
Noname manuscript No.
(will be inserted by the editor)

A Method of Refinement in UML-B

Mar Yah Said · Michael Butler · Colin Snook

Received: date / Accepted: date

Abstract UML-B is a ‘UML-like’ graphical front end
for Event-B that provides support for object-oriented

and state-machine modelling concepts, which are not
available in Event-B. In particular, UML-B includes
class diagram and state-machine diagram editors with

automatic generation of corresponding Event-B. In
Event-B, refinement is used to relate system models at
different abstraction levels. The same refinement con-

cepts are also applicable in UML-B but require special
consideration due to the higher-level modelling con-
cepts. In previous work we described a case study to

introduce support for refinement in UML-B. We now
provide a more complete presentation of the technique
of refinement in UML-B including a formalisation of

the refinement rules and a definition of the extensions
to the abstract syntax of UML-B notation. The provi-
sion of gluing invariants to discharge the proof obliga-

tions associated with a refinement is a significant step
in providing verifiable models. We discuss and compare
two approaches for constructing gluing invariants in the

context of UML-B refinement.

Keywords Visual modelling languages · Formal
specification · UML-B · Event-B · Class Diagram ·
State Machine

Mar Yah Said
FSKTM, Universiti Putra Malaysia, Malaysia
Tel.: +006-03-84971772

Fax: +006-03-84966577
E-mail: maryah@upm.edu.my

Michael Butler

ECS, University of Southampton, UK
E-mail: mjb@ecs.soton.ac.uk

Colin Snook

ECS, University of Southampton, UK
E-mail: cfs@ecs.soton.ac.uk

1 Introduction

UML-B [1] is a graphical front end for Event-B [4]
that has some similarity with UML [2,3]. Event-B is
a state-based formalism with support for refinement

and proof. UML-B supports class and state machine
diagrams; concepts that are not supported in Event-B.
UML-B was originally based on B [6] (now often re-

ferred to as ‘Classical B’) which is a method for verified
software development based on the Abstract Machine
Notation (AMN) and set theory. The UML-B tool, sup-

porting the current, Event-B based, UML-B notation, is
a plug-in to the Rodin platform [5,10]. Event-B mod-
els are generated from UML-B models by the UML-

B tool. The Rodin tools are used to report back any
static verification errors and then generate and prove
proof obligations associated with the generated Event-

B models. The purpose of UML-B is twofold. Firstly, it
provides two essential modelling concepts that are ab-
sent in Event-B; object-orientation and event sequenc-

ing. Secondly, it provides a more approachable and ef-
ficient modelling notation especially for those familiar
with UML.

Event-B was developed as an alternative to Classi-
cal B in order to support modelling at a system’s level.
Event-B distinguishes between contexts and machines

so that machines can be re-used with different configu-
rations. A context contains static configuration includ-
ing given sets, constants and properties (including type)

of the constants. A machine, which may see several
contexts, contains state variables, invariant properties
of the variables and events that update the variables.

Each event is a guarded action which may fire when its
guard is true and then executes actions which change
the state of the variables. The guards of an event are

predicates over the variables of the machine and any



2

local parameters of the event. The actions are a set

of parallel substitutions which change the state of the
variables.

Refinement [6,8] is the process of building a model
gradually by making it more and more precise while

verifying that each refined model satisfies the abstract
behaviour. The advantage of starting with an abstract
model is that important properties can be defined in a

simple model which is therefore less likely to contain
mistakes. Refinements then introduce detail in steps
which are guaranteed to preserve the important proper-

ties. Refinement in Event-B involves refining the model
state by adding or substituting variables and refining
events into corresponding concrete versions, and by

adding new events. The abstract state variables, x, and
the concrete state variables, y, are linked together by a
predicate called a gluing invariant J (x, y). The gluing

invariant provides the link between the abstract and
concrete representations of state that is needed to ver-
ify that each abstract event is a correct simulation of its

concrete version. Providing sufficient but provable glu-
ing invariants can be a significant task. The refinement
concepts of Event-B must be supported in UML-B for
it to be a successful front-end to Event-B.

An alternative step to refinement is decomposition
of a model into parts which is important for scalabil-
ity. Mechanisms for decomposing Event-B models that
retain composition of verification have been developed

and work to support these in UML-B is currently un-
derway. Decomposition is not covered in this paper.

Our previous work in [25] detailed a case study that
was used to investigate support for class and

state-machine refinement in UML-B. We now provide a
more complete presentation of the technique of refine-
ment in UML-B. The contributions of this paper are:

– a description of the intuition behind UML-B refine-
ment,

– a formalisation of the UML-B refinement rules using

the Event-B notation,
– a definition of the extensions to the abstract syn-

tax (meta-model) of the UML-B notation that were

needed to support refinement,
– a discussion on constructing gluing invariants in the

context of UML-B refinement.

The organisation of the paper is as follows. In Sec-

tion 2 we give some background on UML-B and the gen-
erated Event-B excluding refinement. Section 3 gives
an intuitive overview of UML-B refinement in terms of

data refinement and event refinement. Section 4 gives
a formalisation of the syntactic rules for class diagram
and state machine refinement. Section 5 describes the

extensions to the abstract syntax (i.e. meta-model) of

the UML-B notation. Section 6 provides an overview

of the ATM case study development. Section 7 dis-
cusses two alternative approaches to constructing glu-
ing invariants. Section 9 concludes the paper. Section 8

presents some related work.

2 Background of UML-B and Generated
Event-B

There are four kinds of diagrams in UML-B. They are
package, context, class and state machine diagrams.
A package diagram shows the structure and relation-

ships between components (machines and contexts) in a
project. A context diagram is similar to a class diagram
but contains constant data and structured types. A con-

text diagram described a context. A machine is specified
by a class diagram and state machine diagram(s) repre-
senting data structures that may be changed by events

or transitions. Events may be attached to classes in a
class diagram. Events can also be represented by the
transitions in a state machine diagram. The semantics

of a UML-B model are given by the Event-B generated
by the UML-B tool according to a set of translation
rules. The following subsections describe more about

the package, context, class and state machine diagrams.

2.1 Package Diagram

A package diagram defines the relationships between

UML-B machines and contexts in a project. Fig. 1 shows
an example of a package diagram. The package diagram
consists of machines M1 and M2, and refinement rela-

tionship between them. It also contains contexts CX1
and CX2, and the extension relationship between them
and which contexts are seen by the machines.

2.2 Context Diagram

A context diagram defines the static part of a model.
A context diagram may have classtypes. Each classtype

may have attributes and associations. An attribute
defines a constant that has a data value for each in-
stance of a classtype. An association is a special case

of an attribute that defines a relationship between two
classtypes. Fig. 2 shows an example of a context di-
agram. The classtype CUSTOMER has an attribute,

ident, and an association accounts, with the classtype
BANK. The 1..1 target multiplicity of the association
accounts indicates that it is a total function. Axioms
and theorems1 may be attached to a classtype in which

1 A theorem is a predicate that must be proved from the pre-

ceding predicates.



3

Fig. 1 Example of Package Diagram

Fig. 2 Examples of Context Diagram and Event-B Translation

case the predicate must be true for all instances of the

classtype. Classtypes are used to define types and also
to define constant attributes of those types. The at-
tribute ident and the association accounts are trans-

lated as constants. Each UML-B context gives rise to an
Event-B context (i.e., the UML-B tool generates a cor-
responding Event-B context). Fig. 2 also shows the au-
tomatically generated Event-B for this example. Each

Event-B statement is preceded by its label which de-
fines its purpose. For example, ident.type is a label for
the Event-B statement ident ∈ CUSTOMER → N that

defines the type of the ident attribute.

Another kind of relationship between two classtypes,
supertype (inverse subtype), is used to indicate that the
source classtype is more specific than (a subset of) the

target class type. Fig. 3 shows an example of subtyp-
ing Account into CurrentAccount and SavingAccount.
In the generated Event-B machine, the supertype re-

lationship will lead to the type of the classtypes Cur-
rentAccount and SavingAccount being subsets of the
instances of Account. I.e., CurrentAccount ⊆ Account

and SavingAccount ⊆ Account. The sub-classtypes Cur-

Fig. 3 Subtyping a Classtype in UML-B

rentAccount and SavingAccount give rise to constants

in the generated Event-B context.

2.3 Class Diagram

A class diagram is used to describe the dynamic part

of a model. A class diagram contains classes which rep-
resent fixed or variable subsets of the classtypes in a
context diagram. Classtypes define the immutable fields

(including associations) while classes define mutable
fields. An object of a class can have both immutable
and mutable fields since the class may be a subset of

classtype. Like classtypes, each class may have



4

Fig. 4 Example of Class Diagram and class properties

attributes and associations. In addition, each class may
own events and state machines. Class events and state
machine transitions own actions that may modify the

attributes and associations of any class. From each UML-
B machine an Event-B machine is generated. The gen-
erated Event-B consists of variables generated from the

classes, attributes, associations and state-machines and
events generated from the class events and state-machine
transitions. From each UML-B, we also generate an

Event-B context to contain the sets and constants that
are needed to define the classes and state-machines.

Similar to the supertype/subtype relationship
between classtypes, a class may also subtype another
class giving rise to similar subsets of instances but in

this case the classes are represented by variables in the
generated Event-B machine.

An example of a class diagram is given in Fig. 4(a)

which consists of classes CA and CB. In the gener-
ated Event-B implicit context these classes give rise
to the sets CA SET and CB SET which are used as

the base types (given, or carrier, sets) for the corre-
sponding classes. (Note that a class may also subtype a
classtype in which case these implicit base types are su-

pressed). In the generated Event-B machine the classes
give rise to variables. The class CA contains an at-
tribute x of type N and an association a b of type CB.

The multiplicity property for the association a b shown
in Fig. 4(b) specifies a many-to-one relationship (i.e.
total function). A full explanation of association mul-

tiplicity may be found in [11]. In the generated Event-

Fig. 5 Example of Class and Machine Invariants

B machine the attributes x and a b give rise to vari-

ables. For each class, attribute and association, a type
invariant will be generated. For example, the class CA
is typed by an invariant which specifies that CA is a

subset of CA SET (CA ∈ P(CA SET )) and attribute
x is typed by the invariant x ∈ CA → N.

Each class has a self name property with the default

value self, i.e., the identifier that is used to represent a
contextual instance of a class in class events and invari-
ants. This default may be overridden by the modeller

by setting the self name property. The self name prop-
erty of the class CA is shown in Fig. 4(c). A class may
have events whose parameters, guards and actions are

defined explicitly as textual properties. Textual prop-
erties of a class, such as invariants, guards and actions,
are written in the µB (micro B) notation [11]. µB is

identical to Event-B notation except that it uses an
object-oriented style dot notation to navigate owner-
ship of class entities such as attributes and associations.

For example, i.x refers to the value of the variable x
which belongs to instance i.

A class may own invariants to express properties
of its instances. For example in Figure 5, CA has an

invariant self.x > 1 which says that all instances of CA
must have a positive x value. The use of the class’s
self name implies universal quantification over the class

instances. We may also place invariants in classes when
they are not universally quantified over its instances,
e.g. card(CA) > 0 in order to indicate their relevance to

the class. We may optionally form machine invariants,
which are not owned by any class. This is useful to
express properties that are not applicable to any class

or are equally applicable to several classes. For example,
as shown in Figure 5, the machine invariant relates the
class attributes x of CA and y and Flag of CB.

2.4 State Machine Diagram

Fig. 6 shows an example of a state machine SM. The

state machine is owned by the class CA (6(a)). Fig. 6(b)
shows its two states, A and B and the transitions t1,
t2, t3 and t4. The solid circle is the initial state and the

solid circle with an outer circle is the final state. The



5

Fig. 6 Example of State Machine Diagram

translation to Event-B for a state machine can either
be a state set representation or state function repre-

sentation. UML-B allows modellers to switch between
these two representations. For the state set representa-
tion, each state is represented by a variable which is a

disjoint subset of the class instances, CA:

A ∈ P(CA)
B ∈ P(CA)

A ∩ B = ∅

That is, variable A represents the set of instances of
CA that are in the state A and similarly for B. For a

state function representation, a single variable SM rep-
resents the state-machine as a function mapping each
instance of CA to an enumeration of the set of states

SM STATES as follows:

SM STATES = {A,B}
SM ∈ CA −→ SM STATES

In this paper, the translation to Event-B is described
using the state set representation. The generated Event-
B machine for M1 is shown in the Rodin screenshot,

Fig. 7. Each Event-B statement is preceded by its label
which describes its purpose. For example, CA.type is a
label for the Event-B statement CA ∈ P (CA SET ).

The states A and B of state machine SM are repre-
sented by variable subsets of CA which are disjoint (i.e.
A ∩ B = ∅). An instance of CA changes its state when

a transition fires. For each transition there is a guard
that specifies that the class instance is in the source
state (labelled as .. isin ..) and actions that specify its

entry to the target state (labeled as .. enterState ..)
and its departure from the source state (labelled as
.. leaveState ..). The parameter self is generated to re-

fer to a non-deterministically selected contextual in-
stance of the class CA. A transition from an initial state
such as t1, defines a constructor for the class. The trans-

lation of t1 selects an unused instance and adds it to
the set of CA (labelled self.type). A transition to a final
state such as t4 is a destructor which removes an in-

stance from the current instances and from the domain

of all the class variables. The transition t3 is a self loop

transition which does not change state. Hence, in the
generated Event-B the event t3 has a guard that spec-
ifies its source state but no actions to change state.

Invariants and theorems can be attached to classes
and or states and are automatically quantified over the
class instances or adorned with an antecedent repre-

senting the containing state, as appropriate. A full ex-
planation and examples of these is given in [1].

2.5 Semantics of UML-B

The semantics of UML-B models are given by the gener-

ated Event B model and Event-B semantics are defined
by the corresponding proof obligations. Hence the se-
mantics of UML-B can be deduced from [1] and [7]. In

this section we give an intuitive semantics which should
provide sufficient background for this paper.

Event-B models consist of variables and events.

Event-B events are considered to be spontaneous,
atomic guarded actions. When the guard of an event
is satisfied, the event is enabled and may perform its

actions in a single atomic substitution. Several different
variables may be altered in parallel during this substi-
tution. An event may have no guards, in which case it is

always enabled, or no actions, in which case it does not
alter the state of the variables. If one or more events
are enabled one of them will fire. Events do not fire in

parallel; if several events are enabled, one of them will
be selected non-deterministically to fire and this may
change the enabledness of the events. Notice that there

is no construct to specify a sequence of events. The fea-
sibility of a sequence of events is only determined by
the individual guards and actions of those events. Typ-

ically, to specify a sequence of events, a modeller will
introduce a variable that resembles a ‘program counter’
and devise appropriate guards and actions throughout

the events to organise them into a sequence. As there is
no conditional operator in Event-B, decisions are typi-
cally modelled using several alternative events. Within

such a group of events, the guards are used to provide
the condition for each alternative.

UML-B provides an alternative way to model Event-

B variables and events. The constructs in UML-B that
define data are classes, attributes, associations and state-
machines. These data constructs provide additional

structure to the types of the variables but in other
senses are just Event-B variables. The constructs in
UML-B that define events are class events and state-

machine transitions. Class events are ‘lifted’ to a set of
instances in an object-oriented manner and transitions
impose sequencing (effectively by generating a ‘program

counter’). Transitions may also be ‘lifted’ if their state



6

Fig. 7 Generated Event-B specification of M1

machine is owned by a class. As in Event-B groups of
class events or groups of parallel transitions may be
used to represent conditional execution. However, apart

from these convenient additions, class events and tran-
sitions are just Event-B events. Therefore, like Event-B,
UML-B semantics are based on the underlying concept

of spontaneous atomic guarded actions that change the
state of the variables.

Comparing with other commonly used semantics
such as UML, UML-B has no concept of external events

that may trigger transitions, no mechanism whereby
one transition may invoke another and, as there is no
so-called ‘big-step’, terms such as ‘run to completion’

have no meaning. All these things can be, and often
are, modelled explicitly when required by constructing
suitable control variables and guards.

2.6 UML-B model transformation workflow

Despite its name, UML-B is an entirely independent
notation from the UML. We suggest that it is ‘UML-

like’ and will feel familiar to UML users, however, it
has its own meta-model and no UML models are in-
volved in our discussions here. In [33] we discuss a case

study where a UML model of a railway interlocking was
translated by hand into UML-B for verification pur-
poses. There are currently no tools that automatically

translate UML-B models to or from UML.

Initial versions of UML-B were implemented as ex-
tensions to UML using the UML profile mechanism.
However, UML is a very rich notation compared with

our target language, Event-B, and many features of
UML are redundant to our purpose. On the other hand,
even where a UML feature seems applicable, Event-B

imposes a particular semantics which is often slightly
at odds with that of UML. We found that the com-
bination of unused features and ’false-friends’ caused

confusion and hence we decided to implement UML-B
as an independent notation with its own meta-model.

The translation from UML-B model to Event-B is
performed programmatically in two steps. Firstly by a

translation to an internal representation of the Event-
B model and then by programmatic generation of the
final Event-B model via the Rodin API. Both steps

are performed by ’hand-coded’ Java programs and the
internal representation of Event-B is represented by
’hand-coded’ Java classes. Since this implementation

was produced, improvements in meta-model transfor-
mation technologies such as QVT [35] and the provision
of an EMF framework for Event-B [34] would facilitate

an improved model transformation approach.

2.7 UML-B meta-model

The UML-B meta-model [1] defines the abstract syn-

tax of the UML-B language. The UML-B meta-model



7

is described using the ecore notation from the Eclipse

Modelling Framework (EMF) [29]. The ecore notation
is based on the OMG’s Meta Object Facility (MOF)
which is a subset of the UML class diagram notation.

Generalisation is used extensively to ensure that com-
mon attributes of UML-B model elements are defined
in a way that promotes generic, reflective tooling. The

meta-model is an exact description of the abstract syn-
tax of the UML-B language and is used to automatically
generate repository and editing utility code using the

EMF technology. The Eclipse Modelling Framework is
a framework and code generation facility for building
applications based on a meta-model. Another Eclipse

framework, the Graphical Modelling Framework (GMF)
[30], is used to automatically generate the code for the
UML-B graphical diagram editor.

To give a flavour of the UML-B meta-model we show

a small part of it in Fig. 8. There are three kinds of
relationships used between meta-classes in the meta-
model: generalisation, reference and containment. An

example of a generalisation (a link with a large trian-
gular arrowhead) is from UMLBPredicate to UMLBele-
ment indicating that a UMLBPredicate is a specialisa-

tion of the meta-class UMLBelement. This means that a
UMLBPredicate can be treated as a UMLBelement and
includes its properties. An example of a reference (a link

with a small arrowhead) is the refines link from UMLB-
Machine to itself which specifies that a machine may
refine at most one other machine but may be refined by

many machines. An example of a containment (a link
with a solid diamond at the source end) is the classtypes
link from UMLBContext to UMLBClassType indicating

that a context may contain many classtypes. The meta-
class UMLBelement is a base meta-class that provides a
name property and an error marking system for record-

ing modelling errors, for all sub-typed model elements.
UMLBconstrainedElement, which sub-types UMLBele-
ment, provides a base meta-class for elements that own

constraints (axioms or invariants) and theorems which
are elements of another subtype,
UMLBPredicate. UMLBPredicate owns a string prop-

erty, predicate, to contain the text of the predicate.
UMLBMachine and UMLBContext are subtypes of
UMLBConstruct and hence indirectly

UMLBconstrainedElement so that they can own such
constraints. A UMLBMachine can also own a collec-
tion, classes of UMLBClass and a UMLBContext can

own a collection classtypes of UMLBClassType. Fig. 8
shows a small part of the UML-B meta-model and omits
many features such as state-machines, variables and

events.

Fig. 9 Example of Extended Context Diagram

3 Overview of Refinement in UML-B

We first give an intuitive overview of refinement in UML-
B by explaining how it relates to Event-B refinement.

Since UML-B is based upon the underlying formalism
provided by Event-B, so is its notion of refinement. The
refinement techniques that are available in UML-B are

those of Event-B but the extra structuring provided by
UML-B’s higher level modelling constructs are reflected
in its concepts of refinement. We have previously [25]

introduced class diagram refinement and state machine
refinement but not context diagram extension. Here, we
provide a more complete overview to scope the available

features and refinement choices in UML-B.

3.1 Data Refinement in UML-B

In Event-B context extension, sets and constants are
always retained and may be added to. Hence, in UML-
B, class-types may be extended with new features (at-

tributes, associations, axioms and theorems) but we do
not need to specify which old features, or even which
old class-types, are retained; they all are. We need to

be able to refer to the old class-types in order to ex-
tend them with new features. In diagrammatic mod-
elling terms, we need a graphic representation of the

old class-type as a container for new features. Only the
new features represent part of the refined model; the
container is a skeleton to provide contextual informa-

tion that forms part of the definition of the new fea-
tures. If we do not want to add any new features to
a class-type we can omit the skeleton from the refined

model.
For example, referring back to the example in Fig. 1

and Fig. 2, in the extended context CX2 we might add

an association name from the extended classtype CUS-
TOMER to a new classtype NAMES as shown in Fig. 9.
Notice that we do not need to repeat anything about

the previously defined attributes of CUSTOMER or the
classtype BANK since these are still accessible from
CX1. The only purpose of the extended classtype CUS-

TOMER is to assist in defining the type of the new
association.

Variables, on the other hand, may be discarded in

Event-B refinement so that they can be refined by new



8

Fig. 8 UML-B meta-model (part of)

data of a different name and possibly a different type.
Refinement relations are captured by specifying invari-

ant properties, called gluing invariants, that relate the
corresponding values of new and old variables in the
refined model. Variables may be retained by repeating

their name in the refinement. Hence in UML-B refine-
ment, not only do we need refined classes as skeleton
containers in order to refine features of the class, but

also to indicate that the variable representing the in-
stances of the class is to be retained. In this case, un-
less we wish to refine the class with some other data

variable, we cannot omit the skeleton even if we do
not wish to alter its contained features. (UML-B also
allows classes to have a fixed set of instances in which

case their skeletons are similar to class-types since their
instances are defined as a constant in a context).

In addition, since class attributes, associations and
state-machines represent variables we need to indicate
which of these are to be retained. We do this using in-

herited attributes and refined state-machines. The for-
mer merely defines that the attribute or association is
to be retained whereas the latter also acts as a con-

tainer for any nested state-machines that are added in
the refinement. These retained data features must re-
main contained in the same classes as their abstract

counterparts in order to preserve their types and re-

fined state-machines must contain the same states as
their abstract counterparts.

The following schematic illustrates class refinement
in terms of attributes.

Class C Refined Class C
a1 a1 (inherited)
a2 a3 (new - data refine a2 )

a4 (new - superposition)

In the refinement, class C inherits attribute a1 and

drops attribute a2, which is refined by a new attribute
a3, and C also has a new attribute a4. A gluing invari-
ant is needed to relate the dropped attribute to those

that replace it. For example a2 could be a boolean ab-
straction of a threshold which is detailed in a3. Hence
the gluing invariant might be:

∀c·c∈C ⇒ (a3(c)≥T ⇔ a2(c)=TRUE)

Apart from these considerations, the rules of data vari-
able refinement in UML-B machines are quite flexible in

that we may discard any of the previously defined vari-
able data structures (classes, attributes, associations or
state-machines) and replace them with new ones which

may be of a different kind. To do so, we must provide
a gluing invariant so that the verifier can establish that
the refined events have an equivalent behaviour to the

abstract events that they refine.



9

3.2 Event Refinement in UML-B

Event-B events may be refined by retention, renaming

or splitting. When refining a retained or renamed event,
parameters may be added or replaced provided that the
equivalent of any removed parameter is demonstrated

in a witness predicate, guard conjuncts may be added
or replaced as long as the overall guard is not weakened,
new actions may be added as long as they only mod-

ify new variables and existing actions may be replaced
provided they behave in an equivalent way, according to
the data refinement. Splitting is a special case where a

group of events, representing different conditional cases,
all refine the same abstract event that did not reveal
the individual cases. New events may be added as long

as they only alter new variables. New events are of-
ten added as preliminary steps leading up to a refined
event.

In UML-B, class events can be refined with equal
flexibility. A class event can simply be retained and re-

fined by adding to or replacing its parameters, guards
and actions to reflect the data refinements of the class
diagram, or the event may be renamed or split into

several cases. The requirement to preserve containment
observed for class data features does not apply to class
events. Since event containment merely defines a pa-

rameterisation of the event, we can move events to dif-
ferent classes as long as we provide a witness to demon-
strate an equivalent for the lost class instance parame-

ter. The containment of an event in a particular class
is chosen for convenience so that a class parameter is
automatically generated and guards and actions are au-

tomatically lifted to that instance. The same event can
always be specified by placing it outside of the class and
manually adding the class instance parameter, adjust-

ing the guards and actions accordingly.

The following schematic illustrates the refinement

options for five events e1, e2, e3, e4 and e5, which are
initially all contained in class C.

Refined Class C
e1 (refines e1 )
e6 (refines e2 )

e3a (refines e3 )
e3b (refines e3 )

Class D
e4 (refines e4 )

witness: (selfC = selfD.assoc)

No Class (machine level event)
e5 (refines e5 )

parameter: (p ∈ C)

witness: (selfC = p)

The event e1 remains in class C and merely refines

its abstract version whereas e2 has been renamed e6.
Event e3 has been split into two cases e3a and e3b
which both refine e3. In this example they both remain

in class C but it is also possible to move either or both
at the same time as splitting. Event e4 has been moved
to another class D. In doing so, it loses the implicit

self parameter (provided by the UML-B to Event-B
translation) for the contextual instance of C. To satisfy
the refinement we need to provide a replacement and

specify its equivalence via a witness. In this example
we assume some association assoc from D to C which
can provide an instance of C. Note that all guards and

actions would need to be rewritten to take account of
the parameter change. Event e5 has been moved to
machine level (i.e. not contained in any class). Here

again we need to provide a replacement for the lost
implicit self parameter. In this example it is provided
by a new parameter which is an instance of class C.

The transitions in state-machines also represent
Event-B events. It is possible to refine UML-B tran-

sitions into UML-B events by providing a data refine-
ment that replaces the state-machine’s states with some
other data that provides an equivalent model of state.

We might wish to do this when approaching an imple-
mentation if the state-machine view is considered to
be an abstract representation of some concrete system

variables. For example, a transition soundAlarm with
source state highTemp could be refined to an event
with guard temperature>limit under the data refine-

ment state=highTemp ⇔ temperature>limit

Usually, however, we do not refine away our state-

machines but build them up through refinement into
more elaborate models of a system where the state-
machine represents a central ‘mode-based’ organisation

of the system’s behaviour. Transition refinement is just
as flexible as class event refinement except with respect
to its state-machine. That is, as with class events, we

can retain, rename and split transitions, refining their
behaviour to reflect data refinements but we cannot
change the transition’s source state since this would

not preserve the abstract guard and we cannot change
its target state since this would not preserve the ab-
stract behaviour. The only thing we can do to transi-

tions diagrammatically is to split them into two or more
cases with the same source and target states. However,
we can refine state-machines using a particular kind of

data refinement where we break down a state into sev-
eral sub-states by nesting a new state-machine inside
the parent state. This allows us to reveal more detailed

behaviour in the form of extra transitions (representing



10

Fig. 10 Example of superposition refinement by state machine

nesting

new events) between those sub-states as well as more
detailed targets and sources (strengthened guards and

refined actions) for the incoming and outgoing tran-
sitions, respectively, of the parent state. As a conse-
quence, splitting of transitions in the parent state ma-

chine is often necessary when separate cases of the orig-
inal transition are revealed by the additional detail in-
troduced in the nested state machine

In summary, a state machine may be refined via two
complimentary techniques:

– A transition may be replaced by several transitions
representing different sub cases of the original tran-
sition.

– A state may be elaborated by a nested state machine
adding more detailed behavour.

Fig. 10 shows an example where a state validating

is refined by a nested state machine that adds details
concerning pin number validation. However, this is a
manufactured illustration. In the current version of the

UML-B tool, nested state machines are modelled in sep-
arate diagrams from their parent state and a transition
elaboration property is needed to link transitions in

a nested state machine to the corresponding incoming
and outgoing transitions of the super-state. In a nested
state machine, a transition from an initial state elabo-

rates exactly one incoming transition to the super-state
and a transition to a final state elaborates exactly one
outgoing transition from the super-state.

4 Formalisation of Rules of Refinement in
UML-B

In this section, we provide a formalisation of the syn-
tactic rules of refinement in UML-B. We do this using

the Event-B notation. We limit ourselves to a descrip-
tion of the aspects that are particular to UML-B and do
not cover those features which are a direct reflection of

the corresponding Event-B rules. For a formalisation of

Event-B refinement see Abrial’s treatment of Event-B

[7]. The formalisation is presented in two sections, class
diagram refinement and state machine refinement. We
introduce a base set ELEMENT to represent all UML-

B elements and then partition this into subsets to rep-
resent the distinct kinds of elements.

Partition(ELEMENT,CLASSES,ATTRIBUTES,
EVENTS,STATEMACHINES,STATES,

TRANSITIONS )

We refer to the UML-B machine to be refined as M1
and the resulting refined machine as M2.

4.1 Formal Definition of Class Diagram Refinement

We define specific collections, C1, A1, E1 and SM1 of
the element types to represent the class diagram of M1.

C1 ⊆ CLASSES

A1 ⊆ ATTRIBUTES

E1 ⊆ EVENTS

SM1 ⊆ STATEMACHINES

We represent the containment of attributes, events and

state machines by their owning classes as functions.

containmentA1 ∈ A1 → C1

containmentE1 ∈ E1 → C1

containmentSM1 ∈ SM1 → C1

We define the components of M2, representing the re-
sult of refinement of M1, in a similar fashion and with

corresponding constraints resulting in C2, A2, E2, SM2,
containmentA2, containmentE2, containmentSM2.

Now that we have defined M1 and M2, we repre-

sent the changes made in going from M1 to M2. Let
REM C1 be the subset of C1 classes which are removed
and NEW CL be the set of new classes added in the re-

finement.

REM C1 ⊆ C1

NEW CL ⊆ CLASSES\C1

Similarly for attributes, events and state machines.

REM A1 ⊆ A1

NEW AT ⊆ ATTRIBUTES\A1

REM E1 ⊆ E1

NEW EV ⊆ EVENTS\E1

REM SM1 ⊆ SM1



11

NEW SM⊆STATEMACHINES\SM1

Let containmentNEW ATT and containmentNEW SM
represent the containment of new attributes and new
state machines in classes of M2 respectively.

containmentNEW ATT ∈ NEW AT→C2

containmentNEW SM ∈ NEW SM→C2

The rules defining the elements of the refined class

diagram in machine M2 are as follows:

Rule C1 - Classes of M2 : The classes of M2
consists of the classes of M1 excluding the removed

classes and adding the new classes:

C2 = (C1\REM C1 ) ∪ NEW CL

Rule C2 - Attributes of M2 : The attributes of

M2 consists of the attributes of M1 excluding the re-
moved attributes and adding the new attributes:

A2 = (A1\REM A1 ) ∪ NEW AT

Rule C3 - Containment of the attributes of
M2 : The containment of attributes in M2 is the same
as that of M1 omitting the removed attributes and

adding the containment of the new attributes:2

containmentA2 = (REM A1 ▹− containmentA1 ) ∪
containmentNEW ATT

Rule C4 - Events of M2 : The events of M2 con-
sists of the events of M1 excluding the removed events
and adding the new events:

E2 = (E1 \ REM E1 ) ∪ NEW EV

Rule C5 - State machines of M2 : The state
machines of M2 consists of the state machines of M1

excluding the removed state machines and adding the
new state machines:

SM2 = (SM1 \ REM SM1 ) ∪ NEW SM

Rule C6 - Containment of the state machines
of M2 : The containment of state machines in M2 is

the same as that of M1 omitting the removed state
machines and adding the containment of the new state
machines:

containmentSM2 = (REM SM1 ▹− containmentSM1 )

∪ containmentNEW SM

Notice that we do not introduce any rules about the

containment of events in M2. This is because events can
be freely moved between classes. Instead we need to
define the refinement relationships between the events

in M2 and those in M1.

2 Where S▹−r removes a set S from the domain of a relation r

(domain subtraction).

evRefinementE2 ∈ E2 7→ E1

This is a partial function since some events in E2 may
represent superimposed behaviour and not refine any
abstract event (sometimes referred to as ‘refining skip’).

We also require that every retained event refines itself

∀e · e∈E1\REM E1 ⇒ evRefinementE2 (e) = e

and every removed event is refined by at least one new
event.

∀r · r∈REM E1 ⇒
∃n ·n∈NEW EV∧evRefinementE2 (n)=r

Furthermore, for every event e that has moved to a dif-
ferent class, i.e. containmentE1 (e )̸=containmentE2 (e),
we need to add a witness predicate

W (ca,C2,A2,cc)

with,

ca∈instances(containmentE1 (e))

cc∈instances(containmentE2 (e))

Utilising the classes C2 and attributes A2 of M2, the

witness predicate W establishes a relationship between
the disappearing parameter ca, representing the contex-
tual class instance of the abstract version of the event,

and the new parameter cc, representing the contextual
class instance of the concrete event.

The final stage is to add sufficient invariants con-

cerning C1, A1, C2, A2 (and any ancillary variables
used) to enable the simulation proofs of refinement.
The process of discovering these invariants is discussed

in section 7. These steps correspond with Event-B as
covered in chapter 5 of [7].

4.2 Formal Definition of State Machine Refinement

We define specific collections to represent the
state-machine diagrams of M1

S1 ⊆ STATES

T1 ⊆ TRANSITIONS

and represent containment of these states and tran-

sitions via functions that map each to its containing
state-machine.

containmentS1 ∈ S1 →SM1

containmentT1 ∈ T1 →SM1

We also represent the relationship between the transi-
tions and their source and target states with functions.

sourceStateT1 ∈ T1 → S1



12

targetStateT1 ∈ T1 → S1

The source and target of a transition must be contained

in the same state-machine as the transition.

∀t · t∈T1 ⇒
containmentS1 (sourceStateT1 (t))= containmentT1 (t)

∧
containmentS1 (targetStateT1 (t))= containmentT1 (t)

We represent the transition elaborates relationship, dis-
tinguishing between those that elaborate an outgoing

transition of the super-state from those that elaborate
an incoming transition.

elaborateOutgoingT1 ∈ T1 7� T1

elaborateIncomingT1 ∈ T1 7� T1

Note that these functions are injective because each

elaborating transition can elaborate at most one par-
ent transition. They are partial because the domains
contain both incoming and outgoing elaborating tran-

sitions. If an elaborating transition elaborates both an
incoming and an outgoing transition, the super-state
transition is a self loop. This is the only case where the

domains of the functions intersect.

∀t · t∈
dom(elaborateOutgoingT1 )∩dom(elaborateIncomingT1 )
⇒ elaborateOutgoingT1 (t)= elaborateIncomingT1 (t)

We define the components of M2, representing the re-
sult of refinement of M1, in a similar fashion and with
corresponding constraints resulting in S2, T2, contain-

mentS2, containmentT2, sourceStateT2, targetStateT2,
elaborateOutgoingT2, elaborateIncomingT2. We define
the refinement relationships between the transitions in

T2 and those in T1.

trRefinementT2 ∈ T2 7→ T1

This is a partial function since elaborating transitions

contribute to other transitions and do not directly rep-
resent events. Also, depending on the type of refine-
ment, T2 may contain new transitions which do not

have a refines relationship.

Now that we have defined the components of M1
and M2, we represent the changes made in going from

M1 to M2. In UML-B refinement, the structure of a
refined state machine is an elaboration of the structure
of its abstraction in two possible ways:

1. Transitions may be split into several transitions with
the same source and target states.

2. States may be elaborated by a nested state machine.

First we describe the requirements for (1). For clar-

ity, we describe a refinement where only one transition

is refined. In practice, it is possible to split several tran-

sitions in one refinement step and add nested state-
machines at the same time, however this is equivalent to
making a series of simple refinements as described here.

Let tr be a transition of T1 which is to be replaced by
a set of new transitions Ttr in the refinement.

tr ∈ T1

Ttr ⊆ TRANSITION \ T1

Rule T1: States of M2 . The states of M2 and
their containment are unchanged by this refinement.

S2=S1 ∧ containmentS2=containmentS1

Rule T2: Transitions of M2 . The transitions of
M2 are the transitions of M1 with tr replaced by Ttr.

T2 = (T1\{tr}) ∪ Ttr

Rule T3: Containment of the transitions of
M2 . The containment of transitions in M2 is the same

as that of M1 except that the new transitions replace
tr and all have the same container as tr.

containmentT2 = ({tr}▹−containmentT1 ) ∪
(Ttr×{containmentT1 (tr)})

Rule T4: Source and target states of M2
transitions. The source/target states of transitions in
M2 are the same as that of M1 except that the new
transitions replace tr and all have the same source/target

state as tr.

sourceStateT2 = ({tr}▹−sourceStateT1 ) ∪
(Ttr×(sourceStateT1 (tr)})

targetStateT2 = ({tr}▹−targetStateT1 ) ∪
(Ttr×(targetStateT1 (tr)})

Rule T5: Refinement relationship of M2
transitions. In this step we have not added any new
transitions; the ‘new’ transitions of Ttr are actually

different cases of tr. Therefore, every transition of Ttr
refines the original transition tr and every other non-
elaborating transition is unchanged and hence refines

itself.

dom(trRefinementT2 ) = T2\
(dom(elaborateOutgoingT2 )∪
dom(elaborateIncomingT2 ))

∀t · t∈Ttr ⇒ trRefinementT2 (t) = tr

∀t · t∈dom(trRefinementT2 )\Ttr ⇒
trRefinementT2 (t) = t



13

Next we describe the requirements for (2) where, in

a refinement, a nested state machine is added into a
state of M1. For clarity, we describe a refinement where
only one state is refined. In practice, it is possible to

combine this with other refinements including refining
several states in one refinement step. However this is
equivalent to making a series of single state refinements.

Let st ∈ S1 be the state which is being refined. Let

IN Tst be the set of all incoming transitions into the
state st, i.e., those transitions of T1 whose target state
is st but whose source state is not.

IN Tst = {t | t∈T1 ∧ targetStateT1 (t)=st ∧
sourceStateT1 (t) ̸= st}

Let OUT Tst be the set of all outgoing transitions from

the state st, i.e., those transitions of T1 whose source
state is st and whose target state is not.

OUT Tst = {t | t∈T1 ∧ sourceStateT1 (t)=st ∧
targetStateT1 (t) ̸= st}

Let LOOP Tst be the set of all looping transitions from
the state st, i.e., those transitions of T1 whose source

and target states are both st.

LOOP Tst = {t | t∈T1 ∧ sourceStateT1 (t)=st ∧
targetStateT1 (t)= st}

Let sm be the new nested state machine to be added to
st and let Ssm and Tsm be its new sets of states and
transitions respectively.

sm ∈ STATEMACHINES\SM1

Ssm ⊆ STATES\S1

Tsm ⊆ TRANSITIONS\T1

Let sourceStateTsm and targetStateTsm map each new
transition to its source and target state respectively.

sourceStateTsm∈ Tsm →Ssm

targetStateTsm∈ Tsm → Ssm

The new transitions are partitioned into initial, final,
internal elaborating and internal non-elaborating tran-

sitions.

partition(Tsm, INI Tsm, FIN Tsm, INT ELAB Tsm,
NON ELAB Tsm)

We now define one-to one mappings (injections) to rep-
resent the elaborates relationship of the new
state-machine. Each initial transition of sm elaborates

one incoming parent transition of st, each final transi-
tion elaborates an outgoing parent transition and each
internal elaborating transition elaborates a parent loop

transition.

elaborateIncomingTsm ∈ INI Tsm �� IN Tst

elaborateOutgoingTsm ∈ FIN Tsm �� OUT Tst

elaborateLoopTsm ∈ INT ELAB Tsm �� LOOP Tst

Rule S1: States of M2 . M2 has all the states of
M1 as well as the states of the new state-machine sm.

S2 = S1 ∪ Ssm

Rule S2: Containment of the states of M2 .
The containment of states in M2 is the same as that

of M1 but adding the containment of the new states in
sm.

containmentS2 = containmentS1 ∪ (Ssm × {sm})

Rule S3: Transitions of M2 .M2 has all the tran-
sitions of M1 as well as the transitions of the new state-

machine sm.

T2 = T1 ∪ Tsm

Rule S4: Containment of the transitions of

M2 . The containment of transitions in M2 is the same
as that of M1 but adding the containment of the new
transitions in sm.

containmentT2 =containmentT1 ∪ (Tsm × {sm})

Rule S5: Source states of M2 transitions. The
source state mapping of the transitions in M2 is the

same as that of M1 but adding the source state map-
ping of the new transitions in sm.

sourceStateT2 = sourceStateT1 ∪ sourceStateTsm

Rule S6: Target states of M2 transitions. The
target state mapping of the transitions in M2 is the
same as that ofM1 but adding the target state mapping

of the new transitions in sm.

targetStateT2 = targetStateT1 ∪ targetStateTsm

Rule S7: Outgoing elaborating transitions of

M2 . The outgoing elaborations of the transitions inM2
is the same as that of M1 but adding the outgoing and
loop elaborations of the new transitions in sm.

elaborateOutgoingT2 = elaborateOutgoingT1 ∪
elaborateOutgoingTsm ∪ elaborateLoopTsm

Rule S8: Incoming elaborating transitions of

M2 . The outgoing elaborations of the transitions inM2
is the same as that of M1 but adding the outgoing and
loop elaborations of the new transitions in sm.

elaborateIncomingT2 = elaborateIncomingT1 ∪
elaborateIncomingTsm ∪ elaborateLoopTsm



14

Rule S9: Refinement relationship of M2 tran-

sitions. The transitions Tsm are new and therefore
do not have refinement relationships. Every other non-
elaborating transition in T2 is unchanged and hence

refines itself.

dom(trRefinementT2 ) = T2\(Tsm∪
dom(elaborateOutgoingT2 )∪
dom(elaborateIncomingT2 ))

∀t · t∈dom(trRefinementT2 ) ⇒
trRefinementT2 (t) = t

5 Enhancement of the UML-B Meta-model to
support Refinement

This section describes enhancements to the UML-B
meta-model which were required to support refinement
of UML-B models. We refer to the version of UML-B

before the extensions as UML-B Version 1 and after
the extension as UML-B Version 2. (UML-B Version
1 corresponds to reference [1]. UML-B Version 2 was

extended and used for, but not reported in, reference
[25]). Version 1 already contained some features that are
needed for refinement. These were a refines reference

feature from UMLBMachine to itself to support ma-
chine refinement, a refines reference feature from UML-
BguardedAction to itself to support event and transi-

tion refinement relationships (UMLBguardedAction be-
ing a super type for both UMLBEvent and UMLBTran-
sition) and an extends reference feature from UML-

BContext to itself to support context extension. The
support for refinement of model elements that repre-
sent data was entirely missing from Version 1 and re-

quired the introduction of new meta-classes to represent
data that had already been introduced in previous re-
finement levels. The support for refinement of model

elements that represent events is simpler because this
can be achieved by introducing new event elements that
reference the abstract ones. Indeed, this is how Event-

B manages event refinement. Support for event refine-
ment was already present in Version 1 apart from one
minor addition that was needed to support refinement
of state-machine transitions.

5.1 Support for Refinement of Class Diagrams

In UML-B Version 1 there was no mechanism to dis-

tinguish a class that was being refined from a newly
defined class. Although a class could be retained by
repeating it in the refined class diagram, the Event-

B generation would produce invariants to re-define the

variables representing the class instances at each refine-

ment level leading to overcomplicated Event-B. Simi-
larly there was no way to distinguish attributes and as-
sociations that were being retained in the refined class

from those that were newly introduced. The Event-B
generation would reproduce invariants to re-define old
attributes and associations at each refinement level. To

provide better support for refinement of classes a new
meta-class, UMLBRefinedClass, was introduced to rep-
resent the ‘skeleton’ of a refined class (Fig. 11). This,

and the meta-class for new classes UMLBClass, both
subtype a common ancestor UMLBabstractClass which
provides the type for the containment of classes in a

machine. UMLBRefinedClass has none of the properties
of UMLBClass, such as name, super-type etc., since a
refined class should not be able to re-define these prop-

erties. When such properties are needed by the refined
class, for example to display a label on the class di-
agram or to generate the Event-B representation of a
contained attribute, they must be obtained from the

original class that has been refined. Therefore, the only
property possessed by the meta-class UMLBRefined-
Class is a refines reference. The target of this reference

is of type UMLBabstractClass to allow for a chain of
several refinement levels. I.e. the target of the refines
reference may, itself, be a refined class.

A similar arrangement was also introduced to sup-
port attributes that are to be retained in a refined class.
In this case we refer to them as ‘inherited’ attributes

since they cannot be refined in any sense. The new
meta-classes are UMLBabstractAttribute and
UMLBInheritedAttribute, the latter having a reference

inherits targeting the former and the former being the
target type for the containment of attributes in classes.
Note that UML-B associations are an alternative con-

crete syntax for UML-B attributes, hence no separate
meta-model arrangement is required for inherited asso-
ciations.

5.2 Support for Extension of Context Diagrams

In UML-B Version 1 there was no mechanism to dis-
tinguish a classtype that was being extended with new

features from a newly defined classtype. If the modeller
repeated the class type in order to extend it, the Event-
B generation would produce constants and axioms to

re-define the class type in the context extension, lead-
ing to Event-B errors. A pattern of meta-classes similar
to that used for classes and attributes was introduced to

support extension of classtypes. The new meta-classes
are UMLBabstractClassType and UMLBExtended-
ClassType, the latter having a reference extends tar-

geting the former and the former being the target type



15

Fig. 11 UML-B meta-model enhancements to support the refinement of classes

for the containment of class types in contexts. Note
that nothing is needed for class type attributes and

class type associations because they are always visible
through extensions and therefore do not need to be re-
tained in an extension.

5.3 Support for Refinement of State-machine
Diagrams

In UML-B Version 1 there was no mechanism to dis-

tinguish a state-machine that was being refined from a
newly defined state-machine. If the modeller repeated
the state-machine in order to refine it, the Event-B

generation would repeat data and constraints to repre-
sent the state-machine state in the new refinement level
leading to Event-B errors. A pattern of meta-classes

similar to that used for classes and attributes was ap-
plied both for the refinement of state-machines and
for the refinement of states resulting in the new meta-

classes UMLBabstractStatemachine, UMLBRefined-
Statemachine, UMLBabstractState and UMLBRefined-
State. Some features of state-machines, such as name,

are owned by UMLBStatemachine and therefore not
available to UMLBRefinedStatemachine and must be
obtained via the refines relationship, whereas some fea-

tures of state-machines are owned by UMLBabstract-
Statemachine so that they are also available for re-
definition in a refined state-machine. Most notably, a

refined state-machine owns its own set of transitions

so that transition refinement can be undertaken. The
containment of states is also moved to UMLBabstract-

Statemachine however, unlike transitions, this is a con-
sequence of the need to create new refined states at each
refinement level rather than a modelling facility.

At this point we note that we have used the same

meta-model pattern for all of the UML-B elements that
represent Event-B data (class, class type, attribute,
state-machine and state). The generic pattern may be

described as the containment of instances of an abstract
super type which are partitioned into actual model ele-
ments and ‘skeleton’ model elements, the latter having

a reference relationship to an instance of the abstract
super-type which should eventually, via transitive clo-
sure, provide an actual model element.

There is one final enhancement to the UML-B meta-

model which was introduced in UML-B Version 2. It
concerns the relationships between the newly introduced
transitions of a nested state-machine and those incom-

ing and outgoing transitions connected to its parent
state. The nested state-machine contains some initial
and final transitions which contribute to existing events

that have, in the previous level, already been generated
by the incoming and outgoing transitions of the par-
ent state. For these initial and final transitions we need

to specify which parent transition they contribute to
so that the generation can add their guards and ac-
tions to the corresponding existing event. Similarly, in-

ternal transitions may contribute to self-looping tran-



16

sitions of the parent state. To provide the reference

between the nested transition and the parent transi-
tion two new references, elaborates and its inverse isE-
laboratedBy were added to the meta-model as a self-

reference on the meta-class UMLBTransition.

6 Overview of ATM Case Study in UML-B

This section presents the development of an ATM case
study in UML-B using refinement. The development

uses all the extensions of UML-B meta-model.
The package diagram in Fig. 12 shows the contexts,

the five levels of machines and their relationships where

a machine sees a context, a context extends another
context and a machine refines another machine. The
summary of the five machine levels are given here.

Abstract machine (ATM A): The abstract ma-
chine models the accounts in a bank and a number of
operations that may be performed on the accounts.

First Refinement (ATM R1): The first refine-
ment introduces a set of ATMs as a medium to with-
draw money or to check an account balance.

Second Refinement (ATM R2): The second re-
finement introduces a concept of PIN number and mod-
els an explicit validation for cards.

Third Refinement (ATM R3): The third refine-
ment introduces the request and response communica-
tion between an ATM and the bank and splits a with-

drawal into a bank transition and an ATM transition.
Fourth Refinement (ATM R4): The fourth re-

finement models the send and receive events of the re-

quest and response communication between ATMs and
the bank. This is done by adding a receive event for each
request and adding a send event for each response. The

send event for request refines the abstract request event.
The receive event for response refines the abstract re-
sponse event. The fourth refinement also introduces a

set of requesting ATMs whose requests are being pro-
cessed by the bank.

We outline some class and state machine diagrams

of the ATM case study referring to the refinement rules
in Section 4. Details of the development in UML-B can
be found in [25]. Fig. 13 shows some of the class dia-

grams of the ATM case study. The machine ATM A
consists of a class account (Fig. 13(a)) with its at-
tribute bal and four events namely, createAccount, de-

posit, withdraw and checkBalance. The account class
represents the set of accounts that currently exist in
the system. The attribute bal represents the balance of

an account.
The class diagram of ATM R1 (Fig. 13(b)) contains

the new class atm and a refined class account that re-

fines the account class of ATM A. These two element

of classes in ATM R1 referred to refinement Rule C1.

The class atm has three attributes which are atm acbal,
atm cash and atm card. The attribute atm acbal repre-
sents an account balance after each withdraw cash or

check balance transaction via an ATM. The attribute
atm cash represents a stock of cash in an ATM. The
attribute atm card represents a card in an ATM. The

refined class account inherits the bal attribute. These
refinement elements refers to Rule C2 and C3. The re-
fined class account refines the two events, namely, cre-

ateAccount and deposit of the abstract account class of
machine ATM A. The other two events of its abstract
class namely, withdraw and checkBalance are moved to

the new class atm in this refinement level as transitions
in the state machine ATM SM of the class atm. At the
abstract level, we specify the effect of a withdrawal on

the account balance. In the refinement, we further spec-
ify that the withdrawal takes place via an ATM. At the
abstract level it is natural to specify the withdrawal as

an event of the account class while in the refinement it
is natural to specify it as a transition of the atm class.
The events element refers to Rule C4, where withdraw
and checkBalance events are removed and no new event

is added. The refinement rules referred are Rule C5 and
C6 when adding the state machine ATM SM. The tran-
sitions of the state machine are explained later in this

section.

The class diagram (Fig. 13(c)) of ATM R2 contains
the two refined classes that refine the account and atm
classes of ATM R1 machine. The refined class atm of

ATM R2 contains the refined state machine ATM SM.

Fig. 14 shows some state-machine diagrams of the
ATM case study. The state-machine ATM SM in
Fig. 14(a) partitions the behaviour of an ATM into ei-

ther an idle state, (i.e., not being used/not active) or
active atm state (i.e., is being used). If a transition t1
is triggered and the current state is the source state of

t1, the ATM changes state. The transition start creates
an instance of ATM and adds it to the set atm card, ini-
tialises its stock of cash as MAX CASH and changes its

state to idle. The insertCard transition can be triggered
when an ATM is in the idle state and the inserted card
is a valid ATM card. When it is triggered it changes

the ATM state from idle to active atm. The reloadCash
transition can trigger when an ATM is in the idle state
and the ATM cash amount is less than theMAX CASH.

The reloadCash transition will top up the ATM cash
to the maximum amount MAX CASH. The ejectCard
transition changes an ATM state from active atm to

idle and removes the ATM from the set atm card. While
an ATM is in active atm state, it means, an ATM user
can use it for withdrawal or checking an account bal-

ance (i.e., checkBalance transition). The withdrawOK



17

Fig. 12 ATM Package Diagram

Fig. 13 Class diagrams of ATM

transition represents a successful withdrawal transac-
tion, whereas, the withdrawFail transition represents a

failure possibly because the withdrawal amount exceeds
the account balance.

The refined class atm of ATM R2 contains the re-

fined state-machine ATM SM (Fig. 14(b)) which con-
tains the two refined states that refine the states idle
and active atm of the state machine ATM SM of

ATM R1. The transition ejectCard is split into three
transitions namely ejectCard1, ejectCard2 and eject-
Card3 which refine ejectCard. The other five transitions

refine themselves. This refinement refers to Rules T1,
T2, T3, T4 and T5. These rules assumed that the state
active atm does not have state machine active atm SM

yet. For Rule T1, the states of ATM R2 and their con-
tainment are the same as ATM R1. Referring Rule T2,
ejectCard1, ejectCard2 and ejectCard3 replaced eject-

Card. As in Rule T3, the container of the replacing
transitions are the same as ejectCard ’s. Similarly, for
their source and target states as in to Rule T4. The

refinement relationship refers Rule T5.

The state machine active atm SM of ATM R2 is
like the one in Fig. 14(c) but without nested state ma-

chines in states transOption and performTrans. When
the state machine active atm SM is added, referring to
Rule S1, the states of ATM R2 are extended to in-

clude new states validating, invalidCard, transOption
and performTrans. Rule S2 defined the containment of
all the states. The new states contained in the state

machine active atm SM. For Rule S3, new transitions
consists of initial elaborating, final elaborating, internal
elaborating and internal non-elaborating. Initial elabo-

rating is insertCard. Final elaborating are ejectCard1,
ejectCard2 and ejectCard3. Internal elaborating are with-
drawOK, withdrawFail and checkBalance. Internal non-

elaborating are validateCardOK, validateCardFail, retry
and doAnother. As in Rule S4, the container of new
transitions is the state machine active atm SM. As in

Rule S5 and S6, all new transitions must have their
source and target states. Referring Rule S7, the outgo-
ing elaborate relationships include the new final elabo-

rating and internal elaborating transitions with respec-
tive outgoing transition of super-state active atm. For



18

Fig. 14 State Machine Diagrams

Rule S8, the incoming elaborate relationships include

the new initial final elaborating and internal elaborat-
ing transitions with respective incoming transition of
active atm. Referring Rule S9, all non-elaborating old

transitions refines themselves.

Fig. 14(c) is a refined state machine active atm SM

of machine ATM R3 which shows that the refined state
transOption and the refined state performTrans have
nested state machines. This approach of elaborating

states with sub-states in refinement supports an incre-
mental refinement approach. The ATM case study has
shown that the extensions of the meta-model and draw-

ing tools are working as expected.

The ATM case study reported in this paper differs
slightly from the one presented in [25] although they are
based on the same version of the UML-B meta-model.

The differences are:

– In [25], we did not have classtypes of ATM, Card
and Pin to give rise to the sets ATM, Card and Pin

in an Event-B context. Instead the sets are gener-
ated from the classes in the class diagram and con-
tained in the Event-B implicit context. Thus, there

were no context diagrams to be extended with new
classtypes. In the case study, we wanted the abil-
ity to extend the classtypes in refinements to intro-

duce immutable attributes. Therefore, for the ATM
model in this paper, we created a UML-B context
diagram containing the three classtypes which were

then used as instances for the classes.

– The refinement strategy is slightly changed in this

paper. In [25], the splitting of withdrawal into bank
and ATM transitions is done in the second refine-
ment. We think this is not reasonable because the

transition withdrawal request that causes the with-
drawal ATM transition is not introduced until the
third refinement. It is more reasonable to delay in-

troducing the withdrawal ATM transition until the
third refinement. This improves the sequence of tran-
sitions between request and response. Ideally, the

response should come when there exists a request.
In this case, requestWD is the request made by the
user via an ATM machine, while responseWDOK

and responseWDFail are the responses to the user
from the ATM. This improves the cohesiveness of
the refinements and allows the second refinement to

deal with pin validation.
– In this paper we have formalised the refinement rules

and explicitly refer to them in the ATM case study.

An archive of the UML-B development of the ATM
case study can be down-loaded.3 UML-B is a plug-in to
the Rodin platform which can be downloaded.4 UML-B

can then be installed from the update site contained in
Rodin (Help-Install New Software: select ‘Rodin’ up-

3 ATM case study: http://eprints.soton.ac.uk/346101/
4 http://sourceforge.net/projects/

rodin-b-sharp/files/Core Rodin Platform/



19

date site). Instructions on using Rodin (including in-

stallation of plug-ins) are available5.

7 Proofs and Invariants

This section discusses the proofs of the UML-B case

study and also the construction of gluing invariants us-
ing Rodin provers.

All the proof obligations (POs) for the five machines

of the ATM case study were generated and proved using
the Rodin tool provers [5]. The statistics are outlined
in Table 1 showing the total POs for each level (POs),

the number of POs which are automatically discharged
(aPOs) and the number of POs which are interactively
discharged (iPOs).

In ATM R3, there are seven interactively discharged

POs. Three POs are discharged manually by proving
that two related states are disjoint and another four
are proved by rewriting the partition invariant into its

definition. A similar way is used to prove the seven in-
teractively POs in ATM R4. Two POs are discharged
by manually proving that two states are disjoint and the

other five POs are discharged by rewriting the partition
invariant.

Where refinements have been made a gluing invari-

ant may be needed to relate the abstract data to the
new data. In general, finding suitable invariants can be
non-trivial and care must be taken not to introduce un-

necessary invariants which can increase the proof bur-
den as every event must be shown to preserve them. We
discuss two alternative approaches to constructing glu-

ing invariants. Firstly, by discovery from information
provided by the prover and secondly, by design, from
information in the model. Both methods are based on

the refinement pattern of nesting state-machines but
are not in any way specific to the ATM case study.

7.1 Constructing a Gluing Invariant by Discovery

Some of the gluing invariants are constructed by us-
ing guidance from the undischarged proof obligations.
We describe first our method of discovering the gluing

invariants. Then we give some examples of discovering
the invariants for the ATM case study.

In this paragraph we describe our method for discov-

ering the gluing invariants. We inspect an undischarged
PO , H ⊢ G, (consisting of some available hypotheses
H and a goal G) and construct an invariant of the form

∀x · H’ ⇒ G where H’ is a subset of the list of hy-
potheses H and x represents the list of free variables

5 http://handbook.event-b.org/current/html/

tut install plugins.html

that correspond to event parameters. The selection of

hypotheses h from H to appear in H’ is based on these
rules:

1. h is of the form p∈S, where p is an event parameter
and S represents a state of a state machine. In par-

ticular S is the sub-state of a nested state machine.
2. The free variables of h are included in the free vari-

ables of G

In the next paragraphs, we describe some examples
of discovering invariants using the above rules (1) and
(2). One of the discovered gluing invariants is in the

third refinement (ATM R3 ). An attempt to construct
the invariant is done by using the interactive prover.
The ATM R3 was run in a proving perspective without

having any gluing invariant which results in a number of
undischarged proof obligations. The first undischarged
PO is given here as an example. The prover cannot

discharge the guard atm cash(selfATM) ≥ am of the
event withdrawOK. The hypotheses and the goal are as
follows:

Hypotheses:

am ∈ N
ac ∈ account
selfATM ∈ atm

c ∈ V alidCard
selfATM ∈ reqWD
selfATM ∈ dom(atm card)

atm card(selfATM) = c
bal(ac) ≥ am
card account(c))=ac

selfATM ∈ dom(atm wdam)
The goal:

atm cash(selfATM) ≥ atm wdam(selfATM)

From the above PO, the prover is trying to prove
that the cash in an ATM is greater or equal to a given
withdrawal amount. This is true for any successful cash

withdrawal. According to rule (1), selfATM is the event
parameter concerned in the goal and reqWD is a sub-
state of a nested state machine performTrans SM

(Fig. 14 (c)). Therefore, from the list of hypotheses,
selfATM∈ reqWD is selected as one of the hypothe-
ses in the gluing invariant. Also, atm wdam is the free

variable included in the goal. Thus, according to rule
(2), selfATM∈ dom(atm wdam) is also selected as the
hypotheses in the gluing invariant. The required invari-

ant is represented in Event-B as follows:

∀ selfATM · selfATM∈ reqWD ∧
selfATM∈ dom(atm wdam)
⇒ atm cash(selfATM) ≥ atm wdam(selfATM)

Another example is the gluing invariant in the fourth

refinement (ATM R4 ). The prover cannot discharge the



20

Machines POs aPOs iPOs

ATM A 4 4 0

ATM R1 47 47 0

ATM R2 68 68 0

ATM R3 167 160 7

ATM R4 149 142 7

Total 435 421 14

Table 1 Statistics from the Proof Effort

guard selfATM ∈ dom(atm card) of the event with-
drawOK. The hypotheses and the goal are as follows:

Hypotheses:
selfATM ∈ atm

selfATM ∈ recvdReqWD
selfATM ∈ atmB
selfATM ∈ dom(atm wdamB)

atm cardB(selfATM) = c
am = atm wdamB(selfATM)
card account(atm cardB(selfATM))= ac

The goal:
selfATM ∈ dom(atm card)

The prover is trying to prove that a given ATM

has an ATM card in it. Similar to the first example,
following rule (1), selfATM is the event parameter con-
cerns in the goal and recvdReqWD is the sub-state of

the nested state machine reqWD SM of the sub-state
reqWD. Thus, selfATM∈ recvdReqWD is selected
forming the gluing invariant. The required invariant is

represented in Event-B as follows:

∀ selfATM · selfATM∈ recvdReqWD

⇒ selfATM∈ dom(atm card)

The task of finding gluing invariant is also the same
for the undischarged PO involving the guard selfATM
∈ dom(atm card) of the event checkBalance, i.e., when

selfATM is in the sub-state recvdReqCB. The two in-
variants can be combined forming a single invariant as:

∀ selfATM · selfATM∈ (recvdReqWD ∪
recvdReqCB) ⇒ selfATM∈ dom(atm card)

Another example of finding the gluing invariant in

the fourth refinement is when the prover cannot dis-
charge the guard atm card(selfATM) = c of the event
withdrawOK. The hypotheses are the same as the first

example of ATM R4 and the goal is as follows:

atm card(selfATM) = atm cardB(selfATM)

Similarly, from the PO, using rules (1) and (2), the
discovered gluing invariant is as follows:

∀ selfATM · selfATM∈ recvdReqWD ∧
selfATM∈ dom(atm cardB)

⇒ atm card(selfATM) = atm cardB

However, these rules are heuristics and they do not
provide a complete method for verifying refinements.
But they were sufficient to prove the refinements in our

ATM development.
We would like to point out that UML-B is not a

purely graphical notation. In particular we need to use

a textual representation of gluing invariants in order to
prove the refinement. All the discovered invariants are
specified in UML-B as invariants in class diagrams.

7.2 Constructing a Gluing Invariant by Design

While it is attractive to let the prover indicate the in-
variants it needs, and to have a heuristic for construct-

ing them mechanistically, it is also possible to construct
sufficient gluing invariants purposefully. This can either
be done before running the prover, or using the proof

obligation goal as a hint. The latter differs from the in-
variant discovery method in that the gluing invariant
is constructed by examining the model rather than ex-

amining the goal and hypotheses; the goal is only used
as a hint of what to look for in the model.

An abstract model has many possible valid refine-

ments but when modelling we choose one particular
refinement and wish to verify that it is correct. The
prover can verify that it is a refinement but it cannot

tell whether it is the particular refinement we intended
unless we provide some extra information. By express-
ing the linkages between the abstract model and the

refined one, a gluing invariant indicates ‘why’ it is a
refinement and hence indicates ‘which’ refinement was
intended. If we let the prover tell us which gluing in-

variant to use we lose this extra verification condition
and there is a danger we will end up with a verified but
wrong system. In practice the likelihood of constructing

a valid but wrong refinement may be remote, particu-
larly as we get the opportunity to examine the gluing
invariants thrown up by the prover since the discovery

method is not fully automatic. However, there is some
motivation at least for a more constructive approach
to gluing invariants so that the modeller is forced to

understand the refinement more intimately.



21

Fig. 15 Gluing Invariants by Design

Therefore as an alternative approach to invariant
discovery, we show how invariants can be chosen by

design using the state-machine refinement structure as
a guide. This simply consists of placing invariants in-
side the new states introduced in a state-machine re-

finement. The gluing invariant is generally located in
the new state which has outgoing final transitions that
elaborate an old transition. The incoming transitions

represent new preliminary steps leading up to this re-
fined transition. However it may be necessary to add
invariants in other new states where a sequence of new

transitions is involved. Placing the invariant inside the
state implies that it is true only while in that state and
UML-B automatically adds an appropriate antecedent

(corresponding to those chosen by heuristics in the dis-
covery method) to this effect. The invariant is chosen by
looking at the guards and actions of the incoming tran-

sitions to find properties that are true for all incoming
transitions. There are two cases; state invariant prop-
erties may be true because the incoming transition is

only taken when the property is true (and the actions do
not change it) or because the transition establishes the
property via its actions. Notice that, in the first case,

such unchanged properties might not be explicitly men-
tioned in the guards if they are implied by the source
state guard. Therefore, such properties may need to be

carried forward from a previous state to the next state.
Since the state invariants are derived from the guards
and actions of the incoming transitions they are cer-

tainly true and (usually) easily proved. Certainly any
transitions other than the incoming ones will be easily
proved since they will clearly negate the antecedent and

since the invariants are derived in a simple way from the
incoming transitions, there is also a good chance that
the automatic provers will find appropriate hypotheses

easily. Hence it is not a problem to be quite liberal in

adding these invariants. If we have now defined every-
thing relevant about the source state of the subsequent

outgoing refined transition, there should be sufficient
information for the proof of the refinement (otherwise
the model must be faulty). The prover easily finds these

hypotheses because it contains an instance of the an-
tecedent quantification in its guard (corresponding to
the generated source state guard). Of course this only

works if there is no interference from other events or
state-machines that may be in parallel with this one,
but that is equally true of invariant discovery. (Such

interference may indicate a complex gluing invariant
that is not amenable to systematic methods or, more
probably, that there is a mistake in the model). Adding

these state invariants is quite easy if you understand the
refinement and this is sufficient to allow the prover to
prove the PO. Effectively, state invariants like this pro-

vide a link between the intermediate state spaces in a
sequence of transitions which is exactly what the prover
is lacking. They do this by linking our explicit gener-

ated annotation of states to the underlying conceptual
state space.

As an example (Fig. 15) we show the gluing invari-

ants constructed for the same event, withdrawOK, of
ATM R3 that featured in the first example of invari-
ant discovery. This is a transition for which we have

added some preliminary transitions requestWD within
a new nested state-machine. Examining the guards and
actions of requestWD we see that the variables of inter-

est are atm cashA and atm wdam both parameterised
for the instance selfATM. The parameter am is local
and therefore cannot figure in the invariant. The ac-

tion sets selfATM.atm wdam to a value which is less
than selfATM.atm cashA hence the second invariant.
We need to know that atm wdam is a partial function

(and have some experience of feasibility proof obliga-



22

tions) to realise that selfATM.dom(atm wdam) is im-

portant. There are other invariants that we could have
derived involving MIN CASH which would have done
no harm but turn out to be unnecessary. After adding

these state invariants, which are directly equivalent to
those added by the discovery method, the proof com-
pleted automatically. The second example corresponds

to the same event, withdrawOK, of ATM R4 that fea-
tured in another example of invariant discovery. Here,
all the guards and actions are reflected as state in-

variants in a straightforward manner and again, this
was sufficient to automatically discharge all the rele-
vant proof obligations.

In the case of interference from another event, the
invariants might be violated. To prevent the violation
we may need to add a guard to the interfering event. For

example, consider Fig. 15. If there was another event
that was not part of the state machine of this figure that
modifies selfATM.atm cashA, then it could violate the

invariant selfATM.atm cashA≥ selfATM.atm wdam. An
example would be an empty cash event with the action
selfATM.atm cashA := 0. To prevent empty cash from
interfering with the invariant above, we could add a

guard to empty cash specifying that it must not hap-
pen while there is a transaction in progress in the ATM.

8 Related Work

In this section we outline some of the work related to re-
finement of UML diagrams. The work on state machines
refinement has been introduced by Snook and Walden

in [12]. Their work is based on the old version of UML-
B [11] which was based on classical B and has been
extended to include translation to an event “style” of

B (which was a precursor to Event-B). They introduced
state elaboration and transition elaboration techniques.
The semantics of the state machine refinement are given

by Event-B. However, we provide a more precise defini-
tion of refined state machine and we provide tool sup-
port based on UML-B giving a different model visuali-

sation from the UML diagram symbol used in [12]. We
also introduce class refinement techniques which are not
dealt with in [12]. In [13], Plaska et al. have suggested a

process for refinement involving the application of pat-
terns that are based on the techniques introduced in
[12].

The techniques of adding new attributes and asso-
ciations to a class and adding new classes to a class
diagram have been introduced in informal way for re-

finement of UML class diagram [15] but no formal nota-
tion nor formal refinement concept is used. Templates
are introduced for attributes and associations to spec-

ify the translation of model elements to low level design

and implementation. [15] has also discussed on possible

tool support for the templates. Also, the technique of
state elaboration has been introduced in a refinement
of UML state diagram [14] again without a formal no-

tion of refinement. Simons [19] has presented four in-
formal refinement rules of state machines. The rules in
the refinements are: (1) New states must be sub-states

nested in the abstract states (super-states), (2) New
transitions must only connect between the sub-states,
(3) The incoming and outgoing transitions of the super-

states must be preserved, and (4) The self transitions
of the super-states must be preserved. Rules (1) and
(2) must also be followed in UML-B state machine re-

finement. These two rules are achieved by applying the
state elaboration technique. Rule (3) must also be fol-
lowed in UML-B for a state machine refinement to be

valid. In contrast to Rule (4), in our work, when re-
fining self transitions, the occurrence of the transitions
can either be many times or can be restricted to once.
Restriction to once means removing looping behaviour

and this is a valid refinement since we focus on preserv-
ing safety, not liveness, in our work. Unlike our work,
Simon’s work does not involve any formal notion and

does not discuss any tool supporting the rules.

There is much more work on combining UML with

formal notations and we now outline some of this. How-
ever, unlike our work, none of this work supports refine-
ment in UML to the best of our knowledge. Lano, Clark

and Androutsopoulos [16] present the translation of
UML-RSDS into classical B. The work focused on trans-
lating class diagrams into B. Each class is translated

into a respective B machine. Unlike UML-B, where all
classes in a class diagram are translated into one Event-
B machine. The constraint language used is OCL

whereas we use µB. Idani, Ledru and Bert [17] have
investigated the reverse in which they proposed an ap-
proach and tool support for the construction of UML

diagrams from B specifications. Ledang and Souquiéres
have introduced an approach for translating UML state
machine diagrams into classical B in [20]. The trans-

lations use the state function representation whereas
UML-B supports both state function and state sets rep-
resentations. Mammar and Laleau [22] have also work

on the translation of class and state diagrams into Clas-
sical B. Their work is suitable for a development of
data-oriented applications in contrast to our work which

is suitable for process-oriented applications. Another
difference is that the refinements involve the generated
abstract B models and there is no concept of refinement

in UML whereas, in our work the refinements involve
the class and state machine diagrams. Laleau and Po-
lack [36] have extended the meta-model of UML class

diagrams specifically for information system specifica-



23

tion. The semantics of the extended meta-model are

defined in B invariants. The invariants formalise the
associations in the meta-model and rules for integrity
constraints. In [37], tools to translate from UML class

diagrams into B machines and vice versa have been de-
veloped applying the extended meta-model and seman-
tics in [36]. However, [36] and [37] do not deal with

refinement. Knapp et al. [31] have investigated the va-
lidity of UML state machine refinements by formalizing
with MTLA [32]. In contrast to our work, their work

does not consider state machine hierarchy in refine-
ments. New transitions and states may be introduced in
a refined state machine by replacing old states with new

states and transitions. We prefer our approach because
the relationship between abstract state machines and
refinements is clearer. In UML-B, new transitions and

states may be added in nested state machines. UML-B
is more restrictive but this makes the refinement pat-
tern simple and clear. Similar to our work, refining self
transitions may be restricted to once as the work does

not focus on liveness properties.

Integration work of UML with Z has also been in-
vestigated. Moller et al. [26] have integrated the formal
method, namely CSP-OZ [27] into UML and Java. A

UML profile for CSP-OZ is developed. A UML pro-
file contains an extension mechanism that consists of
stereotype and tag definitions. This profile which in-

tegrates UML and CSP-OZ is similar to the UML-
B profile [28] of previous version of UML-B. In this
work, class diagrams, state machines and the UML-RT

structure diagrams are translated to CSP-OZ (an inte-
grated formal method) specifications. Amalio et al. [18]
also have investigated an integration between UML and

Z. They have introduced a framework called UML+Z
for building, analysing and refining models bases on
UML and Z. UML+Z models consists of class, state

and object diagrams. The integration work of UML and
VDM has been done by Frey [23]. Frey has introduced
a methodology where UML and VDM-SL are used to-

gether in modelling to take advantage of both nota-
tions. Lausdahl et al. [21] have work on a bi-directional
translation between UML class diagram and VDM++.

The translation of the sequence diagram is done from
UML to VDM++. The translations are implemented
as a plug-in to the Overture [24] toolsets.

In section 7 we discussed two simple approaches to

finding gluing invariants, both of which rely on UML-
B state machine refinement. Llano et al. [38] propose
a method to discover Event-B gluing invariants using

automated theory formation rather than failed proof
obligation. Their approach is more complicated than
ours, requiring the construction of data tables from sim-

ulation traces of the model, but is more general since

it does not rely on the style of refinement imposed by

UML-B. In [39], Ireland et al. examine failed proof obli-
gations but focus on finding omissions from the model
and do not focus on refinement. In contrast, our ap-

proach assumes the model is correct and only attempts
to find a gluing invariant.

9 Conclusions

In [25] we have introduced notions of refined class, re-

fined state machine and extended classtype for UML-B.
We used these notions to describe the following refine-
ment techniques:
– Add new attributes and associations to a refined

class
– Add new classes in a refinement
– State elaboration

– Transition elaboration
– Add new attributes and associations to an extended

classtype.

– Add new classtypes in a refinement.

In this paper, we provide a more extensive account

of UML-B refinement techniques. We give a formalisa-
tion for UML-B refinement rules and describe the ex-
tensions to the UML-B meta-model which gives pre-

cise definition of the notions of refined class, refined
state machine and extended classtype. The meta-model
is used to extend the UML-B drawing tools. We have

applied the UML-B meta-model extensions in the ATM
case study. The Rodin tool was used to generate and
prove the proof obligations. Based on the ATM case

study, we provide two ways of constructing gluing in-
variants.

One area that currently lacks support in UML-B is

parallel state-machines. Although UML-B has support
for modelling parallel state machines within one refine-
ment level, the transition elaboration mechanism does

not allow the parallel state machines to be linked cor-
rectly with their parent state-machines. In future, we
will extend the UML-B meta-model to support refine-

ment of parallel state machines.
Our experience using UML-B for modelling refine-

ments has been that the proof of refinements is compar-

atively straightforward compared with working directly
with Event-B. This may be due to the organisational
structures imposed by the patterns generated by UML-

B. For example the explicit annotation of states that
was discussed in the section on designing gluing invari-
ants. This is an interesting area for future work includ-

ing extending the approaches to constructing gluing in-
variants to other refinement patterns of UML-B and
comparing ease of proof with equivalent models writ-

ten directly and freely in Event-B. Further case studies



24

are needed to explore this as well as to further validate

the existing techniques and develop new extensions to
UML-B refinement.

We are currently working on supporting decompo-
sition concepts in UML-B. Decomposition is needed

to ensure scalability of the method. Event-B machines
may be decomposed into several sub-machines in such a
way that each sub-machine can be refined individually

while preserving the overall validity of refinement. That
is, if the sub-machines were re-composed the composi-
tion would be a valid refinement of the original machine

before it was decomposed. We have previously [40] in-
troduced techniques to refine UML-B state machines
in a way that prepares for decomposition and have in-

troduced the concept of a UML-B composed machine
to define the composition of a number of UML-B sub-
machines. Our current work is to develop the UML-B

composed machine, extending its features to fully sup-
port Event-B decomposition techniques in UML-B. We
are also extending the UML-B tooling to visualise the

UML-B composed machine.

Acknowledgements We would like to thank the reviewers for
their insightful comments and feedback on this paper.

References

1. Snook, C. and Butler, M. : UML-B and Event-B: An Integra-
tion of Languages and Tools. In: The IASTED International

Conference on Software Engineering, pp. 336-341.(2008)

2. Object Management Group: Introduction to
OMG’s Unified Modelling Language (UML).
http://www.omg.org/gettingstarted/what is uml.htm. Date

Last Accessed:23/8/13.

3. Rumbaugh, J., Booch, G. and Jacobson, I.: The Unified Mod-
elling Language User Guide, Addison Wesley. (1999)

4. Metayer, C., Abrial, J.R., Voisin, L.: Event-B Language. Tech-
nical Report Deliverable 3.2, EU Project IST-511599 - RODIN,
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf. Date Last Ac-

cessed: 25/1/08.(2005)

5. Abrial, J. R., Butler, M., Hallerstede, S., Hoang, T. S., Mehta,
F. and Voisin, L.: Rodin: An Open Toolset for Modelling and
Reasoning in Event-B, International Journal on Software Tools
for Technology Transfer. vol. 12, pp. 447-466, Springer.(2010)

6. Abrial, J. : The B-Book: Assigning Programs to Meanings,

Cambridge University Press. (1996)

7. Abrial, J. : Modeling in Event-B - System and Software En-
gineering, Cambridge University Press. (2010)

8. Abrial, R. and Hallerstede, S.: Refinement, Decomposition and
Instantiation of Discrete Models: Application to Event-B, Jour-
nal Fundamentae Informatica. vol. 77, issue 1-2, pp. 1-28, IOS

Press. (2007)

9. Butler, M. and Yadav, D.: An Incremental Development of
the Mondex System in Event-B, Journal Formal Aspects of
Computing, vol. 20, issue 1, pp. 61-77, Springer. (2008)

10. Butler, M. and Hallerstede, S.: The Rodin Formal Modelling
Tool, BCS-FACS Christmas 2007 Meeting, Formal Methods In

Industry, London.(2007)

11. Snook, C. and Butler, M., UML-B: Formal Modelling and
Design Aided by UML, ACM Transactions on Software Engi-

neering and Methodology, vol. 15, issue 1, pp. 92-122, ACM
Press. (2006)

12. Snook, C. and Walden, M. : Refinement of Statemachines

Using Event B Semantics, B2007: Formal Semantic and Devel-
opment in B, LNCS 4355, pp. 171-185, Springer. (2006)

13. Plaska, M., Walden, M. and C. Snook: Documenting the
Progress of the System Development. In: Proc. of Workshop

on Methods, Models and Tools for Fault Tolerance, pp. 251 -
274, Springer. (2007)

14. Object Management Group: UML 2.1.2 Superstructure

Specification. http://www.omg.org/cgi-bin/docs/formal/2007-
11-02.pdf. Date Last Accessed:23/8/13.

15. Bergner, K., Rausch, A., Sihling, M. and Vilbig, A.: Struc-
turing and Refinement of Class Diagrams. In: The 32nd Annual

Hawaii International Conference, vol. 6, pp. 6018. (1999)

16. Lano, K., Clark, D. and Androutsopoulos, K.: UML to B:
Formal Verification of Object Oriented Models. In: Interna-

tional Conference of Integrated Formal Method, pp. 761-768,
Springer. (2004)

17. Idani, A. Ledru, L. and Bert, D.: Derivation of UML Class
Diagrams as Static Views of Formal B Developments, In: In-

ternational Conference on Formal Engineering Methods, pp.
37-51, Springer. (2005)

18. Amálio, N., Polack, F. and Stepney, S. : UML + Z: Augment-

ing UML with Z, In: Software Specification Methods, pp.81 -
102, Hermes Science Publishing. (2006)

19. Simons, A. J. H.: A Theory of Regression Testing for Be-
haviourally Compatible Object Types, Journal Software Test-

ing, Verification and Reliability, vol. 16, issue. 3, pp. 133-156,
John Wiley and Sons Ltd. (2006)

20. Ledang, H. and Souquiéres, J. : Contributions for Modelling

UML State-Charts in B. In: International Conference of In-
tegrated Formal Methods, LNCS 2335, pp. 109-127, Springer.
(2002)

21. Lausdahl, K. G., Lintrup, H. K. A. and Larsen, P. G.: Cou-

pling Overture to MDA and UML. Master Thesis. (2008)

22. Mammar, A. and Laleau, R.: A Formal Approach Based on
UML and B for the Specification and Development of Database

Application, Journal Automated Software Engineering, vol. 13,
issue 4, pp 497-528, Springer. (2006)

23. Frey, P.: Combining UML Use Cases and VDM-SL,Paper for
the Seminar in Software Technology at the Institute for Soft-

ware Technology (IST), Graz University of Technology, Austria.
(2000)

24. Larsen P. G., Battle N., Ferreira M., Fitzgerald J., Lausdahl,

K. and Verhoef, M.: The Overture Initiative Integrating Tools
for VDM, Journal SIGSOFT Softw. Eng. Notes, vol. 35, issue
1, pp. 1-6, ACM. (2010)

25. Said, M. Y., Butler, M. and Snook, C.: Language and Tool

Support for Class and State Machine Refinement in UML-B,
In: Internation Conference of Formal Methods, LNCS 5850,
pp.579-595, Springer. (2009)

26. M. Moller, E. Olderog, H. Rasch and H. Wehrheim,: Linking
CSP-OZ with UML and Java: A Case Study. In: International
Conference of Integrated Formal Methods, LNCS2999, pp. 267-
286, Springer. (2004)

27. Fischer, C.: CSP-OZ: A Combination of Object-Z and CSP,
Technical Report. University of Oldenburg, Germany. (1997)

28. Snook, C., Butler, M. and Oliver, I.: The UML-B Profile

for Formal Systems Modelling in UML, In: UML-B Specifica-
tion for Proven Embedded Systems Design, pp 69-84, Springer.
(2004)

29. The Eclipse Foundation: ”Eclipse Modelling Framework”,

http://www.eclipse.org/emf/. Date Last Accessed: 07/08/2013



25

30. The Eclipse Foundation: ”Graphical Modelling Project”,
http://www.eclipse.org/gmp/. Date Last Accessed:

07/08/2013
31. Knapp, A., Merz, S. and Wirsing, M.: ”Refining Mobile UML
State Machines”, LNCS3116, pp 274-288, Springer. (2004)

32. Merz, S., Wirsing, M. and Zappe, J.: A Spatio-Temporal
Logic for the Specification and Refinement of Mobile Systems,
LNCS 2621, pp 87-101, Springer. (2003)

33. Snook, C., Savicks, V. and Butler, M.: Verification of UML

models by translation to UML-B. In International Conference
of Formal methods for Components and Objects, LNCS6957,
pp 251-266, Springer. (2012)

34. Snook, C., Fritz, F. and Illisaov, A. An EMF Framework for

Event-B. In: Workshop on Tool Building in Formal Methods -
ABZ Conference, Orford, Quebec, Canada. (2010)

35. The Object Management Group: ”Meta Object Fa-
cility (MOF) 2.0 Query/View/Transformation (QVT)”,

http://www.omg.org/spec/QVT/. Date Last Accessed:
07/08/2013

36. Laleau, R. and Polack, F.: A Rigorous Metamodel for UML

Static Conceptual Modelling of Information Systems. In: Inter-
national Conference on Advanced Information Systems Engi-
neering, LNCS 2068, pp. 402-416, Springer. (2001)

37. Laleau, R. and Polack, P.: Coming and Going from UML to

B: A Proposal to Support Traceability in Rigorous IS Develop-
ment. In: International Conference of B and Z, LNCS2272, pp
517-534, Springer. (2002)

38. Llano, M. T., Ireland, A. and Pease, A.: Discovery of Invari-

ants through Automated Theory Formation, Formal Aspects of
Computing, pp. 1-47, Springer. (2012)

39. Ireland, A., Grov, G. and Butler, M.: Reasoned Modelling
Critics: Turning Failed Proofs into Modelling Guidance, In :

International Conference of Abstract State Machines, Alloy, B
and Z, LNCS 5977, 189-202, Springer. (2010)

40. Said, M.Y.: Methodology of Refinement and Decomposition
in UML-B, PhD Thesis, University of Southampton. (2010)


