Published in IET Communications Received on 1st March 2013 Revised on 6th August 2013 Accepted on 17th September 2013 doi: 10.1049/iet-com.2013.0173

70

85

95

105

110

115

120

125

ISSN 1751-8628

Channel estimation relying on the minimum bit-errorratio criterion for BPSK and QPSK signals

α1 Amit Kumar Dutta¹, K.V.S. Hari¹, Lajos Hanzo²

¹Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India

²Department of Electronics and Computer Science, University of Southampton, UK

Q2 E-mail: amitkdatta@ece.iisc.ernet.in

Abstract: The authors consider the channel estimation problem in the context of a linear equaliser designed for a frequency selective channel, which relies on the minimum bit-error-ratio (MBER) optimisation framework. Previous literature has shown that the MBER-based signal detection may outperform its minimum-mean-square-error (MMSE) counterpart in the bit-error-ratio performance sense. In this study, they develop a framework for channel estimation by first discretising the parameter space and then posing it as a detection problem. Explicitly, the MBER cost function (CF) is derived and its performance quality of the studied, when transmitting BPSK and QPSK signals. It is demonstrated that the MBER based CF aided scheme is capable of outperforming existing MMSE, least square-based solutions.

1 Introduction

The problem of estimating the channel coefficients of a frequency selective channel in a communication system has been extensively addressed in the literature. Various methods have been proposed based on numerous criteria, namely the maximum-likelihood [1], the linear minimum-mean-square-error [1–3], least square (LS) [4, 5], expectation maximisation [6] and so on. Recent channel estimation methods including [7–9] use these criteria for channel estimation. In this work, we propose a new channel estimation framework based on the minimum bit-error-ratio (MBER)-based criterion [10–12].

We consider a linear equalizer-based channel estimation problem in the presence of additive white Gaussian noise (AWGN) for a frequency selective channel. Although, we consider a single antenna system for the proposed method in the current work, it can be extended to multiple antenna system also.

It was demonstrated in [10] that the optimal MBER linear equaliser can be designed by directly minimising the bit-error-ratio (BER) and that in the presence of a non-Gaussian equaliser output distribution it is capable of outperforming the MMSE-based system [11–16]. The concept of detection-aided channel estimation relying on discretising channel parameter space was proposed for a fixed time-invariant channel and for BPSK signals in [17]. Our new contribution is that we further develop this to a dispersive Rayleigh fading channel conveying both BPSK and QPSK signal sets and characterise the achievable performance of the proposed method.

We commence by first posing the channel estimation problem as a detection problem, where the parameter space is discretised into sufficiently fine-grained intervals (or bins) and we devise a technique of detecting the correct parameter interval containing the true parameter. More specifically, we invoke the MBER criterion as our cost function (CF), which is then optimised by finding the tap-weights of the MBER-equaliser. We will demonstrate that – under certain circumstances – the proposed MBER channel estimate results in a BER, which is better than that of the channel estimator relying on the MMSE CF across a range of bit-energy-to-noise ($E_{\rm b}/N_0$) ratio values. Although, this framework is analogous to the multi-level hypothesis testing philosophy [18], to the best of our knowledge, this problem formulation framework has not been used before.

The primary contributions of this work beyond those presented in [17] are as follows:

- 1. MBER-based channel estimation is conceived for a complex-valued channel conveying both channel-coded QPSK data and pilot symbols.
- 2. Closed-form expressions are derived for the MBER equaliser's coefficient-optimisation CF for transmission over circularly symmetric zero-mean Gaussian channels.
- 3. The complexity analysis of the proposed method is presented. The analysis is approximate in nature.

Notation: $\mathbb{E}(x)$ denotes the expectation operation of a random variable. The variables, such as x, x, x represent a scalar, a vector and a matrix, respectively, whereas x^R and x^I represent the real and imaginary parts of any complex number x. For a vector s, $[s]_i$ represents the ith element of s. Furthermore, $P_r\{x\}$ denotes a general probability term. sgn(x) = +1, if x > 0, sgn(x) = -1, if x < 0. For any positive integer n, we have $n! \triangleq n(n-1) \dots 2 \cdot 1$ and $n \triangleq (n-1) (n-3)...3.1$.

IET Commun., pp. 1–8 doi: 10.1049/iet-com.2013.0173

Background

2.1 Data model

135

140

145

150

155

160

165

175

180

185

190

195

We consider a linear discrete-time frequency-selective channel contaminated by AWGN, whose output at time instant k is

$$r_k = \sum_{m=0}^{M-1} h_m x_{k-m} + \nu_k \tag{1}$$

where x_k is an input drawn from any discrete signal constellation set, $\mathbf{h} = \begin{bmatrix} h_0 h_1 \dots h_{M-1} \end{bmatrix}^{\mathrm{T}} \in \mathbb{C}^{M \times 1}$ is the complex-valued channel impulse response (CIR) having a length of M symbol-duration with \bar{h}_m being the m^{th} CIR coefficient and v_k is the AWGN noise component with zero mean and a power spectral density of σ_v^2 .

Let us assume that an L-symbol equaliser, $c \in \mathbb{C}^{L \times 1}$, is used for detecting the input symbol x_k . The output of the linear equaliser is given by $y_k = c^H r_k$, where the channel's output vector is $\mathbf{r}_k = \begin{bmatrix} r_k r_{k-1} \cdots r_{k-(L-1)} \end{bmatrix}^{\mathrm{T}} \in \mathbb{C}^{L \times 1}$. More explicitly, we have [11]

$$r_k = Hx_k + v_k \tag{2}$$

where $\mathbf{H} \in \mathbb{C}^{L \times (L+M-1)}$ is the channel matrix defined as

$$\boldsymbol{H} = \begin{bmatrix} h_0 & h_1 & . & h_{M-1} & . & 0\\ 0 & h_0 & h_1 & . & . & 0\\ . & . & . & . & . & .\\ 0 & 0 & . & h_0. & . & h_{M-1} \end{bmatrix}$$
(3)

and the input symbol vector is $\mathbf{x}_k = \begin{bmatrix} x_k \cdots x_{k-(L+M-2)} \end{bmatrix}^1 \in \mathbb{C}^{(L+M-1)\times 1}$, whereas the noise vector is $\mathbf{v}_k = \mathbf{v}$ $\left[v_k \cdots v_{k-(L-1)}\right]^{\mathrm{T}} \in \mathbb{C}^{L \times 1}$.

2.2 Overview of MMSE and MBER-based symbol detection

We continue with a brief description of the MMSE and MBER symbol detection frameworks, where the optimum equaliser coefficients are found using both the MMSE and the MBER CFs.

MMSE method: The optimum equaliser solution based on the MMSE criterion for the zero-mean data symbol x_k is obtained

$$\boldsymbol{c}^{\text{MMSE}} = \boldsymbol{e}_1 \boldsymbol{R}_x \mathbf{H}^{\text{H}} (\boldsymbol{H} \boldsymbol{R}_x \boldsymbol{H}^{\text{H}} + \sigma_v^2 \boldsymbol{I})^{-1}$$
 (4)

where $e_1 = [100...0] \in \mathbb{R}^{(L+M-1)\times 1}$ and $R_x \in \mathbb{R}^{(L+M-1)\times (L+M-1)}$ and represents the covariance matrix of data vector x_k . Symbol detection is carried out at the output of the equaliser using $(c^{\text{MMSE}})^{\text{H}} r_k$.

MBER method: In this context, the optimum MBER equaliser coefficients are designed by minimising the BER. If each symbol value x_k is equiprobable and it is drawn from a BPSK signal set, the estimated value of x_k at the decision device's output becomes

$$\hat{x}_k = \operatorname{sgn}(y_k) \tag{5}$$

The error probability, $P_{\rm e}$, for transmission over a dispersive

non-fading channel is evaluated as [11]

$$P_{e} = \Pr(\hat{x}_{k} \neq x_{k})$$

$$= \mathbb{E}\left[Q\left(\frac{c^{H} H x_{k} x_{k}}{\|c\|\sigma_{v}}\right)\right]$$
(6)

200

225

230

where Q(x) is the Gaussian Q-function, as defined in [1].

The expectation in (6) is computed over the $N=2^{M+L-1}$ equally likely x_k vectors. If x_k , n is the nth realisation of x_k , then we define $s_n \triangleq Hx_{k,n}x_{k,n}$. From (6), the error probability is simplified to

$$P_{e} = \frac{1}{N} \sum_{n=1}^{N} Q\left(\frac{\mathbf{c}^{\mathsf{T}} \mathbf{s}_{n}}{\|\mathbf{c}\| \sigma_{v}}\right) \tag{7}$$

The MBER solution is then formulated as

$$c^{\text{MBER}} = c \arg[\min[P_{\text{e}}]] \tag{8}$$

where the optimum solution may be found using diverse optimisation techniques, as exemplified by the adaptive MBER (AMBER) solution [11]. The symbol detection is carried out at the output of the equaliser using $(c^{\mathrm{MBER}})^{\mathrm{H}} r_k$.

Channel estimation within the detection framework

Let us now reformulate the above-mentioned detection framework in the context of our CIR-parameter estimation problem. Consider the equivalent form of (2) as

$$\mathbf{r}_k = \mathbf{X}_k \mathbf{h} + \mathbf{v}_k \tag{9}$$

where the matrix $X_k \in \mathbb{C}^{L \times M}$ is defined as

$$X_{k} = \begin{bmatrix} x_{k} & x_{k-1} & . & x_{k-(M-1)} \\ x_{k-1} & x_{k-2} & . & x_{k-M} \\ . & . & . & . \\ x_{k-(L-1)} & . & . & x_{k-(L+M-2)} \end{bmatrix}$$
(10)

Equation (9) may be interpreted as the model of a virtual communication system associated with the 'channel model' X_k and the 'data input vector' **h**. In reality, X_k contains the known training sequence and h is the CIR to be estimated. From the point of parameter estimation, an estimation technique estimates the parameter within a given uncertainty interval that contains the true value. As an example, with h being a parameter and \hat{h} being its estimation, we can say \hat{h} lies within ϵ -neighbourhood ($\epsilon > 0$) of the parameter [1]. The entire continuous channel parameter space is visualised as the union of an infinite number of contiguous ε-neighbourhood spaces as shown in Fig. 1. The mth entry of the hypothetical data vector \mathbf{h} is drawn from discrete values of the discretised CIR model. Consider the intervals encapsulating the true CIR estimate, which contiguously cover the entire discretised CIR space. If an estimate lies within its own native interval, it is assumed to be a 'correct decision'. This framework is well suited for discrete channel detection (estimation) using the MBER CF.

335

345

350

355

360

365

370

380

385

390

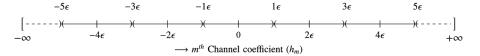


Fig. 1 Discrete interval representation of range of values a channel parameter estimate can take with associated ε-neighbourhood

4 Proposed MBER-based channel estimation

Let us now define the proposed methodology conceived for both real-valued and complex-valued channels. Assuming that the noise statistics will not change with time for the estimation duration, we drop the symbol index k.

280 4.1 CF for real-valued channel taps

To estimate h from (9), a detection mechanism similar to the previously described data-detection model is proposed. Let us consider estimation of the mth tap, h_m , m=0, 1, ..., M-1. We define an L-tap equaliser with coefficients $\mathbf{w}_m = \begin{bmatrix} w_{0,m}, w_{1,m}, w_{2,m}, \ldots, w_{L-1,m} \end{bmatrix}^T \in \mathbb{C}^{L \times 1}$ for $m=0, 1, \ldots, M-1$. We choose a different equaliser symbol \mathbf{w}_m for channel estimation to differentiate it from \mathbf{c} , which is used for symbol (\mathbf{x}) detection after the channel estimation step. The output of the mth L-tap equaliser \mathbf{w}_m is defined as

$$\hat{h}_m = \mathbf{w}_m^{\mathrm{T}} \mathbf{r} \tag{11}$$

The probability of a correct decision, when detecting h_m , m = 0, 1, ..., M - 1 belonging to the interval containing the true value h_m , is denoted by $P_{c,m}$ and given by

$$P_{c,m} = P_r \left\{ -\epsilon \le \hat{h}_m - h_m \le \epsilon \right\}$$

$$= P_r \left\{ -\epsilon \le \left(\mathbf{w}_m^{\mathsf{T}} \mathbf{X} \mathbf{h} + \mathbf{w}_m^{\mathsf{T}} \mathbf{v} - h_m \right) \le \epsilon \right\}$$

$$= \mathbb{E}_{h \left\{ P_r \left\{ -\epsilon \le \left(\mathbf{w}_m^{\mathsf{T}} \mathbf{X} \mathbf{h} + \mathbf{w}_m^{\mathsf{T}} \mathbf{v} - h_m \right) \le \epsilon |h \right\} \right\}}$$
(12)

. We define

300

320

325

330

$$\mu_m \triangleq \mathbf{w}_m^{\mathrm{T}} \mathbf{X} \mathbf{h} - h_m \triangleq \sum_{i=0}^{M-1} b_{i,m} h_i$$
 (13)

where $b_{i,m} \triangleq [\mathbf{w}_m^{\mathrm{T}} \mathbf{X}]_i$ for $i \neq m$ and $b_{m,m} \triangleq [\mathbf{w}_m^{\mathrm{T}} \mathbf{X}]_m - 1$. Also, $u_m \triangleq \mathbf{w}_m^{\mathrm{T}} \mathbf{v}$ which is a zero-mean Gaussian random variable with a variance of $\|\mathbf{w}_m\|^2 \sigma_v^2$ and having a probability density function (pdf), $p(u_m)$. We consider the term

$$P_r \left\{ -\epsilon < \left(\mathbf{w}_m^T X \mathbf{h} + \mathbf{w}_m^T \mathbf{v} - h_m \right) < \epsilon | \mathbf{h} \right\}$$

$$= P_r \left(-\epsilon < \left(\mu_m + \mathbf{w}_m^T \mathbf{v} \right) < \epsilon | \mathbf{h} \right)$$

$$= P_r \left(-\epsilon - \mu_m < u_m < \epsilon - \mu_m | \mathbf{h} \right)$$
(14)

The probability of error associated with detecting h_m is formulated as

$$\begin{split} P_{\mathrm{e},m} &= 1 - P_{c,m} \\ &= 1 - \mathbb{E}_{\pmb{h}} \Bigg[\int_{-(\epsilon + \mu_m)}^{(\epsilon - \mu_m)} p(u_m) \; \mathrm{d}u_m \Bigg] \end{split}$$

$$= \mathbb{E}_{\boldsymbol{h}} \left[\mathcal{Q} \left(\frac{\epsilon + \mu_{m}}{\|\boldsymbol{w}_{m}\| \sigma_{v}} \right) \right] + \mathbb{E}_{\boldsymbol{h}} \left[\mathcal{Q} \left(\frac{\epsilon - \mu_{m}}{\|\boldsymbol{w}_{m}\| \sigma_{v}} \right) \right]$$

$$= \int_{h_{0}} \cdots \int_{h_{M-1}} \left[\mathcal{Q} \left(\frac{\epsilon + \mu_{m}}{\|\boldsymbol{w}_{m}\| \sigma_{v}} \right) + \mathcal{Q} \left(\frac{\epsilon - \mu_{m}}{\|\boldsymbol{w}_{m}\| \sigma_{v}} \right) \right] P(\boldsymbol{h}) \, d\boldsymbol{h}$$
(15)

where $P(\mathbf{h})$ is the joint distribution of all the M CIR coefficients. Every h_m is a random variable having a variance of $\sigma_{h,m}^2$, independent of h_i for $i \neq m$. $P_{j_i}^h$, (with i = 1, 2, ..., M), an optimum solution for w_m is obtained by minimising (15), which can be written as [17]

$$\mathbf{w}_{m}^{\text{MBER}} = \underset{\mathbf{w}_{m}}{\text{arg}} \left[\min \left[P_{e,m} \right] \right]$$
 (16)

4.2 CF for complex-valued channel taps

For complex-valued CIR coefficients, the probability of error function is an extension of the real-valued case. A complex-valued CIR can be interpreted as a pair of independent, parallel real-valued channels. The probability of erroneous decision for the complex-valued CIR coefficient h_m , for $m=0,\ 1,\ ...,\ M-1$, can thus be calculated as [16]

$$P_{e,m} = P_{e,m}^{R} \times P_{e,m}^{I} \tag{17}$$

where $P_{e,m}^{R}$ and $P_{e,m}^{I}$ are the probabilities of erroneous detection (estimation) of the real and imaginary components of h_m , respectively. We define

$$\mu_m^{\text{R}} \triangleq \Re\{\mathbf{w}_m^{\text{H}} \mathbf{X} \mathbf{h} - h_m\} = \sum_{i=0}^{2M-1} b_{i,m}^{\text{R}} h_i^{\text{R,I}}$$
(18)

$$\mu_m^{\mathrm{I}} \triangleq \Im \left\{ \mathbf{w}_m^{\mathrm{H}} \mathbf{X} \mathbf{h} - h_m \right\} = \sum_{i=0}^{2M-1} b_{i,m}^{\mathrm{I}} h_i^{\mathrm{R,I}}$$
(19)

where 2M length stacked variables are defined as $\mathbf{a}_1 \triangleq \left[\Re\{\mathbf{w}^{\mathrm{H}}X\} - \Im\{\mathbf{w}^{\mathrm{H}}X\}\right] \in \mathbb{R}^{2M \times 1}, \quad \mathbf{a}_2 \triangleq \left[\Im\{\mathbf{w}^{\mathrm{H}}X\}\Re\{\mathbf{w}^{\mathrm{H}}X\}\right]$ and $\mathbf{h}^{\mathrm{R},\mathrm{I}} \triangleq \left[\Re\{\mathbf{h}\}\Im\{\mathbf{h}\}\right] \in \mathbb{R}^{2M \times 1}$. We define $b_{i,m}^{\mathrm{R}} \triangleq [\mathbf{a}_1]_i$ for $i \neq m$ and $b_{i,m}^{\mathrm{R}} \triangleq [\mathbf{a}_1]_m - 1$ for i = m. Similarly $b_{i,m}^{\mathrm{I}} \triangleq \left[\mathbf{a}_2\right]_i$, for $i \neq M + m + 1$ and $b_{i,m}^{\mathrm{I}} \triangleq \left[\mathbf{a}_2\right]_{M + m + 1} - 1$ for i = m. The probabilities of error, $P_{\mathrm{e},m}^{\mathrm{R}}, P_{\mathrm{e},m}^{\mathrm{I}}$, can be obtained from (5) as

$$P_{e,m}^{R} = \mathbb{E}_{h} \left[Q \left(\frac{\epsilon + \mu_{m}^{R}}{\|\mathbf{w}_{m}\| \sigma_{v}} \right) \right] + \mathbb{E}_{h} \left[Q \left(\frac{\epsilon - \mu_{m}^{R}}{\|\mathbf{w}_{m}\| \sigma_{v}} \right) \right]$$
(20)

$$P_{e,m}^{I} = \mathbb{E}_{h} \left[Q \left(\frac{\epsilon + \mu_{m}^{I}}{\|\mathbf{w}_{m}\| \sigma_{v}} \right) \right] + \mathbb{E}_{h} \left[Q \left(\frac{\epsilon - \mu_{m}^{I}}{\|\mathbf{w}_{m}\| \sigma_{v}} \right) \right]$$
(21) 395

400

405

410

415

420

425

440

445

450

455

460

4.3 Closed-form expression of $P_{e,m}$ for zero-mean Gaussian channels

In order to obtain a closed-form expression for (15), (20), (21) using multinomial expansion of series, we define $K_m \triangleq \left(1/\left(\|w_m\|\sigma_v\right)\right)$ and recall n = (n-1)(n-3) ... 3.1 for any positive integer n.

4.3.1 Real-valued channel scenario

Proposition 1: The closed-form expression for (15) when the channel is a zero-mean Gaussian is given by

$$P_{e,m} = 1 - \sqrt{\frac{2}{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n K_m^{2n+1}}{n!} \times \left[\sum_{k_0 + k_1 + \dots + k_M = 2n+1} \frac{(2n)! \epsilon^{k_M}}{k_0! k_1! \dots k_M!} \prod_{0 \le i \le (M-1)} (b_{i,m} \sigma_{h,i})^{k_i} \mathring{k}_i \right]$$

$$(k_M \text{ odd}, k_0, k_1, \dots, k_{M-1} \text{ even})$$
(22)

Proof: Let us consider the real-valued channel scenario, using the Taylor series expansion of e^{-x^2} , the *Q*-function can be expanded as

$$Q(x) = \frac{1}{2} - \frac{1}{\sqrt{2\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{(n)} x^{2n+1}}{n!(2n+1)}$$
 (23)

The argument of the *Q*-function in (15) is $K_m\left(\epsilon + \sum_{i=0}^{M-1} b_{i,m} h_i\right)$. Thus in (23), we have to evaluate $\left(\epsilon + \sum_{i=0}^{M-1} b_{i,m} h_i\right)^{2n+1}$ using multinomial expansion of series. The series can be expressed as [19] (see (24))

$$\left(\epsilon + \sum_{i=0}^{M-1} b_{i,m} h_i\right)^{2n+1}$$

$$= \sum_{k_0 + k_1 + \dots + k_M = 2n+1} \frac{(2n+1)! \epsilon^{k_M}}{k_0! k_1! \dots k_M!} \prod_{0 \le i \le (M-1)} (b_{i,m} h_i)^{k_i}$$
(24)

All the tap coefficients are assumed to be zero-mean, independent Gaussian random variables. We take expectation of (24) with respect to the Gaussian random vector \boldsymbol{h} . Thus, $\mathbb{E}_{\boldsymbol{h}}\{h_i^{k_i}\}$, for $i=0,\ 1,\ ...,\ M-1$, can be expressed as

$$\mathbb{E}_{h}\{h_{i}^{k_{i}}\} = (\sigma_{h,i})^{k_{i}}k_{i}, (k_{i} \text{ even, } 0 \le i \le (M-1))$$

$$= 0, (k_{i} \text{ odd, } 0 \le i \le (M-1))$$
(25)

since it is evident that if any of $k_0, k_1, \ldots, k_{M-1}$ is odd in (24), then the whole term would be zero after taking the expectation. Since (2n+1) is an odd number for any $n \ge 0$, k_M must also be an odd number. This ensures that only the specific terms having all even numbered $k_0, k_1, \ldots, k_{M-1}$ and odd numbered k_M would have a non-zero value. After the expectation operations

$$\mathbb{E}_{\boldsymbol{h}}\left[\left(\boldsymbol{\epsilon} - \sum_{i=0}^{M-1} b_{i,m} h_i\right)^{2n+1}\right] = \mathbb{E}_{\boldsymbol{h}}\left[\left(\boldsymbol{\epsilon} + \sum_{i=0}^{M-1} b_{i,m} h_i\right)^{2n+1}\right]$$
(26)

This is because, all the negative coefficients will be positive as each $k_0, k_1, ..., k_{M-1}$ are even numbers. Using (23)–(26) in (15), we obtain (22).

4.3.2 Complex-valued channel scenario: Similar closed-form expressions are derived for the complex-valued channel scenario using Proposition 1 and given as follows

475

500

505

510

515

$$P_{e,m}^{R} = 1 - \sqrt{\frac{2}{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n} K_{m}^{2n+1}}{n!} \times \left[\sum_{k_{0}+k_{1}+\cdots k_{2M}=2n+1} \frac{(2n)! \epsilon^{k_{2M}}}{k_{0}! k_{1}! \dots k_{2M}!} \prod_{0 \leq i \leq (2M-1)} (b_{i,m}^{R} \sigma_{h,i})^{k_{i}} k_{i} \right]^{48i}$$

$$(k_{2M} \text{ odd}, k_{0}, k_{1}, \dots, k_{2M-1} \text{ even})$$

$$(27)$$

$$P_{e,m}^{I} = 1 - \sqrt{\frac{2}{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n} K_{m}^{2n+1}}{n!} \times \left[\sum_{k_{0}+k_{1}+\cdots k_{2M}=2n+1} \frac{(2n)! \epsilon^{k_{2M}}}{k_{0}! k_{1}! \dots k_{2M}!} \prod_{0 \leq i \leq (2M-1)} \left(b_{i,m}^{I} \sigma_{h,i} \right)^{k_{i}} \mathring{k}_{i} \right]^{490}$$

$$(k_{2M} \text{ odd}, k_{0}, k_{1}, \dots, k_{2M-1} \text{ even})$$

 $n_{2M} \text{ odd}, n_0, n_1, \dots, n_{2M-1} \text{ even}$ (28)

leading to $P_{e,m}$ in (17).

4.4 Channel estimation algorithm

To obtain the channel estimation algorithm using the MBER method, we need to obtain the optimal w_m , m = 0, 1, ..., M-1 using the CF given by (15) and (17), using existing optimisation tools. For the special case of Gaussian channels, we can use the closed-form expressions of the CF. For practical purposes, we consider a finite number of terms, N_a , to approximate the infinite-term summation in the CF. It is clear that the approximation is better if N_a is large. The corresponding algorithmic steps are summarised in Algorithm 1 (see Fig. 2).

4.5 Complexity analysis

We present an approximate complexity analysis using the closed-form approximation of the CF. We obtain the approximate computational cost with the real case as the complex one is a simple extension. We express the cost in terms of the number of 'operations', which refers to the combination of addition, subtraction, multiplication, division and other simple arithmetic operations. The major computation is involved in evaluating the CF for each value of the equaliser vector in the optimisation routine and e note that the calculation of all the we consider terms, such as K_m^{2n+1} , $(b_{i,m}^R)^{2n+1}$ which are dependent on equaliser. Other terms like $k_i!$, ϵ^{k_M} and k_i can be pre-computed for a given N_a , so we ignore them for the iterative computation

```
Signature 1

1: Given: N_a, \epsilon, \sigma_v^2, L, M, r, \sigma_{h,m}^2 for m = 0, 1, ..., M - 1.

2: for m = 0 to M - 1 do

3: Use an optimisation tool to optimise (22) or (27) (28) to obtain w_m^{MBER}, with w_m^{MMSE} (MMSE solution of the equaliser) as the initial value.

4: \hat{h}_m = (w_m^{MBER})^H r.

5: end for
```

Fig. 2 Channel estimation using MBER method

We now consider the cost for all values of n which varies from 0 to N_a . The complete cost would be (see (29))

For the complex case, M, L need to be replaced by 2M, 2L in (29), respectively, and the total cost will be two times the cost of $P_{e,m}^R$ because of $P_{e,m}^I$ component. The practical value of N_a , for a squared error of 10^{-16} between the approximated value of Q(x) and its true value, is found to be close to 400. For 10^{-8} , it is 40 and $N_a = 20$ gives 10^{-6} . With $N_a = 100$ as the golden case, we choose $N_a = 20$ for a M = 2 tap real channel. We see the computational cost reduction of almost 90% with negligible performance drop compared to the golden case. For, MMSE case, we obtain the computational comparison by observing the machine time. We observed that almost 15 times more computations are required (with M = 2 real channel case) including the complete search of equalisers with $N_a = 20$ for the MBER method compared to the MMSE method.

5 Simulation results

580

 $\simeq 2L + 2n + 2$ operations.

We study the attainable BER performance of the proposed MBER method and compare it to that of the MMSE method as a function of both the $E_{\rm b}/N_0$ and of the equaliser length as well as of the channel discretisation parameter ϵ . We considered convolutionally coded BPSK and QPSK symbol sets transmitted over an uncorrelated dispersive Rayleigh fading channel. Furthermore, we considered a CIR

length of M=3 associated with CIR-tap variances of 0, -4 and -8 dB in conjunction with an equaliser length of L=3 and $\epsilon=0.001$. We have chosen $N_a=40$. The E_b/N_0 (dB) is defined as $10\log_{10}(E_bE||\mathbf{h}||^2/2\sigma_v^2)$, where E_b is defined as the average input bit power. $E||\mathbf{h}||^2$ is computed as per the tap variances. For a given E_b/N_0 value, σ_v^2 is obtained using the above expression for generating appropriate noise realisations.

At the receiver, a training sequence length of 18 pilot-symbols is used for estimating the CIR. The estimated CIR, using Algorithm 1 (see Fig. 2) with Nelder-Mead [20] based optimisation tool, is obtained. This CIR estimate is then used for detecting the signals, whereas employing both the MMSE and the MBER-based equalisers. The equaliser length L is the same for the estimation and detection stages. The AMBER algorithm of [11] is used for MBER symbol detection. For the coded system, we employed a 1/2-rate convolution code (CC) using the hard-decision Viterbi decoding algorithm, for which the octal representation of the generator polynomials is $(117_8, 115_8)$. For benchmarking purposes, we consider channel estimation relying on both the classic MMSE and LS methods [4].

Experiment 1: We consider the bit-stream to be encoded using a convolutional coder and BPSK symbols are transmitted over a dispersive uncorrelated Gaussian fading real-valued channel. We use a 3-tap CIR and an equaliser length of 3.

Remarks 1: Fig. 3 plots the BER against $E_{\rm b}/N_0$ performance. It is observed that in the $E_{\rm b}/N_0$ range between 3 to 12 dB, the MBER CIR estimation performs better than MMSE estimation. At BER = 2×10^{-3} , the MBER estimation combined with MBER detection requires $E_{\rm b}/N_0 = 8$ dB, whereas the MMSE estimation combined with MBER detection requires 9 dB, yielding an MBER-gain of 1 dB. At low (<3 dB) and high (>12 dB) $E_{\rm b}/N_0$ the BER values recorded for the MMSE and MBER estimation methods are close to each other. Similarly, with the aid of the MMSE detection method, at BER 3×10^{-3} , the MBER technique requires 9 dB of $E_{\rm b}/N_0$, whereas the LS method necessitates 10.4 dB of $E_{\rm b}/N_0$. Thus the MBER channel estimation technique achieves an $E_{\rm b}/N_0$ gain of about 1.4 dB compared to the LS method.

Experiment 2: In this experiment, we consider the dispersive uncorrelated complex-valued Rayleigh channel for transmitting convolutionally coded QPSK symbols. Again, we use a 3-tap CIR associated with an equaliser length of 3.

$$C \simeq \sum_{n=0}^{N_a} \left[\sum_{k_0 + k_1 + \dots + k_M = 2n + 1} \left[2L \sum_{i=0}^{M-1} (k_i - 1) + 3M + 1 \right] + 2L + 2n + 2 \right]$$
 (29)

610

605

595

600

615

625

630

635

640

645

650

655

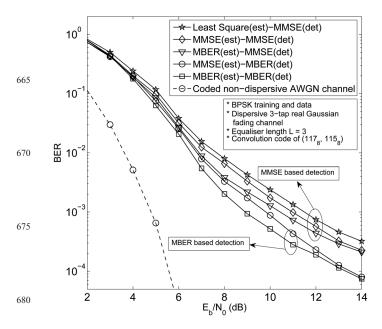


Fig. 3 BER performance of MBER, MMSE, LS estimation methods with BPSK training and data detection over the dispersive real-valued fading channel with convolution coding

Channel length M=3 and equaliser length L=3 'est' refers to estimation and 'det' refers to detection

685

690

Remarks 2: Fig. 4 plots the BER against $E_{\rm b}/N_0$ performance. For the coded system, at BER = 6×10^{-3} , the MBER estimation combined with MBER detection requires $E_{\rm b}/N_0$ = 9 dB, whereas the MMSE estimation combined with MBER detection requires 10.0 dB, yielding a gain of 1 dB. Similarly, with the aid of the MMSE detection method, at BER 7×10^{-3} , the MBER method needs 10 dB of $E_{\rm b}/N_0$, whereas the LS method requires 11.3 dB of $E_{\rm b}/N_0$. Thus the MBER method of channel estimation gives an $E_{\rm b}/N_0$ gain of about 1.3 dB. At relatively low $E_{\rm b}/N_0$ values, the CC

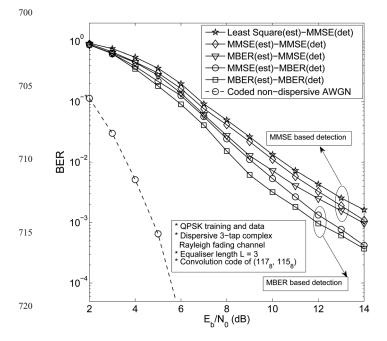


Fig. 4 BER performance of MBER, MMSE, LS estimation with QPSK training and data detection over dispersive uncorrelated Rayleigh fading complex-valued channel with convolution coding Channel length M=3 and equaliser length L=3

degrades the attainable performance because of precipitating the detection errors, which is a widely recognised phenomenon. As seen in Fig. 3, in the $E_{\rm b}/N_0$ range of 4–14 dB, the MBER channel estimator performs better than the MMSE estimation technique. The MBER solution is shown to perform better in Fig. 4, when the detector's output signal is likely to be non-Gaussian [10, 11]. At the receiver, the equaliser output is dominated by the Gaussian noise at low $E_{\rm b}/N_0$ values, hence, it is expected that the MMSE and MBER estimation would perform in a similar manner. At higher $E_{\rm b}/N_0$, the equaliser output tends to become Gaussian [21] with the increase of the equaliser length. The equaliser output may be non-Gaussian for a certain range of $E_{\rm b}/N_0$ and this is where the MBER method gives an advantage over the MMSE method.

Experiment 3: The effect of the equaliser length on the performance of a coded system is studied. Again, we consider the dispersive complex-valued uncorrelated Rayleigh fading channel using convolutionally coded QPSK symbols. We use a 3-tap CIR in conjunction with various equaliser lengths and record the $E_{\rm b}/N_0$ value corresponding to the BER of 10^{-2} for different equaliser lengths.

745

750

Remarks 3: Fig. 5 shows that for L=3, the $E_{\rm b}/N_0$ required by the MMSE method is about 1.0 dB higher than that of the MBER method and 1.6 dB higher than that of perfect channel estimation. For L=9, the difference becomes negligible. Note that the MMSE performance approaches the MBER performance upon increasing the equaliser length, again because the equaliser's output is tending to be Gaussian and this is a well-known phenomenon in the context of MBER [11]. For higher equaliser lengths, both methods perform close to the perfect channel estimation scenario.

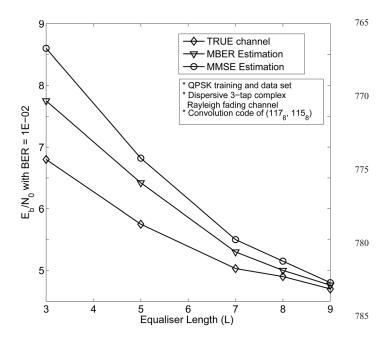


Fig. 5 E_b/N_0 performances for MBER and MMSE methods are plotted with respect to different equaliser lengths fixing the BER = 1×10^{-2} over a dispersive complex-valued uncorrelated Rayleigh fading channel, when using convolutional coding

The performance of the ideal channel is also given as reference. Channel length M=3

860

865

870

875

885

895

900

905

910

915

920

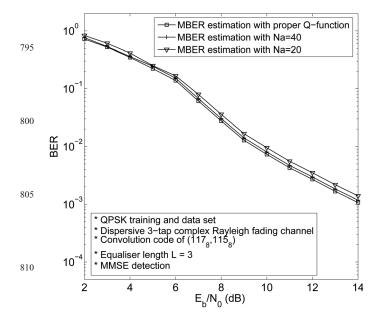


Fig. 6 Performance comparisons of MBER estimation for different values of N_a over a dispersive uncorrelated Rayleigh fading complex-valued channel with convolution coding

Channel length M=3 and equaliser length L=3

Experiment 4: We study Q-function approximation technique based on the Taylor series for different N_a values. MBER channel estimation is invoked for transmission over the dispersive complex-valued uncorrelated Rayleigh fading channel. We use a 3-tap CIR with equaliser length 3. The detection method is based on the MMSE criterion.

Remarks 4: Fig. 6 compares the BER performance for various N_a values. The Taylor series-based approximation closely approaches the accurate Q-function result, as the value of



Fig. 7 Performance comparison of MBER channel estimation with QPSK training and data detection for different CIR lengths of a dispersive uncorrelated Rayleigh fading complex-valued channel with convolution coding

Equaliser length is the same as the CIR length

 N_a increases. For $N_a = 40$, the results are quite close to the actual value of the function.

Experiment 5: Fig. 7 studies the BER performance of MBER-based channel estimation for various CIR lengths. The channel is a dispersive complex-valued uncorrelated Rayleigh fading medium conveying convolutionally coded QPSK symbols. Here, the CIR lengths of 2, 3, 4, 5 are considered in conjunction with equaliser lengths of 2, 3, 4, 5, respectively. The consecutive tap variances start from 0 dB and decay by 4 dB with each CIR length increment. The BER performance of the corresponding coded AWGN system is also included for comparison.

Finally, the sensitivity of the MBER-based channel estimation to ϵ was also studied. We observed that the performance of the MBER-based channel estimation becomes worse than that of the MMSE-based estimation for larger ϵ values ($\epsilon > 0.01$).

6 Conclusions

The channel estimation problem was posed as a detection problem and a new channel estimation method was conceived for convolutionally coded BPSK and QPSK signals relying on the MBER framework. The CF of this channel estimation method was derived and a closed-form expression was presented for Gaussian channels. The performance of the proposed method was studied by simulations. The MBER-based channel estimation was shown to improve the BER as compared with that obtained using the MMSE estimator for a moderate range of $E_{\rm b}/N_0$ values. The MBER-based estimation was shown to be sensitive to the channel estimation equaliser length. The performance improvement was achieved at an increased computational complexity.

7 Acknowledgment

The financial support of the DST, India and of the EPSRC, UK under the auspices of the India-UK Advanced Technology Centre (IUATC) is gratefully acknowledged.

8 References

- Kay, S.M.: 'Fundamentals of statistical signal processing, Volume I: estimation theory' (Prentice-Hall, 1993)
- Zhou, W., Lam, W.H.: 'A fast LMMSE channel estimation method for OFDM systems', EURASIP J. Wirel. Commun. Netw., 2009, pp. 1–13 Q4
- 3 Soysal, A., Ulukus, S.: 'Joint channel estimation and resource allocation for MIMO systems – Part I: single-user analysis', *IEEE Trans. Wirel. Commun.*, 2010, 9, (2), pp. 624–631
- 4 Yang, B., Krueger, M.: 'A fast algorithm for joint DC and channel estimation in GSM/EDGE receivers', *Int. J. Electron. Commun.*, 2008, **62**, pp. 57–62
- 5 Chen, Y.C., Yu, T.S.: 'MIMO channel estimation in correlated fading environments', *IEEE Trans. Wirel. Commun.*, 2010, 9, (3), pp. 1108–1119
- 6 Karkhanechi, H.M., Levy, B.C.: 'An efficient adaptive channel estimation algorithm for MIMO OFDM systems: study of Doppler spread tolerance', J. Sign. Process. Syst., 2009, 56, pp. 261–271
- Wang, J., Chen, H., Li, S.: 'Soft-output MMSE V-BLAST receiver with MMSE channel estimation under correlated Rician fading MIMO channels', Wirel. Commun. Mob. Comput., 2012, 12, (15), pp. 1363–1370
- 8 Wang, J., Wen, O.Y., Chen, H., Li, S.: 'Power allocation between pilot and data symbols for MIMO systems with MMSE detection under MMSE channel estimation', EURASIP J. Wirel. Commun. Netw., 2011, (9), pp. 1–9

- 925 9 Chen, L., Chen, W., Wang, B., Zhang, X., Chen, H., Yang, D.: 'System-level simulation methodology and platform for mobile cellular systems', *IEEE Commun. Mag.*, 2011, 49, (7), pp. 148–155
 - 10 Chen, S., Chng, E., Mulgrew, B., Gibson, G.: 'Minimum-BER linear-combiner DFE'. Proc. IEEE Int. Conf. on Communications, 1996, pp. 1173–1177
- 930 11 Yeh, C.C., Barry, J.R.: 'Adaptive minimum bit-error rate equalization for binary signaling', *IEEE Trans. Commun.*, 2000, **48**, (7), pp. 1226–123
 - 12 Chen, S., Hanzo, L.: 'Minimum bit-error rate design for space-time equalization-based multiuser detection', *IEEE Trans. Commun.*, 2006, 54, (5), pp. 824–832
- 15 Sugiura, S., Wu, N., Hanzo, L.: 'Improved Markov chain MBER detection for steered linear dispersion coded MIMO systems'. Proc. IEEE Vehicular Technology Conf., Barcelona, April 2009
- 16 Chen, S., Livingstone, A., Du, H.Q., Hanzo, L.: 'Adaptive minimum symbol error rate beam forming assisted detection for quadrature amplitude modulation', *IEEE Trans. Wirel. Commun.*, 2008, 7, (4), pp. 1140–1145
- 17 Dutta, A.K., Hari, K.V.S.: 'Channel estimation using minimum bit error rate framework with BPSK signals'. Proc. IEEE Vehicular Technology Conf., Budapest, May 2011, pp. 1–5
- 18 Van Trees, H.L.: 'Detection, estimation and modulation theory (Part-I)' (Wiley International Publication, 2001, 2nd edn.)

Yao, W., Chen, S., Hanzo, L.: 'Generalised MBER-based vector McQuarrie, D.A.: 'Mathematical methods for scientists and engineers' 935 precoding design for multiuser transmission', IEEE Trans. Veh. (Viva Books, 2009) Technol., 2011, 60, (2), pp. 739-745 John, H.M., Kurtis, K.F.: 'Numerical methods using Matlab' (Prentice-Hall Inc., 2004, 4th edn.) Yao, W., Chen, S., Hanzo, L.: 'A transceiver design based on uniform channel decomposition and MBER vector perturbation', IEEE Trans. Poor, H.V., Verdu, S.: 'Probability of error in MMSE multiuser Q5 Wirel. Commun., 59, (6), pp. 3153-3159 detection', IEEE Trans. Inf. Theory, 1997, 43, (3), pp. 858-871 1005 940 1010 945 1015 950 1020 955 1025 960 1030 965 1035 970 1040 975 1045 980 1050 985

1055

COM20130173

Author Queries 1060 Amit Kumar Dutta, K.V.S. Hari, Lajos Hanzo			112:	
1065	Q1 Q2 Q3 Q4 Q5	Please expand first name for Hari. Please check e-mail id of the corresponding author. Please expand BPSK and QPSK. Please provide volume numbers in refs. [2, 8]. Please provide year of publication in ref. [14].	1130	
1070			113:	
1075			1140	
1000			114:	
1080			1150	
1090			1155	
1095			1160	
			1165	
1100				
1105			1170	
1110			117:	
1110				
1115			1180	
1120			118:	