. Note that these results should not
be compared directly to those in [15], since the single
ground truth law used in that paper was generated so
as to ensure faithfulness to the correct graph, whereas
we are randomly sampling multiple laws without both-
ering to ensure any particular properties in these laws
other than consistency with the underlying DAG.

These results suggest that these submodels of the
nested model may be advantageous in recovering the
correct graphical structure using score-based methods.
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Figure 7: (a) and (b) two DAGs with the same skeleton
as the graph in Fig. 1 (b).

Note that determining which higher order parameters
should be set to zero for a given data set and sample
size remains non-trivial. Automatic selection might be
possible with an L1-penalized approach [16, 4].

8 Discussion and Conclusions

We have introduced a new log-linear parameterization
of nested Markov models over discrete state spaces.
The log-linear parameters correspond to ‘interactions’
in kernels obtained after an iterative application of
truncation and marginalization steps (informally ‘in-
teractions in interventional densities’). By contrast the
Möbius parameters [15] correspond to context specific
effects in kernels (informally ‘context specific causal
effects’).

We have shown by means of a simulation study that
in cases where data is generated from a marginal of
a DAG with ‘weak confounders’, we can reduce the
dimension of the model by ignoring higher order in-
teraction parameters, while retaining the advantages
of nested Markov models compared to modeling weak
confounding directly in a DAG.

Though there is no efficient, closed form mapping from
ingenuous parameters to either Möbius parameters or
standard probabilities, this is a smaller disadvantage
than it may seem. This is because in cases where
the ingenuous parameterization was used to select a
particular submodel based on a dataset, we may still
reparameterize and use Möbius parameters, or even
standard joint probabilities if desired. Moreover, this
reparameterization step need only be performed once,
compared to multiple calls to a fitting procedure which
identified the particular graph corresponding to our
submodel in the first place.

The ingenuous and the Möbius parameterizations are
thus complementary. The natural application of the
ingenuous parameterization is in learning graph struc-
ture from data in situations where many samples are
not available, but we expect most confounding to be
weak. The natural application of the Möbius param-
eterization is the support of probabilistic and causal
inference in a particular graph [14, 15], in cases where
an efficient mapping from parameters to joint proba-
bilities is important.
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