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Abstract 

In statistical demography information about population processes is inferred from empirical data. 

In contrast, agent-based approaches focus on aggregate outcomes of individual-level behavioural 

rules. Given the non-linearities and feedbacks present in agent-based settings, their direct 

statistical analysis is not always feasible. Hence, in order to bridge the gap between these two 

perspectives, we propose to utilise Gaussian process emulators, which enable studying the 

outcomes of rule-based models statistically. The suggested approach includes a sensitivity analysis, 

assessing the relative importance of different model parameters, and a simple calibration, aimed at 

selecting plausible parameter values. The discussion is illustrated by presenting a Semi-Artificial 

Model of Population, which augments an agent-based model of partnership formation with 

statistical data on natural population change in the United Kingdom. The resulting multi-state 

model of population dynamics is better aligned with selected aspects of the demographic reality 

than its underpinning agent-based component alone. The analysis also illuminates important trade-

offs between different parameters and outputs considered. 
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1. Introduction 

Contemporary demographic micro-simulations are largely concerned with populations of statistical 

individuals, whose life courses can be inferred from empirical information (Courgeau 2012). In 

contrast, agent-based models study simulated individuals, for whom certain behavioural rules are 

assumed. We wish to bring these two approaches closer together by coupling the rule-based 

explanations driving an agent-based model with observed data. Our overarching research goal is to 

explain the emergence of macro-level demographic patterns as a result of reasonable micro level 

assumptions which are explored in the model. To that effect, we propose a method to analyse 

selected statistical properties of agent-based models, which utilises statistical emulators (Kennedy 

& O’Hagan 2001; Oakley & O’Hagan 2002). 

                                                
1 This working paper presents an abridged version of the article “Reforging the Wedding Ring:  Exploring a 

Semi-Artificial Model of Population for the United Kingdom with Gaussian Process Emulators” by Jakub Bijak, 

Jason Hilton, Eric Silverman and Viet Dung Cao, forthcoming in Demographic Research in late 2013.  Readers 

are kindly directed to http://www.demographic-research.org  for the full version of the paper. 

mailto:j.bijak@soton.ac.uk
http://www.demographic-research.org/
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In this paper, we present a Semi-Artificial Model of Population, which aims to bridge demographic 

micro-simulation and agent-based traditions. We extend the ‘Wedding Ring’ agent-based model of 

marriage formation (Billari et al. 2007) to include empirical information on the natural population 

change for the United Kingdom, alongside the behavioural explanations that drive the observed 

trends in nuptiality. The mortality and fertility rates in this population are drawn from UK 

population data for 1951–2009 and forecasts until 2061 obtained from Lee-Carter models. We must 

note that our model is illustrative rather than attempting to be fully realistic with respect to all 

aspects of the underlying demographics. Subsequently, we utilise Gaussian process emulators – 

statistical models of the base model – to analyse the impact of selected parameters on two key 

simulation outputs: population size and share of agents with partners. We also attempt a sensitivity 

analysis, aiming to assess the relative importance of different inputs.  

 

In general, agent-based models (ABMs) are a class of computational models designed to simulate 

the interactions of autonomous agents which may represent individuals or groups.  The goal of such 

models is to assess the effects of these actions on the overall system, and to replicate incidences of 

complex macro-level phenomena by simulating the actions of simple, micro-level agents (Epstein 

and Axtell 1996, Gilbert and Tierna 2000, and Silverman and Bryden 2007).  As a consequence, 

these simulations will generally include simple behavioural rules for autonomous agents, with the 

goal of observing how these low-level behaviours interact to produce higher-level complexity.  

 

The existing examples of applying agent-based models in population-related applications are 

scarce, yet varied (see Billari and Prskawetz 2003 and Billari et al. 2006 for contemporaneous 

overviews).  From the classical example of the residential segregation model of Schelling (1978), 

other applications include marriage formation (Todd, Billari, and Simão 2005; Billari et al. 2007), 

family-related decisions with respect to parenthood transitions (Aparicio Diaz et al. 2011), 

migration (Kniveton, Smith, and Wood, 2011; Willekens 2012), as well as overall household 

dynamics (Geard et al. 2013).  In more general terms, Entwisle (2007) discussed the potential for 

harnessing the power of ABMs to understand the importance of locality and space in population 

models.  With that in mind, the current paper attempts to narrow the gap between the behavioural 

assumptions of agent-based models, aimed mainly at explanations and guiding intuition about 

phenomena, and the higher predictive power of demographic micro-simulations.   

 

This paper is structured into four sections.  After this Introduction, in Section 2 we introduce a 

Semi-Artificial Model of Population based on a reimplementation of the ‘Wedding Ring’ model of 

Billari et al. (2007).  The presentation of SAMP starts from a brief description of the Wedding Ring, 

followed by a discussion of empirical and projected demographic inputs, and emulator-based 

methods for analysing the uncertainty in complex computational models.  Selected results of the 

simulations are shown in Section 3.  Finally, Section 4 offers a brief discussion of the results, 

followed by suggestions for further work.  The code for the current version of the model is available 

from the OpenABM archive (http://www.openabm.org/model/3549/version/2). 

  

http://www.openabm.org/model/3549/version/2
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2. Semi-Artificial Model of Population  

2.1. Model Architecture 

Here we present a Semi-Artificial Model of Population (hereafter: SAMP), a simple multi-level and 

multi-state model of population dynamics, combining statistical and agent-based modelling 

approaches.  The model follows the life courses of simulated individuals (agents), who are subject 

to empirical patterns of fertility and mortality.  For illustration, we use time-varying data on age-

specific birth and death rates for the United Kingdom (UK) for the period 1951–2010, and their 

further predictions yielded by Lee-Carter type models.  The agent-based component is focused on 

the process of marriage, and thus also household formation.  For this purpose, we use an adapted 

version of the ‘Wedding Ring’ model of Billari et al. (2007).  Since SAMP is intended to be 

illustrative and exploratory, we have omitted other demographic processes such as migration for 

the sake of transparency.  In terms of multi-level structure, SAMP operates at three levels: 

individuals (agents); households; and the whole population, with a direct bottom-up aggregation 

between these levels.  Various technical aspects of the model are discussed in more detail in 

Sections 2.2 and 2.3; Section 2.4 describes a framework for analysing uncertainty in such a model, 

based on the concept of Gaussian process emulators. 

 

2.2. Agent-Based Component: Marriage Formation on the Wedding Ring 

In order to illustrate the potential benefits and pitfalls of combining the demographic micro-

simulation and agent-based approaches, we replicate and expand upon the ‘Wedding Ring’ agent-

based model of marriage formation designed by Billari et al. (2007).  The model attempts to explain 

age-at-marriage patterns seen in contemporary developed countries.  In brief, the Wedding Ring 

represents the process of marriage formation as a consequence of social pressure.  Pressure arises 

from contact between married- and non-married individuals within a given social network.  This 

conceptual framework serves as a means of formalising some recent research in social influence 

and social learning, which has shown that these processes are highly relevant in individuals’ 

decisions to get married (e.g., Bernardi 2003, idem).   

 

The Wedding Ring is so named due to the fact that in the original model agents live in a one-

dimensional ring-shaped world (Billari et al. 2007).  Each agent’s location is thus specified purely 

by a single coordinate (angle).  The authors appear to have chosen the ring shape to avoid edge 

effects for agents located near a boundary.  As the simulation progresses, each time-step in the 

simulated world is equivalent to one year.  The agents are thus effectively situated in a cylindrical 

space, with one dimension of space and another of time (alternatively, age).  Each agent’s network 

of ‘relevant others’ is then defined as a two-dimensional neighbourhood on that cylinder (idem).  

The size of the spatial interval for the agent’s network of relevant others is symmetric around their 

location, and varies according to the size of the initial population; in our reimplementation we have 

included a parameter for ‘spatial distance’, denoted as d, which determines the search space. 

 

Within that neighbourhood, the proportion of married agents determines the ‘social pressure’ felt 

by an individual agent, which influences their decision to seek out a partner (prospective spouse).  

The overall level of social pressure and the agent’s age influence parameter determine the range in 
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which agents search for suitable partners.  The age influence value is defined using a piecewise-

linear function that varies with the age of the agent.  As social pressure increases, agents widen 

their search range, and thus have a greater chance of successfully finding a partner (idem).  

However, the search is mutual: if one unmarried agent finds another within its acceptable range, 

marriage may only occur if the suitable partner has the searching agent within its acceptable range 

as well.  Once married, agents may bear children; these children are then placed into the ring-world 

at a random spot in their parents’ neighbourhood and begin life at age zero.   

 

2.3. Demographic Components: Mortality and Fertility 

To ensure that the starting structures within the simulation are reasonable, initial populations have 

been generated randomly, but with agent distributions by age, sex, and marital status 

corresponding to the breakdown observed in England and Wales in the 1951 census2.  To the same 

end, fertility and mortality rates experienced by agents over the course of the simulation are based 

on empirical and projected data for the United Kingdom.  For mortality, the first 59 years of the 

simulation are based on age-specific mortality rates for the UK for 1951–2009.  The data are split 

by individual year and single years of age from birth to the open interval 110+, and are based on 

population exposure estimates and death counts from the Human Mortality Database (2011). To 

obtain logarithms of mortality rates ln(mx,t) for the next half a century (2010–2061), predictions 

were produced using the well-known Lee and Carter (1992) model.   

 

The fertility rates were obtained in a similar way to those for mortality.  Age-specific rates from 

1973–2009 for UK woman of childbearing age were obtained from the Eurostat database (Eurostat 

2011), while earlier data for the period 1951–1972 were taken from the Office of National Statistics 

data for England and Wales3.  A Lee-Carter model for logarithms of age-specific fertility rates, 

ln(fx,t), was again fitted to the data, but, in contrast to the mortality predictions, two bi-linear terms 

bxkt were required to best capture the trends in fertility.  Formally, the forecasting equations for 

mortality and fertility have the form:  

(1)                (    )              ,  

(2)      (    )                       . 

where εx,t and x,t are normally distributed age-and-time-specific errors.  For mortality, kt was 

projected forwards to 2061 using a random walk with drift, while for fertility the ARIMA(1,1,1) 

model has been then selected for each time-variant parameter k*t in the above equation using 

standard selection procedures, as implemented in the R package forecast (Hyndman 2011).   

 

In order to ensure that fertility rates remain close to empirical values, we also utilise empirical and 

projected values for the proportion of births to married mothers by year and age of mother, 

                                                
2 Source: Table 26 of the census output: [Population by] ages (quinary) by marital condition, by courtesy of the 
Office for National Statistics (ONS), Titchfield (personal communication on 29/11/2011).   

3 Source: http://www.ons.gov.uk/ons/rel/vsob1/birth-statistics--england-and-wales--series-fm1-/no--27--
1998/birth-statistics-series-fm1.pdf (retrieved on 15/11/2011).  

http://www.ons.gov.uk/ons/rel/vsob1/birth-statistics--england-and-wales--series-fm1-/no--27--1998/birth-statistics-series-fm1.pdf
http://www.ons.gov.uk/ons/rel/vsob1/birth-statistics--england-and-wales--series-fm1-/no--27--1998/birth-statistics-series-fm1.pdf


5 

 

denoted here as rx,t.  The rate of childbearing for a simulated married woman is then calculated by 

taking the product rx,t fx,t  and multiplying it by the ratio of total to married women in that age group:  

(3)         
           

    

    
 , 

where superscripts M denote the population of married agents, and Px,t refers to the total simulated 

female population at age x and time t.  Similar calculations are made for unmarried women’s 

fertility using the value (1 – rx,t) and the ratio of total to unmarried women. The data for rx,t come 

from the Eurostat database (2011) for 1982–2010, and the remaining years are obtain by back- and 

forward-prediction for the periods 1951–1981 and 2011–2061 from another Lee-Carter model (4):  

(4)              (    )              . 

The time varying element of this model t is considered to be approximately proportional to the 

values of rt , the proportion of the births to married women irrespective of age.  Eurostat data for rt 

prior to 1982 could therefore be transformed in order to continue the times series for t  by 

subtracting the mean value of rt between 1982–2010 and multiplying by the ratio of the standard 

deviations σ /σr.  The auto.arima method of the forecast package (Hyndman 2011) was used to 

select a ARIMA(3,2,0) model for the backward, and ARIMA(1,1,2) model for the forward prediction.   

 

2.4. Framework for Analysing Uncertainty: From Monte Carlo to Gaussian Process Emulators 

Due to the inherent non-linearities of relationships within agent-based models such as SAMP, and 

the presence of various feedback loops, the uncertainty of model outputs may not be easily (if at all) 

assessable analytically.  Instead, a Monte Carlo simulation can be performed, where the model 

based on a pre-defined set of parameters is run many times, and the empirical realisations analysed 

in the form of statistical distributions.  This solution is appropriate for assessing the code 

uncertainty, related to variation in the realisations of the model itself (cf. O’Hagan 2006).  An 

example of applying the Monte Carlo approach to SAMP is presented in Section 3.3.  

 

However, the code uncertainty is not everything.  Considerable uncertainty is also associated with 

the unknown parameters driving the model assumptions.  In principle, this issue could be also 

addressed using a Monte Carlo approach, although given the potentially high dimensionality of the 

problem, the number of required iterations, coupled with the computational complexity of the 

models and the time required to run them, this quickly becomes prohibitive (Kennedy and O’Hagan 

2001).  An alternative approach is to construct an emulator – effectively, a statistical model of the 

underlying complex computational model, reduced to the inputs and outputs of immediate interest 

– and to examine its properties (Oakley and O’Hagan 2002).  In order for the uncertainty of the 

emulator to be described coherently and correctly, the preferred underlying statistical framework 

is the one of Bayesian inference (idem). 

 

Amongst methods that have been proposed for building emulators, the one that is argued to be 

relatively simple, yet very flexible for applications to complex computational models, is based on 

Gaussian processes.  A succinct introduction to Gaussian process emulators is provided below.  In 
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general, the theoretical foundations have been laid out in the work of Kennedy and O’Hagan (2001), 

Oakley and O’Hagan (2002), Kennedy (2004), O’Hagan (2006), and on the website of the research 

community Managing Uncertainty in Complex Models (http://www.mucm.ac.uk).   

 

Let f(∙) denote the base computational model of interest – in our case, SAMP.  For the purpose of 

building an emulator, the focus is on a pre-defined vector of n inputs, x  X  n, and a single 

output, y  Y  , such that y = f(x).  X does not have to exhaust the whole parameter space of the 

underlying model, but rather should relate to those inputs which are considered important from 

the point of view of the output studied.  Following Oakley and O’Hagan (2002: 771) and Kennedy 

(2004: 2), we define a Gaussian process emulator, conditionally on its parameters, as a multivariate 

Normal distribution for p realisations of f, y1 = f(x1), … , yp = f(xp), denoted jointly as f (idem): 

(5)     [ ( )      ]    [ ( )    (   )]. 

The mean of the process, m, is modelled through a vector linear regression function of x, h(x), with 

coefficients , such that for every output f(x), m(∙) = h(∙)T .  Further, 2 is the joint variance 

parameter, and c(∙,∙) denotes a correlation matrix, the elements of which are here assumed as  

cij(xi, xj) = exp{–(xi – xj)T R (xi – xj)}.  The diagonal matrix R = diag(r1, …, rn) is composed of 

roughness parameters {r1, …, rn}, which indicate how strongly the emulator responds to particular 

inputs (Kennedy and O’Hagan 2001: 432–433; O’Hagan 2006).   

 

In order to estimate the parameters of the emulator, a set of simulation data D = [f(1), … , f(N)] is 

required for a set of N experimental points  = {1, …, N}, where   X (Kennedy 2004: 2).  Making 

additional assumptions on the prior distributions of the parameters of the emulator (5), allows for 

applying full Bayesian inferential mechanism to obtain the posterior distribution of f given D.  In 

order to incorporate the code uncertainty into the emulator, an additional variance term (referred 

to as a nugget) can be subsequently included in the estimation of the mean and the covariance 

matrix of the posterior distribution (idem).   

 

The emulator, once built, can be used for a basic uncertainty analysis, which looks at how much 

uncertainty in the output is being induced by the set of inputs X under study, treated here as 

random variables with some assumed probability distributions (e.g. Kennedy 2006).  A sensitivity 

analysis, in turn, assesses the impact of particular inputs on the output based on the reductions of 

the output variance due to actually observing particular inputs (Oakley and O’Hagan 2004).  Output 

variance reductions obtained by conditioning on true observed values of single inputs are referred 

to as main effects, and the additional reductions obtained for combinations of inputs – as joint 

(interaction) effects.  An illustration is provided in Section 3.  

 

3. Selected Results 

3.1. Model Implementation  

SAMP was implemented in Repast Simphony v. 2.0, a Java-based environment especially designed 

for agent-based modelling and simulations.  Each run of the model included 110 time steps, which 

in our case correspond to calendar years, starting with 1600 agents in the simulated year 1951.  

http://www.mucm.ac.uk/
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The starting period was chosen in order to match the initial population structure with the 1951 UK 

census.  The results presented in this section focus on the simulated year 2011, for which empirical 

verification of some aspects of the simulation was possible, and on the 2061 horizon.   

 

The summary statistics are produced every simulated year, and refer to population structures and 

marriage hazards.  The outputs also form a basis for building statistical emulators based on  

consisting of 73 = 343 model runs, corresponding to seven design values for each of the three 

parameters.  For the purpose of the Monte Carlo analysis the model was run 500 times for a 

selected parameter set, to assess the uncertainty resulting from the inherent randomness of SAMP.   

 

When re-implementing the Wedding Ring model and switching to empirical and projected vital 

rates, the original parameter settings of Billari et al. (2007) were no longer producing results that 

could be considered fully plausible in the light of the empirical evidence, as discussed further in 

Sections 4.2 and 4.3.  Most importantly, this concerned the two parameters,  and , related to the 

social pressure function s(r), defined in the original paper as (Billari et al. 2007: 66): 

(6)      ( )     { (   )}  [     { (   )}], 

where r denotes the proportion of agents with partners within one’s network of relevant others.  

The parameters were originally benchmarked as  = 0.5 and  = 7 (idem).   

 

3.2. Uncertainty and Sensitivity Analysis: Population Size and Marriage Rates 

In this section we present two Gaussian process emulators for SAMP, with the aim of identifying 

areas of the parameter space that result in empirically plausible population dynamics and marriage 

processes.  The focus here is on two features of the marriage formation mechanism: social pressure 

and spatial distance, both of which feed into the intensity of the partner search.  In the first 

emulator we analyse the impact of the three underlying parameters:  and  in equation (6), as well 

as the distance parameter d, on the uncertainty in the resultant overall share of population over 16 

years who have entered into marriages at the simulation year 2011, denoted as p.  Since p is 

bounded between 0 and 1, we have logit-transformed the output variable into u = ln[p/(1–p)].   

 

In order to obtain the simulation data D for building the emulator, we have run the model on a 

Cartesian product of pre-selected input values,  = ’ × ’ × d’, where ’= [0, 0.333, 0.666, 1.0, 

1.333, 1.666, 2.0]T, ’ = [exp(–1), exp(0), exp(1), exp(2), exp(3), exp(4), exp(5)]T, and d’ = [5, 10, 15, 

20, 25, 30, 35]T.  Subsequently, a basic sensitivity analysis of the output u to the variation in the 

inputs has been attempted, with the aim to assess the importance of the three parameters.   

 

The emulator was constructed, and the uncertainty and sensitivity analysis was performed in 

version 1.1 of the dedicated software GEM-SA (Gaussian Emulation Machine for Sensitivity Analysis), 

written by Marc Kennedy and Anthony O’Hagan (Kennedy 2004; O’Hagan 2006)4.  The quality of the 

emulator construction was assessed by using a leave-one-out cross-validation method.  The root 

                                                
4 The software is available from http://ctcd.group.shef.ac.uk/gem.html (retrieved on 15/07/2012). 

http://ctcd.group.shef.ac.uk/gem.html
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mean-squared standardised error (RMSSE) reported by GEM-SA in this case was equal to 3.112, 

which indicates a fair emulator fit, in comparison with the ideal outcome of 1.  

 

In GEM-SA, the distributions for the parameters of the Gaussian process (5) are a priori assumed to 

be vague, with p(, 2)  –2 denoting limited information about the features of the process prior to 

observing the simulation data (inputs and outputs).  The independent prior distributions for 

particular elements of the roughness matrix, ri, are in turn exponential, with parameter  = 0.01 

(Kennedy 2004: 2).  For the purpose of the uncertainty and sensitivity analysis, the three input 

parameters are here assumed to be unknown and described by the following Normal distributions: 

 ~ N(1.0, 0.25),  ~ N(2, 2.25) and d ~ N(20, 56.25).  The code uncertainty was handled by adding 

an additional error term (nugget) in calculating the posterior estimate of the covariance matrix.  

 

The outcomes of the uncertainty analysis indicate a mean percentage of ever-married agents of p = 

62.4%, corresponding to the logit-transformed variable u = 0.507.  The variance  2 is estimated as 

4.006, and the nugget variance as 0.092, indicating that, for u, the uncertainty in the three inputs is 

much more important than the code uncertainty resulting from the randomness in the model.  The 

total output variance in u induced by input uncertainties is estimated as 2.215, of which the 

emulator contributed 0.0017.  In terms of sensitivity, the most important variables proved to be the 

two parameters of the social pressure function,  and , accounting for 38.1% and 48.8% of the 

variability of the output respectively, and their interaction contributing further 9.7%.  The spatial 

distance parameter d was responsible only for 1.7% of the variability of u.   

 

A second emulator was constructed for population size in simulation year 2011 (N) as an output, 

log-transformed as M = ln(N), with the same input values as before.  The uncertainty analysis based 

on this emulator estimates the mean M as 7.57, corresponding to N = 1939 agents. Proportionally, 

the observed mid-2011 population of 63.3 million people5 corresponds therefore to 2013 agents.  

Knowing that cumulated net migration for the UK, since it began to be reported in 1964 until 2010, 

has amounted to ca. 2.1 million people6, a ball-park estimate of a corresponding closed population 

in mid-2011 can be put at about 61.2 million people, that is, 1945 agents.   

 

This time  2 is estimated as 0.968, and the nugget variance as 0.797, suggesting that the code itself 

is almost as important as the uncertainty in the underlying marriage formation process.  The 

variance on M is estimated as 0.00074, with 0.00002 being accounted for by the emulator.  Cross-

validation indicate that the fit of this emulator is worse than before, with an RMSSE of 5.00, which is 

not surprising given the role of code uncertainty.  The sensitivity analysis reveals the proportions of 

the variance accounted for by  as 12.0% and   as 32.3%, with a further 12.5% accounted for by 

their interaction.  The spatial distance parameter d is more important than for the previous 

emulator, accounting for 31.5% of total variance.  Figure 1 illustrates contour maps of the predicted 

                                                
5 http://www.ons.gov.uk/ons/rel/pop-estimate/population-estimates-for-uk--england-and-wales--scotland-

and-northern-ireland/mid-2011-and-mid-2012/stb---mid-2011---mid-2012-uk-population-estimates.html  
6 Source: http://www.ons.gov.uk/ons/interactive/theme-pages-1-1/index.html (retrieved on 15/08/2013). 

http://www.ons.gov.uk/ons/rel/pop-estimate/population-estimates-for-uk--england-and-wales--scotland-and-northern-ireland/mid-2011-and-mid-2012/stb---mid-2011---mid-2012-uk-population-estimates.html
http://www.ons.gov.uk/ons/rel/pop-estimate/population-estimates-for-uk--england-and-wales--scotland-and-northern-ireland/mid-2011-and-mid-2012/stb---mid-2011---mid-2012-uk-population-estimates.html
http://www.ons.gov.uk/ons/interactive/theme-pages-1-1/index.html
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emulator means for the outputs p and N, plotted against the parameters  and  , for d = 25.   

 

Figure 1. Mean share of ever-married agents and mean population size by parameters  and , 2011 

 
Notes: The share of ever-married people 16+ reported by the ONS for England and Wales in the 2011 census was 0.652. 

(Source: http://www.ons.gov.uk/ons/rel/census/2011-census/key-statistics-for-local-authorities-in-england-and-wales 

/stb-2011-census-key-statistics-for-england-and-wales.html#tab---Marital-status; retrieved on 15/08/2013)    

 - original parameter settings of Billari et al. (2007),  - default parameters used in this paper.  Isolines shown for d = 25. 

 

3.3. Illustration: A Scenario with Plausible Marriage Rates and Population Dynamics 

As indicated before, a comparison with the respective empirical data of the UK Office for National 

Statistics was conducted e.g. for the simulation year 2011.  After all the changes were applied in our 

implementation of the original Wedding Ring model, the default parameter setting of Billari et al. 

(2007), with  = 0.5, ln() = ln(7), would produce overall shares of ever-married agents over 80%; 

visibly higher than the empirical values (dots in Figure 1).  In turn, parameters  = 0.4, ln() = 4 and 

d = 25, depicted in Figure 1 by crosses, generate plausible outputs.  For these settings we present a 

scenario of Monte Carlo population dynamics for the overall population size.   

 

Figure 2 indicates the dynamics of the simulated population over the whole period 1951–2061.  

Here, the mean values are shown alongside the 2.5-th and 97.5-th percentiles from the simulated 

set of 500 model runs.  Additionally, observed population totals for 1951–2010 are presented, as 

well as those projected by the ONS for 2011–2061 in the 2010 round of National Population 

Projections, in the zero-migration variant.  The ONS projections are benchmarked to higher values, 

as the simulation does not take into account the positive balance of past migration into the UK.  Still, 

the trends in the projected and simulated trajectories for the future years are very similar.   

 

The results of this illustrative simulation indicate that the generated population trajectories and 

structures are plausible from the point of view of selected empirical data and official projections.  

Differences between the simulated and observed trajectories are in large part due to the 

simplifications of SAMP, in particular the exclusion of international migration, which remains a very 

important component of the contemporary and projected population dynamics of the UK.  Further 
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discrepancies might result from the very basic description of the modelled marriage processes, 

with no explicit modelling of cohabitation, no divorce or partnership dissolution, and no re-

marriage. Still, the proportions of ever-married agents averaged across the whole simulation 

horizon are similar to patterns observed in 2011, but with slightly higher percentages married at 

younger ages, and slightly lower for age 50 or above.   

 

Figure 2. Simulated population size (black), and empirical / projected UK comparisons (red) 

 
Notes: Scaling applied. The dotted lines correspond to 95-percent confidence bounds of the simulated population size.   

Source: ONS National Population Projections, zero migration http://www.ons.gov.uk/ons/rel/npp/national-population-

projections/2010-based-projections/rft-table-j1-1-natural-change-variant---uk-summary.xls (retrieved on 15/08/2013). 

 

4. Conclusion 

The main contribution of this paper to agent-based computational demography has been to 

demonstrate that using Gaussian process emulators is a convenient way of identifying plausible 

areas within the model parameter space, and of conducting a comprehensive analysis of 

uncertainty in complex computational models.  In our example, the sensitivity analysis shows the 

key role for social pressure in the marriage formation process as implemented in the model, which 

proved more important than the spatial distance parameter driving the partner search.  We have 

also shown that agent-based models enhanced with selected series of real demographic data offer 

improved predictive capabilities when compared to agent-based scenario generation alone.  By 

using SAMP we have obtained the simulated population characteristics that match patterns 

observed in the UK demography with respect to population size and share of ever-married agents.   

 

The resulting multi-state model of population dynamics is argued to have enhanced predictive 

capacity as compared to the original specification of the Wedding Ring, but there are some trade-

offs between the outputs considered. The sensitivity analysis indicates a key role of social pressure 

in the modelled partnership formation process. We posit that the presented method allows for 

generating coherent, multi-level agent-based scenarios aligned with selected aspects of empirical 

http://www.ons.gov.uk/ons/rel/npp/national-population-projections/2010-based-projections/rft-table-j1-1-natural-change-variant---uk-summary.xls
http://www.ons.gov.uk/ons/rel/npp/national-population-projections/2010-based-projections/rft-table-j1-1-natural-change-variant---uk-summary.xls
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demographic reality. Emulators permit a statistical analysis of the model properties and help select 

plausible parameter values. Given non-linearities in agent-based models such as the Wedding Ring, 

and the presence of feedback loops, the uncertainty of the model may be impossible to assess 

directly with traditional statistical methods. The use of statistical emulators offers a way forward. 

 

Natural substantive extensions of models such as SAMP include the spatial dimension, and in 

particular, migration (see Willekens 2012), as well as partnership dissolution and heterogeneous 

forms of partnerships.  Fertility decisions themselves can be subject to agent-based modelling, as 

demonstrated by Aparicio Diaz et al. (2011), with parity distribution being an explicitly-targeted 

emergent outcome of the underlying behavioural rules.  Other innovations, such as increasing the 

spatial dimensionality, which relax some of the constraints on the agents’ behaviour, and add 

further complexity to the state space by including the health status of agents, are reported 

elsewhere (Silverman et al. 2013).   

 

Further important methodological extensions of the model would include learning about the input 

values from the benchmarking of outputs to the observed population characteristics, for example 

with respect to various summary measures of population structures, in a comprehensive manner.  

Such statistical calibration techniques could be explored by using full Bayesian inference in 

conjunction with emulators.  This would allow for describing and propagating uncertainty 

stemming from different sources, not only the model code, in a coherent way.  In particular, this 

approach could be applied to calibrating the emulator results against the series of historical data, in 

a process known as history matching7.  This is especially important given the dynamic nature of the 

system under study.  Finally, more work should be done on the design of the experimental space, , 

for example by using Latin Hypercube samples or randomisation (O’Hagan 2006). 

 

Overall, the proposed methods allow for generating coherent, multi-level agent-based scenarios, 

whose increased predictive capacity is due to a combination of incorporating the empirical basis for 

selected aspects of the demographic reality, and exploring the parameter space by using emulators.  

Emulators are also convenient for analysing statistical properties of such models.  In this way, the 

agent-based models can be viewed through a statistical lens, reducing the gap between ‘statistical’ 

and ‘simulated individuals’ (cf. Courgeau 2012).  We argue that these two approaches are 

complementary, rather than competitive.   
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