
Developing a low-cost general-purpose device
for the Internet of Things

Adriana Wilde IEEE(S), Richard Oliver and Ed Zaluska SMIEEE
Electronics and Computer Science

University of Southampton, United Kingdom
{agw106, rjo2g10, ejz}@ecs.soton.ac.uk

Abstract—The Internet of Things is the concept of Internet-
enabling physical objects. This paper describes a device to allow
an object to be Internet-enabled using wired-Ethernet, in a
power-efficient and low-cost fashion. This paper discusses a port
of the Contiki operating system for use with the LM3S6965
processor. We demonstrate that it is possible to run the Contiki
operating system on an Ethernet-enabled microcontroller and
that such a low-cost device is suitable for both further research
and inclusion in consumer products.

Keywords–Internet of Things; Contiki; Internet-enabled
physical objects; Embedded devices; Web of Things.

I. INTRODUCTION
The Internet of Things (IoT), or “embedded Internet” is

widely seen as the next logical evolution of the Internet in a
proximate fully-interconnected world [1]. The IoT extends the
familiar structure of the Internet into a concept of networking
generic physical objects [2], possibly including RFID (Radio
Frequency Identification) tags, sensors and actuators [3].
These objects may then be combined into various different
‘applications’, much in the same way that we build smartphone
or web applications at the moment [4]. Whilst much of the
current work in this field is focused on Wireless Sensor
Networks (WSN) and the use of the IPv6 over low-power
Wireless Personal Area Networks (6loWPAN) scheme, there
has been significantly less research into the wired `Internet of
Things'. This paper discusses some of the challenges that must
be addressed in this new era of Internet connectivity. In
particular, we discuss the development of a low-power, low-
cost, Ethernet-enabled, general-purpose multitasking device
supporting modern open protocols that is suitable for further
IoT development. Such a device has the potential to support
the development of IoT applications, as smart-thermostats and
other fixed-location devices.

II. BACKGROUND

A. The Internet of Things (IoT)
The IoT is the concept of networking real-world objects

and is regarded as the next logical generation of the Internet
[1]. With an estimated hundred billion devices predicted to be
connected by the end of the decade [5] many challenges must
be faced to make this prediction a reality. Such challenges
include having sufficient address space for hundreds of billions
of devices as well as the methods of communication between
such smart objects [1]. These objects may interact with other
networked devices under one of the paradigms “person-to-

device, device-to-device and device-to-grid” [5]. Examples of
device-to device and device-to-grid communications could be
the interaction between a smart alarm clock and coffee
machine; and the smart monitoring of buildings respectively
[5]. An example of a person-to-device communication could be
something as simple as a doorbell [6] or the remote operation
of a household appliance via the Internet or from a smartphone.

B. Communication
Whilst there has previously been much debate over which

protocols to use for the higher levels of the model, the majority
of current systems use either 802.15.4, 802.11 or Ethernet for
the physical and data link layers [7]. However, Dunkels and
Vasseur suggest that the Internet Protocol (IP) is a more
suitable communication scheme for the IoT due to it being
stable, scalable and lightweight [8]. Initially it was deemed
unsuitable for devices with severe constraints in memory and
power [9], but now it has been proven that it can be used under
these scenarios [7] [10]. With the introduction of IPv6, there is
now sufficient address space for billions of IoT devices to have
their own IP address on the wider Internet without the use of
non-global routable subnets. This would make IoT devices
individually addressable on the global Internet. The use of pre-
existing technologies and protocols should allow for easier
integration and adaptability for use with current technology.

The REST architectural style (introduced by Fielding [11])
is often advocated as an application layer architectural style for
communication between IoT objects [6] as it describes stateless
client-server interaction with a uniform interface between
components. REST relies on the principle that any form of
information can be considered a resource and can be referenced
uniquely whether it is static, dynamic, or even if it has not yet
been created [11], allowing for manipulation via generic
interfaces. Hypertext Transfer Protocol (HTTP) and
Constrained Application Protocol (CoAP) are examples of
RESTful protocols for the IoT. Though CoAP was designed
with embedded devices in mind, HTTP is now more
ubiquitous.

C. Operating Systems for Embedded Devices
A number of operating systems (OS) have been

implemented to run embedded devices. We used Contiki OS,
focusing on the code size and power consumption, often key
issues, especially in the case of WSNs. The purpose of an OS
can be summarized as providing hardware abstraction so that
users (such as services and applications) may operate without
requiring an intimate underlying knowledge of the specific

hardware intended to be used, typically managing memory and
the loading and execution of programs/services. Many modern
OSs support time-sharing (or multitasking), allowing multiple
services/applications to run concurrently. Typical examples of
the hardware abstractions that OSs provide are I/O, access to
permanent storage and access to the communications stack.

When selecting an OS for embedded devices, hardware
abstraction and support for multi-tasking are desirable, as well
as a closely integrated IP stack for communication. As the IoT
encapsulates Internet-enabling everyday objects, the use of
IPv6 is preferable due to the larger address space available.
Another consideration lies with the constraints of the hardware
available. With the introduction of the Contiki OS, the typical
target devices were 8-bit microcontrollers with approximately
100kB of ROM and less than 20kB of RAM [12]. Features
such as threading and IPv6 stacks, which are commonplace in
larger OSs, are difficult to implement in an OS that is intended
to run on a very limited hardware. Typically, when threading
is implemented in a regular OS, each thread has its own stack
[13]. This implementation of threading is problematic for the
kind of hardware we describe as it allows various thread stacks
to use up a large proportion of available RAM [13]. Similarly,
implementing a standard IPv6 stack can also cause problems as
the RFC4861 specification requires a 1280-byte packet buffer
for every neighbour on the link layer [9]. This is also
problematic for WSN where there are several neighbours at the
link layer, again, due to limitations in RAM. The Contiki OS
offers a solution to implementing both threading and IPv6
stacks in these resource-constrained systems.

D. Contiki
The Contiki OS created for WSN is a portable, lightweight

operating system that supports dynamic loading, preemptive
multi-threading, the protothreads programming abstraction for
event-driven programs, and the uIPv6 stack for embedded
devices [7] [12][13]. We note Contiki’s most notable features.

The uIP TCP/IP stack, first introduced by Dunkels [10],
was designed to have a minimal set of features allowing
implementing a full TCP/IP stack on a resource-constrained
system. The uIP stack now also supports UDP as well as TCP.
The uIPv6 stack later introduced exposes the same interface as
the standard uIP stack and fulfils all of the Phase-1
requirements of the IPv6 Ready program [7]. Contiki supports
dynamic loading and replacement of programs and services at
run-time, so all loaded programs share the same address space
[12], in contrast to many other OS, which make use of virtual
address space when loading programs dynamically. When
Contiki was first introduced, preemptive multithreading was
included as an application library that could be linked against
applications that required it whilst still maintaining an event-
driven kernel [12]. Preemptive multithreading is the ability of
the kernel to interrupt and resume a process without that
process having to voluntarily yield control. As explained
above, the way threading is typically implemented is not viable
for embedded systems. As Contiki implements this preemptive
multi-threading as an application library, the memory
requirements are greatly reduced as only the processes that
require this feature are linked, reducing the number of
individual stacks.

Contiki also provides the programming abstraction of
Protothreads for event-driven programs development in a
thread-like style [13]. This method does not require an
individual stack for each thread, reducing memory
requirements. Protothreads are architecture-independent and
can be implemented entirely by the C Preprocessor [13].
Protothreads implement the blocking-wait mechanism of
threading which allows a thread to yield control until certain
conditions are met. The use of protothreads, as opposed to pre-
emptive threading mentioned earlier, only incurs a penalty of
one or two bytes per protothread (instead of a separate stack)
and only a few extra processor cycles when compared to the
state machine method of event-driven programming [13].

E. Compiling and Executing Code on the Cortex-M3
Before executing a program on an embedded system

several issues must be addressed. For example, when executing
code on a Cortex-M3, the initial stack pointer must be set up
and the NVIC table must be in the correct place in memory.
The correct setup of environment can be achieved by using
linker scripts and start-up code to ensure that the relevant
variables are correctly located in SRAM before execution.

The ARM Cortex-M3 is capable of achieving very low-
latency exception handling. The NVIC table is used to define
Interrupt Service Routines (ISR). This table, although initially
located at address 0x0, can in fact be moved to almost any
other address location [14]. This is of great benefit as interrupts
can be registered and unregistered at run-time.

Also, on the Cortex-M3, when an interrupt is serviced, the
code that was previously running is preempted. The state of the
processor is automatically placed on the stack whilst the
interrupt is handled before being restored on completion [14].
This operation incurs no instruction overhead on the Cortex-
M3 [14]. This is useful as it means interrupts can be quickly
serviced whilst having no noticeable effect on running code.

III. DESIGN

A. Hardware Design
The Stellaris 6000 series of microcontrollers was chosen as

it is based on the ARM Cortex-M3 Micro-Controller Unit
(MCU). The Cortex-M3 was chosen as it is a 32-bit processor
with high performance and low power consumption. The
Cortex-M3 also supports JTAG 1 programming/debugging
which makes for easier implementation and testing. Also, the
Stellaris 6000 series of microcontrollers is the only series
currently available with a “fully-integrated Ethernet MAC and
PHY layer” 2 , which is desirable in order to keep a low
component count (and cost). The reduction of component count
can also aid in the PCB routing of future hardware designs.

The LM3S6965 MCU was chosen as a microcontroller due
to its good balance of peripherals and flash SRAM memories3.

1 Joint Test Action Group (JTAG), used to debug embedded systems.
2http://www.ti.com/mcu/docs/mculuminaryfamilynode.tsp?sectionId=95i&tab
Id=2599&familyId=1758
3 http://www.ti.com/mcu/docs/mcuorphan.tsp?
contentId=135688&DCMP=Stellaris-Dustdevil&HQS=Other+OT+dustdevil

Although higher performance processors with a greater number
of peripherals are available, features such as USB host and a
higher maximum clock speed were set aside in order to achieve
a lower cost. The LM3S6965 was also chosen as its
development board, the ek-lm3s6965, is supported by the Open
On-Chip Debugger (OpenOCD) software package. The use of
open-source software was considered desirable. Also, using
OpenOCD for programming/debugging was practical as the
software allows control of the chip through either a telnet
interface or by attaching a GNU Project Debugger (GDB)
session. GDB allows code to be easily flashed to the
microcontroller and facilitated the debugging with setting of
hardware breakpoints. This interactive debugging of code on
hardware meant that testing by simulation was unnecessary.

Originally, the intention was to create custom hardware
using the previously mentioned LM3S6965 processor.
However, we soon realised that the only gain from custom
hardware when compared to the already available ek-lm3s6965
evaluation board would be a reduction in size and component
count, which would make it “low-cost”. As the outcome of this
project is targeted towards engineers wishing to internet-enable
smart devices, it was the realisation that the intended
stakeholders would in fact be creating custom hardware
anyway making such work surplus to requirements and outside
the scope of this project. It was, therefore, decided that the
software development for the project would be carried out on
the already available ek-lm3s6965 development board. The use
of this development board also aided in much of the
implementation and testing phase as both JTAG and the
Universal Asynchronous Receiver/Transmitter (UART) were
made available over USB.

B. Software Design
As mentioned in the previous section, the Texas

Instruments Stellaris LM3S6965 MCU was chosen for use with
the project. The choice of this MCU was of great influence in
some of the toolchains and libraries used in this project. Of
note, was the use of the Texas Instrument Stellaris Peripheral
Driver Library, hereafter referred to as Driverlib. The use of
Driverlib greatly reduces development time and the learning
curve when attempting to control the peripherals of an
unfamiliar architecture. Another advantage of using Driverlib
is that a common API is made available for the entire family of
Stellaris MCU. This will allow for the easy porting of any
software written to other microcontrollers in the family, even
what would otherwise be low-level, hardware-specific code.

Contiki was chosen as it is specifically designed for the IoT
and it supports IPv4 and IPv6 as well as a wide variety of
hardware, therefore portable to different architectures. Contiki
supports many other useful protocols such as ARP for Ethernet,
DHCP for auto-configuration, DNS to resolve domain names
in addition to the essential TCP, UDP, and ICMP protocols.
Also the implementation of protothreads is an appropriate
choice for multitasking in such a resource-constrained MCU. It
should be noted that Contiki also has many server ‘apps’ that
can be used depending on the thoroughness of the OS port,
such as HTTP, COAP, and several others that can be used as a
basis for testing the system.

IV. TESTING BASIC FUNCTIONALITY
Throughout the Contiki port, as extra functionality was

added, small applications either provided with Contiki or
written for purpose were used to determine that correct
operation was being achieved, such as a printf via a hello-world
example, as well as checks on the successful port of clock.c. In
an example process, the timer is set to a period of one second
and the process yields. When the process is then given
execution time again, a check is made to see if the timer has in
fact expired. If so, the count variable (the number of times this
behaviour has occurred) is printed to an attached serial console
using the printf function call. The timer is also reset to one
second. In this way, we can observe the process starting and
then counting the seconds since the start of the execution. This
value can be compared to that obtained by a stopwatch to
determine if the program is exhibiting correct behaviour and
thus determine the correctness of clock.c.

A. Enabling Networking
When undertaking the network port, a Driverlib example

application using an old version of the uIP stack was the
starting point. The 6502 processor’s Ethernet code provided by
Contiki allowed adapting the Driverlib code by updating the
uIP function calls and replacing any delays with Contiki’s
etimer. Amongst other developments, DHCP was handled in a
separate process to increase readability and the ease of the port.
DHCP functionality was ascertained by running a DHCP server
in foreground mode and observing the DHCPDISCOVER,
DHCPOFFER, DHCPREQUEST, DHCPACK process.

A simple test of the device was a communication with a
remote webserver, e.g. sending an HTTP POST to
http://posttestserver.com, which allows received POST
requests to be viewed in a standard web browser. Code using
the DNS service was also written to test functionality. This
code successfully resolved the IP address of the above site to
its address. Code which allows posting twitter status updates
was adapted so that the necessary HTTP POST requests could
be sent to the test server (without authentication).

Correct functionality was observed with status updates
made available over the UART peripheral and also by
following the appropriate TCP streams using the network
protocol analyser, Wireshark, allowing the observation of the
operation of the DHCP, ARP, DNS and other protocols.

Finally, POST requests were confirmed by browsing to the
correct subdirectories of the test server. The next test was to
verify that the system could function correctly as a web server
which was compiled and tested as working without further
modifications. This webserver does not require the files it hosts
to be present on a filesystem. Instead, a perl script is able to
turn a specified directory structure into a series of const char C
arrays. In this way, the files being served up by the webserver
may be simply flashed to the microcontroller’s ROM at the
same time the program is. Also, the default server supports the
use of CGI scripts. These scripts allow for the dynamic
generation of web pages by the server.

A copy of the included webserver was made to ascertain if
a CGI script could be written that could modify server state or
cause some kind of action to be performed. It was decided to

create a web form to be hosted on the Contiki server that would
allow a submitted message to be sent out of the UART
peripheral. When the form is submitted, it is handled by printf
serial.shtml. In this file, a call is made to the CGI script submit-
message. This script causes the HTTP request the URL as well
as any query strings to be printed on the UART peripheral. The
script also causes the message to be displayed in the web
browser as confirmation.

V. TOWARDS A FULLER EVALUATION OF THE DEVICE
At the start of this work, we set out to develop for the wired

IoT. A shortcoming of the Contiki operating system we
highlighted is the limited support for modern Ethernet-enabled
embedded devices, and has been addressed by the development
of an Ethernet-enabled embedded device. By porting the
Contiki OS to the EKC-LM3S6965 development board, the
suitability of Contiki for this hardware platform has been
demonstrated. Successful operation of the system has been
confirmed both by the verification of commonplace protocols
on the system (ARP, DHCP, DNS, TCP, UDP, etc.) and by the
construction of an example application, e.g. an approximation
to a smart thermostat using an embedded webserver.

We have achieved our goals of creating an inexpensive,
low-powered, general-purpose device for the wired IoT. The
device created was both low-cost and low-powered, together
with a low-component count, exhibiting a fully-working IPv4
stack over Ethernet with support for the TCP, UDP and ICMP
protocols as well as accompanying protocols such as ARP,
DNS and DHCP. IPv6 is supported, though this has still to be
tested for this device.

In this prototype, an Internet-enabled device was built,
which can be connected to a household heating system for
example. The test device (see Figure 1) contains an incremental
rotary encoder with a push-switch to modify the status of RGB
Light-Emitting Diode (LED) of which the status could be set to
a great range of colours. The brightness for each of the
component colours (red, green and blue, hence RGB) can be
set either directly on the device or via the Internet, where again,
users had a choice of accessing the device via a website or an
Android phone. This interface allowed both consulting and
setting the status of the IoT device, as shown in Figure 2.

Figure 1. Completed test device

VI. CONCLUSION
A proof-of-concept device was developed, using relatively

low resources, both in terms of materials and in time invested.
The developed prototype is fully functional, demonstrating the
feasibility of connecting an everyday object to the Internet of
Things. With this prototype, an Internet-enabled device was

built, with an interface allowed both consulting and modifying
the status of the device over the Internet, clearly evidencing the
viability for interconnecting everyday objects by producing a
truly general-purpose device for the Internet of Things, one that
is suitable for further research and possible incorporation into
consumer products as the main application processor.

Figure 2. Android app for controlling the device over the Internet

REFERENCES
[1] Intel Corporation, “Rise of the embedded Internet,” Tech. rep., 2009.
[2] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy, “Smart

objects as building blocks for the Internet of things”. Internet
Computing, IEEE 14, 1 (jan.-feb. 2010), pp. 44 –51

[3] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks 54, 15 (2010), pp.2787 – 2805.

[4] D. A. Guinard, “A web of things application architecture - Integrating
the real-world into the web”. PhD thesis, University of Fribourg, 2011.

[5] The Hammersmith Group. “The Internet of Things: Networked objects
and smart devices”. Tech. rep., 2010.

[6] S. Hodges et al., “Prototyping connected devices for the Internet of
Things”. Computer 46, 2 (2013), pp.26–34.

[7] M. Durvy et al., “Making sensor networks IPv6 ready”. 6th ACM Conf.
on Networked Embedded Sensor Systems (ACM SenSys 2008), poster
session, Raleigh, North Carolina, USA, November 2008.

[8] A. Dunkels, and J. Vasseur, “IP for smart objects,” White paper 1,
Internet Protocol for Smart Objects (IPSO Alliance), July 2010. ver1.1.

[9] J. Abeillé, M. Durvy, J. Hui, and S. Dawson-Haggerty, “Lightweight
IPv6 stacks for smart objects: the experience of three independent and
interoperable implementations”. White paper 2, Internet Protocol for
Smart Objects (IPSO Alliance), November 2008.

[10] A. Dunkels, “Full TCP/IP for 8 bit architectures,” 1st ACM/Usenix Int.
Conf. on Mobile Systems, Applications and Services (MobiSys 2003),
San Francisco, May 2003.

[11] R. Fielding, “Architectural styles and the design of network-based
software architectures,” PhD thesis, University of California, Irvine,
2000.

[12] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki: a lightweight and
flexible operating system for tiny networked sensors”. 1st IEEE
Workshop on embedded networked sensors (Emnets-I), November 2004.

[13] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads:
simplifying event-driven programming of memory-constrained
embedded systems”. 4th ACM Conference on Embedded Networked
Sensor Systems (SenSys 2006), Boulder, Colorado, USA, Nov. 2006.

[14] ARM. “Cortex-M3 devices generic user guide,” ARM Limited, 2010

