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ABSTRACT

Several environmental and genetic factors are involved in breast cancer development
and prognosis. It is clear that mortality rate of breast and other cancers increase with
advanced clinical and pathological stage. Early detection thus holds the best cure and
identification of prospective markers for breast cancer early detection, as well as
understanding the mechanisms of its tumourigenesis and metastatic spread are
prerequisites for more effective disease management. This report describes our
investigations in breast cancer biomarkers discovery. Here, serum samples from
healthy volunteers and patients with breast tumours were analysed and compared to

reveal diagnostic and prognostic breast cancer biomarkers.

Biobanks hold a large number of samples that could provide statistically powerful
cohorts with a wealth of lengthy follow up data; useful for pre disease/treatment
biomarker discovery. However, ambiguous handling standards and source variability
have limited their analysis. Conducting a two centre study, we illustrated that archival
serum samples can be reliably analysed with high reproducibility. This highlights the
utility of such samples for validation of markers discovered in recent studies. In
addition, these samples could select for “real world” biologically stable marker entities.
This work suggested that this is a potentially useful proteomic arena; however the
corner stone for any future archival discovery projects remains dependent on multi

centre immunovalidation.

Breast cancer biomarkers including ER/PR and HER2 status; have led to targeted
patient stratification and therapy. A more complex molecular sub classification could
explain the different outcome within the disease sub groups. However, clinically
reliable early detection and markers remain missing. Here, we investigated
differentially expressed serum markers between non metastatic breast cancer, benign
breast disease and healthy volunteers. Three validated candidate biomarkers (ANX A3,
Apo C1 and a 6.4kDa biomarker) differentiating the three groups. Such breast cancer
markers can be used as adjuncts to mammography. Further validation of these
markers is ongoing and will be followed by elucidation of potential related molecular

pathways.

Finally, using a novel proteomic profiling platform, we identified and validated three
prediction markers of post treatment outcome in early onset breast cancer. Here, ANX
A2, Apo C1 and NOS2 were confirmed as serum prognosticators, and further validation
and elucidation of their biological role in the disease holds promise for improved and

personalised treatment regimes.
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MS : mass spectrometry
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PBS: phosphate buffered saline
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1. Introduction

1.1 General Introduction

One of the major challenges in the battle against cancer is the lack of reliable
predictive, diagnostic and prognostic biomarkers that can aid in cancer diagnosis,
treatment and response/outcome monitoring® 2. Therefore, cancer biomarker
discovery plays a critical role in the current anticancer research era and the future of
cancer diagnosis and therapy relies on targeting such markers and their related
pathways. Once the molecular markers and pathways involved in cancer development
and spread are defined, various aspects related to tumour progression and therapy
would be attainable. Ideally, identification of such markers would lead to robust early
detection strategies, and personalised effective cancer therapies improving patient

outcome(s).

Recent evidence supports the hypothesis that genomic expression profiling is a reliable
method for cancer classification and prognostication® *. However, genes lack any
catalytic or signalling capabilities; they instead exert their effects through translation
into active proteins. Hence genetic biomarker information alone cannot forecast
tumourigenesis and its response to treatment. Consequently, the post genomic
project correlating protein expression profiles to cancer is essential for comprehensive
representation of cancer biology. Moreover, targeting specific protein pathways
involved in tumourigenesis currently present a real hope in the war against cancers, as
proteins exert their effects through specific pathways rather than functioning

individually®®.

Clinical proteomics is currently experiencing rapid advances in technology that
promises the discovery of new means to improve early diagnosis, patient stratification,
and treatment response. The main focus of novel proteomic tools aims to create a
means of proteomic biomarker discovery. The instigation of any biomarker discovery
effort should however involve precise study design, as this will determine the classes

and reliability of markers mined in different cohorts.

Moreover, the energetic field of clinical proteomics provides a promising inquest to
identify new disease biomarkers in biological fluids, cells and tissue. Well designed,
optimised and validated efforts have recently shown promising evidence leading to
useful biomarker clinical application®®. To date, there are two main streams in clinical
proteomic research; the top-down and bottom up proteomic approaches. The top
down approach applies high-throughput technologies in order to identify novel

markers using a non-targeted proteomic profiling approach. Markers discovered here
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require further identification and characterisation with respect to sensitivity,
specificity, and function. The bottom-up approach focuses on formerly identified
proteins and pathways and mainly focuses on protein-protein or metabolite
interactions, or interactions related to specific pathways®. Such targeted proteomic
analysis can be complicated by overwhelming data sets resulting from shot gun MS
analysis rendering global profiling of complex samples a challenge. Yet, the
introduction of multi-dimensional protein identification technologies (MudPIT) has

paved the way to a more global bottom up profiling proteomic studies' ™.

Current oncoproteomic studies focus on the quantitative and qualitative profiling of
proteins and peptides in clinical specimens in an effort to identify and/or target key
pathological players. A major challenge in this field rises from the proteins’ ability to
exist in multiple forms due to post-translational modifications (PTMs) and/or
degradation processes that affect protein structure, function, and localisation. It is
possible that in addition to the proteome, proteolytic degradation products termed
“degradomes”, may also contain disease-specific information and lead to the
identification of disease specific biomarkers. Although high throughput top down MS
approaches have adopted adjunct methods to overcome the complexity and dynamic
range issues, they generally remain less efficient in identifying such multi form
complex proteomic events. Thus, there has been a growing interest in bottom up
“shot gun” proteomic biomarker discovery efforts. Several models aiming to achieve
the best in-depth analysis of biological samples were recently introduced. The main
focus of these models aim to overcome three inherent biological hurdles; (a)
complexity of the proteome, (b) the dynamic range of fluid proteomics and (c) mining
PTMs® 2,

Many efforts have focused on “Diagnostic markers” for early and accurate diagnosis of
cancer. Such biomarkers represent the main stream in cancer biomarker discovery as
cancer mortality does not arise from the lack of available therapies, per se, but rather
from the later diagnosis when treatment is usually less effective. “Stratification
markers” are used on the other hand to classify a disease into different sub groups.
This subset of markers is key to patient tailored treatment and could aid outcome
forecast. Conversely, markers of treatment response and outcome prediction
“prognostic biomarkers” aim to estimate the effectiveness of therapy and long term

outcome of the disease.

Breast cancer is the most commonly diagnosed malignancy and the second most
common cause of cancer related mortality in women® ™. In the United Kingdom the
post treatment 5 year survival for good prognostic groups is the same as in the general

population®, but the outlook is worse for the poorer prognostic groups regardless of

4
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advances in treatment'®. Current standard diagnostic techniques for symptomatic
breast disease are well documented™?!, and whilst mammographic screening reduces
mortality from breast cancer®*, the sensitivity of mammography for breast cancer
detection is variably reported at 63%-87%. Clearly, breast cancer biomarkers are
essential. In this project, the differential breast cancer serum protein expression
profiles are explored in an effort to expose novel diagnostic and prognostic

biomarkers.

Despite advances in the field of biomarker discovery, the majority of studies failed to
result in clinically applicable tests®*?°. This can be attributed to poor study design, the
complexity and dynamic range of samples studied, platform limitations, and more
importantly challenging pre analytical variability interfering with true biomarker
identification® **. Thus, enhanced MS technologies were applied aiming to translate

biomarker discovery in this project to a clinical setting.

In this project, serum top down proteomic profiling was conducted to identify
diagnostic markers of breast cancer. A multi-centre multiplex proteomic profiling
approach was used to identify and validate markers discriminating invasive breast

cancer (IDC), benign breast disease (BBD) and healthy controls.

A novel bottom up approach was also used to identify prognostic serum markers of
early onset breast cancer (patients diagnosed below the age of 40). Here, a novel 3D
MudPIT platform was used to analyse closely matched serum samples representing
poor and good outcome patients from the POSH cohort.

1.2 Breast cancer biology

The mammary gland is composed of epithelial (luminal, basal myoepithelial and
alveolar) and mesenchymal (adipocytes, fibroblasts, blood) cells*’. The luminal cells
line the ducts as a single epithelial layer, whereas the basal component consists of
myoepithelial cells which are in direct contact with the adjacent stroma, and the
alveolar cells line the alveolar lumen and are involved in milk production®. At puberty,
mammary morphogenesis is controlled by ovarian steroids (oestrogen and
progesterone), pituitary hormones (growth hormone and prolactin), local growth
factors (ErbB1-4, IGF, FGF and TGFB ) and cytokines®. At each stage of mammary
development, both epithelial and stromal cells respond to different signals that control
proliferation, differentiation, and apoptosis®. This controlled complex interaction
between the different mammary cell lines and different biological “controllers” ensure

mammary functional requirement at puberty. This complex interaction also exposes
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the mammary gland to the risk of tumourigenesis, due to the imbalance in interpreting

developmental as opposed to cancer progression signals®- 3.

Breast cancer is a complex and heterogeneous disease that may result from the
malignant transformation of mammary stem, progenitor and/or fully differentiated
cells®®.  This heterogeneity is manifested by its distinctive molecular subtypes,
treatment response, disease relapse and overall outcome. Both, clinical parameters
such as tumour size, lymph node involvement, histological grade, and classical
clinicopathological biomarkers (ER, PR and HER2) provided incomplete explanation for
this variable disease behavior®*®*. Research over the last decade has dissected much of
the biological complexity of the disease revealing four intrinsic subtypes of breast
cancer (Luminal A, Luminal B, ErbB2 over-expressing, Basal like)*’. These are being
advocated to complement the classical clinicopathological markers in providing more
personalised disease management® *°. Despite improved molecular understanding and
early disease detection provided by screening programs; 20-30% of patients develop
incurable metastatic disease, and over 100,000 breast cancer patients in the western
world are expected to die from the disease annually®* *. This can be partly explained
by other unresolved breast cancer molecular codes. In fact, ER, PR and HER2 are not
accurate surrogates for intrinsic breast cancer subtypes, which indicate the presence of

unexplored disease molecular pathways*.

To date, breast cancer management faces many contests including the search for
sensitive and specific biomarkers that can be exploited to detect and stratify early
disease, progression and treatment response pathways. At present, conventional
hormonal markers are far from perfect*”. Other markers including carcinoembryonic
antigen (CEA) and carbohydrate antigen (CA) 15-3 show poor sensitivity for early
disease detection, and are mainly used as progression indicators. Recent molecular
signatures suggested discriminative breast cancer molecular sub types, differentiation
and prognosis by mRNA-based gene expression profiles. However, these markers
have limited clinical application due to laborious analysis and variable results.
Furthermore, the expression levels of mRNAs are not linearly related to the biological
effectors “proteins”. Thus, proteomic biomarker discovery research is crucial to aid
completing the biological picture, early diagnosis and stratification of this challenging

disease

1.3 Proteomic aspects in biomarker discovery

Proteomics is the study of the proteome, including the protein components of cells,
microvesicles, tissues, secretome and biological fluids. Proteomics encompasses the

study of modifications, interactions and behaviour in correlation to a pathologic or a
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physiologic state. The proteome is dynamic and can fluctuate depending on various

internal and external factors.

Clinical proteomics aim to reveal the molecular face of diseases by identifying explicit
alterations in the proteome in correlation with specific pathologies. It is currently
accepted that no single molecular feature alone, neither gene nor protein, could be a
reliable biomarker in cancer diagnosis. The molecular complexity of cancer
necessitates multi component classifying markers to build potent diagnostic,
prognostic and monitoring clinical tests**. Although still not fully understood, multi-
gene signatures identified for breast cancer have proved their diagnostic power* *.
Similar efforts to identify cancer specific proteomic barcodes are needed to improve
the detection power of genomic classifiers and establish a more comprehensive
understanding of disease pathways. Proteomics is a powerful approach to identify
signalling proteins and to decode the complex signalling circuitry involved in cancer
development. Together with genomics and other sister “omics”, proteomics is well on
the way to resolve the molecular complexity of the different types of breast tumours*-

¢ and thus provide the opportunity for new therapeutic targets to be identified.

1.4 Mass spectrometry (MS) proteomics

The aim of proteomics are centralised around the identification of the proteins in a
given environment; the determination of protein interactions; and, finally, the
understanding of the mechanism of their function. An ultimate result of proteomics is
therefore the understanding of complex biological systems, which can lead to new
diagnostics and therapy. The first step toward this is the identification of all proteins
in a given system by protein mapping. Typically, this is considered the discovery
phase of proteomics and involves the comparison of different biological states such as
diseased and normal or drug-treated and untreated. Traditionally, this profiling has
been accomplished by two-dimensional gel electrophoresis. Although 2D PAGE has
successfully resolved many proteomes, it is labour-intensive, time-consuming,
irreproducible and, at best, semi quantitative. In addition, 2D PAGE has been limited in
exploring low molecular weight (LMW) analysis despite decades of research. The LMW
(<10 kDa) component of proteome is a promising source of previously undiscovered
novel biomarkers. Although critical signalling and proliferative proteomes may cluster
in this compartment, classical proteomic approaches have lacked the ability of
consistent profiling in this region. Since this proteomic population is below the limit of
effective resolution of conventional gel electrophoresis, mass spectrometric analysis
appears to provide a promising solution in these settings*®. MS is quoted as “the
most comprehensive and versatile tool in large scale proteomics”?.  So far, this
technology has revealed multi-peptide sets of markers that have potential prognostic

and predictive values in different cancers”***. Primarily, top down mass spectrometry
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MS based approaches have proven effective at identifying differentially expressed
proteins upon resolution by 2D PAGE. More recently, progress has been made to
bypass 2D PAGE dependent identification. Quantitative or semi quantitative proteomic
tools using isotopic labelling and label free methods combined with high-throughput
MS showed promising results* °> *> **,  These ground breaking MS derived protein
patterns can be used to form diagnostic, prognostic and follow up disease
“fingerprints”. Contrary to most classical proteomic tools, this approach does not
explicitly assay “identified” biomarkers, but rather focuses on detecting fine changes in
the relative intensities of one or a subset of peptide/protein ion peaks. Although this
“unbiased proteomics” technology heralded substantial promise, studies using this
approach should be carefully designed and results should be stringently critiqued to
ensure the true biological meaning of the results is obtained. On the biological side,
the main concern following pattern characterisation is the identity and the origin of
biomarkers observed in the proteomic patterns. Whether a biomarker is released from
tumour cells, an acute phase response, or a differentially expressed/modified host
protein, it should be validated as a candidate marker. Although the action of
metalloproteinases, exoproteases and other enzymes is responsible for many
differential markers; tumour cells can drive these and other activities that results in
proteolysis and differential expression of serum proteins solely observed in affected
patients®. In studies that have identified the diagnostic features within proteomic
patterns, there is strong evidence to support this hypothesis®°.

1.5 Breast cancer proteomics

Despite advances, current treatment remains less effective for late-stage breast cancer
and early detection holds the best promise for patients. Screening mammography is
the most effective tool for breast cancer detection and yet; a significant number of the
patients are misdiagnosed® *®. Moreover, fast growth rates of tumours in younger
patients results in a higher incidence of late diagnosis in this crucial group. Novel
markers aiding screening and early detection of the disease are thus a must. Several
studies have already addressed the possibility of applying MS analyses of blood
proteome in diagnostics of breast cancer. Many of these have revealed patterns
specific for patients with breast cancer at either an early or a late clinical stage®®.
Among the peptides identified in such differentiating patterns were fragments of
C3adesArg and a C-terminal truncated form of C3adesArg, FPA, fibrinogen, ITIH4,
apoA-1V, bradykinin, factor Xllla and transthyretin®”*. In addition, mass spectrometry
analyses of the blood proteome allowed the identification of patterns specific to breast
cancer patients with different outcomes and differential responses to therapy® .
Interestingly, several markers were repeatedly detected in different studies illustrating
the potential of this approach to identify robust markers®*. Protocol(s) standardisation

however remains a major challenge limiting cross study analysis and validation®.
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Breast cancer proteomics is now entering into the field of biomedicine with the aim of
identifying pathological markers and therapeutic targets. Current proteomic tools
allow large-scale, high-throughput analyses for the detection, identification, and
functional investigation of LMW low-abundance proteins. However, major limitations
of breast cancer proteomic investigations remain the complexity of biological
structures and physiological processes. This has filled the path of exploration of
related pathologies with various difficulties and pitfalls. The case of breast cancer
illustrates the major challenge facing modern post genomic analyses; tackling the
complexity and heterogeneiity of the disease. This has been addressed by establishing
clear molecular sub classifications matching the genomic findings* *. Four molecular
breast cancer sub groups have been confirmed both by genomic and proteomic
profiling. These can be summarised as follows:

(a) Luminal A type tumours with the highest expression of the ERx gene, GATA binding
protein 3, X-box binding protein 1, trefoil factor 3, hepatocyte nuclear factor 3«, and
oestrogen-regulated LIV-1. These tumours seem to be involved in biological
processes including fatty acid metabolism and steroid hormone mediated signaling®®.
(b) Luminal subtype B which shows similar ERx gene expression with PR positive or
HER2 positive tendencies®.

(c) ERBB2 positive group is characterised by high expression of several genes in the
ERBB2 amplicon at 17q22.24 including ERBB2 and GRB*".

(d) Basal-like subtype which is characterised by high expression of keratins 5 and 17,
laminin, and fatty acid binding protein 7. The most over-enriched processes in this
sub type include many cancer "hallmark” genes, such as the cell cycle, cell proliferation
(MCM3, MCM4, MCM7 and MAD2L1) and differentiation, protein phosphorylation, B-

cell-and antibody-mediated immunity®®.

There are two main expected outcomes from proteomic analyses of breast cancer. The
first is to discover new molecular markers of breast tumours. The second is to
decipher the intracellular signalling pathways leading to the initiation and progression
of breast tumours. Such data should provide the knowledge base for the identification
of new therapeutic targets and the development of innovative strategies against breast

cancer.

To date, progression from bench side biomarker discovery to clinical application
remains slow. This lag can be partly attributed to a lengthy biomarker identification
and validation process. The lack of standardised profiling protocols and the
population difference in various studies are also important limiting factors®. It is
anticipated that standardised multicentre efforts would enhance the likelihood of

validating clinically reliable breast cancer biomarker(s). Such biomarkers or biomarker
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proteomic profiles may improve cancer screening, diagnosis and outcome prediction

as well as patient tailored treatment strategies.

1.6 Serum proteomics challenges

To date, a major element in the search for proteomic biomarkers has focused on bio-
fluids; where an ideal biomarker could be detected from samples obtained using
simple and minimally invasive methods. Serum and plasma represent very rich sources
of biomarkers as they perfuse all tissues, resulting in a rich source of novel markers.
These can be shed from tumour cells undergoing necrosis, or generated as a host
response to the tumour burden. Unfortunately, most of these valuable proteins in this
environment will be masked by a complex mixture of highly abundant proteins such as
albumin and immunoglobulins®®. This dynamic obstacle limits the identification,
validation, and subsequently, the clinical translation of such potential markers in the
presence of higher abundance proteins. Therefore, comprehensive analysis of these
inherently complex and versatile serum samples is exceptionally challenging. Simple
comparison can result in the detection of differentially expressed protein(s) simply due
to differences in patients’ age, gender, diet, health status, ethnicity etc., leading to
false biomarker discovery. Adding to the challenge is the fact that discovered potential
markers might not present a “real world” stable protein/peptide leading to its
invalidation. Clearly, conquering the real world proteome is a major challenge.

Reducing the complexity of the circulating proteome and enhancing the detection
power of low abundance proteins is thus vital for biomarker discovery*? ’°. This can be
achieved through pre fractionation using chromatographic and electro-focusing
techniques, immuno-depletion of the most abundant circulating proteins, and
enrichment of “trace” proteomic signals using combinatorial peptide ligand libraries
(CPLL). Targeting the sub proteome of organelles of interest and/or isolating specific
proteomic sub-groups, including the phospho and glycoproteome, is also an
alternative approach, which complements the results gained by these methods™7°.
Above all, appropriate study design, protocol standardisation and group matching are
obvious, yet vital steps towards meaningful biomarker discovery. These are critical
steps towards a unified proteomic approach vital to clinical advances in breast cancer

diagnostics and therapy.

1.7 Proteomic Patterns

Pathway based biomarker discovery focuses on proteins secreted in different biological
fluids to study molecular networks. Blood has been frequently studied in the
biomarker mining process over the last decades. Nonetheless, only a few markers (e.qg.
CEA, CA125, PSA, CA19.9) are currently used with limited clinical usefulness, due to

10
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their low diagnostic and prognostic power>”’. For example, PSA is probably the most
renowned screening marker to come into clinical use in the last three decades, yet, the
use of PSA for prostate cancer screening is controversial’®. Although serum PSA is
usually raised in prostate cancer, the specificity to cancer is limited and other non-
malignant prostate pathologies (BPH and prostatitis) are also associated with raised
PSA.

A commonly used approach that takes into consideration the “fingerprint” of the whole
proteome regardless of the identity of differentially expressed proteins is denoted
“proteome pattern analysis”. Here, protein signatures generated by MS or 2D gel
electrophoresis are used to differentiate two physiological and/or pathological groups
regardless of the proteomic identity of these classifiers. This approach adopts a
strategy similar to the hunt for multi gene signatures in functional genomics. Multi
component sets of peptide/protein ions at defined mass to charge (m/z) values are
used to characterise and classify samples even though their individual components
may lack the differentiating effect when analysed individually. The use of proteomic
patterns to classify cohorts without detailed tandem mass analysis of blood is a
growing method in clinical proteomics. So far, exploiting differentially expressed
profiles that represent cancer specific fingerprint(s) have revealed few early results in
cancer research® ® % In breast and other cancers, a shortfall of this strategy is
illustrated by the variable and discrepant candidate markers identified in different MS
studies®™ **®.  However; this can be related to inconsistent pre and/or peri-analytical
variability including differences in sample populations, collection and storage
methods, preparation and bioinformatic analysis. Yet, commonly validated biomarkers
are still remarkable and pattern analysis remains a valid approach® *"®. Another major
shortfall in this approach also lies in the variability related to protein isoforms and
PTM, which can falsely alter unique proteomic barcodes and classification results.
Moreover, such patterns are largely dependent on the original profiling method of
analysis, which may be clinically impractical. Overall, this remains a valid approach in
proteome profiling despite the shortfall of missing biological information due to the
absence of protein identification. Yet, these non-sequenced signatures should be
validated with high sensitivities and specificities prior to translation into clinically

useful tests.

1.8 Proteomic pathway analysis

The future of cancer therapy relies on using targeted molecular approaches. Thus,
characterisation of cancer related cellular pathways, and understanding the impact of
disease and therapy on cellular networks is crucial. Although chemo-resistance
continues to be a hurdle, oncogene targeted therapies have already been shown to be

effective®®. These remedies usually target proteins which are altered in cancer. Since

11
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protein groups are the basis of biological functions, including cancer development,
there is a trend to explore and target novel protein pathways instead of individual
proteins® °. Once these pathways are known and validated, cancer progression and
therapy should be studied, focusing on interactive molecular pathways rather than
individual genes or proteins. Pathway biomarker(s) discovery should be regarded as a
key component in any proteomic study. This approach is however limited by certain
factors. As circulatory proteins are more likely to reveal such pathways, blood remains
an attractive mining field for these pathways. This is a challenging era given the
complexity, dynamic range and variability of both serum and plasma’®. An alternative
approach in the hunt for these markers is to study the local environment fluids or the
tumour secretome. This has the advantage of a higher concentration and a narrower
dynamic range. Nonetheless, biomarkers revealed by this strategy would lack the
essential and early elements of the host response. In particular, many acute phase
proteins, constituting a critical part of cancer pathways, originate in the blood.
Moreover, an intense local environment biomarker signal is threatened by the
dilutional and proteolytic effects commonly occurring in the blood leading to failure of
further validation efforts. Regardless of the method, a highly desirable feature in
pathway marker discovery is that they can be monitored in the blood. Mass
spectrometry combined with pathway analysis methods have been the principle tool in
recent cancer biomarker research and are expected to lead the way in this area*” *: .
The mining of breast cancer proteomic pathways and network markers remains to date
an attractive field for research.

1.9 Mass Spectrometry in cancer proteomics

Proteomics is a rapidly evolving strategy for biomarker discovery. Several advanced
proteomic profiling tools have shown utility for identifying biomarkers for the
diagnosis of several tumour types including breast cancer” >>°*° 8 8-%¢ MS specifically
has been successful in effectively resolving low mass/abundance proteins using
minimal amounts of samples, two of the main challenges facing discovery in classical
proteomics. This technology was shown to be reproducible and can be used to build
promising cancer classification algorithms® ***. A new inherent challenge has evolved
with the advent of the new era of MS based discovery; consistent data analysis. The
amount and complexity of data generated in these experiments is overwhelming, and
can limit the generation of reproducible and relevant results and/or new working
hypotheses. Clearly, experience rather than insight in bioinformatics remains essential

to allow the integration of MS data into the molecular biological context.
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1.10 Top-down or bottom-up MS proteomic profiling?

Standard proteomic analysis begins with the sample preparation in which proteins are
either digested into peptides (bottom-up analysis) or analysed intact (top-down

analysis)®® .

Top-down methods use masses of intact proteins and/or their fragments for
successful biomarker identification. Some of the benefits of the top-down approach
include higher sequence coverage of target proteins and better characterisation of
posttranslational modifications'®. Compared with bottom-up approaches, the lower
sequence coverage abilities of top-down experiments can provide high throughput
abilities, reduce ambiguities of the peptide-to-protein mapping, allowing the
identification of specific protein isoforms'™. Moreover, the top-down approach
improves the reliability of protein quantification as protein abundances are measured
directly instead of extrapolation from peptide signals. However, there are several
technological limitations, including the need for separation of intact proteins prior to
analysis, the lack of efficient methods to fragment large proteins, and the demanding
transition from protein mass to identification in certain platforms. Thus, the scope of

the top-down approach has been limited™ ',

The bottom-up (shotgun) approach is the most popular method for targeted proteomic
analyses'. Shotgun proteomics is an approach in which proteins are digested into
peptides prior to MS analysis, and the ensuing peptide masses and sequences are used
to identify corresponding proteins'®. The main advantage of this method lies in the
instant identification of potential biomarkers by the end of the analysis, as well as the
high resolution provided by many tandem mass platforms. On the other hand,
bottom-up proteomics results in overwhelming peptide data from complex biological
samples (such as serum), loss of some PTMs secondary to limited protein sequence
coverage, and ambiguity of the origin for some redundant sequences. Thus,
modifications of this approach involving multi-dimensional chromatographic
fractionation are essential to reduce the potential shortfalls associated with this

approach®®,
Clearly, there is not a perfect approach for proteomic profiling, and the decision of

using either is dependent of the study design, samples analysed and more importantly,

the guestion to be answered.
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1.11 MS serum cancer proteomic biomarkers: biology or

artefact?

To date, mining the sera for novel cancer biomarkers using promising mass
spectrometry (MS) based profiling technologies has not only been a source of
optimism, but also an unremitting debate™ '*. As tumourigenesis involves the
transformation and proliferation of altered cell types that produce high levels of
specific proteins and enzymes such as proteases, it not only modifies the barcode of
existing serum proteins, but also their metabolic products. It is well established that
human serum contains thousands of active proteolytic pathways, yet it remains
uncertain whether this complex peptidome may provide a real correlation to biological
events such as cancer. Recent reports have advocated the use of MS-based serum
peptide profiling to determine qualitative and quantitative disease patterns®” >’  Yet,
ex vivo proteolytic processes constantly question the biological relevance of many MS

reported markers in relation to tumourigenesis.

Variations in sample collection, storage, and preparation conditions could lead to
biased activation of different proteolytic pathways and could significantly affect the
results obtained in clinical proteomic studies'®. This is a major concern over the use
of MS and other profiling techniques for the identification of cancer biomarkers in
serum collections. This is principally relevant studying archival samples stored in
different tissue banks worldwide. Although such collections have great potential value
for the identification of pre-symptomatic and other clinically valuable disease
biomarkers, inconsistency of pre analytical conditions limits their utility. Sample
handling, storage temperature, collection tubes, coagulation temperature, and freeze
thaw cycles have been studies, and found to have a dramatic effect on the proteome!®
1% Yet, investigating the usefulness of analysing samples stored for decades remains
ambiguous. Thus far, it is unknown if biomarkers reported in recent standardised
studies can be reliably detected and retain predictive power in older tissue and serum
banks. Recently it was found that samples from tissue banks can be a useful resource
for biomarker studies™®. The hypothesis that protein biomarkers existing in serum can
be reliably and repeatedly attainable, and may distinguish cancer from non-cancer
state, even decades after collection was also tested. Historic serum samples have been
shown to give highly reproducible spectra®™. Validation of currently reported
biomarkers using archival samples will be the testament for their prospect in future
studies. This would also give an answer to the utility of some controversial markers,

and whether they represent a real biology or just a pre/peri-analytical artefact.
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1.12 Breast cancer: the “real world” markers

As the leading cause of cancer related deaths in women, breast cancer research and
biomarker discovery in particular, is attracting more interest as researchers explore the
molecular face of this disease. MS serum proteomics has generated a rapidly growing
interest in novel biomarkers that can differentiate breast cancer patients from healthy
individuals, and into distinct sub groups* ' . However, despite a wealth of research,
authentic real world biomarkers remain elusive. This could be due to several factors:
Are we using controls that are too “ideal™ Is it the fact that global standardised
protocols remain missing? Or is it that such protocols are unattainable in the virtual
clinical setting? These could all be contributing factors to the prolonged search for
reliable markers, but it could also be attributed to the heterogenic behaviour of breast
cancer. This heterogeneous disease pattern results from various genetic alterations,
and explains at least in part, the wide variety of clinical response and outcome in
breast cancer. Deeper molecular understanding is necessary to identify relevant
targets for early detection, stratification and novel treatments. A molecular taxonomy
of breast cancer has been defined based on genomic microarray analysis*. This
divides the disease into four molecular subtypes: luminal A and B, ERBB2-
overexpressing, basal-like disease. As expected, these different sub groups have a
distinct clinical course and response to therapeutic agents** '*. Overall, the luminal
group (oestrogen receptor ER positive representing 60% of breast cancers) generally
have a good prognosis, although subtype B shows a lower ER and higher proliferative
profile, thus it has a poorer prognosis in comparison with subtype A). ERBB2 over-
expressing is ER-negative with ERBB2 over-expression, presenting 20-30% of the
cases. The basal-like sub group also manifests the ER negative and HER-2-negative
states; this group affects 10-20% of breast cancer patients. Both the ERBB2 and basal

are considered as poorer prognosis subtypes® *> ',

Mammography is the gold standard for the detection of breast cancer yet it has
concurrent critical limitations. Firstly, albeit minimal, there is risk associated with the
mammography radiation. Repeated exposure can theoretically increase carcinogenesis
risk'*> **,  Secondly, a breast tumour must be at least a few millimetres in size to be
detected. Given that a single cell can progress to the development of a whole tumour
(clonal origin of cancer); it is already somewhat late when the tumour is detected by
mammography. Finally, evidence has illustrated that a higher rate of over diagnosis
and benign biopsies with mammography potentially compromising subsequent disease

" In clinical practice, after the surgical removal of a tumour, its

diagnosis®
characterisation as malignant or benign is made by histology. Such parameters as
tumour size, grade and node involvement are then used to decide treatment and
prognosis. However, breast cancer is not a homogeneous disease and there are

different molecular subtypes dictating its behaviour and outcome. Depending on the

15



B Zeidan Breast cancer biomarker discovery

cellular and histological origin of the cancer cells and on the evolution of the disease, a
more personalised diagnostic and therapeutic approach aided by molecular markers is

required.

The classical biological markers used for therapeutic and prognostic purposes are
oestrogen and progesterone receptors. These are used for the selection of patients
potentially responding to treatment with anti-oestrogen treatment'®. In addition,
ErbB2 (A tyrosine kinase receptor over-expressed in about 20% of breast tumours) is
also utilised as a prognostic marker in breast cancer. The recent understanding of the
molecular role of this marker has opened new aspects for breast cancer treatment.
Herceptin, a truncated blocking antibody directed against ErbB2, has been successfully
developed and has now entered into clinical practice'®. However, breast cancer can be
regulated by other molecular factors that either stimulate or inhibit proliferation,
migration, and differentiation, acting to promote tumour growth and metastasis'.
This may explain the different responsiveness and outcome to tamoxifen and
Herceptin in patients within the same breast cancer sub group. The identification of
other decisive “real world” markers, and corresponding targets, remains a significant

objective for future studies.
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1.13 Surface enhanced laser desorption ionisation -
time of flight mass spectrometry (SELDI) in breast

cancer biomarkers discovery

1.13.1 Background

The critical need to find new molecular markers for detection, typing and treatment of
breast cancer has initiated a wide range of genomic, transcriptomic, proteomic,
metabolomic and interactomic studies. The discovery of new markers and therapeutic
targets as well as the corresponding drugs using proteomics and other sister
“oncomic” studies is highly anticipated. The mammary gland and breast tumours are
complex and dynamic structures and full understanding of breast carcinogenesis with
genomic and proteomic tools is under extensive research. Among the various
proteomic tools used in the breast cancer markers hunt, Surface enhanced laser
desorption ionisation - time of flight mass spectrometry (SELDI-TOF MS) -thereafter
called SELDI- emerged as a promising discovery tool*” ® % 121124 = By plending together
the principles of retention chromatography and mass spectrometry, it provides a rapid,
high-throughput, and a relatively sensitive screening method capable of detecting and
analysing complex protein samples. This technology is also capable of the rapid
separation, detection and analysis of proteins at the femtomole level directly from
biological samples. Per se, it is a tool that makes multi-analyte discovery possible,
and enables analysis of large numbers of different samples with the simultaneous
study of multiple biological variables. This approach is a modified version of the
matrix assisted laser desorption ionisation (MALDI) platform, where the matrix absorbs
laser energy and transfers it to the acidified analyte, and rapid laser heating causes
desorption of matrix and M+H+ ions of analyte into the gas phase'>. MALDI ionisation
also has the advantage of high sample throughput, which allows the generation of

sufficient data to adequately power statistical tests.

The principles and clinical applications of SELDI have been reviewed, and have been
successfully used in biomarker discovery on various tissues and samples® ™" 1257127,
Briefly, SELDI can be summarised as extra surface affinity array fractionation of various
protein and peptide molecules prior to MALDI style analysis. Only a few microlitres of
the sample of interest are deposited on a selective chromatographic surface (array),
which retains proteins from biological mixtures according to their physicochemical
properties. Consequently, the proteins of interest are captured on the chromatographic
surface by adsorption, partition, electrostatic interaction or affinity depending on the
arrays’ properties. Mass testing and comparison between protein ion peaks can locate
significant protein abundance differences between samples. This “unbiased” top down

proteomic analysis allows the discovery of early stage breast cancer biomarkers in
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cellular or biological fluids unlike earlier classical techniques which identify single
proteins. Such early stage diagnostics are invaluable in breast cancer where ductal
carcinoma in situ (DCIS) is potentially curable™® '** and when currently, only 63% of

breast cancer cases are localised at the time of diagnosis*®.

1.13.2 Why serum proteomic profiling in breast cancer?
Serum has been widely utilised for study by proteomics as it is minimally invasive,
reproducible and cheap to obtain. During carcinogenesis, differentially expressed
proteins in the blood can originate from diverse sources. Communication of cancer
cells with the blood may lead to the release of tissue specific proteins upon cell
damage or death. Serum profiles could also present cell death tissue specific or cancer
excreted proteins, host response, acute phase reactants or even altered housekeeping
protein levels in response to tumour burden. Since these profiles could represent
altered phenotypic events during neoplastic transformation and progression, it is
hypothesised that a characteristic proteomic profile would be present in the presence
of cancer. This could then be considered as a new “screening” methodology or be

utilized in the ongoing clinical mamangement of patients.

1.13.2.1 Serum MS proteomic profiling in breast cancer prediction
One of the earliest pilot studies of SELDI proteomic profiling in breast cancer was a
prospective analysis of pre-treatment serum samples by Vlahou et al.*. Three
discriminatory proteomic peaks differentiating cancer from normal groups were
discovered. In addition, three different peaks segregated cancer serum sample
proteomic profiles from the benign group. In support, Laronga et al’ reproduced the

previous work showing consistency between the studies®.

Further studies using SELDI screening revealed a consistent significance of a panel of
three markers (BC1l: 4.3 kDa, BC2: 8.1 kDa, BC3: 8.9 kDa) in the serum of breast
cancer or healthy controls®® ¢ 8. 124 130 The peaks were identified to be: BC1; a
truncated form of interalpha-trypsin inhibitor heavy chain H4 (ITIH4), BC3 and BC2
were part of the serologically abundant complement components C3adesArg and a C-

terminal truncated form of this component (C3adesArg) respectively.

These findings raised one of the concerns consistent with reported proteomic
biomarkers non-specific acute phase molecules qualifying as discriminatory classifiers.
In addition, the scarcity of samples representing DCIS was a noticeable limitation.
Moreover, the reproducibility and robustness of these findings were under scrutiny as
the markers were partially or discrepantly validated. Yet, such conflicting evidence
could be related to inconsistent collection, storage, handling, sample preparation

techniques, analytical and bioinformatic settings as well as population differences.

18



B Zeidan Breast cancer biomarker discovery

Despite these unpredictable findings, these markers remain the focus of ongoing
translational efforts (United States Patent Application 20080311673).

A further large and validated study involving 310 subjects™ explored the ability of
mass spectrometry to characterise stage-l breast cancer patients from healthy
subjects. Mammography was used to exclude cancer in the control group, and
patients with family history of breast cancer were excluded from the control group.
Seven ion peaks were identified that discriminated between the groups with a
sensitivity and specificity of at least 95% and 85% respectively, both in the testing and
validation sets. Although the identities of these markers remained anonymous, this
demonstrated the potential of SELDI profiling to generate a robust detection signature

of early stage breast cancer, and a major landmark in pattern analysis studies.

1.13.2.2 Serum proteomic biomarkers in BRCA1 mutation patients
BRCA1l mutations only account for 7-10% of breast cancers’ with a propensity
towards early development and poorer outcome. It is estimated that 80% of patients
with BRCA1 mutations ultimately develop breast cancer. Targeted diagnostic and
therapeutic strategies in this patient group are crucial. Hence predictive markers to
identify those who are less likely to develop breast cancer would enable more
personalised management strategies. BRCAl mutation carrier monitoring is another
promising utilisation of proteomic profiling. Studies have shown that differentiation
between BRCAL cancer and BRCAL carrier groups could be achieved by two biomarker
peaks® ®. Although the cohort studies were small (n=30), an over-expressed 8.1kDa
and an under-expressed 5.9kDa in the cancer group were found to reliably
discriminate the two states (sensitivity 100%, specificity 87%). Whether the distinction
in protein profiles found between the two BRCA1 mutation groups represents the early
detection of a precancerous state or an occult malignancy marker is yet unknown.
Once validated, such markers could thus be used for surveillance and/or early disease
detection. Differentiation between BRCA1 cancer and sporadic breast cancer groups
was also possible with a differentiation sensitivity of 94% and specificity of 100%. In
addition, the separation between BRCA1 cancer and the control group was achieved
with 87% sensitivity and 94% specificity. Despite the small number samples, such
reproducibility of SELDI proteomic profiling published by multiple researchers is
worthwhile validating at different sites to confirm these significant findings. Yet, to
date there have been no published follow up studies targeting this question. This
could be explained by the lengthy recruitment and follow up processes required to

adequately power and fulfil the requirement for this specific cohort.
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1.13.2.3 Proteomic profiling and biomarker discovery pre and post- surgery
Analysing paired samples from breast cancer patients’ pre and post-surgery can yield
significant markers and pathways elucidating disease development, progression and
outcome. Reports covering this area have previously found three significantly
differentially expressed ion peaks between the pre and post-surgery groups in serum
with a sensitivity and specificity of 75% and 87% respectively®. Investigating whether
samples from breast cancer patients following surgery could be differentiated from
healthy controls is a key target in this area. This is of interest as, if removing the
tumour lead to restoration of the healthy proteomic profiles, it would be reasonable to
link the characteristic peaks to the proteins shed or inhibited by the tumour. In
contrast however, the SELDI analysis clearly differentiated protein profiles between the
controls and breast cancer patients post-surgery, with a final separation sensitivity of
93% and a specificity of 73%. Interestingly, the post treatment group comparison with
control samples showed a partial retention of cancer profiles even after surgery. This
can be explained by an ongoing systemic process from which these markers
originated. In addition, the presence of residual tumourigenic processes may also
explain the retention of malignancy markers. As the sample size limitation (n=84)
remains a major shortfall in this study, these findings will need further evaluation and

identification of candidate biomarkers is essential to explain this phenomenon.

1.13.24 Serum proteomic biomarker profiles and clinicopathological
variables

Study of the association between biomarkers and other clinicopathological factors may
lend insight into the biological significance of disease profiles. Profiles strongly
associated with estrogen receptor (ER) status for instance might be expected to be due
to proteins involved in hormonal signalling. It is also possible, however, that the
absence of such a correlation with known clinicopathological variables might be due to
the identification of new independent neoplastic molecules. Reports of
clinicopathologically correlating markers have suggested the possible differentiation
between lymph node positive and negative groups using six MS ion peaks, which could
prevent unnecessary extensive surgery in some patients®®. However, the most
frequently reported serum breast cancer markers in SELDI studies (BC1, BC2 and BC3)
do not correlate with clinicopathological features such as tumour size, nodal
involvement, grade or ER/PR status® ®*"'**. No correlation was found between clinical or
histological parameters including age, nodal status, metastasis, vascular invasion,
ER/PR, and Cal5.3 in different studies® ™. These findings illustrating the lack of
correlation between many candidate proteomic markers and current prognostic factors
could be related to the heterogeneity of this disease and the different subgroup

entities under which the patients fall. In depth research of such correlations remains
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missing and may lead to better understanding of the correlation between the

molecular and histopathological aspects of breast cancer.

1.13.3 Nipple aspirate fluid (NAF) MS proteomics
Intraductal sampling and diagnostic techniques are minimally invasive and allow direct
access to the ductal system; the origin of most breast malignancies. This could be
particularly useful in young women where mammographic sensitivities are reduced (i.e.
in younger patients and in obese patients with high breast density). Breast duct fluid is
a rich source of protein from the immediate tumour environment. Furthermore,
compared to serum, breast ductal fluids could be a superior source of breast cancer
markers due to close vicinity of breast ductal cells, particularly in early stage in situ
disease, where the ductal fluid may contain tumour markers that are excluded from the
circulation®. NAF has been the focus of breast cancer marker(s) profiling using SELDI

and other sister proteomic technologies®*-**°,

Work analysing NAF from both breasts from patients newly diagnosed with unilateral
breast cancer and high-risk controls showed clear separation between the cancer
bearing breast and control NAF profiles. The main discriminator between the two
groups was shown by a peak at 15.9kDa identified as B chain of haemoglobin**’. In a
follow on study, these findings were not validated and other peaks at 5.2 and 33.4kDa
differentiated DCIS from benign breast disease and invasive carcinoma (IDC)"* ',
Importantly, these ion peaks were consistent in differentiating the DCIS from the
benign group, which may potentially provide an early predictor insight of the
development of invasive tumours. Overexpression of the protein peaks at 5.2, 13.88
and 33.4kDa was also shown to be associated with both DCIS and IDC but not with
ADH or benign disease. These biomarkers were integrated in a prediction model
including age and parity, and achieved a sensitivity and specificity of 40% and 94%
respectively®. Although the specificity achieved by this classification is outstanding,

such low sensitivity classification is of limited use in future clinical applications.

In a landmark study, Li et al'® identified three potential biomarkers which
differentiated cancer NAF from controls. The 3.375, 3.447 and 3.490kDa peaks were
identified as human neutrophil peptides (HNP) 1-3. This was also verified using SELDI
immune-capture assays on breast cancer samples which originally revealed higher
HNP1-3 levels. Moreover, Li et al.**® used ELISA to quantify the three biomarkers
providing further validation of their findings using SELDI. This high HNP level in cancer
can be explained by tumour cell invasion and release of neutrophils and eosinophils,
or by direct secretion of these peptides. Interestingly, HNP had been previously
detected in tissue samples from several other cancers. This work added new evidence

to the significance of immunological pathways in breast cancer® % 3% Targeting the
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pathways involving these markers in cancer progression is thus essential and would
confirm the role of HNP in breast and possibly other cancers. Following this Li’s group
illustrated that an alphal- anti trypsin fragment (AAAT) was associated with IDC, ADH
and DCIS but not healthy NAF controls from paired samples and healthy controls *°.
The limited number of samples (IDC: 31, ADH: 5, DCIS: 6 and controls: 31) remains a
drawback of this study, however, the consistent validation of this marker indicates its

potential reliability as an early diagnostic/predictive marker.

Whilst comparison between two samples from the same individual is an attractive
approach providing an internal control for hormonal and environmental effects,
findings showing no significant differences in protein profiles between ipsilateral
affected breast and the unaffected contralateral breast NAF in patients with breast
cancer are confusing''. Adding to the confusion, comparisons of NAF from the
unaffected breast in patients with breast cancer and NAF from healthy controls showed
clear differential expression between the two groups'*. The absence of any
discriminatory peaks between the NAF from the ipsilateral affected breast and the
contralateral unaffected breast is remarkable. These results support the assumption
that breast cancer field changes occur across both breasts as part of cancer
development. Such phenomenon indicates a potential systemic progression of cancer
rather than local tumourigenesis and could signify inevitable contralateral breast
cancer development at some stage. Although this is a striking finding, further
evidence is yet needed as several previous reports contradicted these findings™® > *3,

1.13.4 Cytosolic protein analysis in breast cancer
Tumour biomarker proteins related to cancer cells or their microenvironment might be
attenuated, altered or fragmented once shed in the blood. This may have an effect on
the profiles obtained by MS. Therefore, cytosolic extract represents an alternative
source, with higher, more relevant protein concentrations and less non-biological
variability effects. In addition, cellular profiles have a higher chance of detecting
intracellular pathways and interactions. Intracellular proteomics from this environment
includes cytosolic protein mRNA complexes which could affect gene transcription and
be linked to cancer development. Mitochondrial protein behaviour could be linked to
cancer development and treatment resistance and is closely monitored in cytosolic

profiling.

Cytosolic protein profiling was performed by Ricolleau et al.*** to identify patients with
a high risk of relapse, who would benefit from systemic therapies, and those who were
unlikely to benefit could avoid these therapies and their concomitant side effects and
costs. Two candidate biomarkers at 8.5 kDa and 19.8 kDa (ubiquitin and ferritin light

chain (FLC) respectively) showed a prognostic predictive power where the 8.5kDa peak
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was found at lower levels in patients with metastatic disease and the 19.8kDa peak was
found at higher levels in these patients. Interestingly, combining the St. Gallen risk
profile (age <35, size >20mm, negative hormone receptors, Grade 3) to the 2 peaks
led to improved discrimination between the groups of patients who suffered a systemic
relapse and those who did not. These promising findings could aid in risk subgroup

stratification of patients that may benefit from, or safely avoid, chemotherapy.

A key study in this field by Brozokova and co-workers* focused on linking proteomic
patterns to tumour clinicopathological characteristics. They found a clear clustering of
biomarker patterns into five further sub groups associated with tumour type, hormonal
receptor status and nuclear grade. Hormone receptor expressing luminal groups,
HER2/neu positive and the basal high proliferation gene expression subtypes were
generated by hierarchical clustering. Strikingly, this molecular tumour classification
was identical to those generated by cDNA genomic expression profiling**. Two
potential markers were identified (heat shock protein -HSP 27- and Annexin V) within
these tumour sub-group classifiers. Both proteins were mainly over expressed in the

luminal sub-cohort.

Other reports focusing on cellular proteomic indicated that ubiquitin may be
differentially expressed in axillary lymph node metastasis tissue indicating a potential
prognostic role*®. This was supported by evidence correlating ubiquitin and S100A to
apoptotic mammary activities and disease prognostication™” '*,

These studies illustrate the importance of this post genomic approach in rectifying and
expanding the molecular understanding of breast cancer tumour behaviour. This
could lead to further understanding of the molecular role of new proteomic markers in

patients’ sub groups and outcome.

1.13.5 Saliva and tear proteomic biomarkers in breast cancer
Disease states can alter the proteomic environment of any biological fluid including the
saliva. For example, reports showed that the levels of kallikreins, CA125, EGF and
cErb2 differed in the saliva of healthy compared to diseased subjects******. Profiling the
salivary and tear proteome has attracted more focus as these samples are safe, simple,
inexpensive, easily repeatable and most importantly non-invasive to collect.
Moreover, the lower concentrations of abundant proteins such as albumin in these
samples enables easier analysis compared to serum. Researchers have previously
studied the possibility that saliva may be used to diagnose systemic diseases™* "%, MS
was previously reported to detect plausible breast cancer markers in saliva and tears™
7. 1% The sensitivity and threshold of MS in detecting significant differentially

expressed peaks in these fluids between breast cancer groups was promising in these
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efforts. Larger discovery, and blinded validation studies are crucial to confirm any

possible discriminatory peaks differentiating breast cancer groups.

1.13.6 Urinary breast cancer proteomic biomarkers

Human urine can be collected in a non-invasive fashion and has been extensively used
mainly for the study and monitoring of renal conditions®***. Normal urine contains
proteins and peptides which are derived from either glomerular filtration of plasma,
GPD-linked proteins or exosomal secretion by epithelial cells*®. Tumour-related
proteolytic activity might result in disease specific signatures of proteolytic fragments
which are likely to be present at very low concentrations', and in actual fact masked
by abundant serum proteins. As discussed earlier, several LMW enrichment tools can
be used to maximise the detection power of these markers in the serum. However,
each of these methods have its drawbacks including; co-depletion of LMW markers,
poor fractionation abilities, irreproducibility and skewed protein/peptide
quantification. A natural fractionation tool, eliminating the large protein masking
effect, is provided by the nephrones through urinary secretion. Thus, exploring such
fragments in urine, the natural ultra-filtrate of serum, is an attractive approach. This

methodology can be enhanced by the use of the LMW detection abilities of MS.

To date, MS wurinary proteomic biomarker discovery has mainly focused on
urological/nephrological diseases including prostate, renal and bladder cancers as well
as diabetes'®" **%, In both scenarios, urinary protein secretion could be related to
either local urothelial events, reflecting the disease microenvironment, or a nephron
deficient process as shown in diabetic patients®” . Several studies indicated the early
diagnostic potential of urinary breast cancer markers'***’'.  Metabolomic evidence in
the urine suggested diagnostic and prognostic value of markers in this easily
accessible biological fluid'?. It should be noted however, that several factors could
influence the usability/reliability of wurinary MS profiling. Firstly, progressive
degradation of proteins at room temperature and to a lesser extent the number of
freeze-thaw cycles. This effect can be alleviated by the addition of protease inhibitors
only up to 2 hours from the collection and standardised sample handling™’. The
timing of collection over the day as well as the type of matrix used could influence the
intensity of peaks. Finally, confounding urological and/or nephrological pathologies

might skew the profiling process.

Despite these obstacles, encouraging evidence from colorectal and ovarian cancer
urine biomarker discovery advocates mining the urine proteome for markers of other
non-urological solid tumours'* 7. The breast cancer urinary proteome is an under-

explored venue which warrants further research.
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1.13.7 Limitations in SELDI proteomic profilings:

With advances in proteomic research and mining techniques, the limited number of
proteins detected previously in serum by traditional proteomic tools can be increased.
SELDI as a high throughput solid phase extraction technology has provided a useful
means of protein extraction, fractionation and detection. This technology presents a
good potential provided parameters, such as sample handling, analytical settings and
data analysis, are strictly controlled. SELDI was perceived as a suitable tool to enhance
the power of profiling studies through mounting the analysis numbers of both samples
and proteomic signals. Yet, a low molecular mass detection preference, selective
surfaces, and semi quantitative abilities are factors that could limit biomarker
detection. Adjoined to technical aspects including low resolution, non-sequencing
function, and slow progression to validation, identification and clinical utility have

contributed to sceptical SELDI views.

Variability and the lack of sequencing abilities currently limit wider applications of this
tool. In addition, discrepant reports failing to validate earlier SELDI studies have
encouraged conservative views of this method'”. This may be related to small sample
size and poor study design. In addition, biased non biological variability can result
from trivial non standardised step(s) in any proteomic profiling work; starting from
sample collection, and ending by data processing and analysis'®® ** '7®, Studies testing
the effects of different variables including storage tubes, clotting time, incubation
temperature, storage temperature and handling proved the importance of uniform
handling to exclude systemic pre-analytical inconsistency and false discovery’” 7,
However, sub-standardised protocols in different validation studies generated
deficient loops of conflicting results including clear variation in the discriminatory
power and direction of several putative cancer biomarkers®*. This, in addition to, pre-
existing reproducibility and identification concerns has pessimistically affected the
views on SELDI'®. In a real world setting however, unifying patient cohorts and
sampling protocols, and to a lesser extent, analysis settings are challenging tasks. A
valid system to reduce the effects of such inconsistency is the use of adequately
powered upstream studies analysing large cohorts. This would attenuate non-
biological variability effect, and select for potential clinically valid biomarker patterns.
Moving from detection to identification of biomarkers is a well-known limitation of
SELDI and other top down biomarker discovery tools. Nonetheless, potent cancer
biomarker signatures can be transiently used in multi centre validation providing a
proof in support of or against their relevance. Identification of existing markers can

then be established using other conventional downstream methods.

The identification of acute phase proteins or proteins resulting from exoproteases, as

candidate biomarkers in SELDI reports also raised some concerns about this profiling
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method®. Nonetheless, it cannot be assumed that such findings imply
underperformance. After all; any signal, including proteolytic products and acute
response players, can reflect a milestone in tumourigenesis®’. As long as candidate
biomarkers are validated and are not merely false positive biomarkers, their role in

cancer evolution remains a potential®®”’.

The small size and poor design of some studies makes validation of many biomarkers
quite challenging®®® "', Evidently, standardised biomarker discovery protocols are
crucial for future unbiased discovery. Candidate biomarker validation, verification and
authentic identification should be the basis for any discovery effort, should
discriminatory biomarkers be unveiled. Following similar biomarker discovery
methods with strict standardised steps would reduce the rate of false discovery and
recover some of the reduced confidence in this field. This is supported by recent
findings indicating common biomarker findings despite the variability hurdle facing
SELDI profiling; a promising sign motivating further focused and standardised profiling

efforts'®.

1.14 Early onset breast cancer

Early onset breast cancer occurring in women below the age of 40 years accounts for
5-10% of all breast cancer cases'™ **. This group of patients generally show worse
prognosis, especially in the case of BRCA1/2 mutation carriers'®. Although adjuvant
therapies are widely used in the younger breast cancer age groups, and despite an
overall decrease in mortality from breast cancer, early onset breast cancer mortality
rate has not decreased over the years' ', In contrary, early onset breast cancer is
commonly associated with poor prognosis'™. This paradoxical behaviour between
early and later onset disease can be explained by early diagnosis in the older age
group by targeted screening programs, and more importantly, a distinct biological
behaviour between the two groups. This was demonstrated in a large study involving
over 5,000 patients with early onset breast cancer where larger tumours, lymph node
involvement and higher grade tumours were noted over a median of 11 year follow up
period'®. Most of the 45% deaths reported in the former study occurred within the
first five years. Such poor prognosis has been previously attributed to higher grade
tumours in this group of patients'. In agreement with these findings, reports showed
that over 40% of patients with grade 3 tumours and 29% of patients with grade 2
tumours died as opposed to no mortalities recorded with grade 1 disease'™. Other
reports indicated that HER-2 positive and p53 over-expression were associated with
younger breast cancer patients and that HER-2 over-expression correlated with lymph

189

node metastasis Interestingly, tissue microarray studies in late onset disease have

revealed a link between basal type tumours and Fhit, Wwox, AP2a*®. But, no such
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effort was directed towards early onset tumours, which are a biologically distinct
entity. The biological basis for the variable response to neo-adjuvant chemotherapy
(anthracycline based) and surgical treatment in early onset and locally advanced breast
tumours remain an unresolved issue. Although pre-treatment, tumour grade and
nuclear proliferative activity in the general population were shown to be prognostic in
terms of response to anthracycline based chemotherapy'®, inconsistent findings in

different studies undermine results®%,

The distinct more aggressive behaviour of early onset breast cancer necessitates
extensive investigation of the molecular pathways involved in the disease in order to
predict and improve the outcome of patients with this disease. Studies should be
focused not only on chemo-responsiveness, but also overall responsiveness and

outcome to enable effective personalised treatment plans.
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1.15 Project aims and investigation outline

This project focuses on the diagnostic and prognostic breast cancer biomarker

discovery. This is a three-stage project aiming to contribute to the growing evidence

in this field. The areas covered here in are detailed below:

1.15.1 Archival sample proteomic analysis

Firstly, we aimed to test the efficacy of archival sample analysis in proteomic studies,

which could provide a potential rich resource for future proteomic discovery and

validation studies. The following areas were explored:

1.

Assessment of 30 vyear old urine and serum samples using different

chromatographic arrays and SELDI combinations.

Strong anion exchange (SAX) fractionation and the optimisation of serum

sample preparation using different chromatographic arrays, buffers, matrices

and settings.

Multi-centre pilot analysis of archival serum using standardised SELDI analysis

conditions and settings.

1.15.2 Breast cancer diagnostic serum biomarker discovery

A large blinded prospective study to identify differential serum proteomic profiles

between invasive breast cancer, benign breast disease and healthy volunteers was

achieved through the following stages:

1. A large cohort of fractionated serum samples (1041) representing the three

different groups was used in this investigation in order to achieve acceptable
power and statistical confidence. The highly dynamic and complex serum
obstacle was tackled by strong anion exchange (SAX) chromato-focusing and
fractionation. A further sample of urea/CHAPS denatured serum was analysed
in parallel.

Assessment of fractions and optimisation of chromatographic, preparation
and analysis conditions using the SELDI platform was conducted. This lengthy
stage illustrates the most favourable conditions and templates for meaningful
MS analysis and potentially successful biomarker discovery.

Robotic preparation and standardised SELDI analysis was performed using
three different fractions as well as denatured serum samples. Quality control
measures were maintained to reduce false positive observations.

Two independent bioinformatic analyses were conducted and validated
candidate proteomic biomarkers were reported. Further biomarker pattern
(multivariate) analysis establishing classification rules between different

groups was tested.
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5. An independent validation study in a partner centre using a different MS
platform (MALDI-TOF MS) was conducted to select for the most stringent
markers.

6. Biomarker purification and identification using several methods including
resin/liquid chromatography, SDS PAGE, free flow electrophoresis, and tandem

mass was completed.

1.15.3 Early onset breast cancer prognostic biomarker discovery
In an attempt to elucidate the biological pathways determining early onset breast
cancer treatment response, a multi-centre analysis of sera from a large cohort is
performed.
It was anticipated that markers from this effort will enable more personalised
treatment and possibly improve patient outcome.

1. Identification of potential early onset breast cancer proteomic prognosticators
was carried out using a novel MudPIT analysis platform'?, in collaboration with
the Biomedical Research Foundation of the Academy of Athens (BRFAA).

2. This study involved 399 serum samples from the Prospective study of
Outcomes in Sporadic versus hereditary breast cancer (POSH) cohort™,
representing closely matched good and poor outcome patients.

3. Qualifying differentially expressed biomarkers were validated by sandwich
ELISA assays based on their functional and pathological pathway relevance.

29



B Zeidan Breast cancer biomarker discovery

30



B Zeidan Breast cancer biomarker discovery

Chapter 2

Materials and Methods
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2. Materials and methods

2.1 Sample collections

2.1.1 The Guernsey cohort

The Guernsey samples were originally collected between 1977 and 1991 and involved
the collection of serum and urine samples from women aged 35 years or older who
lived on the island of Guernsey™. All participants gave voluntary written informed
consent for the use of blood and urine samples for research purposes. Blood samples
were collected using a butterfly needle and, two vacutainers of venous blood (from the
non-dominant anti-cubital fossa) were taken; 50 ml for sera and blood clot, and 20 ml
in an EDTA tube for plasma and cells. The samples were allowed to stand for one hour
at room temperature (RT) to allow the blood clot to form. Samples were then
centrifuged at 2000rpm for 20 minutes at RT. The serum fraction was removed by
aspiration and aliquoted into 8x2ml labelled Sarstedt tubes and stored at -20°C.
Fourteen serum samples from the Guernsey breast cancer cohort were randomly
selected for our study™®. Seven samples were from women who were healthy at the
time of sample collection, and seven were from women who were diagnosed with
breast cancer. The mean age of the participants with cancer at the time of sample
collection was 59.4 years versus 59.6 years for the non-cancer control group.
Although small, the two groups were otherwise well matched for menopausal status
and had no family history of breast cancer. Each phase of the study was approved by
the Guernsey Research Ethics Committee.

2.1.2 The Wessex cohort

Serum samples from a recently collected cohort of breast cancer and healthy
volunteers obtained from the Wessex region were analysed. This collection was
approved by the Southampton General Hospital NHS Trust Ethics Committee (R&D No.
RHM CAN 0392, REC Reference: 05/Q1702/13) and informed consent was obtained
from all participants in the study. Serum samples from this cohort were collected
between 2005 and 2010 from volunteer females covered by the National Health Service
Breast Cancer Screening Programme (aged between 47-73 vyears), samples were
collected from 347 volunteers who were recalled for further investigations following
routine three yearly mammographic screening). Serum samples were prepared after 45
minutes coagulation time, centrifugation at 4000rpm for 15 minutes and stored at -
80°C within 90 minutes of collection. A maximum of three freeze thaw cycles were

allowed for each sample.
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2.1.3 The POSH cohort

The POSH cohort is a prospective study recruiting 3,000 women aged 40 years or
younger at breast cancer diagnosis between 2001 and 2007. This study obtained
ethical approval from the South and West Multi-centre Research Ethics Committee
(MREC 00/6/69). Written informed consent was obtained from patients at study entry.
Family history and known epidemiological risk data were collected alongside clinical
information about diagnosis, treatment and clinical. Follow up data were collected
annually after the first year. A blood sample (30 ml) was collected from each recruit.
Whole blood (for DNA) and serum aliquots were then stored at -80°C. Sera from
patients with none metastatic early (stage 1-2) invasive ductal carcinoma (IDC) patients
were analysed. Serum samples (203 good outcome vs. 196 poor outcome) were
collected under strict criteria; to explore prognosticators key to patient outcomes.
Patients who underwent treatment for breast cancer and had a disease free survival
(DFS) of at least 4 years following treatment were denoted as the good outcome group,
and were compared to other patients who showed less favourable outcomes

(uni/bilateral recurrence, metastasis or death) within 2 years of treatment.
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2.2 Reagents and solutions
2.2.1 SELDI/MALDI analysis

2.2.1.1 Serum denaturing buffers
U9 buffer (9 M Urea, 2% CHAPS, TrisHCI pH 9)
Ul buffer (1 M urea, 0.2% CHAPS, Tris HCL pH 9)

2.2.1.2 Serum (SAX) fractionation (Bio-Rad Catalogue nhumber: K10-00007)
Buffers and solutions:
ProteinChip U9 buffer (9 M urea, 2% CHAPS, 50 mM Tris-HCI, pH 9).
Rehydration buffer (50 mM Tris-HCI, pH 9).
Wash buffer 1 (50 mM Tris-HCI, 0.1% n-Octyl B-D-glucopyranoside , pH 9).
Wash buffer 2 (50 mM HEPES, 0.1% n-Octyl B-D-glucopyranoside, pH 7).
Wash buffer 3 (100 mM Na acetate, 0.1% n-Octyl B-D-glucopyranoside, pH 5).
Wash buffer 4 (100 mM Na acetate, 0.1% n-Octyl B-D-glucopyranoside, pH 4).
Wash buffer 5 (50 mM Na citrate, 0.1% n-Octyl p-D-glucopyranoside, pH 3).
Wash buffer 6 (33.3% isopropanol, 16.7% acetonitrile, 0.1% trifluoroacetic acid)

2.2.1.3 Protein array wash and binding buffers
The following buffers were used in array preparation for SELDI analysis:
Weak cation exchange (WCX) CM10 arrays
CM10 Wash/binding buffer: (50 mM Ammonium acetate, pH 4- 4.5)
Strong anion exchange (SAX) Q10 arrays
Q10 Wash/Binding buffer (50mM Tris HCI, pH 8-10)
Immobilised metal affinity (IMAC) arrays
IMAC Wash/binding buffer: (0.1 M sodium phosphate, 0.5 M sodium chloride, pH 7).
IMAC charging solution: (0.1 M cupric sulphate).
IMAC neutralising solution: (0.1 M sodium acetate, pH 4).
Reverse phase (RP) H50 arrays
H50 Wash/binding buffer: 10% acetonitrile, 0.1% TFA

2.2.1.4 Energy Absorbing Molecules (EAM)
50% Sinapinic acid (SPA) was prepared by adding 200 ul of 100% acetonitrile (ACN)
and 200 pl of 1% triflourouacetic acid (TFA) to 5 mg SPA.
a-Cyano-4-hydroxycinnamic acid (CHCA) was prepared by adding 500 ul 100% ACN
and 500 pl 1% TFA to 25 mg CHCA.
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2.2.1.5 In-Gel digestion reagents
Wash solution: 50% (v/v) methanol and 5% (v/v) acetic acid.
Ammonium bicarbonate: 100 and 50 mM ammonium bicarbonate solutions were
used.
Reducing solution: 10 mM DTT
Alkylating agents: 100 mM iodoacetamide (IAA)
Trypsin solution: Unless stated otherwise, Promega (V511A) Sequencing Grade
Modified Trypsin was used for protein digestion. A protease: protein ratio of 1:30
(w/w) was used for protein sequencing. 20 ng/ul trypsin was prepared by adding 1.0
ml of ice cold 50 mM ammonium bicarbonate to 20 ug of sequencing-grade modified
trypsin concentration. Trypsin solution was kept on ice until use. The trypsin used
was a sequencing-grade enzyme that has been modified to inhibit autolysis and to
minimise non-tryptic protease activities.

Extraction buffer: 50% (v/v) acetonitrile and 5% (v/v) formic acid.

2.2.1.6 In-Solution protein digestion solutions
All of the reagents were prepared immediately prior to use. The water used in all
components of the procedure was HPLC type water. The urea, Tris, ammonium
bicarbonate, and acetic acid were the highest grade available.
Tris HCI stock: This was prepared by dissolving 12.1g of Tris base in 200 ml of water.
Adjustment of the pH of the solution to pH 7.8 was achieved with 6 M HCI. Water was
added to give a final volume to 250 ml. The final Tris concentration used was 0.4 M.
This solution was stored at 4 °C for a maximum of 30 days.
Reducing agent: 30 mg of DTT was dissolved in 750 pl of water and 250 ul of Tris
stock was added and vortexed to achieve a final concentrations of 200 mM DTT and
100 mM Tris.
Alkylating reagent: 36 mg of iodoacetamide (IAA) was dissolved in 750 ml of water
and 250 pl of the Tris stock was added and mixed to make a final concentration of 200
mM iodoacetamide and 100 mM Tris.
Trypsin solution: 25 4 of ice-cold Tris stock and 75 ul of ice-cold water were added
to 20 ug of sequencing-grade modified trypsin (Promega V5111). The final

concentration of trypsin was 200 ng/ul and solution was kept on ice until use.
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2.2.1.7 ZipTip C18 desalting tips (Millipore, TNO72)
The following solutions were used in accordance with the manufacturer’s
recommendations:
Wetting solution: 50% methanol (MeOH) in (TFA) in HPLC water.
Equilibration and washing solution: 0.1 %TFA in HPLC water.
Sample preparation solution: 2.5% TFA in HPLC water (5X stock solution).
Peptides elution solution: 50% MeOH/ 0.1% formic acid in HPLC water.

Proteins elution solution: 75% MeOH/ 0.1% formic acid in HPLC water.
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2.3 Methods

2.3.1 SAX Fractionation and pH gradient sequential elution for

SELDI analysis
Sample Preparation
Wessex serum samples were thawed on ice and then spun at 20,000 g for 10 minutes
at 4°C. Serum samples (20 pl) were added to each well of a standard V-bottom 96-
well microplate. Protein Chip U9 buffer (30 pl) was then added to each well.
Microplates were covered with adhesive sealing film and mixed on the MicroMix 5 (set
at form 20, amplitude 7) for 20 minutes at 2-8°C.

The filtration plates were tapped several times to make sure that the dry Q ceramic
HyperD F sorbent had settled to the bottom of the plate. Rehydration buffer (200 pl)
was added to each well and plates were sealed with microplate sealing strips before
being manually shaken for five minutes. Filtration plates were then mixed on the
MicroMix 5 (form 48, amplitude 7) for 60 minutes at room temperature. Plates were
then unsealed, put on a vacuum collar and placed on a vacuum manifold. Vacuum was
applied to remove the buffer from the filtration plate and 200 ul of rehydration buffer
was added to each well. The rehydration buffer was then removed from the filtration
plate using vacuum. This was repeated for a total of three cycles.

Binding Sample With Sorbent

Samples (50 pl) from each well of the sample microplate were added to the
corresponding well in the 96-well filtration plate. Ul (50 ul) buffer was then added to
each well of the sample microplate and mixed for 5 minutes. Adhesive sealing film
was applied on the microplate during the mixing step, removed before applying

vacuum, and replaced with a new piece for each mixing to avoid cross-contamination.

Fraction collection

Vacuum was applied to the 96-well filter plate and the flow through collected into the
F1-F6 plate. Wash buffer 1-6 corresponding to fractions F1-F6 respectively was added
to each well (100 pl) of the filtration plate and mixed for 10 minutes on the MicroMix 5
(form 20, amplitude 7) at room temperature. Vacuum collection of the eluate into the
F1-F6 plates containing pH 9- organic acid eluates was completed resulting in 6

fractions based on the pl of proteins within the sample.
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2.3.2 SELDI array preparation
For consistency, a BioMek3000 (Beckman Coulter) liquid handling robot was used and
samples were analysed in duplicate. Unfractionated serum samples were mixed with
U9 (1:10 dilution) and incubated on ice for 30 min for denaturation and then

immediately stored at -80°C.

The following steps were used in array preparation using the appropriate buffers
mentioned previously for each corresponding array:

Arrays were pre-wetted with 3ul HPLC water for 5 minutes at room temperature after
which 150ul of wash/binding buffer was added to each spot, and then mixed on the
Micromix5 DPC shaker for 10 minutes. The wash/binding buffer was then removed
and discarded. This step was repeated for a total of three times.

Note: IMAC arrays were activated with 50 ul charging solution and then washed with 50
ul neutralising solution followed by 200 ul HPLC water prior to this step. Duplicates of
10ul (mixed with 90ul wash/binding buffer to generate 1:10 dilutions) of each
serum/fraction sample were then incubated on Micromex 5 DPC (form 20, amplitude
7) for 60 minutes. Samples were then dispensed and arrays washed with 200 pl
wash/binding buffer for a total of three times. Arrays were then washed with HPLC
water for 3 minutes on the Micromex 5 DPC (form 20, amplitude 7) and water was then
dispensed. Arrays were left to air dry for 20 minutes. Two applications of 50%
Sinapinic acid matrix (SPA) were added to each spot in 10 minutes intervals and arrays
were left to air dry. Arrays were immediately analysed using the SELDI enterprise
platform.

2.3.3 SELDI Analysis

Serum samples were analysed using the Enterprise 4011 SELDI analysis platform.
Arrays were analysed using the Protein Chip Data Manager (PCDM v3.0.7) Software.
The following settings were used: focus mass of 5kDa, matrix attenuation at 2.5kDa
with a mass range between 0 and 100kDa for the Guernsey pilot study and 0 and
200kDa for the Wessex serum profiling study. External calibration of the SELDI was
performed using a protein standard calibration kit, comprising recombinant hirudin
(6.96kDa), equine cytochrome C (12.23kDa), equine myoglobin (16.95kDa), and
carbonic anhydrase (29.0kDa). Mass accuracy was calculated to be approximately
0.02% of actual mass value. Noise definitions were adjusted to eliminate the chemical
hoise from the energy absorbing matrix (SPA) in the low mass range, and the area

below the detector blinding setting (m/z 2,500) was excluded.
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Peaks with a signal-to-noise (S5/N) ratio of 5 or higher and a valley depth greater than
or equal to 3 were considered for clustering. Qualified peaks which were present in at
least 10% of the spectra, were used to generate peak clusters. Unlabelled spectra were
then labelled at the average mass of the cluster so that a peak intensity value was
obtained for each spectrum. The mass window for each cluster was set at 0.3% of the
peak mass for spectra optimised for low mass (0-30kDa), and at 2% of the peak mass
for spectra optimised for high mass (30-100kDa) and (30-200kDa) for the Guernsey
(G4) pilot and the main Wessex studies respectively. To ensure that no spurious peaks
were ultimately used as candidate biomarkers, peaks were evaluated and relabelled as
required prior to the final statistical analysis. Qualified mass peaks (S/N >5) within
m/z range of 2.5-100kDa or 2.5-200kDa were then auto detected. Peak clusters
were completed using a second pass peak selection (S/N >2, within 0.3% mass
window) and estimated peaks were then added. The coefficient of variation for the QC

spectra was calculated to be between 20-30%.

2.3.4 SELDI data processing, peak detection and statistical

analysis

All spectra had baseline subtracted and were then normalised to the total ion current
within the m/z range of 3-100 and 3-200kDa for the Guernsey pilot and Wessex
cohort analysis respectively. Normalisation factors were then examined to identify
outlier spectra indicating possible variation due to sample processing. Spectra that
had normalisation factors greater than two-fold higher than the average were excluded
from the analysis. A cluster graph was then generated using the Protein Chip Data
Manager (PCDM) v3.0.7 Software, where each peak intensity was plotted against m/z
for the different sample groups (cancer, benign disease and healthy control).
Comparisons between groups were made using the Mann-Whitney U test. The
Benjamini and Hochberg formula was adopted to adapt for false discovery rate (FDR)
associated with multiple testing following which a P-value of <0.05 for a given peak
indicated the significant differential expression of peaks. The coefficient of variation
(CVs) of the pooled reference (QC) samples were calculated using the formula:

cVv =V ((CV?*+CV+CV ?)/n) where n represents the number of peaks within the

spectra.

2.3.5 SELDI Instrument performance evaluation
QC and performance checks for the SELDI analysis included calibration and alignment
of the Biomek 2000 robotic platform, which were performed monthly. Mass accuracy,
resolution and sensitivity of the spectrometer were evaluated bimonthly using insulin
and bovine IgG standard chips (Bio-Rad). A normal phase array, NP20 was run weekly,

loaded with the All-in-1 Protein standard Il (Bio-Rad) for external calibration of the
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spectra. To minimise slight systematic shifts in the time-of-flight data from one spot
to another the PCDM software was used to calculate a spot-to-spot correction factor.
The correction factor was calculated from 4-6 spectra of All-in-I Peptide Standard
(Bio-Rad) on NP20 Protein Chip.

2.3.6 Principal Component Analysis (PCA) of Spectra

For an informative statistical analysis of the acquired proteopeptidomic profiles, PCA
was used, as is commonly employed in microarray profiling cluster analysis. PCA is
designed to capture variances in the given data sets in terms of their principal
components, meaning a set of variables which defines a projection encapsulating the
maximum amount of variation in a data set. This is a quick unsupervised statistical
tool to identify separation between different groups, which is a good indicator for

differential expression.

2.3.7 Receiver Operating Characteristic (ROC) Analysis

A statistical evaluation of intensity changes associated with all protein peaks generated
by MS was performed to validate candidate protein peaks differential expression, thus
testing their potential as cancer biomarkers. ROC analysis was used in test situations
where diagnostic tests reveals numerical results that can be compared to an
independent diagnosis, confirming either the presence or absence of disease '*’. The
Protein Chip Data Manager (PCDM) software applies ROC analysis to establish two
parameters: sensitivity and specificity. The PCDM software calculates the area under
the ROC curve (AUC) which is a combined measure of sensitivity and specificity and
numerically describes the performance of a particular analysis/biomarker(s). The area
under the curve (AUC) indicates the overall performance of a given test and can be
interpreted as the average value of sensitivity for all possible values of specificity and
can take any value between 0 and 1 since both x and y axes can have values between
these ranges. The closer AUC is to 1, the better the overall performance of the test or
biomarker. A test with an AUC of 0.9 and higher is considered highly accurate, while a
moderately accurate test will have an AUC value between 0.7-0.89. An AUC value that

197

is lower than 0.7 is considered inaccurate **’. This is a useful tool for the prioritisation

of candidate markers for further evaluation and validation.

2.3.8 SDS PAGE gel preparation
Large format 25x20.5cm (W x L), 1.0mm thick SDS PAGE gels were prepared using the

proportions in Table 1, addition of freshly prepared ammonium persulphate (APS) was
leaved until last to prevent premature gel setting. Assembly of the equipment, casting
and running of the gels was carried out according to the Bio-Rad Protean® Il xi Cell

instructions.  Briefly, the resolving gel mixture was prepared and then pipetted
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between clamped plates, pre-cleaned with dH20 and 70% methanol, set in a casting
system. The gels were then overlaid with water to ensure a straight edge. The gels
were left to set for ninety minutes before being transferred to the fridge overnight to
ensure complete polymerisation.  Stacking gels were made according to the
proportions detailed in Table 1, pipetted in between the plates on top of the resolving
gel, and a comb inserted and then left to polymerise for 30-60 minutes prior to
loading. 30 pl of each sample was combined with 50 pl of sample buffer (see Table 2),
before being heated to 95°C for 1 minute to further denature the proteins. The gels
were then attached to the gel tank cooling core and running buffer (see Table 3) was
added to the top and bottom chambers before loading the samples into the wells.
Samples were run in between two wells containing 20 pl of protein marker. A current
of 100 mA was then applied for approximately 6 hours to move the proteins down the
gels. This was done with cooling, provided by running water through the cooling core,
to minimise uneven heat across the gels. Gels were then rinsed three times, for five
minutes each, in distilled water. Following this, Biosafe Coomassie (Bio-Rad) or silver
staining (Invitrogen) was used to stain the gels prior to destaining following the
manufacturer protocols. Protein band molecular weights were determined by scanning
the gels using a GS-800 densitometer in conjunction with Quantity OneR software
(Bio-Rad).

2.3.9 Immunoblotting
Protein concentrations were measured using the Bradford protein assay (Bio-Rad).
Briefly, samples were loaded on 12% SDS-PAGE gels, transferred to PVDF membranes
and blocked with 5% milk in TBST buffer (20 mM Tris-HCI, 120 mMNaCl, 0.1% Tween)
for 1 hour. Membranes were then incubated at 4 °C with primary (OPN, ANX A3)
antibodies overnight.  After washing, the blots were incubated with horseradish
peroxidase conjugated anti-rabbit IgG and anti-mouse IgG secondary antibodies (GE
Healthcare) for two hours. Immunoblot signals were quantified using Quantity One

image analysis software (Bio-Rad).

2.3.10 Serum protein quantification
Total protein quantitation was carried out using a Qubit™ fluoremeter and the Quant-
ITTM Protein assay kit (Invitrogen) based on the manufacturer instructions. Serum was
diluted 1/100 and 5pl quantitated. Quant-iT reagent and buffer were combined at a
ratio of 1:200 and 190uL for each of the three standards and 195ul for each sample
was then aliquoted into QubitTM assay tubes. The standards and samples were then
added to the corresponding tubes, vortexed for 2-3 seconds, and left to incubate at
room temperature for 15 minutes. The tubes were then inserted into the QubitTM

uorometer, calibrating with the three standards first and the QF number for each
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serum sample noted. This number was then converted into actual serum protein

concentration using the equations below.

(QF value x 200/x) _ dilution factor

[Sample]
Where:
QF value = value given by QubitTM fluorometer in ng/ml
x = uL sample added to assay tube

So:

[Serum pg/ml] = (QF value x 200/5) x 100

Chemical 10% resolving gel 4% stacking gel
Values in ml Values in ml

dH20 49 6.657

1.5 M Tris-HCI, pH 8.8 25 -

0.5 M Tris-HCI, pH 6.8 - 2.25

20% SDS 0.5 0.045

40%Acrylamide/Bis- 25 1

acrylamide (37:1)

TEMED 0.05 0.01

10% APS 0.5 0.038

Table 1. PAGE composition - Adequate for two gels
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Chemical Final Concentration To make 10 mi
Volume in ml

Glycerol 25% 2.5

20% SDS 20% 1

1 M Tris-HCI, pH 6.8 62.5mM 0.625

0.02%Bromophenol Blue 0.01% 5

dH20 - 0.875

Made up as above, DTT added as required

Dithiothrietol (DTT) 350 mM 54 mg/ml

Table 2. PAGE sample buffer

Chemical Final concentration To make 1L

Tris 25 mM 3¢9

Glycine 192 mM 144 g

20% SDS 0.1% 5ml

dH20 - to 1L

Table 3. SDS PAGE running buffer pH 8.3
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2.3.11 CM10 carboxymethyl (WCX) spin columns
CM spin columns were lightly tapped to settle the sorbent, and then centrifuged at ~80
X g (1,000 rpm) for 30 seconds to remove the buffer. CM10 wash/binding buffer and
HPLC water were used for the preparation and washing of the columns in an identical
protocol to the optimised CM10 array preparation protocols. Samples were then added
and vortexed for 60 minutes. Samples were eluted twice using serial ionic strength
CM10 buffer pH 4.5 (strength between 200mM - 1M). To ensure that the CM Ceramic
HyperD F sorbents possessed similar protein binding properties as the WCX protein
chip surface, WCX SELDI mass were compared with raw spectra from raw serum, the
CM10 serum/fractions and the proteins isolated using the CM Ceramic HyperD F

sorbents from the low molecular weight serum fraction.

2.3.12 Array preparation and protein retentate harvesting

To identify proteins directly from the WCX arrays, 10 ul aliquots of samples were
applied to two Protein Chip arrays (i.e., 16 spots) and prepared as described in the
SELDI experimental section. To harvest the retained peptides/proteins, each array spot
surface was extracted five times using 10 ul of 0.5% formic acid, 50% acetonitrile (ACN)
at room temperature. The five extractions were combined and divided into two
aliquots. The first aliquot was digested in solution as described below. The second
aliquot was vacuum-dried and resuspended in 10 pul of Laemmli or Tris Tricine sample
buffer, and resolved by SDS-PAGE (4-15% -Bio-Rad-) or Tris Tricine (10-20% -Bio-
Rad) gel electrophoresis respectively.

2.3.13 Serum pre-fractionation by free-flow-electrophoresis
(FFE)

Pre-fractionation of serum samples by isoelectric focusing was performed on a BD™
FFE Kit IEF 3-10 free flow- electrophoresis (FFE) instrument (Becton, Dickinson and
Company) according to separation principles described™ *°. Before application, serum
samples were equilibrated with an equal volume of FFE separation medium containing
traces of 2-(4-sulfophenylazo)-1,8- dihydroxy-3,6-naphthalenedisulfonic acid
(SPADNS) (Sigma- Aldrich, Taufkirchen, Germany) to ease optical monitoring of sample
migration within the separation chamber. The FFE-fractionation chamber was coated
with FFE separation medium (19.6% w/w Prolytes™ pH 3-10 (BD Bioscience, Munich,
Germany), 40.3% w/w urea, 3.8% w/w mannit) containing 0.09% w/w hydroxyl propyl
methyl cellulose (HPMC). Subsequently, free flow isoelectric focusing (FF-IEF) was
performed at 10°C in a separation chamber positioned horizontally (0.4 mm spacer)
with a working voltage of 500 V (18 mA) and a total flow rate of 60 ml/h. Following
media were used: Counter flow medium (Inlet 8; 40.3% w/w urea, 3.8% w/w mannit);

anodic stabilization medium (Inlet 1-2; 94.2% w/w counter flow medium, 100 mM
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H2504, 150 mM aminobutter acid, 100 mM nicotinamin, 15 mM diglycine); separation
medium (Inlet 3-5), cathodic stabilization medium (Inlet 6-7; 90.3% w/w counter flow
medium, 150 mM NaOH, 75 mM EtOH-Amine, 75 mM AMPSO, 150 mM TAPS, 30 mM
HEPES); anodic circuit electrolyte (100 mM H2S04); cathodic circuit electrolyte (100 mM
NaOH). Serum samples were applied into the separation chamber via the middle
sample inlet at a flow rate of 0.8 ml/h. Fractions were collected in 96 well plates
(fraction numbers 1 (anode) to 96 (cathode)) and immediately stored at - 20°C until
use. For monitoring separation, aliquots of selected fractions were analysed by MS
using NP20 arrays and SELDI.

2.3.14 In-Gel tryptic digestion
Candidate silver stained bands representing the marker of interest, blank gel pieces
from a spot-free region, and reference spots (known marker proteins from the gel
ladder) were excised and placed in a 96-well plate. In-gel digestion was performed
automatically using a ProGest robotic system (DIGILAB) following standard digestion
protocols®*®. In brief, gel plugs were destained by alternating between a 25 mM
ammonium bicarbonate (ABC) (Fisher) and 100% acetonitrile (ACN) solutions. Plugs
were then incubated with 10 mM DTT (Bio-Rad, Hercules, CA) in 25 mM ABC for 30
minutes; 56°C for 10 minutes and then allowed to cool to room temperature for the
last 20 minutes. The reducing solution was then replaced with 100 mM iodoacetamide
(IAA) (Fluka, Buchs, Switzerland) in 25 mM ABC and incubated for 45 minutes. The gel
plugs were then washed twice with alternating solutions of 25 mM ABC and 100% ACN.
Gel plugs were dried by two additions of 100% ACN. 10 pl of modified sequencing-
grade trypsin at a concentration of 10 mg/ml was then added. The gel plugs were
incubated in the trypsin solution for 10 minutes and then 15 pul of 25 mM ABC were
added to each well. The gel plugs were digested for 4 hours at 37°C and the reaction
was stopped by adding 7 ul of 3% formic acid to each well. The supernatant was
removed and the extracted peptides were reconstituted in 25 ul 0.1% TFA for tandem

mass analysis.

2.3.15 In-Solution Protein Digestion
Protein samples were evaporated and resuspended in 6 M urea, 100 mM Tris buffer at
10 mg/ml. 5 ul of the reducing reagent (DTT) was added and mixed with the sample
by gentle vortexing for 1 hour at room temperature. Alkylating reagent (IAA) (20 pul)
was then added and mixed with the sample by gentle vortex for 1 hour. DTT (20 pl)
was then added any excess iodoacetamide. Samples were mixed gently and allowed to
react at room temperature for 1 hour. The urea concentration was reduced by diluting
the reaction mixture with 775 ul of water. This dilution reduces the urea concentration

to ~ 0.6 M, a concentration at which the trypsin retains its activity.
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Trypsin solution (20 pg/pl) was added and mixed, then digestion was allowed
overnight at 37 °C. This amount of trypsin gives a protease-to-substrate rati of 1:50.
The reaction was then stopped by adjusting the pH of the solution to <4 by adding
concentrated acetic acid as needed. The digest was then either analysed directly or

concentrated by evaporation.

2.3.16 Desalting of tryptic peptide mixtures

ZipTip C18 (Millipore) was used for purifying and concentrating femtomole to picomole
amounts of protein and peptide samples prior to MS analysis. The protocol followed
was based on the manufacturer’s instructions to facilitate protein or peptide binding,
salt and detergent removal, and sample elution for direct MS/MS analysis. Tips were
pre-wetted repeatedly with 10 pul wetting solution and ZipTips were washed three
times with the equilibration solution. Samples were then aspirated and dispensed
seven times. Tips were washed and dispensed to waste using seven cycles of wash
solution. Samples were then eluted three times using 3 ul of elution solution into a
clean vial using a standard pipette tip. Eluates were dried using a Speed-Vac
centrifuge at 35 °C. If necessary, samples were stored at -20 °C (< 24 hr) or -80 °C
(for longer periods). Prior to MS/MS analysis desalted peptide lyophlates were
solubilised with 1 pl matrix solution (10 pg/ul a-cyano-4-hydroxy-cinnamic acid in
0.1% trifluoroacetic acid: acetonitrile, 1:1, v/v). Half a microliter of sample mixture was
loaded on a MALDI target plate (384 spot Bruker Ultraflexlll) and allowed to dry in the
dark at room temperature. The samples were then analysed using a MALDI TOF/TOF
mass spectrometry. Alternatively, samples were analysed using ESI LC MS/MS.

2.3.17 MS/MS analysis by Matrix Assisted Laser Desorption

lonisation Mass Spectrometry (MALDI-TOF/TOF)
For peptide profiling by MALDI TOF/ TOF MS we utilized the Ultraflex Il platform

(Bruker Daltonics, Bremen, Germany) and a 384 format plates. Samples freshly
desalted and eluted from ZipTip beads were diluted 1:1 with TFA (0.1% (v/v)). 0.5ul
sample and 0.5ul a-cyano-4-hydroxycinnamic acid (CHCA) were mixed on each spot.
Sample/matrix solution was air dried in the dark. Mass spectra were acquired by an
Ultraflex MALDI-TOF/ TOF mass spectrometer (Bruker Daltonics) equipped with a
smartbeam™ solid-state laser in a reflectron positive-ion mode. In MS-mode 400
single-shot spectra were accumulated. An external calibration of the MS-spectra was
performed by acquiring calibrant spectra from the calibrant positions on the target.
The MS-spectra were automatically processed by a baseline subtraction and a chemical
hoise filtering in the flexAnalysis (Bruker Daltonics) software. Only compounds with
S/N>7 were selected for automatic MS/MS measurements. MALDI MS/MS spectra were

recorded on the selected compounds. For each MS/MS spectrum, 300 laser shots were
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recorded for the parent signal and 800 laser shots were recorded for the fragments.
The MS/MS spectra were processed by smoothing and baseline correction using the
flexAnalysis software. After acquisition of the MS/MS spectra a Mascot database
search was triggered via the BioTools software (Bruker Daltonics). The database used
for the search was the MS/MS DB database. The search parameters used were:
taxonomy human, no enzyme specificity, no fixed or variable modifications, MS-
tolerance 50 ppm, MS/MS tolerance 0.7 Da, and instrument type MALDI-TOF-TOF.
Samples were measured from a minimum of four independent MALDI spots in the mass
range of 200-1,800 Da.

2.3.18 Liquid Chromatography Electrospray lonisation tandem
mass (LC-ESI-MS/MS) analysis

To identify candidate markers from the Wessex profiling analysis, peptides were
analysed by LC-MS/MS using a Surveyor LC system and LCQ Deca XP Plus
(ThermoScientific). Briefly, peptides were resolved by reverse phase chromatography
(Biobasic column, ThermoScientific; 180uM x 15mm) over a 30 minute ACN gradient at
a flow rate of 2 ul/minute. Peptides were ionised by electrospray ionisation and MS/MS
was acquired on ions dependant on their charge state and intensity. Mass accuracy
and sensitivity of the MS was confirmed with the direct infusion of glufibrinopeptide
(2.5 pmoles/ul) and LC/MS/MS performance was assessed with a digest of BSA. The
tryptic peptide analysis for accuracy, sensitivity, retention time reproducibility, and
protein sequence coverage were all within the specified ranges. BSA quality control
checks were performed prior to the analysis of the sample and post-acquisition.

2.3.19 LC MS/MS Data processing
The data files (.raw) were converted into mascot generic files using the MassMatrix File
Conversion Tool (Version 2.0; http://www.massmatrix.net) for input into the Mascot
searching algorithm (Matrix Science). The data files were searched against SwissProt
(v. 2010_06) NCBInr (v. 20080527) using the following search criteria: tryptic peptides
with up to one missed cleavage and carbamidomethylation of cysteines and oxidation

of methionines.

2.3.20 Biomarker immunoprecipitation (IP)-MS
Serum fractions containing annexin A3 (ANX A3) and apolipoprotein C1 (ApoC1) were
immuno-depleted using the pMACS protein A/G microbeads kit (130-042-601,
Miltenye Biotec) as per manufacturer instructions. In brief, either 2 ul monoclonal ANX
A3 antibody (sc-134260, Santa Cruz) or 3 ul monoclonal ApoCl antibody (ab5400,
Abcam) was added to 100 ul of protein A/G and then mixed with 200 ul of sample

before incubating on ice for 30 minutes. The mix was loaded onto a magnet mounted
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UMACS column followed by 4 washes with PBS-T. Purified protein was eluted by
ACN/TFA/Isopropranol (16.7%/0.1%/33.3%-50%).

2.3.21 3D MudPIT analysis of the POSH cohort

2.3.21.1 Analysis outline

A novel quantitative proteomic and phosphoproteomic analysis was conducted based
on previous breast cancer tissue and benign prostate hyperplasia serum studies' *°',
Briefly, triplicate analysis of all samples was performed using high-performance size-
exclusion chromatography (SEC) for the pre-fractionation of serum proteins followed
by dialysis exchange and solution phase trypsin proteolysis. The tryptic peptides were
then fractionated offline with hydrophilic interaction chromatography (HILIC). Each
fraction was then analysed online with reverse phase nano ultra-performance
chromatography to nanoelectrospray ionization - tandem mass spectrometry (RP
nUPLC - nESI MS/MS) using an ion trap mass analyser. For the spectral processing,
SpectrumMill and InsPecT software programs and a novel label free software tool, for
the spectral counting with spectral intensity determination, were used for the
qualitative and quantitative assessment of the proteins and phosphoproteins. The
DAVID gene ontology tool and the Ingenuity Pathway Analysis program were used for
the functional annotation of the quantitative proteome and phosphoproteome and
associated biochemical and molecular biology pathways and networks.

2.3.21.2 Size Exclusion Chromatography
Six aliquots of 70 ul from each pooled serum specimen were subjected to SEC protein
pre-fractionation using two serially connected SEC HPLC columns (Shodex Protein KW
804, 8 mm ID x 300 mm L) on the Dionex P680 HPLC Pump with PDA-100 photodiode
Array Detector. A Shodex SEC guard column was also retrofitted to this configuration
for column care and contamination protection. The eluent used for the separation of
serum proteins was composed of 10 % methanol (Sigma, 99.9 %), 50 mM KH_ PO, (Fluka,
99.5 %), 10 mM Tris-HCI (Biorad), 50 mM Ammonium Acetate (Fluka, 99 %), 0.3 M NaCl
(Carlo erba, 99.9 %) and 6 M Guanidine HCI (Gibco BRL) at pH 5.3. The injection
volume was 500 pl and each separation was carried out applying an isocratic method
at flow rate 0.2 pl/minute at 15 °C. The fractions for all separations were collected
based on the retention time of four distinct time segments into 50 pl tubes. These
segments were pooled together from the six experiments to achieve a serial
enrichment for each segment. The collected fractions were subjected to dialysis
exchange using the Slide-A-Lyzer G2 Dialysis Cassettes 2 KDa MWCO (Thermo

Scientific) with three volumes of 3 L ammonium bicarbonate buffer solution freshly

49



B Zeidan Breast cancer biomarker discovery

changed overnight. The purified fractions were concentrated to 400 pnl using a

speedvac concentrator (Eppendorf concentrator 5301).

2.3.21.3 In solution trypsin digestion of serum proteins
For each SEC segment, six aliquots of 20 ul containing 100 ug of protein, measured by
Bradford assay, were prepared for parallel trypsin digestion. The proteins were
reduced by the addition of 2 pl tris—-2-carboxymethyl phosphine (TCEP) 50 mM,
followed by incubation for 1 hour at 60 °C in heating block (WEALTEC, HB-2). The
cysteins were blocked by the addition of 1 pl of 200 mM methyl methanethiosulfonate
(MMTS) in isopropanol followed by incubation at room temperature for 10 minutes.
Trypsin digestion was performed by the addition of 6 ul of freshly prepared trypsin
solution (Roche); (500 ng/puL) and 14 pl ultra-pure water into the protein sample
which was then incubated for 12 hours at 37 °C in a heating bath. The six digested

aliquots were then pooled and lyophilised under vacuum.

2.3.21.4 HILIC peptide fractionation

The tryptic peptides were fractionated with HILIC using a poroshell column
configuration (Phenomenex Kinetex 150 x 2.1 mm, 2.6 um particle). Mobile phase (A)
was 100% ACN, 0.1 % formic acid, 15 mM ammonium formate and mobile phase (B)
was 100% H,0O, 0.1 % formic acid, 15 mM ammonium formate, pH 3.3. The peptide
samples were dissolved in 20 pl of 50% mobile phase (B) and were centrifuged at
15,000 rpm for 10 minutes. The supernatant was injected into a 20 ul sample loop
and the separation method was as follows: 10 minutes isocratic 5% (B), for 90 minutes
of gradient up to 30% (B), 20 minutes gradient up to 50% (B), 15 minutes gradient up
to 95% (B), 60 min isocratic 95% (B) and finally 10 minutes gradient up to 5 % (B). The
flow rate was 0.065 ml/min, column temperature was set at 40 °C and signal UV
response was monitored at 280 and 254 nm. The fractions were collected in a time
dependent manner every 3 minutes, they were dried for 2-3 hours with a speedvac
concentrator and stored at -20 °C until the LC-MS/MS analysis.

2.3.21.5 LC-MS-MS analysis
All LC-MS/MS experiments were performed on an iontrap system (Agilent
Technologies, 6330 XCT) retrofitted to a 1200 nano-HPLC system equipped with a
micro well plate autosampler (Agilent Technologies, Karlsruhe, Germany). Individual
lyophilised HILIC fractions were freshly reconstituted in 30 ul mobile phase A (3% ACN,
0.1% Formic acid). A 3 pl volume of the resulting sample solution was injected and
then eluted at 150 nl/min onto a 0.075 x 150 mm reverse phase capillary column
(Zorbax C18, 300 A pore, 1.8 um particle, Agilent Technologies, Karlsruhe, Germany)

retrofitted onto the nanoelectrospray source and connected to a 1P-4P coated, 8 um
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tip x 360 um OD X 75 um ID PicoTip nanoelectrospray emitter (New Objective,
Dingoes, NJ). An 0.30 x 5 mm reverse phase guard column (Zorbax C18, 300 A pore,
5.0 um particle, Agilent Technologies, Karlsruhe, Germany) was connected between the
pump outlet tubing and the capillary column. The 280 fractions collected from all
HILIC separations were analysed in triplicate. The nano-HPLC separation started with
an isocratic composition of 10% mobile phase B composed of 97% ACN, 0.1% Formic
acid for 30 minutes, followed by a gradient up to 70% (B) for 50 minutes, 10 minutes
isocratic elution at 70% (B) then 20 minutes re-equilibration. The iontrap analysis
parameters were as follows: selection of the 4 most abundant multiply charged
precursors above an absolute intensity threshold of 10* during the MS survey scan
within a mass range of 300-2200 amu with 150 ms accumulation time and Enhanced
Resolution. MS? experiments were conducted with Ultra-Scan Resolution with on flight
adjustment of collision energy using the smart fragmentation operation. Precursors
were excluded after the acquisition of 2 spectra and released again after 0.2 minute.
The MS-MS mass range window was 100-2200 amu.

2.3.21.6 Data processing and Spectral counting
All RP-nUPLC-nESI-MS? raw data files were initially subjected to data extraction/peak
picking/deisotoping and searching using the SpectrumMill software program (Agilent
Technologies, Karlsruhe, Germany). Specifically, the data extraction and signal
processing parameters were tailored for the quadrupole ion trap mass analyser that
included a signal-to-noise threshold for the precursor MS peak of >25. The
SpectrumMill results were further processed with the Scaffold software tool (version
3.0, Proteome Software, Portland, OR) in order to extract all spectra in .mgf format.
For the final tryptic peptide/protein result, the Scaffold processed .mgf data files were
processed by the InsPecT software tool (of the Center for Computational Mass
Spectrometry at  http://proteomics.ucsd.edu/LiveSearch/) that included the
contaminant list option and M oxidation, STY phosphorylation, C methylthiolation and
N deamidation as the permitted modifications. The specific data processing
parameters chosen were as follows: instrument, ESI-ION-TRAP; protease, trypsin;
parentmass tolerance, 2.5 Da; ion tolerance, 0.7 Da; maximum number of PTM allowed
per peptide, 2; PTM, delta mass: +15.999400 Da, affected: MW, type: opt; PTM, delta
mass: +79.979 900 Da, affected: STY, type: opt; PTM, delta mass: +46 Da, affected: C,
type: opt; PTM, delta mass: +1 Da, affected: N, type: opt; sequence, Human SwissProt,
common contaminants; results were filtered at a spectrum-level p-value of 0.05,

measured by hits to the decoy database.

The above processing scheme yielded two peptide/protein lists for the good and the
poor outcome serum samples. For the semi-quantitative comparison of these two

lists, the spectral counting approach was applied. For each protein identified in both
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samples, a ratio (poor outcome/good outcome) of the two total intensity sums of all
matching peptide spectra for a given protein, as reported by Inspect output, was
calculated using a devised algorithm of R programming language (BRFAA). For the
discrimination of the differentially expressed proteins various distributions where
fitted using the 'Imom' R-package for the Log® of the calculated ratios (R package,
version 1.5. URL: http://CRAN.R-project.org/package=Imom), which utilises the 'L

Moments method' for parameter estimation. All the distributions were tested for
'‘goodness of fit' using a the two-sided Kolmogorov-Smirnov test (available in R) with a
95% confidence interval. The distribution presenting the best 'goodness of fit' was the
'‘Generalised Logistic' distribution. Having the distribution parameters the P-value of

each log?® ratio was calculated.

2.3.22 Biomarker ELISA validation

2.3.22.1 ANX A2 ELISA validation
Validation of the serum ANX A2 as a prognosticator in early onset breast cancer was
validated using an independent validation set. A commercially available ELISA kit
(E91944Hu) was used as per manufacturer’s instructions. All samples and standards
were run in duplicate with absorbance measured on the ThermoMax plate reader and

data analysed with GraphPad Prism4.

2.3.22.2 ANX A3 ELISA validation
ANX A3 measurements in serum fractions were performed using a commercially
available ANX A3 sandwich ELISA kit according to the manufacturer’s protocol
(E94786Hu, Uscn Life Science). All samples and standards were run in duplicate with
absorbance measured on the ThermoMax plate reader and data analysed with
GraphPad Prism4.

2.3.22.3 Apo C1 ELISA validation
Measurements of Apo C1 levels in an independent validation set from the POSH cohort
were performed using a commercially available ApoC1 sandwich ELISA kit according to
the manufacturer’s protocols (E90252Hu, Uscn Life Science). All samples and
standards were run in duplicate with absorbance measured on the ThermoMax plate

reader and data analysed with GraphPad Prism4.

2.3.22.4 NOS2 ELISA validation
Validation of serum NOS2 level as a prognosticator in early onset breast cancer was
validated using an independent validation set. A commercially available ELISA kit

(E90237Hu) was used as per manufacturer’s recommendations. All samples and

52


http://cran.r-project.org/package=lmom

B Zeidan Breast cancer biomarker discovery

standards were run in duplicates with absorbance measured on the ThermoMax plate

reader and data analysed with GraphPad Prism4.

2.3.22.5 DNMT1 ELISA validation
Validation of serum DNMT1 as a prognostic biomarker in early onset breast cancer was
validated using an independent validation set from the POSH cohort. A commercially
available ELISA kit (E98244Hu) was used as per manufacturer’s recommendations. All
samples and standards were run in duplicates with absorbance measured on the

ThermoMax plate reader and data analysed with GraphPad Prism4.
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Chapter 3

Results
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3. Results

3.1 Proteomic profiling of archival samples: The

Guernsey cohort

3.1.1 Background

The application of MS based proteomic biomarker discovery is a challenging area.
Although current available technologies aid high through put experiments, the
biological validity and reproducibility of such analysis is highly dependent on a
meticulous lengthy optimisation process. This is paramount to minimise the risk of

false discovery and its associated loss of time and resources.

SELDI proteomic analysis is a complex method in which several variables and
experimental conditions interact to create a meaningful proteomic profile®*. Adopting
affinity chromatography based arrays improved MS resolution, other technical and
biological factors can also affect the interpretation of its profiles®*°.  Thus, it is
crucial to refine the experimental settings for each project in order to ensure
biologically sound findings. Optimised and reproducible analysis conditions are also
essential for further identification and validation steps following the initial discovery
phase®!, Fine tuning the different laser and detection settings and pre-analytical
variability has shown improved consistency indicating reliable biomarker
discovery>'?. Since there is no consensus on specific profiling conditions and/or
settings, and given the differences introduced by the different biological characteristics
of each cohort analysed, project tailored optimisation remains the backbone of any MS
based study. Here, experiments were conducted to identify optimal analysis
conditions for serum samples using the SELDI 4011 Enterprise platform. Standardised
sample handling was adhered to in all experiments to minimise pre-analytical
variation. Sample type, serum fractionation, laser energy, different binding affinity
profiles resulting from different arrays (Q10, CM10, H50 and IMAC Cu+2), the effect of
sample reduction by DTT, day of analysis and other conditions were all investigated to
reach the optimal environment for differential profiling analysis. In this section, the
optimisation steps followed and findings in the Guernsey serum proteomic analysis are

described in details.

The presence of thousands of different tissue samples in tumour banks can be an
attractive venue for differential proteomics analysis. Not only do these samples save
time required for collection, they also carry a wealth of knowledge including a long
follow up profile and possible pre pathology prediction biomarkers. Tests were

performed to explore the efficacy and reproducibility of such studies in the world of
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proteomics. Given the different pre-analytical variability issues and the potential ex
vivo proteolytic effect associated with prolonged and or sub optimal storage®” ' '
this area remained controversial in the world of unbiased proteomics. Although the
pre analytical variability within old bio-bank collections may be a limiting factor for
such analysis, this cannot be altered. However, limited efforts have been made that
reject the hypothesis of archival samples yielding reproducible proteomic markers.
Addressing this question is key, as the amount of information that can be extracted
from such archival collections is vast, and to miss the opportunity of analysing them is
unsatisfactory. Thus, this study aimed to assess the usability of archival urine and

serum samples from the Guernsey cohort using MS analysis.

3.1.2 Materials & Methods

A detailed description of the reagents and methods involved in SELDI analysis were
described in the methods chapter earlier. Briefly, pooled reference samples
(representing all groups in each study) were analysed using SELDI. The buffers and/or
concentrations, chromatographic surfaces, energy absorbing molecules, laser settings
and other variables were altered to generate a gradient of conditions to act as a road
map to characterise the best conditions for current and potential future SELDI analysis
(Figurel). This scheme was adapted in all projects. The proteomic profiling of archival
samples (urine and serum) was performed to assess the possibility of generating
meaningful data from old bio-bank collections.

« Buffer

Sample dilution,
Fractionation
(F1-F6)

wash

SPA/CHCA
Concentration

Energy
Shots/pixel

S/N
Mass range

« Surfaces

Figure 1. MS condition optimisation workflow

A diagram showing the interactive stages for optimising MS profiling. This is a critical phase prior to pilot
and generic biomarker discovery studies. Several steps are involved starting with sample preparation /
enrichment / dilution assessment. Energy absorbing molecule (EAM) choice and concentration is also an
important variable along with the characterisation of surfaces of best/distinct profiling yields. Finally, laser
and analytical settings optimisation per study is the last step in this complex approach. Regular quality
control checks during the analysis are essential, to ensure biologically meaningful discovery.
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3.1.3 Results

3.1.3.1 Archival urine proteomic profiling of the Guernsey cohort
In a pilot study, 20 urine samples from the Guernsey cohort were analysed. Firstly,
WCX protein arrays were used to analyse the samples as described earlier. Assessment
of pooled urine samples using SELDI profiling revealed scarce protein ion peaks and a
noisy background. Despite efforts to improve peak yields by altering the laser
settings, only minimal improvement was achieved (Figure 2). Shifting the energy
absorbing molecule between different acids (SPA and CHCA) in an attempt to reduce
the LMW region noise (the urinary proteome is predicted to fall within this region) did
not improve the resulting profiles. Overall, a generally less noisy condition was shown

to be generated at a higher laser energy setting using sinapinic acid (SPA) (Figure 2.c).

7000 8000 9000 100

y{ V6 O S,

J«Lwrw/hkwhww

¢
- ,L,JW“WMJWLJMJLKV

100

7000 8000

Figure 2. Archival urine sample analysis using WCX protein arrays
For this and subsequent MS figures; the X and Y axes represent the m/z (corresponding to protein mass) and

peak intensities in uA respectively.

80ul urine was mixed with 30 pl U9 and either 50% SPA (a,c) or 100% CHCA(b,d) were used as matrices.
Profiling was conducted on (WCX) CM10 arrays using the following settings:

a,b. LE 1,500nj, shots 530, FM 1.5kDa, MR 0-50kDa, MA 1kDa.

¢,d. LE 2,500nj, shots 530, FM 1.5kDa, MR 0-50kDa, MA 1kDa.

Overall, the spectra from the archival urine samples appeared to be very noisy, and although more peaks
were detected with higher LE using SPA (c), only very few peaks (15) were detected compromising the
statistical power of any further analysis.

The effect of binding affinity on profile improvement was also tested using reverse
phase (H50) and copper charged immobilised metal affinity conditions (Figures 3-5).
Similarly, a higher laser energy using SPA matrix improved the S/N of the very few
peaks detected (Figure 3). However, it was interesting to note the lack of differential

profiling using the two chemically distinct chromatographies (Figure 4).

Furthermore, a third copper charged immobilised metal affinity chromatographic array

(IMAC Cu*®) was tested in an attempt to elicit more protein peaks and signals. This
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analysis also revealed very few proteomic peaks, although using SPA and higher laser

energies between 2,000-2,500 nj slightly improved the profiling (Figure 5).
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Figure 3. Archival urine proteomic profiling using H50 arrays
MS spectra from the G3 Urine test (80ul urine was mixed with 30ul U9), 50% SPA (a,c), and 100% CHCA (b,d)

matrices respectively. Reverse phase (H50) arrays adopting the following settings were used:

a,b: LE 1,500nj, 530 shots, FM 1.5kDa, MR 0-50kDa, MA 1kDa
c,d: LE 2,500nj, 530 shots, FM 1.5kDa, MR 0-50kDa, MA 1kDa

This experiment again showed a very noisy background spectra, although better resolution peaks were
detected with higher LE combined with SPA matrix (c). Yet, only very few peaks were detected compromising
the statistical power of any further analysis.
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Figure 4. WCX vs. H50 archival urine proteomic profiling

Further G3 Urine analysis (80ul urine was mixed with 30ul U9), using 50% SPA comparing two different arrays
(a: CM10, and b: H50 arrays). The following settings were used:

(a,b) LE 2,500nj, shots 530, FM 1.5kDa, MR 0-50kDa, MA 1kDa.

Noisy spectra and very few peaks detected at high laser energies were noted. The scarce number of peaks
detected was believed to compromise the statistical power of any further analysis. Interestingly, no obvious
spectral differences were detected between the two different chromatographic conditions (a,b). This might
be related to presence of very few proteins/peptides in the sample.
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Figure 5. Archival urine profiling array optimisation spectra

Representative MS spectra from the G3 Urine test (samples: 80ul urine mixed U9 30ul), 50% SPA was used in
combination with three different arrays (a-c: CM10, d-f: H50 and g-i: IMAC Cu** arrays). Gradient of 11
different LE powers between 500-6000nj were tested.

(a,d, g) LE 2,000 nj, shots 530, FM 1.5kDa, MR 0-50kDa, MA 1kDa.

(b ,e, h) LE: 2,500 nj, shots 530, FM 3kDa, MR 0-50kDa, MA 1kDa.

(c,f,i) LE: 6,000 nj, shots 530, FM 3kDa, MR 0-50kDa, MA 1kDa.

The reverse phase (H50) surface revealed the worst profiles in terms of peak detection and signal (d-f)

Using LE 2,000nj and 2,500 nj shows better detection in CM10 and IMAC Cu profiles, whereas the use of LE
6,000 nj yielded higher noise background probably related to detector saturation. Overall, only very few
peaks were detected compromising the statistical power of any further analysis. Noted is the reproducibility
of the profiles noted in WCX, IMAC (a-c, g-i) spectra. Although more peaks were detected with higher laser
energy (LE), only very few additional peaks were detected with noisy spectra background. It was concluded
that further analysis using these conditions would compromise the statistical power of future work.
Interestingly, very few spectral differences were detected between different chromatographic conditions.

The urine MS analysis revealed that using higher laser energy lead to noisy
backgrounds across the different arrays (Figure 5 ¢, f, i). Altering the matrix between
SPA and CHCA in all arrays combined with a gradient of 11 different laser settings
revealed better profiles generated by WCX profiling and a poorer spectra using the

reverse phase arrays. No advantage was noted in using either matrix (Figure 6).
Over all, the scarce peak number detected in all profiles limited any meaningful

analysis. It was concluded that archival urine sample profiling by SELDI is less likely to

reveal meaningful profiles, and was therefore not continued.
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Figure 6. Archival urine proteomic profiling laser optimisation

G3 Urine SELDI test (80ul urine was mixed with 30ul U9), 50% CHCA was used in a-c, and 50% SPA used in
(d-f). Three array conditions (a,d: CM10, b,e: H50 and c,f: IMAC Cu** arrays) were used along with a
gradient of 11 different LE between 500-6000 nj. Best profiles were generated using WCX arrays; no
advantage was noted in using either matrix. CM10 profiles showed more peaks compared to the other
profiles, no advantage however was noted with either of the SPA or CHCA matrices. IMAC profiles showed
slight increase in the peak numbers using SPA matrix. H50 remained a poor profiling surface for urine

analysis. The scarce peak number detected limited meaningful analysis.

3.1.3.2 Archival serum MS analysis optimisation
Serum is a highly complex, variable and dynamic proteomic environment which
renders differential profiling a challenge. Thus, efforts focusing on reducing the
complexity, variability and abundance bias are vital to achieve novel biomarker
discovery® ¢ 22 2% To ogvercome such hurdles, low abundance and low molecular
weight protein detection must be improved to enable in depth biomarker mining.
Moreover, clinically matched samples and standardised protocols should be used in
any profiling comparison to minimise non-specific variability. Here, work was done to
establish the optimal settings for archival serum sample analysis. Matched archival
serum samples were fractionated using strong anion exchange (SAX) and sequential pH
gradient®®. Serum fractionation combined with a LMW SELDI protocol was then tested
in an attempt to overcome the challenges of complexity, dynamic range and non-

pathologic variability.

First, WCX arrays (CM10) were compared to immobilised metal affinity arrays (IMAC
Cu*?) arrays. WCX arrays with their carboxylated surface affinity provide a higher
binding attraction to positively charged proteins. The metal coordination of the two
oxygen groups in the phosphoproteome is believed to lead to stronger binding of
phosphorylated molecules on IMAC arrays. IMAC Cu*® arrays therefore provide a good

platform for phosphoproteins and signaling pathway discovery.
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MS profiling of pooled serum samples using these arrays revealed more complex
spectra (greater peak numbers) with the WCX compared to the copper charged IMAC
Cu*? profiles. Different laser settings were tested to identify the best profiling
conditions for low and higher mass protein peaks. The optimisation also confirmed

WCX profiles to provide the greater peak number and better signal detection (Figure 7).

Different serum fractions showed distinct ion peak profiles from fractions 1, 5 and 6
generating the largest number of peaks; hence enhancing their biomarker discovery
probabilities. Fractions 2, 3 and 4 had very low ion peak yield (Figure 8). Repeated
analysis of these fractions showed similar results (data not shown). Other reports have
shown a similarly poor peak signal in F2 (pH 7.0)**. This poor yield was not
investigated further here as this would require repeated fractionation/analysis, a time

and resource consuming exercise which was beyond the scope of this work.

Similar findings were repeatedly illustrated in three different tests, and reproducibility
of the analysis platform was confirmed; thus, further analysis of archival serum

samples was initiated using these WCX analysis conditions.
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Figure 7. Archival serum proteomic profiling optimisation using WCX and IMAC

Representative spectra from the Guernsey archival serum assessment study. Pooled Guernsey (G4) serum
sample analysed using CM10 (a,b) and IMAC Cu*? (c,d) arrays used for comparison of generic profiles. CM10
pH 4.0 buffer was used for WCX arrays (a,b) and IMAC Cu*? buffer for IMAC profiling (c,d). The following
settings were used: LE 2,800 (a,c) vs 3,600nj (b,d) used, shots 530, FM 4kDa, MR 0-100kDa, MA 1kDa. 50%
SPA matrix used. Reproducibility and inter array profile differences were clearly demonstrated with more
complex spectra generated in the WCX profiles.
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Figure 8. Representative spectra from the archival serum pilot study.

Pooled Guernsey (G4) serum sample were analysed using CM10 arrays. SAX pH gradient fractionation was
used prior to SELDI analysis. The effect of fractionation was illustrated (F1,F2,F5,F6) using CM10 arrays and
pH 4.0 CM buffer with 50% SPA. The F3 and F4 showed a scarce number of peaks which could be explained
by the rich albumin content in these fractions masking many low abundance peaks and yielding spectra with
few informative peaks (Table 2). The following settings were used: LE 2,800, 484 shots, FM 6kDa, MR 0-
100kDa, MA 2.5kDa.

3.1.3.3 Archival serum SELDI analysis

3.1.3.3.1 Introduction

Breast cancer is the most commonly diagnosed malignancy in women®®. Whilst in the
United Kingdom 5 year survival for good prognostic groups is the same as in the
general population®, the outlook is worse for the poorer prognostic groups regardless
of advances in treatment' '®. Early detection and intervention are critical factors
affecting survival and overall outcome® **°. Despite improvements in screening and
diagnosis, less than two thirds of breast cancers are localised at the time of
diagnosis’®. The developments of novel pre-symptomatic screening approaches
therefore play a significant role in breast cancer screening and diagnosis, and have the
potential to reduce disease related mortality. Proteomic profiling is a rapidly evolving
strategy for biomarker discovery where several advanced proteomic profiling
techniques have shown promise in biomarker discovery for the diagnosis of several

tumour types including breast cancer® % %892,

Variations in sample collection, storage, and preparation conditions significantly affect
the results obtained from clinical proteomic studies'®. This is a major concern over
the use of SELDI and other profiling techniques for the identification of cancer
biomarkers and more so in archival serum collections. Effects of sample handling,
storage temperature, collection tubes, coagulation temperature, as well as freeze-thaw

cycles on MS analysis have been reported previously'® . Yet none have investigated
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the effectiveness of analysing samples stored for decades. It is not known if
biomarkers reported in recent standardised studies can be reliably detected, and retain
predictive power in older tissue and serum stored in tissue banks. Assessing archival

sample profiles is the first step towards such application.

3.1.3.3.2 Methods

The detailed technical SELDI methodology was described in detail in the previous
chapter. Briefly, serum samples from the Guernsey cohort were defrosted and mixed
with U9 buffer incubated on ice for 30 minutes. Each sample (100 nl) was robotically
loaded onto CM10 arrays in a randomised manner. Samples were analysed in
duplicate, and inter/intra assay reproducibility was assessed by a reference sample
made from a pool of all samples. The analysis was performed in two centres using
identical protocols. Here, the same samples were reanalysed using identical conditions
3 months later as part of a validation study at the Bio-Rad Laboratories in

Copenhagen, Denmark.

3.1.3.3.3 Archival serum profiling results

The practicality and effectiveness of SELDI profiling of prospective archival (30 years
old) serum samples (n=14). This work profiled serum from patients who, at the time
of collection, had non-metastatic breast cancer or were matched healthy controls.
This study thus addressed the possibility that archival collections of serum can
potentially be used to identify breast cancer from healthy patients in samples which
have been stored for up to three decades.

Having established reliable profiling conditions (Table 4), further analysis of a
representative cohort from the archival serum samples was conducted. Weak cation
exchange arrays (CM10, pH 4.0) generated the highest quality peak-rich spectra of any
array type and were consequently employed for the analysis. SELDI analysis generated
128 peak clusters across the spectra from all analysed fractions (Figure 9). The results
of a Bland and Altman analysis showed that the vast majority of peaks were within two
standard deviations of the mean with a concordance coefficient of 1 (Figure 10). This
conhcurrence was especially evident within the low molecular weight mass region, which
is the main focus of SELDI profiling. CVs between the distinct MS runs were 18%-22%

(Figures 11 and 12), which lies within the acceptable range for this methodology®® *®.

65



B Zeidan Breast cancer biomarker discovery

Array Fraction No. Peaks CV Range Optimal Buffer
F1 42 19-26% CM pH 4.0-4.5
F2 6 22-28% CM pH 4.5
F3 12 18-31% CM pH 4.0
WXC (CM10) F4 15 21-27% CM pH 4.5
F5 24 16-20% CM pH 4.0
F6 29 18-26% CM pH 4.0-4.5
Serum/U9 112 16-24% CM pH 4.0
F1 18 22-37% IMAC Cu**
F2 7 24-33% IMAC Cu*?
F3 14 20-25% IMAC Cu**
IMAC F4 14 18-30% IMAC Cu*?
F5 18 21-29% IMAC Cu*?
F6 22 25-28% IMAC Cu*?
Serum/U9 46 19-27% IMAC Cu*?

Table 4. Characterisation of optimisation conditions for the Guernsey (G4) cohort.

The different array, and SAX fractionation (F1-F6) spectral yield from the archival serum optimisation
analysis. The analysis showed reproducible results with an inter-assay coefficient of variation between 16-
37%. In bold are conditions revealing distinct complex reproducible profiles appropriate for future analysis.
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Figure 9. Archival serum WCX SELDI analysis

Representative archival serum profiles following optimisation of CM 10 analysis conditions using CM10
buffer pH 4.5, LE 2,000nj, 848 shots, MA 2.5kDa, MR 0-100kDa and FM 10kDa. Cancer (a,b) versus control
(c,d) spectra were generated. All samples were analysed in duplicates. Cancer and control samples were

repeatedly compared and showed effective generation of reproducible differential profiles.
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Figure 10. Bland Altman plot of the two comparative archival serum profiling studies

A Bland and Altman plot of the two comparative archival serum profiling studies. Independent analyses at
the University of Southampton and Bio-Rad laboratories (Copenhagen) to test the reproducibility of SELDI
analysis of archival serum samples were performed. The data generated in both centres illustrated
concordance, with a correlation coefficient of 1, indicating a high degree of agreement between the two
results. This result indicated the suitability of future archival proteomic analysis on a larger cohort.
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Figure 11. Archival serum proteomic analysis reproducibility

Guernsey cohort (G4) pooled sample reproducibility testing. Optimised conditions using CM 10 (WCX)
arrays, CM10 buffer pH 4.5, LE 1,750nj, 848 shots, FM 6kDa, MA 2.5kDa, MR 0-200kDa were tested.
Samples were analysed on days O (a,c) and 7 (b,d). The average intra array CV on day 0 was 17.6% compared
to an average inter assay CV of 19%. All profiles were calibrated and normalised to total ion current (TIC)
prior to CV calculation. The average intra array CV on day 7 was 22.1% compared to an average inter assay

CV of 20.8%. All profiles were calibrated and normalised to TIC prior to CV calculation.

A batch effect analysis was also performed comparing the spectra obtained over a
period of 7 days to compare the CVs of the historic samples with others recently
collected (Wessex serum samples). The CVs in both analyses were comparable with no
significant difference found between the CVs in both groups. The Wessex reference
sample CVs compared to the 30 year old Guernsey cohort samples were 16.4% vs.
18.2%, respectively. Analysing the same samples seven days later showed comparable
CVs of 18.2% and 20.6% (Figure 12).

Although beyond the aim of the study, the data analysis demonstrated differentially
expressed peaks between the cancer and non-cancer serum samples. 16 statistically
significant differentially expressed peaks with P-values <0.05, differentiated the two
groups in this study (Table 5). Seven overexpressed and nine underexpressed peaks
were detected in serum samples from cancer patients of this cohort (Figures 13.1-
13.6).

The most plausible differentiating protein ion peaks (P < 0.01) between the two groups
were the 3.4, 6.3, 8.6, 8.7, 10.9, 13.9 and 17.4kDa peaks (Figure 13). These peaks
showed reproducible differentially expressed group specific behaviour in both studies.
Specifically, the 3.4, 8.6 and 10.9kDa peaks were overexpressed in sera from the
breast cancer group, whereas the 6.3, 8.7, 13.9 and 17.4kDa signals were

underexpressed in all sera from women in the breast cancer group.
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Figure 12. The Guernsey vs. Wessex serum proteomic analysis reproducibility

Comparing the CVs from both the Guernsey cohort serum (a-c) and Wessex serum pools (d-f). Optimised
conditions using CM 10 (WCX) arrays, CM10 buffer pH 4.5, LE 1,750nj, 848 shots, FM 6kDa, MA 2.5kDa, MR
0-200kDa were adopted. All profiles were calibrated and normalised to TIC prior to CV calculation.
Acceptable reproducibility and CV for the Guernsey serum profiles ranged between 18.2-20.6%, compared to
16.4-18.2% for the Wessex profiles.
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m/z (kDa) Pvalue Mean intensity (uA) Mean Intensity (nA)
Cancer Non-cancer
3.0 0.04 135.1 56.3
34 0.01 33.9 8.37
3.8 0.02 43.5 87.6
6.3 0.01 4.03 5.34
6.8 0.025 6.78 3.62
8.3 0.013 11.16 2.62
8.6 0.01 42.7 8.6
8.7 0.01 7.67 12.54
10.0 0.035 37.01 48.44
10.9 0.01 1.154 0.286
12.7 0.03 15.3 22.61
13.9 0.01 3.22 4.84
17.4 0.01 1.36 2.79
28.3 0.03 0.441 1.493
28.9 0.02 0.81 0.37
56.0 0.025 0.025 0.055

Table 5. Candidate biomarker peaks in the Guernsey cohorts
SELDI protein peaks in the archival Guernsey serum discriminating cancer from non-cancer groups (P<0.05).
Overall, 16 potential biomarkers between 3.0-56.0kDa were detected (bold). Underlined are peaks with m/z

similar to previously reported SELDI-derived biomarkers peaks (3.0, 3.4 and 8.6kDa) in breast cancer.
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Figure 13 (1-6). Guernsey analysis candidate proteomic biomarkers

Representative SELDI spectra from the Guernsey (G4) cohort comparing serum samples from healthy
volunteers (@) and volunteers who had breast cancer at the time of serum collection (b). The highlighted
regions represent differentially expressed protein peaks using WCX (CM10) arrays. Protein ions of 3.0, 3.4
and 8.6kDa (Figures 13.1, 13.2 and 13.5 respectively) were overexpressed in cancer patients whereas the
peaks at 6.3, 8.7, 13.9 and 17.4kDa (Figures 13.3, 13.4 and 13.6) were under expressed in cancer patients.
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3.1.4 Discussion of the Guernsey breast cancer cohort analysis

Disease specific peptides and proteolytic fragments resulting from tumour related
proteolytic activity which could be present in the urine were the main target of our
archival urinary sample MS analysis®”®. Here, archival urine samples were shown to be
of little value for proteomic SELDI analysis as poor quality proteomic profiles were
generated despite using a wide range of analytical conditions and settings. In the case
of the Guernsey breast cancer cohort, it was evident that larger scale MS analyses
using the archival urine samples would not be successful as the MS proteomic signals
were denerally deprived, limiting meaningful interpretation. Such a finding was
unsurprising and could be attributed to several technical and biological factors.
Firstly, sample decay might have occurred as the Guernsey samples were stored at
-20°C for over 30 years. Secondly, urine samples have relatively low urinary protein
content, particularly in individuals with no renal or urological pathologies. Also, the
lack of protein enrichment/fractionation steps prior to MS analysis may have limited in
depth analysis of samples. Finally, the low resolution and limited sensitivity of the MS
platform used in this analysis may have limited the study*°??. Despite these factors,
our findings could indicate the lack of reliable top down proteomic urinary markers
within the Guernsey breast cancer cohort. Although the urinary proteome was
previously thought to be more stable than that of blood subsets, our findings did not
support this. Despite the poor urinary proteomic profiles generated in this work, it
should be noted that over 1,000 urinary proteins/peptides have been previously
described, many of which were identified in healthy subjects®*?**. Moreover, recent
urinary exosomes were reported as potential clinical markers®® ?’. Thus, further

urinary proteomic analysis could yield interesting breast cancer biomarkers.

SELDI analysis using WCX profiling of the Guernsey archival serum samples following
thorough optimisation of analytical conditions, was shown to be better than IMAC Cu2*
in terms of spectral complexity. Fewer proteins were reported in the inherently
albumin rich fractions (Albumin pl=4.7) F3 and F4. This abundant protein has a strong
ion suppression effect and co-binding affinity which might explain the poorer signal in
these fractions. The low proteomic signal shown in F2 (pH 7.0) is, however,
unexpected. This may be related to preparation or analytical errors. It was thought
that the protein array preparation protocol which involved a final dH20 (pH 7.0)
washing step, might provide a chemical explanation. The F2 fraction consisted of a
proteomic environment rich with neutral proteins (pl 7), washing these arrays with
dH20 could have led to the reduction of protein binding affinity. Further investigation
involving a comparison between washing with dH20 versus no washing, revealed no
difference between the two preparations. Thus, it was concluded that the F2 poor
proteomic signal was probably related to a preparatory fault and this fraction was,

therefore, excluded from further analysis.
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Serum sample profiles were shown to provide reproducible spectra in a multi-centre
analysis. Sixteen proteomic peaks were validated by SELDI analysis and differentiated
the breast cancer from healthy volunteer sera. Although this is encouraging evidence
that supports the analysis of the Guernsey archival samples, these results should be
interpreted with caution. A generalised conclusion that all archival samples can be
used for proteomic profiling based on the findings described here would be
misleading. Instead, these results illustrate the need for further efforts to explore the
usability of different archival samples worldwide through similar pilot studies. This
would add new evidence regarding the potential use of valuable archival bio bank

serum samples in MS profiling.

3.1.5 The Guernsey breast cancer cohort project summary

In this section, work was undertaken to identify the optimal analysis conditions for the
Guernsey cohort. MS analysis for urine samples from this cohort was not successful as
the proteomic signals were generally poor. However, serum analysis using the WCX
array revealed richer profiles compared to other conditions, and was thus used in this
pilot study following optimisation of other conditions. Subsequently, two independent
analyses of a small subset of the Guernsey serum samples were conducted in two
different centres and revealed consistent profiling results. This has added new
evidence on the potential use of valuable archival bio bank serum samples in MS
profiling.
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3.2 Serum proteomic profiling of the Wessex breast

cancer cohort

3.2.1 Introduction

Building on the experience gained from the Guernsey cohort analysis, a larger cohort
of serum samples (the Wessex cohort) was used to conduct a diagnostic breast cancer
biomarker discovery study. Potential diagnostic serum markers differentiating healthy
controls, benign breast disease (BBD) and invasive breast cancer (IDC) patients were
targeted in this project. Although a similar MS based profiling approach was adopted,
biomarker purification, identification and validation were also performed as stronger

evidence was provided by the larger cohort size.

3.2.2 Materials and methods

Serum samples were collected from breast disease and healthy volunteers from the
Wessex region (UK) prior to any intervention. This collection was approved by the
Southampton General Hospital NHS Trust Ethics Committee (Ethical Approval
05/Q1702/13, R&D reference no. RHMCANO0392) and informed consent was obtained
from all participants in the study. Samples were collected from volunteers who were
recalled for further investigations following routine 3 yearly mammographic screening.
Serum samples were prepared after 45 minutes coagulation time, by centrifugation at
4000 rpm for 15 minutes and aliquots were stored at -80°C within 15 minutes of
collection.

The detailed protocols used in each stage have previously been explained in the main
methods section. Briefly, array/laser/buffer and matrix conditions were tested to
reach the most complex and reproducible profiling conditions. This was followed by
automated preparation and MS analysis using the SELDI. Samples were analysed in
duplicate and a second blinded validation analysis was performed. A further
independent validation study was also conducted using a different MS method (MALDI)
at the Medical Biomics Centre (St. George’s University of London). The candidate
markers passing all three analyses were subject to biomarker purification,

identification, verification and immunovalidation.
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3.2.3 Results

3.2.3.1 Weak cation exchange (WCX) profiling assessment

SAX fractions from the Wessex cohort serum samples (F1-F6) were used for the
characterisation and optimisation of MS analysis. Initially, the profiling abilities of WCX
arrays were explored using a low stringency CM10 wash/binding buffer (pH 4.5). This
was based on previous optimisation results obtained from the Guernsey cohort
analysis, revealing consistent profiles under such conditions. Applying 50% SPA, a
laser energy of 2,000nj and an average of 220 shots, only very few peaks were
detected and spectra with poor signal and noisy background were generated (Figure
14).

To investigate the effect of laser settings on improving the profiles, different laser
energy/number of shots were tested, and more favourable spectra were created using
higher laser settings (LE 2,500-3600nj, 636 shots) (Figure 15). More intense
proteomic peaks, higher S/N and improved resolution typified the clearer spectra. This
work demonstrated the effect of serum sample ion exchange fractionation in

generating distinct proteomic patterns (Figure 15).

Although fractionation profiles indicated a reduction of complexity in terms of distinct
patterns generated by different fractions, the attenuation of the serum dynamicity was
not fully established. The presence of albumin in fractions 3 and 4 was not
surprising®, however its presence in fraction 5 at high concentrations was unexpected
(Figure 16). This was thought to partly explain the fewer proteomic signals in this
fraction. Fraction 2 profiles were shown to be very noisy with almost no signal.
Fractions 2 sub-optimal profiles can be explained by either preparation error or, to a
lesser extent, the sample nature. Overall, serum profiling by WCX arrays appeared to

be successful which was consistent with previous findings in the pilot study.
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Figure 14. Pooled Wessex serum samples SAX fractionation

Pooled Wessex serum samples fractionated using SAX ion exchange and pH gradient elution ranging
between pH 9-organic acid (F1-F6), and analysed by SELDI TOF MS on WCX arrays. Fractions 1-6 (a-f
respectively) are shown. The settings used in this analysis were: SPA 50%, LE 2,000nj, average shots 220, MR
0-100kDa, MA 3kDa, FM 5kDa. Very few peaks detected, poor signal and noisy spectra. lon suppression
effect is a possible cause of such profiles. Sub optimal laser energy could also contribute to the results

shown. Potential S/N improvement using higher LE settings was tested in subsequent steps.
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Figure 15. WCX (CM10) SELDI profiling of fractionated Wessex samples

WCX (CM10) SELDI profiling of fractionated (a-f) pooled Wessex reference sample (F1-F6) illustrating the
improvement of peak detection and resolution at higher laser settings. Increasing the LE to 3,600nj and
shots to 636 in the previous experiment (Figure 15) improved S/N. Fraction 2 (b) however showed very poor
signal in repeated analyses.

The fractionation effect is demonstrated by the differential profiling in each fraction originating from the
same pooled samples.
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Figure 16. Albumin representation in fractionated Wessex sera

The six (a-f) fractions from the Wessex cohort using SAX resin solid phase ion exchange chromatography
and pH gradient sequential elution analysed on WCX (CM10) arrays. The presence of ion peaks at 67kDa
demonstrated the presence of Albumin in fractions 3, 4 and 5 corresponding to pH elutions 5, 4 and 3
respectively. This was shown to be present in a relatively high concentration indicated by total ion current
(TIC) normalised peak intensities.

3.2.3.2 Strong anion exchange (SAX) profiling assessment

In an attempt to explore the quality of serum profiling using different chromatographic
arrays in order to establish the utility of different array analysis in future work,
experiments were conducted applying the same pooled serum fractions (F1-F6) from
the Wessex cohort to SAX (Q10) chips. Tris HCI pH 8.0 buffer was used in combination
with 50% SPA for sample preparation. Although very few proteomic signals were
detected, laser energy/shots gradient was tested revealing acceptable peak S/N and
resolution at laser energies around 1,700- 2,800 nj combined with an average of 636
shots (Figures 17 and 18).

To exclude instrumental and preparation errors and to confirm the suitability of the
previously established settings, a repeat laser setting gradient test was conducted.
The best profiles were generated at energy levels around 2,000 nj using 636 shots;
using energies around 1,500 nj was also meaningful, but of less quality (Figure 19 e
and f). Overall, the profiles generated using SAX arrays showed noisy background and

had limited peak numbers so were deemed unsuitable for future analysis.

To improve the quality of SAX generated spectra, on spot preparation (as per
manufacturer’s recommendations) was performed. This has showed no improvement
in the spectra in terms of noise or complexity (i.e. peak number). Laser settings here

were identical to the automated preparation parameters (Figure 20).

77



B Zeidan Breast cancer biomarker discovery

5000 6000 7000 8000

5000 6000 7000 8000

Figure 17. Q10 analysis of SAX fractionated sera

Representative Wessex serum fractions (F1-F6) (a-f) analysis using SAX (Q10) arrays. 50% SPA and Tris HCL
pH 8.0 buffer were used with different laser energies (LE).

LE used for optimisation was as follows: a: LE 800nj, 1 shot, b: LE 800nj, 20 shots, c: LE 1,200nj, 20 shots,
d: LE 1,500nj, 20 shots, e: LE 2,000nj, 636 shots, f: LE 2,800nj, 636 shots. Poor spectra were noticed in all
runs. Spectra (f) shows slightly improved protein ion signals. This indicated that higher laser energy

improved the S/N.
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Figure 18. Laser modefication of Q10 array analysis

SAX (Q10) array analysis using pooled serum sample from F6 fraction (a-c) of the Wessex cohort comparing
the LE effect on the spectra S/N. a: LE 1,500nj, shots 371. b: LE 1,700nj, 371 shots, c: LE 1,700nj 530 shots.
A slight improvement of the signal was noted by higher laser energy (a,b) and laser shot (b,c) settings.
Nonetheless, the spectra were generally of poor in quality. The same observation was noted in different
fractions indicating a possible suboptimal fractionation, analysis conditions and/or array chemistry.
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Figure 19. On spot preparation of fraction 2 using Q10 arrays

SAX (Q10) optimisation analysis using Wessex pooled serum sample from F2 (a-c) and U9 treated serum (d-
f) using on spot preparation. Poor spectra were noticed in all runs. Spectra in (e,f) showed improved protein
ion signals (e,f) which supports improved profiling by increased laser energy/shots. Settings used were as
follows: a: LE 800 nj, 1 shot, b: LE 800 nj, 20 shots, c: LE 1,200 nj, 20 shots, d: LE 1,500 nj, 20 shots, e: LE
2,000nj, 636 shots, f: LE 1,500 nj, 636 shots.
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Figure 20. On spot preparation of serum samples using Q10 arrays

SAX (Q10) on spot preparation of serum sample in triplicate, and SELDI profiling. The following settings
were used: (@) LE 1,500 nj, 318 shots. (b) LE 1,700 nj, 530 shots. (c) LE 1500 nj, 636 shots. No major
differences in the peak/profile complexity were noted. This could be related to poor sample

quality/preparation and/or sub optimal array conditions.

Further optimisation tests were implemented to assess the effect of sample dilution on
S/N and peak detection. Pooled fractions were diluted with a dH.0 (1:1, 1:10, 1:50
and 1:100 dilutions) gradient. Interestingly, this appeared to improve the S/N by
reducing background noise (Figure 21). This can be explained by the reduction of the
salt concentration in the sample which suppresses ion profiling and generates less

baseline “grass” effect. Yet, no effect was shown on peak number/detection, and the
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number of peaks remained scarce. It was concluded that SAX profiling provides a less
favourable profiling yield and thus less expression profiling data compared to WCX

profiles.
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Figure 21. dH20 dilutional effect on Q10 array analysis
SAX (Q10) chromatography MS analysis using pooled serum sample from U9 treated serum (a,b) comparing
the dilution effect on the spectra S/N. (a) Neat serum/U9 sample, (b) 1:50 dilution (dH20) of the same

sample improved signal detection on Q10 arrays.

3.2.3.3 Reverse phase (H50) profiling assessment
As a continuation of the preliminary analysis of the Wessex cohort, profiling using
hydrphobic affinity arrays was performed. Samples were treated with H50 buffer and
50% SPA used based on previous reverse phase array analysis. Reverse phase
hydrophobic affinity analysis was tested on all six fractions used earlier (F1-F6) using
different laser energy settings. Laser energy ranged between 1,500-5,000 nj and
120-630 shots were tested. This work indicated that laser energies of approximately
2,000 nj using 630 shots had better peak yields with less saturation (Figure 22).
However, there were very few peaks detected (Table 4), and aside from a prominent
signal at 17.5kDa, the rest of the spectra appeared to be noisy. The poor quality
profiling using this surface was confirmed in repeated nalyses eliminating this
condition from further optimisation (Figure 23). The limited number of peaks
generated by serum reverse phase chromatography is consistent with the limited
number of membrane and hydrophobic proteins in the highly hydrophilic serum.
Regardless of any other contributing factors, it appeared that any further optimisation
would be time consuming and could only achieve very minor improvement of the

analysis.
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Figure 22. Reverse phase (H50) array analysis of the Wessex samples

Reverse phase array (H50) assessment of the Wessex samples. 50% SPA and H50 buffer were used before
profiling of F1-F6 (a-f). The following settings were used: LE 2,000nj, 630 shots, FM 5kDa, MR 0-100,000,
MA 3kDa. Poor spectra in all fractions were reported. This was tested over a range of LE and shots (LE
between 1500-5000nj, shots between 120-630) and confirmed the poor quality of profiles generated by this
surface. Of note was a prominent peak at the 17kDa region.
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Figure 23. Laser modification effect in H50 array analysis

From previous experiments (Figure 21), using the same conditions (H50) arrays and buffer, 50% SPA profiling
F1,3,4,5 and F6) from the Wessex serum pools, poor spectra in all fractions was still noted. This was tested
over a range of LE and shots (LE between 1500-5000 nj, shots between 120-630) FM 5kDa, MR 0-100,000,
MA 3kDa. Fraction 5 LE optimisation, LE: a: 1,500nj / 630shots, b: 1,800nj / 630 shots, c: 2,000nj / 630
shots, d: 2,000nj /100 shots, e: 2,000nj / 200 shots. Optimal laser settings were illustrated at LE 2,000nj/
630 shots. Yet, very few peaks were detected using this array condition.
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3.2.3.4 Immobilised metal affinity capture (IMAC Cu2+) profiling assessment
Proteomic profiles generated by covalently bound proteins on copper loaded
immobilised metal affinity (IMAC Cu*) arrays were studied to complement the
chromatographic display of the Wessex cohort serum profiling. Laser settings were
characterised and tested resulting in optimal laser settings of 2,800 nj and 630 shots
(data not shown). The differential profiling resulting from fractionation is
demonstrated in Figure 24. Albumin was concentrated in fractions 3 and 4 (pH 5.0
and 4.0 respectively). Fraction 2 (pH 7.0) had noisy background, and no peaks. This
raised the possibility of a technical error involving this fraction. A comparison of the
number from IMAC to those from CM10 profiles indicated larger peak numbers with
CM10 arrays (Table 6). Based on these findings, further work focused on WCX SELDI
optimisation and setting fine-tuning to achieve a reproducible platform and reliable

analysis.
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Figure 24. IMAC Cu2* profiling of the Wessex cohort

IMAC Cu?* profiling using the same F1-F6 (a-f) (SAX) fractions of the Wessex cohort. LE 2,800nj, 630 shots,
FM 5kDa, MR 0-100kDa, MA 3kDa and 50% SPA matrix were used. Differential profiling between different
fractions was demonstrated. Fraction 2 had poor signals. Overall, IMAC Cu®** profiles revealed less peaks
than CM10 profiles. Therefore, CM10 profiling was used for the main study. IMAC Cu’* analysis would be a
good option for future work (Table 4).
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Array Fraction No. Peaks CV Range Optimal Buffer
F1 42 21-27% CM pH 3.5-4.5, 7.5
F2 5 25-33% CM pH 3.5-4.5,7.0
F3 13 17-20% CM pH 6.0, 7.5
wWXC F4 18 20-27% CMpH 4.5,7.5
(CM10) F5 20 21-24% CM pH 4.5-5.5
F6 28 18-28% CM pH 3.5-4.5, 6.5
Serum/U9 108 20-30% CM pH 3.5-6.0
F1 6 27-32% Tris HCl pH 7
F2 3 30-34% N/A
F3 5 29-35% Tris HCI pH 8.0
SAX F4 9 31-34% Tris HCI pH 8.5
(Q10) F5 11 24-29% N/A
F6 10 22-29% Tris HCL pH 8-10
Serum/U9 47 21-30% Tris HCL pH 8.0
F1 38 27-34% IMAC Cu*
F2 9 20-29% IMAC Cu*?
F3 13 22-27% IMAC Cu*?
IMAC Cu+2 F4 6 18-21% IMAC Cu*?
F5 17 24-32% IMAC Cu*?
F6 22 16-28% IMAC Cu*®
Serum/U9 89 23-26% IMAC Cu*?
F1 4 30-39% 10% ACN, 0.1% TFA
F2 2 33-38% 10% ACN, 0.1% TFA
F3 3 40-41% 10% ACN, 0.1% TFA
Reverse phase F4 2 29-42% 10% ACN, 0.1% TFA
(H50) F5 4 33-46% 10% ACN, 0.1% TFA
F6 3 32-41% 10% ACN, 0.1% TFA
Serum/U9 5 29-35% 10% ACN, 0.1% TFA

Table 6. Characterisation of optimisation conditions for the Wessex cohort
F1-F6 represent SAX chromatographic fractions 1-6 respectively covering a pH range between 9-2. In bold
are conditions revealing distinct reproducible profiles suitable for future analysis.
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3.2.3.5 Laser re-optimisation, reproducibility and variability
Work was initiated to establish the best settings and protocols for bulk analysis of the
Wessex cohort using the CM10 conditions. Unfortunately, technical problem(s)
ensuing from a laser malfunction necessitated a re-check of the optimal settings at an
early stage. To examine the new laser settings, laser optimisation tests were
conducted and revealed reproducible detection at laser energy levels between 1,750-

5,500nj combined with an average of 636 shots (Figure 25 and 26).
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Figure 25. Laser optimisation of the Wessex analysis

Further Wessex serum laser energy (LE) optimisation using a pooled reference sample. WCX (CM 10) arrays,
pH 4.5 buffer and 50% SPA were used. Representative spectra for LE gradient were used in the following
order: a. LE 1,350nj, 742 shots, b. LE 1,500nj, 795 shots, c. LE 1,650nj, 636 shots, d. LE 1,650nj, 795 shots,
e. LE 1,650nj, 848 shots, f. LE 1,500nj, 1060 shots, g. LE 1,500nj, 1060 shots, h. LE 1,500nj, 1060 shots.
Spectra resolution improved when LE was increased to > 1,500nj (a vs. b-h). Laser shots didn’t reveal any
significant effect after 795 shots (e.g. d,e). Reproducible peak detection was demonstrated (f-h). This test
showed the variable peak intensities between spectra (b-h) which could be related to ion suppression. This

is usually adjusted by TIC normalisation prior to analysis.

To assess the batch effect on the profiles, arrays were analysed on the day of
preparation and a week later. Reproducible results were observed with peak intensity
average CV of 21.6% (Figure 26). Assessing the batch variability 60 days from
preparation also showed reproducibility of the peak detection. However, after 60 days
higher variability was detected with inter and intra assay CVs of 29 and 36%
respectively (Figure 27). This indicated the possibility of re-analysing the arrays up to
a week from the day of preparation with reliable results but not after prolonged

storage periods.
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Figure 26. Testing of batch effect in the Wessex proteomic analysis

The pooled serum sample from the Wessex cohort was analysed using: LE 2,800, 3,600, 5,500 and 2,800nj
(a-d respectively), FM 5kDa, MR 0-100kDa, MA 3kDa, WCX arrays and SPA 50% matrix. Samples a and b
were analysed day 0, samples ¢ and d were analysed on day 7, reproducibility of profiling was illustrated in

all runs. (Spectra shown for illustration).

To establish the analytical variability of the analysis, a pooled sample was analysed
using 5 simultaneous robotically prepared WCX arrays, using identical protocols. Each
array was analysed in quadruplicate. The inter assay CVs ranged between 18-22% and
intra assay CVs were 20-23% respectively (Figure 28). Although this work has
indicated that analysis up to one week following preparation has an acceptable level of
analytical variability®, all subsequent analysis was performed using identical
conditions and was conducted immediately following preparation to avoid any source

of analytical bias.
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Figure 27. Variability and batch effect demonstration in SELDI test

Variability and batch effect assessment of the SELDI platform using NP20 and All in One protein standards
(Bio-Rad), with 50% SPA matrix preparation. Spectra a and b correspond to day 1 and 3 was compared to
spectra corresponding to day 60 (c and d) using LE 2,000nj and 538 shots. Reproducibility was clear in
terms of peak detection a-d, and mass/intensity accuracy (c and d). Analytical variability showed an inter

and intra assay CVs of 29 and 36% respectively.
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Figure 28. Inter and itra- assay reproducibility and variability in SELDI

A pooled Wessex serum sample was analysed in quadriplicate. The following settings were used: LE
2,500nj, 848 shots, FM 5kDa, MR 0-50kDa, MA 2.5kDa, 50% SPA was applied. Repeated analysis using the
same array (a-d) and inter assay analysis using same conditions and different arrays (e-h) is shown. This
revealed satisfactory inter assay (18-22%) and intra assay (20-23%) CVs.

3.2.3.6 The effect of dilution, pre-wetting, protein reduction and surfactant
Several steps were tested to explore different sample preparation methods to identify
the method giving the highest number of peaks. Firstly, the effect of sample dilution
using the WCX analysis was tested. A gradient of sample dilutions were tested (1:1,
1:10, 1:50 and 1:100 with H20) for all fractions as well as neat serum (Figure 29). In
contrast to the improvement noted by diluting samples profiled on SAX arrays (Figure

21), no major improvement of the signal, resolution or detection was achieved by
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diluting the samples in WCX profiles. Further, it appeared that diluting serum under

these profiling conditions produced worse MS profiles than neat samples (Figure 29 g,
h).
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Figure 29. Dilutional effect in WCX array analysis by SELDI

SELDI profiling to test the effect of sample dilution on profiling generated by CM10 analysis. Dilution of
samples with dH-0 gradient (1:1, 1:10, 1:50 and 1:100) was tested. Pooled sample from the Wessex cohort
and CM10 buffer pH4.5 were used for sample/array preparation and wash. The following settings were
adopted: LE 1,350nj, shots 636, FM 5kDa, MR 2-200kDa. a. Crude serum, b. Serum/U9, c. F1, d. F1 (1:100),
e. F6, f. F6 (1:100), g. Serum 1:50 dilution (dH20), h. Serum 1:100 dilution (dH20). Clearly better profiles
generated using this array (CM10) compared to other arrays (Q10, H50 and IMAC). Reproducibility between
duplicates (c, d) and (e, f), serum and 1:50 diluted serum (a vs. g and h) was demonstrated. No advantage
was seen by diluting the serum (a, g, h). U9 seemed to have a denaturing effect and reduced serum
complexity (a, b). Spectrum in (h) represents diluted unfractionated serum which had a noisy background.
This could be related to a preparatory error.

This work also explored the effect of pre-wetting the arrays with dH20 prior to
preparation and sample addition. Samples were randomised to minimise false
interpretation. Surprisingly, array pre wetting moderately improved over all spectra by
reducing background noise (figure 30). The most notable improvement was in fraction
2, which had previously revealed poor peaks. Nonetheless, the number of peaks

detected in this fraction remained too low to justify further analysis.
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Figure 30. Array pre wetting effect in MS analysis

WCX (CM 10) optimisation testing the effect of pre-witting arrays with 3ul dH2O prior to preparation.
Settings used in this experiment were: LE 1,700nj, 848 shots, FM 6kDa, MR 0-85kDa, MA 2.5kDa. a. F2
pooled sample, b. F2 pooled sample (pre-witted), c. F4 pooled sample (pre-witted), d. F4 pooled sample, e.
F6 pooled sample, f. F6 pooled sample (pre-witted), g. F6 pooled sample (pre-witted), h. F2 pooled sample
(pre-witted). Reproducible spectra were noted (a,b,h), (c,d), (e-g). In addition, there was a slight
improvement in the S/N by pre wetting (a vs.b and h) and (c,d). Pre wetting changes were less remarkable in
the F6 analysis (e-g). These observations were reproducible and led to the incorporation of array pre-
wetting in subsequent analysis.

Experiments were also performed to assess Triton X-100 detergent effect on the
spectra. This has demonstrated no advancement in profiling quality or complexity by
using a non-ionic surfactant (Triton X-100) (Figure 31). This may be explained by the
absence of membrane proteins in the sera, the main environment where Triton X-100
exhibits enhanced protein extraction. Although Triton X-100 was previously shown to

alter the albumin structure, this did not alter the profiles generated in this work.

The effect of dithiothreitol (DTT) on the spectra quality was also tested. DTT treated
serum samples were shown to have higher peak intensities and improved signals
(Figure 32). Repeated analysis confirmed the former result and demonstrated changes
in the profile signals which may be due to disulfide bond reduction (Figure 33).
Although DTT improved the S/N in all fraction profiles, this resulted in saturated
peaks, which could compromise LMW signal detection. Thus, DTT was not used in

sample preparation during the Wessex cohort MS analysis.
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Figure 31. Triton X-100 effect on SELDI preparation

Representative spectra from Triton X-100 tests studying the effect on SELDI profiling. The following samples
were used: (a.b) F3 pooled sample, (c,d,e) F4 pooled sample. (a,c) treated with Triton 0.1% X-100, (b,d)
treated with 0.01% Triton X-100, (e) not treated with Triton X-100, (a-d) LE 1,750nj, 1060 shots, (e) LE
2,000nj, 848 shots. No clear differences were observed following addition of 0.1% or 0.01% triton X-100 to
sample buffer (a-d). Increasing the laser energy to 2,000nj has improved spectra S/N without Triton X-100

treatment (e).
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Figure 32. DTT effect on CM10 MS profiling

The effect of DTT on WCX array profiles was tested here using the following settings: LE 2,000 nj, 848 shots,
MA 2.5kDa, MR 0-100kDa. Comparison of (1:10) U9 treated serum pre (@) and post (b) DTT addition,
showed no significant improvement in terms of peak number. The signal was however markedly increased
by 0.1M DTT treatment as illustrated by change in peak intensities in (b). This resulted in saturation of
abundant peaks, potentially reducing the detection efficiency of MS profiling.
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Figure 33. DTT and U9 effect on CM10 profiling

CM10 pH 4.5 buffer was used for sample preparation on WCX arrays to test the effect of DTT addition to the
sample. Using the settings: LE 2,000nj, 848 shots, FM 2.5kDa, MR 0-100kDa, MA 2.5kDa SELDI spectra were
generated. (a,b) (1:10) U9 treated serum, (c,d) (1:10) U9 treated serum + 0.05M DTT, (e,f) (1:10) U9 treated
serum + 0.1M DTT. The reproducibility of spectra is illustrated below (a,b), (c,d), (e,f). The DTT reducing
effect was demonstrated by the shift in spectra (c-f) indicated disulfide bond dissociation. Also noted was
the increase in the S/N as the DTT concentration increased (c, d vs. e, f). Although this improved S/N is
usually a pre-condition for analysis, the S/N achieved without DTT addition was satisfactory and the
saturation effect associated with higher peak intensities in DTT treated samples threatened to mask low

abundance peaks. DTT was, therefore not used in further analysis.

3.2.3.7 WCX binding/wash buffer assessment
Adjusting the buffer used in array/sample preparation is a crucial element of the SELDI

assay optimisation®®.

This was achieved by testing arrays with varying pH buffers and
assessing the resultant profiles. The lower the pH of the solution from the p/ of a
protein, the higher its overall positive charge and therefore the stronger the binding to
the WCX surface and vice versa. A series of different 50mM buffers, with increasing pH
(3.5-7.5) were used to alter the binding pattern of proteins to the WCX arrays. This
combined with the original SAX fractionation provided a 2D MS profiling tool. Each
SAX fraction was tested using optimized favorable laser settings. This work revealed
the best profiles were achieved using CM10 buffer pH 4.5. These profiles possessed
larger number of peaks especially at the LMW region, and a high S/N and resolution

compared to the other buffers used (Figure 34, 35).
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Figure 34. WCX buffer gradient MS optimisation analysis

CM10 ammonium acetate buffer gradient (pH 3.5-7.5) for U9 treated serum (1:10) pooled sample analysis
optimisation. The following settings were used: LE 2,000nj, 848 shots, FM 5kDa, MR 0-100kDa, MA 2.5kDa.
CM10 buffer with pH 4.5 (b) revealed the most peak numbers with consistent resolution and S/N. Albumin
was detected in this fraction. Using other laser energies (LE) between 1,500-2000nj showed similar spectra
with good quality (Table 6).
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Figure 35. Overall optimisation effect in the Wessex an MS analysis

Illustration of the overall optimised fractionation profiles from pooled Wessex serum. F1-F6 and (1:10) U9
treated serum (a-g) were analysed using SELDI. The different peaks detected in different fractions are
illustrated. Overall, LE 2,000nj, 848 shots were optimal for use with all fractions. FM 5kDa, MA 2.5kDa, MR
0-100kDa. CM10 buffer pH 4.5 was successfully applied in all preparations. Noticeably, a peak at 5.4kDa
was detected in fractions F2-F6 (b-g) and probably represents an abundant protein peak.
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3.2.3.8 The effect of albumin ultrafiltration and combinatorial peptide ligand
library (CPLL) enrichment

The poor peak detection in fractions 3 and 4 was thought to be due to a LMW signal
masking effect due to the high albumin concentrations in these fractions. Microcon
centrifugal filters sieves are after used to concentrate and desalt samples. Here, this
ultracentrifugation tool was used to eliminate high abundance proteins from samples
prior to analysis. To improve LMW proteomic profiles from SAX fractions 3 and 4 using
SELDI, albumin was eliminated using MW exclusion ultrafiltration columns with a size
cut off of 50kDa (YM50, Millipore). The exclusion of albumin from the filtrates from
both fractions 3 and 4 was successfully achieved (Figure 36). Using 50kDa cut off
filters, the retentate had a high albumin signal compared to poor trace in the filtrates

from fractions 3 and 4 respectively.

To assess the effect of albumin depletion on profiling, YM50 filtrates were analysed on
WCX arrays. This showed no improvement in fractions 3 and 4 or on the LMW peak
detection. However, there was a slight improvement in peak resolution in other
fractions (Figure 37). The absence of LMW peaks in fractions 3 and 4 after albumin
filtration may be due to co-binding of the LMW proteome to albumin, and possible

preparatory sample loss.

As proteopeptide co-binding resulting in signal loss and variation due to additional
pre-processing cannot be eliminated during subsequent profiling, this step was not
used in the profiling analysis. Yet, this approach was considered as a potential aid for
candidate biomarker purification.

As the dynamic range in serum proteomics extends over several orders of magnitude,
a non-depleting protein enrichment approach was tested using the CPLL (Proteominer,
Bio-Rad). This method applied multiple washing/eluting steps through a hexpeptide
ligand library, resulting in a large number of combined peptides that specifically binds
to ligands based on their distinct chemical properties. This aimed to fractionate
biological samples without the loss of proteins. Here, work was done to illustrate the
effect of CPLL enrichment on the profiles generated from WCX analysis. Although the
number of peaks detected markedly increased in the CPLL treated samples, the

resolution of these peaks remained sub-optimal (Figure 38).
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Figure 36. 50kDa (Microcon) size cut off filtration n effect on albumin profiles

The profiles represent duplicates of albumin rich F3, F4 (a, b respectively), their retentate (c, d respectively)
and the filtrates (e, f respectively) from pooled Wessex serum samples. The following settings were used: LE
2,000nj, MA 5kDa, MR 0-200kDa, FM 12kDa. CM 10 arrays used with CM pH 4.5 buffer. The albumin
depleting effect of the filtration columns was demonstrated in the filtrates showing trace albumin peak
signals (e, f) which indicated effective albumin exclusion from samples. The risk of co binding and protein

loss was however considered and this approach was not used in sample preparation preceding MS analysis.

The CPLL preparation however did not show an increased saturation effect, a
phenomenon previously reported when using DTT (Figure 38). However, it was evident
that using a lower CPLL enrichment step affected the equilibration and profiling of the
LMW proteome and of some high abundance proteins. Therefore, this method was
thus excluded from the main profiling study. Overall, this tool was thought to also be
a useful adjunct in biomarker purification given the enhanced low abundance signal in

a signal non saturating fashion.
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Figure 37. Ultrafiltration effect on serum fraction profiles

CM10 profiling of the Wessex cohort serum using pH 4.5 CM 10 buffer. LE 2,000 nj, FM 12kDa, MA 10kDa.
Spectra from the following samples: a. F1 filtrate, b. F2 filtrate, c. F3 filtrate, d. F4 filtrate, e. F5 filtrate, f. F6
filtrate, g. Serum/U9 filtrate, h. CPLL (Proteominer, Bio Rad) filtrate. Despite effective albumin depletion
illustrated by the improved signal in fractions (a,b) and (e-h), Fractions 3 and 4 (¢, d) showed no
improvement in the MS peak detection ability. This was tested applying different LE between 1,500-2,000 nj
which also showed similar results. Although this was reproducibly shown to be an effective method for
albumin depletion, the possibility of LMW protein co-binding and loss of differentiation signals, in addition
to the freeze thaw cycle effect / limitation lead to the exclusion of filtration in the initial analysis.
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Figure 38. Combinatorial peptide ligand library (CPLL) enrichment effect on SELDI profiling

Improving the low abundance protein detection by combinatorial peptide ligand library (CPLL) enrichment
(Proteominer, Bio Rad) was tested. Using pooled serum samples from the Wessex cohort, the following
settings were adopted: LE 2,000nj, 848 shots, MA 2.5kDa, MR 0-100kDa, FM 5kDa. (a, b) Serum/U9, (c, d)
Serum/U9 + 0.1M DTT, (e, f) Serum + Proteominer. The spectra showed high reproducibility. A signal
enhancing effect of DTT was noticed with few extra peaks detected in these profiles (c,d). Enriching the
samples with the CPLL method illustrated more peaks in the LMW region (e,f), nonetheless, the peak signal
was less optimal than the original profiles (a,b).
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3.2.3.9 The Wessex cohort SELDI profiling
Based on the optimal conditions revealed by the extensive optimisation process,
samples were fractionated using (SAX) ion exchange chromatography. In parallel,
paired samples were denatured with U9 buffer (9M Urea, 2% CHAPS, 50mM Tris HCI,
Bio-Rad). Experiments were designed to identify the chromatographic arrays, fractions
and conditions with the most informative mass spectra (Table 6), to be used in this
analysis. Serum protein concentrations ranged between 60 - 520ng/ul. This was
consistent across all fractions and was measured using a Qubit™ fluorometer and the
Quant-IT™ Protein assay kit, and confirmed by Nanodrop and a modified Bradford
assay. Generally, Fraction 2 (F2) showed very sparse peaks on all chromatographic
conditions. F3 and F4 samples showed high albumin concentration demonstrated by
very high peak intensity in these fractions. F5 fractions had a small number of peaks,
probably due to the masking effect of relatively high albumin contents. Such high
concentrations of HMW molecules would potentially mask low abundance and LMW

signals of interest in biomarker discovery.

In this analysis, standardised and highly optimised preparation protocols were used to
profile fraction F1, master fraction F5/6 (Figure 39) and U9 treated samples from 347
serum samples (210 healthy, 73 breast cancer and 64 benign breast disease) by SELDI
(Figures 40-45). The clinicopathological characterestics of the patients are shown
below (Table 7). This large cohort was essential to ensure adequate study power and
to alleviate outlier effects.

- 15000 17500 20000 22500

Figure 39. The Wessex cohort fractions 5 and 6 pooling effect on SELDI profiling

Figure illustrating the effect of pooling the two fractions F5 and F6 into one master fraction. (a) F5, (b) F6, (c)
F5/F6. CM10 buffer pH 4.5 was used, combined with the following settings: LE 2,000nj, 848 shots, FM
S5kDa, MR 0-100kDa, MA 2.5kDa. Pooling effect on fractions 5 and 6 (F5/6) was tested as the Wessex serum
F5 yield was comparatively low. Fractions F5 and F6 revealed moderate number of peaks using CM10 arrays
(Table 4). Pooling both fractions into F5/F6 master fraction for analysis, more proteomic signals were
generated, prior to further analysis of individual fractions. Although this can mask potentially relevant
signals, it was used as an initial profiling step which can be followed by individual F5 and/or F6 analysis.
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Clinical and Pathologic Features of the Wessex cohort serum
samples

Characteristics Percentage
Diagnostic category

Control 210 (60.5%)
BBD 64 (18.4%)
IDC 73 (21%)
Age median [range] (SD) 63.6 [50.8-75.1] (7.33)
Menopausal status

Pre-menopause 62 (18%)
Peri-menopause 134 (38.6 %)
Post-menopause 139 (40.1%)
Unknown 12 (3.5%)
Tumour type

Microcalcifications 7 (2%)
Duct adenosis 4 (1.2%)
Fibroadenoma 14 (4.0%)
Fibrocystic changes 11 (3.2%)
Typical hyperplasia 3 (0.9%)
Sclerosing adenosis 2 (0.6%)
Cyst 7 (2%)
ADH 0 (0%)
Others 8 (2.3%)
DCIS element 17 (4.9%)
ER negative 17 (4.9%)
ER Positive 36 (10.4%)
IDC

IDC 44 (12.7%)
ILC 0 (0%)
Mixed 29 (8.4%)
Grade*

Low 102 (29.4%)
Intermediate 35 (10.1%)
High 33 (9.5%)
ER

Positive 59 (17.0%)
Negative 4 (1.2%)
Unknown 10 (2.9%)
PR

Positive 24 (6.9%)
Negative 4 (1.2%)
HER2

Positive 32 (9.2%)
Negative 23 (6.6%)
Lymph node involvement

Negative 26 (7.5%)
Positive 16 (4.6%)

Table 7. The clinicopathological characteristics of the Wessex breast cancer cohort
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Figure 40. lllustration of the MS spectra following optimised WCX profiling

Representative Wessex F1 profiles following optimisation of CM 10 analysis conditions using CM10 buffer pH
4.5, and low mass range detection settings: LE 3,000nj, 742 shots, MA 1kDa, MR 0-50kDa and FM 3.5kDa.
All samples were analysed in duplicate. LMW detection power achieved by MS profiling demonstrated by
protein signals below 3kDa. (a and b) Cancer,

(c and d) Control.
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Figure 41. Representative Wessex F1 profiles following WCX array optimisation
Using CM10 buffer pH 4.5, and high mass range detection settings: LE 6,000 nj, 759 shots, MA 5kDa, MR 6-
200kDa and FM 25kDa. All samples were analysed in duplicate. (a and b) Cancer, (c and d) Control.
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Figure 42. Representative Wessex F5/F6 profiles following optimisation

Representative Wessex F5/F6 profiles following optimisation of CM 10 analysis conditions using CM10 buffer
pH 4.5, and low mass range detection settings: LE 3,000nj, 742 shots, MA 1kDa, MR 0-50kDa and FM
3.5kDa. All samples were analysed in duplicate. Low detection power achieved by MS profiling
demonstrated by protein masses below 4kDa detection.

(a and b) Cancer, (c and d) Control.

10000 15000 20000 25000 30000 35000

12,5
10
cv 75
5
25
20
de
10
0

10000 15000 20000 25000 30000 35000

Figure 43. Representative Wessex F5/F6 profiles

Following optimisation of CM 10 analysis conditions using CM10 buffer pH 4.5, and high mass range
detection settings: LE 6,000nj, 759 shots, MA 5kDa, MR 6-200kDa and FM 25kDa. All F5/F6 samples were
analysed in duplicate. (a and b) Cancer, (c and d) Control.
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Figure 44. Representative Wessex Serum/U9 profiles during pre-analytical optimisation

CM 10 analysis of serum/U9 samples from the Wessex cohort. Optimal conditions were obtained using
CM10 buffer pH 4.5, and the low mass range detection settings: LE 3,000nj, 742 shots, MA 1kDa, MR O-
50kDa and FM 3.5kDa. All samples were analysed in duplicate. Low detection power achieved by MS

profiling demonstrated by protein masses below 3kDa detection. (a and b) Cancer, (c and d) Control.
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Figure 45. Wessex Serum/U9 profiles following optimisation of CM 10 conditions

Analysis conditions using CM10 buffer pH 4.5, and the high mass range detection settings: LE 6,000nj, 636
shots, MA 5kDa, MR 6-200kDa and FM 25kDa. All samples were analysed in duplicates. (a and b) Cancer, (c
and d) Control.

The weak cation exchange arrays (CM10) analysis gave reproducible and complex
spectra of all chip surfaces, as determined by number of peaks detected and range of
peak intensity CVs (Table 6). To determine the reproducibility and batch effect, sera
were run looking for statistical differences in peak intensities on days 0 and 7 of

analysis (Figure 46).
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Figure 46. Wessex cohort pooled serum sample reproducibility assessment

Optimised conditions using CM 10 (WCX) arrays, CM10 buffer pH 4.5, LE 1,750nj, 848 shots, FM 6kDa, MA
2.5kDa, MR 0-200kDa.. The average intra array CV on day 0 was 19.6% compared to an average inter assay
CV of 22.7%. The average intra array CV on day 7 was 22.6% compared to an average inter assay CV of
25.3%. All profiles were calibrated and normalised to TIC prior to CV calculation. a. Sample analysed on day
0 (array 1), b. Sample prepared on day 7 (array 1), c. Sample prepared on day O (array 2), e. Sample prepared
on day 7 (array 2).

A total of 27 markers were identified and validated in house using an independent set
and identical protocols. Nine markers were differentially expressed between the
cancer and healthy group, eleven between the cancer and benign disease group and
seven discriminated the benign disease group from healthy controls (Table 8).
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Candidate
biomarker (kDa)

Wessex cohort

Cancer vs. Healthy

Candidate
biomarker (kDa)

Wessex cohort

Cancer vs. Benign

Candidate
biomarker (kDa)

Wessex cohort

Benign vs. Healthy

Candidate
biomarker (kDa)

Guernsey cohort

Cancer vs. Healthy

6.4 1 2.7 1 6.6 1 3.0 1

6.9 | 2.9 | 6.8 1 3.41

9.5 1 4.2 ] 8.21 3.8

12.81 6.6 1 12.6 | 6.3 |
13.0 1 6.81 13.31 6.8 1
66.9 1 8.6 | 1591 831
90.2 1 9.31 149.3 1 8.6 1
101.2 1 12.81 8.7 |
134.31 13.11 10.0 |
1331 10.9 1

168.3 1 12.7 1

13.9 |

17.4 |

283}

28.9 1

56.0 |

Table 8. Candidate proteomic breast cancer serum markers detected by MS analysis. In the Wessex and

Guernsey cohort analyses.

PCDM bioinformatic software and non- parametric statistical analysis were used. In the Wessex cohort; nine

markers were differentially expressed between the cancer and healthy group, eleven between the cancer and

benign disease group and seven discriminated the benign disease group from healthy controls.

The SAX

fractions from which each marker was identified are indicated by colour coding as follows: Serum/U9 in

green, F1 in yellow and F5/F6 in blue.

Expression of the differentially expressed candidate biomarkers

between groups is designated 1 and| respectively indicating over and under expression (P<0.05) in the first

comparison group.
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3.2.3.10 MALDI-TOF MS biomarker validation
In a confirmatory step to focus on the most reliable and potential “real world”
biomarkers, | conducted a validation step in the laboratories of our collaborators in the
Medical Biomics Centre at St. George’s University of London (SGUL). This was
undertaken using MALDI TOF MS as an alternative top down profiling platform to
minimise false discovery rates, select the most stable biological alteration which would
facilitates a more clinically valid biomarker, and to stratify markers in terms of a higher

success rate for future validation.

Here, 12 months after the original analysis, identical robotic preparation of WCX
protein arrays using aliquots from the same samples was performed. This was
followed by MS analysis using a different MS platform; MALDI-TOF MS, (Bruker
Daltonics, Bremen, Germany; detailed methods described earlier). This platform has
inherently a higher resolution and mass accuracy than the SELDI study platform. The
statistical analysis was performed by an independent researcher using the Lucid
System Software (Bio-Rad, Hercules, USA).

Among the identified biomarkers previously described (Table 8), three ion peak
markers qualified as discriminatory markers (P<0.05) between the breast disease
groups in the MALSI analysis. These were the ion peaks 6.4, 9.5kDa (showing higher
levels in the cancer group compared to controls), and the peak at 15.9kDa which was
over expressed in the benign disease group compared to controls (Figure 47).

15.9kDa 9.5kDa 6.4kDa
\ o 4 o 2
i i |
Benign ' Cancer
\
Benign Cancer ' |
Control : Control
Control ) Control

Cancer

Cancer

Control

Control

Figure 47. MALDI validated markers from the Wessex cohort

Illustrative MALDI spectra representing the three validated serum markers confirmed by an independent
analysis of the Wessex samples in SGUL. These breast cancer serum markers qualifying for further
immunovalidation included: A 15.9kDa marker which was over-expressed in benign breast disease
compared to controls. On the other hand, a 9.5kDa marker was over-expressed in the cancer group
compared to healthy controls. Finally a 6.4kDa was over-expressed in the cancer compared to the control

group.
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3.2.3.11 WCX spin column preparation and gel electrophoresis purification

The methodology adapted here was described earlier. Briefly, experiments were
performed to mimic the original sample preparation condition using WCX columns
(Bio-Rad). Following this; the eluents (in Tris HCI pH 10.5) were electrophoresed using
hand cast SDS PAGE (4% stacking and 10% resolving gel). Samples were pre filtered
using YM50 microcon columns (Millipore) to eliminate albumin. Following this,
samples were vacuum dried and then re-suspended in Laemmli sample buffer prior to
gel runs. Gel running buffer was used and electrophoresis performed at 120V.
Repeatedly, this was found to be of low resolution; inadequate for proteomic bands
below 16kDa (Figure 48).

To increase the gel resolution at the LMW range, a precast gradient gel (4-15% Tris-
Glycine gels) (Bio-Rad) was used to analyse the same samples. This showed slight
improvement in the number of bands detected; yet, few bands were seen below 16kDa
(figure 49). This work was repeated several times and showed similar results

indicating a possible sample quality and/or technical problem.
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Figure 48. SDS PAGE purification of the Wessex serum samples

An SDS gel (4% stacking-10% resolving) was used; samples were prepared on WCX columns (WCX). A size
filtration step using 50kDa cut off ultrafiltration was used. Filtrate and retentate samples were then loaded.
50ul sample and 5 pl ladder was loaded in each corresponding well. Staining was performed using Biosafe

Coomassie (Bio-Rad). No bands were evident below 16kDa.
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Figure 49. Gradient Tris-Glycine (TG) GE of the Wessex serum samples

A 4-15% gradient TG gel was used. Samples were prepared on WCX columns (WCX) and eluted twice (Lanes 3
and 5) with 50mM, pH 10.5 tris HCL buffer. An extra size filtration step using 50kDa cut off was also used
and samples were then eluted twice (lanes 7 and 9). 15ul sample and 5 ul ladder was loaded in each
corresponding well. Staining was performed using Biosafe coomassie (Bio-Rad). Reproducible but weaker
bands were demonstrated in the second elution samples (Filtrate2). Noted also was the weak signal below
16kDa.

To investigate this further, Tris-Tricine gels were used comparing different LMW
standards and staining methods (Coomassie vs. silver staining) (Figure 50). LMW
resolution was achieved using the Tris-Tricine gels and silver staining, where protein
standards were detected at 1.7kDa. These gels and standards were utilised to analyse
pooled clinical samples from the Wessex cohort. Nonetheless, this showed very poor
resolution of the clinical serum samples compared to the standard ladder (Figure 51).
This was attributed to sample decay (samples were stored in -20°C for one week) or
protein loss during cut off filtration. To exclude poor sample quality, freshly prepared
samples using the same preparation conditions were tested. This however has
continued to show poor detection at the LMW range (Figure 52). The presence of large
number of proteins below the 50kDa cut off in the retentate samples was observed so
tests were performed using only the WCX column sample preparation step. In an
attempt to increase the sample concentration, samples were compared between
vacuum dried and none dried (to a minimum volume of 20ul). In addition, filtrate from
the WCX column preparations were tested for biomarker signals (Figure 53). As
expected, drying the samples was shown to improve the band density; nonetheless,
the band resolution remained poor at the LMW region. The WCX column filtrate was
also shown to have signals at around 10kDa level. The WCX filtrate proteins should
theoretically contain no proteins of interest as they favourably bind the resins during
the preparation process and therefore would not have been present in the original

SELDI experiment. This could indicate sub optimal fractionation using this method.
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Figure 50. Tris trycine gel biomarker purification test

Tris tricine (10-20%) (Bio-Rad) standard gradient gels were used and then silver stained and developed for 6
minutes. Duplicates of two different protein standards (A and B) and a concentration gradient of Standard C
were resolved. Unless stated otherwise, 10ul was loaded in each lane. Effective staining using silver staining

was shown. Poor resolution was noted when using standard A.
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Figure 51. Tris Tricine gel biomarker purification optimisation

WCX column prepared Wessex serum samples were subjected to size filtration (YM50 Millipore) and then
analysed on a 10-20% Tris-Tricine gel (Bio-Rad). The gel was silver stained (development for 6 minutes).
Serum, F1, F5 /F6 correspond to the Wessex cohort samples. Very poor resolution of the clinical samples
was observed compared to the high resolution seen with the LMW standards. Sample protein concentrations

were measured and ranged between 100-420ng/pl.
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Figure 52. Effect of sample concentration and size exclusion on biomarker purification

Serum samples prepared with WCX columns (Bio-Rad), YM 50 columns (Millipore) and vacuum dried on room
temperature. The gel was silver stained and developed for 6 minutes. Despite using fresh serum samples,
LMW detection was still very poor, where no bands below 10kDa were reported.
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Figure 53. Drying/concentration effect on gel based marker purification

Wessex serum samples were treated with WCX columns (Bio-Rad) with and without vacuum drying at room
temperature. Waste from the WCX preparation was also assessed for presence of potential LMW proteins.
The gel was silver stained and developed for 6 minutes. The LMW detection was still very poor, where no
bands below 10kDa were detected. Drying the samples enhanced band intensities, and there were few
signals around 10kDa from the waste samples indicating possible sample loss during sample preparation.
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To assess the sample quality as a confounding factor in repeatedly inadequate
visualisation of LMW bands, a recombinant standard peptide sample (2.3kDa) (a kind
gift from Professor G Packham’s laboratories), sonicated cell lysate, and BSA
concentration gradient samples were tested under identical analysis preparation
conditions. The detection of ladder bands down to 1.7kDa, but a failure to see the
recombinant protein at 2.3kDa and cell lysate proteins below 10kDa remained a
problem (Figure 54). Silver staining with up to 30 minutes development was

undertaken with no further band detection (data not shown).
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Figure 54. Illustration of poor resolution of gel based biomarker purification at the LMW range

Silver stained Tris-Tricine (10-20%) (Bio-Rad) GE assessing the LMW detection of the Wessex samples
compared to standard proteins and cell lystaes. Same ladder in figure 52 used. This showed very good
detection of the LMW of the standard peptide ladder with and without sample buffer. BSA was detected in
addition to cell lysate proteins. Yet, LMW detection of a recombinant protein (2.3kDa) and cell lysates
remained unachievable. This has confirmed failure of gel based methods in detecting proteins of interest
below 10kDa.

The absence of LMW protein/peptides from biological samples, contrary to standard
ladder peptides, suggested possible preparation error. To exclude loss of LMW
proteins from the gel during the wash steps, an extra fixation step (using 30%
methanol and 10% acetic acid solution) was performed. Despite 24 hour fixation and
silver staining developing steps for 30 minutes, no improvement of the detection was
noted (figure 55). Finally, the possibility of sample run off at the end of the gel was

explored. Electrophoresis was performed at very low voltage and was stopped when
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the dye front reached the middle of the gel.

LMW band misdetection (figure 56).

Breast cancer biomarker discovery
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Figure 55. Testing LMW gel band loss in biomarker purification
The same samples used in Figure 54 were used here to exclude LMW protein permeation during gel washes.
Tris-Tricine gel (10-20%) (Bio-Rad) was fixed overnight with 30% methanol and 10% acetic acid solution.

The gel was then silver stained and developed for 8 minutes.

10kDa was observed.
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Figure 56. Assessment of experimental errors in gel based purification
The same samples used in figure 55, in addition to the Wessex and a parallel prostate study samples were

used to exclude LMW protein run off at the gel end. The Tris tricine (10-20%) (Bio-Rad) was also fixed

overnight with 30% methanol and 10% acetic acid solution.

Gels were run at 80V current and then silver

stained and developed for 15 minutes. No bands were detected in the LMW range.
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3.2.3.12 Gel free biomarker purification and identification

Free Flow Electrophoresis (FFE) fractionation

Following unsuccessful gel based biomarker purification, a gel free based purification
and identification method was investigated. This work adopted pre-fractionation
using IEF-FFE, which previously has previously been shown to provide high-resolution
fractionation in accordance with minimal sample loss** 2", In addition, solid phase 2D

chromatography was tested.

Enrichment and purification of candidate biomarkers is an essential step prior to
identification.  Although reported as an efficient purification adjunct, common
depletion approaches frequently lack specificity and may remove potentially important
proteins of interest®®. In contrast, FFE has the potential to preserve all sample
constituents. Here, samples were subjected to carrier-free IEF on an FFE instrument
(BD). This technique combines IEF with the benefits of gel free electrophoresis by
showing improved sample recovery due to absence of carrier material and enhanced
sample loading capacity through continuous sample flow. SAX fractionated serum
samples from the pooled stock were equilibrated with equal amounts of separation
media. Samples were loaded with a continuous flow of 0.8 ml/h on a linear pH-
gradient covering pH 3-10 and 96 fractions were collected. To make further analysis
more feasible, four successive fractions at a time were combined generating twenty
four master fractions (Appendix 1). MS showed that these had displayed well resolved
protein signals across the entire pH-range. In comparison to the native serum,
fractionation of serum by IEF-FFE allowed the detection of an increased number of
LMW protein peaks (Figure 57 and 58). Albumin, the most prominent protein, normally
masking proteins of lower abundance, was primarily present in fractions SAX F5/F6 -
FFE 13 and SAX F5/F6 - FFE 14. Consequently, the remaining fractions were almost
entirely free of albumin, which helped to overcome signal suppression by albumin and
enabled visualization of lower abundance candidate ion peaks of interest. These were
shown to be concentrated in FFE master fractions SAX F5/F6 - FFE 5, SAX F1 - FFE 8,
SAX F5/F6 - FFE 8, SAX F5/F6 - FFE 9, SAX F1 - FFE 11 and SAX F1 - FFE 22 (Table 9).
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Figure 57. FFE based biomarker purification (2.7kDa) illustration

Representative spectra from the Wessex cohort pooled serum fractionated using |IEF- FFE and prepared with
a-o), 9-11 (d-f), 17 (g), 21-23 (h-j)
shown respectively. A 2.7kDa protein peak was purified in master fraction 9 (d) which represents an optimal

—~

WCX (columns or on spot retentate harvesting). Master fractions 1-3

identification medium for this marker.
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Figure 58. FFE based biomarker purification (12.6kDa) illustration

Spectra from pooled Wessex cohort serum fractionated using IEF- FFE and prepared with WCX (columns or
on spot retentate harvesting). Shown are master fraction pools 1 @), 9 (b), 17-24 (c-j) respectively.
Proteomic peak at 12.6kDa representing a candidate biomarker was isolated in master fraction 22 (h).

Following IEF-FFE characterisation of samples, the fractions containing the peaks of
interest were divided into three aliquots. One aliquot was trypsin digested in solution.
The second aliquot was applied to a WCX arrays and retentates harvested and trypsin
digested in solution. Both digested samples were then analysed by tandem mass using
MALDI-TOF/TOF and/or ESI LC MS/MS. This decoded several potential candidate
proteins pending validation (Table 9). The third FFE aliquot was analysed by SDS PAGE
(4-15%) and Tris-Tricine (10-20%) (Bio-Rad), which failed to detect most
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corresponding bands (data not shown). This could be explained by the low detection
power of gel based purification at the LMW range exacerbated by a dilutional effect

from further FFE fractionation.
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SELDI SAX-FFE fraction Protein/Peptide ID Protein function
m/z
8.6kDa SAX F1 - FFE 8 Beta-defensin (D108B) Poorly explored.
Possible
Immune/tumour
suppressor function.
8.6kDa SAXF1l -FFE 11 Ca/calmodulin- Cell cycle progression.
dependentprotein kinase Il
Inhibitor CK2N1
8.6kDa SAX F1 - FFE 22 Apolipoprotein C3 Plasma lipid transport.
13.3kDa SAX F5/F6 - FFE 5 Transthyretin (TTR) Transport protein for
retinol-binding protein
and thyroxin.
Vesicle trafficking,
15.9kDa SAX F5/F6- FFE 8 Annexin A3 (ANX A3) calcium signalling,
apoptosis, cell growth
and division.
Adhesion, migration,
15.9kDa SAX F5/F6 - FFE 9 Osteopontin (OPN) invasion, chemotaxis
and cell survival.
9.5kDa SAXF1 -FFE 11 Apolipoprotein C1 Plasma lipid transport.

Table 9. potentially identified markers from the Wessex cohort

A list of potentially identified markers from the Wessex cohort. The SAX and FFE fractions from which each

marker was purified are illustrated.

The confirmation of the identity of these markers was subject to

immunoprecipitation (IP) verification using the original SELDI platform. IP verified markers would then be re-

validated by immuno assays (ELISA/WB) on an independent cohort of serum samples and potential breast

cancer pathways involved would be subsequently targeted.
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3.2.3.13 Biomarker verification by immunoprecipitation-MS (IP- MS)
Following the MALDI-TOF MS validation results, markers identified at 15.9, 9.5 and
6.4kDa were subjected to further evaluation to confirm their identities and correlation
to the original MS spectra. The identities of two of the three ion peaks of interest were
assigned as apolipoprotein C1 (Apo C1) at 9.5kDa and either annexin A3 (ANX A3) or
osteopontin (OPN) at 15.9kDa. The last marker at 6.4kDa is still under investigation
pending its bona fide identification. Briefly, IP-MS tests involved the re-analysis of
fractions of the samples containing the marker of interest, MS analysis of the same
sample after marker immuno-precipitation (IP), and finally MS analysis of the IP

enriched eluate to confirm the presence of the same size marker.

Firstly, the 9.5kDa marker identified by MS/MS (Figure 59) was subjected to IP-MS
verification. The depletion was performed using pMACs columns (Miltenyi Biotech) and
a mouse monoclonal antibody (ab54800, Abcam) as described in the methods section.
The MS spectra confirmed the identity of this marker as ApoCl as the original MS
signal was significantly depressed and strongly expressed in the depleted and enriched
samples respectively (Figure 60). Interestingly, the 9.5kDa signal detected here
represents the molecular weight of Apo C1 precursor. Apo C1 is normally truncated
following secretion to a 6.6kDa molecule **°. This could indicate that Apo Cl
differential expression in this occasion is related to cell death rather than over

secretion.

Similarly, OPN verification by IP-MS was performed using a monoclonal anti OPN
antibody (Abcam, ab69498). Here, the IP failed to eliminate the 15.9kDa band from
the original sample, and no enhancement was seen in the theoretically OPN IP enriched
eluate (Figure 61). These findings indicated that there was either gel band/FFE
identification SELDI peak mismatch; which would exclude OPN as a potential marker in
this analysis set, or an antibody failure. An antibody peptide motif mismatch was also
a possible explanation of this result, but investigation of this was not possible at this

stage.

To exclude antibody related failure, western blotting of recombinant OPN protein was
performed, which reproducibly revealed good bands at the expected detection size
(Figure 62). This suggests the antibody was functional. Although other OPN
antibodies covering different epitope(s) could have been tested to confirm this
nhegative IP-MS result, this was not the primary aim of this work and was decided to be
an alternative option should the other potential marker at 15.9kDa fail the validation

step. Thus, OPN was excluded from further validation work.

113



B Zeidan Breast cancer biomarker discovery

20

15

Number of Hits

10

50 100 150
Protein Score
1. APOC1 HUMAN Mass: 9326 Score: 146 Matches: 8(1) Sequences: 5(1) emPAI: 3.23

Apolipoprotein C-I OS=Homo sapiens GN=APOCl1 PE=1 SV=1
[F] Check to include this hit in error tolerant search or archive report

Query Observed Mr (expt) Mr (calc) Delta Miss Score Expect Rank Unique Peptide

i3 575.5100 574.5027 574.3326 0.1701 1 (16) 7.9 1 U K.LKIDS.-
il 4 575.6500 574.6427 574.3326 0.3101 1 29 0.34 1 U K.LKIDS.-
] 144 1052.6400 1051.6327 1051.4822 0.1505 0 (18) 2.6 1 U K.EFGNTLEDK.A
146 1052.8400 1051.8327 1051.4822 0.3505 0 19 2.1 1 U K.EFGNTLEDK.A
i 601.5700 1201.1254 1200.5451 0.5803 0 27 0.42 1 U R.EWFSETFQK.V
] 647.9400 1293.8654 1292.6612 1.2042 1 29 0.2 1 U K.LREFGNTLEDK.A
753.0100 1504.0054 1503.6816 0.3238 1 42 0.011 3 u K.MREWFSETFQK.V + Oxidation (M)
753.3300 1504.6454 1503.6816 0.9638 1 (24) 0.68 1 U K.MREWFSETFQK.V + Oxidation (M)

Figure 59. MS/MS identification of Apo C1
Tryptic peptides identified by product ion MALDI-TOF TOF analysis of the 9.5kDa marker. Tandem mass
sequence coverage of Apo C1 with a high identification score (>100) indicated very high identification

confidence.
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Figure 60. IP-MS verification of Apo C1 as a potential breast cancer biomarker

o)

IP-MS verification of the 9.5kDa (red arrow) marker identified as ApoC1l. Antibody capture of ApoC1l was
performed using monoclonal antibody (ab54800, Abcam). The antibody was linked to pMACS protein A/G
columns (Miltenyi Biotecs) and incubated with pooled serum fractions containing ApoC1. Shown are original
SELDI pseudo-gel views of ApoC1 serum fraction (A) , along with mass spectra of the captured protein from
depleted specimen (B) and the enriched ApoC1l IP eluate (C), respectively. Negative controls illustrated as
follows: ApoC1 abtibody + beads (D), Glycine and PBST (E), anti ApoC1 antibody (F).
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Figure 61. Exclusion of OPN as a breast cancer marker

Osteopontin IP-MS verification test as the 15.9kDa marker (black arrow). The serum fraction containing the
15.9kDa marker (A) was re-analysed using SELDI along with the depleted fractions (B,C) and the enriched IP
eluate (D). The 15.9kDa signal was preserved in the depleted samples (B,C) and not specifically enriched in
the IP eluate spectra (D). These findings indicated that either an anti-body failure or failed verification of
OPN as the candidate 15.9kDa marker.
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Figure 62. WB confirming effective OPN antibodies used in IP-MS

Western blot (WB) analysis testing anti OPN antibody (ab69498, Abcam) binding. 10pg recombinant OPN
protein (ab92964, Abcam) was loaded in each well of 12% SDS PAGE. WB was carried out as described
earlier. Reproducible detection of OPN at the expected size (35kDa) region was confirmed, ruling out
antibody binding problem.

Finally, IP-MS verification of ANX A3 as the marker representing the 15.9kDa peak
(Figure 63) was performed using a monoclonal anti ANX A3 antibody (Santa Cruz, sc-
134260). Here, the ANX A3 depleted samples showed fading 15.9kDa signals and an
enriched signal was evident in the ANX A3 rich eluate MS (Figure 64). This step was
repeated using a different monoclonal anti ANX A3 antibody (AbD serotec, MCA29302)
confirming the correlation between ANX A3 and the 15.9kDa marker (Figure 65).
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ANXA3 HUMAN Mass: 36353 Score: 259 Matches: 27(8) Sequences: 13(5) emPAI: 0.80
Annexin A3 OS=Homo sapiens GN=ANXA3 PE=1 SV=3
| Check to include this hit in error tolerant search or archive report

Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Unique Peptide

36 788.9900  787.9827 788.4280 -0.4453 O 28 11 U K.DIVDSIK.G

37 .1300  788.1227 788.4280 -0.3053 0  (23) 3.8 1 U K.DIVDSIK.G

8s .0500 928.0854 928.5342 -0.4487 O a9 0.008 1 U K.ALLTLADGR.R

87 .3300 928.6454 928.5342 0.1113 0  (47) 0.012 1 U K.ALLTLADGR.R
.1400  942.1327 942.4447 -0.3120 0  (11) 48 3 U K.LTFDEYR.N
L0800  942.1454  942.4447 -0.2992 0 22 3.2 1 U K.LTFDEYR.N
.1000 942.1854 942.4447 -0.2592 0 (15) 16 1 U K.LTFDEYR.N
5800 977.1454 977.5182 -0.3727 0 (23) 2.6 1 U K.QDAQILYK.A
6600  977.3054  977.5182 -0.2127 0O 25 2 1 U K.QDAQILYR.A
6400 1017.2654 1017.5243 -0.2589 0  (13) 32 3 U R.NTPAFLAER.L
7200 1017.4254 1017.5243 -0.0988 0O 28 0.87 1 U R.NTPAFLAER.L
.1700 1074.3254 1074.6107 -0.2852 0  (14) 22 3 U K.MLISILTER.S
2600 1090.5054 1090.6056 -0.1002 O 21 4.5 8 U  K.MLISILTER.S + Oxidation (M)
.5600 1221.1054 1221.5990 -0.4935 O 65 0.00018 1 U K.GIGTDEFTLNR. I
7200 1221.4254 1221.5990 -0.1735 0  (42) 0.032 1 U K.GIGTDEFTLNR.I
2200 1349.2127 1349.6503 -0.4376 0 (20) 5.4 1 U K.DISQAYYTVYK.K
3900 1349.3827 1349.6503 -0.2676 o (21) 3.8 2 U K.DISQAYYTVYK.K
.8800 1349.7454 1349.6503 0.0951 O 42 0.031 1 U K.DISQAYYTVYK.K
.3800 1440.7454 1440.6984 0.0471 0 16 12 1 U K.SDTSGDYEITLLK. I
.0900 1584.1654 1584.6904 -0.5249 0  (53) 0.002 1 U K.SLGDDISSETSGDFR.K
.2900 1584.5654 1584.6904 -0.1249 0 59  0.00049 1 U K.SLGDDISSETSGDFR.K
.5000 1672.9854 1672.8632 0.1223 0 (79) 5.2e-006 1 U K.GAGTNEDALIEILTTR.T
.5500 1673.0854 1672.8632 0.2223 o 91 3.2e-007 1 U K.GAGTNEDALIEILTTR.T
.2000 1712.3854 1712.7853 -0.3999 1 24 1.8 1 U K. SLGDDISSETSGDFRK. A
.9200 1713.8254 1712.7853 1.0401 1  (22) 2.8 1 U K.SLGDDISSETSGDFRK. A
.2000 1780.3854 1780.8156 -0.4301 O 28 0.58 1 U R.DYPDFSPSVDAEAIQR. A
.6700 1761.3254 1780.8156 0.5099 0  (14) 16 1 U R.DYPDFSPSVDAEAIQK. A

Figure 63. MS/MS identification of ANX A3

Sequence coverage of ANX A3 following biomarker purification. Tryptic peptides determined by product ion
LC-ESI-MS? analysis of ANX A3 was confirmed by IP MS verification. ANX A3 molecular weight is 36kDa, the
marker identified here could represent a truncated ANX A3 product, and/or a doubly charged MS signal.
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Figure 64. IP-MS verification of ANX A3 as a breast cancer marker

IP-MS verification of the 15.9kDa (black arrow) marker identified as ANX A3. Antibody capture of ANX A3
was performed using monoclonal antibody (sc-134260, Santa Cruz). The antibody was linked to uMACS
protein A/G columns (Miltenyi Biotecs) and incubated with pooled serum fractions containing ANX A3.
Shown are original mass spectra of ANX A3 serum fraction (a) , along with mass spectra of the captured
protein from depleted specimen (b) and the enriched ANX A3 IP eluate (c), respectively. Negative controls
illustrated as follows: ANX A3 abtibody + beads (d), Glycine and PBST (e,f), anti ANX A3 antibody (g), anti IgG
antibody + beads (h), mouse serum (i).
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Figure 65. IP-MS verification of ANX A3 as a breast cancer marker using an alternative antibody

Further confirmation of the 15.9kDa biomarker as ANX A3 using a different monoclonal anti ANX A3
antibody (AbD serotec, MCA2930Z2) following the same IP-MS protocol described previously. Shown are the
original mass spectra of ANX A3 serum fraction (a) , along with mass spectra of the captured protein from
depleted specimen (b) and the enriched ANX A3 IP eluate (c), respectively. This further confirmed that the
15.9kDa marker was ANX A3.

Based on the IP-MS verification, further evaluation of Apo C1 and ANX A3 as potential

clinically valid/reliable markers was carried out.
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3.2.3.14 Apo C1 ELISA validation
A commercial ELISA kit (E90252Hu, Uscn Life Science Inc.) was used to validate the
weight of Apo C1 as a breast cancer serum marker. The manufacturers recommended
protocol was followed (detailed in the methods section). Forty two samples
representing the three comparison groups were analysed. Here, the ELISA analysis
revealed significant over-expression of Apo C1 in the cancer compared to the control
group (P = 0.002). The small size of the ELISA validation cohort however compromised
further ROC analysis. However, although the sample size was small, this finding
combined with previous MS findings strongly indicate a potential role for ApoCl as a
diagnostic breast cancer marker (Figure 66). Further multi-centre validation and
translational efforts are key to confirm and elucidate the ApoCl role in breast

tumourigenesis pathways.
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Figure 66. Serum Apo C1 ELISA validation

Serum apolipoprotein C1 ELISA results comparing breast cancer, benign breast disease and healthy control
groups. A total of 42 samples (18 control, 15 cancer and 9 benign) were analysed. A standard curve used in
protein concentration calculation is shown. The analysis indicated significant over expression of ApoC1l
levels in sera from cancer patients compared to the control group (P =0.002). No significant differential
expression was detected between the other groups. Apo D protein, secondary antibody and sample deficient
reactions were used as negative controls (NIC).

118



B Zeidan Breast cancer biomarker discovery

3.2.3.15 ANX A3 ELISA validation
To confirm the performance of ANX A3 as a breast disease diagnostic marker, ELISA
validation of SAX fractionated as well as unfractionated serum samples was carried out.
Sandwich ELISA assays were developed in house using a mouse monoclonal anti ANX
A3 antibody (AbD serotic, MCA2930Z7) for plate coating, rabbit polyclonal anti ANX A3
antibody (Abcam, ab33068) as an antigen binding antibody (primary antibody) and an
anti-rabbit HRP tagged antibody as a detection, or secondary antibody (GE Healthcare,
NA9340-1ML). Assay optimisation was tested using recombinant ANX A3 protein

serial dilutions to establish a titration curve (recombinant protein concentration 1ug -

1pg).

The coating antibody was assessed using a concentration gradient (1:10) covering
concentrations between 1lpg/ml-1pg/ml. This was tested in combination with both
primary antibody concentration gradients of 1ug/ml-0.1ng/ml and detection antibody
concentration gradients of 0.2ug/ml-0.1pg/ml. These parameters were used based
on manufactures’ instructions and in collaboration with Professor Mark Cragg and Dr.
Oliver Poetz. The signal levels from all combinations were very low and had a high
level background preventing a standard curve establishment (Figure 67). The mean
control OD was 0.08 and OD of all conditions ranged between 0.076 -0.156 (mean
0.09). The same conditions were then tested using two different ELISA plates to
exclude plate related binding issues. Titration curves were not achieved and the signal
showed low and irreproducible signal patterns (Figures 68, 69). Wider concentration
ranges were also tested to exclude dilutional/saturation effects. Here the antibodies
were diluted 1:10 to cover the following concentration ranges (coating antibody:
10ug/ml-0.1pg/ml, primary antibody: 10ug/ml-1pg/ml, secondary antibody:
(1pg/ml-1ng/ml). Nonetheless, irreproducibility, variably, a low signals were still

features of this assay (Figure 70).
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Figure 67. Initial ANX A3 ELISA testing

A figure representing part of the ANX A3 ELISA optimisation experiments using BD falcon plates (BD
Biosciences, Cat. No. 353279). A mouse monoclonal anti ANX A3 antibody (AbD serotic, MCA2930Z) was
used for plate coating (1pg/ml), rabbit polyclonal anti ANX A3 antibody (Abcam, ab33068) was used as a
primary antibody (1pug/ml) and an anti-rabbit HRP tagged antibody (0.1ug/ml )(GE Healthcare, NA9340-
1ML). A titration curve using recombinant ANX A3 protein concentration gradients (lug/ml -1pg/ml) was
not achieved. OD was measured at a wave length of 450nm. Low non-linear OD signals prevented the

generation of a usable curve.
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Figure 68. ANX A3 ELISA platform optimisation

A figure representing part of the ANX A3 ELISA optimisation experiments using BD falcon plate (BD
Biosciences, Cat. No. 353279). Mouse monoclonal anti ANX A3 antibody (AbD serotic, MCA2930Z) was used
for plate coating (1ug/ml), rabbit polyclonal anti ANX A3 antibody (Abcam, ab33068) was used as a (primary)
antigen binding antibody (1pg/ml) and an anti-rabbit HRP tagged (secondary) detection antibody (0.1ug/ml)
(GE Healthcare, NA9340-1ML). Titration curve using recombinant ANX A3 protein concentration gradients

(1pg/ml -1pg/ml) was not achieved. OD was measured at a wave length of 450nm.
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Figure 69. ANX A3 ELISA optimisation, testing plate fault

Figure representing part of the ANX A3 ELISA optimisation experiments. Using plate Pierce 96-well plates
(Cat. 15041 ) Mouse monoclonal anti ANX A3 antibody (AbD serotic, MCA2930Z) was used for plate coating
(1png/ml), rabbit polyclonal anti ANX A3 antibody (Abcam, ab33068) was used as a (primary) antigen binding
antibody (1pg/ml) and an anti-rabbit HRP tagged (secondary) detection antibody (0.1ug/ml )(GE Healthcare,

NA9340-1ML). Failure to establish a titration curve was illustrated. OD was measured at a wave length of
450nm.
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Figure 70. Final ANX A3 ELISA design testing

Figure representing part of the ANX A3 ELISA optimisation experiments. Using BD falcon plate (BD
Biosciences, Cat. No. 353279). Mouse monoclonal anti ANX A3 antibody (AbD serotic, MCA2930Z) was used
for plate coating (10ug/ml), rabbit polyclonal anti ANX A3 antibody (Abcam, ab33068) was used as a
(primary) antigen binding antibody (10pg/ml) and an anti-rabbit HRP tagged (secondary) detection antibody
(1pg/ml )(GE Healthcare, NA9340-1ML). Titration curve using recombinant ANX A3 protein concentration

gradients (1ug/ml -1pg/ml) was not achieved. OD was measured at a wave length of 450nm.
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Figure 71. WB excluding faulty ANX A3 antibodies

Western blotting of recombinant ANX A3 protein (Abcam, ab92929). 0.1ug ANX A3 was loaded in each well,
and different antibody concentrations were used (according to the manufacturers’ recommendations) for
detection. Four antibodies previously used in the ANX A3 ELISA customisation were tested. Mouse
monoclonal anti ANX A3 antibody (AbD serotic, MCA2930Z) (A), rabbit polyclonal anti ANX A3 antibody
(Abcam, ab33068) (B), (Santa Cruz, sc-134260) (O), rabbit polyclonal antibody (Kind gift from Dr Egle Solito,
Imperial College- London) (D) were successful in detecting the recombinant protein excluding antibody
and/or protein related ELISA errors.

121


http://www.bdbiosciences.com/ptProduct.jsp?prodId=363723&key=elisa+plate&param=search&mterms=true

B Zeidan Breast cancer biomarker discovery

Alternative antibodies/designs were used in various combinations to establish a more
sensitive and reproducible ELISA test. First, we tested an ELISA whereby the coating
utilised the polyclonal antibody combined with monoclonal antibodies were used as
primary antibodies. Several other antibodies were also tested including monoclonal
anti ANX A3 antibody (sc-134260, Santa Cruz), an in-house rabbit polyclonal antibody
(A kind gift from Dr Egle Solito, Imperial College- London) and alternative HRP tagged
antibodies matching the primary antibody species (mouse polyclonal Abcam, ab2110
and rabbit polyclonal , ab2115). However, these failed to achieve a reliable titration
curve. In addition, other possible sources of error including reading wave lengths,
freshly prepared buffers, extra washing steps, and antibody dilution with PBS alone
without BSA were tested revealing no improvement (data not shown). To exclude faulty
recombinant protein (Abcam, ab92929) or antibodies, western blotting of 0.1ug ANX
A3 recombinant protein was performed. A reproducible signal was detected at the
expected size using the different antibodies previously tested for ANX A3 ELISA design
(Figure 71). It was concluded that further optimisation was beyond the scope of this
project (due to time limitation), and a newly available commercial ANX A3 sandwich
ELISA kit (Uscn Life Sciences, Cat. No. E94786Hu) was tested. Here, titration curves
were successfully established using the ANX A3 concentration gradients between 0-

10ng/ml as per manufacturer’s instructions (Figures 72 A-C).

Following the successful ANX A3 ELISA titration tests, pooled serum fractions
representing the 3 disease groups (IDC, BBD and controls) were used to test assay
performance on serum samples from the Wessex cohort. The pooling approach was
adopted due to limited fractioned sample volume. Here, 10ul from 10 samples was
used to constitute each pool. Overall, 5 IDC, 5 controls and 4 BBD pools were tested
(Figure 73). OD signals from all samples were satisfactory and enabled meaningful
interpretation of the ANX A3 concentrations. Interestingly, this revealed significantly
higher ANX A3 level (P= 0.016) in BBD compared to controls which was consistent with
the MS findings. Surprisingly, the levels of ANX A3 in BBD were also significantly
higher than the cancer group (P= 0.016) which was not found in the MS analysis.
Finally, the ANX A3 expression levels in the cancer and control groups were not

significantly different (P= 0.81), which was consistent with the original MS findings.

The differential expression revealed here was consistent with the original MS findings
where, although no significant over expression was detected between BBD and IDC by
MS, the ANX A3 levels were shown to be higher in BBD than IDC. This could be
explained by higher sensitivity and favourable quantification abilities of ELISA
compared to top-down MS analysis. However, these results were interpreted with

caution as pooling the samples could contribute to skewed results.
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Figure 72. (A-C) Optimal ANX A3 ELISA standard curves
Titration curves (73 A-C) established using the ANX A3 ELISA kit (Uscn Life Sciences, Cat. No. E94786Hu).
Reproducible linear standard curves were produced (R* >0.95). This allowed confident accurate

measurement of serum ANX A3 levels in further analysis. OD was measured at a wave length of 450nm.

ANX A3 ELISA

2.57 1 * 1
1 * I 1 1
I 1

2.0 |

1.5- —

Lof ala

0.5+

Concentration
ng/mil

0.0 T T T

Pooled samples

Figure 73. Validation of ANX A3 as a BBD biomarker using pooled samples

ANX A3 immuno-validation using pooled serum fractions from the cancer (IDC), BBD and controls. Each
pool was constituted from 10ul aliquot from 10 SAX F5/F6 fractionated samples totaling to 100ul which was
then used as a representative sample (n=1). Normal (n=5), BBD (n=4) and cancer (n=5) pools were tested
and BBD levels were significantly higher than controls and IDC groups. No significant difference in ANX A3
levels was detected between the IDC group and the controls.

*(P< 0.05)
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To validate the previous MS and ELISA findings, further ANX A3 ELISA analysis was
carried out using SAX fractionated serum representing the three groups (14 controls,
21 BBD and 16 IDC). In addition, recombinant ANX V (Kind gift from Professor Mark
Cragg-Cancer Science Unit, University of Southampton) was used as a negative control
to test the specificity of the ELISA assays. The ELISA confirmed consistent differential
expressions with significantly higher ANX A3 levels in the BBD compared to IDC and
controls (P<0.0005) with no differential expression between the IDC and control
groups. ANX V signal was very minimal indicating high ANX A3 detection specificity
(Figures 74).

The sensitivity and specificity of ANX A3 as a predictor of BBD compared to IDC was
81%, whereas ANX A3 differentiated BBD from controls with a sensitivity of 95% and a
specificity of 86% (Figure 75). As such, serum ANX A3 levels could represent a

promising adjunct diagnostic marker pending further multi-centre evaluation.

To date, there are no reports linking ANX A3 to breast disease. Further multi-centre
validation efforts are essential to confirm the role of ANX A3 as a BBD marker,
elucidating the molecular pathways linking ANX A3 to key breast cancer hormonal and
apoptotic events, which would enable better understanding and validation of this
discovery. To investigate such links, pathways analysis using IPA software (Ingenuity
Systems, USA) was conducted including ANX A3 protein, ER, PR and HER-2 receptors in
a generic literature search. Here, ANX A3 was shown to be directly linked to two key
players in mammary development, prolactin and beta-oestradiol (Figure 76). Such
findings support the potential value of ANX A3 as a breast disease marker. Further
evaluation of prolactin and estradiol levels in these samples could be the starting step

towards further investigation in this direction.
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Figure 74. ANX A3 ELISA validation as a BBD biomarker

ANX A3 immuno-assay validation by sandwich ELISA (Uscn Life Sciences, Cat. No. E94786Hu). Differential
expression at the protein level. ANX A3 levels in BBD were significantly higher than the IDC and control
groups. The specificity of the assay to ANX A3 detection was illustrated by poor signal from ANX V protein
(an ANX A3 homolog). ***(P<0.0005)
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Figure 75. ROC analysis of serum ANX A3 in breast disease

Serum ANX A3 levels - women with benign breast disease were compared to healthy controls and women
with invasive breast cancer. The ANX A3 differentiating accuracy is shown in the receiver operating
characteristic (ROC) analysis and the area under curve (AUC) where a promising group prediction

performance (>80% sensitivity and specificity) is illustrated in the differentiation of BBD from IDC and

controls.
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Figure 76. Pathway analysis of the potential role of ANX A3 in breast cancer pathways

Biochemical pathway analysis (Ingenuity systems) indicating the regulation of ANX A3 (in green) by beta-
oestrodiol (in yellow) and testosterone. Moreover prolactin (PRL) has been reported to have a regulatory
effect on ANX A3. Prolactin levels were shown to be of significance in rat prostate cancer models. In cells
expressing human Oestrogen Receptor protein(s) from human breast tissue, beta-estradiol is involved in the
expression of human ANXA3 mRNA. Thus, a potential link between ANX A3 and major hormonal receptors

justifies future ANX A3 functional experiments.
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3.2.4 Discussion of the Wessex breast cancer serum proteomic
analysis

Current serum and hormonal markers for breast cancer are far from perfect®?. Other

markers including carcinoembryonic antigen (CEA) and carbohydrate antigen (CA) 15-3

are occasionally used in metastatic disease to monitor response to treatment, but there

is an urgent need to discover effective and reliable serum biomarkers for the

prediction, diagnosis and stratification of breast tumours, and proteomic studies have

considerable potential in this arena*.

In the previous section, detailed breast cancer serum SELDI optimisation was reported.
Several biochemical conditions were tested and WCX arrays were shown to provide the
most complex profiles compared to SAX, reverse phase and IMAC arrays. It was also
evident that fractions 2, 3 and 4 of the SAX fractionated sera were unfavourable due to
high albumin content (Fractions 3 and 4) and poor MS signal (Fraction 2). These
analyses were similar to the serum optimisation methods utilized for the Guernsey
serum analysis. A successful final re-optimisation step was conducted to confirm the
reproducibility of the WCX conditions prior to the actual analysis. Acceptable inter and
intra—analysis coefficient of variations (< 30%) were obtained in all checks with up to a
one week gap from original analysis (batch effect analysis). Array pre-wetting in
combination with 50 mM ammonium acetate (pH 4.5) buffer were shown to provide the
best WCX profiling results. However, CPLL and size exclusion columns were found to
be of importance in the purification rather than the initial analysis stage.

This study was designed to address a key cancer biomarker challenge; the

identification of diagnostic breast cancer serum markers®.

347 samples representing
controls, benign breast disease (BBD) and invasive breast cancer (IDC) groups initially
revealed 27 potential biomarkers differentiating the groups. These were challenged by
a final validation analysis using a different platform (MALDI-TOF MS) in a partner
centre (St. George’s University of London), where only 3 of the 27 markers were
validated. Two of these candidate markers were over-expressed in the cancer group
compared to controls (6.4 and 9.5kDa), whereas the 15.9kDa marker was over-

expressed in the BBD compared to the control group.

Based on these findings, purification, identification and verification steps were
conducted to elucidate the nature of the three validated proteomic peaks. Following a
comprehensive gel based and gel free purification steps, Apo C1 (9.5kDa) and ANX A3
(15.9kDa) were identified and verified by IP-MS as breast disease biomarkers in this

study. The identity of the third marker at 6.4kDa is under continuing investigation.

126



B Zeidan Breast cancer biomarker discovery

Literature profiling for the potential role of these markers in breast cancer, both
candidates (Apo C1, ANX A3) were of biological interest. Firstly, the 9.5kDa marker
identified as apolipoprotein C1 (Apo C1l) has been reported to be a diagnostic and
prognostic breast cancer marker®? 2%, Interestingly, the second biomarker
corresponding to the MS peak at 15.9kDa was the calcium and phospholipid binding
protein annexin A3 (ANX A3), reported as a major cancer biomarker?*?*°; which has
never been previously reported in relation to breast disease. Based on the positive
confirmatory MS validation, immunovalidation of these markers was conducted using
sandwich ELISA on independent serum samples representing the former three groups.
Immunovalidation by sandwich ELISA was chosen as the preferred validation method
for several reasons. Firstly, the MS signal intensity indicated low serum ANX A3 levels
hence; ELISA was chosen as a more sensitive tool than WB. In addition, the use of
sandwich ELISA was anticipated to overcome non-specific background resulting from
the highly abundant protein in serum WB. Finally, as ELISA is a clinically applicable

platform, this would expedite biomarker translation to a bedside test.

Here, in agreement with the MS analysis findings, Apo C1 serum levels were shown to
be over-expressed in breast cancer sera, whereas ANX A3 was over-expressed in the
benign disease group compared to controls. Interestingly, ANX A3 ELISA also indicated
a significant over-expression in the benign group compared to cancer, which is a
similar but more significant expression trend revealed by the MS analysis.

Our findings indicate Apo C1 as a potential diagnostic breast cancer biomarker are in
agreement with previous findings describing it as an early diagnostic marker and a
marker of early breast cancer relapse®* **” ?*, Although the exact molecular role of
Apo C1 in neoplastic breast disease remains unclear, an Apo C1 anti apoptotic role was
previously illustrated in pancreatic cancer cells and a similar mechanism could thus
explain over expression in breast cancer patient sera*’. Further blinded validation
studies involving larger cohorts representing different molecular sub-groups and in
situ disease remain essential. More importantly, the molecular role(s) of Apo C1 in

mammary neoplasia warrants further exploration.

This study also revealed a 15.9kDa breast disease serum biomarker that was identified
as the phospholipid and calcium binding protein human annexin A3 (ANX A3). Until
now, differential expression of ANX A3 in breast pathology has not been reported. We
validated our MS findings by ELISA which showed that high expression levels of serum
ANX A3 correlated with BBD. The levels of this or other annexins were previously
found to be differentially expressed in intestinal, pancreatic, hepatocellular, prostatic,

renal and lung malignancies, as well as hairy cell leukaemia®®®?**. Differential ANX A3
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expression also correlated to thyroid tumour progression as well as ovarian cancer

chemo resistance®** #*°,

In this study, serum ANX A3 was significantly elevated in benign breast disease (BBD)
compared to both invasive breast cancer (IDC) and controls. Although this did not
reach statistical significance in the MS analysis, validation by quantitative ELISA has
confirmed the significance of ANX A3 as a biological BBD discriminator. This could be
related to the limited semi-quantitative abilities of top down MS analysis compared to
the more highly sensitive and quantitative ELISA assay. More importantly, both
analyses have revealed ANX A3 as a potential BBD diagnostic marker. The sensitivities
and specificities of ANX A3 levels as a BBD differentiator in the ELISA tests ranged from
81-95%. These results suggest that combined with other markers and/or diagnostic
tests, ANX A3 could be a reliable biomarker for BBD diagnosis. However, these remain
preliminary findings that should be interpreted with caution and require further multi

centre testing.

Proliferative lesions of the breast such as atypical ductal hyperplasia (ADH) are
associated with increased risk of breast cancer’?®*. Further evaluation of ANX A3
expression and function among different benign breast disease groups such as
hormonally driven (eg. atypical ductal hyperplasia and columnar cells changes) ER-
negative lesions (such as apocrine metaplasia) is thus an essential part of future ANX
A3 validation efforts. Equally, the expression behaviour of ANX A3 in DCIS and
different IDC molecular sub groups (basal, ERBB-2 and luminal) needs larger sub-
entity focused studies involving biological fluids, tissue expression and translational

functional studies.

The potential functional role of ANX A3 in malignant transformation and/or
progression is intriguing as ANX A3 was defined previously as an independent
prognostic factor related to neoplastic progression®®. In addition, in breast
neoplasms, patients diagnosed with probable BBD who presented later with IDC are
more likely to be older, postmenopausal women and patients with a strong family
history of breast cancer; implying both familial and hormonal components of

237

pathogenesis ANX A3 could thus play a role in follow up risk assessment in these

patients.

Oestrogen is known to synergise with progesterone to promote breast proliferation
and both play key roles in breast tumourigenesis®™® **°. Interestingly, a potential link
between ANX A3 and major hormonal receptors as well as prolactin can be mapped
using pathway analysis (IPA Ingenuity Systems, USA)**°. This in addition to recent

reports highlighting the role of ANX A3 as a marker in other hormone dependent
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cancers raises the question of whether ANX A3 is functionally associated with major

cancer hormonal pathways®® ** 2%,

Our data showing ANX A3 elevation in the BBD group is encouraging as other studies
showed down regulation of ANX A3 in prostate cancer and up-regulation in advanced
and metastatic prostate cancer (US patent 2003/0108963). In addition, ANX A3-driven
therapeutic evaluation for urological and intestinal tumours is on-going (US Patent
7732148, Jun 2010).

Our findings have several limitations, most notably the lack of multi-centre validation
and the absence of DCIS samples. With the use of a large sample size and an
independent multi-platform discovery validation followed by immunovalidation, we
aimed to minimise potential false biomarker discovery. In fact, the growing evidence
of the importance of Apo C1 and ANX A3 in cancer suggests that our findings are
plausible?** 226 236 241244 However, an expansion of this effort to include multiple centres
to explore wider histological categories could identify subtype-specific Apo C1 and

ANX A3 profiles and elucidate their potential biological role(s) in breast cancer.

In summary, our Wessex analysis results demonstrated that Apo C1 and ANX A3 are
probable discriminatory breast cancer markers that have considerable potential as
diagnostic biomarkers. Prospective multi-centre studies are essential to establish the
role of these markers inbreast cancer diagnosis. Our current efforts are focusing on
the molecular role of these markers in the breast cancer disease process and their
potential as therapeutic targets.

3.2.5 The Wessex breast cancer serum proteomic analysis

summary
In the previous section, detailed MS analysis optimisation methodologies were covered.
Several biochemical conditions were tested and WCX arrays were shown to provide the
most complex MS profiles. A standardised and independently validated MS analysis
validated three potential breast cancer serum biomarkers. Two of these markers were
over-expressed in the cancer group compared to the controls (6.4 and 9.5kDa),
whereas the 15.9kDa marker was over-expressed in the benign disease compared to
the control group. Apo C1 (9.5kDa) and ANX A3 (15.9kDa) were identified and verified
by IP-MS as breast cancer biomarkers. The identity of the third marker at 6.4kDa is
currently under investigation. Our current efforts are focusing on the molecular role of

these markers in the disease process and their potential as therapeutic targets.
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3.3 Early onset breast cancer prognosticators, the

“POSH” serum analysis

3.3.1 Introduction
Breast cancer is the most common cancer among women worldwide, affecting up to
12% of all women in Europe and North America®”. Approximately 2-5% of all breast
cancer diagnosis are patients under the age of 40 ', Despite its low prevalence
among breast cancer populations, early onset breast cancer is reported as a major
malignancy and the most common cause of cancer related deaths in this age group**®
27 The natural history of early onset breast cancer tends to be of a more aggressive
and recurrent phenotype compared to later onset disease. The disease in this group
tends to present with high grade, high stage and less responsive forms®**#!, Qverall,
young women with breast cancer have a decreased overall disease- free survival rate

and a higher ratio of tumours with poor pathologic features* >3,

Additionally, recent reports have shown that the risk of death rose by 5% for every 1-
year reduction in age at diagnosis®‘. Even without nodal involvement early onset
breast cancer has a 25% recurrence rate which could occur up to 12 years post-
surgery”*?. Generally, the risk of local, regional and distant relapses after surgical
treatment is higher in this group of patients®*?. Therefore, it is vital to find biomarkers
to identify young women who have an increased risk of breast cancer recurrence
and/or relapse, and would therefore benefit from intensified surveillance and/or
adjuvant therapy. Moreover, markers modulating early onset disease outcome could
provide insight into treatments altering novel molecular targets/pathways and overall
prognosis. This work was conducted in order to achieve these targets and to stratify
patients with early-onset breast cancer by elucidating the proteomic molecular targets

that underlie treatment response.

3.3.2 Methods

In an effort to unveil new prognosticators of early onset breast cancer, analysis of
matched serum samples from the “POSH” cohort was performed using a novel 3D
MudPIT application™. POSH is a large prospective cohort study recruiting 3,000
women aged 40 years or younger at breast cancer diagnosis'. An additional
recruitment category included women who were BRCA1 or BRCA2 gene carriers aged
41 to 50 years and were diagnosed with their first breast cancer during the study
recruiting period. Most of the recruited patients received an anthracycline based

adjuvant chemotherapy regimen (Table 10).
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Samples used here were from patients treated with the same chemotherapeutic agents
(anthracycline based), who underwent surgery after the completion of neoadjuvant
chemotherapy at different centres. Briefly, the POSH proteomics profiling project
involved patients with none metastatic early stage (stagel-2) invasive ductal carcinoma
(IDC). A total of 399 serum samples (203 good outcome vs. 196 poor outcome) were
collected under strict SOPs; to explore prognostic markers key to patient outcomes.
Only 29 patients (19 good and 10 poor outcome samples) had confirmed BRCAL/2

mutations.

The good outcome group was defined as patients who underwent treatment for breast
cancer and had a disease free survival (DFS) of at least 5 years following treatment.
Patients who showed less favourable outcomes (uni/bilateral recurrence, metastasis or
death) within 2 years of treatment were denoted as the poor outcome group. This
novel quantitative proteomic analysis (3D MudPIT) was adopted building on evidence
from previous breast cancer tissue®** and benign prostate hyperplasia serum studies*!
which indicated a robust and more advanced biomarker discovery method compared to
SELDI TOF MS. Here, pooled samples from each group were analysed. Triplicate
analysis of all samples involved high-performance size-exclusion chromatography
(SEC) for the pre-fractionation of serum proteins followed by dialysis exchange and
solution phase trypsin proteolysis. The tryptic peptides were then offline fractionated
with hydrophilic interaction chromatography (HILIC). Each fraction was then analysed
with online reverse phase nano ultra-performance chromatography connected to
nanoelectrospray ionisation - tandem mass spectrometry (RP nUPLC - nESI MS/MS)
using an ion trap mass analyser. For the spectral processing, the SpectrumMill and
InsPecT software programs were used. Label free analysis was performed at the BRFAA
(see methods for full details) for the qualitative and quantitative assessment of the
proteins and phosphoproteins. The DAVID gene ontology tool and the Ingenuity
Pathway Analysis program (IPA Ingenuity Systems, USA) were used for the functional
annotation of the quantitative proteome and phosphoproteome analysis and

associated biochemical and molecular biology pathways and networks.

Candidate biomarkers revealed at this stage were then subject to further ELISA
validation based on their relevance in the disease pathway analysis and/or literature.
This was performed using commercial ELISA kits, where samples were analysed in
duplicate using recombinant standard proteins to generate linear titration curves. In
addition, reactions with no secondary/detection antibodies/antigen were used as

hegative controls.
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3.3.3 Results

3.3.3.1 3D MudPIT MS/MS analysis
This study resulted in the quantitative profiling of over 6,500 serum proteins and over
1200 phosphoproteins at very high confidence (P < 0.05; FDR<5%). As such, this
modified platform enabled a 3-fold increase in the identified proteins compared to the
original proof of concept study'. Among these, 156 prognosticators were
reproducibly differentially expressed (P< 0.05) between the good and poor outcome
groups (Table 11). These included established diagnosis, disease progression and

drug efficacy biomarkers of breast cancer and its pharmacotherapy.

Pathway analysis of the identified biomarkers indicated their role in key molecular
pathways including DNA damage response, hereditary breast cancer, molecular

mechanisms of cancer and prolactin signalling (Figure 77, 78).

Further analysis of breast cancer biological pathways (using protein markers which
have been identified in both groups) by IPA software (Ingenuity Systems, USA) revealed
that 7 of these markers qualify as strong potential biomarkers according to existing
molecular pathways. These candidate markers were: nitric oxide synthase 2 (NOS2),
protein patched homolog 1 (PTCH1), DNA polymerase subunit gamma-1 (DPOG1),
apolipoprotein C-l (ApoCl), 40S ribosomal protein S4 X isoform (RPS4X), polycomb
complex protein (BMI-1), and DNA (cytosine-5)-methyltransferase 1 (DNMT1).

Although these markers were favourable candidates for immunovalidation and
functional studies, other markers were also identified as “interesting” based on
supportive literature and/or biological evidence, and will be studied in future work. In
addition, technical aspects related to the peptide sequences involved in quantification
were carefully considered prior to relatively long and costly validation processes. As a
general guide, biomarkers identified with identical peptide hits showing significant
differential expression were considered more appropriate candidates for further
evaluation. Such stringent limits should reduce false positives and facilitate a clinically
reliable conclusion. Based on the formerly described factors, and with time and
resources limitations, further immunovalidation was conducted on four of the
qualifying markers. These were ANX A2, ApoC1l, NOS2 and DNMT1.
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Characteristic Good outcome (h=203) Poor Outcome (n=196) Study cohort (n=399)
Age, Years
Median 37 36 36
Range 25-40 18-41 18-41
Follow up, years
Median 471 3 4.12
Range 5.0-5.7 0.4-6.5 0.4-6.5
Histology
Invasive Ductal Carcinoma 203 (100) 191(97) 394 (99)
Invasive Lobular Carcinoma 0 0 0
Unknown 0 5@3) 5(1)
Grade 1 10 (5) 5@) 15 (4)
Grade 2 76 (37) 47 (24) 123 (31)
Grade 3 113 (56) 139 (70) 252 (63)
Unknown 4(2) 5(3) 9(2)
Lymph node status
Negative 104 (51) 60 (31) 164 (41)
Positive 96 (47) 128 (65) 224 (56)
Undetermined 3(2) 8(4) 113)
Oestrogen receptor status
Positive 139 (68) 108 (55) 247 (62)
Negative 62 (21) 88 (45) 150 (38)
Unknown 2(1) 0 2(0)
Progesterone receptor status
Positive 88 (43) 75 (38) 163 (41)
Negative 80 (39) 86 (44) 166 (42)
Unknown 35 (18) 35 (18) 70 (17)
HER2 receptor status
Positive 52 (26) 83 (42) 135 (34)
Negative 59 (29) 92 (47) 151(38)
Unknown 92 (45) 21(11) 113 (28)
BRCA1/2 mutation status
Positive 19 (9) 10 (5) 29 (7)
Negative 182 (90) 182 (93) 364 (91)
Unknown 2(1) 4(2) 6 (2)
Resection margin
RO resection 141(70) 141(72) 282 (71)
R1 resection 25 (12) 21 (11) 46 (12)
Unknown 37 (18) 34 (17) 71(17)
Chemotherapy
FEC 68 (34) 71 (36) 139 (35)
ECMF 29 (14) 32 (16) 61 (15)
FEC + Decotaxel 23 (11) 13 (7) 36 (9)
AC 17 (8) 16 (8) 33 (8)
EC + Paclitaxel 14 (7) 12 (6) 26 (7)
EC + Paclitaxel + Gemcitabine 9(4) 8 (4) 17 (4)
EC 9(4) 6 (3) 15 (4)
Nul 22 (11) 7 (4) 29 (7)
Other 12 (7) 31 (16) 43 (11)

Table 10. The clinicopathological and treatment details of the POSH serum samples used in the MudPIT
analysis.

A: Adriamycin; C: Cyclophosphamide; E: Epirubicin; F: 5 FU; M: Methotrexate. Percentages are in
parentheses.
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Figure 77. Pathway analysis of EBC prognosticator from the POSH analysis
Ingenuity pathway analysis (IPA) involving 13 candidate prognosticators of early onset breast cancer

response (highlighted in table 11). These were found to be involved in several DNA repair pathways
illustrated in this graph. Hereditary breast cancer proteins such as BRCA2 were among these markers as

illustrated above. Markers identified from the POSH analysis are highlighted in grey.
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Figure 78. Pathway analysis of 42 prognosticators revealed in the POSH analysis

Ingenuity pathway analysis (IPA) illustrating the key involvement of 42 candidate prognostic biomarkers
identified from the POSH analysis (highlighted in table 11) in different steps of carcinogenesis. Such
correlation indicated the reliability of the initial analysis results and appropriateness of further validation.

Markers identified from the POSH analysis are highlighted in grey.
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3.3.3.2 ANX A2 ELISA validation

The Wessex analysis revealed ANX A3 as a promising biomarker in breast disease and
therefore prompted further validation of ANX A2 here. ANX A2 levels were significantly
higher in the serum of the good outcome compared to the poor outcome group (Figure
79). The mean ANX A2 concentration was 3.52 compared to 4.5 ng/ml in the poor and
good outcome groups, respectively. This was consistent with the results revealed by
the original MudPIT analysis confirming the significance of ANX A2 as a potential
prognosticator.
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Figure 79. ANX A2 ELISA validation as a prognostic marker in the POSH analysis

ANX A2 levels in serum from the POSH cohort using a commercially available assay (E91944Hu, Uscn Life
Science Inc.). Analysis of 36 poor vs. 36 good outcome samples revealed significantly higher ANX A2 levels
in the good outcome patients (P = 0.003). lllustrated also are the standard curve and negative controls used
in this analysis.
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3.3.3.3 ApoC1 ELISA validation

Apo C1 was found to be a promising breast cancer marker in previous work as well as
in other reports. Moreover, IPA pathway analysis indicated its strong connection to
mammary tumourogenesis. Hence, immunovalidation analysis was performed to
support the evidence revealed by our MudPIT analysis. Here, a higher serum Apo C1
level was shown to be associated with better outcome in patients recruited in the POSH
study (Figure 80). The mean serum Apo Clconcentration was lug/ml in the good
outcome group, whereas the mean concentration in the poor outcome group was 0.74
ug/ml. These findings were based on ELISA assays involving 40 vs. 39 poor and good
outcome serum samples respectively. These results added further evidence to the role
of Apo C1 as a prognostic breast cancer biomarker and the successfully validate the
MudPIT study.
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Figure 80. ELISA validation of Apo C1 as a prognosticator of EBC

Immunovalidation of serum ApoC1 levels in the POSH cohort using a commercial ELISA assay (E90252Hu,
Uscn Life Science Inc.). 40 poor vs. 39 good outcome samples were analysed. Significantly higher ANX A2
levels were shown in the good prognostic outcome patients (P = 0.007). lllustrated also are the standard

curve and negative controls used in this analysis.
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3.3.3.4 NOS2 ELISA validation
Based on the pathway analysis of the candidate prognosticators reported in the POSH
MudPIT analysis, NOS2 was subjected to ELISA analysis in an attempt to assess its
performance as a serum breast cancer prognosticator. A significantly higher NOS2
level was confirmed in the good outcome group than the poor outcome group (Figure
81). The mean concentration of NOS2 in the good outcome group was 6.4 U/ml. On
the other hand, the poor outcome sera had a mean concentration of 2.3 U/ml. The
findings illustrated here were consistent with the original study results and indicated

2.78 fold higher levels of NOS2 in the good outcome samples.
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Figure 81. ELISA test confirming NOS2 as a candidate prognosticator in EBC

Immunovalidation of serum NOS2 levels in the POSH cohort using a commercial ELISA assay (E90837Hu,
Uscn Life Science Inc.). 39 poor vs. 39 good outcome samples were analysed. Significantly higher NOS2
levels were shown in the good prognostic outcome patients (P = 0.006). lllustrated also are the standard

curve and negative controls used in this analysis.
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3.3.3.5 DNMT1 ELISA validation
DNMT1 is a recognised cancer marker. A total of 78 samples were analysed by ELISA
and showed no significant difference between the two groups (Figure 82). The mean
DNMT1 serum concentration was 0.8 vs. 1 ng/ml in the poor and good outcome

groups correspondingly; contrasting with the data from the MudPIT analysis.
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Figure 82. Failed DNMT1 ELISA validation as an EBC biomarker in the POSH analysis

Immunovalidation of serum DNMT1 levels in the POSH cohort using a commercial ELISA assay (E98244Hu,
Uscn Life Science Inc). 40 poor vs. 38 good outcome samples were analysed. Although lower DNMT1 levels
were initially shown in the good outcome group, inconsistently with the MudPIT analysis DNMT1 levels were
higher in the good outcome group. This was not statistically significant (P = 0.38) and DNMT1 validation was

deemed unsuccessful. lllustrated also are the standard curve and negative controls used in this analysis.
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Protein Name

Poor/Good Ratio P-value

Ecto-NOX disulfide-thiol exchanger 1
Keratin, type | cytoskeletal 9
Glutathione peroxidase 3

Protein Jade-1

G2 /mitotic-specific cyclin-B3

Nitric oxide synthase2

Golgin subfamily B member 1
Apolipoprotein L6

Forkhead box protein J1
Calcium-dependent secretion activator 1
Gem-associated protein 6

L_PI3H4 Large structural protein
Corepressor interacting with RBPJ 1
Protein FAM184A

Apolipoprotein F

Peroxisome biogenesis factor 10

Ig kappa chain V-1 region HK101 (Fragment)
Solute carrier family 12 member 3
Phosphatidate phosphatase LPIN1
Protein diaphanous homolog 2

Zinc finger CCCH domain-containing protein 3

Thrombospondin type-1 domain-containing protein 7B

Transmembrane protein 63B

Coiled-coil domain-containing protein 123, mitochondrial

Tripartite motif-containing protein 59

Cell division protein kinase 9

Ig kappa chain V-II region GM607 (Fragment)
Rho GTPase-activating protein SYDE2
Ribosome biogenesis protein BMS1 homolog
Keratin, type Il cytoskeletal 2 oral
Apoptosis-stimulating of p53 protein 2
Serine/threonine-protein kinase ICK
NCK-interacting protein with SH3 domain
Atrial natriuretic peptide-converting enzyme
Lumican

Outer capsid glycoprotein VP7 OS=Rotavirus A
Transcriptional regulator ATRX

Condensin-2 complex subunit G2
Shugoshin-like 1

ATP-binding cassette sub-family A member 12
Ig heavy chain V-I region EU

DPOG1_HUMAN DNA polymerase subunit gamma-1

LCA5_HUMAN Lebercilin

0.012225795
0.012269939
0.021980977
0.026269702
0.02901538
0.039160839
0.041245791
0.045075125
0.045383412
0.04622051
0.053046001
0.057580779
0.061356932
0.064782908
0.065023512
0.065136012
0.069497
0.0775
0.079335793
0.080952381
0.083129584
0.084745763
0.08585034
0.086019874
0.088202867
0.091094891
0.092514833
0.095849057
0.097826087
0.098382749
0.098591549
0.098901099
0.101068999
0.101123596
0.101338432
0.101827676
0.105680736
0.111891069
0.112586605
0.113611615
0.11808209
0.12102405
0.129812981

0.00035843
0.00036076
0.0010329
0.00142616
0.00170763
0.00294205
0.00323265
0.00379836
0.00384569
0.00397553
0.00510613
0.00592698
0.00665218
0.00734242
0.00739204
0.00741529
0.00834173
0.01016724
0.01060852
0.01100398
0.01154669
0.01195702
0.01224109
0.01228496
0.01285591
0.01362985
0.01401711
0.01494512
0.01550765
0.01566768
0.01572789
0.01581734
0.01644998
0.01646605
0.01652936
0.01667393
0.01783157
0.01976791
0.01999013
0.02031956
0.02178328
0.02277025
0.02582883
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Protein Name

Poor/Good Ratio

P-value

SWI/SNF complex subunit SMARCC2

Nebulin

Nitric oxide synthase, inducible

Ig kappa chain V-I region Lay

Zinc fingers and homeoboxes protein 1

T-lymphoma invasion and metastasis-inducing protein 2
Apolipoprotein C-I|

Ephrin type-A receptor 10

Amphoterin-induced protein 3

Leucine-rich repeats and immunoglobulin-like domains prote

Envoplakin

ATP-dependent DNA helicase 2 subunit 2
Laminin subunit beta-4

Plexin-A2

POLG_HE701 Genome polyprotein enterovirus 70
Paired amphipathic helix protein Sin3b
Annexin-2 receptor

Zinc finger CCCH domain-containing protein 6
ENV_HV1JR Envelope glycoprotein gp160
Myotubularin-related protein 8

Bloom syndrome protein

Sarcosine dehydrogenase, mitochondrial
Phosphatidylethanolamine-binding protein 4
Epidermis-specific serine protease-like protein
R1AB_CVHN1 Replicase polyprotein 1lab coronavirus HKU1
CAP-Gly domain-containing linker protein 1
Putative tyrosine-protein phosphatase TPTE
VE2_HPVO5 Regulatory protein E2
ATP-dependent RNA helicase DDX24
Inter-alpha-trypsin inhibitor heavy chain H3
Myomegalin

Interferon-induced very large GTPase 1
Lysine-specific demethylase 4C

Potassium voltage-gated channel subfamily A member 1
DNA (cytosine-5)-methyltransferase 1

Glycine dehydrogenase [decarboxylating], mitochondrial
Arginase-1

VP3_ROTHT Protein VP3 OS=Rotavirus A
Prickle-like protein 3

Histone H2B type 1-A

Ribosome biogenesis regulatory protein homolog
Ig kappa chain V-I region Wes

Protein patched homolog 1

0.129860325
0.136919315
0.140684411
0.144201434
0.148877691
0.152489627
0.152745802
0.155178268
0.156415695
0.156648452
0.160150376
0.160955348
0.162314749
0.163278272
0.164658635
0.16773557
0.168262855
0.168845935
0.170068027
0.171014493
0.175615627
0.17761807
0.178226514
0.178352941
0.181642512
0.182644628
0.185210544
0.18627451
4.327300151
4.333333333
4.339130435
4.428571429
4.433333333
4.440944882
4.54893617
4.554376658
4.596287703
4.603082852
4.632780083
4.684044234
4.696428571
4.739936102
4.7578125

0.02584575
0.02841993
0.02983457
0.03118175
0.03301092
0.03445301
0.03455625
0.03554281
0.03604901
0.03614455
0.03759437
0.03793089
0.03850193
0.03890875
0.03949457
0.04081298
0.04104065
0.041293
0.04182389
0.0422369
0.04426749
0.04516292
0.04543639
0.04549329
0.04698368
0.04744142
0.04862128
0.0491138
0.04970212
0.04957651
0.04945627
0.04765492
0.04756178
0.04741346
0.04538147
0.04528257
0.04453133
0.04441128
0.04389228
0.04301748
0.04281005
0.04209309
0.0418037
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Protein Name Poor/Good Ratio P-value

Sickle tail protein homolog 4.763636364 0.04171006
Ig heavy chain V-1l region NEWM 4.814814815 0.04090054
Dynein heavy chain 9, axonemal 4.865979381 0.04011452
Phosphatidylinositol-4-phosphate 3-kinase C2 4.905325444 0.03952534
DNA-dependent protein kinase catalytic subunit 4.929032258 0.03917658
Neuronal pentraxin-1 4.967948718 0.03861398
Ig kappa chain V-Ill region SIE 4.968264406 0.03860947
Cullin-associated NEDD8-dissociated protein 1 4.989473684 0.03830798
N-terminal acetyltransferase complex ARD1 subunit 5.058219178 0.03735466
PLSI_HUMAN Plastin-1 5.112403101 0.03662809
CAN3_HUMAN Calpain-3 5.128205128 0.03642018
Zinc finger CCHC domain-containing protein 10 5.204225352 0.03544428
THO complex subunit 7 homolog 5.397683398 0.03313063
RNA-binding protein 28 5.473015873 0.03229061
Zinc finger protein 429 5.520746888 0.0317748
Parkin coregulated gene protein 5.52866242 0.03169046
Interferon-inducible GTPase 5 5.532894737 0.0316455
PHD finger protein 6 5.559550562 0.03136452
USP6 N-terminal-like protein 5.582278481 0.03112789
EF-hand calcium-binding domain-containing protein 3 5.641255605 0.03052622
Ferredoxin-fold anticodon-binding domain-containing protein 5.68013468 0.03013908
Protein tyrosine phosphatase domain-containing protein 1 5.744186047 0.02951717
R3H and coiled-coil domain-containing protein 1 5.894060995 0.02813514
DENN domain-containing protein 4C 6.070422535 0.02662984
Uncharacterized protein C12orf52 6.136263736 0.02609875
Outer capsid protein VP4 6.215775159 0.02547834
CD2-associated protein 6.220588235 0.0254415
KDEL motif-containing protein 2 6.23556582 0.02532736
Ilg gamma-3 chain C region 6.268076573 0.02508225
E1A-binding protein p400 6.373417722 0.02431208
Dystrophia myotonica WD repeat-containing protein 6.846153846 0.0212584
Endophilin-A3 6.953900709 0.02064332
Nuclear pore membrane glycoprotein 210 6.988188976 0.02045319
Metal transporter CNNM2 7.268468468 0.01899323
40S ribosomal protein S4, X isoform 7.284023669 0.01891685
Nucleotide-binding oligomerization domain-containing pro. 7.285714286 0.01890857
VP4_ROTHP Outer capsid protein VP4 7.298319328 0.01884705
Polycomb complex protein BMI-1 7.335839599 0.0186657
A-kinase anchor protein 9 7.476190476 0.01801011
Ig alpha-2 chain C region 7.481398975 0.01798645
Netrin-G1 7.505882353 0.01787586
Ubiquitin-like domain-containing CTD phosphatase 1 7.600732601 0.01745697
Grainyhead-like protein 1 homolog 7.844611529 0.01644538
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Protein Name Poor/Good Ratio P-value

VP4_ROTHN Outer capsid protein VP4 7.994974874 0.01586506
Tropomyosin alpha-1 chain 8.064377682 0.01560756
Cyclic nucleotide-binding domain-containing protein 1 8.26929982 0.01488294
Peroxisomal Lon protease homolog 2 8.373333333 0.01453431
Brain-specific angiogenesis inhibitor 2 8.915712799 0.01290156
Sodium/glucose cotransporter 1 8.958115183 0.01278572
Ig lambda chain V-Ill region SH 9.149748744 0.01228126
Formin-binding protein 4 9.214285714 0.0121181
Putative uncharacterized protein Clorf197 9.331010453 0.0118312
Synaptotagmin-2 9.337837838 0.01181474
Mixed lineage kinase domain-like protein 9.726973684 0.01093061
Large proline-rich protein BAT3 9.808121019 0.01075883
Uncharacterized protein C9orf104 10.03926702 0.01029125
Coagulation factor XIll B chain 10.23125 0.0099258
Anoctamin-6 10.46581197 0.00950525
SWI/SNF complex subunit SMARCC1 10.64308682 0.00920499
Ig heavy chain V-I region HG3 10.86479592 0.00884917
Fibrinogen beta chain 11.43093923 0.00802936
Latent-transforming growth factor beta-binding protein 4 O 13.21787709 0.00607648
Mediator of RNA polymerase Il transcription subunit 26 13.65811966 0.00570551
NS2A_CVHOC Non-structural protein 2a 13.6977887 0.00567378
Zinc finger protein 680 13.90666667 0.00551097
Myosin-IXa 14.89928058 0.00482587
Ig kappa chain V-IIl region GOL 15.68559838 0.00437036
ATP-binding cassette sub-family A member 2 19.44224924 0.00288617
Ig lambda chain V-VI region WLT 28.26984127 0.00139531
Ig kappa chain V-II region Cum 43.15396825 0.00061107

Table 11. The potential prognostic biomarkers differentiating good and poor outcome patients from the

POSH cohort proteomic analysis.

A total of 156 biomarkers were identified with at least 4 fold difference between the groups (P<0.05,

FDR<%5). Candidate biomarkers qualifying as potentially clinically relevant (as indicated by IPA pathway

analysis) are highlighted in grey. These markers are currently under further investigation for their clinical

use and potential prognostic and/or therapeutic targets.
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3.3.4 Discussion of the POSH proteomic analysis

Despite the increased use of neoadjuvant chemotherapy, and an overall decrease in
breast cancer mortality in general, early onset breast cancer (EBC) is still assosciated
with poor prognosis **°. Although the exact causes of this phenomenon are still
unclear, EBC is thought to be a unique disease entity with a more aggressive and less
responsive trend. This can be partly attributed to higher grade and less hormonally

responsive tumours in many EBC patients®** #*°,

Although several reports showed survival gain in patients treated with anthracycline
based adjuvant therapy in early breast cancer, such benefit was modest and was
accompanied by a risk of increased chemotoxicity. In particular, outcomes in the
control arms of these trials show that 70% of patients derive adequate disease control
from non-anthracycline-containing therapies, challenging the need to treat ‘all
comers’ with anthracyclines®” #*%, A risk benefit balance necessitates attempts to
identify patient subgroups for which anthracycline and/or other chemotherapy based
treatments offer an advantage. Selection of patients that are more likely to benefit
from chemotherapy would also allow cost effective use of chemotherapy and reduce
the risk of patients developing chemotoxic side effects with little or no efficacy.
Finally, identifying EBC prognostic biomarkers could highlight novel resistance and/or
predisposition pathways that can then be targeted to increase treatment efficacy.

From a treatment efficacy perspective, administering chemotherapy to patients who are
likely to respond and not to those who are unlikely to respond is key. To this end,
predictive factors including biomarkers of response to treatment need to be explored.
So far, evidence suggests an association between aggressive tumour phenotypes,
(including estrogen receptor ER negativity, higher grade and Ki-67 expression), and
favourable response to anthracycline-based regimes®®. Nonetheless, ER positive sub
sets of HER-2 positive tumours were shown to have better response. Overall,
molecular players involved in such observations remain scarce. A promising
prognostic marker; topoisomerase Il alpha (TOP2A) was reported as a potential

prognosticator in EBC patients®®°.

Functionally, anthracyclines bind TOP2A, and stabilise the DNA double-strand breaks,
resulting in cell cycle arrest and apoptosis. Moreover, they induce the formation of
formaldehyde and its associated oxygen radicles leading to cell death. Both
mechanisms are believed to induce cell death. Despite conflicting evidence on the
value of TOP2A as a marker of anthracycline adjuvant treatment response, It was
reported that in the ER receptor positive subgroup of HER-2 positive EBC patients
TOP2A over expression had better anthracycline treatment response®’. TOP2A

expression was shown to be a surrogate marker for tumour proliferation, but not as
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strongly associated with outcome as Ki-67°®. Co expression of both HER-2 and
TOP2A can be explained by their gene co-amplification due to their chromosomal
location (chromosome 17)***2%*, The role of TOP2A in HER-2 negative tumours remains

unclear.

The POSH study presented here targeted a critical area in breast cancer research. This
involved analysing matched samples from patients who developed breast cancer and
received neoadjuvant treatment before the age of 40. We aimed to elucidate novel EBC
proteomic prognosticators that could lead to improved treatment stratification and
personalised medical intervention. Critical biological pathways revealed by this effort
could also be exploited for potential new pharmaceutical agents to alter overall
outcome in both early and late onset breast cancer patients. The study design was
chosen to alleviate individual non-specific variations using a large cohort, minimise
bias by randomised sample collection, facilitate identification of controls that could be
matched for all potential confounding factors and ensure accurate standardised and

high quality data collection.

Applying a modified 3D MudPIT MS/MS analysis®®; 6,500 serum proteins were
identified of which over 1200 were phosphoproteins. 156 prognostic biomarkers were
found to differentiate good from poor outcome sera with high confidence (P< 0.05,
FDR < 5%). Further molecular pathway analysis demonstrated that these markers were
involved in relevant cancer pathways including DNA damage response, hereditary
breast cancer, molecular mechanisms of cancer and prolactin signalling. In addition,
several markers emphasised in the pathway analysis were the focus of further
immunovalidation. Three of these markers (ANX A2, Apo Cl1 and NOS2) were
successfully validated by ELISA assays using an independent validation cohort,
illustrating consistent results with the original MudPIT analysis. Here, it was confirmed
that their over-expression was associated with a more favourable post treatment
outcome in early onset breast cancer. A fourth candidate marker (DNMT1) however,
failed the ELISA validation and showed no differential expression between the two
groups. This can be explained by several factors. Firstly, a potential mismatch may
have occurred between the conformational and linear epitope in the ELISA as opposed
to the amino acid sequence based MS/MS detection. A lower detection limit threshold
advantage in MS/MS analysis is another potential source for such finding. Moreover,
interfering molecules and inter assay variability are reported limitations in ELISA
validation®®* >*®, It is possible that the ELISA was sub optimal, suggested by an OD of
below the detection threshold. This could be further investigated by
repeated/additional ELISA analysis. However, this was deemed to be beyond the scope
of this project. Despite this, three prognostic markers (ANX A2, Apo C1 and NOS2)
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were validated by ELISA as potential clinically applicable fit for purpose prognosticators
of EBC.

The role of ANX A2 in breast cancer

Calcium-binding proteins, including annexins, are key molecules in signaling
pathways. ANX A2 specifically plays a significant role in angiogenesis by activating the
plasminogen/plasmin system, aggressiveness and metastasis®®” *®*. |n addition, ANX
A2 has been shown to be over expressed in several malignancies including prostate,
hepatocellular and pancreatic carcinomas®*?*'. Enhanced expression of annexin A2 in
immunohistochemistry (IHC) and the concurrent decreased expression of annexin Al
in breast cancers biopsies were reported to be associated with a poor response to
neoadjuvant chemotherapy in large and locally advanced tumours??. Although an anti-
apoptotic role of ANX A2 was thought to be the cause of chemoresistance in lung and
breast cancer, ANX A2’s role in early onset breast cancer has not been fully explored®”.
Recent evidence suggested an association between ANX A2/ tPA binding on breast cell
surfaces and plasmin activation leading to invasive breast cell line migration and
enhanced angiogenic activity’®” **®.  Moreover, multi drug resistant MCF7 cell lines
(MCF7/ADR) were shown to have a higher invasive/metastatic propensity associated
with ANX A2 over expression, a trend which was reversed following ANX A2
inhibition®*. However, ANX A2 was not directly involved in the acquisition of multi-
drug resistance.

In agreement with previous discoveries that indicated a role for ANX A2 in breast
cancer, our results indicated that annexin A2 over expression was associated with
good outcome in EBC patients following anthracycline based neoadjuvant
chemotherapy. Discrepancies of ANX A2 expression behaviour between different
studies need further investigation. We propose that conflicting evidence could be
explained by the different in vitro cellular behaviour, in vivo pathway(s) in early onset
breast tumours, or a unique pathway activation following intervention in these
patients. ANX A2 in breast cancer patient sera was not studied in any of the previous
studies, which could also be a source of discrepancy. Finally, false positive discovery is
also a potential source for such discrepant finding; necessitating further validation and

functional studies.

Apo CI as a breast cancer marker

Bibliographic mining involving the candidate serum markers identified by pathway
analysis was carried out. Here few of these markers were reported as diagnosis and/or
prognosis breast cancer biomarkers. There are few reports that describe Apo C1 as a
marker associated with breast cancer, though one study showed it to be an early

228

predictor of early breast cancer recurrence®®. Goncalves and colleagues illustrated that
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lower Apo C1 levels were associated with higher metastatic recurrence risk?”. This is
consistent with our finding were ApoCl levels in the good prognosis group were
significantly higher than the poor outcome group. Other work has reported lower Apo
C1 levels associated with breast cancer compared to healthy controls®?. Interestingly,
Apo C1 was identified as a diagnostic breast cancer marker in the previous Wessex
analysis and a prognostic marker in the POSH cohort. ApoCl over expression was
demonstrated to be diagnostic in IDC patients from the Wessex cohort and associated
with good outcome in post treatment EBC. This could be explained by several factors
including pre analytical variability, such as sample collection, storage and handling,
different cohorts/populations as well as analysis platforms. Also, the molecular action
of Apo C1 could differ from a diagnostic and prognostic point of view depending on its
biological role in each process. This could also indicate that EBC patients possessing
higher Apo C1 levels represent a sub group mimicking late onset sporadic disease,
which generally poses a more favourable response. Overall, the frequent presence of
Apo C1 as a breast cancer marker strongly suggests a possible biological role in breast

disease tumourogenesis.

NOS2 expression in breast cancer

The POSH analysis revealed that higher NOS2 levels correlated with good prognosis.
Increased NOS2 levels (indicating an inflammatory tumour environment) have been
shown to be associated with Akt phosphorylation and its down-stream pro-apoptotic
effectors caspase 9 and BAD (inhibiting their pro-apoptotic function). Other factors
such as ER receptor status, HER2/neu status, p53 mutation, nodal involvement,
menopausal status, BMI, smoking, age and ethnicity, were not associated with Akt
pathway activation?”. Clinical studies have found an association of iINOS expression
and poor prognosis in breast cancer patients”® *”’, and the use of non-steroidal anti-
inflammatory drugs (NSAIDs) (potentially affecting its pathway) with a reduction in the
risk of breast cancer”®?”®. Glynn et al. previously showed that ER negative patients and
patients with basal tumours had a poorer prognosis as well as higher NOS2 levels®® ?*',
The evidence from the POSH cohort is in contrast to these findings and warrants
further validation in multi-centre studies to confirm the exact role of NOS2 in breast
pathology. The contrasting expression behaviour could be explained by different
biological behaviour of early onset breast cancer patients. Clearly, this observation

warrants further validation and functional evaluation.

DNMTT in breast cancer

The POSH MudPIT analysis showed that DNMT 1 levels were five-fold higher in the
poor outcome group. DNMT 1 plays a key role DNA hypermethylation and
transcriptional silencing of tumour suppressor genes®?. DNMT 1 has been shown to

be involved in the development of many malignancies®®*?**. DNMT 1 antagonist 5-AZA
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was shown to reverse ER receptor negative status and restore tamoxifen sensitivity in
ER negative breast cancer cells®®> *¢. An increase of DNMT1 activation plays a role in
the methylation of the PTEN promoter contributing to persistent Akt activation and
tamoxifen resistance®®” . As such, DNMT 1 could be a potential therapeutic target for
reversing tamoxifen resistance in breast cancer. The effect of DNMT1 on breast cancer
and a BRCAL association has been reported in different ethnic populations®*®***, In
addition, it has been shown to play a role in docetaxel chemoresistance®'. Although
DNMT1 ELISA validation in the POSH study was not achieved; the former reports are
consistent with the POSH MudPIT analysis evidence indicating poorer prognosis was

associated with higher serum DNMT 1 levels.

3.3.5 The POSH cohort proteomic analysis summary

The study presented here targeted a critical area in breast cancer research. Analysing
matched samples from patients who have developed breast cancer before the age of
40 aimed to elucidate novel proteomic prognosticators. It was anticipated that
differentially expressed markers from this study could lead to improved treatment
stratification and personalised medical intervention. Critical biological pathways
revealed by this effort could be exploited for potential new pharmaceutical agents to
alter overall outcome. The study design was chosen to alleviate individual variations,
minimise ascertainment bias, facilitate identification of controls that could be matched
for all potential confounding factors and ensure accurate standardised and high quality
data collection.

The application of 3D MudPIT MS/MS approach to the POSH samples generated 6,500
serum proteins and over 1200 phosphoproteins, of which 156 prognostic biomarkers
were found. Several markers emphasised in the pathway analysis were the focus of

further immunovalidation.

Three of these markers (ANX A2, Apo C1 and NOS2) were successfully validated by
ELISA assays, illustrating consistent results with the original MudPIT analysis. Here, it
was confirmed that their over-expression was associated with a more favourable post
treatment outcome in early onset breast cancer. A fourth candidate marker (DNMT1),
failed the ELISA validation and showed no differential expression between the two

groups.

This work adds new evidence to the field of prognosticators in early onset breast
cancer and opens new venues for novel biomarkers and pathway discovery where
critical biological pathways could be exploited for new therapeutics. These findings
should however be interpreted with caution and are subject to further confirmation by

independent studies.
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Chapter 4

Final Discussion
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4. Final Discussion

Breast cancer is believed to result from the accumulation of oncogene mutations or
rearrangements and silencing of tumour suppressor genes. During tumour
development and/or growth, specific tumour and host secreted proteins, and plasma
protein digested by tumour/host secreted proteases would be released into the blood.
Generally, expression profiling biomarker discovery aims to provide new means for
tumour diagnosis, classification and prognostication by targeting such molecules. This
could lead to the creation of early detection modules, and personalised effective cancer
therapies which would improve outcomes. To date, genomic expression profiling has
successfully contributed to the classification and outcome prediction of breast cancer
%, Genomic profiling has led to the use of several markers including ER, PR and HER-2
in directing breast cancer treatment as well as estimating prognosis ***°®. Generally,
patients with hormone receptor (ER and PR) amplification have better prognosis as
opposed to patients with HER-2 overexpression **. Consequently, this has led to the
introduction of hormonal therapy involving either Tamoxifen, or an Aromatase
Inhibitors in hormone receptor positive patients, and HER-2 monoclonal antibody
therapy (Herceptin) for patients with HER-2 amplifying tumours **. Yet, this simple
classification does not completely reflect the heterogeneity of breast disease as more
markers and molecular subtypes have been illustrated over the last decade *’. Such
new molecular subtyping is expected to alter patients’ stratification. Thus, more
personalised and targeted treatments are expected to influence current management

regimes.

Whilst huge strides have been made by the application of genomic techniques in this
area, many crucial changes at the protein level including global patterns and PTMs may
prove to be key players in carcinogenesis, and may still be missed by studies at the
genomic level. It is, therefore, essential to correlate and study biological proteomic
patterns and correlate them to tumour classification and clinical outcomes. The
consistency of this approach was illustrated by recent proteomic studies, leading to
sub grouping of breast cancer; parallel to the genomic profiling classification*” .
Although proteomic research is challenged by the absence of real time protein
monitoring, de novo sequencing and global profiling, biomarker discovery is a key
field which has proven effective despite these factors® °* * %, The dynamic range of
the proteome coupled with varying isoforms are also tough challenges facing these
efforts®'. In addition, heterogeneity of the breast and its pathological status will
continue to play part in this challenge. Recent evidence demonstrated heterogeneity
within breast tumour cell lines ***, this in addition to reports demonstrating similarities
of the molecular subtypes in both DCIS and IDC raise the question of how mutually

exclusive are breast pathologies *** ? Similarly, normal breast tissue is subject to a
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degree of heterogeneity under the influence of local environment and hormonal and/or
cyclical tissue changes, which could lead to more frequent encountering of incidental

benign breast changes in “normal” breast tissue.

Despite these challenges, breast cancer serum profiling in particular, remains the focus

of many of these studies applying MS technology®® 7 125 131 136, 144, 157, 297, 298

The detection of breast and other cancers at an early stage would improve the
likelihood of cure, life expectancy and quality of life. Current breast cancer screening
and diagnostic tools are limited. So it is important to identify alternative
approaches/markers to detect breast cancer earlier. But why target serum proteomics
despite many hurdles involving serum complexity, dynamic range and sample

heterogeneity?

Firstly; proteins and/or their alterations represent the sum total of biologically active
molecules responsible for most cellular function. The proteome is, therefore, an
attractive area for novel biomarker discovery® **°. Secondly, the use of blood samples
for proteomic analysis is a simple, minimally invasive, reproducible and cost effective
method which can be used as a simple adjunct in addition to current screening and
diagnostic tests, and may possibly be used as an alternative to current screening tests
in the future.

In our work, MS analysis was used in diagnostic and prognostic breast cancer
biomarker discovery. Firstly, unbiased top down MS profiling was applied to explore
the usability of archival samples in proteomic biomarker discovery; the Guernsey
cohort analysis. Secondly, a similar approach was adapted to interrogate sera from
patients with breast neoplasms and healthy controls for diagnostic proteomic marker
discovery; the Wessex cohort analysis. SELDI with its high throughput capabilities and
its ability to simplify crude biological samples using different chromatographic surface,
represented a promising opportunity for semi-global breast cancer proteomic profiling
in both these studies. Both studies were designed to add more evidence in the field of

breast cancer diagnostics and possible monitoring of therapies.

In a parallel project, a shot gun proteomic approach applying a novel 3D MudPIT
analysis platform was embraced to mine the sera of post treatment early onset breast

24 Post treatment early relapse within

cancer (EBC) patients for novel prognosticators
the first two years was a striking phenomenon in many of the patients in the POSH
cohort™*; necessitating further evaluation and molecular elucidation; the POSH cohort
analysis. This work was anticipated to reveal markers which could be applied in

outcome prediction as well as targeting new aggressive disease pathways.
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Archival samples MS proteomic analysis -The Guernsey Cohort analysis-

Orthodox proteomic practice advocates would debate the use of archival samples due
to concerns over sample variability and decay. Clinical proteomics is, however,
challenged by a paradox; where on one hand standardised sample handling is critical
for relevant biomarker discovery, yet, clinically relevant biomarkers must survive the
“real world” sampling and handling protocols''’. A balanced study design with
multicentre validations of candidate “archival” biomarkers is essential and could

provide answers to such debates.

In an attempt to address this area, MS analysis of archival urine and serum samples
was conducted in a pilot study. Optimisation of the analysis conditions was a key step
in this work. It was evident that archival urine samples from the Guernsey cohort
generated poor proteomic profiles and thus compromised the statistical significance of
further analysis. Despite optimization of analysis conditions, the deficiency of protein
peaks in archival urine profiles persisted. In the absence of renal and/or urological
pathologies poor protein signals were expected. Additionally, added to a sample
ageing/degradation where thought to affect these archival urine samples. We
concluded that archival urine proteomic profiling from the Guernsey cohort was

impractical.

In contrast to the urine analysis, profiling archival serum from the same cohort
revealed promising results®. It was clear that WCX profiling was the optimal condition
for higher peak yield. This was shown consistently and high peak detection correlation
and reproducibility were achieved in two different centres®*. In addition, analytical
variability seen in this work was within the expected values for proteomic analysis.
Interestingly, this was shown to be comparable to recent serum cohort profiling
reproducibility, even when analysis was deferred for up to a week from preparation.
The reproducibility of these results, across two independent centres, provided a new
insight in proteomic research®®, where thousands of samples in tissue banks
worldwide could potentially be utilised. The evidence provided here indicated that
historic biobank serum collections may be used for the identification of disease
biomarkers. This is a promising avenue; where large cohorts of predictive biomarker
characteristics could be analysed.

We reported 16 potential biomarker peaks detected in this two cohort study. This
unique finding was recently supported by reports translating MS based tumour bank
serum discovery into immune based quantitative assays''®. In conclusion, this work
demonstrated the potential for proteomic biomarker discovery using archival serum
samples. In agreement to our findings, more reports described archival cancer

biomarker discovery®*" *>.  Further validation studies involving larger cohorts in a
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multicentre fashion are nonetheless needed to confirm the future of archival sample

proteomics.

Diagnostic breast cancer serum bjomarker discovery - The Wessex Cohort analysis-

In the second phase of this project, top down MS proteomic profiling of a prospective
collection (The Wessex cohort®**) was used to probe potential diagnostic serum breast
cancer biomarkers. Many MS based diagnostic studies rely upon the comparison
between serum protein profiles obtained from healthy individuals and from diseased
patients in the search for clinical markers®® 1% 22% 3% Similarly, we hypothesised that
there would be detectable differences within a complex serum protein background in
breast cancer groups. Considering the extreme dynamic range and variable
concentration of proteins present in serum, it was unlikely that a simple single
dimension fractionation coupled with a limited dynamic range detection MS in global
profiling mode could achieve novel biomarker discovery. Therefore, it seemed unlikely
that low abundant proteins would be reliably detected by the simple SELDI platform. In
addition to the broad affinity characteristics provided with its chromatographic arrays,
further enrichment tools were needed to uncover low abundance biomarkers in serum.
In the last decade, many promising biomarkers have been invalidated prior to clinical
use. This may be due to many pre, peri and post analytical parameters complicating
biomarker discovery, and validation risk resulting in “false discovery™®. Hence, serum
samples from the Wessex cohort were matched for age, menopausal status, and stage.
They were also enriched by (SAX) chromato-focusing fractionation. Optimisation of
this cohort followed stringent protocols testing different analytical conditions to
control for pre and peri analytical variables. It was shown that the most informative
profiling settings would involve analysing denatured serum, SAX fraction 1 (F1) and
pooled SAX fractions 5 and 6 (F5/F6) using WCX and pH 4.5 buffer conditions.
Fraction 5 (F5) had a relatively low peak vyield, thus samples from this fraction were
pooled with corresponding samples from fraction 6 (F6) prior to analysis. Although
this may have resulted in data loss from both fractions, it was proposed as an efficient
technique to avoid poor profiling, and compromising stringent discovery from the peak
poor fraction 5 (Personal communication with Bio-Rad and collaborators). The success
of this pooling step was examined and revealed improved reproducible profiles.
Following the assessment and optimisation of several preparations and profiling
conditions, robotic array preparation was conducted to minimise peri analytical
variability, and MS profiles generated using WCX arrays. In an effort to minimise false
discovery, all samples were analysed blindly in duplicate and two overlapping analyses
were performed for all samples using low and high mass range detection settings.
Moreover, a pooled serum (QC) sample made from equal volumes of each fraction was

included on one spot of each array to control analytical peri/post variability.
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This standardised and highly optimised preparation protocol was then used to profile
fractions from 347 serum samples (210 healthy, 73 breast cancer and 64 benign
breast disease) by SELDI. This large cohort was essential to ensure adequate study
power. Putative proteomic peaks were validated using an independent set and
identical protocols. Initially, nine differentially expressed peaks were detected
between the cancer and healthy control groups. In addition, eleven peaks
differentiated the cancer and benign disease group. Finally, seven candidate
biomarkers showed differential patterns between the healthy and benign breast
disease group. Reproducibility is a prerequisite for any comparison analysis, thus we
tested within-run and between-run reproducibility in order to evaluate the precision of
our protein profiling. Variations between spectra were determined by comparing the
relative peak intensities of selected protein mass signals across a wide mass and
intensity range. In line with previous reports® ?* ' our findings demonstrated
successful detection of potential breast cancer biomarkers based on MS analysis.
Evidently, it was difficult to compare results of different studies, as there are huge
variations in the analytical conditions used which would lead to discovery of different
subsets of biomarkers. In addition the bioinformatics involved in data analysis, may

well be another source of discrepancy in the profiling efforts.

To further validate our findings and to minimise the risk of false biomarker discovery,
an independent, but identical MALDI analysis of the same cohort was conducted in
collaboration with St. George’s University of London. Here, three of the 27 ion peaks
(6.4, 9.5 and 15.9kDa) were validated as potential breast cancer biomarkers. The
failure of several markers originally identified by SELDI profiling may be related to
several factors including platform sensitivity/resolution, sample decay, and analysis
methods. More importantly is the validation of these three markers across centres, a

promising sign of their performance as “real world” markers*®.

Biomarker purification experiments were performed to isolate the proteins of interest
prior to their identification. This was proved to be a lengthy and challenging stage,
typical of top down MS biomarker discovery'®. Purification of candidate markers is
usually dependent on gel electrophoresis (GE) and many limitations can prevent
successful biomarker identification. The tendency towards LMW bias in MS profiling
leads to difficulty when using LMW band deficient GE for protein purification. In
addition, the mass detection may differ between the two platforms, which cannot be
ignored. Finally, proteome behaviour within the two distinct analysis environments can
add to purification problems. An additional purification approach involving the use of
gel free purification methods was tested. For this, FFE was used to fractionate pooled
samples from different fractions. This pre-fractionation using IEF-FFE, had previously

218, 219

been shown to provide high-resolution fractionation with minimal sample loss
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This was followed by a second dimension GE providing multilevel purification and
concentration of low-mass serum proteins. This approach ensured increased signal
intensities of the desired markers, aiding downstream analysis as shown in other
profiling studies®®. This extensive process led to the identification of two biomarkers,
Apo C1 (9.5kDa) and ANX A3 (15.9kDa). The validity of both markers was confirmed
by ELISA using independent serum sample sets. On-going work is investigating the
identity of the third marker reported at 6.4kDa.

The identification of over expressed Apo Cl as a marker of IDC is an interesting
observation. Apolipoproteins are synthesised in the liver and mainly act within lipid
carrier lipoprotein metabolism. In addition to their recognised role in lipid transport,
apolipoproteins have been reported to regulate many cellular functions. Apo Cl over
expression was previously described as an anti-apoptotic factor associated with poor
prognosis in pancreatic cancer®”. Although the molecular role of Apo C1 in breast
cancer is unclear, it was previously described as a potential predictor of metastatic
relapse in early onset breast cancer’”®. Moreover, Apo C1 over expression was shown
to be a potential early breast cancer prediction marker®”’. However, Apo C1 is an acute
phase reactant and this lack of disease specificity could limit its application as a
clinical biomarker®* 2**> 2% Discrepancies in serum Apo C1 over/under expression in
this and other cancer studies is confusing. This may be explained by differences in
sample population, collection, processing and storage. Moreover, trends of Apo C1
differential expression in pre-diagnostic stages of breast cancer compared to
symptomatic or detectable stages could reflect a unique biological role in different
disease groups®* ?*. A potential element of false discovery is also possible.
Nonetheless, the molecular role of Apo C1 in breast cancer could be exciting given its
recurrent identification as a breast cancer biomarker and the scarce reports on its

function in mammary pathology.

In our study, serum ANX A3 was validated as an over-expressed marker in benign
breast disease. Annexins are unique membrane binding proteins with various
molecular functions*®. Each annexin is composed of two principal domains: a variable
NH2 terminal “head” (16 or less amino acids) and a conserved COOH-terminal protein
core harbouring the calcium and membrane binding sites outlining an annexin core

comprising four segments of internal homology** (Figure 83).
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Figure 83. A schematic diagram of annexin A3 structure
The N-terminal domain consists of tissue plasminogen activator (t-PA) binding sites. The C-terminal domain
consists of four repeating domains, each contains ANX A3 consensus sequences and the biding sites for

calcium and phospholipids.

Although MS analysis showed ANX A3 over expression in BBD compared to IDC, this
trend was not statistically significant was significant in the ELISA validation. This could
be explained by the higher sensitivity and favourable quantification abilities of

targeted ELISA compared to global top-down MS analysis.

More importantly, we described a large scale, multi-site, top down MS proteomic
biomarker discovery study. A 15.9kDa serum biomarker was confirmed as a BBD
marker in different centres using different top down analysis platforms. This peak was
identified as the phospholipid and calcium binding protein human annexin A3 (ANX
A3). Differential expression of ANX A3 in breast pathology has not been previously
reported. The novel MS findings were validated by ELISA which showed that high levels
of serum ANX A3 correlated with BBD. The levels of annexins were previously found to
be differentially expressed in intestinal, pancreatic, hepatocellular, prostatic, renal and
lung malignancies, as well as hairy cell leukaemia, thyroid tumour progression and

224, 226, 230-232

ovarian cancer chemoresistance

The sensitivities and specificities of ANX A3 levels as a BBD differentiator ranged
between 81-95%. These results suggest that combined with other markers and/or
diagnostic tests, ANX A3 could be a reliable biomarker for BBD diagnosis. However,
these remain preliminary findings that should be interpreted with caution.
Mammographic detection of small, non-palpable breast abnormalities has led not only
to improved early-stage breast cancer detection, but also a raising undetermined
breast lesions incidence. Consequently, more surgical biopsies are needed involving
surgery related risks and representing a significant element of screening costs. In this
respect, ANX A3 could be a beneficial marker in BI-RADS category 3 (probably benign)
and 4 (suspicious) patients or impalpable breast lesions. Compared to the general
population risk of 5%, the risk of breast cancer increases by 1% with the diagnosis of

non-proliferative breast tumours®*. Yet, patients with lower risk non proliferative BBD
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undergo invasive intervention with associated morbidity*> **, to help establishing
definite diagnosis. Although reports suggest that the evaluation of mass margins and
morphologic of features of calcifications help distinguish a malignant lesion from a
probably benign finding, this remains a subjective evaluation. Surrogate markers such
as serum ANX A3 could play a key supporting role in such scenarios®’. In these
patients, ANX A3 levels along with other markers could be used as part of a risk
stratification system influencing the need for invasive biopsies and avoiding
unnecessary risk and cost. More efforts and ANX A3 validation studies should aim at
developing inexpensive and cost-effective tests, allowing specific identification of

high-risk BBD patients at diagnosis and managing them more aggressively.

Hyperproliferative lesions of the breast such as ductal hyperplasia are associated with
increased risk of breast cancer®®***. Further evaluation of ANX A3 expression and
function among different benign breast disease groups such as hormonally driven (eg.
atypical ductal hyperplasia (ADH) and columnar cells changes) ER-negative lesions
(such as apocrine metaplasia) is thus an essential part of future ANX A3 validation
efforts. Equally, the expression behaviour of ANX A3 in DCIS and different IDC
molecular sub groups (basal, ERBB-2 and luminal) needs larger sub-entity focused
studies involving biological fluids, tissue expression and translational functional

studies.

The role of ANX A3 in malignant transformation and/or progression should be
explored. ANX A3 was previously defined as an independent prognostic factor related
to neoplastic progression®®. In breast neoplasms, the subsequent diagnosis of IBC
following BBD diagnosis was reported to be more likely in older, postmenopausal
women, and patients with a strong family history of breast cancer®’. Clearly,
biomarkers such as ANX A3 could provide new insights into the molecular and cellular
basis of mammary tumourigenesis. This could hold potential relevance in earlier

detection, stratification, intervention and new treatment options.

As the role of ANX A3 in breast cancer remains unclear, elucidating its potential
connection to hormonal pathways is of interest. Oestrogen synergises with
progesterone to promote breast proliferation and both play a key role in breast
tumourigenesis®* ?*°. A potential link between ANX A3 and major hormonal receptors
as well as prolactin was identified using pathway analysis, justifying future ANX A3
functional experiments. Moreover, ANX A3 has been previously described as a
phospholipase A2 inhibitor and is reported to play anti-apoptotic, angiogenic and
growth regulatory roles®*”>%. Although the actual role of ANX A3 in carcinogenesis is

less defined, based on the established role of ANX A3 and other homologus annexins,

160



B Zeidan Breast cancer biomarker discovery

a theoretical ANX A3 pathway involving plasminogen activation, ECM degradation and

angiogenesis promotion can be postulated (Figure 84).

In the present study, ANX A3 was down regulated in cancer and control groups
compared to the benign group. BBD ANXA3 was up-regulated by an average of 1.25
fold (between 1.2 and 1.3-fold with 95% confidence; p< 0.05) suggesting that at least
in certain types of benign breast disease ANX A3 abundance may be involved in non-
cancerous disease phenotypes. A paradoxical down regulation of ANX A3 in prostate
cancer as opposed to an up-regulation in advanced and metastatic prostate cancer has
been shown (US patent 2003/0108963). In addition, ANX A3 driven therapeutic
evaluation for urological and intestinal tumours is on-going (US Patent 7732148, Jun
2010). A functional role of annexin A3 in breast cancer as suggested by our findings

is therefore worthwhile exploring.

Fibrin = —> Fibrin degradation product ECM degradation

Angiogenesis

E_>
N

Plasminogen

Annexin A3

Plasma membrane

Figure 84. Proposed mechanism of annexin A3 role in carcinogenesis and metastasis

Proposed mechanism of annexin A3 promoting carcinogenesis and metastasis through plasminogen
activation system. Cell surface ANX A3 binds to t-PA and activates plasminogen conversion to plasmin.
Plasmin results in activation of metalloproteases and leads to extracellular matrix degradation. Increased
annexin A3 expression results in increased plasmin generation and enhances angiogenesis, cancer invasion

and metastasis.

Could ANX A3 under expression negatively affect the lactogenic environment, and
hence lead to the loss of a tumour protective microenvironment? Does the differential
expression of ANX A3 modulate the phenotypic behaviour of morphologically benign
epithelial cells and hence may be an important determinant in initiating, or promoting
human mammary cancers? To date, there are no reports on the association of ANX A3

with breast cancer and the biological functions of ANX A3 and its significance in breast

161



B Zeidan Breast cancer biomarker discovery

tumourigenesis is unclear. Whether this ANX A3 up-regulation persists over years

representing a stable protective phenomenon is for future follow up studies to clarify.

In conclusion, using MS-based profiling approach on a breast cancer screening
population prior to intervention, we have identified a serum proteomic profile that may
differentiate breast cancer, benign breast disease and healthy control sera. Two
markers (Apo Cl and ANX A3) were identified and validated using an independent
cohort and ELISA. Validation on a larger and independent population as well as
identification of the third marker (6.4kDa) reported in this study is currently in
progress. These data suggest a diagnostic value for serum in breast cancer patients
and supports the prospective collection of serum samples in translational studies to

diagnose and predict clinical outcome and/or therapeutic response.

Early onset breast cancer prognostic biomarker discovery -The POSH cohort analysis-

Although neoadjuvant therapies are widely used in the younger breast cancer age
groups, and despite an overall decrease in mortality from breast cancer, early onset
breast cancer mortality rate has not decreased over the years'® '**. Early onset breast
cancer (EBC) is commonly associated with poor prognosis'®. This paradoxical
behaviour between early and later onset disease can be explained by early diagnosis in
the older age group who are targeted in screening programs, and more importantly, a
distinct biological behaviour between the two groups. This was demonstrated in a
large study involving over 5,000 patients with EBC who had higher grade, larger
tumours, which were more frequently lymph node positive over a median 11 year
follow up period'™. In our study, most of the 45% of deaths occurred within the first
five years. Such poor prognosis has been previously attributed to higher grade
tumours in this group of patients'. In agreement with these findings, over 40% of
grade 3 tumours and 29% of grade 2 tumours died whereas no mortalities were
recorded in grade 1 disease'. Other reports indicated that HER-2 positive and p53
over expression was associated with younger breast cancer patients and that HER-2
over expression correlated with lymph node metastasis'®*. Tissue microarray studies
illustrated a link between basal type tumours and the proteins Fhit, Wwox, AP2a*. Yet,
few studies have been directed towards early onset tumours which are a biologically
distinct entity. The biological basis for the variable responses to neo-adjuvant
chemotherapy and surgical treatment in EBC remains an unresolved issue. Although
pre-treatment tumour grade and nuclear proliferative activity in the general population
were shown to have a prognostic effect on response to anthracycline based

chemotherapy™®, inconsistent findings in other studies cast doubt on this**** |

Clearly, more evidence is needed from large cohorts representing EBC. Such evidence

should focus not only on chemo-responsiveness, but also overall outcome, to enable
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effective personalised treatment plans. The distinct aggressive behaviour of early
onset breast cancer necessitates extensive investigations of the molecular pathways

involved in the disease in order to predict and improve outcome.

Potential prognostic serum markers in EBC were explored in this project using the
POSH cohort and applying a 3D MudPIT MS/MS approach®'. Here, post treatment
serum samples from 399 early stage (stage 1 and 2), non-metastatic invasive ductal
carcinoma patients were analysed. Three candidate prognosticators were identified
and validated (ANX A2, Apo C1, and NOS2) using an independent cohort. The
biological relevance of these markers in breast and other malignancies were discussed
earlier. The identification of ANX A2 and Apo C1l as prognostic early onset breast
cancer markers in the POSH cohort is an exciting finding as ANX A3 and Apo C1 were
identified as diagnostic breast cancer biomarkers in the Wessex cohort. Although the
molecular pathways of these markers in both disease entities may be distinct, this
analogous observation in mammary neoplasm sera supports further exploration of

their role as markers and therapeutic targets in breast tumourigenesis.

To date, several studies have investigated prognosticators of EBC*® #°® 2!, Previous
reports suggest that HER2/neu and p53 are markers of aggressiveness in EBC. These
studies found that most of the patients presented with IDC and had lymph node
involvement which correlated to HER-2 overexpression. In our cohort, we focused on
early stage non-metastatic IDC, and found no prognostic role for HER-2 or p53. In
agreement with our dismissed prognostic HER-2 findings, anthracycline based
chemotherapy response was previously shown to be favoured by high grade and
proliferative activity (mitotic activity and mitosin staining) and not by stage, HER-2 or
lymph node status'®. The small cohort size remains a major limiting factor towards

189

any definite conclusions in this and similar studies

The importance of novel prognostic biomarkers in EBC is related to the variable overall
response to treatment. Reports suggest that 15% of EBC patients achieve a complete
response and a similar proportion of patients display minimal change or progressive
disease following treatment*®. Currently, the underlying mechanism for the different
responses is unknown. Causative factors may include the genetic and hormonal
settings of the tumour. So far, studies have generated conflicting results regarding the
positive or negative value of different markers in predicting breast cancer outcome.
Therefore, the prognostic EBC biomarkers presented in this and similar work could
play role in improved EBC treatment by aiding a personalised treatment stratification
model, or elucidating new therapeutic targets. A major obstacle facing such efforts lie
in conflicting results reported in different studies. This could be attributed to the

various treatment protocols, different chemotherapy regimens, patient selection
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criteria, ethnic and genetic variation, and different biomarker assessment methods.
More importantly, the vast molecular heterogeneity of breast cancer is likely to play a
role. Eliminating non biological factors is essential to establish key disease pathways
and help providing personalised treatment options optimising outcome and reducing
sided effects.

In summary, the POSH analysis illustrated ANX A2, Apo C1 and NOS2 as prognostic
serum markers in EBC patients. Further multi centre validation of the clinical utility
and the functional role of these markers in EBC is a vital step towards future bedside

translation of these findings.

In conclusion, this thesis added more evidence in the field of breast cancer biomarker
discovery. Firstly; the potential role of archival serum sample in proteomic profiling
was illustrated. Secondly; Apo C1 and ANX A3 were shown as diagnostic serum breast
cancer biomarkers. Finally, ANX A2, Apo C1 and NOS2 were confirmed as early breast

cancer prognosticators.

Future directions

¢ Independent multi-centre blinded validation of the diagnostic/prognostic
performance of the previously reported markers is a long term object of this
work. It is anticipated that a combined panel of markers is more likely to
achieve clinically reliable diagnostic/prognostic value. To further understand
the performance of each marker in different breast disease entities, larger
cohorts covering different breast cancer sub groups as well as DCIS should also

be involved in such efforts.

e Assessment of the candidate breast cancer biomarkers identified in this work
and their expression in breast tissue from the same cohort is a key step
towards evaluating the source of such differential expression in serum samples.
Moreover, this may indicate the cellular localisation patterns and possible role

as tissue tumour marker once confirmed in independent cohorts.

e Proteins secreted by cells into conditioned media in vitro should be studied to
establish possible similar behaviour in vivo. Although in vitro conditions only
partially represent in vivo settings, it important to map the potential biological

pathways involved in tumourigenesis®®°.
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¢ Finally, functional studies on breast cell lines and animal models to dissect the
specific mechanism(s) of action involved in mammary neoplasia echoed by

these markers differential behaviour is an interesting venue for future projects.
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Appendix 1

Fractionation and pooling steps in the Wessex serum breast cancer biomarker

discovery.
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Schematic diagram illustrating the different fractionation & pooling steps involved in the Wessex serum breast cancer biomarker

discovery proteomic analysis.
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