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Abstract

Platinum nanoparticles are one of the most commonly used catalysts in proton

exchange membrane fuel cells (PEMFCs). One of most important catalytic pro-

cesses is the oxygen reduction reaction, and this is known to be affected by the size

and structure of the platinum catalysts. Recent advances in the linear scaling DFT

code ONETEP [1], have made it possible to investigate stages of the oxygen re-

duction reaction occuring on nanoparticles consisting of over a hundred atoms. In

this thesis, these newly implemented techniques are tested and calibrated by com-

paring with similar calculations performed in plane-wave DFT code CASTEP [2].

Following this calibration, the chemisorption of atomic and molecular oxygen on

different platinum structures was investigated through calculation of chemisorp-

tion energies, electron density differences, and local densities of states. Good

qualitative agreement was found between the results obtained in this thesis, and

those found in the available experimental and computational literature. Size ef-

fects, including variation in the strength of O-Pt binding, and the contraction of

Pt-Pt bonds in smaller PtN and OPtN nanoparticles relative to bulk, are observed

and discussed with respect to their relevance to the oxygen reduction reaction.
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Chapter 1

Introduction

A proton exchange membrane fuel cell (PEMFC) generates electrical energy through

oxidation of hydrogen fuel. It is similar to a galvanic cell, with the exception that

its reactants are supplied to it as fuel, rather than forming part of its construction[3].

The overall chemical reaction is:

2H2 +O2 → 2H2O. (1.1)

In a PEMFC, this is separated into a reduction reaction occurring at the cathode,

and an oxidation reaction occurring at the anode. The reaction occurring at the

anode is the oxidation of hydrogen:

H2 → 2H+ + 2e−. (1.2)

A rough schematic of a PEMFC is shown in Figure (1.1), below which the ba-

sic steps involved in its operation are outlined. There are many different ways

of constructing the electrodes in a PEMFC [4]. This work focuses on the re-
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actions occurring on the surface of platinum nanoparticles, supported on carbon

electrodes. The support is often porous carbon black, but other carbon structures

such as nanotubes and graphene have also been used [5]. A fuller discussion of

possible kinds of carbon support can be found in reference [5]. The platinum

nanoparticles are often bound to a carbon support using Nafion [6], but other ma-

terials such as polytetrafluoroethylene (Teflon [7]) are sometimes used. A more

comprehensive discussion of electrode construction in PEMFCs can be found in

reference [4].

The oxidation reaction at the anode occurs as follows:

2Pts +H2 →2(Pts −Hads) (1.3)

(Pts −Hads) →H+ + e− + Pts

where Pts is a chemisorption site on the platinum catalyst, (Pts−Hads) is atomic

hydrogen chemisorbed on the platinum site. The basic mechanism of the reaction

is as follows: On the platinum surface, the di-hydrogen molecule is split into two

separate hydrogen atoms. These two hydrogen atoms will each be chemisorbed

at different sites, Pts, on the platinum surface. The platinum-hydrogen bonds then

break, and the hydrogen splits into ions and electrons. The hydrogen ions leave the

platinum surface, and pass across the proton exchange membrane. The electrons

transfer into the anode. This is typically a very fast reaction [8]. However, im-

purities in the hydrogen fuel may poison the platinum catalysts, and significantly

reduce their effectiveness. Hydrogen fuel is often obtained by refining natural

gas, and the refining process can fail to remove all the carbon monoxide. These

CO molecules can bind to the surface of the platinum nanoparticle, reducing the

number of available active sites [8].
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The reaction which occurs at the cathode is the oxygen reduction reaction (ORR).

This can occur by a number of different pathways. At low current densities, the

oxygen reduction reaction is thought to occur by the following dissociative mech-

anism:
O2 + 2Pts →2(Pts −Oads)

2(Pts −Oads) + 2H+ + 2e− →2(Pts −OHads)

2(Pts −OHads) + 2H+ + 2e− →2H2O + 2Pts

Net reaction: O2 + 4H+ + 4e− →2H2O

(1.4)

An oxygen molecule is split into two atoms, each of which is chemisorbed on a

separate site on the platinum catalyst. A hydrogen ion and an electron combine

with a chemisorbed oxygen atom, resulting in a hydroxyl bonded to the Pt surface.

A second hydrogen ion and electron combine with the chemisorbed hydroxyl to

form H2O, which then unbinds from the platinum surface.

The cell potential when there is no net current flow is called the equilibrium cell

potential. It can be calculated from the reaction Gibbs free energy, ∆rG. If

∆rG < 0 the reaction is spontaneous, if ∆rG > 0 it is not. The equilibrium

electrode potentials of the cathode, ∆U(0,c), and anode, ∆U(0,a), can be related to

the reaction Gibbs free energy via [3]:

∆U(0,a) = −∆rGa

naF
and ∆U(0,c) = −∆rGc

ncF
. (1.5)

Here, ∆rGa and ∆rGc are the reaction Gibbs free energies at the anode and cath-

ode, na and nc are the number of electrons involved in the reactions at the anode

and cathode, and F is the Faraday constant. The total equilibrium cell potential,

∆U0, is given by the difference between the reaction potentials at the two elec-

3
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Figure 1.1: Schematic of a PEMFC. Its function can be summarized into the fol-
lowing steps. (1) Hydrogen fuel (H2) comes in on the left and passes over the
anode where it is ionized. (2) Electrons are drawn off round the top, and con-
stitute the current which drives the load indicated by the lightning bolt in a box.
(3) The hydrogen ions pass over the proton exchange membrane, usually made of
Nafion [6], to the cathode. (4) On the right hand side the oxygen comes in. The
O2 molecules will be split, and individual oxygen atoms will be chemisorbed onto
the surface of the Pt catalyst. (5) Hydrogen ions and electrons will then recom-
bine with the oxygen on the surface of the platinum to form water, which will be
drawn off as waste.

trodes [9], i.e.

∆U0 = ∆U(0,c) −∆U(0,a). (1.6)

The equilibrium cell potential for a hydrogen fuel cell operating at 25oC is 1.229V

[8]. However, experimental measurements can be >0.3V lower than this [10].

One cause of this is the oxidation of the platinum surface, which alters the elec-

tronic structure of the catalyst in a manner which reduces its efficiency [8]. An-

other problem is CO poisoning of the catalyst at the anode [10], which occurs due

to impurities in the hydrogen fuel. The cell potential at non-zero current, ∆Uj , is

4



dependent on the net current density, j. The amount by which the cell potential

varies is called the overpotential, η, and is defined by [3] [11]:

η = ∆Uj −∆U0 (1.7)

The potential decreases with increasing current, and so the overpotential, η, is al-

ways negative. Roughly speaking, the overpotential is a measure of the amount of

energy required to force the reaction to proceed at the rate required to obtain a cur-

rent density, j. Finding catalysts and techniques which minimize the overpotential

can help improve fuel cell efficiency.

It is desirable to have catalysts which maximize the number of electrons involved

in the overall reactions. The greater the number of electrons involved in the reac-

tion, the greater the associated current. An advantage of using platinum is that it

catalyzes the 4-electron pathway for the ORR. Use of a carbon or other metal cat-

alysts will cause other pathways, which involve fewer electrons to become more

frequent [8]. This will result in a reduced current density, as well as production of

hydrogen peroxide, which can damage the proton exchange membrane [9].

Accurate calculation of the current density, j, expected for a given system is be-

yond the reach of current computational techniques. However, a better under-

standing of the reactions outlined in equation (1.4) can help to inform experimen-

tal investigations and interpret experimental results. This report focuses on the

ORR, as it is the rate limiting step [8]. For the ORR to occur on platinum by

the 4-electron pathway outlined in equation (1.4), it is necessary that the platinum

catalyst can split the oxygen molecule, i.e. it must be more energetically favorable

for two oxygen atoms to bind to the platinum surface than it is for them to bind

to one another on the surface. Chemisorption energies are difficult to measure

5
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experimentally, so this is an area in which theoretical calculations are particularly

valuable.

It is particularly important to understand how the oxygen binds to the platinum

surface, as this is the first stage of the ORR as outlined in equation (1.4), and

because both HO and CO bond to the platinum surface via the oxygen. This report

focuses on the chemisorption energy of atomic oxygen on platinum. Consider the

overall reaction:

PtN + O2 → OPtNO (1.8)

where OPtNO denotes adsorption of two oxygen atoms at two different sites on

the surface of a platinum nanoparticle of N atoms. Calculation of the chemisorp-

tion energy requires three energies: 1) The energy, EPtN , of the receptor (a Pt

nanoparticle) 2) The energy, EO2 , of the ligand (an O2 triplet molecule) 3) The

energy, EOPtNO, of the complex (2 oxygen atoms bound to the surface platinum

nanoparticle). The chemisorption energy of molecular oxygen, E(Mo. Oads), is

then calculated from:

2E(Mo. Oads) = EOPtNO − EO2 − EPt. (1.9)

For technical reasons, it is often difficult to simulate multiple oxygen atoms chemisorbed

on the same nanoparticle. Consequently, the following equation is often used in

practice:

E(Mo. Oads) ≈
1

2
(2EOPtN − EO2 − 2EPt) = EOPtN −

1

2
EO2 − EPtN , (1.10)

whereEOPtN is the energy of a platinum nanoparticle with a single oxygen chemisorbed

6



upon it. The method summarized in eqn (1.10) is equivalent to assuming that the

two oxygen atoms into which the molecular oxygen is split are chemisorbed on

two different nanoparticles. A similar method is used to calculate the chemisorp-

tion energy of atomic oxygen, E(At. Oads) :

E(At. Oads) = EOPtN − EO − EPtN . (1.11)

Understanding how the chemisorption energy of atomic oxygen varies with the

size of the platinum nanoparticle could inform catalyst design. There is some

disagreement in the literature as to the range over which size effects are most pro-

nounced [12], but it is clear that they are prevalent in the <5nm range [9]. A

possible cause of this is the greater number of undercoordinated sites on small

nanoparticles [13]. The OH molecules can bind to these sites very strongly, mak-

ing their removal difficult, and slowing this stage of the reaction [12]. However,

this is at odds with the findings of Tian et al [14], who demonstrated the effective-

ness of nanoparticle catalysts with a large number of stepped sites. Computational

investigation of such surfaces could provide insight into the effect of surface mor-

phology on binding energies.

A variety of different shapes of platinum catalysts have been tried [12]. Nanopar-

ticles which are roughly spherical are found to be most stable [15], often resem-

bling cuboctahedrons or isocahedrons. Such nanoparticles have facets resembling

planes corresponding to planes with Miller indices (100) and (111). It has been

shown experimentally that the active surface area of platinum nanoparticles is sig-

nificantly lower than the total surface area [8]. This could be due to the platinum

surface becoming less reactive when multiple oxygen atoms are chemisorbed

upon it. Although high oxygen coverages have been investigated computationally

7
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using semi-classical techniques [16], they have yet to be studied extensively us-

ing a first-principles approach. Examining the change in Pt-O binding energies at

high oxygen coverages, and how this varies with particle size, may also shed light

on the size dependence of the catalytic activity of platinum nanoparticles.

Apart from binding energies there are numerous other effects to consider, which

may also help explain the correlation between catalytic activity and nanoparticle

size. It is possible that the entire O2 molecule may bind to the platinum. This

can result in the formation of H2O2 instead of H2O [8]. This is detrimental to

the performance of a fuel cell, as if the ORR proceeds by the reaction pathway

involving H2O2, only 2 (instead of 4) electrons are involved. Furthermore, H2O2

can damage the fuel cell membrane [9]. Examining the relevant binding energies

at each of the stages of the ORR process may shed some light on the formation

of H2O2, and how to prevent it. Computational investigation of why certain kinds

of Pt catalyst seem particularly susceptible or resistant to poisoning from CO in

the hydrogen fuel may also prove useful. It is possible to clean poisoned platinum

nanoparticles by oxidizing the CO to form CO2 [9]. An appropriate computational

study could inform design of catalysts, and lead to catalysts which are easier to

clean and are more resistant to poisoning.

One of the main barriers to extensive computational investigation is the size of

the systems involved. A spherical platinum nanoparticle with a 3nm diameter is

roughly 500 atoms large. To accurately describe the chemisorption of oxygen

upon metal it is necessary to use a quantum mechanical approach. Density func-

tional theory (DFT) calculations scale cubically with the size of the system [17].

Consequently, the simulation of systems of hundreds of atoms is usually compu-

tationally intractable. Furthermore, accurately describing metallic systems using

8



DFT is challenging, due to the degeneracy of molecular orbitals near the Fermi

level. A consequence of this degeneracy is that thermal excitations can have a

significant impact on the electronic structure. To account for the impact of these

excitations the DFT code had to be extended to include effects of finite tempera-

tures1.

A method for performing finite temperature DFT has recently been implemented

in ONETEP [1], a linear scaling DFT programme. This has made simulation of

large metallic systems possible. In this report, this methodology is tested and

calibrated for simulation of oxygen chemisorption on Pt13. The validity of the

method is tested by comparison with experimental measurements, and results ob-

tained from similar calculations performed in CASTEP [2] on Pt13, a cubic scal-

ing DFT programme. Once tested and calibrated this method will be used to

simulate oxygen chemisorbed on platinum nanoparticles of 13, 55 and 147 atoms

(∼0.5 nm, ∼1 nm and ∼1.6 nm in diameter respectively). These results will

then be compared with results obtained in CASTEP simulations of atomic oxygen

chemisorbed on extended platinum slabs, and the appearance of size effects will

be commented upon.

1By another member of the Skylaris group; Alvaro Ruiz-Serrano.
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Chapter 2

Aims

Finite temperature DFT is newly implemented, and must be extensively tested

before it is used for practical calculations. To this end, ONETEP and CASTEP

will both be used to simulate oxygen chemisorbed on Pt13, and the results from

these calculations will be compared.

Simulations of atomic oxygen chemisorbed at three different sites on infinite plat-

inum slabs were performed in CASTEP. This served as a calibration study, in

which some of the parameters to be used in future calculations were determined.

It also provided chemisorption results with which later calculations of chemisorp-

tion of atomic oxygen on platinum would be compared. These results will be

discussed and compared with computational and experimental studies in the liter-

ature.

ONETEP calculations have some input parameters not used in CASTEP calcu-

lations. Many of these parameters determine how the calculation is initialized,

and the structure of the optimization procedure. To determine the appropriate

ONETEP input parameters, ONETEP and CASTEP will be used to perform sim-
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ulations of oxygen chemisorbed on Pt13. The optimum ONETEP input parameters

will be those which result in fast and stable convergence, whilst attaining strong

agreement with the results obtained using CASTEP.

Once the implementation of the new methodology has been checked and the opti-

mum input parameters have been identified, calculations of oxygen chemisorbed

on cuboctahedral platinum nanoparticles of 13, 55 and 147 atoms will be per-

formed. The chemisorption energy of atomic and molecular oxygen, the Pt-Pt and

Pt-O bond lengths, and the Hirschfeld deformation densities will be calculated,

and the variation in these quantities with nanoparticle size will be discussed.

Therefore, the aims of this work are as follows:

• Perform simulations of oxygen chemisorption at different sites on infinite

Pt (111) slabs in CASTEP.

• Use ONETEP and CASTEP to simulate atomic oxygen chemisorbed upon

a Pt13 cuboctahedral nanoparticle.

• Identify optimum ONETEP calculation parameters.

• Simulate atomic oxygen chemisorbed on Pt55 and Pt147 using ONETEP.

• Compare results of the calculations on nanoparticles and slabs with results

found in the literature, and comment on the strength of agreement and the

occurrence of size effects.

12



Chapter 3

Theoretical background and

computational techniques

3.1 Quantum mechanics

3.1.1 Wavefunctions and the Schrödinger equation

To accurately describe microscopic particles it is necessary to use quantum me-

chanics. A key feature of quantum mechanics is wave-particle duality; particles

may exhibit wave-like behavior, whilst waves might exhibit particle-like behav-

ior. The wavelength, λ, that corresponds to a given particle is called the de Broglie

wavelength. It is given by:

λ =
h

p
=

h√
2Em

. (3.1)



CHAPTER 3. THEORETICAL BACKGROUND AND COMPUTATIONAL
TECHNIQUES

Here, h is Planck’s constant, E is the kinetic energy of the particle, m is the mass

of the particle, and p is the momentum of the particle.

In quantum mechanics, every physical system, be it a single particle or a collection

of particles, may be described by a wavefunction, Ψ({r}, {s}, t). Here, {r} are the

positions of the particles, {s} are the spins of these particles, and t is the time. All

physical observables associated with the system can be calculated by acting on the

wavefunction with an operator. For example, a physical observable corresponding

to a variable o, can be calculated for the system represented by the wavefunction

Ψ({r}, {s}, t), by acting on Ψ({r}, {s}, t) with the operator, Ô:

ÔΨ({r}, {s}, t) = oΨ({r}, {s}, t). (3.2)

Here, Ψ({r}, {s}, t) is said to be an eigenfunction of Ô, and o is the correspond-

ing eigenvalue. The eigenvalues of a physical operator must be real, as physical

variables do not have imaginary components. A consequence of this is that all

physical operators must possess a mathematical property known as Hermiticity

[18].

In quantum mechanics, Bra 〈Ψ|, -Ket |Ψ〉, notation is often used to represent

physical states. The closure of the Bra-Ket; 〈Ψ|Ψ〉, indicates the inner product. A

state, |Ψ〉, is said to be normalized if

〈Ψ|Ψ〉 =

∫
Ψ∗(r, s, t)Ψ(r, s, t)dr ds dt = 1. (3.3)

Two different states; |Ψi〉 and |Ψj〉 are orthogonal if

〈Ψi|Ψj〉 = Aδij, (3.4)

14
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where δij is the Kronecker delta function and A is some real constant. If A = 1,

then the states are said to be orthonormal.

One of the postulates of quantum mechanics is that the mean value of measure-

ments of o, will be equal to the expectation value, 〈Ô〉, of the operator Ô. The

expectation value is defined to be [19]:

〈Ô〉 =
〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉

. (3.5)

One of the most important equations in quantum mechanics is the Schrödinger

equation [18]:

i~
∂

∂t
Ψ({r}, t) =

(
−~2

2m
∇2 + V (r, t)

)
Ψ({r}, t) = (T̂+V̂ )Ψ({r}, t) = ĤΨ({r}, t),

(3.6)

where ~ = h
2π

, with h the Planck constant. ∇2 is the square of the spatial differ-

ential operator, i.e. ∇̂2 =
(

∂
∂x

)2
+
(

∂
∂y

)2

+
(

∂
∂z

)2. m is the mass of the particle,

V (r, t) is an external potential. Ĥ , is the Hamiltonian operator; it is used to find

the energy of the wavefunction. It can be split into two components: V̂ ; the po-

tential operator, and T̂ ; the kinetic energy operator.

In many cases, the potential is either constant, or varies slowly with time, i.e.

V (r, t) = V (r). In such cases, the solutions to the Schrödinger equation will be

of form [20]:

Ψn({r}, t),= exp
iEnt

~
φn({r}), (3.7)

where φn({r}) are the solutions to the time-independent Schrödinger equation

[20]:

Enφn({r}) =

(
−~2

2m
∇2 + V (r)

)
φn({r}) = ĤTIφn({r}), (3.8)
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and En is the energy of the nth eigenstate, φn({r}), of the time-independent

Hamiltonian, ĤTI . E0 is the energy of the ground state, φ0({r}). These time-

independent states are often referred to as stationary states.

3.1.2 Molecular wavefunctions and the Born-Oppenheimer ap-

proximation

The form of the time-independent Schrödinger equation for a molecular wave-

function is:

(T̂ + Û(e−e) + Û(e−n) + Û(n−n))|Ψn〉 = En|Ψn〉. (3.9)

Here, En is the energy of the state, |Ψn〉, and {r} and {R} are coordinates of

the electrons and nuclei. T̂ is the non-relativistic kinetic energy operator given

by

T̂ = T̂elec + T̂nuc =
Ne∑
i

−~2∇̂2
ri

2me

+
Nnuc∑

J

−~2∇̂2
RJ

2mnuc

. (3.10)

me and mnuc are the electron and nuclear masses, respectively. Ne and Nnuc are

the number of nuclei and electrons in the system. Û(e−e) is the classical electron-

electron interaction potential, and is given by

Û(e−e) =
Ne∑
j

Ne∑
i<j

e2

4πε0|ri − rj|
, (3.11)

where e is the electron charge, ri and rj are the positions of the ith and jth elec-

trons, and ε0 is the vacuum permittivity. Û(e−n) is the electron-nuclear interaction
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potential given by

Û(e−n) = −
Nnuc∑

I

Nelec∑
j

e2ZI

4πε0|RI − rj|
. (3.12)

Here, ZI is the atomic number of the Ith nucleus, and RI is the position of the Ith

nucleus. Û(n−n) is the nuclear-nuclear interaction potential given by

Û(n−n) =
Nn∑
J

Nn∑
I<J

e2ZIZJ

4πε0|RI − RJ |
. (3.13)

The mass of the nuclei is much greater than that of the electrons, hence the nuclei

will be moving much more slowly. It can be shown that it is possible to sepa-

rate the wavefunction Ψ({r}, {R}) into an electronic, ϕ({r}; {R}), and nuclear,

Θ({R}), component:

Ψ({r}, {R}) = Θ({R})ϕ({r}; {R}). (3.14)

This is known as the Born-Oppenheimer approximation. It should be noted that

the electronic component still depends parametrically on the nuclear positions.

These two components can be found by solving two separate Schrödinger equa-

tions. The Schrödinger equation which must be solved to find the electronic com-

ponent ϕ({r}; {R}) is [21]:

Eeϕ({r}; {R}) = (3.15)[ Ne∑
i

−~2∇2
ri

2me

+
∑

j

Ne∑
i<j

e2

4πε0|ri − rj|
+
∑
I,j

e2Zi

4πε0|RI − rj|

]
ϕ({r}; {R}).

Here, Ee is the energy eigenvalue associated with the electronic component, ϕ({r}; {R}),

17



CHAPTER 3. THEORETICAL BACKGROUND AND COMPUTATIONAL
TECHNIQUES

of the wavefunction. The above equation is referred to as the electronic Schrödinger

equation. In the solution of this equation, the nuclear positions are assumed to be

fixed. The total energy of the nuclear wavefunction Θ(R), can then be calculated

from [21]:

EB.O.Θ({R}) =

(
Nnuc∑

J

−~2∇2
RJ

2mnuc

+
∑

J

Nn∑
I<J

e2ZIZJ

4πε0|RI − RJ |
+ Ee

)
Θ(R).

(3.16)

HereEB.O. is the total energy, the subscript is to indicate use of the Born-Oppenheimer

approximation.

3.1.3 Electron density

Often it is convenient to represent a many electron wavefunction in terms of the

charge density, n(r), associated with that wavefunction. The single particle den-

sity matrix1, ρ(r, r′), associated with an N-electron wavefunction, Ψ(r1, .., rN), is

defined by [22]

ρ(r1, r′
1) = Ne

∫
Ψ(r1r2....rN)Ψ∗(r′

1r2....rN)dr2...drN . (3.17)

The electron density, n(r), is defined as the trace of the single particle density

matrix [22]

n(r1) = ρ(r1, r1) = Ne

∫
Ψ(r1r2....rN)Ψ∗(r1r2....rN)dr2...drN , (3.18)

where N is the number of electrons. The charge density depends on only one

variable, r1, regardless of how many electrons are in the original wavefunction.

1Spin has been neglected, and will be used from now on.
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The requirement that a charge density corresponds to an N-electron wavefunction

is known as the requirement of N-representability. The constraints which must be

satisfied to ensure N-representability are [22]

n(r) ≥ 0,
∫
n(r)dr = Ne and

∫
|∇n(r)

1
2 |2dr = Ne. (3.19)

A density which satisfies these constraints is said to be ‘well-behaved’.

3.2 Density Functional Theory

3.2.1 The Hohenberg-Kohn theorems

In density functional theory (DFT), it is the charge density, n(r), and not the N-

electron wavefunction, which is used to describe the system. The main motivation

for this is that n(r), depends on 3 variables2, whilst Ψ(r1, .., rN) depends on 3N

variables. The Hohenberg-Kohn existence theorem states that the electron density

uniquely determines an N-electron wavefunction; this guarantees that the ground

state density uniquely determines all the properties of the ground state of the sys-

tem. To prove this, it is sufficient to show that the density uniquely determines the

Hamiltonian of the system. This can be achieved by demonstrating the impossi-

bility of two different Hamiltonians corresponding to the same density.

Consider two Hamiltonians, Ĥ and Ĥ ′, which differ only by the potential term,

v(r) and v′(r). Suppose both these Hamiltonians correspond to the same ground-

state density, n0(r). If this is true, then there are two different wavefunctions,

Ψ(r) and Ψ′(r), which correspond to the same density, n0(r). If it is assumed the

2r is a position vector in physical space.
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system is non-degenerate, then one of these wavefunctions, say Ψ(r), will be the

ground state, whilst the other, Ψ′(r), must, according to the variational theorem,

correspond to a state of higher energy, say ε′0. This would imply that [22]:

ε0 < 〈Ψ′|Ĥ ′|Ψ′〉+ 〈Ψ′|Ĥ − Ĥ ′|Ψ′〉 = ε′0 +

∫
n(r)[v(r)− v′(r)]dr, (3.20)

but this also implies that [22]:

ε′0 < 〈Ψ|Ĥ|Ψ〉+ 〈Ψ|Ĥ ′ − Ĥ|Ψ〉 = ε0 +

∫
n(r)[v′(r)− v(r)]dr. (3.21)

These two equations may be summed to obtain the false statement:

ε0 + ε′0 < ε′0 + ε0. (3.22)

Therefore, each ground state density, n0(r), uniquely determines a Hamiltonian,

and hence uniquely determines the energy of the system.

Computational methods to calculate the charge density, n(r), usually make use

of the 2nd Hohenberg-Kohn theorem; the Hohenberg-Kohn variational principle.

The standard variational principle states that for some trial wavefunction, Ψtrial(r)

[20],

〈Ψtrial|Ĥ|Ψtrial〉 ≥ E0, (3.23)

where E0 is the ground state energy and Ĥ is the exact Hamiltonian of the sys-

tem. Therefore, if n0(r) uniquely determines a Hamiltonian, Ĥ , then it must also

uniquely determine the ground state wavefunction, Ψ0(r). It may be shown that
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[23], two functionals, Ev[n] and F [n], may be defined such that

Ev[n] = F [n] +

∫
n(r)v(r)dr = 〈Ψ|Ĥ|Ψ〉 = E. (3.24)

Furthermore, Ev[n] and F [n] will satisfy

E[nguess] ≥ E[n0] = E0. and F [nguess] ≥ F [n0] = F0. (3.25)

Here nguess is some well-behaved charge density. This is referred to as the Hohenberg-

Kohn variational theorem [22]. It is very useful, as it means that the ground state

density, n0(r), will minimize the functional E[n], subject to the constraint of con-

servation of the number of electrons. Finding the density which satisfies the above

equation plays a central role in many computational implementations of DFT. The

functional F [n] is universal [22], i.e. it has the same form for all charge densities.

Unfortunately, the exact form of F [n] remains unknown.

3.2.2 Kohn-Sham Theory

One of the reasons DFT is widely used is that it enables us to avoid direct calcula-

tion of an N-electron wavefunction. There are a number of different formulations

of DFT. This report focuses on the extension to orbital free DFT developed by

Kohn and Sham [24], hereafter referred to as Kohn-Sham DFT or KS-DFT.

Consider a charge density, n(r), which corresponds to some N-particle wavefunc-

tion. The insight of Kohn-Sham DFT is that there will be a system of N, non-

interacting electrons, which corresponds to the same charge density n(r). Each of

the electrons in the non-interacting system will be described by a single particle
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molecular orbital wavefunction ψi(r). The charge density n(r) can be calculated

from these single particle wavefunctions:

n(r) =
N∑
i

fiψ
∗
i (r)ψi(r). (3.26)

The corresponding single particle density matrix operator, ρ̂, is [22]:

ρ̂ =
N∑
i

fi|ψi〉〈ψi|, (3.27)

which may be spatially represented as [22]:

ρ(r′, r) =
N∑
i

fiψi(r′)ψ∗
i (r). (3.28)

Here, fi is the occupancy of the molecular orbital ψi(r). What makes this in-

sight remarkable is that the non-interacting system is a fictitious mathematical

construction, but it can still be used to obtain all the properties of the ground state

of the system. An important constraint placed upon these orbitals is that they are

normalized and orthogonal to one another, i.e.

〈ψi|ψj〉 = δij. (3.29)

The Hamiltonian for the non-interacting system can be expressed as a sum of

single particle operators, and will be much less complicated than the Hamiltonian

for the interacting system. The total energy, E[n], of the non-interacting system

can then be written, as:

E[n] = Tni[n] + Vne[n] + UH [n] + Exc[n] =
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Ne∑
i

(
〈ψi| −

1

2
∇2|ψi〉 − 〈ψi|

Nnuc∑
j

Zj

|ri − ri|
|ψi〉

)
+

N∑
i

〈ψi|
1

2

∫
n(r)
|r− r′|

dr′|ψi〉+Exc[n],

(3.30)

where atomic units have been used in the above, and will be from now on in this

thesis. Tni[n] is the kinetic energy for the non-interacting system, and Vne[n] is

the contribution to the energy from the nuclear-electron interaction in the non-

interacting system. UH [n] is the Coulomb energy of the non-interacting system.

Exc[n] is the exchange-correlation term, which is accounts for the exchange and

correlation effects, as well as all the complexities which arise due to the approx-

imation of the interacting system with a non-interacting one (such as corrections

to the kinetic energy and additional electron-electron interaction terms).

Instead of attempting to find the charge density directly, it is possible to instead fo-

cus on finding the orbitals, ψi(r). These orbitals will satisfy the equation [17]

ĥKS
i |ψi〉 = εi|ψi〉, (3.31)

where the Kohn-Sham one-electron Hamiltonian, ĥKS
i , is defined as

ĥKS
i = −1

2
∇̂2

i −
Nnuc∑

j

Zj

|Rj − ri|
+

1

2

∫
n(r)
|ri − r|

dr + V̂xc. (3.32)

Here, V̂xc is the exchange correlation potential. The exchange correlation potential

functional, V̂xc[n], can be related to the exchange correlation energy by [17]

Vxc[n] =
δExc[n]

δn
. (3.33)

It should be noted that this is not a normal derivative but a functional derivative, a

fuller discussion of which can be found in [22]. By making use of the Hohenberg-
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Kohn variational principle it is possible to calculate the ground state density by

finding the set {ψi(ri)} of non-interacting orbitals which correspond to the den-

sity, n(r), which minimizes the energy defined in equation (3.30)[17].

3.2.3 Mermin’s extension of orbital free DFT to finite temper-

atures

A finite temperature formulation of DFT was developed by Mermin in 1965 [25].

The proof of the Hohenberg-Kohn existence theorem given in section 3.2.1 de-

pends on the fact that the energy functional, E[n], is of form

E[n] =

∫
v(r)n(r)dr +X[n]. (3.34)

Here, v(r) is the external potential, whilst X[n] is a functional which accounts for

all other contributions to the energy. To extend DFT to finite temperatures it is

necessary to show that there exists a universal functional, F [n], such that:

Ω[n] =

∫
v(r)n(r)dr + F [n]. (3.35)

Here Ω[n] determines the free energy, and is minimized and equal to the grand

potential when n(r) is equal to the equilibrium ground state density in the presence

of an external potential, v(r). To satisfy this criterion it is necessary that F [n] be

independent of the external potential, v(r). It is also necessary that F [n] accounts

for all the entropic contributions to the energy. An expression for F [n] can be

found in reference [22].

It is shown in reference [25] that it is possible to derive a finite temperature equiv-
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alent of the Hohenberg-Kohn variational principle:

Ω[n] ≥ Ω[n0]. (3.36)

From this is it possible to show that the external potential, v(r), is uniquely deter-

mined by the ground state density [25]. It is also possible to derive a Kohn-Sham

formulation of finite temperature DFT [22].

3.2.4 Exchange-correlation functionals

The exchange-correlation functional (xc-functional) must account for all contri-

butions to the energy not accounted for by the first three terms in equation (3.30).

One cause of these extra contributions are the properties of electron wavefunc-

tions which are not apparent from the electron density. Electrons are also indis-

tinguishable from one another. Electrons also have a spin of 1
2
, therefore, they

are Fermions [18]. One consequence of this is that electron wavefunctions are

anti-symmetric under interchange of particle position and spin. Contributions to

the energy arising from this antisymmetry requirement are referred to as exchange

effects [26].

There are numerous other quantum mechanical effects associated with electron

interactions which must be accounted for by the xc-functional. These include cor-

relation effects, removal of the self-interaction contributions, and the difference in

the kinetic energy between the interacting and non-interacting system [26].

The exact form of the xc-functional, Exc[n], is not known. Even determining an

approximate form is very challenging, and attempts to do so depend on a mix

of theoretical analysis and numerical fitting. There are two main kinds of xc-
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functionals; local density approximation (LDA) and generalized gradient approx-

imation (GGA).

An LDA xc-functional is calculated from the value of the charge density at every

point in the distribution, but ignores the spatial gradient of the charge density. An

LDA functional, ELDA
xc [n], is of form [17]:

ELDA
xc [n] =

∫
n(r)εLDA

xc (n(r))dr (3.37)

Here, εLDA
xc (n(r)), is the exchange-correlation energy density, which is a function

of the charge density at a given point. εxc(n(r)) is usually split into exchange and

correlation components, i.e. εxc(n(r)) = εx(n(r))+ εc(n(r)). There is an analytic

expression for the exchange component [27]:

εx(n(r)) = −3

4

(
3

π

) 1
3

n(r). (3.38)

The correlation component, εc(n(r)), must be determined using numerical meth-

ods, and a variety of different approaches exist [28][29][30][31].

A GGA based xc-functional is similar to an LDA functional, but with additional

terms which are dependent upon the spatial gradient of n(r). A GGA xc-functional,

EGGA
xc [n], has the form:

EGGA
xc [n] =

∫
n(r)εGGA

xc (n(r),∇n(r))dr. (3.39)

Here, εGGA
xc (n,∇n), is the exchange correlation energy density, which is a function

of the charge density, and the spatial gradient of the density. In the vast majority of

cases, GGA functionals are more accurate [32]. Changing the xc-functional can
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have a significant effect on the results of a calculation, and selecting an appropriate

one is important.

Two xc-functionals were considered in this work; the Perdew-Wang 1991 func-

tional (PW91) [33], and a revised version of the Perdew, Burke and Ernzerhof

functional (RPBE) [34]. These were selected largely due to their predominance

in the literature. Both functionals are based on the first principles generalized

gradient approximation (GGA). LDA functionals have been shown to be poor at

capturing the behavior of systems with delocalized electrons (such as metals) [35],

and so were not used for the calculations discussed in this report.

There are many other kinds of functionals not mentioned here. Hybrid functionals

incorporate a component of exact exchange, which is calculated directly from the

Kohn-Sham orbitals (as opposed to from the density). One of the most well known

examples of a hybrid functional is the B3-LYP (Becke, 3-parameter-Lee-Yang-

Parr) [36]. There are also meta-hybrid GGA functionals, details of which can be

found in references [37] and [38].

Perdew-Wang 1991 functional

The PW91 xc-functional was derived by consideration of a system of slowly vary-

ing electron density. In essence, it is a numerical fit to a second order expansion

of the density-gradient for the exchange-correlation hole for such a system. One

of the main drawbacks of PW91 is the complexity of the mathematical form of

the functional; whilst it provides a good numerical fit, it cannot be decomposed

into separate parts, each of which correspond to a specific aspect of the physical

interactions being modelled. Not only does this make the functional hard to in-

terpret, but means that simple phenomena, such as the response to perturbation of
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a linear electron gas, are actually better modelled by more primitive LSD (Local

Spin Density) based functionals which make larger approximations [35].

Nonetheless, there are a wealth of results obtained from use of the PW91 func-

tional, making it a good choice for performing calibration studies. The mathemat-

ical expression for the PW91 can be found in [33].

Revised Perdew, Burke and Ernzerhof functional

In reference [35] Perdew, Burke and Ernzerhof derived a GGA functional intended

to be the successor to the PW91 functional. The PBE functional was then revised

by Hammer, Hansen and Nørskov to obtain the RPBE functional [34] . An ad-

vantage of the RPBE functional is that, unlike the PW91 functional, it always

satisfies the Lieb-Oxford criterion (a lower bound on the exchange-correlation

energy [39]).

3.2.5 Basis Sets

A wavefunction, ψj(r), can be expressed as a linear combination of other func-

tions:

ψj(r) =

Nbasis∑
α

χα(r)Mα
j. (3.40)

The set of functions, {χα(r)}, in terms of which ψj(r) is described is called the

basis set. Nbasis is the number of functions in the basis set. The set of coefficients

{Mα
j} define ψj(r) in this basis set. The expression for the density can now be
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written as:

n(r) =

Norb∑
j

fjψj(r)ψ∗
j (r) =

Norb∑
j

Nbasis∑
β

Nbasis∑
α

χα(r)Mα
jM

†β
j χβ(r). (3.41)

Here, Norb is the number of orbitals, ψj(r). Plane waves are often used as the

basis set. To be able to perfectly describe any ψj(r), the basis set would need

to be infinitely large. Computational cost scales cubically with the size of the

basis set, so a finite basis set must be used. The two key factors which affect the

accuracy of the description of the system in this basis set are i) The size of the

basis set, i.e. the number of χα(r) in the set, and ii) How suitable the functions

in the basis set are for describing the system (e.g. do they share the same limiting

behavior, such as vanishing when r →∞).

Plane waves are suitable for describing wavefunctions associated with periodic

systems (consider Bloch’s theorem [40]), and so are well suited for large crys-

talline structures. CASTEP uses a plane wave basis set, with ψjk(r) expressed in

a form similar to:

ψjk(r) =

|Gmax|∑
|G|=0

ck(G)e−i(k+G)·r. (3.42)

Here, {cjk(G)} are the set of coefficients which represent ψjk(r) in the plane-

wave basis, k is a point in the Brillouin zone, |Gmax| the wavevector cut-off, and

G is the wave vector. The size of the basis is determined by the value of |(k+G)|,

which is related to the energy of a wave in the basis set by

E =
~2|k + G|2

2m
, (3.43)

where m is the mass of the particle in question. Therefore, setting the value of

|Gmax| is equivalent to setting the maximum energy, Emax, of the plane waves
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included in the basis set. Increasing Emax increases the number of functions in

the basis set, and hence the descriptive power of the basis set. In effect, this

makes it possible to control the accuracy of a calculation through variation of a

single parameter. This parameter, Emax, is often referred to as the kinetic energy

cut-off or KE cut-off.

The Kohn-Sham orbitals are eigenvectors of the Kohn-Sham Hamiltonian. This

means that when the Hamiltonian and the Kohn-Sham orbitals are represented in

the same space, the matrix of coefficients, Mαi, which represent the Kohn-Sham

orbitals will form a unitary rotation which diagonalizes the Hamiltonian, i.e.

Hαβ =

Norbs∑
i

Mα
i εiM

β
i and

Nbasis∑
α,β

Mα
i HαβM

β
i = εi. (3.44)

Here, Hαβ is the Kohn-Sham Hamiltonian defined in the space of {χα(r)}. It is

possible to determine the Kohn-Sham orbitals by finding the matrix, with elements

Mα
i , which diagonalizes the Hamiltonian. The computational cost of diagonaliz-

ing a dense matrix scales cubically with the dimensionality of the matrix [17].

Full diagonalization of the Hamiltonian can be avoided by use of one of a number

of more computationally efficient methods (please see reference [41] for a sum-

mary). However, even if full diagonalization is avoided, the Kohn-Sham orbitals

are still required to be orthogonal to to one another. Orthogonalization of the

Kohn-Sham orbitals is a cubic scaling process, hence so too are most computa-

tional implementations of DFT [17].
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3.2.6 Pseudo-potentials

The electrons close to the core of the atom (hereafter referred to as core electrons)

play a relatively small role in chemical bonding [42]. The interactions between the

core electrons and the valence electrons can be adequately described using a fixed

potential. This is called the pseudo-potential approximation. The radius within

which all electrons are defined as core electrons is called the pseudo-potential core

radius. Orbitals calculated using the pseudo-potential approximation are referred

to as pseudo-orbitals.

Making the pseudo-potential approximation greatly reduces the dimensionality of

the problem; instead of having N KS-orbitals (where N is the number of elec-

trons in the system), there are (N −Ncore) KS-orbitals, where Ncore is the number

of core-electrons. Given that the computational cost of multiplication of dense

matrices scales cubically with the dimensionality of the matrices (which is lin-

early proportional to the number of KS-orbitals), this is a particularly worthwhile

saving.

Many different types of pseudo-potential exist. The pseudo-potentials discussed

here are norm-conserving pseudo-potentials, and meet the following requirements

[43]:

1) Outside the cut-off radius, the pseudo-orbital and orbital should be equal.

2) The eigenvalues of the pseudo-orbital and orbital should be equal.

3) There must be no discontinuity at the cut-off radius, either in the pseudo-orbital

or its first or second order derivatives.

4) The pseudo-orbitals must not have any nodes inside the cut-off radius.

31



CHAPTER 3. THEORETICAL BACKGROUND AND COMPUTATIONAL
TECHNIQUES

Inside the cut-off radius the pseudo-orbitals and real orbitals will inevitably differ.

However, because both orbitals must be normalized, their charge densities inte-

grated over the region within the cut-off radius will be equal. This condition is re-

ferred to as norm-conservation. Vanderbilt developed ultrasoft pseudo-potentials,

which are not norm-conserving [44]. Their main characteristic is that they can

work effectively in calculations which use basis sets with much lower kinetic en-

ergy cut-offs. A full discussion of them can be found in reference [44].

In an all-electron calculation, the valence-electron wavefunctions must oscillate

rapidly in the region surrounding the core. This is to maintain orthogonality be-

tween the valence and core-electron wavefunctions. Accurately describing such

functions is computationally expensive as it requires a large basis set (i.e. a high

KE-cut-off). In the pseudo-potential approximation there are no core orbitals with

which the valence wavefunctions must be orthogonal. Consequently, the valence-

electron wavefunctions can be smooth over the core region. This does mean that

the description of the valence wave-function in the core region is extremely poor.

However, provided the aforementioned constraints are satisfied, this will not im-

pair the overall accuracy of the calculation.

A pseudo-potential, Vpspot(r, r′), is often split into a local, Vloc(r), and a non-local

component , Vnon−local(r, r′), i.e.

Vpspot(r, r′) = Vloc(r) + Vnon−local(r, r′). (3.45)

Kleinman and Bylander developed a simplified form of the non-local component

[45], which is:

V̂non−local =
∑
lm

|θlmδVl〉〈δVlθlm|
〈θlm|δVl|θlm〉

. (3.46)
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Here, θlm is the pseudo-orbital associated with angular momentum quantum num-

ber l, and magnetic quantum number m. δVl is defined by

δVl = Vl,non−local − Vloc, (3.47)

where Vl,non−local is the non-local component of the pseudo-potential associated

with angular momentum l.

3.3 ONETEP

3.3.1 Non-orthogonal generalized Wannier functions

In ONETEP, the Kohn-Sham orbitals are described in terms of a set of non-

orthogonal localized Wannier functions (NGWFs), φα(r) [46]:

ψi(r) =
Nα∑
α

φα(r)Mα
i . (3.48)

Here, Nα is the number of NGWFs used to describe the wavefunction φα(r).

These NGWFs are centred upon the centres of the atoms within the system. How-

ever, the NGWFs are themselves defined in terms of a basis set of psinc functions

[46]. This set of psinc functions is a unitary rotation of a set of plane waves [47].

The psincs are defined on a regular grid of points. Figure 3.1 shows a 2D psinc

function. The expression for an NGWF described in terms of psincs is:

φα(r) =

Nps∑
k

Dk(r)Ck,α. (3.49)
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Figure 3.1: A depiction of a psinc function. Image from [46].

Here, Nps are the number of psincs, the {Ck,α} are the coefficients which define

φα in terms of the psinc {Dk(r)} centred on point k (see Figure 3.2). In ONETEP,

the coefficients {Ck,α} are optimized during the calculation. The NGWFs are lo-

calized. Therefore, all coefficients, Ck,α, which correspond to psincs, the centres

of which are outside the localization sphere of the NGWF, φα(r), are known to

be zero, and need not be optimized. Consequently, it is possible to attain the level

of accuracy associated with plane wave basis sets, whilst reaping the computa-

tional benefits associated with basis sets comprised of localized functions. The

expression for the density in ONETEP is:

ρ(r) =

Nbasis∑
β

Nbasis∑
α

φα(r)Kαβφβ(r), (3.50)
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Figure 3.2: A depiction of 3 overlapping NGWFs on a grid of points. Image from
[46].

where Kαβ is referred to as the density kernel. It is defined by

Kαβ =
N∑
i

Mα
ifiM

β
i . (3.51)

Here, fi is the occupancy of ith orbital, Ψi(r). ONETEP truncates the NGWFs

to improve computational efficiency. This means that φα(r) is equal set to zero

outside a spherical volume of radius rcut centred on a given point rα, i.e.

φα(r) =


φα(r) if (|rα − r|) ≤ rcut

0 if (|rα − r|) > rcut

. (3.52)

The computational cost of calculations in ONETEP scales more favourably with

system size than it does standard in plane-wave codes [1]. In insulating materials

it is possible to apply the principle of the near-sightedness of electronic matter,

which states that the interaction between electrons centred on atoms a long way

apart is negligible [48]. Therefore, when the Hamiltonian is represented in a space

defined by localized functions, e.g. the NGWFs, it can be accurately represented
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by a sparse matrix. It is possible to find the Kohn-Sham orbitals by diagonalizing

the Hamiltonian (see (3.44)), but this can be avoided in ONETEP through use

of sparse matrix algebra techniques [1]. Additionally, the kernel is made sparse

by omitting those elements which correspond to NGWFs whose centres are far

apart. Consequently, the computational cost of ONETEP calculations scales more

favorably with system size than it does in many other programs. It should be

noted that the principle of near-sightedness does not apply in systems, such as

metals, in which the electron wavefunctions are more delocalized. As a result,

other techniques must be used in ONETEP calculations on metallic systems, and

these are discussed in section 3.4.

3.3.2 Structure of a ONETEP calculation

The use of a set of NGWFs makes the basic structure of a ONETEP calculation

quite different to one carried out in more traditional codes such as CASTEP [2] or

NWChem [49]. In such programs, there is one main loop, in which the coefficients

Mα
i in (3.48) are found. However, in ONETEP, there are two loops (see Figure

3.3). In the inner loop the kernel, Kαβ , is optimized, and this loop is similar

to the single loop in CASTEP or NWChem. In the outer loop, the coefficients,

{Ck,α}, which define the NGWFs in terms of psincs are optimized. At the start

of a ONETEP calculation the NGWFs are initialized. Pseudo-atomic orbitals are

a good initial guess for the form of the NGWFs [50][51]. These are functions

which closely resemble the atomic orbitals associated with the atom upon which

the NGWF is centred. It is possible to specify the atomic orbitals to which the

NGWFs are initialized, as well as the occupancy of these initial orbitals.

The only atomic orbitals which have to be described are those which are occupied
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Figure 3.3: An outline of the two optimization loop method used in a ONETEP
calculation. This schematic is a duplication of that found in [23].
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in the isolated atom, and which are not counted as core by the pseudo-potential.

This bare minimum number of functions is called a single-zeta set*3. For an

oxygen atom this would consist of 4 functions; 1 for describing the 2s orbital, and

3 functions for describing the 2p orbitals. Larger sets are sometimes used, this

increases the expressive capability in the initial stages of a calculation, and can

improve convergence. An example of a larger set is a double zeta set. This is

similar to a single zeta set, but it uses twice as many functions, two for describing

each orbital. Sometimes functions for describing higher, formally unoccupied

orbitals are also included.

Following initialization of the NGWFs it is possible to make an initial estimate

of the density. This estimate will be calculated directly from the overlap of the

atomic orbitals. The density is then used to construct the initial Hamiltonian.

This Hamiltonian is then used to find a new density kernel, which can be used

to calculate the charge density, and this charge density is used to construct a new

Hamiltonian, and the cycle repeats. This occurs in the inner loop of Figure 3.3.

The inner loop repeats until the kernel constructs a density which minimizesE[n],

and which satisfies the constraints relevant to that calculation [23]. The calculation

then proceeds to the outer loop of Figure 3.3, where new NGWFs, which minimize

E[n], are calculated.

3The term single-zeta basis set is more common, but as the NGWFs are optimized during the
calculation, and are themselves described in terms of a basis set comprised of psincs, referring to
the NGWFs as the basis can be misleading.
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3.4 DFT calculations on metallic systems

Accurate description of metallic systems using DFT can be challenging [52],

and it is necessary to use different techniques to those employed in a standard

ONETEP calculation.

3.4.1 Use of finite temperature DFT for metallic systems

Metallic systems have no band gap, i.e. the energies of orbitals near the Fermi-

level are degenerate. In order to describe such systems accurately it is necessary

to use a finite temperature formulation of DFT. The first reason for this is the

need to account for thermal excitations. In cases where there is a large4 band gap,

thermal excitations do not need to be accounted for, as they will not significantly

effect the electronic structure of the system. However, if there is no band gap these

thermal excitations will be important, and it is necessary to use a finite temperature

formulation of DFT.

A second reason for use of finite temperature DFT is associated with determina-

tion of the occupancies. In zero temperature formulations of DFT the Kohn-Sham

orbitals have integer occupancies determined by the Aufbau principle. If there are

N electrons, then it is the N states with the lowest energy which are occupied. This

can be a problem for systems with no band gap: Consider two degenerate orbitals,

ψ1(r) and ψ2(r), both of which have the same energy eigenvalue ε1 = ε2 = εF ,

where εF is the Fermi energy. One of these orbitals will be fully occupied, whilst

the other will be unoccupied. If the occupancies, f1 and f2, of the orbitals, ψ1(r)

and ψ2(r), are determined solely by the Aufbau principle, then it is not possible to

4Large relative to the size of the thermal excitations.

39



CHAPTER 3. THEORETICAL BACKGROUND AND COMPUTATIONAL
TECHNIQUES

determine which of the two degenerate orbitals should be occupied5. However, if

ψ1(r) 6= ψ2(r), then the charge density may differ depending on which orbital is

occupied. Partial occupancies provide a solution to this. By assigning each orbital

the same fractional occupancy, i.e. f1 = f2, it is possible to specify that each of

these two orbitals have an equal probability of being occupied.

If integer occupancies are used when attempting to describe a system with no band

gap, then the minimization procedure is likely to destabilize. In the early stages

of a calculation, the Kohn-Sham orbitals, and their energies, can change signifi-

cantly. Consequently, if an orbital is close to the Fermi level, its occupancy may

change between successive iterations. This change can result in a disproportion-

ately large change in the charge density, causing the calculation to destabilize. Use

of partial occupancies does not prevent the occupancies of orbitals from changing,

but enables occupancies to change by fractional amounts, thus reducing the extent

of the destabilization.

3.4.2 Pulay mixing

Pulay density mixing [53] is a computational technique used to help stabilize

convergence of calculations6. In the implementation of Pulay density mixing in

ONETEP, the input density kernel, Kαβ
in , (which enters at point (A) in Figure 3.3)

is calculated from a combination of the output density kernels, Kαβ
in , (which were

output at point (B) in Figure 3.3) generated on previous iterations. The contri-

bution of an output density kernel, Kαβ
p,out, generated on iteration p, to the input

5In practical calculations, one of the orbitals will be set to be occupied, as due to computational
noise, it is rare two energies are ever identical.

6Pulay mixing is a general purpose technique, and not specific to finite temperature DFT, but
the two techniques are often used in tandem when performing calculations on metallic systems.
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density kernel, Kαβ
q,in, on iteration, q, is determined by the self consistency of

Kαβ
p,out. An output kernel, Kαβ

p,out, is said to be self consistent if it is similar to

the output kernel generated on the previous iteration, i.e. Kαβ
p,out is self consistent

if Kαβ
p,out ≈ Kαβ

(p−1),out. Pulay mixing can help to stabilize convergence. How-

ever, it is not a direct energy minimization technique, and it does not guarantee

that the energy (or free energy) will always decrease between successive itera-

tions. Consequently, some calculations can still become unstable. In these cases,

a direct energy minimization technique, such as ensemble DFT [54], should be

used.

3.4.3 Ensemble DFT

In a finite temperature DFT calculation the quantity to be minimized is the free

energy. When written in ONETEP notation, the free energy, A[T ; {φα}, Kαβ], is

given by:

A[T ; {φα}, Kαβ] =
∑
α,β

Kαβ〈φα(r)|T̂+V̂ext|φβ(r)〉+UH [n]+VXC [n]−TS[Kαβ].

(3.53)

Here, T is the temperature, and S[Kαβ] is the entropic contribution to the free en-

ergy. There is a unique ground state density which corresponds to the minimized

free energy. However, there may be difficulties in finding this minimum. If some

of the Kohn-Sham orbitals are degenerate, then there will be multiple different

sets of Kohn-Sham orbitals which correspond to the same density.

This is problematic when using computational methods to solve the Kohn-Sham

equations. For a minimization algorithm to work effectively the representation of

the molecular orbitals must remain constant between iterations, i.e. rotations of

41



CHAPTER 3. THEORETICAL BACKGROUND AND COMPUTATIONAL
TECHNIQUES

the orbitals between successive iterations must be prevented. This was one of the

factors which motivated Marzari, Vanderbilt and Payne to develop a method called

ensemble DFT (EDFT) [54]. In EDFT, the occupancies of the Kohn-Sham orbitals

are treated as a new degree of freedom. The free energy of the system is then

minimized variationally with respect to the occupancies. Taking this approach

greatly increases the stability of the calculation.

The implementation of Mermin’s finite temperature DFT in ONETEP is inspired

by the EDFT method developed by Marzari, Vanderbilt and Payne [54]. The min-

imization procedure of a ONETEP calculation which utilizes EDFT is outlined in

a flow chart in Figure 3.4, and was developed by Alvaro Ruiz-Serrano, a member

of the Skylaris group.

As seen earlier, in ONETEP, the charge density is given by:

n(r) =
∑

i

fiψ
∗
i (r)ψi(r) = φ α(r)Kαβφβ(r). (3.54)

Here, the fi are equal to the diagonal elements of the ground state density matrix

ρ0 discussed in the previous section. In the above equation, and from now on in

this thesis, there is an implicit summation over repeated Greek indices.

The density kernel, Kαβ , will be diagonal when represented in the space of the

Kohn-Sham orbitals. The diagonal elements, fi, are often interpreted as the proba-

bility of the ith Kohn-Sham orbital being occupied. The occupancies of the Kohn-

Sham orbitals are calculated using the Fermi-Dirac distribution [18]:

fi = (1 + e
−(µ−εi)

kBT )−1, (3.55)

where µ is the chemical potential. In order to calculate the occupancies it is nec-
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Figure 3.4: Structure of ONETEP inner loop for ensemble DFT, as developed by
Alvaro Ruiz-Serrano.
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essary to know the energies of the Kohn-Sham orbitals.

An EDFT calculation in ONETEP involves two loops. In an inner loop, the ker-

nel which minimizes the free energy, A[T ; {φi}, Kαβ], as defined in (3.53), is

calculated. This is achieved through use of an iterative line search in the space

of Hamiltonians. To see how the inner loop minimization procedure works in

an EDFT calculation, please refer to Figure 3.4, which describes the inner loop

of a ONETEP calculation, which was outlined earlier in Figure 3.3. At the end

of the inner loop, the kernel Kαβ (and hence the occupancies, {fi}, of the Kohn-

Sham orbitals {ψi(r)}, and their representation {Mα
i } in the space of the NGWFs)

which minimizes the free energy is known. This kernel is then used to define a

functional, G[T ; {φα}], which satisfies:

G[T ; {φα}] := min
Kαβ

A[T ; {φα}, Kαβ]. (3.56)

G[T ; {φα}] is independent of the occupancies. In the outer loop, a line search pro-

cedure is used to variationally minimize G[T ; {φα}] with respect to the NGWFs.

The two-loop process is then repeated until self-consistency is achieved, and the

{φα} and Kαβ which minimize A[T ; {φα}, Kαβ] are found.
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Chapter 4

Calculations of chemisorption of

atomic oxygen on platinum slabs

and nanoparticles

The methodology to carry out finite temperature calculations on metals was newly

implemented in ONETEP. Consequently, it was necessary to calibrate and test

the code, and determine the optimum calculation parameters, before ONETEP

could be utilised to investigate oxygen chemisorption on large platinum nanopar-

ticles. This testing and calibration was performed by simulating chemisorption

of atomic oxygen on a cuboctohedral Pt13 nanoparticle, and comparing the com-

puted chemisorption energies and computed bond lengths with results found in

the literature. The optimum calculation parameters are those which give results

which agree with the literature, whilst enabling fast and stable calculations.

This calibration study was split into two stages. In the first stage the optimum

xc-functional, kinetic energy cut-off and pseudo-potential type were identified.
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These tests were performed in CASTEP, as at the time, the EDFT method had

not been implemented in ONETEP. The findings will be transferable to ONETEP

calculations, for when correctly calibrated, the results of ONETEP and CASTEP

calculations should be equivalent. The second stage of the study was to identify

the appropriate NGWF radii, and the pseudo-atomic orbitals to which the NGWFs

should be initialized. This stage was carried out using ONETEP.

4.1 Calibration Stage 1 : KE cut-off, pseudo-potentials

and xc-functionals

4.1.1 Motivation for study

Atomic oxygen chemisorbed on infinite platinum slabs was simulated in CASTEP.

This system has been extensively investigated in the literature, making it a good

choice for a calibration study. Three different aspects of the calculation were

calibrated; xc-functionals, the KE cut-off and the pseudo-potential.

It is necessary to test different xc-functionals; the complexity of the interactions

they are attempting to model means it is difficult to determine which functional

will be most appropriate without actually testing them in calculations. Two differ-

ent xc-functionals were tested: The PW91 and RPBE xc-functionals (for details,

please see section 3.2.4), both of these are GGA functionals. The PW91 func-

tional was used largely due to its predominance in the literature; the wealth of

results which have been obtained using it make it a good choice for a calibration

study. The RPBE functional was developed more recently, and has been shown to

be significantly more accurate than other functionals in calculations of chemisorp-
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tion energies of oxygen on metals [34].

There are a wide variety of pseudo-potentials available for any given element.

Ideally, the xc-functional used to generate the pseudo-potentials should be the one

used in the calculation. Unfortunately, a relevant pseudo-potential could not be

found or generated for use with the PW91 or RPBE xc-functionals, and pseudo-

potentials generated using the PBE xc-functional had to be used. This should

not introduce significant error, for as explained in section 3.2.4, the PW91 and

RPBE xc-functionals have much in common with the PBE xc-functional. Another

aspect in which pseudo-potentials may vary is whether they account for relativistic

effects, which are particularly important when describing systems involving heavy

elements such as platinum. Pseudo-potentials which account for scalar relativistic

effects were used, details of this can be found in reference [55].

Many pseudo-potentials specify the kinetic energy cut-off which must be used if

fine accuracy is to be obtained. Typically, ultrasoft pseudo-potentials have lower

KE-cut-off requirements than norm conserving pseudo-potentials1[44]. Conse-

quently, different ranges of cut-offs were used for the two kinds of pseudo-potentials

investigated; 340 eV, 500 eV and 650 eV for calculations with the ultrasoft pseudo-

potentials, and 950 eV, 1200 eV and 1500 eV for calculations with norm-conserving

pseudo-potentials.

The chemisorption energies, E(At. Oads) and E(Mo. Oads), of atomic and molecular

oxygen were calculated using the following equations:

E(Mo. Oads) = EOPtN −
1

2
EO2 − EPtN , (4.1)

1This is one of the main advantages to using them.
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E(At. Oads) = EOPtN − EO − EPtN . (4.2)

For context and justification of the above equations please refer to the Introduc-

tion. Use of the above equations to determine E(At. Oads) and E(Mo. Oads.) re-

quires calculation of the energies of four different systems: 1) A bare platinum

slab, EPtN , 2) an oxygen atom chemisorbed upon this platinum slab, EOPtN , 3)

an isolated oxygen atom EO, 4) an oxygen molecule in its ground triplet state

EO2 .

Bulk platinum has a face-centred-cubic (FCC) structure [56]. The surface of the

platinum slab was chosen to be the plane with Miller indices (111). This surface

resembles the facets of the cuboctohedral platinum nanoparticles used for catalysis

[57].

In CASTEP and ONETEP calculations it is necessary that the system being inves-

tigated is defined inside a simulation cell. The simulations make use of periodic

boundary conditions. This means that for any function, f(r), where r is any point

in the simulation cell, it is the case that f(r) = f(r + A), where A is one of the

vectors used to define the simulation cell. Atoms in neighbouring simulation cells

will interact if there is not sufficient space between them. Sometimes this effect is

desired; simulation of periodic systems, such as infinite platinum slabs, only re-

quire a small simulation cell containing a very small number of atoms. However,

this can prove problematic if interaction between periodic images is not desired.

To prevent these interactions, a large gap between the system being investigated

and the edge of the simulation cell is often required. This increases the size of the

cell, and hence the computational cost of the calculation. To prevent interactions

between neighbouring images in the direction normal to the surface of the plat-

inum slab, it was necessary to have a 20 Å gap between the surface of the slab and
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the top of the simulation cell (see Figure 4.2).

Figure 4.1: A top down view of the
platinum slab. Both teal and yel-
low circles correspond to platinum
atoms. The teal circles are the top
layer of Pt atoms, the yellow cir-
cles are the second layer. Differ-
ent numbers correspond to adsorp-
tion sites:1) FCC, 2)HCP, 3)TOP.

Figure 4.2: The CASTEP simulation
cell used for calculation of oxygen
adsorption at the FCC site. As in
fig(4.1) both teal and yellow spheres
correspond to platinum atoms. The
red sphere is the oxygen atom.

The size of the simulation cell will have an effect on the size of the basis set used.

A larger basis set will result in a better description of the system, and hence a

lower energy (due to the variational principle). It is important that all the calcula-

tions used to acquire the values necessary for determination of the chemisorption

energy are performed using the same basis set. Therefore, it is essential that the

simulation cell is the same size in every calculation.

4.1.2 Construction of simulation cell and calculation procedure

The simulation cell for modelling the platinum slab was constructed from a plat-

inum unit cell. The lattice parameter of platinum is measured experimentally

to be 3.92 Å at 293.15K [58]. Lattice parameters obtained from computational
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calculations are dependent on the calculation parameters used, particularly the

pseudo-potential and xc-functional. To ensure consistency, it was necessary to

calculate a platinum lattice parameter specific to each set of calculation parame-

ters, i.e. a different lattice parameter for each combination of pseudo-potential,

xc-functional and KE-cutoff. This was achieved by using the experimental lattice

parameter to construct a platinum unit cell, and then using a CASTEP calcula-

tion, with the relevant parameters, to optimize the geometry of this unit cell. The

difference between the optimized and experimental lattice parameter was rela-

tively small (usually an expansion of <0.05 Å; a change of <2%). Nonetheless,

a high level of consistency is important if the different calculation parameters are

to be accurately compared. This optimized unit cell was then used to construct a

2×2×1 platinum slab (see Figure 4.2). A vacuum layer directly above the surface

of the platinum slab of 20 Å was used to ensure periodic images (in the vertical

direction) did not interact.

The calculation procedure was provided by Dr. Misbah Sarwar of Johnson Matthey

P.L.C.. This procedure was used to calculate chemisorption energies for all com-

binations of the above described pseudo-potential, kinetic energy cut-off and xc-

functional.

The calculations in CASTEP were finite temperature calculations using a density

smearing and kernel mixing approach as outlined in [59]. A Gaussian smearing

scheme with a smearing width of 0.2 eV was used to determine the values of the

partial occupancies. This corresponds to an electronic temperature of 2320.8 K.

Pulay mixing [60] was used to aid convergence of the calculation. This technique

has been shown to greatly improve convergence in calculations on metallic sys-

tems [59]. A Monkhorst-Pack reduced 5x5x1 k-point grid [61] was used in the
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calculations (with 16 actual k-points).

The procedure used to obtain the energies; EOPtN , EPtN , EO and EO2 as defined

in equation (4.2) and (4.1), necessary for the calculation of the oxygen chemisorp-

tion was as follows.

• The positions of the top 3 layers atoms in the bare platinum slab were opti-

mized in CASTEP, and the value ofEPtN was obtained, (see equations (4.1)

and (4.2)).

• An oxygen atom was then placed at the FCC, HCP or ATOP chemisorption

site (‘1’, ‘2’ and ‘3’ in Figure 4.1) on the optimized platinum slab.

• The positions of the top 3 layers of platinum atoms, as well as that of the

oxygen, were then optimized, and the value of EOPtN was obtained (see

equations (4.1) and (4.2)).

• A single point energy calculation on a single oxygen atom was then per-

formed, and the value of EO was obtained (see equation (4.2)).

• A geometry optimization calculation was performed on an O2 molecule in

a triplet state, and the value of EO2 was obtained (see equation (4.1)).

4.1.3 Results of Calibration study

The results obtained from the calibration study are included in Tables 4.1 and

4.2.
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Table 4.1: Computed chemisorption energies for atomic oxygen on a Pt(111)
slab. The relative energies are the chemisorption energies w.r.t. the energy
of chemisorption at the FCC site. The relative energies are the same for both
E(At. Oads) and E(Mo. Oads). These results were obtained from CASTEP calcula-
tions using a RPBE functional.

Adsorption site Ultrasoft Norm-conserving
pseudo-potential pseudo-potential

Basis set cut off (eV) 340 500 650 950 1200 1500
E(At. Oads) (eV) FCC -3.39 -3.43 -3.44 -3.64 -3.64 -3.64

see eqn. (4.2) HCP -2.98 -3.02 -3.02 -3.19 -3.18 -3.17
ATOP -1.97 -2.02 -2.01 -2.29 -2.29 -2.29

E(Mo. Oads) (eV) FCC -0.78 -0.79 -0.79 -0.85 -0.85 -0.85
see eqn. (4.1) HCP -0.37 -0.37 -0.37 -0.39 -0.39 -0.39

ATOP 0.64 0.63 0.64 0.50 0.50 0.50
Relative Energies (eV) HCP 0.41 0.41 0.42 0.46 0.47 0.46

ATOP 1.42 1.41 1.43 1.36 1.36 1.35

Table 4.2: Computed chemisorption energies for atomic oxygen on a Pt(111)
slab. The relative energies are the chemisorption energies w.r.t. the energy
of chemisorption at the FCC site. The relative energies are the same for both
E(At. Oads) and E(Mo. Oads). These results were obtained from CASTEP calcula-
tions using an PW91 xc-functional.

Adsorption site Ultrasoft Norm-conserving
pseudo-potential pseudo-potential

Basis set cut off (eV) 340 500 650 950 1200 1500
E(At. Oads) (eV) FCC -3.60 -3.93 -3.86 -3.78 -4.09 -4.09

see eqn. (4.2) HCP -3.17 -3.50 -3.43 -3.30 -3.62 -3.62
ATOP -2.03 -2.34 -2.28 -2.27 -2.58 -2.58

E(Mo. Oads) (eV) FCC -0.96 -1.13 -1.06 -1.15 -1.15 -1.15
see eqn. (4.1) HCP -0.53 -0.70 -0.63 -0.68 -0.68 -0.68

ATOP 0.61 0.45 0.52 0.36 0.36 0.36
Relative energies (eV) HCP 0.43 0.43 0.43 0.47 0.47 0.47

ATOP 1.58 1.58 1.58 1.51 1.51 1.51

4.1.4 Conclusions from calibration stage 1

The above results clearly show that the two hollow sites, the FCC and HCP, are

the most energetically favorable sites for chemisorption of atomic and molecular
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oxygen, with the FCC site being slightly preferable. This is in agreement with the

both the computational [62] and experimental [63] literature. The ATOP site is

much less favorable, and this is also in agreement with other computational stud-

ies [64]. Furthermore, near perfect agreement was found with results obtained

from similar calculations performed by Dr. Misbah Sarwar of Johnson Matthey

P.L.C.. This agreement provides reassurance that the method is functioning cor-

rectly.

The purpose of this study is to identify which kinetic energy cut-off and exchange

functional were to be used in later ONETEP calculations. As the size of the ba-

sis set increases, so too does the precision of the calculation (see section 3.2.5).

Consequently, it is expected that as the kinetic energy cut-off (and hence the size

of the basis set) is increased, the results of calculations will converge to a lower

total energy. However, the computational cost of the calculation scales cubically

with the size of the basis set. Therefore, the optimum kinetic energy cut-off is the

lowest cut-off which yields acceptable results.

The convergence of results with increasing kinetic energy cut-off is observed in

the results shown in Tables 4.1 and 4.2. Calculations which use the PW91 func-

tional and a cut off of <650 eV are particularly affected by an increase in cut-off.

It is noticeable that the convergence of chemisorption energies appears to occur

sooner for the RPBE functional than for the PW91 xc-functional. Increasing the

cut off beyond 950 eV did not appear to have a significant effect, regardless of the

xc-functional. However, calculations using a cut-off of >950 eV used a differ-

ent type of pseudo-potential to those using a cut-off of 650 eV or less. Different

types of pseudo-potentials are affected differently by changes in kinetic cut-off

energy, and consequently the results obtained from these calculations should not
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be compared.

In any case, it is clear that when using an RPBE xc-functional and the norm-

conserving pseudo-potential, increasing the kinetic energy cut-off beyond 950 eV

does not improve the accuracy of the calculations. It was also found that calcu-

lations using the RPBE functional appeared to take fewer iterations to converge.

Hence it was decided that use of an RPBE xc-functional, with a cut off of 950

eV and a norm-conserving pseudo-potential, was the best choice for investigated

chemisorption of atomic oxygen on platinum. This selection enabled accurate re-

sults to be obtained, without needlessly increasing the computational cost.

4.2 Calibration Stage 2 : NGWF radii and initial-

ization

Correctly calibrated ONETEP calculations are theoretically equivalent to similar

CASTEP calculations. Therefore, the results of calibration stage 1 can inform

ONETEP calculations. Before moving onto larger systems it was necessary to

determine the NGWF cut-off radii and the initial electronic configuration which

resulted in fast, accurate and stable calculations.

As stated in section 3.3, the number of NGWFs, and the functions to which they

are initialized, can have a major impact in the speed and stability of the calcula-

tion. By considering the Fermi-Dirac distribution, described in equation (3.55),

it is apparent that when using finite temperature DFT, more than Ne Kohn-Sham

orbitals will have non-zero occupancies, where Ne is the number of electrons.

To accurately describe a system there must be at least as many NGWFs as there
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are Kohn-Sham orbitals with non-zero occupancies. Consequently, it is necessary

to use a larger than minimal set of NGWFs when performing finite temperature

calculations.

The NGWFs are initialized to resemble atomic orbitals (hereafter called PAOs,

see section (3.3.2)). For platinum, three different initial PAO configurations were

trialed: “5d9 6s1” (6 NGWFs), “5d9 6s1|P” (9 NGWFs) and “5d9 6s1 6p0|P”

(16 NGWFs). For oxygen, two different configurations were trialled “2s2 2p4”

(4 NGWFs), and “2s2 2p4|P” (9 NGWFs). The number follwing specification of

the orbital type denotes the occupancies of those orbitals. The “|P” means that

the set of orbitals with the next angular momentum up were obtained through the

polarization method described in reference [65] 2.

It is easiest to understand this notation by considering a specific example. In

a closed-shell calculation, a “5d9 6s1|P” set includes 5 NGWFs to describe the

5d orbitals, which initially have an occupancy of 9; 1 NGWF to describe the 6s

orbital, which initially has a occupancy of 1; 3 NGWFs to describe the 6p orbitals,

which are initially unoccupied. It is not necessary to initialize NGWFs to describe

the core orbitals described by the pseudo-potential. A fuller description of the

generation of PAOs in ONETEP can be found in reference [66].

Determining the number and configuration of these PAOs which enables a reliable

description of the system, whilst resulting in a fast and stable calculation is an

important stage of this calibration study.

2The oxygen configuration “2s2 2p4|P” indicates that a 2p orbital is polarized to obtain a 2d
orbital. This seems strange at first, as the magnitude of angular momentum quantum number
should always be less than the principal quantum number, i.e. l < n. However, the purpose of
the initialization is to provide a good starting point for the NGWF optimization. The NGWFs will
change over the course of the calculation, and so an unusual initialization does not mean the final
result will be unphysical.
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The second component of this calibration study is the investigation of the impact

of varying the NGWF-cut-off radius, discussed in section 3.3. Studies performed

with other DFT codes, notably SIESTA [65], have found that varying the cut-

off radius can have a significant effect on the convergence of calculations3 [67].

Studies which utilized ONETEP in the calculation of optical adsorption spectra

of the polymer poly(para-phenylene), and a metal-free phthalocyanine molecule,

found that a large 12 Bohr cut-off radius was necessary [68]. Based on this, it

was decided that three NGWF cut-off radii would be tested; 8, 9 and 12 Bohr.

Increasing the size of the cut-off radius will generally stabilize the calculation,

but it will also increase the computational cost. Therefore, the smallest radius

which results in smooth convergence and acceptable results was chosen.

4.2.1 Calculation procedure

To determine the optimum NGWF radii and initialization, a variety of different

combinations of the above parameters were used to perform simulations of atomic

oxygen chemisorbed at the HCP site on the (111) facet of a Pt13 nanoparticle

(see Figure 4.3). Chemisorption energies of atomic and molecular oxygen were

calculated through use of equations (4.2) and (4.1). Densities of states, O-Pt and

Pt-Pt bond-lengths were also calculated. These results were then compared to

similar calculations performed in CASTEP.

Five different calculations were performed:

• A geometry optimization on the isolated Pt13 nanoparticle to obtain the

value of EPtN as defined in equation (4.2).

3It should be noted that in SIESTA there is no optimization of the localized functions. Conse-
quently, the effect of varying the cut-off radii is expected to be more pronounced.
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• A geometry optimization on the OPt13 complex, with the oxygen on the

(111) facet, to obtain a value of EOPtN as defined in equation (4.2).

• A geometry optimization on the OPt13 complex, with the oxygen on the

(100) facet, to obtain another value of EOPtN as defined in equation (4.2).

• A geometry optimization on an O2 molecule, in a triplet state, to obtain the

value of EO2 as defined in equation (4.1).

• A single point energy calculation on an isolated oxygen atom to obtain the

value of EO as defined in equation (4.2).

The chemisorption energy of atomic oxygen on a given facet was determined us-

ing equation (4.2), and the value of EOPtN obtained from the appropriate calcula-

tion. The basic parameters of the ONETEP calculations were very similar to those

used in the CASTEP calculations. A brief summary of the parameters is included

in Table 4.3.

There are a few noticeable differences between the parameters used in the previous

section, and those used here. The most significant of these is that both ONETEP

and CASTEP made use of ensemble DFT, as opposed to the Pulay density mixing

technique mentioned in the previous section. The electronic temperature was also

lower (1160.45 K); this should result in a more accurate description of the sys-

tem. The Fermi-Dirac distribution was used to calculate the occupancies. This is

because it is physically reasonable, and because the entropic term, S[Kαβ], in the

free energy (see equation 3.53) is known analytically when the occupancies are

determined using the Fermi-Dirac distribution, whereas an analytic expression for

the entropy functional is not known if the occupancies are determined using a

Gaussian based technique [59].
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There was also a slight difference in the kinetic energy cut-off between the two

calculations. The use of a psinc basis set in ONETEP necessitates that all the FFT

boxes be exactly an odd number of wavelengths across. This meant that a higher

kinetic energy cut-off of 1067 eV had to be used in ONETEP, whilst a lower value

of 950 eV was used in CASTEP. This discrepancy should not prevent the results

from being compared; it is known from the first stage of the calibration study

that increasing the kinetic energy cut-off beyond 950 eV did not affect the results

significantly.

The Pt13, and all other platinum cuboctohedrals mentioned in this report, were

constructed by cutting from a large cube of bulk platinum, constructed from a

unit cell with lattice parameter 3.92 Å, which was obtained from experimental

investigations of bulk platinum at 293.15K [58]. In the case of the bulk slabs (sec-

tion 4.1.2) it was important to optimize the lattice parameter for the xc-functional,

pseudopotential, and cutoff being used. This was for two reasons. First, the pur-

pose of the slab calculations was to compare different sets of calculation param-

eters, therefore the lattice constant used must be equally suited for us in calcu-

lations with each set of parameters. Second, the geometry of the slab was not

fully optimized. In the case of platinum nanoparticles, only one set of calcula-

tion parameters were used, and the geometry of the entire system was optimized;

in theory, the geometry which results from a full geometry optimization calcula-

tion is independent of the input geometry (and hence independent of the lattice

parameter of the bulk platinum from which the nanoparticle was cut).

Initially, geometry optimizations performed using molecular dynamics programme

DL POLY [69] were used to generate input structures for ONETEP and CASTEP

calculations. However, these structures were usually noticeably asymmetric. This
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asymmetry cannot be attributed to Jahn-Teller distortion [19], as these structures

were obtained using classical forcefields. Therefore, this distortion is likely due to

poor optimization. Calculations which made use of these asymmetric structures

invariably took longer to converge than those which used structures obtained by

cutting straight from bulk platinum. Consequently, it was decided not to use this

method to generate input structures for calculations on larger systems.

4.2.2 Results

Values for the chemisorption energy of atomic oxygen on a Pt13 cuboctohedral

nanoparticle,E(At. Oads), obtained using equation (4.2) and the results of ONETEP

calculations performed with a variety of starting parameters are included in Ta-

ble 4.4. A value obtained for, E(At. Oads), obtained from the results of similar

calculations performed in CASTEP is included in Table 4.5, and will serve as a

benchmark result for this calibration study.

Table 4.3: Parameters common to ONETEP and CASTEP calculations.
Electronic temperature 1160.4519 K
Exchange functional RPBE

Size of simulation cell 55 Bohr (cubic)
k-points (CASTEP only) 1

Force convergence tolerance 0.002 Ha/Bohr

Conclusions

Results obtained from ONETEP calculations using 8 Bohr NGWFs (see Table

4.4) showed poor agreement with CASTEP (see Table 4.5). However, little im-

provement was seen by increasing the cut-off radius beyond 9 Bohr. Calculations

using an NGWF cut-off radius of 9 Bohr converged more quickly than those using
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Table 4.4: Computed chemisorption energies of oxygen on the (111) facet of Pt13
calculated in ONETEP using ensemble DFT. The value of E(At. Oads) was calcu-
lated using equation (4.2).

NGWF radii (Bohr) Atomic orbital configuration EPt13O (eV) E(At. Oads) (eV)
12 Pt(5d9 6s1|P) O(2s2 2p4|P) -9809.68 -6.07
12 Pt(5d9 6s1|P) O(2s2 2p4 3s0|P) -9809.64 -6.03
9 Pt(5d9 6s1|P) O(2s2 2p4|P) -9809.67 -6.06
9 Pt(5d9 6s1|P) O(2s2 2p4) -9809.65 -6.04
9 Pt(5d9 6s1) O(2s2 2p4|P) -9806.84 -6.54
8 Pt(5d9 6s1 6p0|P) O(2s2 2p4) –9809.12 -7.36
8 Pt(5d9 6s1|P) O(2s2 2p4|P) -9808.89 -7.51
8 Pt(5d9 6s1|P) O(2s2 2p4) -9808.86 -6.71

Table 4.5: Computed chemisorption energy of oxygen on the (111) facet of Pt13
calculated in CASTEP using Fermi-Dirac kernel smearing with Pulay mixing.
The value of E(At. Oads) was calculated using 4.2.

Number of bands EPt13O (eV) E(At.Oads) (eV)
129 -9810.17 -5.97

NGWFs with radii of 8-Bohr or 12-Bohr. The individual iterations of the 8-Bohr

calculations were fast, but a large number was required before the calculation

would converge. The 12-Bohr calculations did not need any more iterations than

the 9 Bohr calculations, but the computational time required for each one of these

iterations was significantly larger. Consequently, an NGWF cut-off radius of 9

Bohr was used in subsequent ONETEP calculations.

The “5d9 6s1 6p0|P” configuration of NGWFs on platinum did not yield signifi-

cantly different results than the “5d9 6s1|P” configuration. However, calculations

performed using the “5d9 6s1|P” configuration did yield significantly better re-

sults than the “5d9 6s1” configuration. Little change was observed as a result of

increasing the number of NGWFs on oxygen from 4 to 9. Consequently, an initial

PAO configuration of “5d9 6s1|P” on platinum and “2s2 2p4” on oxygen was used
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Figure 4.3: A Pt13 cuboctohedral
with atomic oxygen chemisorbed at
the HCP hollow site. The bond
lengths in the figure were obtained
by a geometry optimization calcula-
tion performed in ONETEP.

Figure 4.4: A Pt13 cuboctohedral
with atomic oxygen chemisorbed
at the HCP hollow site. The
bondlengths in the figure were ob-
tained by a geometry optimization
calculation performed in CASTEP.

in subsequent ONETEP calculations.

4.2.3 Validation of ONETEP methodology using CASTEP

Before larger structures could be investigated, it was necessary to ensure that there

was good agreement between CASTEP calculations, and ONETEP calculations

using the above defined parameters.

4.2.4 Agreement between geometries

It was necessary to check that there was agreement between the structures result-

ing from geometry optimization calculations performed in ONETEP and CASTEP.

The structures resulting from geometry optimizations of OPt13 with O chemisorbed
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Figure 4.5: Comparison density of states obtained in ONETEP and CASTEP
DOS. The ONETEP results were obtained using an initial PAO configuration “Pt-
5d9,6s|P O-2s2,2p4” with 9 Bohr NGWF radii.

at the FCC site, performed in ONETEP and CASTEP are shown in Figures 4.3 and

4.4. It is apparent that for the most part there is reasonable agreement between the

two geometries; all bond lengths except one agree to within 0.05 Å. CASTEP and

ONETEP both yielded structures in which the Pt-Pt bond lengths are noticeably

shorter than the bulk Pt-Pt bond length of 2.77 Å. Furthermore, both geometries

show that the Pt-Pt bonds in the layer nearest the chemisorbed oxygen are signifi-

cantly shorter than those in the layer furthest away. For example, in the geometry

obtained using CASTEP the Pt-Pt bond length in the layer immediately below the

chemisorption site is on average 0.08 Å shorter than those bonds in the layer fur-
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ther away4. In summary, there is good agreement between the structures obtained

from geometry optimizations performed in ONETEP and CASTEP.

4.2.5 Agreement between densities of states

Densities of states (D.O.S.) were also calculated from the charge densities ob-

tained from ONETEP and CASTEP (see Figure 4.5). The D.O.S. provides an

indication of how many electronic states are available at a given energy level, and

provides insight into the electronic structure of a system. It can be calculated

through use of the following formula:

G(ε) =
∑

i

Υ(εi, ε)〈ψi|ψi〉, (4.3)

where G(ε) is the value of the density of states at energy ε, |ψi〉 is the ith Kohn-

Sham orbital with energy εi, and Υ(εi, ε) is a smearing function. Strictly speaking,

Υ(εi) should be a delta function, so that G(εi, ε) = 0 if ε /∈ {εi}. However, the

plot of such a density of states function would be difficult to read. Consequently,

in the case of the above plot (and most other D.O.S. plots), Υ(εi, ε) is a Gaussian

function of form:

Υ(εi, ε) = exp

[
− (ε− εi)

2

kBT

]
, (4.4)

where kB is the Boltzmann constant and T is the temperature. As the units of

kBT are units of energy, often the magnitude of the smearing is expressed as an

energy. For example, 0.1 eV is commonly used and corresponds to a temperature

of 1160.4 K. Inspection of equation (4.4) reveals that the larger the value of the

4This average was calculated from all Pt-Pt bonds on the lower layer, not just those depicted in
in Figures 4.3 and 4.4.
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denominator, the greater the smearing. The value of kBT is often referred to as

the smearing width.

From Figure 4.5 it is clear that the densities of states obtained using ONETEP

and CASTEP agree well at energies less than 3 eV above the Fermi energy, but

poorly at higher energies. This is because the Kohn-Sham orbitals which con-

tribute most to the charge density are those with high occupancies (fi ≈ 1). If

a Kohn-Sham orbital has a low occupancy (fi ≈ 0) then it will contribute little

or nothing to the charge density. Determination of the Kohn-Sham orbitals relies

upon the fact that the Kohn-Sham orbitals correspond to the charge density which

minimizes the energy. If a Kohn-Sham orbital has a low occupancy (i.e. is high in

energy), then the energy will be largely independent of the form of this orbital. A

consequence of this is that the high-energy, low occupancy states are often poorly

described [68]. Therefore, the disagreement, at high energies, between the D.O.S.

obtained from ONETEP and CASTEP does not indicate a significant difference

in the ground state charge density obtained in these two calculations. That the

D.O.S. agree well at energies below the Fermi-level is what is most important

with regards to checking the consistency of results obtained from ONETEP and

CASTEP calculations.

4.2.6 Re-validation with a different pseudo-potential

Investigation of larger nanoparticles initially proved very difficult; calculations

were significantly slower than expected. In an attempt to speed up and improve

convergence of calculations different calculation starting parameters were inves-

tigated. Different electronic temperatures, strengths of kinetic energy precondi-

64



4.2. CALIBRATION STAGE 2 : NGWF RADII AND INITIALIZATION

tioning5, initial structures, polarizations of the nanoparticles and kinetic energy

cut-offs were all tried. However, none of these investigations significantly im-

proved the speed or stability of calculations.

Eventually it was discovered that using different pseudo-potentials for platinum

and oxygen enabled calculations to converge significantly faster. The new pseu-

dopotentials had been generated by the Rappe group [71]. The improvement was a

surprise, as the new, Rappe pseudo-potentials were very similar to the older, Ming-

Hsien-Lee pseudo-potentials used in previous calculations; both pairs of pseudo-

potentials were generated using the OPIUM [72] software for use with the PBE

xc-functional. A possible explanation is that the Rappe pseudo-potentials were

generated with a newer version of OPIUM, which was able to produce pseudo-

potentials which can account better for non-local effects [73]. Unfortunately, this

cannot be ascertained, as the version of OPIUM used to generate the pseudo-

potentials is not specified in the pseudo-potential files.

Use of a different pseudo-potential can have a significant effect on the results of

a calculation. Consequently it was necessary to perform a brief re-validation of

EDFT in ONETEP. This was done by using CASTEP and ONETEP to calculate

the chemisorption energy of atomic oxygen at the hollow sites on the (111) and

(100) facets of a Pt13 nanoparticle. These calculations used the method described

earlier in section 4.2.1, and the parameters described in the calibration summary,

section 4.3.

The optimized geometries obtained from these ONETEP calculations were used

as inputs for geometry optimization calculations which were performed in CASTEP.

If the interatomic forces in an optimized structure are calculated to be the same in

5See [70] for more details.
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Figure 4.6: A Pt13 cuboctohedral
with atomic oxygen chemisorbed at
the FCC hollow site on the (111)
facet. The bond lengths in the fig-
ure were obtained by a geometry op-
timization calculation performed in
ONETEP.

Figure 4.7: A Pt13 cuboctohedral
with atomic oxygen chemisorbed at
the FCC hollow site on the (111)
facet. The bond lengths in the fig-
ure were obtained by a geometry op-
timization calculation performed in
CASTEP.

Figure 4.8: A Pt13 cuboctohedral
with atomic oxygen chemisorbed at
the hollow site on the (100) facet.
The bond lengths in the figure were
obtained by a geometry optimization
calculation performed in ONETEP.

Figure 4.9: A Pt13 cuboctohedral
with atomic oxygen chemisorbed at
the hollow site on the (100 facet).
The bond lengths in the figure were
obtained by a geometry optimization
calculation performed in CASTEP.

ONETEP and CASTEP, then the geometry optimization in CASTEP would con-

verge after a single point energy calculation, as CASTEP would be effectively
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starting with a pre-optimized geometry. This did not happen exactly, and the ge-

ometry in CASTEP changed very slightly. The optimized geometries obtained

using ONETEP and CASTEP with the new pseudo-potential can be seen in Fig-

ures (4.6), (4.7), (4.8) and (4.9).

The chemisorption energies of atomic oxygen are shown in Table 4.6, and were

obtained through use of equation (4.2). The agreement between CASTEP and

Figure 4.10: An oxygen atom
chemisorbed on the FCC site on a
(111) surface of a platinum slab.
The structure was determined using
CASTEP.

Figure 4.11: An oxygen atom
chemisorbed on the HCP site on a
the (111) surface of a platinum slab.
The structure was determined using
CASTEP.

Table 4.6: Chemisorption energy of atomic oxygen at the hollow sites on the (111)
and (100) facets of a Pt13 nanoparticle. Calculated using equation (4.2) and results
obtained from simulations in in ONETEP and CASTEP.

Program E(At. Oads)(100) facet (eV) E(At. Oads) (111) facet (eV)
CASTEP -6.32 -4.56
ONETEP -6.30 -4.60

ONETEP with the new pseudo-potentials is much improved, in terms of structure

and chemisorption energies. It is likely this is because the new Rappe pseudo-

potential enables a more accurate description of the system.
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It was also necessary to re-run the calculations of atomic and molecular oxygen

chemisorption on the (111) surface of a platinum slab. Asides from the change

in the pseudopotentials, these parameters and method used in these calcualtions

was identical to those specified in section 4.1. These calculations were run us-

ing the parameters specified in Table 4.3, with Pulay mixing, and the Rappe

pseudo-potential. The resulting structures can be seen in Figures 4.10 and 4.11,

and the chemisorption energies can be found in Table 4.7. It was interesting to

Site Chemisorption energy (eV)
Pseudopotential - Ming-Hsien-Lee Rappe Difference
E(At. Oads) (eV) FCC -3.64 -5.25 -1.61
see eqn. (4.2) HCP -3.19 -4.80 -1.61

ATOP -2.29 -3.91 -1.62
E(Mo. Oads) (eV) FCC -0.85 -0.90 -0.05

see eqn. (4.1) HCP -0.39 -0.45 -0.06
ATOP 0.50 0.45 -0.05

Relative chemisorption HCP 0.46 0.45 -0.01
energies (eV) ATOP 1.36 1.35 -0.01

Table 4.7: Comparison of computed chemisorption energies for atomic oxygen on
Pt(111) obtained using two different sets of input parameters. One set used Ming-
Hsien-Lee pseudo-potentials with Gaussian smearing of 0.2 eV (see Table 4.1.3).
The other set used Rappe pseudo-potentials, and Fermi smearing with a smearing
width of 0.1 eV. Both sets of calculations used an RPBE xc-functional and a 950
eV KE-cut-off. The chemisorption energies were calculated from the results of
CASTEP calculations. The relative chemisorption energies are calculated with
respect to the FCC site, and are the same for both E(Mo. Oads) and E(At. Oads).
The “Difference” column contains the chemisorption energies obtained using the
Rappe pseudo-potential minus those obtained using the Ming-Hsien-Lee pseudo-
potential.

note that the calculated chemisorption energy is significantly greater in magnitude

when using the Rappe pseudo-potential. However, given the different pseudo-

potential and temperature used, as well as a different method of calculating the

occupancies, some changes are expected. Significantly, the relative chemisorp-

tion energies agreed very well, showing that calculations using these two different
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sets of parameters were consistent in the relative strengths of oxygen-platinum

binding at different chemisorption sites. This indicates that same qualitative be-

haviour would be observed, regardless of which set of calculation parameters and

pseudo-potential were used, e.g. in both cases, the FCC site was the most ener-

getically favourable chemisorption, followed by the HCP and finally the ATOP

site. It should be noted that the difference results obtained using the Rappe

and Ming-Hsien-Lee pseudopotentials is smaller for chemisorption of molecular

oxygen than it is for chemisorption of atomic oxygen. This indicates a differ-

ence in oxygen-oxygen bond strength6 predicted by calculations using the Rappe

and Ming-Hsien-Lee pseudo-potentials. Overall, agreement between the results

obtained using the two pseudo-potentials was considered sufficiently good that

the first stage of the calibration study, in which the basis set cut-off and xc-

functional were determined, did not need to be repeated with the Rappe pseudo-

potential.

4.3 Calibration Summary

Following the calibration studies it was decided that the initial parameters to be

used in all future calculations of atomic and molecular oxygen chemisorption on

platinum are as follows:

• Kinetic energy cut-off : 1067 eV.

• Exchange correlation functional : RPBE.

• Norm conserving pseudo-potentials generated by the Rappe group.

6Calculations using the two pseudo-potentials predict different values of (EO2 − 2EO), where
EO2 is the energy of molecular oxygen, and EO is the energy of atomic oxygen.
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• NGWF radii : 9 Bohr.

• Initial PAO configuration on oxygen : “2s2, 2p4”.

• Initial PAO configuration on platinum : “5d9, 6s1|P”.

• Electronic temperature : 1160.45 K .

• The Fermi-Dirac distribution will be used to determine the occupancies of

the Kohn-Sham orbitals.

4.4 Investigation of chemisorption of atomic oxygen

on Pt13, Pt55 and Pt147

Following the calibration of the ONETEP input parameters, an investigation into

chemisorption of atomic and molecular oxygen on larger cuboctohedrals was

embarked upon. Although there is a wealth of literature concerning ab initio

computational investigations of oxygen chemisorption on clusters of 55 atoms

or less [74][75][76][77][78], only recently have computational investigations be-

gun to probe larger sizes [52][79]. Consequently, the finite size effects relating

to chemisorption of oxygen on platinum nanoparticles have not been well ex-

plored.

Chemisorption energies were calculated for chemisorption of atomic oxygen on

platinum nanoparticles of Pt13, Pt55 and Pt147 atoms. It was expected that the

binding energy of atomic and molecular oxygen would become more positive as

the clusters became larger [13], as there are fewer under-coordinated platinum

atoms. For this reason it is expected that binding will be strongest at those sites
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nearest the edge of a facet. How O-Pt and Pt-Pt bond lengths vary with the size of

the nanoparticle was also investigated; the Pt-Pt bonds in small nanoparticles are

significantly shorter than those observed in the bulk, an effect which is expected

to become less apparent as the nanoparticle size increases. The charge transfer,

and charge density deformation resulting from oxygen chemisorption was also

investigated. Density of states (D.O.S.) and localized densities of states (L.D.O.S.)

were also calculated, in order to gain insight into the energetics of those molecular

orbitals which play the largest role in O-Pt bonding.

4.4.1 Calculation procedure

Unless otherwise specified, the calculations all used the procedure described in

section 4.2.1, and the parameters specified in section 4.3.

The geometry optimization calculation of Pt55 proved difficult to converge, and

a slightly non-standard optimization method had to be used. To understand the

reasoning behind the tactic employed a brief discussion of geometry optimiza-

tion calculations is necessary. A geometry optimization can be split into two

main components; an inner loop in which a single point energy calculation is

performed7, and an outer loop in which the positions of the atoms are changed

so as to minimize the net force on each atom. The forces between the atoms are

determined from the outcome of the single point energy calculation in the inner

loop described in [80]. Therefore, the accuracy of the single point energy calcula-

tion in the inner loop determines the accuracy of the calculation of forces between

atoms8. If the geometry steps taken in the outer loop are to be effective, then

7In ONETEP, a single point energy calculation has two loops by itself, so there are three nested
loops in a geometry optimization in ONETEP.

8The expression for the force in terms of the charge density is accurate, but if the charge density
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the error in the interatomic forces must be small compared to the magnitude of

these forces. In the initial stages of the geometry optimization net force on each

atom is large. While this force is large, the single point energy calculations in

the inner loop can be relatively inaccurate, without having a significant negative

impact on the geometry optimization procedure. However, as the geometry opti-

mization proceeds, and the net force on each atom reduces, more accurate single

point energy calculations are required.

The geometry optimization calculation of Pt55 was set up so that the precision of

the single point energy calculations increased as the geometry optimization pro-

gressed; from relatively imprecise in the initial stages, to very precise in the later

ones. This was achieved by fixing the number of iterations in the inner and outer

loops of the ONETEP single point energy calculation to a relatively low number,

but reusing the NGWFs and Hamiltonian between geometry steps (by default, the

NGWFs would be reset periodically). Taking this approach greatly reduced the

computational cost of the calculations. However, even with this approach it was

necessary to use a looser force convergence tolerance of |F| < 0.005 Ha/Bohr,

where |F| is the average value of the magnitude of the force on an atom in the

system.

Problems with the geometry optimization were also encountered in calculations

involving Pt147. Initially, an attempt was made to optimized the positions of all the

platinum atoms. However, |F| never converged to less than 0.03 Ha/Bohr (1.54

eV/Å), despite a very large number of iterations. This was thought to be too large

for reliable structural information to be obtained. Furthermore, the value of |F| on

the 100th geometry step was not significantly lower than the value of |F| on the

is inaccurate, so is the force.
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1st step, which indicates that geometry optimization procedure was not resulting

in a structure that was significantly more energetically favorable.

Initially, it was thought that this was the result of the geometry optimizer strug-

gling to deal with so many degrees of freedom. Consequently, it was decided that

only the 9 platinum atoms nearest the oxygen atom would be optimized, whilst the

other 138 platinum atoms were held fixed. These calculations never converged,

but an interesting effect was observed in the early stages of geometry optimiza-

tion; the Pt-Pt bonds associated with those atoms whose positions were being

optimized began to contract, both in systems with and without the chemisorbed

oxygen (hence this was not a consequence of Pt-O binding). It is likely that this

distortion is due to finite size effects which result in variation in the Pt-Pt bond

lengths in platinum nanoparticles. The Pt147 nanoparticle was constructed using

the Pt-Pt bond length appropriate for bulk platinum (see discussion in section

4.2.1). However, geometry optimization calculations on Pt13 and Pt55 showed

significant finite size effects; the Pt-Pt bond-length was not uniform throughout

the nanoparticles, and the Pt-Pt bond length differed significantly from that of

bulk platinum. In the Pt147 nanoparticle, the positions of the majority of platinum

atoms were fixed to the bulk value, so the effect of the finite size of the nanopar-

ticle on the Pt-Pt bond length could only be observed in the small fraction of

unfixed platinum atoms. The distortion made the structure slightly asymmetrical,

even when the oxygen was not present. This would have a negative impact on the

accuracy of the calculations, as this asymmetry is a consequence of constraints on

the calculation, rather than of physical properties of the system.

It is possible that this distortion could be due to and experimental lattice parame-

ter being used (see section 4.2.1), as opposed to one which was optimized for the
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specific calculation parameters. However, the variation in the Pt-Pt bond length

observed in the Pt55 nanoparticle (see Figure 4.16) were significantly greater than

the discrepancy between the optimized and unoptimized lattice parameters. Fur-

thermore, the effect of optimizing the lattice parameter for specific calculation pa-

rameters was usually a slight expansion, whereas the distortion described above

was a contraction. Consequently, it is likely that the distortion described above

would have occured even had an optimized lattice parameter been used. Nonethe-

less, use of a lattice parameter optimized for these specific calculation parameters

may have improved the accuracy and convergence of the calculation.

Most importantly, the calculations with the majority of the Pt atoms fixed did not

converge to within a reasonable tolerance within a reasonable number of itera-

tions. Consequently, it was decided that it was best to fix the positions of all the

platinum atoms, and only optimize the position of the oxygen atom. A similar

approach had been adopted by Nørskov et al for calculations on similar platinum

systems (see references in [13] and [79]). In the calculations described in this

thesis, the Pt147 cuboctohedral was constructed by cutting from bulk platinum,

with a lattice parameter of 3.92 Å, obtained from experimental measurements of

bulk platinum at 293.15 K [58]. It was also only possible to converge the ge-

ometries to within a force tolerance of |F| <0.005 Ha/Bohr. Although this will

have an impact on the accuracy of the computed chemisorption energies, the ef-

fect on the platinum-oxygen charge transfer and density deformation will be less

pronounced, and so these calculations can still be used to gain qualitative insight

into interactions of atomic oxygen with platinum nanoparticles.
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4.4.2 Chemisorption energies

Tables 4.8, 4.9, and 4.10 include computed chemisorption energies and associated

platinum-oxygen charge transfer for chemisorption of atomic oxygen on different

sites on the the surfaces of cuboctohedrons Pt13, Pt55, and Pt147. Figure 4.12

shows how the chemisorption energies of atomic oxygen at the HCP and FCC

sites varies with the size of the nanoparticle, and compares these values for that

obtained for chemisorption of atomic oxygen on a Pt(111) surface. Investigation

of chemisorption of oxygen on platinum slabs had revealed that the ATOP site was

unfavorable, and consequently chemisorption of atomic and molecular oxygen at

this site was not investigated. The free energies used to obtain these chemisorption

energies were from calculations which had been converged to within a tolerance

threshold of 1.5× 10−3 eV.
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Table 4.8: Computed chemisorption energies, E(At. Oads) and E(Mo. Oads), for
atomic and molecular oxygen at hollow sites on the (111) and (100) facet of a
cuboctohedral Pt13 nanoparticle, obtained using equations (4.2) and (4.1), and re-
sults obtained from ONETEP calculations. The value for the charge transfer was
obtained through Hirschfeld analysis (see equation (4.13)).

Chemisorption site E(At. Oads) (eV) E(Mo. Oads) (eV) Charge transfer from
Pt13 to O (e)

HCP (111) facet -6.30 -1.67 -0.19
Hollow (100) facet -4.56 -0.07 -0.17

Table 4.9: Computed chemisorption energies, E(At. Oads) and E(Mo. Oads), for
atomic and molecular oxygen at hollow sites on the (111) and (100) facet of a
cuboctohedral Pt55 nanoparticle, obtained using equations (4.2) and (4.1), and re-
sults obtained from ONETEP calculations. The value for the charge transfer was
obtained through Hirschfeld analysis (see equation (4.13)).

Chemisorption site E(At. Oads) (eV) E(Mo. Oads)(eV) Charge transfer from
Pt55 to O (e)

FCC (111) facet -5.28 -0.65 -0.18
HCP (111) facet -5.60 -0.97 —

Hollow (100) facet -5.50 -0.88 -0.17

Table 4.10: Computed chemisorption energies, E(At. Oads) and E(Mo. Oads), for
atomic and molecular oxygen at hollow sites on the (111) and (100) facet of a
cuboctohedral Pt147 nanoparticle, obtained using equations (4.2) and (4.1), and
results obtained from ONETEP calculations. The value for the charge transfer
was obtained through Hirschfeld analysis (see equation (4.13)).

Chemisorption site E(At. Oads) (eV) E(Mo. Oads) (eV) Charge transfer from
Pt147 to O (e)

FCC (111) facet -3.55 1.08 -0.22
HCP (111) facet -4.27 0.36 -0.20

Hollow (100) facet -4.83 -0.19 -0.18
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Figure 4.12: The effect of the variation in Pt nanoparticle size on the computed
chemisorption energy of atomic oxygen at HCP and FCC sites, and comparison
of chemisorption energy of atomic oxygen on the (111) facets of Pt nanoparti-
cles with the chemisorption energy of atomic oxygen on a bulk Pt(111) surface.
The lines with symbols upon them correspond to results for chemisorption on
nanoparticles (data from tables 4.8, 4.9 and 4.10), whilst the dashed horizontal
lines correspond to results for chemisorption on the bulk surface (data from Table
4.7).

.
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Figure 4.13: The densities of states for an isolated Pt13 nanoparticle and isolated
oxygen atom (left), and the localized density of states for the oxygen atom and
Pt13 nanoparticle when the oxygen atom is chemisorbed on the hollow site on the
(100) facet of the Pt13 nanoparticle.

4.4.3 Densities of states

Densities of states (D.O.S.) and localized densities of states (L.D.O.S.) were also

calculated. The L.D.O.S. are calculated by projecting the Kohn-Sham orbitals

onto those NGWFs centred on a given atom (or set of atoms), and then calcu-

lating the D.O.S. from these projected orbitals. Comparison between the D.O.S

of the isolated receptor and ligand, with their L.D.O.S. when they are bound to-

gether, provides insight as to how the electronic structure of the two components

is affected by binding.

4.4.4 Optimized geometries

The following diagrams show structures of the nanoparticles with bond lengths

obtained through geometry optimizations performed in ONETEP. It should be

noted that only the position of the oxygen was optimized in the calculations per-

formed on Pt147. Therefore, the values of the Pt-O bond lengths are not expected
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Figure 4.14: The densities of states for an isolated Pt55 nanoparticle and isolated
oxygen atom (left), and the localized density of states for the oxygen atom and
Pt55 nanoparticle when the oxygen atom is chemisorbed on the hollow site on the
(100) facet of the Pt13 nanoparticle.

Figure 4.15: The densities of states for an isolated Pt147 nanoparticle and isolated
Oxygen atom (left), and the localized density of states for the oxygen atom and
Pt147 nanoparticle when the oxygen atom is chemisorbed on the hollow site on the
(100) facet of the Pt13 nanoparticle.
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to be accurate, as no distortion of the nanoparticle surface was possible.

Figure 4.16: Optimized structures of a bare Pt55 nanoparticle (left), and a Pt55
nanoparticle (green) with oxygen (red) chemisorbed at the hollow site on the (100)
facet. These geometries were obtained using ONETEP

.

Figure 4.17: Optimized structure of a Pt55 nanoparticle (green) with oxygen (red)
chemisorbed at the HCP site on the (111) facet. This geometry was obtained using
ONETEP

.
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Figure 4.18: Optimized structure of a Pt55 nanoparticle (green) with oxygen (red)
chemisorbed at the FCC site on the (111) facet. This geometry was obtained using
ONETEP.

.

Figure 4.19: A Pt147 nanoparticle (green) with oxygen (red) chemisorbed at the
hollow site on the (100) facet. Only the position of the oxygen was optimized.
This geometry was obtained using ONETEP.

.
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Figure 4.20: A Pt147 nanoparticle (green) with oxygen (red) chemisorbed at the
HCP site on the (111) facet. Only the position of the oxygen was optimized. This
geometry was obtained using ONETEP.

.

Figure 4.21: A Pt147 nanoparticle (green) with oxygen (red) chemisorbed at the
FCC site on the (111) facet. Only the position of the oxygen was optimized. This
geometry was obtained using ONETEP.

.
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4.4.5 Hirschfeld density analysis

Hirschfeld density analysis [81] is a technique used to gain qualitative insight into

the transfer of charge density associated with the formation of chemical bonds.

All values for charge transfer presented so far in this report were obtained through

use of Hirschfeld analysis.

Analysis of a simple system, composed of a ligand bound to receptor, requires

three electron densities:

• The isolated ligand, Lisolated(r).

• The isolated receptor Risolated(r).

• The complex, C(r).

In most cases, the most energetically favourable geometry for the ligand when it is

bound in the complex will be different to the most energetically favourable geom-

etry for the ligand when it is not in the complex. The density of the isolated ligand,

Lisolated(r), is calculated using the geometry the ligand has when it is bound in

the complex9. Similarly, the density of the isolated receptor is calculated for the

geometry the receptor has when it is bound in the complex. This is necessary, as

it is important that the geometry of the components of the system are kept consis-

tent if the charge decomposition is to be calculated correctly. The first step is to

calculate the electron density of the promolecule, P (r):

P (ri) = Risolated(ri) + Lisolated(ri) . (4.5)

Here ri is a point on the real space grid on which the charge density is represented.

9The geometry of the isolated ligand is obtained by taking the optimized geometry of the
complex, and deleting all atoms not in the ligand.
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The electron density of the promolecule is the superposition of the densities of

the unbound components of the system. It is the density of a system where the

ligand and receptor are in same geometry as when they are bound together in the

complex, but do not interact at all, i.e. it is the overlap of the sum of the densities

of the isolated components, Lisolated(r) and Risolated(r) of the system.

The deformation density of the entire system, CDeform(ri), is given by:

CDeform(ri) = C(ri)− P (ri) . (4.6)

This is the difference between the density of the system where the ligand and

receptor interact, and the density of the system where they do not.

Figure 4.22: Deformation density for an oxygen atom chemisorbed at the hollow
site on the (100) facet of a Pt13 nanoparticle. The value on the pink and blue
isosurfaces are +0.02 and -0.02 electrons per Å3 respectively.

.

To gain more insight into the binding it is useful to calculate the Hirschfeld de-

formation densities of individual components. From the promolecule density the
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Figure 4.23: Deformation density for an oxygen atom chemisorbed at the hollow
site on the (100) facet of a Pt55 nanoparticle. The value on the pink and blue
isosurfaces are +0.02 and -0.02 electrons per Å3 respectively.

.

Figure 4.24: Deformation density for an oxygen atom chemisorbed at the hollow
site on the (100) facet of a Pt147 nanoparticle. The value on the pink and blue
isosurfaces are +0.02 and -0.02 electrons per Å3 respectively.

.

following weighting is calculated:

Lweight(ri) =
Lisolated(ri)

P (ri)
, (4.7)

85



CHAPTER 4. CALCULATIONS OF CHEMISORPTION OF ATOMIC
OXYGEN ON PLATINUM SLABS AND NANOPARTICLES

Rweight(ri) =
Risolated(ri)

P (ri)
. (4.8)

These weightings determine what fraction of the density at a given point in space

should be associated to the ligand, Lweight(ri), and to the receptor,Rweight(ri).

These weightings are then used to calculate the Hirschfeld densities of the recep-

tor, RHirschfeld(r), and ligand, LHirschfeld(r) :

LHirschfeld(ri) = Lweight(ri)C(ri) , (4.9)

RHirschfeld(ri) = Rweight(ri)C(ri) . (4.10)

The Hirschfeld density of the ligand LHirschfeld(ri) is the electron density associ-

ated with the ligand when it is in the complex. This assumes that how the density

at a given point in space is distributed between the receptor and ligand does not

change when the two bind together, even though the total density does.

The Hirschfeld density can be used to calculated the Hirschfeld deformation den-

sity for the ligand LHD(r) and receptor RHD(r).

LHD(ri) = LHirschfeld(ri)− Lisolated(ri) (4.11)

RHD(ri) = RHirschfeld(ri)−Risolated(ri) (4.12)

The Hirschfeld deformation densities show how the amount of electronic density

associated with the ligand and receptor changes when the two are bound together

in the complex. A qualitative idea of the charge transfer, δQ, can be obtained by

integrating the Hirschfeld deformation density associated with a component over

the simulation cell. For example, the charge transferred from the receptor to the
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ligand, δQreceptor, is given by

δQreceptor =

Ngrid∑
i

wRHD(ri), (4.13)

where Ngrid is the number of points on the grid upon which the density is repre-

sented, and w is the weighting of each grid point (typically defined as w = V
Ngrid

,

where V is the volume of the simulation cell). The values of the charge trans-

fer seen in the tables included earlier in this report were all obtained using this

method.

The deformation density is useful for investigating charge screening. Examination

of the extent of density deformation associated with chemisorption of an oxygen

atom can provide an indication of how the electronic structure of the platinum

nanoparticle is altered following chemisorption, and how the reactivity may de-

crease as successive oxygen atoms are chemisorbed.

In Figures 4.22, 4.23 and 4.24, the extensive deformation to the electron density

is consistent with formation of a chemical bond. It should be noted that the de-

formation to the density is not limited to those platinum atoms with which the

oxygen atom is directly bonded, suggesting the electronic structure of the entire

cluster plays a role in bonding.
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Chapter 5

Discussion

The most significant finding of this study is that the energy of atomic oxygen

chemisorption decreases as the size of the nanoparticle increases. This agrees well

with a similar computational study carried out by Li et al [79], who investigated

the chemisorption energy of atomic oxygen on cuboctohedral platinum nanopar-

ticles using DFT calculations performed using the GPAW [82] software package.

It also agrees well with conclusions from experimental investigations. For exam-

ple, in reference [83] X-ray photoelectron spectroscopy (XPS) was used to deter-

mine the core-binding energies of platinum atoms in various sizes of nanoparticle,

and from this data, conclusions about relative strengths of O-Pt binding to these

nanoparticles was drawn. The conclusion drawn in this thesis and in the two afore-

mentioned studies is consistent with the hypothesis that small nanoparticles make

poor catalysts due to overly strong binding between the platinum nanoparticle and

the intermediates in the ORR [12].

The chemisorption energies of atomic oxygen obtained in this study agree, for the

most part, to within 1 eV with those obtained in the computational DFT studies
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included in references [79] and [84]. The latter of these studies utilized VASP

[85], a plane-wave DFT code. This level of consistency between studies is rea-

sonable given the size of the disagreement relative to the size of the chemisorption

energies (∼-4.5eV), the agreement in the relative chemisorption energies at dif-

ferent sites, and the fact that in neither study were the positions of the platinum

atoms optimized. Chemisorption of atomic oxygen at the hollow sites on both the

(100) and (111) facets was found to be energetically favoured. This is consistent

with numerous experimental studies, such as that described in reference [86], in

which a rotating disk electrode technique is used to study the catalytic activity of

different platinum surfaces.

For the most part it has not been possible to directly compare numerical results

obtained in this study with those found in the literature. One reason for this is the

lack of precise quantitative calculations which have been performed previously

on systems of this size. Another reason is that in those studies which do exist,

there is significant variation in the techniques used (e.g. the method of calculating

the occupancies [77], and whether the platinum structure is optimized [79]), the

conditions of the system (e.g. the temperature [79]), and whether a support is

used (e.g. graphene supports are often included [87]). However, good qualitative

agreement with existing studies is achieved, and the chemisorption energies of

atomic oxygen calculated in this study fall within the range of values (∼1-6eV)

reported in the literature1.

An unexpected finding was that the chemisorption energies for molecular oxygen

on the (111) facet of the Pt147 nanoparticle were positive. A positive chemisorp-

tion energy indicates that chemisorption of molecular oxygen on the hollow sites

1This is still a very large range, but acceptable given the aforementioned variations in the
calculations.
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of the (111) facet is not energetically favoured, and that this facet of the Pt nanopar-

ticle would only play a limited role in the first step of the ORR described in equa-

tion (1.4). However, this conclusion is contrary to much evidence in the literature.

For example, it would disagree with the experimental study described in reference

[88], in which the activity of different surfaces is investigated using the rotating

ring disk electrode (RRDE) technique. It also disagrees with results from com-

putational investigations, such as those described in reference [89], which was

performed using DFT software packages Gaussian 98 [90] and VASP. An expla-

nation for this disagreement is that strength of the oxygen binding to the Pt147 is

probably underestimated by the calculations described in this thesis, as the posi-

tion of the Pt-atoms in the OPt147 complex were not optimized. Consequently,

the Pt-atoms are unable to move into the positions most energetically favoured for

Pt-O binding. Therefore, the final geometry of the OPt147 complex will not be

the most energetically favoured, resulting a more positive energy for the complex,

and a more positive chemisorption energy.

It was observed that the most favoured site for chemisorption of atomic or molec-

ular oxygen varied with the size of the nanoparticle. The HCP site was the most

favoured site on Pt13 and Pt55, whilst the hollow site on the (100) facet was the

most favoured site on Pt147. It is interesting to note that the chemisorption energy

at the HCP site was consistently more negative (and hence more favoured energet-

ically) than the FCC site. This is consistent with results of a similar computational

DFT study performed by Han et al [84]. This is in disagreement with results for

bulk slab systems obtained in the calibration study in this thesis (see Table 4.1).

It also disagrees with other computational DFT studies, such as that described

in reference [62], and experimental studies, such as that described in reference

[63], in which the oxygen-platinum binding was investigated using temperature
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programmed desorption. The HCP site may be energetically favoured be due to

edge effects. If a site is on the edge of a facet, then the Pt-atoms at that site will

be under-coordinated. Therefore, the oxygen atom will bind more strongly at this

site. On Pt55 and Pt147, the HCP site at which the oxygen was chemisorbed is on

the edge of the (111) facet, and consequently binding to this site is very strong.

Conversely, for both Pt55 and Pt147, the FCC site investigated is near or at the cen-

tre of the (111) facet, so the binding of oxygen to this site is comparatively weak.

This strong binding to under-coordinated sites is commented upon in experimental

studies, e.g. in reference [91] the electronic structure of platinum nanoparticles is

investigated using XPS. Similar findings of numerous other experimental studies

are discussed in the review in reference [92]. These findings are corroborated by

computational studies of oxygen chemisorption on platinum included in reference

[93], which make use of computational implementations of DFT.

The geometry optimization calculations revealed that the cuboctohedral Pt13 and

Pt55 nanoparticles cut directly from the bulk were not the most energetically favoured.

In the unoptimized structure of Pt13 and Pt55 every Pt-Pt bond was 2.77 Å, but the

structures of both Pt13 and Pt55 changed significantly following geometry opti-

mization. The bond lengths in Pt13 all contract by nearly 0.1Å. However, the

overall structure remains very nearly symmetrical.

The optimized structure of the Pt55 exhibits both contraction and expansion of Pt-

Pt bonds from their bulk value of 2.77 Å; the (111) facets bulge outwards slightly

and have longer Pt-Pt bond lengths of ∼2.85 Å. Meanwhile, the (100) facets ap-

pear to remain flat and contract slightly, having Pt-Pt bond lengths of ∼2.68 Å.

Contraction of the interlayer separation in metals slabs whose surfaces resemble

the (100) and (111) planes is well known [94]. The contraction and expansion ob-
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served in nanoparticle structures following optimization was significantly greater

than similar effects observed in the optimized geometries of the bare Pt (111) slabs

(for which the magnitude of the change in bond lengths was <0.05 Å). A possible

reason that the effects are more pronounced in nanoparticles is that a greater frac-

tion of the atoms are at edge and surface sites, and hence relatively unconstrained

(42 of the atoms in Pt55 are on the surface of the nanoparticle). Huang et al have

commented upon a similar effect observed in electron diffraction experiments on

gold clusters [95], where bonds below both the (111) and (100) facets contract,

but those bonds associated with the (100) facet contract much more than those be-

low the (111) facet. It is possible that for Pt55, the large contraction (∼0.13 Å) of

the bonds on the (100) facet causes a slight expansion (∼0.06 Å) of those bonds

associated with the (111) facet, in order to stabilize the structure. It is also inter-

esting to note that in Figure 4.16, the Pt-Pt bond lengths on similar (111) facets

are not identical. Breaking the symmetry of an octahedral structure can lower the

energy (the Jahn-Teller effect [19]), but without more extensive investigation it is

not possible to be certain that this is the effect responsible.

There was deformation of the structure of the Pt55 nanoparticle following oxy-

gen chemisorption. Bonds between Pt-atoms at the chemisorption site tended to

expand, whilst the Pt-Pt bonds between atoms adjacent to the chemisorption site

tended to contract. This can be seen by comparing the optimized structure of

the bare nanoparticle, Pt55, shown in Figure 4.16, with the optimized structures

of OPt55, depicted in Figures 4.16, 4.17 and 4.18. The structural deformation

was limited to those few atoms in the immediate vicinity (nearest and next near-

est neighbours) of the chemisorbed oxygen atom, and inspection of Figures 4.16,

4.17 and 4.18 reveals that there was little to no change in the Pt-Pt bond lengths

on the nanoparticle facets not adjacent to the facet upon which the oxygen atom
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was chemisorbed. Even in the immediate vicinity of the chemisorbed oxygen, the

expansion or contraction in the Pt-Pt bonds rarely exceeded 0.1 Å. It is hard to

precisely determine the impact this will have had on chemisorption energies, but

a recent study [96] of oxygen chemisorption using plane-wave DFT code VASP

indicate that relaxation of the nanoparticle structure can alter the chemisorption

energy of atomic oxygen by as much as 30%. Consequently, the chemisorption

energies of atomic oxygen obtained for the Pt147 nanoparticles may be inaccurate,

as the geometry of Pt147 was not optimized in the work included in this thesis. Ex-

perimental evidence suggests that the dissolution of platinum nanoparticles into

the solvent during can take place, affecting their stability as catalysts [91]. There-

fore, investigation of the structural stability of platinum nanoparticles is important,

as nanoparticles with less stable structures are more likely to dissolve.

It is interesting to note that the deformation of the structure of the Pt(111) slab

following chemisorption of atomic oxygen was greater than that observed in the

platinum nanoparticles2. This is probably a consequence of two things; 1) the

constraints on the structure of the slab 2) the oxygen coverage was comparatively

high; one oxygen atom for every 4 surface platinum atoms. At high coverages lat-

eral interactions [97] [98] between chemisorbed oxygen atoms become important,

and can have a significant impact on how the platinum surface deforms. These

lateral interactions can also affect the energies of chemisorption at different sites.

Furthermore, in the calibration study on platinum slabs the Pt:O ratio was 20:1, as

opposed to 55:1 as in the case of OPt55. It is also noticeable that the Pt-Pt bonds in

the slab expand following chemisorption of the oxygen atom. However, unlike in

the nanoparticles, no other Pt-Pt bonds appear to contract to compensate. This is

2This is surprising, as the relaxation seen in the bare nanoparticles was much greater than that
seen in the bare slabs.
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likely due to the structural stability afforded by the periodic nature of the slab, and

the fact that the positions of atoms in the bottom two layers of the slab were held

fixed during geometry optimization. It could also be related to the constraints on

the slab geometry imposed by the fixed size of the simulation cell, which makes

expansion of the slab in the direction normal to the surface possible, but prevents

expansion and contraction in directions tangential to the surface.

The formation of bonds is indicated both by the distances between the platinum

and oxygen atoms, and by the deformation to the density that can be seen in

Figures 4.22, 4.23 and 4.24. With a few exceptions, the lengths of the Pt-O bonds

are largely independent of nanoparticle size, and generally vary by less than 0.05

Å. The Pt-O bond lengths found in the calculations of chemisorption of atomic

oxygen on a Pt(111) slab are also very similar in size to those seen in nanoparticles

(∼ 2.1 Å). It is interesting to note that simulations of atomic oxygen chemisorbed

on the (100) facet of the Pt13 and Pt147 nanoparticles predict formation of four

Pt-O bonds of similar length (∼2.2 Å). However, the simulation of atomic oxygen

chemisorbed on the Pt55 indicated that only 3 Pt-O bonds are formed, and that one

of these bonds was significantly shorter than the others (the bond lengths are 2.18

Å, 2.19 Å and 1.93 Å). Furthermore, the shortest of these bonds is between the

oxygen atom and the well co-ordinated platinum atom at the centre of the (100)

facet, whilst the oxygen atom does not bond at all with the relatively under co-

ordinated platinum atom on the vertex of the nanoparticle (see Figures 4.18 and

4.23).

The deformation densities depicted in Figures 4.22, 4.23 and 4.24 provide an in-

dication of the fraction of the nanoparticle with which the oxygen atom inter-

acts most strongly. If the density deformation within a given region is small,
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then it suggests that the charge density in that region is relatively unaffected by

chemisorption of the oxygen, and does not significantly influence the bonding of

the oxygen to the surface3. This is consistent with the isosurfaces depicted in Fig-

ures 4.22, 4.23 and 4.24, which show that the most extensive deformation is along

the Pt-O bonds. Furthermore, it was noted that the shape of the density deforma-

tion in the Pt-O bond region resembles an isosurface of the probability densities of

atomic orbitals associated with large principal quantum numbers n, i.e. the shape

of the density deformation seems to resemble those atomic orbitals thought to be

most involved in Pt-O bonding.

The deformation to the charge density resulting from chemisorption of oxygen on

Pt147 is reasonably well localized within the region surrounding the chemisorp-

tion site. Furthermore, the deformation to the density on the far side of the Pt147

nanoparticle, opposite to the chemisorption site, is roughly 20 times smaller than

that observed at the site (i.e. an isovalue of ∼ 0.001 must be used for the plot in

order to see a similarly extensive isosurface). This suggests that larger nanoparti-

cles might not yield significantly different values for the chemisorption of a sin-

gle atomic oxygen atom, which would be consistent with the findings of Li et al

[79]. However, such predictions should be made very tentatively, as the nature

of O-Pt bonding has many complexities not revealed by the density deformation.

Nonetheless, given the extent of the deformation to the density, chemisorption of

one oxygen on Pt147 could be expected to affect the binding of the nanoparticle to

any futher oxygen atoms, even if these oxygen atoms were to be chemisorbed on

opposite facets.

3It should be noted that this is a very qualitative measure, and that there will be some slight
deformation to the density at all points in the system, and that all parts of the system will play
some role in the chemisorption process.
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The deformation to the charge density resulting from chemisorption of atomic

oxygen at the FCC site on the (111) facet of Pt147 extended further through the

nanoparticle than it did when the atomic oxygen was chemisorbed in the hollow

site of the (100) facet (see Figure 4.24). However, the oxygen bound significantly

less strongly to the (111) facet (see Table 4.10), and despite the greater spatial

extent of the deformation, there was not a notable increase in the charge trans-

fer between the oxygen and platinum. This suggests that when atomic oxygen is

chemisorbed on the (111) facet, it interacts more weakly with the orbitals associ-

ated with individual Pt atoms, but with a greater number of them.

An unexpected feature of the results is lack of correlation between the amount of

charge transferred and the chemisorption energy. It is clear from Tables 4.8, 4.9

and 4.10 that there is not a link between the magnitude of the platinum-oxygen

charge transfer and the chemisorption energy (as might have been expected).

However, given that the platinum-oxygen charge transfer does not vary signifi-

cantly with chemisorption site, and the qualitative nature of Hirschfeld analysis,

this lack of correlation does not indicate significant inaccuracy in the results.

The total D.O.S. of the isolated Pt147 and OPt147 complex are very similar (see

Figure 4.15); there is no noticeable shift in the Fermi-level, and the states sur-

rounding the Fermi-level are largely unchanged. One noticeable difference is the

presence of a peak at around -23 eV, which is present in all D.O.S. plots of the

isolated oxygen atom, as well as the L.D.O.S. plots of the OPtN complexes (Fig-

ures 4.13, 4.14 and 4.15 ). This is almost certainly associated with the 2s orbitals

on the oxygen atom. These states are not expected to play a significant role in

bonding [93], and so are present both when the oxygen is isolated, and when it is

in the complex. The same cannot be said of the higher energy peak found in the
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D.O.S. for the isolated oxygen. This peak is probably associated with the 2p or-

bitals of the oxygen atom. In the OPtN complex, this peak is effectively replaced

by a low flat smear. Initially it was thought that this was due to difficulties in read-

ing relatively small contribution of the oxygen to the L.D.O.S.. Consequently,

L.D.O.S. were calculated for just the chemisorbed oxygen atom, and the three

platinum atoms to which it was bonded. However, even with focusing only on

the D.O.S. associated with these atoms, no clear bonding orbitals were observed.

This suggests that there are not a few specific molecular orbitals which correspond

to the Pt-O bonds, but rather the p-orbitals have interacted and combined with a

large number of molecular orbitals which are delocalized about the entire OPtN

complex. This is consistent with plots of probability densities associated with sev-

eral of the molecular orbitals near the Fermi-level. These plots showed molecular

orbitals delocalized about the entire platinum cluster. It was noted that the plots

of the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccu-

pied molecular orbital) for the OPt147 complexes clearly resemble a plot of several

d-orbitals centred on different atoms in the nanoparticle. This is interesting con-

sidering that molecular orbitals within the d-band are known to play important an

important role in Pt-O bonding [93].

In ONETEP it is possible to analyze the angular momentum character of the opti-

mized NGWFs, i.e. see to what extent the NGWFs on a given atom resemble s, p,

d and f orbitals. This is determined from the projection of an NGWF into a set of

spherical waves which have the desired angular momentum character. The NG-

WFs are initialized as pseudo-atomic orbitals with a given angular momentum, but

are optimized during the calculation, and may change substantially. Preliminary

calculations were performed in which the NGWFs were not optimized. These

calculations were slow to converge, and yielded results which seemed unphysical;
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the Pt-Pt bonds expanded to ∼3.5Å (an expansion of ∼0.8Å). Therefore, opti-

mization of the NGWFs is necessary if the system is to be well described, and it

is interesting to investigate the effect of this optimization. A brief investigation

revealed that most of the NGWFs did not change substantially following opti-

mization; with the exception of those NGWFs centred on platinum atoms bound

directly to the oxygen, the angular momentum character of the NGWFs changed

by <1% over the course of the calculations on OPt55 and OPt147. However, the

change was more pronounced in those NGWFs centred on the platinum atoms

with which the oxygen atom was bound. Following optimization, these NGWFs

exhibited a slight shift of 2-3% towards higher angular momentum, i.e. an NGWF

which was initialiazed as a d-orbital, became marginally more f-like in character

following optimization.
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Chapter 6

Conclusions

The work reported in this dissertation shows that it is possible to use ONETEP to

perform simulations of oxygen atoms chemisorbed on platinum cuboctohedrals,

PtN , in the range N=13-147. It was observed that the magnitude of the chemisorp-

tion energy of atomic oxygen decreases with increasing sizes of nanoparticle.

There are two probable causes of this 1) Variation in the electronic structure with

the size of the platinum nanoparticle 2) The platinum atoms in small nanoparticles

are less well coordinated, and atomic oxygen binds more tightly to less well co-

ordinated atoms. To determine the relative significance of these factors, it could be

useful to investigate how the proximity of a chemisorption site to the edge of the

nanoparticle facet affects the chemisorption energy at that site. It may also prove

useful to investigate binding to other, typically less stable sites, such as the top and

bridge sites. Given the importance of deformation of the platinum nanoparticles

in determining the chemisorption energy of atomic oxygen, any extensive investi-

gation into the chemisorption energy of oxygen at different sites should make use

of full geometry optimization calculations.
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That oxygen binds more strongly to smaller nanoparticles could be a reason why

they are generally less effective as catalysts. The second stage of the ORR is the

formation of OH, which occurs when a hydrogen atom binds to the chemisorbed

oxygen atom. Therefore, if the oxygen is bound strongly to the platinum surface,

it is likely the hydroxyl molecule will also bind strongly [99]. If the hydroxyl

molecule is too strongly bound to the platinum surface, then the final stage of

the ORR, during which the hydroxyl molecule combines with another hydrogen

atom to form water and leave the platinum surface1, may occur infrequently, or

not happen at all. Therefore, excessively strong O-Pt binding can indicate that the

nanoparticle would make a poor catalyst.

It is difficult to determine the relationship between the chemisorption energy of

atomic oxygen and the chemisorption energy of OH without performing calcula-

tions on OHPtN complexes. One possible future direction of research, would be to

investigate chemisorption of OH, and other possible intermediates of the ORR, on

the surface of the platinum nanoparticle. This could provide an insight into how

the chemisorption energy of OH is related to the chemisorption energy of atomic

oxygen, as well as how this relationship varies with increasing nanoparticle size.

It was observed that the proximity of a chemisorption site to the edge of a facet

affected the chemisorption energy of atomic oxygen at that site. It is thought that

the low coordination number of platinum atoms at such sites, as well as the associ-

ated ability of the platinum atoms to move so as to accommodate the chemisorbed

1i.e. The transition from OHPtN +H++e−→ H2O +PtN
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oxygen, are the main causes of this effect. Nanoparticles with stepped facets (and

hence a large number of potential chemisorption sites involving under-coordinated

platinum atoms, to which atomic oxygen will bind strongly) could be investi-

gated. Such systems have already been prepared and investigated in experimental

studies, such as that described in reference [100], in which a rotating disk elec-

trode technique is used to discover that the activity of platinum concave nanocubes

compares favourably with the activity of platinum cuboctohedrals. That platinum

nanoparticles with stepped facets are effective catalysts seems to run contrary to

the earlier hypothesis that it was the overbinding of atomic oxygen to small plat-

inum nanoparticles which caused small nanoparticles to be inefficient catalysts. It

is possible that the geometry of stepped facets (i.e. the positions of chemisorption

sites relative to one another) makes them particularly well suited for the formation

of the other intermediates in the ORR (e.g. OH and H2O), and the dissociation of

molecular oxygen. Further investigation of such surfaces could be interesting in

determining what physical properties of these surfaces make them so effective.

The optimized structures of the platinum cuboctohedrals differed significantly

from those structures cut directly from bulk. Significant deformation of the nanopar-

ticle following chemisorption of atomic oxygen was also observed. Extensive

deformation following chemisorption of atomic oxygen indicates that chemisorp-

tion of oxygen into the subsurface of the nanoparticle may be possible. Subsurface

chemisorption of oxygen is known to reduce the catalytic activity of a platinum

slab [101], and it alters both the geometry and electronic structure of the platinum

slab. These effects will likely be more pronounced in smaller systems, where a

relatively high fraction of the atoms are near the surface. An investigation as to

the impact of subsurface chemisorption of oxygen in platinum nanoparticles, and

103



CHAPTER 6. CONCLUSIONS

how this affects the electronic structure and the stability of different facets, could

prove useful.

In this work, it was found that chemisorption of atomic oxygen to Pt13, Pt55 and

Pt147 changed the electron density. The deformation to the density was greatest in

the region immediately surrounding the chemisorption site. However, even for the

large Pt147 nanoparticle, slight deformation to the density occurred on all facets,

including facets far from that upon which the oxygen atom was chemisorbed. This

suggests that chemisorption of an oxygen atom on one facet would have an effect

on the chemisorption of second oxygen atom, regardless of which facet this oxy-

gen atom was chemisorbed upon. One possible avenue of investigation would be

to see if there is any correlation between the chemisorption energy of atomic oxy-

gen at higher coverages, and the overlap in the deformation densities associated

with these individual oxygen atoms.

Plots of the L.D.O.S. indicated that the 2s orbitals on oxygen did not play a major

role in Pt-O bonding, but that the 2p orbitals do. The differences between the

D.O.S. of Pt55 and OPt55, and between the D.O.S. of Pt147 and OPt147, were rel-

atively minor. This indicates that chemisorption of a single oxygen atom did not

significantly change the overall electronic structure of these nanoparticles. How-

ever, it is clear from the deformation densities plotted in Figures 4.21, 4.22 and

4.23, that the electronic structure in the vicinity of the chemisorption site was se-

riously affected. Furthermore, Hansen et al have used calculations with the plane-

wave DFT code Dacapo [102] to show that chemisorption of multiples oxygen

atoms can actually improve the reactivity of a platinum surface [103]. One way of
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gaining more insight into how the chemisorption of oxygen affects the electronic

structure of the platinum nanoparticle would be to calculate the L.D.O.S. associ-

ated with platinum atoms at unoccupied chemisorption sites in the vicinity of the

site at which the oxygen is chemisorbed.

It would be particularly interesting to investigate the angular momentum projected

density of states (P.D.O.S.). This is the density of states calculated from the KS-

orbitals projected onto a set of functions of a certain angular momentum type. For

example, the P.D.O.S. of the d-band could be calculated by first projecting the

KS-orbitals onto all the atomic orbitals in the system with an angular momentum

quantum number of 2 (the d-orbitals). The D.O.S. calculated from these projected

KS-orbitals is the projected density of states (P.D.O.S.) for the d-band. The prox-

imity of the centre of the d-band (i.e. population weighted average energy of states

in the d-band) to the Fermi level, has been shown to correlate with the catalytic

activity of a nanoparticle [104]. This is because the d-band centre provides an in-

dication of the energies of the bonding and anti-bonding orbitals associated with

Pt-O bonding [93].

It would also be useful to investigate the dissociation of O2 molecules into two

separate oxygen atoms, each of which is bound to a separate site on the platinum

surface. It is important that the oxygen molecule dissociates into two separate

oxygen atoms, as this reduces the probability that H2O2 will form2. It is shown

in reference [99] that the requirement for the oxygen molecule to dissociate, is

important in determining which sites are best for chemisorption of molecular oxy-

2Hydrogen peroxide is known to have a detrimental effect on the functioning of PEMFCs [10].
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gen. Furthermore, the two dissociated oxygen atoms will likely be in close prox-

imity to one another, and this can have a significant effect on the chemisorption

energy. Therefore, in order to accurately determine which sites are most desirable

for increasing the activity of platinum nanoparticle catalysts, it may be necessary

to simulate chemisorption and dissociation of complete oxygen molecules.

Higher coverages of atomic and molecular oxygen, as well as higher coverages of

other intermediates of the ORR, could also be investigated. Oxygen coverages of

a quarter monolayer and a half monolayer are similar to those found in PEMFCs.

The lateral interactions between different species which occur at such coverages

may affect which sites are most favorable for different stages of the ORR [97]

[98]. Increased coverages could also have an effect on the stability of the sur-

faces of the platinum nanoparticles, and also may serve to stabilize oxygen atoms

chemisorbed at sites which would otherwise be unstable.

The impact that variations in the electronic temperature have on calculations should

also be investigated. All the calculations in this report were carried out at an elec-

tronic temperature of over 1000 K, which is significantly higher than standard

PEMFC operating temperatures of ∼300-350 K [10]. This high temperature was

used as it eased convergence of the calculations. A brief investigation in this work

was performed (consisting only of a calculation on Pt13 at 116.4 K), and suggested

that the change in temperature had little impact on the chemisorption energies or

geometries. Furthermore, other computational DFT studies make use of similarly

high temperatures [79]. However, a more thorough investigation of the effect of

high electronic temperatures may be prudent before more extensive studies in-
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volving other aspects of the ORR are embarked upon.

The support upon which the platinum nanoparticles are secured can have an im-

pact on their reactivity. Computational DFT has been used to investigate the

chemisorption of atomic and molecular oxygen on small nanoparticles (<14 plat-

inum atoms) on different carbon supports [5][87]. However, larger nanoparticles,

of the sizes most commonly used in fuel cells, have yet to be investigated. In

PEMFCs, the electrodes are typically immersed in a solvent, and this has also

been shown to have an impact on the catalytic activity of platinum catalysts [105]

[106]. Therefore, investigation of the effect of different solvents could be useful in

development of more efficient fuel cell catalysts. This could be achieved through

use computational methods, such as the implicit solvent model implemented in

ONETEP [107].
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[40] F. Bloch. Über die Quantenmechanik der Elektronen in Kristallgittern.

Zeitschrift fur Physik, 52:555–600, 1929.

[41] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopou-

los. Iterative minimization techniques for abinitio total-energy calcula-

tions: molecular-dynamics and conjugate gradients. Rev. Mod. Phys.,

64(4):1045–1097, 1992.

113



BIBLIOGRAPHY

[42] R. M. Martin. Electronic Structure. Cambridge University Press, Cam-

bridge, 1st edition, 2004.

[43] N. Troullier and J. L. Martins. Efficient pseudopotentials for plane-wave

calculations. Physical Review B, 43(3):1993–2006, 1991.

[44] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigen-

value formalism. Phys. Rev. B, 41:7892–7895, 1990.

[45] L. Kleinman and D. M. Bylander. Efficacious form for model pseudopo-

tentials. Phys. Rev. Lett., 48:1425–1428, 1982.

[46] C.-K. Skylaris, A. A. Mostofi, P. D. Haynes, O. Dieguez, and M. C. Payne.

Nonorthogonal generalized Wannier function pseudopotential plane-wave

method. Phys. Rev. B., 66(3):035119–035131, 2002.

[47] C.-K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne. Implementa-

tion of linear-scaling plane wave density functional theory on parallel com-

puters. Phys. Status Solidi B-Basic Solid State Physics, 243(5):973–988,

2006.

[48] E. Prodan and W. Kohn. Nearsightedness of electronic matter. Proc. Natl.

Acad. Sci. USA, 102(33):11635–11638, 2005.

[49] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J.

J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, and W. A.

de Jong. NWChem: A comprehensive and scalable open-source solution

for large scale molecular simulations. Computer Physics Communications,

181(9):1477–1489, 2010.

[50] E. Anglada, J. M. Soler, J. Junquera, and E. Artacho. Systematic generation

114



BIBLIOGRAPHY

of finite-range atomic basis sets for linear-scaling calculations. Phys. Rev.

B, 66:205101–205105, 2002.

[51] N. M. D. Hine, M. Robinson, P. D. Haynes, C. K. Skylaris, M. C. Payne,

and A. A. Mostofi. Accurate ionic forces and geometry optimisation in

linear scaling density-functional theory with local orbitals. Phys. Rev. B,

83(19):195102–195112, 2010.

[52] A. H. Larsen. Efficient electronic structure methods applied to electronic

nanoparticles. PhD thesis, Aarhus University, 2010.

[53] P. Pulay. Improved SCF convergence acceleration. Journal of Computa-

tional Chemistry, 3(4):556–560, 1982.

[54] N. Marzari, D. Vanderbilt, and M. C. Payne. Ensemble density-functional

theory for ab initio molecular dynamics of metals and finite-temperature

insulators. Phys. Rev. Lett., 79(7):1337–1340, 1997.

[55] I. Grinberg, N. J. Ramer, and A. M. Rappe. Transferable relativistic Dirac-

Slater pseudopotentials. Phys. Rev. B, 62:2311–2314, 2000.

[56] N. D. Mermin and N. W. Ashcroft. Solid State Physics. Saunders College,

Philadelphia, 1st edition, 1976.

[57] T. E. Schwartzentruber P. Valentini and I. Cozmuta. Molecular dynamics

simulation of O2 sticking on Pt(111) using the ab initio based ReaxFF reac-

tive force field. The Journal of Chemical Physics, 133(8):084703–084712,

2010.

[58] J. W. Arblaster. Crystallographic properties of platinum. Platinum Metals

Review, 1(41):12–21, 1997.

115



BIBLIOGRAPHY

[59] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio

total-energy calculations using a plane-wave basis set. Physical Review

B, 54(16):11169–11186, 1996.

[60] P. Pulay. Convergence acceleration of iterative sequences - the case of SCF

iteration. Chem. Phys. Lett., 73(2):393–398, 1980.

[61] H. J. Monkhorst and J. D. Pack. Special points for Brillouin-zone integra-

tions. Phys. Rev. B, 13(12):5188–5192, 1976.

[62] R. B. Getman, Y. Xu, and W. F. Schneider. Thermodynamics of

environment-dependent oxygen chemisorption on Pt(111). The Journal of

Physical Chemistry C, 112(26):9559–9572, 2008.

[63] J. F. Weaver, J.-J. Chen, and A. L. Gerrard. Oxidation of Pt (111) by gas-

phase oxygen atoms. Surface Science, 592(1):83–103, 2005.

[64] Y. H. Fang and Z. P. Liu. Surface phase diagram and oxygen coupling

kinetics on flat and stepped Pt surfaces under electrochemical potentials.

The Journal of Physical Chemistry C, 113(22):9765–9772, 2009.

[65] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and

D. Sanchez-Portal. The SIESTA method for ab initio order-N materials

simulation. J. Phys. Condens. Matter, 14(11):2745–2779, 2002.

[66] A. Ruiz-Serrano, N. D. M. Hine, and C.-K. Skylaris. Pulay forces from

localized orbitals optimized in situ using a psinc basis set. The Journal of

Chemical Physics, 136(23):234101–234110, 2012.

[67] S. Garcı́a-Gil, A. Garcı́a, N. Lorente, and P. Ordejón. Optimal strictly local-

ized basis sets for noble metal surfaces. Phys. Rev. B, 79:075441–075450,

116



BIBLIOGRAPHY

2009.

[68] L. E. Ratcliff, Nicholas D. M. Hine, and P. D. Haynes. Calculating optical

absorption spectra for large systems using linear-scaling density functional

theory. Phys. Rev. B, 84:165131–165141, 2011.

[69] I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove. DL POLY 3: new

dimensions in molecular dynamics simulations via massive parallelism. J.

Mater. Chem., 16:1911–1918, 2006.

[70] A. A. Mostofi, P. D. Haynes, C.-K. Skylaris, and M. C. Payne. Precondi-

tioned iterative minimization for linear-scaling electronic structure calcula-

tions. The Journal of Chemical Physics, 119:8842–8849, 2003.

[71] http://www.sas.upenn.edu/rappegroup/research/psp/pbegga/pt.html.

[72] http://opium.sourceforge.net/.

[73] W. A. Al-Saidi, E. J. Walter, and A. M. Rappe. Optimized norm-conserving

Hartree-Fock pseudopotentials for plane-wave calculations. Phys. Rev. B,

77:075112–075122, 2008.
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