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Channel estimation relying on the minimum bit-error-
ratio criterion for BPSK and QPSK signals
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Abstract: The authors consider the channel estimation problem in the context of a linear equaliser designed for a frequency
selective channel, which relies on the minimum bit-error-ratio (MBER) optimisation framework. Previous literature has shown
that the MBER-based signal detection may outperform its minimum-mean-square-error (MMSE) counterpart in the bit-error-
ratio performance sense. In this study, they develop a framework for channel estimation by first discretising the parameter
space and then posing it as a detection problem. Explicitly, the MBER cost function (CF) is derived and its performance
studied, when transmitting BPSK and QPSK signals. It is demonstrated that the MBER based CF aided scheme is capable of
outperforming existing MMSE, least square-based solutions.
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1 Introduction

The problem of estimating the channel coefficients of a
frequency selective channel in a communication system has
been extensively addressed in the literature. Various
methods have been proposed based on numerous criteria,
namely the maximum-likelihood [1], the linear
minimum-mean-square-error [1–3], least square (LS) [4, 5],
expectation maximisation [6] and so on. Recent channel
estimation methods including [7–9] use these criteria for
channel estimation. In this work, we propose a new channel
estimation framework based on the minimum bit-error-ratio
(MBER)-based criterion [10–12].
We consider a linear equalizer-based channel estimation

problem in the presence of additive white Gaussian noise
(AWGN) for a frequency selective channel. Although, we
consider a single antenna system for the proposed method
in the current work, it can be extended to multiple antenna
system also.
It was demonstrated in [10] that the optimal MBER linear

equaliser can be designed by directly minimising the
bit-error-ratio (BER) and that in the presence of a
non-Gaussian equaliser output distribution it is capable of
outperforming the MMSE-based system [11–16]. The
concept of detection-aided channel estimation relying on
discretising channel parameter space was proposed for a
fixed time-invariant channel and for BPSK signals in [17].
Our new contribution is that we further develop this to a
dispersive Rayleigh fading channel conveying both BPSK
and QPSK signal sets and characterise the achievable
performance of the proposed method.
We commence by first posing the channel estimation

problem as a detection problem, where the parameter space
is discretised into sufficiently fine-grained intervals (or bins)
and we devise a technique of detecting the correct
parameter interval containing the true parameter. More
specifically, we invoke the MBER criterion as our cost
function (CF), which is then optimised by finding the
tap-weights of the MBER-equaliser. We will demonstrate
that – under certain circumstances – the proposed MBER
channel estimate results in a BER, which is better than that
of the channel estimator relying on the MMSE CF across a
range of bit-energy-to-noise (Eb/N0) ratio values. Although,
this framework is analogous to the multi-level hypothesis
testing philosophy [18], to the best of our knowledge, this
problem formulation framework has not been used before.
The primary contributions of this work beyond those

presented in [17] are as follows:

1. MBER-based channel estimation is conceived for a
complex-valued channel conveying both channel-coded
QPSK data and pilot symbols.
2. Closed-form expressions are derived for the MBER
equaliser’s coefficient-optimisation CF for transmission over
circularly symmetric zero-mean Gaussian channels.
3. The complexity analysis of the proposed method is
presented. The analysis is approximate in nature.
Notation: E(x) denotes the expectation operation of a random
variable. The variables, such as x, x, X represent a scalar, a
vector and a matrix, respectively, whereas xR and xI

represent the real and imaginary parts of any complex
number x. For a vector s, [s]i represents the ith element of s.
Furthermore, Pr{x} denotes a general probability term.
sgn(x) = + 1, if x > 0, sgn(x) = − 1, if x < 0. For any positive
integer n, we have n! W n(n− 1) . . . · 2 · 1 and n

◦
W (n− 1)

(n− 3)..3.1.
1
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2 Background

2.1 Data model

We consider a linear discrete-time frequency-selective
channel contaminated by AWGN, whose output at time
instant k is

rk =
∑M−1

m=0

hmxk−m + vk (1)

where xk is an input drawn from any discrete signal
constellation set, h = h0h1 . . . hM−1

[ ]T
[ C

M×1 is the
complex-valued channel impulse response (CIR) having a
length of M symbol-duration with hm being the mth CIR
coefficient and vk is the AWGN noise component with zero
mean and a power spectral density of s2

v .
Let us assume that an L-symbol equaliser, c [ CL×1, is

used for detecting the input symbol xk. The output of the
linear equaliser is given by yk = cHrk, where the channel’s
output vector is rk = rkrk−1 · · · rk−(L−1)

[ ]T
[ C

L×1. More

explicitly, we have [11]

rk = Hxk + vk (2)

where H [ C
L×(L+M−1) is the channel matrix defined as

H =
h0 h1 . hM−1 . 0
0 h0 h1 . . 0
. . . . . .

0 0 . h0. . hM−1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (3)

and the input symbol vector is xk = xk · · · xk−(L+M−2)

[ ]T
[

C
(L+M−1)×1, whereas the noise vector is vk =
vk · · · vk−(L−1)

[ ]T
[ C

L×1.

2.2 Overview of MMSE and MBER-based symbol
detection

We continue with a brief description of the MMSE and
MBER symbol detection frameworks, where the optimum
equaliser coefficients are found using both the MMSE and
the MBER CFs.
MMSE method: The optimum equaliser solution based on the
MMSE criterion for the zero-mean data symbol xk is obtained
by Kay [1]

cMMSE = e1RxH
H HRxH

H + s2
vI

( )−1
(4)

where e1 = 100 . . . 0[ ] [ R(L+M−1)×1 and Rx [

R(L+M−1)×(L+M−1) and represents the covariance matrix of
data vector xk. Symbol detection is carried out at the output
of the equaliser using (cMMSE)Hrk.
MBER method: In this context, the optimum MBER equaliser
coefficients are designed by minimising the BER. If each
symbol value xk is equiprobable and it is drawn from a
BPSK signal set, the estimated value of xk at the decision
device’s output becomes

x̂k = sgn(yk ) (5)

The error probability, Pe, for transmission over a dispersive
2
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non-fading channel is evaluated as [11]

Pe = Pr x̂k = xk
( )

= E Q
cH Hxk xk

c‖ ‖sv

( )[ ] (6)

where Q(x) is the Gaussian Q-function, as defined in [1].

The expectation in (6) is computed over the N = 2M + L−1

equally likely xk vectors. If xk, n is the nth realisation of xk,
then we define sn W Hxk,n xk,n. From (6), the error
probability is simplified to

Pe =
1

N

∑N
n=1

Q
cTsn
‖c‖sv

( )
(7)

The MBER solution is then formulated as

cMBER = c arg min [Pe]
[ ]

(8)

where the optimum solution may be found using diverse
optimisation techniques, as exemplified by the adaptive
MBER (AMBER) solution [11]. The symbol detection is
carried out at the output of the equaliser using (cMBER)Hrk.
3 Channel estimation within the detection
framework

Let us now reformulate the above-mentioned detection
framework in the context of our CIR-parameter estimation
problem. Consider the equivalent form of (2) as

rk = X kh+ vk (9)

where the matrix X k [ C
L×M is defined as

X k =
xk xk−1 . xk−(M−1)

xk−1 xk−2 . xk−M

. . . .

xk−(L−1) . . xk−(L+M−2)

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (10)

Equation (9) may be interpreted as the model of a virtual
communication system associated with the ‘channel model’
Xk and the ‘data input vector’ h. In reality, Xk contains the
known training sequence and h is the CIR to be estimated.
From the point of parameter estimation, an estimation
technique estimates the parameter within a given
uncertainty interval that contains the true value. As an
example, with h being a parameter and ĥ being its
estimation, we can say ĥ lies within some
e-neighbourhood (e . 0) of the parameter [1]. The entire
continuous channel parameter space is visualised as the
union of an infinite number of contiguous e-neighbourhood
spaces as shown in Fig. 1. The mth entry of the
hypothetical data vector h is drawn from discrete values of
the discretised CIR model. Consider the intervals
encapsulating the true CIR estimate, which contiguously
cover the entire discretised CIR space. If an estimate lies
within its own native interval, it is assumed to be a ‘correct
decision’. This framework is well suited for discrete
channel detection (estimation) using the MBER CF.
IET Commun., pp. 1–8
doi: 10.1049/iet-com.2013.0173



Fig. 1 Discrete interval representation of range of values a channel parameter estimate can take with associated e-neighbourhood
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4 Proposed MBER-based channel estimation

Let us now define the proposed methodology conceived for
both real-valued and complex-valued channels. Assuming
that the noise statistics will not change with time for the
estimation duration, we drop the symbol index k.
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4.1 CF for real-valued channel taps

To estimate h from (9), a detection mechanism similar to the
previously described data-detection model is proposed. Let us
consider estimation of the mth tap, hm, m = 0, 1, …, M − 1.
We define an L-tap equaliser with coefficients
wm = w0,m, w1,m, w2,m, . . . , wL−1,m

[ ]T
[ CL×1 for m = 0, 1,

…, M − 1. We choose a different equaliser symbol wm for
channel estimation to differentiate it from c, which is used
for symbol (x) detection after the channel estimation step.
The output of the mth L-tap equaliser wm is defined as

ĥm = wT
mr (11)

The probability of a correct decision, when detecting hm,
m = 0, 1, …, M − 1 belonging to the interval containing
the true value hm, is denoted by Pc,m and given by

Pc,m = Pr −e ≤ ĥm −hm ≤ e
{ }

= Pr −e ≤ wT
mXh+ wT

mv− hm
( ) ≤ e

{ }
= Eh Pr −e≤ wT

mXh+wT
mv−hm( )≤e|h{ }{ }

(12)

We define

mm W wT
mXh− hm W

∑M−1

i=0

bi,m hi (13)

where bi,m W wT
mX

[ ]
i
for i≠m and bm,m W wT

mX
[ ]

m
−1.

Also, um W wT
mv which is a zero-mean Gaussian random

variable with a variance of ‖wm‖2s2
v and having a

probability density function (pdf), p(um). We consider the
term

Pr −e , wT
mXh+ wT

mv− hm
( )

, e|h{ }
= Pr −e , mm + wT

mv
( )

, e|h( )
= Pr −e− mm , um , e− mm|h

( ) (14)

The probability of error associated with detecting hm is
formulated as

Pe,m = 1− Pc,m

= 1− Eh

∫ e−mm( )
− e+mm( )

p(um) dum

[ ]
IET Commun., pp. 1–8
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= Eh Q
e+mm

‖wm‖sv

( )[ ]
+ Eh Q

e−mm

‖wm‖sv

( )[ ]

=
∫
h0

· · ·
∫
hM−1

Q
e+mm

wm

∥∥ ∥∥sv

( )
+Q

e−mm

wm

∥∥ ∥∥sv

( )[ ]
P(h) dh

(15)

where P(h) is the joint distribution of all the M CIR
coefficients. Every hm is a random variable having
a variance of s2

h,m, independent of hi for i≠m.
Ph

ji
, (with i = 1, 2, . . . , M ), an optimum solution for wm

is obtained by minimising (15), which can be written as [17]

wMBER
m = arg

wm

min Pe,m

[ ][ ]
(16)
4.2 CF for complex-valued channel taps

For complex-valued CIR coefficients, the probability of error
function is an extension of the real-valued case. A
complex-valued CIR can be interpreted as a pair of
independent, parallel real-valued channels. The probability
of erroneous decision for the complex-valued CIR
coefficient hm, for m = 0, 1, …, M − 1, can thus be
calculated as [16]

Pe,m = PR
e,m × PI

e,m (17)

where PR
e,m and PI

e,m are the probabilities of erroneous
detection (estimation) of the real and imaginary components
of hm, respectively. We define

mR
m W < wH

mXh− hm
{ } = ∑2M−1

i=0

bRi,mh
R,I
i (18)

mI
m W ℑ wH

mXh− hm
{ } = ∑2M−1

i=0

bIi,mh
R,I
i (19)

where 2M length stacked variables are defined as
a1 W <{wHX}− ℑ{wHX}

[ ]
[ R2M×1, a2 W ℑ{wHX}<[

{wHX}] and hR,I W <{h}ℑ{h}[ ]
[ R2M×1. We define

bRi,m W [a1]i for i = m and bRi,m W [a1]m −1 for i = m.

Similarly bIi,m W a2
[ ]

i , for i = M + m+ 1 and bIi,m W

[a2]M+m+1 − 1 for i = m. The probabilities of error,
PR
e,m, P

I
e,m, can be obtained from (5) as

PR
e,m = Eh Q

e+ mR
m

‖wm‖sv

( )[ ]
+ Eh Q

e− mR
m

‖wm‖sv

( )[ ]
(20)

PI
e,m = Eh Q

e+ mI
m

‖wm‖sv

( )[ ]
+ Eh Q

e− mI
m

‖wm‖sv

( )[ ]
(21)
3
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4.3 Closed-form expression of Pe,m for zero-mean
Gaussian channels

In order to obtain a closed-form expression for (15), (20), (21)
using multinomial expansion of series, we define
Km W 1/ ‖wm‖sv

( )( )
and recall n = (n − 1)(n − 3) … 3.1

for any positive integer n.
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4.3.1 Real-valued channel scenario

Proposition 1: The closed-form expression for (15) when the
channel is a zero-mean Gaussian is given by

Pe,m = 1−
��
2

p

√ ∑1
n=0

(−1)nK2n+1
m

n!

×
∑

k0+k1+···kM=2n+1

(2n)!ekM

k0!k1! . . .kM !

∏
0≤i≤(M−1)

(bi,msh,i)
ki k

◦
i

[ ]

kM odd, k0, k1, . . . , kM−1 even
( )

(22)

Proof: Let us consider the real-valued channel scenario, using

the Taylor series expansion of e−x2 , the Q-function can be
expanded as

Q(x) = 1

2
− 1����

2p
√

∑1
n=0

(− 1)(n)x2n+1

n!(2n+ 1)
(23)

The argument of the Q-function in (15) is

Km e+∑M−1
i=0 bi,mhi

( )
. Thus in (23), we have to evaluate

e+∑M−1
i=0 bi,mhi

( )2n+1
using multinomial expansion of

series. The series can be expressed as [19] ( see (24))

e+
∑M−1

i=0

bi,mhi

( )2n+1

=
∑

k0+k1+···kM=2n+1

(2n+ 1)!ekM

k0!k1! . . . kM !

∏
0≤i≤(M−1)

(bi,mhi)
ki

(24)

All the tap coefficients are assumed to be zero-mean,
independent Gaussian random variables. We take
expectation of (24) with respect to the Gaussian random
vector h. Thus, Eh{h

ki
i }, for i = 0, 1, …, M − 1, can be

expressed as

Eh{h
ki
i } = (sh,i)

ki ki, ki even, 0 ≤ i ≤ (M − 1)
( )

= 0, ki odd, 0 ≤ i ≤ (M − 1)
( ) (25)

since it is evident that if any of k0, k1,…, kM−1 is odd in (24),
then the whole term would be zero after taking the
expectation. Since (2n + 1) is an odd number for any n≥ 0,
kM must also be an odd number. This ensures that only the
specific terms having all even numbered k0, k1, …, kM−1
and odd numbered kM would have a non-zero value. After
the expectation operations
4
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Eh e−
∑M−1

i=0

bi,mhi

( )2n+1
⎡
⎣

⎤
⎦ = Eh e+

∑M−1

i=0

bi,mhi

( )2n+1
⎡
⎣

⎤
⎦
(26)

This is because, all the negative coefficients will be positive
as each k0, k1, …, kM−1 are even numbers. Using (23)–(26)
in (15), we obtain (22). □
4.3.2 Complex-valued channel scenario: Similar
closed-form expressions are derived for the complex-valued
channel scenario using Proposition 1 and given as follows

PR
e,m = 1−

��
2

p

√ ∑1
n=0

(− 1)nK2n+1
m

n!

×
∑

k0+k1+···k2M=2n+1

(2n)!ek2M

k0!k1! . . . k2M !

∏
0≤i≤(2M−1)

bRi,msh,i

( )kiki
[ ]

k2M odd, k0, k1, . . . , k2M−1 even
( )

(27)

PI
e,m = 1−

��
2

p

√ ∑1
n=0

(− 1)nK2n+1
m

n!

×
∑

k0+k1+···k2M=2n+1

(2n)!ek2M

k0!k1! . . . k2M !

∏
0≤i≤(2M−1)

bIi,msh,i

( )ki
k
◦
i

[ ]

k2M odd, k0, k1, . . . , k2M−1 even
( )

(28)

leading to Pe,m in (17).

4.4 Channel estimation algorithm

To obtain the channel estimation algorithm using the MBER
method, we need to obtain the optimal wm,m = 0, 1,…,M− 1
using the CF given by (15) and (17), using existing
optimisation tools. For the special case of Gaussian
channels, we can use the closed-form expressions of the
CF. For practical purposes, we consider a finite number of
terms, Na, to approximate the infinite-term summation in
the CF. It is clear that the approximation is better if Na is
large. The corresponding algorithmic steps are summarised
in Algorithm 1 (see Fig. 2).

4.5 Complexity analysis

We present an approximate complexity analysis using
the closed-form approximation of the CF. We obtain the
approximate computational cost with the real case as the
complex one is a simple extension. We express the cost in
terms of the number of ‘operations’, which refers to the
combination of addition, subtraction, multiplication,
division and other simple arithmetic operations. The major
computation is involved in evaluating the CF for each value
of the equaliser vector in the optimisation routine and e
note that the calculation of all the we consider terms, such

as K2n+1
m , bRi,m

( )2n+1
which are dependent on equaliser.

Other terms like ki!, e
kM and ki can be pre-computed for a

given Na, so we ignore them for the iterative computation
of the CF.
IET Commun., pp. 1–8
doi: 10.1049/iet-com.2013.0173



Fig. 2 Channel estimation using MBER method
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1. For each value of w, bi,m requires ≃ 2L− 1 operations
(inner product of two L × 1 vectors requires L
multiplications and L− 1 additions). Next, bi,mσh,i needs 1
operation, so (bi,msh,i)

ki needs 2L(ki − 1) operations as xn =
x.x.x.x … x (n times) requires n− 1 operations. Now,

bi,ms
h
i

( )ki
k
◦
i incurs 2L(ki − 1) + 1 operations.

2.
∏

0≤i≤(M−1) (bi,ms
h
i )

ki k
◦
i incurs ≃ 2L

∑M−1
i=0 (ki − 1) +

2M + 1 operations. Considering the factorials ki!, 2n!

and ekM , we further obtain the cost as 2L
∑M−1

i=0 (ki − 1)+
3M + 1. This value is for a particular choice of various k0,

k1, k2, …, kM. Thus, considering the inner summation part

of (22), we obtain
∑

k0+k1+···+kM=2n+1 2L
∑M−1

i=0 (ki − 1) +
[

3M + 1
]
operations.

3. We now calculate the approximate cost of (Km)
(2n + 1).

Each Km takes ≃ (2L+ 1) operations as ||w|| takes 2L− 1
operations and then multiplication by σv and then a division
take the cost to 2L + 1. Thus, (Km)

(2n + 1)/n! needs
≃ 2L+ 2n+ 2 operations.

We now consider the cost for all values of n which varies
from 0 to Na. The complete cost would be (see (29))

For the complex case, M, L need to be replaced by 2M, 2L in
(29), respectively, and the total cost will be two times the cost
of PR

e,m because of PI
e,m component. The practical value of Na,

for a squared error of 10−16 between the approximated value
of Q(x) and its true value, is found to be close to 400.
For 10−8, it is 40 and Na = 20 gives 10−6. With Na = 100 as
the golden case, we choose Na = 20 for a M = 2 tap real
channel. We see the computational cost reduction of almost
90% with negligible performance drop compared to the
golden case. For, MMSE case, we obtain the computational
comparison by observing the machine time. We observed
that almost 15 times more computations are required (with
M = 2 real channel case) including the complete search of
equalisers with Na = 20 for the MBER method compared to
the MMSE method.

5 Simulation results

We study the attainable BER performance of the proposed
MBER method and compare it to that of the MMSE
method as a function of both the Eb/N0 and of the equaliser
length as well as of the channel discretisation parameter e.
We considered convolutionally coded BPSK and QPSK
symbol sets transmitted over an uncorrelated dispersive
Rayleigh fading channel. Furthermore, we considered a CIR
C ≃
∑Na

n=0

∑
k0+k1+···+kM=2n+1

2L
∑M−1

i=0

(ki

[[

IET Commun., pp. 1–8
doi: 10.1049/iet-com.2013.0173
length of M = 3 associated with CIR-tap variances of 0, −4
and −8 dB in conjunction with an equaliser length of L = 3
and e = 0.001. We have chosen Na = 40. The Eb/N0 (dB) is
defined as 10 log10 EbE||h||2/2s2

v

( )
, where Eb is defined as

the average input bit power. E||h||2 is computed as per the
tap variances. For a given Eb/N0 value, s

2
v is obtained using

the above expression for generating appropriate noise
realisations.
At the receiver, a training sequence length of 18

pilot-symbols is used for estimating the CIR. The estimated
CIR, using Algorithm 1 (see Fig. 2) with Nelder-Mead [20]
based optimisation tool, is obtained. This CIR estimate is
then used for detecting the signals, whereas employing both
the MMSE and the MBER-based equalisers. The equaliser
length L is the same for the estimation and detection stages.
The AMBER algorithm of [11] is used for MBER symbol
detection. For the coded system, we employed a 1/2-rate
convolution code (CC) using the hard-decision Viterbi
decoding algorithm, for which the octal representation of
the generator polynomials is (1178, 1158). For
benchmarking purposes, we consider channel estimation
relying on both the classic MMSE and LS methods [4].

Experiment 1:We consider the bit-stream to be encoded using
a convolutional coder and BPSK symbols are transmitted over
a dispersive uncorrelated Gaussian fading real-valued
channel. We use a 3-tap CIR and an equaliser length of 3.

Remarks 1: Fig. 3 plots the BER against Eb/N0 performance.
It is observed that in the Eb/N0 range between 3 to 12 dB, the
MBER CIR estimation performs better than MMSE
estimation. At BER = 2 × 10−3, the MBER estimation
combined with MBER detection requires Eb/N0 = 8 dB,
whereas the MMSE estimation combined with MBER
detection requires 9 dB, yielding an MBER-gain of 1 dB.
At low ( < 3 dB) and high ( > 12 dB) Eb/N0 the BER values
recorded for the MMSE and MBER estimation methods are
close to each other. Similarly, with the aid of the MMSE
detection method, at BER 3 × 10−3, the MBER technique
requires 9 dB of Eb/N0, whereas the LS method necessitates
10.4 dB of Eb/N0. Thus the MBER channel estimation
technique achieves an Eb/N0 gain of about 1.4 dB compared
to the LS method.

Experiment 2: In this experiment, we consider the dispersive
uncorrelated complex-valued Rayleigh channel for
transmitting convolutionally coded QPSK symbols. Again,
we use a 3-tap CIR associated with an equaliser length of 3.
− 1)+ 3M + 1

]
+ 2L+ 2n+ 2

]
(29)
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Fig. 3 BER performance of MBER, MMSE, LS estimation methods
with BPSK training and data detection over the dispersive
real-valued fading channel with convolution coding

Channel length M = 3 and equaliser length L = 3
‘est’ refers to estimation and ‘det’ refers to detection
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Remarks 2: Fig. 4 plots the BER against Eb/N0 performance.
For the coded system, at BER = 6 × 10−3, the MBER
estimation combined with MBER detection requires Eb/N0 =
9 dB, whereas the MMSE estimation combined with MBER
detection requires 10.0 dB, yielding a gain of 1 dB.
Similarly, with the aid of the MMSE detection method, at
BER 7 × 10−3, the MBER method needs 10 dB of Eb/N0,
whereas the LS method requires 11.3 dB of Eb/N0. Thus the
MBER method of channel estimation gives an Eb/N0 gain
of about 1.3 dB. At relatively low Eb/N0 values, the CC
Fig. 4 BER performance of MBER, MMSE, LS estimation with
QPSK training and data detection over dispersive uncorrelated
Rayleigh fading complex-valued channel with convolution coding

Channel length M = 3 and equaliser length L = 3

6
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degrades the attainable performance because of precipitating
the detection errors, which is a widely recognised
phenomenon. As seen in Fig. 3, in the Eb/N0 range of
4–14 dB, the MBER channel estimator performs better than
the MMSE estimation technique. The MBER solution is
shown to perform better in Fig. 4, when the detector’s
output signal is likely to be non-Gaussian [10, 11]. At the
receiver, the equaliser output is dominated by the Gaussian
noise at low Eb/N0 values, hence, it is expected that the
MMSE and MBER estimation would perform in a similar
manner. At higher Eb/N0, the equaliser output tends to
become Gaussian [21] with the increase of the equaliser
length. The equaliser output may be non-Gaussian for a
certain range of Eb/N0 and this is where the MBER method
gives an advantage over the MMSE method.

Experiment 3: The effect of the equaliser length on the
performance of a coded system is studied. Again, we
consider the dispersive complex-valued uncorrelated
Rayleigh fading channel using convolutionally coded QPSK
symbols. We use a 3-tap CIR in conjunction with various
equaliser lengths and record the Eb/N0 value corresponding
to the BER of 10−2 for different equaliser lengths.

Remarks 3: Fig. 5 shows that for L = 3, the Eb/N0 required by
the MMSE method is about 1.0 dB higher than that of the
MBER method and 1.6 dB higher than that of perfect
channel estimation. For L = 9, the difference becomes
negligible. Note that the MMSE performance approaches
the MBER performance upon increasing the equaliser
length, again because the equaliser’s output is tending to be
Gaussian and this is a well-known phenomenon in the
context of MBER [11]. For higher equaliser lengths, both
methods perform close to the perfect channel estimation
scenario.
Fig. 5 Eb/N0 performances for MBER and MMSE methods are
plotted with respect to different equaliser lengths fixing the BER =
1 × 10−2 over a dispersive complex-valued uncorrelated Rayleigh
fading channel, when using convolutional coding

The performance of the ideal channel is also given as reference. Channel
length M = 3

IET Commun., pp. 1–8
doi: 10.1049/iet-com.2013.0173
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Fig. 6 Performance comparisons of MBER estimation for different
values of Na over a dispersive uncorrelated Rayleigh fading
complex-valued channel with convolution coding

Channel length M = 3 and equaliser length L = 3
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Experiment 4: We study Q-function approximation technique
based on the Taylor series for different Na values. MBER
channel estimation is invoked for transmission over the
dispersive complex-valued uncorrelated Rayleigh fading
channel. We use a 3-tap CIR with equaliser length 3. The
detection method is based on the MMSE criterion.
895
Remarks 4: Fig. 6 compares the BER performance for various
Na values. The Taylor series-based approximation closely
approaches the accurate Q-function result, as the value of
Fig. 7 Performance comparison of MBER channel estimation with
QPSK training and data detection for different CIR lengths of a
dispersive uncorrelated Rayleigh fading complex-valued channel
with convolution coding

Equaliser length is the same as the CIR length

IET Commun., pp. 1–8
doi: 10.1049/iet-com.2013.0173
Na increases. For Na = 40, the results are quite close to the
actual value of the function.

Experiment 5: Fig. 7 studies the BER performance of
MBER-based channel estimation for various CIR lengths.
The channel is a dispersive complex-valued uncorrelated
Rayleigh fading medium conveying convolutionally coded
QPSK symbols. Here, the CIR lengths of 2, 3, 4, 5 are
considered in conjunction with equaliser lengths of 2, 3, 4,
5, respectively. The consecutive tap variances start from
0 dB and decay by 4 dB with each CIR length increment.
The BER performance of the corresponding coded AWGN
system is also included for comparison.

Finally, the sensitivity of the MBER-based channel
estimation to e was also studied. We observed that the
performance of the MBER-based channel estimation
becomes worse than that of the MMSE-based estimation for
larger e values (e . 0.01).
6 Conclusions

The channel estimation problem was posed as a detection
problem and a new channel estimation method was
conceived for convolutionally coded BPSK and QPSK
signals relying on the MBER framework. The CF of this
channel estimation method was derived and a closed-form
expression was presented for Gaussian channels. The
performance of the proposed method was studied by
simulations. The MBER-based channel estimation was
shown to improve the BER as compared with that obtained
using the MMSE estimator for a moderate range of Eb/N0

values. The MBER-based estimation was shown to be
sensitive to the channel estimation equaliser length. The
performance improvement was achieved at an increased
computational complexity.
900
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