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Abstract

We explore the functional modelling approach to population forecasting within the wider

context of Bayesian predictions and model uncertainty. The functional modelling approach

can be used to analyse and forecast many different age- and time-specific components for

fertility, mortality and migration. For each of these demographic processes, we perform

Bayesian model averaging across the outcomes of two functional models to take into account

model uncertainty. We illustrate the method with a population forecast for the United

Kingdom for 2010–2030. We conclude that regularities in age profiles of demographic

processes, where available, provide important information for the forecasts and as such

should be included in the forecasting process.

Keywords: Age schedules, Model averaging, Model selection, Functional models,

Lee-Carter model, Model uncertainty, Population forecasting

1. Introduction

In this paper, we extend the population forecasting framework developed in Wísniowski

et al. (2013), which utilises the well-known model of Lee and Carter (1992), to explore

the functional modelling approach to population forecasting. We additionally embed

this framework in a wider context of Bayesian predictions and model uncertainty. The

underlying functional modelling, originally suggested by Hyndman and Ullah (2007), allows

for analysing and forecasting many different age- and time-specific components for each of

the three main processes of population dynamics, namely fertility, mortality and migration.

For each process we perform Bayesian model averaging across the outcomes of two functional
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models, in order to take into account the model uncertainty and a varying level of data

support for different models. Finally, we combine the results in a joint cohort-component

framework to obtain a hybrid Bayesian population forecast. To be more specific, we

use Bayesian model averaging to assign weights to the two functional models. Having

determined weights, we then use time-series models to produce point and interval forecasts.

The method is illustrated by a population forecast for the United Kingdom (UK) for

2010-2030, which we compare against the official population projection of the Office for

National Statistics (ONS). We discuss the importance of various modifications of the

basic functional approach, as well as to smoothing irregular age patterns of international

migration. The proposed method is argued to offer more flexibility than those based on

single forecasting models, whilst allowing for a coherent treatment of various types of

uncertainty thanks to the overarching Bayesian statistical framework.

The rest of this paper is structured as follows. In Section 2 we present the proposed

framework for population forecasting by using the functional models. The description of the

applied cohort-component model of population renewal is followed by a brief introduction to

the functional analysis, and a recapitulation of Bayesian model selection and averaging. In

Section 3, we present the age-specific mortality, fertility, emigration rates and immigration

counts for the UK. Selected results are shown in Section 4, for the example of the population

of the UK, forecasted until 2030. Finally, Section 5 offers some concluding remarks and

suggestions for further work.

2. Functional Models for Population Forecasting

2.1. Population Renewal Framework

A cohort component model is used for describing the evolution of an age-specific

population (see also Preston et al., 2001; Wísniowski et al., 2013). For each age or age

group, we need to estimate age-specific fertility, mortality, emigration rates and immigration

counts. We work with single year of age and, instead of modelling net migration, we choose

to model emigration rates and immigration counts separately for the reasons given in

Rees (1986) and Raymer et al. (2012). The accurate estimation and forecast of mortality

is important for the calculation of the survival rate si for years i = 0, . . . , 89, 90+. The

survival rate measures the proportion of age i, which will survive to the next period of time.

Second, the fertility rate, fj, for j = 13, . . . , 51 measures the yearly average number of
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surviving offspring per woman aged j. Third, the emigration rate ηi for i = 0, . . . , 89, 90+

measures the average yearly number of emigrants of age i relative to the population

exposure. Finally, the immigration count, Ii, measures the total number of immigrants of

age i.

Let PF
i,t and PM

i,t denote the number of females and males of age i at the beginning of

year t. The relationship between consecutive periods of times can be expressed by means

of a projection matrix, given by

[
PF
t+1

PM
t+1

]
=


abF

t 0

sFt O
(1− a)bM

t 0

O sMt

×
[

PF
t

PM
t

]
+

[
IFt

IMt

]
, (1)

where Pk
t , k = M or F, denotes the male and female population, respectively, for all ages

at the beginning of year t, and a = 1/(1 + 1.05) is the assumed proportion to female births

in the population (Preston et al., 2001). The bkt = (0, . . . , bk13,t, . . . , b
k
51,t, . . . , 0) is a vector

of life-table birth rates, which can be derived from the age-specific fertility rates as follows

bki,t =
1

1 + 0.5µk0,t

1

2

(
fi,t + sFi,tfi+1,t

)
,

where fi,t > 0 represents the fertility rate at age i in year t; µk
0,t represents the age-specific

female or male mortality rate at age 0; sFi,t represents female survival rate at age i in year t.

For males and females, the age-specific survival rate can be estimated from age-specific

mortality and emigration rates. It is defined by

ski,t =


1−0.5(µki,t+ηki,t)

1+0.5(µki+1,t+η
k
i+1,t)

if i = 0, . . . , 89

1−0.5(µki,t+ηki,t)
1+0.5(µki,t+ηki,t)

if i = 90+
,

where µi,t represents the mortality rate at age i in year t; ηi,t represents the emigration

rate at age i in year t. As shown in Preston et al. (2001), the survival rate matrix for all
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ages can then be expressed as

skt =



sk0,t 0 0 . . . 0

0 sk1,t 0 . . . 0
...

. . .
...

0 0 . . . sk88,t 0 0

0 0 . . . 0 sk89,t sk90+,t


.

Note that in Equation (1), 0 = (0, . . . , 0) is a vector of length 91, O is a matrix of zeros of

size (90 × 91), and IFt = (IF0,t, . . . , I
F
90+,t)

′ represents the vector of immigration counts at

year t, and
′

represents vector transpose.

2.2. Functional Models: Preliminaries

Recent advances in computer recording and storing facilities allow statisticians to

analyse high-dimensional data that include many variables, such as mortality for different

ages. The objective of the functional data analysis is to analyse a set of underlying functions,

usually smooth and bounded within an interval; such functional data may be age-specific

mortality or fertility rates (see for example, Hyndman and Ullah, 2007; Hyndman and

Shang, 2009; Hyndman et al., 2013). Ramsay and Silverman (2005) and Ferraty and Vieu

(2006) provided detailed surveys of many parametric and nonparametric techniques for

analysing functional data, and some recent developments are collected in the edited books

by Ferraty and Romain (2011) and Ferraty (2011).

The functional data modelling process (Hyndman and Ullah, 2007) can be summarised

into the following steps:

1. Box-Cox transformation. Let mi,t represent the original data for age i =

0, . . . , 89, 90+ in year t. The Box-Cox transformation is applied to each compo-

nent of population in order to alleviate heteroscedasticity and can be specified

as

gi,t =

{
1
ξ
(mξ

i,t − 1) if 0 < ξ ≤ 1;

ln(mi,t) if ξ = 0.
t = 1, 2, . . . , n,

where gi,t represents the transformed data at age i in year t.

2. Pre-smoothing step. Since the object in functional data analysis is a smooth

function, we apply a smoothing technique to transform a set of discrete data points
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to such a function. As a result, there is a change of notation from gi,t to gt(xi), where

xi represents the discrete observations. It is assumed that there is an underlying

continuous and smooth function τt(x) that is observed with error at discrete ages.

Then, we can write

gt(xi) = τt(xi) + σt(xi)εi,t,

where σt(xi) models the variability for each age xi in year t, and ε ∼ N(0, 1) is an

independent and identically distributed random variable. The values of τt(xi) and

σt(xi) are estimated from data (see Hyndman and Ullah, 2007, for detail).

For modelling age-specific mortality, we utilise penalised regression splines with a

partial monotonic constraint for age above 65 (see Ramsay, 1988; Hyndman and

Ullah, 2007, for more details). For modelling age-specific fertility, we use a weighted

median smoothing B-spline, constrained to be concave (see He and Ng, 1999). For

modelling age-specific emigration rates and immigration counts, a smoothing spline

is used where the smoothing parameter is automatically determined by generalised

cross validation (see Wahba, 1990).

The functional models can be either independent or coherent, where the latter one is

done jointly for both sexes.

3a. Decomposition step for the independent functional model. By using func-

tional principal component analysis (FPCA), a set of functions is decomposed into

orthogonal functional principal components and their associated scores. The func-

tional principal component decomposition is given by

τt(x) = µ(x) +
K∑
k=1

βt,kφk(x) + et(x), x ∈ [0, 90+], (2)

where µ(x) is the mean function; {φ1(x), . . . , φK(x)} is a set of the first K func-

tional principal components; {βt,1, . . . , βt,K} is a set of the corresponding principal

component scores; et(x) ∼ N(0, σ2) is the residual function with mean zero and

finite variance; and K < n is the number of retained components. In practice,

mean function can be estimated by µ̂(x) = 1
n

∑n
t=1 τt(x); {φ̂1(x), . . . , φ̂K(x)} can

be obtained from singular value decomposition; β̂t,k and σ̂2 are drawn from their

respective posterior distributions, where the prior densities of the variance parameters

associated with the principal component scores and model error term are inverse
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gamma distributions with hyperparameters 10−3 and 10−3. Throughout the paper,

we select the number of components that explain at least 99% of the total variation

in data.

3b. Decomposition step for the coherent functional model. Equation (2) is

designed to model a single population, such as for fertility for females. For analysing

female and male mortality jointly, we adapt the multilevel functional data model

to analyse two subpopulations that may be correlated (see for example, Li and

Lee, 2005; Hyndman et al., 2013). The basic idea is to decompose functions from

different subpopulations into an aggregated average, a common trend, a sex-specific

trend and measurement error. The common and sex-specific trends are modelled by

projecting them onto the eigenvectors of covariance operators of the aggregated and

sex-specific centred stochastic processes, respectively. For example, the smoothed

female mortality rate at year t can be expressed as

τFt (x) = µ(x) + wF(x) +Rt(x) + UF
t (x) + εFt (x), (3)

where each term in (3) can be estimated by

wF(x) =µF(x)− µ(x),

Rt(x) ≈
K∑
k=1

βt,kφk(x),

UF
t (x) ≈

L∑
l=1

γFt,lψ
F
l (x).

Following the work of Crainiceanu and Goldsmith (2010), we draw the principal com-

ponent scores and the variance of model error from their posterior using the Bayesian

paradigm. The values of K and L are determined by the principal components set

to explain at least 95% and 90% of the total variations, respectively.

4a. Forecasting step for the independent functional model. Conditioning on

the smoothed functions I = {τ1(x), . . . , τn(x)} and the estimated set of functional

principal components B = {φ̂1(x), . . . , φ̂K(x)}, the h-step-ahead probabilistic forecast
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of mn+h(x) can be obtained as

m̂
(b)
n+h|n(x) = E[mn+h(x)

∣∣I,B]

= µ̂(x) +
K∑
k=1

β̂
(b)
n+h|n,kφ̂k(x) + ê

(b)
n+h|n(x) + σ̂n+h(x)ε̂

(b)
n+h,

where b = 1, . . . , B, and B = 1000 represents the number of iterations, β̂
(b)
n+h|n,k

denotes the h-step-ahead forecast of βn+h,k using a univariate time series model,

such as the optimal autoregressive integrated moving average (ARIMA) model

selected by the automatic algorithm of Hyndman and Khandakar (2008) based on an

information criterion, such as the corrected Akaike information criterion. Further,

ê
(b)
n+h|n is simulated from a normal distribution with zero mean, σ̂n+h(x) represents

the estimated variance from the historical observations, and ε̂
(b)
n+h is simulated from

a standard normal distribution. By using the parametric bootstrap method, the

prediction interval for the multilevel functional data model can be constructed

similarly.

4b. Forecasting step for the coherent functional model. Conditioning on the

smoothed functions I = {τF1 (x), . . . , τFn (x)} and the estimated set of functional

principal components B = {φ̂1(x), . . . , φ̂K(x)} and L = {ψ̂F
1 (x), . . . , ψ̂F

L(x)}, the

h-step-ahead probabilistic forecast of mn+h(x) can be obtained as

m̂
(b)
n+h|n(x) = E[mn+h(x)

∣∣I,B,L]

= µ̂(x) + ŵF(x) +
K∑
k=1

β̂
(b)
n+h|n,kφ̂k(x) +

L∑
l=1

γ̂Fn+h|n,lψ̂
F
l (x) + ê

(b)
n+h|n(x) + σ̂n+h(x)ε̂

(b)
n+h,

2.3. Model Selection and Averaging

The model-averaging approach combines two or more forecasts from a set of candidate

(nested or non-nested) models. Because these models may reflect different assumptions,

model structures and degrees of model complexity, it is expected that more robust result

can be obtained than the most accurate method alone. The idea of model averaging has

been studied intensively in statistics, dating back to the seminal work by Bates and Granger

(1969). Since then, a flurry of articles have appeared on this topic; see Clemen (1989) for a

review from a frequentist viewpoint and Hoeting et al. (1999) for a review from a Bayesian
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viewpoint. Recent developments in model averaging are collected in the monograph by

Claeskens and Hjort (2008). In demographic forecasting, there has been limited usage,

but notable exceptions include Smith and Shahidullah (1995), Ahlburg (1998, 2001) and

Sanderson (1998) in the context of census tract forecasting, Bijak (2010) for migration

forecasting, and Shang (2012) in the context of mortality and life expectancy forecasting.

Let M1,M2, . . . ,MR be a set of R possible models, and let θ1, θ2, . . . , θR be the vector

of parameters associated with each model. Denote ∆ as the quantity of interest, such as a

combined forecast of age-specific mortality, then its posterior distribution given data D is

Pr(∆|D) =
R∑
r=1

Pr(∆|Mr, D)Pr(Mr|D)

=
R∑
r=1

Pr(∆|Mr, D)
Pr(D|Mr)∑R

l=1 Pr(D|Ml)Pr(Ml)︸ ︷︷ ︸
weight

, (4)

where Pr(D|Mr) =
∫

Pr(D|θr,Mr)Pr(θr|Mr)dθr, Pr(θr|Mr) is the prior density of θr under

model Mr, Pr(D|θr,Mr) is the likelihood, and Pr(Mr) is the prior probability that Mr

is the true model. From a Bayesian viewpoint, Equation (4) is an average of the poste-

rior distributions under different models considered, weighted by their posterior model

probabilities (Hoeting et al., 1999).

In the statistical literature, there exist a number of methods for assigning weights,

some of which include the Bates-Granger averaging (Bates and Granger, 1969), Granger-

Ramanathan averaging (Granger and Ramanathan, 1984), information criterion averaging

(Burnham and Anderson, 2002), Bayesian model averaging (Raftery et al., 2005). In this

paper, we consider the harmonic mean estimator proposed by Newton and Raftery (1994)

to approximate the marginal likelihood of each model.

Given equal prior probability for the two models, the posterior odds can be obtained

by the ratios of two marginal likelihoods averaged over all Markov chain Monte Carlo

(MCMC) iterations. The marginal likelihood can be written by

Pr(D|Mk) =

(
1

T

T∑
t=1

{
Pr(D|θ(t)Mk

,Mk

}−1)−1
,

where T represents the total number of MCMC iterations; 1000 iterations are retained
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after 5000 iterations used for burn in. For discussions on the efficiency of this estimator,

see Raftery (1996) and Raftery et al. (2007)

3. Data

The historical UK population data include observations from 1975 to 2009, from

which we aim to forecast population by age and sex from 2010 to 2030. To obtain such

forecasts, it is essential to accurately estimate and forecast age-specific fertility, mortality

and emigration rates, as well as immigration counts. The fertility data were obtained from

the Human Fertility Database (2013), while the mortality data were obtained from the

Human Mortality Database (2013). The emigration rates and immigration counts were

obtained directly from the Office for National Statistics (ONS). The UK population has

been obtained from Human Mortality Database (2013). The UK mid-year population

estimate for 2009, used as a baseline for prediction, has been obtained from the ONS.

We consider mortality rates for single year of age for ages from 0 to 90+. For each

gender in a given calendar year, the mortality rates, given by the ratio between the “number

of deaths” and the “exposure to risk”, are arranged in a matrix by age and year. By

analysing the changes in mortality as a function of both age x and year t, we have seen

that mortality has shown a gradual decline over year. To have an idea of this evolution,

we present the log mortality rates for ages 0-90+ from 1975 to 2009 in Figure 1. Mortality

rates dip in early childhood, climb in the teen years, stabilise in the early 20s, and then

steadily increase with age. Some years exhibit sharp increases in mortality between the late

teens and early 20s. In general, we notice that for both females and males, mortality rates

are decreasing over time, especially for ages between 0 and 10. Males exhibit considerably

higher mortality in young adulthood than females.

The age-specific fertility rates are defined as the number of live births during a given

calendar year, according to the age of the mother among the female resident population of

the same age at 30th June. Age-specific fertility rates between ages 13 and 51 from 1975

to 2009 are presented in Figure 2. We notice that there is an increase in fertility rates at

higher ages in more recent years caused by a tendency to postpone child bearing while

women are pursuing careers (Nı́ Bhrolcháin and Beaujouan, 2012).

The total flows of emigration rates and immigration counts are presented in the top

row of Figure 3. We notice that migration for both genders follow a similar trend over
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Figure 1: UK female and male age-specific log mortality rates (1975-2009). The thick black line
represents the mortality in 2009
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Figure 2: UK age-specific fertility rates between ages 13 and 51. The thick black line represents
the fertility pattern in 2009

years. The immigration counts have been rapidly increasing since 1990 up until 2005. By

contrast, there is a slight increase over time in the emigration data, but the patterns seem

to be more volatile. One explanation for such a volatility stems from the fact that the data

on emigration in the UK come from the International Passenger Survey (IPS), which has

several pitfalls as explained in Raymer et al. (2012), for example. The other explanation

10



for such a volatility may due to political and economic developments and changes in

legislation (Alders et al., 2007). In particular, larger irregularities appear when the data

are disaggregated by single year of age, as illustrated for immigration and emigration in

the middle and bottom rows of Figure 3.
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Figure 3: Total and age-specific emigration and immigration counts for the UK from 1975 to 2009.
The black line represents the migration data in 2009
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4. Selected Results

Since the coherent functional model can not be applied to model fertility, we use

independent functional time-series model for fertility. For both mortality and emigration

rates, we found that the coherent functional model outperforms the independent functional

model. For immigration counts, we found that the independent functional model has a

larger marginal likelihood than the coherent functional model. The log marginal likelihood

(LML) and weights associated with each model is given in Table 1.

Mortality Emigration Immigration
LML weight LML weight LML weight

Coherent functional model 11022.38 1 19284.05 1 -9335.64 0
Independent functional model 10267.61 0 18951.01 0 -7602.9 1

Table 1: Log marginal likelihood and weight associated with each model for forecasting age-specific
mortality rates, emigration rates and immigration counts

4.1. Forecasts of mortality rates

Using the historical mortality data from 1975 to 2009, Figure 4 presents the point

forecast of log mortality rates in 2030, along with the 80% prediction interval. We found

that the log mortality rates for children and those over 60s have dropped over the historical

data presented in gray, and this pattern is likely to continue. Also, the mortality differences

in adults between ages 20 and 40 is continuing to drop, especially for females.
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Figure 4: Forecasted age-specific mortality rates in 2030 for both females and males, based on the historical
data from 1975 to 2009
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4.2. Forecasts of fertility rates

Based on the historical fertility data from 1975 to 2009, we produce the probabilistic

forecasts of age-specific fertility in Figure 5. The greatest forecast change is a continuing

decrease in fertility rates for ages between 17 and 30, but a continuing increase in fertility

for ages between 30 and 40. The resulting total fertility rates are presented in Figure 5b.

It seems that the total fertility rates will decrease until 2015, and then increase thereafter.

The slight declining, yet uncertain, fertility rates signal a possibility of another period of

postponement, which may be linked to difficult economic conditions in terms of budgetary

austerity in the UK in the 2020s (Kreyenfeld et al., 2012).
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Figure 5: Forecasted age-specific fertility rates in 2030. The black dotted line represents the point forecast,
where the dashed red lines represent the 80% prediction interval

4.3. Forecasts of emigration rates and immigration counts

Since the raw migration data are rather noisy, we apply the smoothing spline to obtain

smooth curves, where the amount of smoothing is determined by generalised cross validation.

Based on the historical emigration rates and immigration counts from 1975 to 2009, we

produce the probabilistic forecasts of age-specific emigration rates and immigration counts.

As shown in Figure 6, the greatest forecast change is a continuing increase in emigration

rates and immigration counts for ages between 20 and 40.

4.4. Forecasts of population

With the population in 2009 as a baseline, the age composition of forecasted population

in 2030 is presented in the first panel of Figure 7. Forecasts of the total female and male
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(a) Female emigration rate
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(b) Male emigration rate
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(c) Female immigration count
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(d) Male immigration count

Figure 6: Forecasted age-specific emigration rates and immigration counts in 2030 for both females and
males, based on the historical data from 1975 to 2009

populations are presented in the second panel of Figure 7. We found that the age profile of

the population in 2030 is mainly driven by future migration and, to some extent, fertility.

The median size of 2030 population is expected to reach 71.6 million, which is 10 million

larger than the population of 61.6 million in 2009. We expect that the total population

could exceed 70 million between 2028 and 2029. As shown in Table 2, we also compare

our forecasts of total population with the five-year official forecasts prepared by the ONS,

with 2010 as a baseline population. For each year considered, the ONS forecasts fall into

our 80% prediction interval. The differences in forecasts may be due to the fact that the

ONS assumes a constant net migration at the level of 200 thousand annually (Office for
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National Statistics, 2011). It is impossible to verify whether such an assumption will hold,

given high volatility in migration and recent policy of the UK government to reduce net

migration to the levels below 100 thousand per year.
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Figure 7: Forecasted age-specific population pyramid in 2030, along with the forecasted population sizes of
females, males and total

Median forecast 80% prediction interval
Year ONS Proposed Wísniowski et al. (2013) Proposed Wísniowski et al. (2013)
2010 62.262 62.165 62.238 (61.801, 62.512) (62.171, 62.302)
2015 64.776 64.061 64.802 (62.941, 65.184) (64.243, 65.386)
2020 67.173 66.214 67.905 (64.415, 68.049) (66.481, 69.429)
2025 69.404 68.736 – (66.193, 71.293) –
2030 71.392 71.599 – (68.238, 74.968) –

Table 2: Comparison of population forecasts (in million) between the ONS, the proposed method and
Wísniowski et al. (2013) method based on the applications of the Lee-Carter model
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5. Conclusion and future research

We present the independent and coherent functional time-series models for estimating

and forecasting age schedules of the four demographic components of changes in the UK. By

using a smoothing technique, the two functional models decompose the smoothed data into

a number of functional principal components and their scores. The principal component

scores and the variance parameter of the model residual are drawn from their posterior.

For each sample, we produce time-series forecasts of principal component scores. The

forecasted curves are obtained by multiplying the forecasted scores with fixed functional

principal components and mean function.

Using the harmonic mean estimator, we compute the marginal likelihoods of the two

functional models and assign the corresponding weights to the forecasts of mortality rates,

emigration rates and immigration counts. Forecast population is then obtained through a

cohort component projection model. The advantage of our approach can be attributed

to: (1) the use of a smoothing technique to smooth out noisy or missing observations;

(2) the use of higher order functional principal components to extract patterns in the

data; (3) accounting for the uncertainties embedded in fertility, mortality and migration

for each age and gender. Also, the advantage of the multilevel functional data model is

that it incorporates correlation between two genders and thus allows each component of

population to be modelled jointly, except fertility.

Since our models are conditional on the estimated functional principal components and

mean function, it is likely that uncertainty is underestimated. In future, we aim to propose

a fully Bayesian functional data analysis approach, in which the modelling and forecasting

steps are considered together. Furthermore, our method models period age-specific rates,

and it remains a future research to include cohort effect, at least in some of the four

demographic components.

An additional contribution of this paper consists in evaluating an application of the

proposed methodology to a situation of relatively good, yet still not perfect data availability.

Given the regularities in age profiles of fertility, mortality and migration, disaggregation of

the relevant data by age and sex provides important additional information for the forecasts.

We argue that, data permitting, the population forecasting should follow bottom-up, from

the age-specific rates, which describe the underlying processes more fully, rather than

top-down, from summary aggregates as total fertility rates or life expectancies. For that
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purpose, the functional approach coupled with a coherent analysis of model uncertainty

offers a very natural way of maximising the use of the available information.
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