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Abstract—This contribution reports a method for in-
creasing the imaging speed of an Atomic Force Microscope.
The is done by allowing the complete length of the cantilever
beam to interact with the sample surface rather than just
the free end. The deflection of the beam is then observed
at uniformly distributed points along the beam length
using an array of laser spots and detectors. This scheme
enables measurement of an entire line on the sample surface
simultaneously, thus eliminating the need for rastering and
reducing imaging time. This speed up is illustrated in this
contribution through simulation results.
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I. INTRODUCTION

The development of Atomic Force Microscopes in
1986 by Binning et.al [1] initiated initiated the usage of
this versatile instrument in a diverse range of fields rang-
ing from material science to microbiology. One key factor
behind their high applicability is that the sample does not
need to be conducting as was the case for the predecessor
instrument, the Scanning Tunnelling Microscope (STM).
Additionally, the samples can be viewed in air, liquid or
vacuum with little or no sample preparation.

Although highly applicable, this instrument has a key
limitation i.e, the image generation process is relatively
slow. Currently it takes half a minute to four minutes for
generating a 256 x 256 pixel image of an approximately
20 x 20 pm area. The most important problem limiting
AFM speed is that the piezo-actuators used for moving
the sample include resonant modes in their dynamics.

A number of solutions have been proposed for reduc-
ing the imaging time in an AFM. These can be classified
into four groups. The most direct method is to improve
the design of the piezo- actuators that are used for
rastering the sample. The primary effort in this direction
of research is to increase the resonance frequency of the
piezo-actuator so that rastering at higher frequencies may
be possible. A few examples of this work include the
high speed scanner proposed by Schitter et.al [2] and
Ando et.al [3]. The former designs scanners with higher
resonance frequencies using Finite Element Analysis and
the later increases resonance frequencies by using a piezo
support mechanism which the authors refer to as the
inertia balance support.

The second body of research work aims to improve
AFM scan speeds though optimal controller design so that

the effect of the resonant modes in the piezo actuators
is reduced. One of the most common approaches used to
enable faster rastering is to use Ho, control theory for de-
signing compensators [4] and estimators [5]. Substantial
speed-ups can be obtained using this method as has been
reported in [6]. An alternate method used to enable faster
rastering is to identify a model of the piezo-actuator and
compensate for the dynamics of the actuator that cause
image distortion using feedforward control based model
inversion. Burns [7] reports the usage of this strategy for
high speed imaging on a Multi Mode AFM from Bruker.
A similar method has been reported by Ando [8] for
imaging biomolecules.

Another possibility for reducing imaging times is to
optimize the imaging trajectories so that the resonant
modes of the piezo actuators may not be excited. This
is done by using scan trajectories with reduced harmonic
content as reported in [9], [10].

Lastly, a few researchers have experimented with a
complete workaround the entire problem of the piezo
actuator resonant modes. This is achieved by using an
array of parallel cantilevers [11] to reduce the imag-
ing time. The approach proposed in this contribution
is similar to this method except that instead of using
multiple cantilevers, the beam is pinned at both ends
and is moved laterally over the entire surface. The beam
is assumed to have multiple tips distributed uniformly
over the entire beam length. This allows the beam to
interact with the sample surface at multiple points thus
enabling faster imaging. The beam deflection is then
observed using an array of laser spots also distributed
uniformly across the beam length. This information is
used to estimate the topography of the surface. A control
loop is also used to ensure that the entire sample surface
remains within an acceptable distance from the beam tips.
As illustrated in section V, the speed-up attained using
this method determined by the resonance frequency of
the piezo actuator used to move the sample. Given the
specifications of current piezo actuators, it is illustrated
that a speed up in excess of five hundred times can be
obtained. The primary advantage of this method over
the use of multiple cantilevers is the relatively simpler
construction. Instead of using multiple cantilevers only
one beam is needed. Secondly, only one feedback control
loop is needed which vastly simplifies implementation.

Current state of the art AFMs have scan rates well in
excess of 10 Hz as in the case of [12] and [13], however



the principle of full beam atomic force microscopy also
applies to these instruments.

The remaining parts of the paper are organized as
follows, section II explains the fundamentals of AFM
operation, section III describes the set up for the full beam
atomic force microscopy followed by an explanation of
the control law in section IV. Section V provides the
simulation results for a simple uniform rectangular grid,
followed by the conclusions and future work in the last
section.

II. AFM FUNDAMENTALS

Figure 1 illustrates the setup of a conventional AFM
which consists of a cantilever, laser source, photo diode
and a piezo tube actuator on which the sample is placed.
Generally the cantilever is made of silicon nitride, silicon
oxide or silicon and is up to 250 pm in length. A pyramid
shaped tip is attached to the free end of the cantilever
facing the sample surface. This tip is nearly atomically
sharp and is used to probe the sample.

The interaction between the tip and sample causes
the cantilever to deflect. This deflection is detected by
shining a laser beam on top of the cantilever’s free end
and detecting the deflection using a Photo Sensitive Diode
(PSD). The sample is then rastered beneath the cantilever
tip. This is done by actuating the piezo tube on which
the sample rests. The piezo tube has the ability to bend
laterally in the x and y directions, and contract and expand
to provide movement vertically in the z direction. The
piezo actuation in the lateral directions is achieved by
providing triangular voltage waveforms V, and V,, with
frequencies f, and f, respectively. Each change of the V,
voltage from one extreme to the other corresponds to one
scan line. Consecutive scan lines are referred to as the
trace and retrace scan lines. The change in the V}, from
one extreme to the other corresponds to one image frame.
In most conventional AFMs, the frequency for the x axis,
which is also referred to fast axis is below 10 Hz and
each image consists of 256 trace and retrace line pairs.
Higher scan frequencies have been reported, but currently
most conventional AFMs are restricted below this limit.
The problem associated with higher scan frequencies is
that these excite the resonant modes of the piezo actuators
which cause distortions in the image.

Given that f, = 10 Hz an image consists of 256
trace retrace line pairs, the time required for each image
Timage is 25.6 seconds. The scan rate for the y axis f, is
then selected so that its time period is twice T}, qge. 1.€,
f’y = 2><Ti1mage'

As the sample is rastered beneath the cantilever tip,
the cantilever tip deflection changes as a consequence
of variations in surface topography. These changes are
observed by measuring the photo sensitive diode’s (PSD)
voltage signal d. The purpose of the control loop is then
to regulate the height of the sample so that the deflection
signal d remains at it’s set point dgp. The movement
is achieved by adjusting the V, which corresponds to the
vertical movement of the piezo tube.Finally, the controller
signal h provides an estimate of the sample topography.
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Figure. 1. Atomic Force Microscope setup.

III. FuLL BEAM ATOMIC FORCE MICROSCOPY

The fundamental principle of the Full Beam atomic
force microscopy is to use the entire length of the
cantilever for determining the topography of the sample.
As illustrated in Figure 2 the beam consists of Np
tips distributed uniformly across it’s length. Contrary to
conventional atomic force microscopy where beam is
fixed at one end and free at the other, in this case the
beam is pinned at both ends to a fixed support. The sample
is placed on a piezo actuator at a distance Z. below the
pinned ends of the beam. The piezo actuator enables both
lateral and vertical movement of the sample.
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Figure. 2. Full Beam Atomic Force Microscope setup.

The top end of the beam above each tip is illu-
minated with Ng laser spots that enables measurement
of the deflection angle of the beam 6; = d—z o for
the i*" tip. For the purpose of the current contribution
Np = Ng = n. The vector of deflection angles 6 =
(07 62 ... 6,]7 is used to evaluate the vector of forces
and moments acting on the beam at the location of each
tip F=[fin fom fn )T Here f; is the tip
sample interaction force acting on the i*" tip and 7; is the
moment acting on the beam at the location of each tip.

Once the force vector is known the sample topography
can be estimated by inverting the tip sample interaction
relation. This places two constraints on the full beam
AFM set up given below,
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Here a, is the inter atomic separation for the sample
material. It is the closest distance the tip can be from
the sample surface without penetrating it. d,,,, is the
maximum separation between the tip and sample after
which the effect of the tip sample interaction force is too
small to be measured. The motivation behind placing this
constraint is to ensure that the tip sample interaction force
is explained solely by the Van der Waals interaction force
between tip and sample. The second constraint is a simple
extension of the first one. If the sample topography has a
variation greater than d,,,, then either some regions of
the sample surface will be too far to exert any measurable
force on the beam, or the tips will penetrate the sample.
In both cases topography reconstruction will become
impossible. The complete tip sample interaction force is
explained by the following relation,

—-&8 ifdi>a,

fi= ~ a3 + 3E"VR(a, — d)2 if d; < a,. )

where d; = d(x;) H is the Hammaker constant, R

is the tip radius, E* is the effective Young’s Modulus.

Figure 3 illustrates one possible tip sample interaction

force curve for £* = 1.3 GPa, R = 10 nm, a, = 0.16
nm and H = 7.1 x 10720 J.
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Figure. 3. Tip sample interaction force.

As is clear from Equation 3 if the tip sample distance
is greater than a, the interaction force is explained by
a single term which is the Van der Waals force. If
the distance is less than a, i.e, the tip starts penetrat-
ing the surface and the interaction force is explained
by an additional term originating from the Derjaguin
Muller Toporov (DMT) model [14]. In this case dyqq
is determined by using the fact that current AFMs can
measure a minimum force F),;, of 1 pico Newtons
[15] and then inverting the Van der Waals relation i.e,

—HR . .. .
Ex Here the negative sign in the root is

not a problem since the Van der Waals force always cause

dmax =

the tip to be attracted towards the surface thus giving
F,.;n a negative sign as well. For the current values of
H and R, dpq, = 15.38 nm.

Finally the complete topography estimation process
can be given as a mapping P,

O :map b, — (fi,y;)) V1<i<n )

Where y; = y(z;) is the beam deflection at x = z;.
Once the tip forces and beam deflections are known, the
topography can be determined by the using the following
relation obtained from Figure 2,

Ty =y — Ze| —|di|] YV1<i<n 5)

Where T; = T(z;) is the topography at z = z;.
Using the constraints which ensure that the tip sample
interaction force is explained only by the Van der Waals
force, this relation becomes,

—HR
6 X f;

T, = ly; — Zc| — V1i<i<n (6)

The mapping ® can be obtained by using the Finite
Element Model (FEM) for the beam. This is done by
using the FEM matrices for the beam namely Mass,
Damping and Stiffness matrices M,C' and K respectively.
The complete matrix equation for the systems can then
be written as,

MX+CX+KX=F (7)

where X = [yl 91 Y2 92 Yn+1 9n+1]T, F =
[fim fo fr+1 Tny1]' and n is the number of
elements in the finite element model. The mass, damping
and stiffness matrices can be constructed by using the
corresponding mass, stiffness and damping matrices for
each element namely M;, C; and K; and matrix assembly
procedure. The element matrices used in this contribution
are obtained from [16] and are given below,

T
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Where, m is the mass per unit length for the beam,
FE is the Elasticity Modulus, I is the moment of inertia
through the transverse axis and L is the beam length.
The element matrices are assembled using the assembly
procedure mention in [16] to obtain M and K. Once these



are obtained, the stiffness matrix C is determined as a
linear combination of M and K using Rayleigh Damping.

Assuming that X and X are negligible we get,

Y1 fi
01
Y2 f2
K| % |=|m (10)
Yn+1 frnt1
_0n+1_ L Tn+1 |

This assumption is reasonable if the beam is allowed
to settle to a steady state before the topography estimation
can begin.

The purpose of the mapping ® is to use the known
values of the measured deflection angles 61 62 ... 0,1
and determine f; fo . fony1 and 21 29 . Tyl
It is already known that while the tip sample interaction
exerts forces on the tip but no moments, i.e 74 =79 --- =
Tn+1l = 0.

The system of equations 10 is rearranged using a
permutation matrix P as follows,
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and using the same permutation matrix,

[ f1 ] [ f1 ]
T1 f2
f2
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This permutation matrix is then used to determine the
rearranged system of equations as follows,

KpP'PX = P 'PF (13)
PKP'X = F (14)
KX = F (15)

The matrices K, X and F are partitioned as follows,

K K, Yyl | f
PR

Where § = [y1 yo Ynp1]T and 0 =

[01 92 9n+1]T and j?: [f] f2 fn+l]~ Finally,
i/ can be determined as follows,

j=—-K, K999 a7

Once ¥ is known, f is determined using Equation 16.

IV. FuLL BEAM AFM CONTROL LOOP

Contrary to the conventional AFM control loop where
the AFM plant where both the control and error signals
are time dependent scalars, the full beam AFM requires
regulating the sample height Z as illustrated in Figure
2 to keep the vector of deflection angles 6 at a set point
vector ;. The error signal is therefore a vector given as,

— —

&=0y, — 0 (18)

The set point vector 6, is selected so that all points
along the beam length stay in the desired region between
a, and d,qz, 1.€,

aogyigdma;v VlSZS’I’L (19)

This done by setting Zc to an arbitrarily chosen value
between a, and d,,, 4, (in this contribution Z. = —10 nm),
letting the surface be flat simulating the beam motion
using Equation 7. The beam is assumed to be at rest
initially and moves under the influence of the tip sample
interaction force. Eventually, the beam attains a steady

state so that g’ :_jj =6 =6 = 0. The value of § is used
as the set point 0.

The fact that the error signal is a vector gives rise to
two problems. Firstly, it needs to be determined how far
the vector § is from the set _point vector f.p- Secondly,
given a measure of how far g is from OSP, it must also be
determined if the sample needs to be moved towards the
beam or away from it.

While the problem of the distance metric can be
solved by using the L, norm of the error signal vector
as done in this contribution, the second problem requires
utilization of the beam geometry. This is illustrated in
Figure 4. The figure shows the beam deflections y;,
deflection angles 6; and the corresponding errors e; when
the beam is too_'close_, to a flat surface, when it is at a
distance where 6 = 0,, and when it is too far from the
surface. For the purpose of this illustration, the figure was
generated by setting Z, = 8,10 and 12 nm respectively.

The top plot in Figure 4 illustrates the beam deflec-
tions for the three cases. As is clear from the plot, the
beam shows greater deflection when closer to the surface
because the magnitude of the tip sample interaction force
is greater. Likewise the beam exhibits lesser deflection
when farther away from the surface. The middle plot
illustrates the deflection angles. For the first half of the
beam before the middle point the deflection angles are
all negative since the beam has a negative slope in this
region. Likewise the slopes are positive for the second



Figure. 4. Determination of the error metric for three beam positions,
near(..), at setpoint (-) and far(- -).

half of the beam. The third plot illustrates the deflection
angle error. It is can be seen clearly that if the beam is too
close to the surface the error values are positive for the
first half of the beam and then negative and vice versa.
This metric if given as follows,

0.5(n+1) n+1

Yo oelles o

i=0.5(n+1)+1

E = sgn €; —
1
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The first term involving the signum function indicates
if the surface needs to be moved towards the beam or
away from it. The second term involving the Lo norm is
simply used to measure the size of the error. Finally, the
controller attempts to minimize F(t) by regulating the
sample height Z,.. This contribution reports the results of
using a simple Proportional controller along with a first
order low pass filter to minimize oscillations in Z.. These
results are reported in the next section.

V. SIMULATION RESULTS

This section presents simulation results for the case
when the sample is moved laterally at a uniform velocity
so that the topography of the entire surface may be
estimated. The system is simulated by using the finite
element model given in Equation 7. This is done by
converting the M,C and K matrices into the corresponding
state space matrices for the system.

The system is then simulated with a sample time of
T = 0.2us. The finite element model consists of Np =
Nt = Ng = n = 100 finite elements. Table I illustrates
the all the remaining simulation parameters for the sample
and the beam.

The initial conditions for the beam are set to zero and
Z, is set to -15nm. For the purpose of this contribution
fo =0 and f, = 10 Hz. The sample surface in this case
is a rectangular grid with pitch of 100um and a height of
5 nm. The image covers an area of 250 x 500um. Given
the scan rate f,, 0.1 seconds are required for recording
the image.

TABLE 1. SIMULATION PARAMETERS FOR FULL BEAM SCAN

SIMULATION
Par 11 Value
Pitch 100 pm
Height 5 nm
Sample Hammaker Constant (H) 7.1 x10720J
Inter-atomic Separation (a,) 0.16 nm
Young’s Modulus (Es) 1.2 GPa

Poisson’s Ratio (vs) 0.3

Tip Radius (R) 20 nm
Young’s Modulus (E}) 130 GPa
Beam Poisson’s Ratio (vp) 0.3

Beam Length (L) 250 pm
Beam Width (w) 35 pm
Beam Thickness (t) 3 um
Number of Tips (NT) 100
Number of Spots (Ng) 100
Simulation | Sample Time (T’) 0.2 pus

Number of Beam Elements (N g) 100

If conventional AFM imaging is used with 512 trace
retrace line pairs and a scan rate f, = 10 Hz, 51.2
seconds would be needed to complete the scan. The
full beam scanning in this case is therefore 512 times
faster. It is clear that while the speed-up factor may vary
for different values of f, and for a different number
of trace retrace line pairs, the full beam method will
always be faster than conventional AFM imaging. This is
because in conventional AFM a single tip must be moved
sequentially over the sample where as in this method
a large number of tips are moved over the surface in
parallel.

Figure 5 illustrates the results of the topography
reconstruction. As can be seen that the sample surface is
reasonably estimated, although there are distortions near
the edges. This is due to the fact that since the sample
topography is constantly changing, the assumption that

X and X are negligible is no longer true. This causes
inaccuracies in estimation of the sample surface. Due to
this reason, the topography estimates either exceed d,,q4
or are lesser than a, at some points. Such estimates are
discarded from the final result. Despite these errors an
acceptable reconstruction is still obtained.The error and
controller signals are illustrated in Figure 6. The error
signal oscillates initially (as shown in inset) and then
converges to zero.

VI. CONCLUSIONS

This contribution presents a possible solution for
reducing imaging times in atomic force microscopes. The
fundamental concept is to use the entire length of the
cantilever beam rather than only the free end. The advan-
tage is that samples can be scanned faster. There are also
implementation challenges that need to be investigated
to enable realization of this concept. The first one is the
fabrication of a large number of tips on the entire beam
length. This would require that each tip have a high aspect
ratio and a base length less than a micro meter, as is the
case with AFM probe tips from nanoScience Instruments
[17]. The current simulation assumes the fabrication of
100 tips on a 250 pm beam. The second implementation
issue requiring investigation is the placement of a large
number of laser spots on the beam. One possible solution



Figure. 5. Topography reconstruction for two dimensional scan.
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Figure. 6. Control signal Z. (top). Error signal E (bottom).

is to use self sensing piezo resistive mechanisms as have
been suggested in [18]. Instead of using a single piezo
resistive element, an array could be fabricated on the
entire beam length to eliminate the requirement for optical
detection.

An additional implementation difficulty is the require-
ment of parallel sampling of large number of channel at a
very high sampling rate in excess of 1 x 10 samples per
second. This clearly exceeds the capabilities of a large
number of low cost off the shelf data acquisition devices
and would necessitate the development of analogue cir-
cuitry which can obtain the scalar error signal E from the
error vector €.

Lastly, the constraints assumed for maximum sample
topography variation may appear restrictive, however a
number of samples of practical interest exhibit topography
variations that fall well within this range. One example
is the viewing of biological samples for instance DNA
at a high frame rate. This is important since this can
lead to a better understanding of biological processes
at a molecular scale. Earlier Ando et.al observed the

motion of a Myosin V protein molecule using a high
speed AFM, which improved the understanding of such
motion mechanisms. In this context the development of a
mechanism that uses the complete length of the cantilever
beam for interacting with the surface will lead to even
faster imaging and a better study of biological samples.
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