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Abstract—The Internet of Things is the concept of Internet-
enabling physical objects.  This paper describes a device to allow 
an object to be Internet-enabled using wired-Ethernet, in a 
power-efficient and low-cost fashion.  This paper discusses a port 
of the Contiki operating system for use with the LM3S6965 
processor.  We demonstrate that it is possible to run the Contiki 
operating system on an Ethernet-enabled microcontroller and 
that such a low-cost device is suitable for both further research 
and inclusion in consumer products.  

Keywords–Internet of Things; Contiki; Internet-enabled 
physical objects; Embedded devices; Web of Things. 

I.  INTRODUCTION 
The Internet of Things (IoT), or “embedded Internet” is 

widely seen as the next logical evolution of the Internet in a 
proximate fully-interconnected world [1]. The IoT extends the 
familiar structure of the Internet into a concept of networking 
generic physical objects [2], possibly including RFID (Radio 
Frequency Identification) tags, sensors and actuators [3].  
These objects may then be combined into various different 
‘applications’, much in the same way that we build smartphone 
or web applications at the moment [4].  Whilst much of the 
current work in this field is focused on Wireless Sensor 
Networks (WSN) and the use of the IPv6 over low-power 
Wireless Personal Area Networks (6loWPAN) scheme, there 
has been significantly less research into the wired `Internet of 
Things'.  This paper discusses some of the challenges that must 
be addressed in this new era of Internet connectivity.  In 
particular, we discuss the development of a low-power, low-
cost, Ethernet-enabled, general-purpose multitasking device 
supporting modern open protocols that is suitable for further 
IoT development.  Such a device has the potential to support 
the development of IoT applications, as smart-thermostats and 
other fixed-location devices. 

II. BACKGROUND 

A. The Internet of Things (IoT) 
The IoT is the concept of networking real-world objects 

and is regarded as the next logical generation of the Internet 
[1]. With an estimated hundred billion devices predicted to be 
connected by the end of the decade [5] many challenges must 
be faced to make this prediction a reality. Such challenges 
include having sufficient address space for hundreds of billions 
of devices as well as the methods of communication between 
such smart objects [1].  These objects may interact with other 
networked devices under one of the paradigms “person-to-

device, device-to-device and device-to-grid” [5]. Examples of 
device-to device and device-to-grid communications could be 
the interaction between a smart alarm clock and coffee 
machine; and the smart monitoring of buildings respectively 
[5]. An example of a person-to-device communication could be 
something as simple as a doorbell [6] or the remote operation 
of a household appliance via the Internet or from a smartphone. 

B. Communication 
Whilst there has previously been much debate over which 

protocols to use for the higher levels of the model, the majority 
of current systems use either 802.15.4, 802.11 or Ethernet for 
the physical and data link layers [7]. However, Dunkels and 
Vasseur suggest that the Internet Protocol (IP) is a more 
suitable communication scheme for the IoT due to it being 
stable, scalable and lightweight [8]. Initially it was deemed 
unsuitable for devices with severe constraints in memory and 
power [9], but now it has been proven that it can be used under 
these scenarios [7] [10]. With the introduction of IPv6, there is 
now sufficient address space for billions of IoT devices to have 
their own IP address on the wider Internet without the use of 
non-global routable subnets.  This would make IoT devices 
individually addressable on the global Internet. The use of pre-
existing technologies and protocols should allow for easier 
integration and adaptability for use with current technology. 

The REST architectural style (introduced by Fielding [11]) 
is often advocated as an application layer architectural style for 
communication between IoT objects [6] as it describes stateless 
client-server interaction with a uniform interface between 
components.  REST relies on the principle that any form of 
information can be considered a resource and can be referenced 
uniquely whether it is static, dynamic, or even if it has not yet 
been created [11], allowing for manipulation via generic 
interfaces. Hypertext Transfer Protocol (HTTP) and 
Constrained Application Protocol (CoAP) are examples of 
RESTful protocols for the IoT.  Though CoAP was designed 
with embedded devices in mind, HTTP is now more 
ubiquitous.  

C. Operating Systems for Embedded Devices 
A number of operating systems (OS) have been 

implemented to run embedded devices. We used Contiki OS, 
focusing on the code size and power consumption, often key 
issues, especially in the case of WSNs. The purpose of an OS 
can be summarized as providing hardware abstraction so that 
users (such as services and applications) may operate without 
requiring an intimate underlying knowledge of the specific 



hardware intended to be used, typically managing memory and 
the loading and execution of programs/services. Many modern 
OSs support time-sharing (or multitasking), allowing multiple 
services/applications to run concurrently. Typical examples of 
the hardware abstractions that OSs provide are I/O, access to 
permanent storage and access to the communications stack. 

When selecting an OS for embedded devices, hardware 
abstraction and support for multi-tasking are desirable, as well 
as a closely integrated IP stack for communication. As the IoT 
encapsulates Internet-enabling everyday objects, the use of 
IPv6 is preferable due to the larger address space available.  
Another consideration lies with the constraints of the hardware 
available. With the introduction of the Contiki OS, the typical 
target devices were 8-bit microcontrollers with approximately 
100kB of ROM and less than 20kB of RAM [12]. Features 
such as threading and IPv6 stacks, which are commonplace in 
larger OSs, are difficult to implement in an OS that is intended 
to run on a very limited hardware.  Typically, when threading 
is implemented in a regular OS, each thread has its own stack 
[13]. This implementation of threading is problematic for the 
kind of hardware we describe as it allows various thread stacks 
to use up a large proportion of available RAM [13]. Similarly, 
implementing a standard IPv6 stack can also cause problems as 
the RFC4861 specification requires a 1280-byte packet buffer 
for every neighbour on the link layer [9]. This is also 
problematic for WSN where there are several neighbours at the 
link layer, again, due to limitations in RAM. The Contiki OS 
offers a solution to implementing both threading and IPv6 
stacks in these resource-constrained systems. 

D. Contiki 
The Contiki OS created for WSN is a portable, lightweight 

operating system that supports dynamic loading, preemptive 
multi-threading, the protothreads programming abstraction for 
event-driven programs, and the uIPv6 stack for embedded 
devices [7] [12][13]. We note Contiki’s most notable features. 

The uIP TCP/IP stack, first introduced by Dunkels [10], 
was designed to have a minimal set of features allowing 
implementing a full TCP/IP stack on a resource-constrained 
system. The uIP stack now also supports UDP as well as TCP. 
The uIPv6 stack later introduced exposes the same interface as 
the standard uIP stack and fulfils all of the Phase-1 
requirements of the IPv6 Ready program [7]. Contiki supports 
dynamic loading and replacement of programs and services at 
run-time, so all loaded programs share the same address space 
[12], in contrast to many other OS, which make use of virtual 
address space when loading programs dynamically.  When 
Contiki was first introduced, preemptive multithreading was 
included as an application library that could be linked against 
applications that required it whilst still maintaining an event-
driven kernel [12]. Preemptive multithreading is the ability of 
the kernel to interrupt and resume a process without that 
process having to voluntarily yield control.  As explained 
above, the way threading is typically implemented is not viable 
for embedded systems. As Contiki implements this preemptive 
multi-threading as an application library, the memory 
requirements are greatly reduced as only the processes that 
require this feature are linked, reducing the number of 
individual stacks. 

Contiki also provides the programming abstraction of 
Protothreads for event-driven programs development in a 
thread-like style [13]. This method does not require an 
individual stack for each thread, reducing memory 
requirements. Protothreads are architecture-independent and 
can be implemented entirely by the C Preprocessor [13]. 
Protothreads implement the blocking-wait mechanism of 
threading which allows a thread to yield control until certain 
conditions are met. The use of protothreads, as opposed to pre-
emptive threading mentioned earlier, only incurs a penalty of 
one or two bytes per protothread (instead of a separate stack) 
and only a few extra processor cycles when compared to the 
state machine method of event-driven programming [13]. 

E. Compiling and Executing Code on the Cortex-M3 
Before executing a program on an embedded system 

several issues must be addressed. For example, when executing 
code on a Cortex-M3, the initial stack pointer must be set up 
and the NVIC table must be in the correct place in memory.  
The correct setup of environment can be achieved by using 
linker scripts and start-up code to ensure that the relevant 
variables are correctly located in SRAM before execution.    

The ARM Cortex-M3 is capable of achieving very low-
latency exception handling. The NVIC table is used to define 
Interrupt Service Routines (ISR). This table, although initially 
located at address 0x0, can in fact be moved to almost any 
other address location [14]. This is of great benefit as interrupts 
can be registered and unregistered at run-time. 

Also, on the Cortex-M3, when an interrupt is serviced, the 
code that was previously running is preempted. The state of the 
processor is automatically placed on the stack whilst the 
interrupt is handled before being restored on completion [14]. 
This operation incurs no instruction overhead on the Cortex-
M3 [14]. This is useful as it means interrupts can be quickly 
serviced whilst having no noticeable effect on running code. 

III. DESIGN 

A. Hardware Design 
The Stellaris 6000 series of microcontrollers was chosen as 

it is based on the ARM Cortex-M3 Micro-Controller Unit 
(MCU). The Cortex-M3 was chosen as it is a 32-bit processor 
with high performance and low power consumption.  The 
Cortex-M3 also supports JTAG 1  programming/debugging 
which makes for easier implementation and testing. Also, the 
Stellaris 6000 series of microcontrollers is the only series 
currently available with a “fully-integrated Ethernet MAC and 
PHY layer” 2 , which is desirable in order to keep a low 
component count (and cost). The reduction of component count 
can also aid in the PCB routing of future hardware designs. 

The LM3S6965 MCU was chosen as a microcontroller due 
to its good balance of peripherals and flash SRAM memories3. 

                                                           
1 Joint Test Action Group (JTAG), used to debug embedded systems. 
2http://www.ti.com/mcu/docs/mculuminaryfamilynode.tsp?sectionId=95i&tab
Id=2599&familyId=1758 
3 http://www.ti.com/mcu/docs/mcuorphan.tsp? 
contentId=135688&DCMP=Stellaris-Dustdevil&HQS=Other+OT+dustdevil 

 



Although higher performance processors with a greater number 
of peripherals are available, features such as USB host and a 
higher maximum clock speed were set aside in order to achieve 
a lower cost. The LM3S6965 was also chosen as its 
development board, the ek-lm3s6965, is supported by the Open 
On-Chip Debugger (OpenOCD) software package. The use of 
open-source software was considered desirable. Also, using 
OpenOCD for programming/debugging was practical as the 
software allows control of the chip through either a telnet 
interface or by attaching a GNU Project Debugger (GDB) 
session. GDB allows code to be easily flashed to the 
microcontroller and facilitated the debugging with setting of 
hardware breakpoints. This interactive debugging of code on 
hardware meant that testing by simulation was unnecessary. 

Originally, the intention was to create custom hardware 
using the previously mentioned LM3S6965 processor. 
However, we soon realised that the only gain from custom 
hardware when compared to the already available ek-lm3s6965 
evaluation board would be a reduction in size and component 
count, which would make it “low-cost”. As the outcome of this 
project is targeted towards engineers wishing to internet-enable 
smart devices, it was the realisation that the intended 
stakeholders would in fact be creating custom hardware 
anyway making such work surplus to requirements and outside 
the scope of this project. It was, therefore, decided that the 
software development for the project would be carried out on 
the already available ek-lm3s6965 development board. The use 
of this development board also aided in much of the 
implementation and testing phase as both JTAG and the 
Universal Asynchronous Receiver/Transmitter (UART) were 
made available over USB. 

B. Software Design 
As mentioned in the previous section, the Texas 

Instruments Stellaris LM3S6965 MCU was chosen for use with 
the project. The choice of this MCU was of great influence in 
some of the toolchains and libraries used in this project. Of 
note, was the use of the Texas Instrument Stellaris Peripheral 
Driver Library, hereafter referred to as Driverlib. The use of 
Driverlib greatly reduces development time and the learning 
curve when attempting to control the peripherals of an 
unfamiliar architecture. Another advantage of using Driverlib 
is that a common API is made available for the entire family of 
Stellaris MCU. This will allow for the easy porting of any 
software written to other microcontrollers in the family, even 
what would otherwise be low-level, hardware-specific code. 

Contiki was chosen as it is specifically designed for the IoT 
and it supports IPv4 and IPv6 as well as a wide variety of 
hardware, therefore portable to different architectures.  Contiki 
supports many other useful protocols such as ARP for Ethernet, 
DHCP for auto-configuration, DNS to resolve domain names 
in addition to the essential TCP, UDP, and ICMP protocols. 
Also the implementation of protothreads is an appropriate 
choice for multitasking in such a resource-constrained MCU. It 
should be noted that Contiki also has many server ‘apps’ that 
can be used depending on the thoroughness of the OS port, 
such as HTTP, COAP, and several others that can be used as a 
basis for testing the system. 

IV. TESTING BASIC FUNCTIONALITY 
Throughout the Contiki port, as extra functionality was 

added, small applications either provided with Contiki or 
written for purpose were used to determine that correct 
operation was being achieved, such as a printf via a hello-world 
example, as well as checks on the successful port of clock.c. In 
an example process, the timer is set to a period of one second 
and the process yields. When the process is then given 
execution time again, a check is made to see if the timer has in 
fact expired. If so, the count variable (the number of times this 
behaviour has occurred) is printed to an attached serial console 
using the printf function call. The timer is also reset to one 
second. In this way, we can observe the process starting and 
then counting the seconds since the start of the execution. This 
value can be compared to that obtained by a stopwatch to 
determine if the program is exhibiting correct behaviour and 
thus determine the correctness of clock.c. 

A. Enabling Networking 
When undertaking the network port, a Driverlib example 

application using an old version of the uIP stack was the 
starting point. The 6502 processor’s Ethernet code provided by 
Contiki allowed adapting the Driverlib code by updating the 
uIP function calls and replacing any delays with Contiki’s 
etimer. Amongst other developments, DHCP was handled in a 
separate process to increase readability and the ease of the port. 
DHCP functionality was ascertained by running a DHCP server 
in foreground mode and observing the DHCPDISCOVER, 
DHCPOFFER, DHCPREQUEST, DHCPACK process. 

A simple test of the device was a communication with a 
remote webserver, e.g. sending an HTTP POST to 
http://posttestserver.com, which allows received POST 
requests to be viewed in a standard web browser. Code using 
the DNS service was also written to test functionality. This 
code successfully resolved the IP address of the above site to 
its address. Code which allows posting twitter status updates 
was adapted so that the necessary HTTP POST requests could 
be sent to the test server (without authentication). 

Correct functionality was observed with status updates 
made available over the UART peripheral and also by 
following the appropriate TCP streams using the network 
protocol analyser, Wireshark, allowing the observation of the 
operation of the DHCP, ARP, DNS and other protocols. 

Finally, POST requests were confirmed by browsing to the 
correct subdirectories of the test server. The next test was to 
verify that the system could function correctly as a web server 
which was compiled and tested as working without further 
modifications. This webserver does not require the files it hosts 
to be present on a filesystem. Instead, a perl script is able to 
turn a specified directory structure into a series of const char C 
arrays. In this way, the files being served up by the webserver 
may be simply flashed to the microcontroller’s ROM at the 
same time the program is. Also, the default server supports the 
use of CGI scripts. These scripts allow for the dynamic 
generation of web pages by the server. 

A copy of the included webserver was made to ascertain if 
a CGI script could be written that could modify server state or 
cause some kind of action to be performed. It was decided to 



  
 

 

create a web form to be hosted on the Contiki server that would 
allow a submitted message to be sent out of the UART 
peripheral. When the form is submitted, it is handled by printf 
serial.shtml. In this file, a call is made to the CGI script submit-
message. This script causes the HTTP request the URL as well 
as any query strings to be printed on the UART peripheral. The 
script also causes the message to be displayed in the web 
browser as confirmation. 

V. TOWARDS A FULLER EVALUATION OF THE DEVICE 
At the start of this work, we set out to develop for the wired 

IoT.  A shortcoming of the Contiki operating system we 
highlighted is the limited support for modern Ethernet-enabled 
embedded devices, and has been addressed by the development 
of an Ethernet-enabled embedded device. By porting the 
Contiki OS to the EKC-LM3S6965 development board, the 
suitability of Contiki for this hardware platform has been 
demonstrated. Successful operation of the system has been 
confirmed both by the verification of commonplace protocols 
on the system (ARP, DHCP, DNS, TCP, UDP, etc.) and by the 
construction of an example application, e.g. an approximation 
to a smart thermostat using an embedded webserver. 

We have achieved our goals of creating an inexpensive, 
low-powered, general-purpose device for the wired IoT. The 
device created was both low-cost and low-powered, together 
with a low-component count, exhibiting a fully-working IPv4 
stack over Ethernet with support for the TCP, UDP and ICMP 
protocols as well as accompanying protocols such as ARP, 
DNS and DHCP.  IPv6 is supported, though this has still to be 
tested for this device. 

In this prototype, an Internet-enabled device was built, 
which can be connected to a household heating system for 
example. The test device (see Figure 1) contains an incremental 
rotary encoder with a push-switch to modify the status of RGB 
Light-Emitting Diode (LED) of which the status could be set to 
a great range of colours. The brightness for each of the 
component colours (red, green and blue, hence RGB) can be 
set either directly on the device or via the Internet, where again, 
users had a choice of accessing the device via a website or an 
Android phone. This interface allowed both consulting and 
setting the status of the IoT device, as shown in Figure 2. 

Figure 1.  Completed test device  

VI. CONCLUSION 
A proof-of-concept device was developed, using relatively 

low resources, both in terms of materials and in time invested. 
The developed prototype is fully functional, demonstrating the 
feasibility of connecting an everyday object to the Internet of 
Things. With this prototype, an Internet-enabled device was 

built, with an interface allowed both consulting and modifying 
the status of the device over the Internet, clearly evidencing the 
viability for interconnecting everyday objects by producing a 
truly general-purpose device for the Internet of Things, one that 
is suitable for further research and possible incorporation into 
consumer products as the main application processor. 

 
Figure 2.  Android app for controlling the device over the Internet 
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