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Abstract

Does a competitive equilibrium in a matching market provide ade-

quate incentives for investments made before the market when utility

is not perfectly transferable? In a one-sided market with a contin-

uum of agents and finite types there is a constrained surplus efficient

equilibrium, when a social planner can only affect investments but not

payoffs nor matches, if an equal treatment property holds in equilib-

rium. Sufficient (but not full) utility transferability in a well defined

sense implies this property. Ex post efficiency of payoffs (i.e., individ-

ual payoffs maximize the surplus in each match) alone is not sufficient

to ensure that equilibrium investments maximize aggregate surplus.
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able utility, graph theory.
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1 Introduction

Do equilibrium allocations and payoffs in matching markets provide ade-

quate incentives for investments in attributes that are relevant to matching
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partners and are made before the market? This is a relevant question, in

particular for policy discussion concerning education acquisition and labor

markets. For instance, there appear to be widespread concerns that – pos-

sibly because of asymmetric information (see Bénabou and Tirole, 2016) –

salaries in the labor market may not adequately reflect the social marginal

benefit of employees’ productivity or human capital, distorting incentives for

education investment. Similarly, when admission to good schools and col-

leges, and thus access to high quality peers in the classroom, is based partly

on parents’ income through user fees or house prices in the presence of bor-

rowing constraints, rewards to prior effort in education acquisition or early

childhood investments will be distorted.

The question has attracted considerable attention in the literature. Cole

et al. (2001b) show that surplus efficient investments are in the equilibrium

set when utility is perfectly transferable.1 At the other extreme, for strictly

nontransferable utility, such that surplus has to be split equally among part-

ners, Peters and Siow (2002) establish Pareto (though not necessarily sur-

plus) efficiency of investments in a two-sided matching market. Bhaskar and

Hopkins (2016) point out the limits of this result, and Gall et al. (2006)

provide an example of surplus inefficient investments in a one-sided market

when utility is less than perfectly transferable and distorts the matching pat-

tern. Gall et al. (2009) find investment distortions in form of simultaneous

over-investment at the top and under-investment at the bottom, and ana-

lyze rematching policies. Mailath et al. (2013) examine the relation of the

dimensionality of the price system and potential investment distortions in

a two-sided market. This raises the question of the degree of utility trans-

ferability required to ensure that investments maximize aggregate surplus.

Evaluating allocations in terms of surplus efficiency appears reasonable from

a normative, ex ante perspective (in the sense of Harsanyi, 1953), and from

a positive point of view when surplus relates to output.

In essence, nontransferable utility may distort ex ante investments away

from the surplus maximizing allocation through two possible channels. First,

payoff distortions may cause the equilibrium assignment to differ from the

1This is approximately true in finite economies (Cole et al., 2001a, Felli and Roberts,

2002).
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first best. That is, given equilibrium investments and payoffs there may

be another assignment that is not necessarily stable but generates higher

aggregate surplus, which may affect incentives. Second, given an equilib-

rium assignment nontransferabilities may cause the equilibrium payoffs to

not adequately reflect the externalities that an agent’s investment generates

on potential matches. This paper shall be concerned with the second chan-

nel only; analyzing surplus efficiency of the matching pattern and possible

remedies is done elsewhere (Gall et al., 2009).

One obvious way in which nontransferable utility may affect equilibrium

payoffs is in that they may not maximize joint surplus in each match formed

in equilibrium. That is, ex post efficiency of surplus may fail in that given

an equilibrium assignment and investments, in some matches a different sur-

plus division would increase joint surplus. This implies, of course, that also

the associated equilibrium investment incentives are distorted away from a

surplus efficient allocation that maximizes aggregate surplus by choosing

investments and surplus distribution in matches.

As fully transferable utility ensures that payoffs are ex post efficient and

an equilibrium allocation maximizes aggregate surplus (see Cole et al., 2001b,

among others), the first observation in this paper is perhaps a little surpris-

ing: ex post efficiency of equilibrium payoffs does not guarantee a surplus

efficient allocation. The reason for this is that with nontransferabilities ex

post efficiency leaves open the possibility that two agents with the same

attribute receive strictly different equilibrium payoffs ex post. Hence, the

expected remuneration of this attribute at the investment stage (a convex

combination of different payoffs) generally will not coincide with the social

marginal contribution of this attribute (which is precisely the extra surplus

generated in the match that an extra agent with the attribute will be assigned

to, when all other agents obtain their equilibrium payoffs).

If, however, in equilibrium all agents with the same attribute receive the

same payoff ex post, ex post efficiency guarantees that each attribute is re-

munerated with the social marginal surplus generated by having one more

agent with that attribute. That is, when an equal treatment of equal at-

tributes property holds, ex post efficiency of equilibrium payoffs implies that

an equilibrium allocation is surplus efficient conditional on the equilibrium
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assignment. Since the surplus efficient allocation is also an investment cum

matching equilibrium allocation this means that some equilibrium allocation

is surplus efficient, absent coordination failures. One example are matching

models where surplus has to be shared equally among partners and joint

surplus is a strictly monotone function of attributes: the unique matching

equilibrium has only homogeneous matches. Splitting the surplus is ex post

efficient and satisfies the equal treatment property, so that these matching

markets will generally have an investment and matching equilibrium that is

surplus efficient.2

When equilibrium payoffs are not ex post efficient, the equal treatment

property will still ensure that each attribute is remunerated commensurate

with its marginal contribution to social surplus, albeit in terms of the payoffs

constrained by nontransferabilities. Hence, the equal treatment property

implies that an investment cum matching equilibrium will be constrained

surplus efficient, i.e., constrained to the payoffs achievable in equilibrium

given the nontransferabilities. This means a social planner who can adjust

investments, but not the sharing of surplus, could not increase aggregate

surplus given the matching. This result is particularly interesting in light of

policies of rematching individuals, such as affirmative action, suggesting the

resulting equilibrium will induce constrained efficient investment incentives.

The equal treatment property of equilibrium payoffs, which is key to the

welfare properties, can be tied to the primitives: a sufficient condition for

equal treatment is marginally transferable utility (MTU): partners in any

match can transfer utility to each other at a bounded, strictly positive rate

in each possible match of attributes.

The results are derived in a model of ex ante investments, made before a

one-sided matching market with a continuum of agents. Costly investment

determines the probability distribution over possible attributes an agent may

attain. After attributes have realized agents enter the market, match into

pairs, and jointly generate surplus, which depends on attributes. A match-

ing equilibrium is a stable match with side payments, and equilibrium in-

vestments are optimal anticipating the matching equilibrium payoffs. Side

2This extends to two-sided models when both market sides have the same type distri-

bution as in the example of Peters and Siow (2002).
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payments are subject to nontransferabilities, captured by the Pareto fron-

tier in each match, which may take any form between fully transferable and

strictly nontransferable utility. Surplus in a match may not be monotone

and transferability may vary between different attribute pairs, allowing for

substantial heterogeneity in preferences over possible matches.3 The results

follow from deriving the graph structure of the payoff externalities of a change

in investments and using the structural properties of an equilibrium match

of attributes.

The paper is organized as follows. Section 2 lays out the model framework

and provides an example. The main result is in Section 3, complemented

by an application to matching markets yielding full segregation. Section 4

concludes and the appendix contains proofs and details omitted in the text.

2 A Model of Matching and Investments

An economy is populated by a continuum of agents I endowed with measure

one. Agents are characterized by a type θ ∈ Θ where Θ denotes a finite set

of types. Before the match agents spend effort ei at a cost c(ei, θ). The cost

function is strictly increasing, strictly convex, and differentiable in ei and

satisfies the Inada conditions. An individual’s attribute a∈A is stochastic

and depends on effort: exerting effort ei yields probability p(a, ei) of attaining

attribute a. Attribute draws are independent across individuals. Suppose the

set of attributes is finite. Probabilities add up to one, i.e.,
∑

a∈A p(a, ei) =

1 and are differentiable in ei. Suppose the attribute distribution has full

support by assuming that p(a, ei) ∈ (0, 1) for all a∈A and all ei.
4

Matching Market

Once attributes have realized, agents match into pairs. Unmatched agents

obtain zero payoff, and a matched pair of agents (i, j) jointly generates sur-

plus, leaving each partner with a real valued payoff from the match of ui

3See also Dizdar (2015) for a recent extension of the framework in Cole et al. (2001b)

to multidimensional types and allowing for payoffs that are not supermodular.
4This reduces the problem of multiple equilibria due to coordination failure as noted

by Bhaskar and Hopkins (2016) and has been used e.g. in Gall et al. (2009).
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and uj. Joint surplus may depend on its distribution among partners (for

instance due to moral hazard problems in the match, limited liability, or

behavioral concerns), so that individual payoffs ui and uj satisfy

ui ≤ φ(ai, aj , uj) with uj + φ(ai, aj , uj) ≤ y(ai, aj),

where y(ai, aj) denotes the maximum surplus in match (ai, aj), which is as-

sumed to be finite. φ(ai, aj , uj) is the Pareto or utility possibility frontier

in a match (i, j), giving i’s maximum payoff when j receives uj, given at-

tributes ai and aj (the notation follows Legros and Newman, 2007). Suppose

φ(ai, aj , uj) is continuous and weakly decreases in uj with φ(ai, aj, 0) > 0

and φ(ai, aj, u) = 0 implies u > 0 for all ai, aj ∈ A. Since transferability

may depend on the match of attributes (a, a′) some combinations may allow

for full transferability, while others may not. This may be a source of gains

from trades, as more transferability with some partner than with another

may compensate for lower maximal joint surplus.

To see that φ(.) captures the degree of payoff transferability in a match,

note that full transferability of utility corresponds to

φ(a, a′, u) = y(a, a′)− u, for 0 ≤ u ≤ y(a, a′),

which ensures that for every distribution of surplus in the match (ui, uj) the

joint surplus is maximized, i.e., ui + uj = y(ai, aj). At the other extreme is

strictly nontransferable utility, e.g., if joint surplus has to be shared at a fixed

ratio, say δ ∈ [1/2, 1] with φ(a, a′, uj) = δy(a, a′) for uj ≤ (1− δ)y(a, a′), and

φ(a, a′, uj) = (1 − δ)y(a, a′) for (1 − δ)y(a, a′) < uj ≤ δy(a, a′). The ratio

could depend on the match, of course.

In most relevant applications surplus will monotonically increase as own

effort investment cost increases, assume therefore

Assumption 1 (Investment Technology). Suppose that

(i) expected payoff is monotone in investment: for all a ∈ A

∑

a′∈A

y(a, a′)
∂p(a′, ei)

∂ei
> 0. (1)

(ii) p(a,ei)∈(0,1) is an affine, strictly monotone function of ei for all a∈A.
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Part (i) means that for any given attribute a the expected maximal joint

surplus in a match increases in effort, which imposes some order on the

attribute space, though attributes may well be multidimensional. Part (ii)

ensures that first order conditions will pin down investments given a matching

assignment (see Appendix for a generalization).

Timing

Events unfold as follows.

1. Nature draws cost types θ.

2. Agents spend effort ei.

3. Attributes ai realize.

4. Agents match into pairs in a frictionless market, agreeing on feasible

payoffs ui and uj.

Equilibrium Concept

Denote the measure of attribute realization a given investments e = (ei)i∈I

in the matching market by q(a, e). The matching in pairs results in measures

ρ(a, a′) of matched pairs of unordered attributes (a, a′) ∈ A × A. For all

attributes a any match is preferable to the singleton payoff 0. Therefore all

agents match into pairs and feasibility of the match requires

q(a, e) = 2ρ(a, a) +
∑

a′ 6=a∈A

ρ(a, a′) for a ∈ A. (2)

An equilibrium match ρ pins down the attribute assignment µ that maps A

into its power set, defined by µ(a) = {a′ ∈ A : ρ(a, a′) > 0} for all a ∈ A.

The solution concept for the matching market based on attributes is a

stable match with side payments subject to nontransferabilities captured by

the utility possibility frontiers. This is best interpreted as a competitive

market for attributes, yielding market prices for attributes. Market payoffs

and the matching pattern will depend on attribute measures q(a, e). An

equilibrium is defined as follows.
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Definition 1 (Matching Market Equilibrium). A matching market equilib-

rium (u∗, ρ) are payoffs u∗ : I 7→ R and a matching of agents into pairs,

such that measures ρ = (ρ(a, a′))a,a′∈A×A satisfy feasibility (2), and for all

matched agents i, j ∈ I payoffs are feasible, i.e., ui ≤ φ(ai, aj , uj), and there

are no agents i and j with attributes ai and aj and payoffs ui, uj such that

ui ≤ φ(ai, aj, uj) and both ui > u∗
i and uj > u∗

j .

Existence of a stable match and thus of a matching market equilibrium

follows from Kaneko and Wooders (1986), as feasibility implies measures are

preserved, the set of attributes A is finite, and per capita surplus is finite by

assumption.

Note that rationing may be required when two agents with the same

attribute obtain different equilibrium payoffs. Assume that agents with at-

tribute a are assigned randomly with probabilities implied by the relative

frequencies of matches (a, a′) for all a′ ∈ µ(a): an agent with attribute a

is assigned to an agent with attribute a′ with probability ρ(a, a′)/q(a, e) if

a 6= a′ and 2ρ(a, a′)/q(a, e) otherwise. This uniform rationing implies that

all agents of the same attribute a have the same expected payoff in a match

(a, a′). Denote this expected payoff by Eu∗
a(a, a

′). Defining an attribute’s

expected payoff by

v(a) = Eu∗
a(a, a) +

∑

a′ 6=a∈µ(a)

ρ(a, a′)

q(a, e)
[Eu∗

a(a, a
′)−Eu∗

a(a, a)], (3)

an agent’s expected payoff at the investment stage is

Eui =
∑

a∈A

p(a, ei)v(a)− c(ei, θi).

Individual effort is chosen before the market to maximize expected payoff

anticipating matching market equilibrium payoffs. An equilibrium of the

investment and matching problem is thus a profile of effort investments and a

matching market equilibrium, such that investments are individually optimal

given equilibrium payoffs resulting from the attribute distribution generated

by the investments.

Definition 2 (Investment cum Matching Equilibrium). An investment cum

matching equilibrium are investments e∗ = (e∗i )i∈I and a matching market
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equilibrium (u∗, ρ∗) given the measures of attributes q(a, e∗) induced by e∗,

such that no individual i ∈ I can obtain strictly higher expected payoff given

the matching equilibrium (u∗, ρ∗) choosing investment e′i 6= e∗i .

The investment stage is an anonymous game, for which equilibrium ex-

istence has been established, for instance, by Mas-Colell (1984). Note that

the investment cum matching equilibria relies on rational expectations of the

matching equilibrium payoffs given aggregate investments. Therefore there

may be multiple investment cum matching equilibria. Whether a matching

equilibrium maximizes total surplus given the realized attributes depends on

the properties of φ(a, a′), see e.g. Legros and Newman (2007).

Since all agents with the same type face the same optimization problem

before the market, and thus choose the same effort level eθ, partitioning the

agent space I into intervals I(θ) such that θi = θ for all i ∈ I(θ) for all θ ∈ Θ,

will ensure that all i ∈ I(θ) will face the same distribution p(a, eθ). Then

for each I(θ) the frequency of each a converges to the expected frequency

given p(a, eθ).
5 Therefore the realized measure of an attribute a ∈ A given

the different investments (eθ)θ∈Θ is given by

q(a, e) =

∫

i∈I

p(a, eθi)di.

2.1 Efficiency Benchmarks

Two different benchmarks can be used to evaluate efficiency of a matching

cum investment equilibrium depending on whether a social planner is able to

choose effort investment levels and the payoff distribution within matches,

or is constrained to set investments, unable to affect nontransferabilities.

Surplus Optimal Allocation

Suppose first a social planner can choose investment levels and the surplus

sharing to ensure ui + uj = y(ai, aj) in all matches (i, j), i.e., the surplus is

5To see this one may follow, e.g., the approach in Uhlig (1996) using indicator random

variables Ia=â equal to 1 if agent i ∈ I(θ) has realization â.
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ex post efficient within matches. That is, a surplus optimal allocation solves

max
(ei)i∈I

∑

a∈A

(

ρ(a, a)y(a, a) +
1

2

∑

a′ 6=a∈A

ρ(a, a′)y(a, a′)

)

−
∫

I

c(ei, θi)di, (4)

such that ρ results as a matching market equilibrium assignment given e.

The optimization is over investments e of a continuum of individuals, but

since the investment cost is strictly convex and all individuals i of the same

type θ have the same expected profits, they will have the same investment

eθ in optimum. With a finite type space the optimization is really only over

a finite vector of investments.

Constrained Surplus Optimal Allocation

If one is interested in surplus maximizing investments constrained on taking

joint surplus in each match as given by the equilibrium payoffs, it suffices

to substitute maximal surplus y(a, a′) with equilibrium surplus ŷ(ai, aj) =

u∗
i + u∗

j for all ai ∈ µ(aj) in the optimization problem (4):

max
(ei)i∈I

∑

a∈A

(

ρ(a, a)ŷ(a, a) +
1

2

∑

a′ 6=a∈A

ρ(a, a′)ŷ(a, a′)

)

−
∫

I

c(ei, θi)di, (5)

such that ρ results as a matching market equilibrium assignment given e.

This formulation takes into account the non-transferabilities present at the

matching equilibrium allocation, since u∗
i = ŷ(ai, aj) − φ(ai, aj , u

∗
j) for an

equilibrium match aj ∈ µ(ai).

2.2 Example: Heterogeneous Matches

To illustrate the result in the simplest way possible consider the following

example with a binary attribute space A = {a0, a1}. Agents are homogeneous

and share the cost function c(ei, θi) = e2i /2. Let ei ∈ (0, 1) and p(a1, ei) = ei

and p(a0, ei) = 1− ei. Suppose that maximal joint surplus is

y(a0, a0) = 0 < y(a0, a1) = 4/3 < y(a1, a1) = 2,

implying condition (1). Nontransferabilities are severe in that payoff has to

be split equally in homogeneous matches, so that ui = y(a, a)/2 in a match
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(i, j) with ai = aj = a. In a heterogenous match surplus y(a0, a1) can be

split equally, or according to a sharing rule: ui = δ0y(a0, a1) if ai = a0 and

ui = δ1y(a0, a1) if ai = a1. Suppose for now that δ0+δ1 = 1. This means that

payoffs are ex post efficient, i.e., ui + uj = y(ai, aj) for all matches (ai, aj).

Matching Market Outcome

Starting with the matching market equilibrium outcome, suppose that

y(a0, a0)/2 ≤ δ0y(a0, a1) and δ1y(a0, a1) ≥ y(a1, a1)/2. (GDD)

Condition (GDD) implies that a heterogeneous match (a0, a1) is weakly pre-

ferred by both partners to their respective payoff in a homogeneous match.

Hence, negative assortative matching will be an equilibrium (the only one

when the inequalities are strict), exhausting all possible (a0, a1) matches

(i.e., a0 ∈ µ(a1) and a1 ∈ µ(a0)) and matching the remaining agents in

homogeneous matches. Figure 1 shows the possible assignments.
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��
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Figure 1: Possible assignments in the example: attributes have the same

measure (left), a1 are scarce (middle), or a0 are scarce (right).

Which regime will occur depends on parameters through the investment

incentives. Recall that v(a) denotes the expected market equilibrium payoff

for an attribute a. An agent i chooses effort ei to solve maxei p(a1, ei)[v(a1)−
v(a0)] + v(a0)− e2i /2. The optimal effort choice e∗i satisfies

e∗i = v(a1)− v(a0). (6)

Equilibrium payoffs v(a) depend on relative scarcity: if q(a1, e
∗) > 1/2 then

both (a1, a1) and (a0, a1) matches will occur and

v(a1)− v(a0) =
y(a1, a1)

2
+

q(a0, e
∗)

q(a1, e∗)

(

δ1y(a0, a1)−
y(a1, a1)

2

)

− δ0y(a0, a1).

If, on the other hand, q(a1, e
∗) < 1/2, then

v(a1)− v(a0) = δ1y(a0, a1)−
q(a1, e

∗)

q(a0, e∗)

(

δ0y(a0, a1)−
y(a0, a0)

2

)

− y(a0, a0)

2
.
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Finally, q(a1, e
∗) = 1/2 iff (δ1 − δ0)y(a0, a1) = 1/2. That is, investment

incentives v(a1)−v(a0) strictly decrease in q(a1, e
∗) and thus in investments.

Hence, the matching cum investment equilibrium is unique.

To ease exposition focus on one case, say q(a1, e
∗) > 1/2, corresponding

to the right graph in Figure 1. Setting δ1 = 4/5 will ensure that (δ1 −
δ0)y(a0, a1) > 1/2 and thus q(a1, e

∗) > 1/2. This yields equilibrium payoffs

and effort: v(a0) = δ0y(a0, a1) = 4/15 and e∗ = (1 +
√

8/5)/3 ≈ 3/4.

Surplus Optimal Outcome

The parametrization ensures that

y(a0, a0) + y(a1, a1) < 2y(a0, a1), (DD)

so that µ(a0) = a1 and µ(a1) = {a0; a1} maximize total surplus given at-

tributes if q(a1, e) > q(a0, e). Surplus optimal investments solving (4) satisfy

ei = y(a1, a1)− y(a0, a1). (7)

That is, marginal cost equals the expected marginal benefit of investment,

which is given by turning an (a0, a1) match into an (a1, a1) match. This

implies q(a1, e) = 2/3 > 1/2 in our setup, which is the unique optimum as

y(a1, a1)− y(a0, a1) < y(a0, a1)− y(a0, a0) by assumption.

Comparing equilibrium and surplus optimal investments yields

v(a1)− v(a0) =
y(a1, a1)

2
+

q(a0, e
∗)

q(a1, e∗)

(

δ1y(a0, a1)−
y(a1, a1)

2

)

− δ0y(a0, a1)

>
y(a1, a1)

2
−
(

y(a0, a1)−
y(a1, a1)

2

)

.

That is, there is overinvestment in the investment cum matching equilib-

rium compared to the surplus optimal outcome. Given the investment cum

matching equilibrium outcome, decreasing investments (for instance through

taxation) will increase total surplus in the economy. That is, investments in

the matching cum investment equilibrium are not surplus efficient.

This occurs despite the fact that payoffs are ex post efficient, i.e., ui +

uj = y(ai, aj) in all matches. However, the market equilibrium remunerates

attribute a1 ”too well” in (a0, a1) matches: its payoff is strictly greater than

its opportunity cost y(a1, a1)/2.
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Equal treatment

The inefficiency above stems from a failure of equal treatment of equal at-

tributes: a1’s equilibrium payoff is greater in (a0, a1) than in (a1, a1) matches:

δ1y(a0, a1) > y(a1, a1)/2. To see this suppose now:

δ1y(a0, a1) = y(a1, a1)/2. (8)

Negative assortative matching remains an equilibrium as (GDD) still holds.6

Suppose that payoffs are still ex post efficient (δ0 = 1− δ1), so that v(a1) =

y(a1, a1)/2 and v(a0) = y(a0, a1)− y(a1, a1)/2, and

e∗i = y(a1, a1)− y(a0, a1). (9)

Hence, when all agents with attribute a1 obtain the same payoff for q(a1, e
∗) ≥

1/2 (which holds as argued above) investments are surplus efficient.

Suppose now that (8) still holds, but payoffs are not ex post efficient,

i.e., δ0 < 1 − δ1, say δ0 = 1/8. If q(a1, e
∗) ≥ 1/2, v(a1) = y(a1, a1)/2 and

v(a0) = δ0y(a0, a1), yielding

e∗i = y(a1, a1)/2− δ0y(a0, a1) > y(a1, a1)− y(a0, a1). (10)

In this parametrization indeed q(a1, e
∗) = 5/6 ≥ 1/2. That is, investment

incentives are not surplus optimal as equilibrium payoffs are not ex post effi-

cient. Accessing the surplus optimal outcome would require to force (a0, a1)

matches to split the surplus, however, compromising stability of the match.

Ex post inefficient payoffs and constrained efficiency

Often the social planner is limited to adjusting investment and cannot affect

the surplus sharing among matching partners. The constrained surplus opti-

mal allocation accounts for this, and takes the joint surplus in the matching

equilibrium as given, i.e., ŷ(a0, a1) = (δ0 + δ1)y(a0, a1), and ŷ(a, a) = y(a, a)

for a = a0, a1. With δ0 = 1/8 and δ1 = 3/4, ŷ(a1, a1)+ ŷ(a0, a0) < 2ŷ(a0, a1),

6It is the only one if utility is transferable at a bounded, strictly positive rate in the

neighborhood of y(a1, a1)/2, e.g., if in each match δ1 can be chosen from an interval

[3/4− ǫ, 3/4 + ǫ] for small ǫ > 0.
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so that negative assortative matching still maximizes total surplus. For

µ(a1) = {a0; a1}, both equilibrium and surplus optimal investments satisfy

ei = ŷ(a1, a1)− ŷ(a1, a0) = y(a1, a1)− δ1y(a0, a1)− δ0y(a0, a1) = e∗i . (11)

That is, with equal treatment the matching cum investment equilibrium out-

come coincides with the constrained surplus optimal outcome.

These results extend to other parametrizations, which may give rise to

the remaining assignments shown in Figure 1. The marginal surplus from

investing depends on the changes of the frequencies of different matches. If

q(a0, e
∗) > q(a1, e

∗), more investment transforms an (a0, a0) into an (a0, a1)

match, so that investments are surplus optimal if

ei = y(a0, a1)− y(a0, a0).

If q(a0, e
∗) = q(a1, e

∗) (on the left in Figure 1) a change in investments will

change the attribute assignment µ, adding new attribute matches, namely

(a1, a1) if e increases, and (a0, a0) if e decreases. Hence, if q(a0, e
∗) = q(a1, e

∗)

market equilibrium investments are surplus optimal if

e∗i ∈ [y(a1, a1)− y(a0, a1), y(a0, a1)− y(a0, a0)], (12)

which is ensured if market payoffs are ex post efficient and satisfy equal

treatment in all three allocations depicted in Figure 1.

That is, conditions for optimality depend on the particular properties of

the attribute assignment µ, and in particular on whether the assignment will

change discretely in response to a marginal change in investment. Interpret-

ing the attribute assignment as a graph will be useful to establish a more

general result in the next section. For now it is easily checked that the effi-

ciency result above carries over to the cases other than q(a0, e
∗) < q(a1, e

∗).

This is summarized in the following proposition.

Proposition 1 (Simple Example). Suppose that conditions (GDD) and (DD)

hold. Then under equal treatment, i.e. condition (8), a matching cum in-

vestment equilibrium is constrained surplus optimal, and surplus optimal if

equilibrium payoffs are ex post efficient.
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That is, conditional on the match (under the assumption market equilib-

rium and surplus optimal match coincide), a social planner cannot change

investments alone to increase aggregate surplus when equilibrium payoffs

satisfy an equal treatment property. Equal treatment of attributes in all

equilibrium matches ensures that each attribute is paid its marginal contri-

bution to social surplus, possibly constrained by utility nontransferabilities.

Otherwise, remuneration differs across matches and in some match an at-

tribute is either under- or overpaid. If additionally equilibrium payoffs are

ex post efficient then investments are surplus optimal.

sectionGeneral Case

The result illustrated above generalizes beyond the simple example. Re-

turn therefore to the more general environment laid out in Section 2.

2.3 Equal Treatment

The efficiency result above hinges on equal treatment of equal attributes.

Define the equal treatment property accordingly as follows.

Definition 3. A matching market equilibrium satisfies the equal treatment

property, if individual payoffs u∗
i depend only on attributes, and for all a ∈ A,

u∗
a(a, a

′) = u∗
a(a, a

′′) for all a′, a′′ ∈ µ(a), or, in terms of utility possibility

frontiers:

v(a) = φ(a, a′, v(a′)) for all a, a′ ∈ A with ρ(a, a′) > 0. (ET)

This is precisely condition (8) above. It is rather undesirable to state an

efficiency result relying on a property of equilibrium payoffs. The following

proposition relates the equal treatment property to the primitives in form of

the degree of utility transferability, details are in the appendix.

Proposition 2 (Equal Treatment Property). The equal treatment property

holds in a matching market equilibrium (u∗, ρ) if φ(a, a′, u) is differentiable

in u and for all a, a′ ∈ A for u ∈ [0, φ(a, a′, 0)]

0 >
∂φ(a, a′, u)

∂u
> −∞. (MTU)
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Condition (MTU) states that for any match (a, a′) and given some feasible

sharing of surplus, marginally increasing the payoff of one agent marginally

decreases the payoff of the other one, independently of whether this decreases

or increases joint surplus. This property holds if partners in a match can ex-

change utility at a bounded, positive rate for every feasible division of surplus.

That is, if utility is marginally transferable for every feasible surplus sharing,

a matching market equilibrium will have the equal treatment property.

2.4 Main Result

Thus equipped it is possible to state the main result.

Theorem 1 (Surplus Efficiency of Ex Ante Investments). Let Condition

(MTU) hold. Then there is an investment cum matching equilibrium such

that equilibrium investments are constrained surplus efficient, so that a social

planner cannot increase aggregate surplus by changing only investments.

To prove this result start by establishing that under equal treatment ex

post efficiency of payoffs implies surplus efficiency. This then implies that an

equilibrium is constrained surplus efficient, i.e., surplus efficient if payoffs are

constrained by nontransferabilities to the payoffs reached in equilibrium. For

(constrained) surplus efficiency note first that it is sufficient to show that the

necessary conditions of the investment cum matching equilibrium coincide

with the necessary conditions of a surplus efficient allocation. This is because

any surplus efficient allocation that satisfies the necessary conditions of the

investment cum matching equilibrium is in fact an investment cum matching

equilibrium allocation.

Start by characterizing the matching cum investment equilibrium. An

individual i of type θi chooses effort ei to solve maxei
∑

a∈A p(a, ei)v(a) −
c(ei, θi). The optimal effort choice e∗i satisfies

∑

a∈A

v(a)
∂p(a, e∗i )

∂ei
=

∂c(e∗i , θi)

∂ei
. (13)

This pins down for each type θ a unique individually optimal investment

e∗θ(v(a)) for equilibrium payoffs v(a) given by (3) and determined by the
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matching equilibrium given e∗. That is, an investment cum matching equi-

librium need not be unique, explaining the qualifier in the theorem.

The next step is to show the necessary conditions (13) are consistent

with the necessary conditions with respect to marginal deviations of invest-

ment in a (constrained) surplus efficient allocation. This is in fact sufficient

to prove the theorem, because if the necessary conditions of the investment

cum matching equilibrium allocation and the (constrained) surplus efficient

allocation coincide, then the (constrained) surplus efficient allocation must

be an investment cum matching equilibrium. This is because the neces-

sary conditions (13) determine investments e given the equilibrium attribute

assignment µ and, if they are satisfied in a (constrained) surplus efficient

allocation, equilibrium investments e and the associated matching allocation

with assignment µ will also be a (constrained) surplus efficient allocation.

Hence, a (constrained) surplus efficient allocation that satisfies conditions

(13) will be an investment cum matching equilibrium.

Therefore it is in order to focus on marginal deviations of effort invest-

ment, i.e., to examine deviations conditional on the match. Here another

complication arises, as even a marginal change of investments may produce a

discrete change of the associated equilibrium attribute assignment µ. Hence,

a marginal investment change may potentially yield a discrete change of

marginal benefits. If µ remains unchanged on the other hand, measures

ρ(a, a′) given in (2) are differentiable with respect to q(a, e) and thus with

respect to eθ, and a first order condition approach can be used. This is guar-

anteed when the attribute assignment µ satisfies a property that is inspired

by graph theory: the graph generated by µ has at least one cycle.

The matching market equilibrium as a graph

The set of attributes A and the assignment µ define an undirected graph G

with a set of vertices A and a set of edges E = {(a, a′) : a′ ∈ µ(a)}, denoting
attribute matches. Let C denote the set of connected components in G. For

instance, if all matches are homogeneous (i.e., a0 only match with a0 and a1

with a1) in equilibrium (full segregation), then ρ(a, a′) > 0 iff a = a′, so that

µ(a) = a for all a ∈ A. Hence, each vertex a ∈ A has only one edge, (a, a)
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and is a connected component, so that the set of components is C = A.

What follows focuses on matching market equilibria such that each con-

nected component c ∈ C has at most as many edges as vertices. An equilib-

rium with this property always exists, and the surplus maximizing one for

given attributes has this property. It necessarily holds if the equilibrium is

unique. See Appendix for details on this and the next statements. Denote

the sets of vertices and edges in c by Ac and Ec to state the following fact.

Fact 1. In a graph G associated to an equilibrium assignment µ such that

|Ec| ≤ |Ac| for each connected component c, in each connected component

either

(i) c contains exactly one cycle of length n ≥ 0 of n+1 vertices {a0; ...; an}
and edges (an, a0) and (ai, ai+1) for i = 1, .., n− 1, or

(ii) a /∈ µ(a) for all a ∈ Ac and |Ac| > |Ec|, then c does not contain a cycle.

That is, for each component either |Ac| = |Ec| and c contains a cycle

or an edge (a, a) (which is a cycle of length 0), or |Ac| > |Ec| and c has

at least two terminal vertices. For instance, the left assignment in Figure 1

corresponds to case (ii), whereas the other two assignments have cycles (of

length 0, linking an attribute to itself) and thus fall into case (i).

Whether an equilibrium assignment µ contains a cycle can be tied to

whether it responds to a marginal change in investments e. Recall that

measures ρ(.) satisfy the system of equations (2). If |A| > |E|, then G has a

component c with |Ac| > |Ec|. For this component the measures ρ(.) solve

q(a, e) =
∑

a′∈µ(a)

ρ(a, a′) for a ∈ Ac.

Starting at some a0 with |µ(a0)| = 1 this implies that

n
∑

i=0

(−1)i+1
∑

a∈Ac: d(a,a0)=i

q(a, e) = 0,

where d(a, a0) indicates the distance (minimal path length) between a and

a0, and n = maxa∈Ac d(a, a0). Therefore a marginal change of a type θ’s
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investments eθ, changing measures q(a, e), violates the condition, unless the

changes of the measures exactly offset each other, that is:

n
∑

i=0

(−1)i+1
∑

a∈Ac: d(a,a0)=i

∂q(a, e)

∂eθ
= 0 for all c ∈ G with |Ac| > |Ec|. (14)

That is, unless condition (14) holds, the assignment µ must change (adding

new matches or removing old ones) in response to an investment change.

If all components contain as many edges as vertices, they contain a cycle,

corresponding to case (i) of Fact 1, so that any marginal change in measures

q(a, e(θ)) is accommodated by adjusting measures of attribute pairs in the

cycle, without needing to adjust the graph. This yields the following fact.

Fact 2. If, and only if, in the graph G associated to an equilibrium assign-

ment µ the number of vertices strictly exceeds the number of edges, |A| > |E|,
then a marginal change in investment e implies that µ is no longer an equi-

librium assignment, unless condition (14) holds.

The following definition characterizes equilibrium assignments µ that do

not change in response to a marginal change in investments.

Definition 4 (Static Assignment). An equilibrium assignment µ is static if

the number of edges in the graph G induced by µ at least equals the number

of vertices.

Static Case

Suppose first that µ(a) indeed satisfies Definition 4. In this case investments

that solve (4) must satisfy for each θ ∈ Θ

∑

a∈A

(

∂ρ(a, a)

∂eθ
y(a, a) +

∑

a′ 6=a∈A

∂ρ(a, a′)

∂eθ

y(a, a′)

2

)

=

∫

i∈I: θi=θ

∂c(eθ, θ)

∂eθ
di (15)

Since the first derivative of expected surplus (1) decreases in investment

e(θ), as p(.) is concave and c(.) strictly convex in eθ, (15) is a sufficient

and necessary condition for a solution of the social planner’s problem (4)

conditional on µ. The LHS of (15) can be decomposed into the set of disjoint
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connected components C, since by definition ρ(a, a′) = 0 for any a ∈ Ac and

a′ /∈ Ac: for every type θ

∑

c∈C

∑

a∈Ac

(

∂ρ(a, a)

∂eθ
y(a, a) +

∑

a′6=a∈Ac

∂ρ(a, a′)

∂eθ

y(a, a′)

2

)

=

∫

i∈I: θi=θ

∂c(eθ, θ)

∂eθ
di, (16)

That is, the marginal cost of investment must equal its expected marginal

return. An increase in investment will increase the measure of some matches

and decrease the one of others. The marginal return of investment is then

given by the difference in joint surplus in the matches whose measures in-

crease and those whose measures decrease. These marginal matches will

depend on the entire graph defined by the attribute assignment. In the ex-

ample above more investment simply transformed some (a0, a1) into (a1, a1)

matches, but in general the change of measures needs to be traced through

each component. Doing this for an assignment µ and comparing equilibrium

investments to the social planner’s solution yields the following proposition,

its proof can be found in the appendix.

Proposition 3. Suppose an equilibrium assignment µ is static and the equal

treatment property holds for equilibrium payoffs u∗. Then, given µ, invest-

ments e∗ are surplus efficient for any p(a, ei) satisfying (1) if, and only if,

equilibrium payoffs u∗ maximize joint surplus in each match.

This implies, of course, that investments e∗ are constrained surplus effi-

cient, when the social planner is constrained to payoffs ŷ(a, a′) = v(a)+v(a′).

That is, if equal treatment holds, then a social planner who cannot alter the

sharing of surplus nor the match cannot increase aggregate surplus by chang-

ing investments, and investment are constrained surplus efficient.

Non-static Case

Focus now on equilibrium assignments µ that are not static and contain a

component c satisfying case (ii) of Fact 1. That is, a marginal change of

investment triggers a change in the equilibrium assignment of attributes µ,

since there is no cycle in c to adjust to balance any excess or shortfall of

attributes. This change in assignment may correspond to a jump in in the

marginal benefits from investment, as they depend on the precise graph of µ.
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Hence, for efficiency of a particular investment profile e∗ that is compatible

with a non-static graph, the social marginal cost of investing needs to lie be-

tween the different social marginal returns resulting from a discrete change in

assignment due to either increasing or decreasing investment, as in condition

(12) in the simple example above.

Therefore, the necessary condition (15) for the static case need not hold.

Instead investments are characterized by lower and upper bounds that de-

pend on the change in assignment µ that is triggered by a change in invest-

ment of some type θ. For each type θ denote by µθ (µ
θ
) the equilibrium

assignment and measures ρθ (ρ
θ
) that arises if all agents of type θ increase

(decrease) their investment ei. The counterpart of the necessary condition

in the static case (15) is now for all θ ∈ Θ

∫

i∈I: θi=θ

∂c(eθ, θ)

∂eθ
di ≤

∑

a∈A

(

∂ρ
θ
(a, a)

∂eθ
y(a, a) +

∑

a′ 6=a∈A

∂ρ
θ
(a, a′)

∂eθ

y(a, a′)

2

)

and

∫

i∈I: θi=θ

∂c(eθ, θ)

∂eθ
di ≥

∑

a∈A

(

∂ρθ(a, a)

∂eθ
y(a, a) +

∑

a′ 6=a∈A

∂ρθ(a, a
′)

∂eθ

y(a, a′)

2

)

.

That is, the marginal cost of effort for all types needs to be between the return

of marginally increasing and marginally decreasing investment for each type.

The following proposition states that for surplus efficiency the upper and

lower bounds have to reflect the true marginal returns, which under equal

treatment is assured by ex post efficiency.

Proposition 4. Suppose an equilibrium assignment µ is not static. If the

equal treatment property holds for payoffs for all equilibrium assignments µ
θ

and µθ, then equilibrium investments are surplus efficient if u∗
i+u∗

j = y(ai, aj)

for equilibrium payoffs associated to assignments µ, µ
θ
and µθ for θ ∈ Θ.

Hence, as long as equal treatment holds, conditional on the assignment µ

(including the one that is surplus efficient) the only distortion of investments

stems from ex post inefficiency of equilibrium payoffs. This in turn implies

that there is an investment cum matching equilibrium such that a social

planner who cannot alter the surplus sharing within matches cannot increase

aggregate surplus by changing investments.
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2.5 Application: Full Segregation

A particular class of static equilibrium assignments are those characterized

by full segregation (only matches of the type (a, a)). Suppose that surplus

y(a, a′) in each match has to be split equally. Imposing some order on A,

min{y(a, a); y(a′, a′)} < y(a, a′) < max{y(a, a); y(a′, a′)} for all a, a′ ∈ A,

implies that equilibrium matching takes the form of full segregation: µ(a) = a

for all a ∈ A for any distribution of attributes, as all agents have the same

preference ranking over attributes to match with and less attractive attributes

cannot outbid more attractive attributes (see e.g. Legros and Newman, 2010).

Hence, the graph induced by the equilibrium is static with components C = A

for any investment e.

The investment cum matching equilibrium satisfies equal treatment, as

φ(a, a, v(a)) = y(a, a)/2 = v(a) for all a ∈ A by assumption (surplus has to be

split equally). Since also u∗
i +u∗

j = y(ai, aj) by definition, the Theorem above

implies that the investment cum matching equilibrium is surplus efficient.

For more general payoffs that imply an equilibrium assignment with full

segregation the Theorem implies the following useful corollary.

Corollary 1 (Full Segregation). Suppose that an investment cum matching

equilibrium necessarily induces an assignment µ(a) = a for all a ∈ A. The

investment cum matching equilibrium is surplus efficient if, and only if pay-

offs are ex post efficient, i.e., if φ(a, a, y(a, a)/2) = y(a, a)/2 for all a ∈ A.

The investment cum matching equilibrium is constrained surplus efficient if

condition (MTU) holds.

Surplus efficiency follows from the assumption that equal division max-

imises joint surplus in each match as this implies both equal treatment and

ex post efficiency of payoffs. The condition that equal division of the payoff

is ex post efficient in a match of agents with equal attributes seems likely

to be satisfied in most, if not all, relevant applications. A counterexam-

ple in the Appendix demonstrates that it may fail, although rather extreme

assumptions are needed.
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3 Discussion and Conclusion

This paper has examined competition in large matching markets where par-

ticipants have an opportunity to invest in their attributes relevant for match-

ing payoffs before entering the matching market. The main result is positive:

if payoffs satisfy a relatively mild property, namely that matching surplus is

marginally transferable at any strictly positive rate between matching part-

ners, an investment cum matching equilibrium allocation will be constrained

efficient, in the sense that a social planner who cannot alter the payoff dis-

tribution within matches cannot increase aggregate surplus by altering in-

vestment alone. A limitation of the result is that there may be multiple

equilibria due to rational expectation, meaning there is still scope for coor-

dination failure (explored e.g. by Bhaskar and Hopkins, 2016, in a two-sided

framework).

The result is quite relevant from a policy perspective: not only does it

suggest that taxing or subsidising investments will have limited effect on

aggregate surplus, but also, and perhaps more importantly, the result has

an interesting implication for the use of matching rules as a policy tool,

for instance in form of affirmative action (as in Gall et al., 2009) or team

formation. Given a modicum of transferability such policies will therefore

yield constrained surplus efficient investments conditional on the matching

that is imposed and given the payoffs in the matching stage.

Technically, transferability of matching surplus at a strictly positive rate

implies that an equal treatment property holds in the matching equilibrium,

which then ensures that ex post efficiency of payoffs ensures surplus effi-

ciency, i.e., the only distortion of investment incentives stems from the non-

transferabilities. This implies an interesting corollary when full segregation

is necessarily the matching outcome: if equal sharing of surplus maximizes

joint surplus in each match then an investment cum matching equilibrium

resulting in full segregation is surplus efficient.
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A Mathematical Appendix

Relaxing Assumption 1

Assumption (1) can be replaced by a more general investment technology.

Suppose that every individual i chooses a portfolio of effort levels eai ≥ 0

with a ∈ A. The probability pa(eai) of attaining attribute a is differentiable,

strictly concave and increases in eai. Let the cost c(ei, θi) depend on an

aggregate of portfolio investments ei = f(
∑

a∈A eai), where f(.) is differen-

tiable and strictly increases such that ∂pa(eai)
∂eai

/∂f(.)
∂eai

decreases, e.g., f(.) is the

identity function.

In an investment cum matching equilibrium an individual chooses the

optimal portfolio of effort, constrained by aggregate individual investment

ei. Since
∑

a∈A pa(eai) = 1 there is a0 with pa0(ea0i) = 1 −
∑

a6a0∈A
pa(eai).

Denote by a0 the attribute that has least expected payoff v(a0). Then the

optimal portfolio of effort solves ea0 = 0 and

max
(eai)a 6=a0∈A

∑

a∈A

pa(eai)[v(a)− v(a0)] s.t. f(
∑

a∈A

eai) = ei.

Then ∂pa(eai)
∂eai

[v(a)−v(a0)] =
∂pa′(ea′i)

∂eai
[v(a′)−v(a0)] and the resource constraint

determines the unique optimal effort portfolio (e∗ai(ei)). Note that all e
∗
ai(ei),

a 6= a0 ∈ A, increase in ei. This also defines the probabilities p(a, ei) =

pai(e
∗
ai(ei)) for all a ∈ A. Applying the envelope theorem, optimal aggregate

individual investment ei is given by

∂pa(eai)
∂eai

[v(a)− v(a0)]
∂f(

∑
a∈A eai)

∂eai

=
∂c(ei, θi)

∂ei
for any a 6= a0 ∈ A.

Hence, the first order condition pins down a unique effort portfolio for each

individual given the anticipated matching payoffs v(a).

An analogous argument holds for maximizing (constrained) total surplus.

Surplus maximizing effort solves for every θ ∈ Θ

max
(eaθ)a∈A

∑

a∈A

ρ(a, a)y(a, a) +
∑

a′ 6=a∈A

ρ(a, a′)
y(a, a′)

2
s.t. f(

∑

a∈A

eaθ) = eθ.
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Again either eaθ = 0 or for a, a′′ ∈ A:

∂ρ(a,a)

∂eaθ
y(a,a)+

∑

a′ 6=a∈A

∂ρ(a,a′)

∂eaθ

y(a,a′)

2
=

∂ρ(a′′,a′′)

∂ea′′θ
y(a′′,a′′)+

∑

a′ 6=a∈A

∂ρ(a′′,a′)

∂ea′′θ

y(a′′,a′)

2
.

Again the envelope theorem ensures that optimal aggregate investment eθ of

individuals with type θ is given by

∂ρ(a,a)
∂eaθ

y(a, a) +
∑

a′ 6=a∈A
∂ρ(a,a′)
∂eaθ

y(a, a′)
∂f(

∑
a∈A ea)

∂eaθ

=

∫

i∈I: θi=θ

∂c(eθ, θ)

∂eθ
,

for attributes with eaθ > 0. Since ∂ρ(a,a′)
∂eaθ

is zero or ±∂pa(eaθ)
∂eaθ

, concavity of

pa(eaθ) ensures a unique solution eθ.

To see that this technology nests affine functions p(a, ei), assume that,

e.g., pa(eai) =
√
eai, restrict the domain of eai appropriately, and f(.) =

√

(.).

Then p(a, ei) is a linear function of ei.

Edges and Vertices

A necessary condition for a unique matching equilibrium µ(.) is that |Ec| ≤
|Ac|. Otherwise the system of equations

q(a, e) =
∑

a′∈µ(a)

ρ(a, a′) + 2ρ(a, a) for a ∈ Ac (17)

has a solution ρ1 such that ρ1(a, a
′) = 0 for some a, a′ ∈ Ac. Since all matches

defined by µ cannot be blocked by other matches as µ is a matching equi-

librium, the assignment defined by ρ1 must also be a matching equilibrium,

with µ1 6= µ. Hence, |Ec| ≤ |Ac| is a necessary condition for uniqueness of µ.

Suppose a matching equilibrium µ such that |Ec| > |Ac|. Then the maxi-

mal surplus satisfying (17) can be achieved by a choice of ρ with ρ(a, a′) = 0

for some a, a′ ∈ Ac. Otherwise ρ can still be changed such that surplus

weakly increases, since if there is a change of ρ that strictly decreases total

surplus there must an opposite change that increases total surplus.

Finally, suppose that a matching equilibrium satisfies the equal treatment

property and has |Ec| > |Ac|. Then choosing ρ such that ρ(a, a′) = 0 for

some a, a′ ∈ Ac will not alter payoffs since by the equal treatment property

all attributes are indifferent between all their matches.
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Proof of Fact 1

This fact re-states well-known results in graph theory. Let c be a connected

component of G induced by an equilibrium assignment µ.

(i) Suppose first c contains some a such that a ∈ µ(a). Suppose that c

also contains a cycle. Then |Ec| > |Ac|, since a cycle has as many edges

as vertices. The same argument can be applied to the case of c containing

some a′ 6= a with a′ ∈ µ(a′). Suppose now that a /∈ µ(a) for all a ∈ Ac and

|Ec| = |Ac|. If there is no cycle in c, then cmust be a chain, since c is assumed

to be a connected component, and the number of vertices must exceed the

number of edges by one. This contradicts the assumption. Therefore c must

contain a cycle. c cannot contain more than one cycle since this would

imply that the number of edges exceed the number of vertices in a connected

component.

(ii) Suppose that |Ec| < |Ac|, which implies |Ec| = |Ac| − 1. Then a

connected component c cannot contain a cycle of any length, as a cycle has

as many edges as vertices, but |Ec| < |Ac|. Hence, c is a tree, possibly with

many terminal nodes.

Proof of Proposition 2

Suppose the condition in the proposition holds, but equal treatment in equi-

librium does not. Then in equilibrium there is an attribute ai with ak, aj ∈
µ(ai) such that φ(ai, aj , u

∗
j) > φ(ai, ak, u

∗
k). But then an agent with attribute

ai who is matched to an agent with an attribute ak, and an agent with an

attribute aj who is matched to an agent with attribute ai, find it both strictly

profitable to match together if there are payoffs φ(ai, ak, u
∗
k) + ǫi with ǫi > 0

for the one with ai and u∗
j + ǫj with ǫj > 0 for the one with aj , such that

φ(ai, ak, u
∗
k) + ǫi ≤ φ(ai, aj, u

∗
j + ǫj). (18)

Since φ(ai, aj , u
∗
j) > φ(ai, ak, u

∗
k) by assumption, condition (18) is ensured

if the function φ(ai, ak, u) is continuous in u and strictly decreasing with a

slope bounded away from −∞. Noting that φ(a, a′, u) is non-increasing in u

by definition, this is implied by the condition in the proposition.
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Proof of Proposition 3

It is useful to distinguish between static graphs that have a cycle of length 0

and those that have a cycle of greater length, requiring slightly more notation.

Cycle of length 0

Suppose a component c contains a ∈ Ac with a ∈ µ(a); denote it by a0.

Define the distance d(a, a′) of two vertices a, a′ ∈ c by the number of edges

in the shortest path connecting them, e.g. d(a, a′) = 1 if a′ ∈ µ(a). Denote

the maximum distance from vertex a0 by n = maxa∈Ac d(a0, a) and the set

of vertices with common distance j from a0 by Ac
j = {a ∈ Ac : d(a0, a) = j},

see Figure 2.
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Figure 2: Example for a component c with one vertex a0 that links to itself.

The necessary condition (16) can be written as
∑

c∈C σc = ν(θ)∂c(eθ,θ)
∂ei

,

where ν(θ) denotes the measure of agents with type θ and

σc =
∑

a∈Ac

(

∂ρ(a, a)

∂eθ
y(a, a) +

∑

a′ 6=a∈Ac

∂ρ(a, a′)

∂eθ

y(a, a′)

2

)

.

denotes the effect of a change of investments for a type θ on attributes in

component c. It can be derived by summing up the effects on each match

(a, a′) in c ordered by their distance from a0:

σc =y(a0, a0)
∂ρ(a0, a0)

∂eθ
+

n
∑

j=1





∑

aj∈A
c
j

∑

aj−1∈A
c
j−1

∩µ(aj )

y(aj−1, aj)
∂ρ(aj−1, aj)

∂eθ



 .

Let aj ∈ Ac
j and aj−1 ∈ Ac

j−1. Then ρ(aj−1, aj) = q(aj , e) if aj is a

terminal vertex (µ(aj) = aj−1). For aj , j ≥ 1, that are not terminal vertices:

ρ(aj−1, aj) = q(aj , e)−
∑

aj+1∈µ(aj )∩Ac
j+1

ρ(aj , aj+1).
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Finally, ρ(a0, a0) = q(a0, e)/2 −
∑

a1∈A
c
1
ρ(a0, a1)/2. Since there is a chain

from any node to node a0, the predecessor node of a node aj ∈ Aj can be

defined recursively by

a−t(aj) = Aj−t ∩ µ(a−(t−1)(aj)), j ≥ t > 0, and a−0(aj) = aj .

For instance, a−t(aj) = a0 for any aj ∈ At. Denoting by ν(θ) the measure of

type θ, σc can be expressed as

σc

ν(θ)
=
y(a0,a0)

2

∂p(a0,eθ)

∂eθ
+
∑

a1∈A
c
1

(

y(a0, a1)−
y(a0, a0)

2

)

∂p(a1, eθ)

∂eθ

+
∑

a2∈A
c
2

(

y(a−1(a2), a2)− y(a−2(a2), a
−1(a2)) +

y(a0, a0)

2

)

∂p(a2, eθ)

∂eθ
+ ...

+
∑

an∈Ac
n

(

y(a−1(an), an)− ...(−1)n
y(a0, a0)

2

)

∂p(an, eθ)

∂eθ
.

Define the “externality” that vertices closer to a0 have on those further apart

by

x(aj) = y(a−1(aj), aj)− x(a−1(aj)) for j = 1, ..., n, (19)

and x(a0) = y(a0, a0)/2. Then

σc

ν(θ)
=
y(a0,a0)

2

∂p(a0,eθ)

∂eθ
+

n
∑

j=1





∑

aj∈A
c
j

[

y(a−1(aj),aj)−x(a−1(aj))
]∂p(aj ,eθ)

∂eθ



.

(20)

To verify whether surplus efficient investments coincide with equilibrium

investments recall that the latter were determined by

∑

c∈C

∑

a∈Ac

v(a)
∂p(a, e∗θ)

∂eθ
=

∂c(e∗θ, θi)

∂ei
.

Hence, for each component c the condition σc/ν(θ) =
∑

a∈Ac v(a)
∂p(a,e∗

θ
)

∂ei
is

equivalent to

n
∑

j=1





∑

aj∈A
c
j

(

y(a−1(aj), aj)− x(a−1(aj))− v(aj)
) ∂p(aj , e

∗
θ)

∂ei





+

(

y(a0, a0)

2
− v(a0)

)

∂p(a0, e
∗
θ)

∂ei
= 0. (21)
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This is implied by v(aj) = y(a−1(aj), aj) − x(a−1(aj)) for all aj ∈ AC
j for

j = 1, ..., n. Recall that x(aj) = y(a−j(aj), aj) − x(a−1(aj)), which means

that

v(aj) = y(a−1(aj), aj)− v(aj−1) for j > 0, and v(a0) = y(a0, a0)/2, (22)

implies (21). Note that (22) characterizes the equilibrium payoffs supporting

a stable match under fully transferable utility: each attribute aj ’s payoff is

determined by its value added to its match a−1(aj).

Arbitrary Cycles

Allow now for cycles that have length greater than 0, repeating the argument

above replacing cycles of length 0 with larger ones. Let now dc(a) denote the

distance of a vertex a ∈ Ac to the cycle, e.g. dc(a) = 0 if, and only if, a is

part of the cycle. Then n = maxa∈Ac dc(a) is the maximum distance from

the cycle. Again Ac
j = {a ∈ Ac : dc(a) = j} denotes the set of vertices with

common distance j from the cycle. Figure 3 shows an example.
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Figure 3: Example for a component c with a cycle (vertices a0, a
′
0, and a′′0).

Still each node aj ∈ Ac
j with j > 0 has exactly one predecessor, denoted

by aa−1(aj) as above. The effects of a change in investment on attributes

in component c, σc, can be derived by summing up the effects on each pair

(a, a′) in c ordered by their distance from the cycle:

σc =
∑

a0∈A
c
0

∑

a′
0
∈µ(a0)∩Ac

0

y(a0, a
′
0)

2

∂ρ(a0, a
′
0)

∂eθ

+

n
∑

j=1





∑

aj∈A
c
j

y(a−1(aj), aj)
∂ρ(a−1(aj), aj)

∂eθ



 .
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As above, if aj ∈ Ac
j is a terminal vertex then ρ(a−1(aj), aj) = q(aj, e).

Otherwise, ρ(a−1(aj), aj) = q(aj, e)−
∑

aj+1∈µ(aj )∩Ac
j+1

ρ(aj , aj+1). Since each

vertex in the cycle has exactly two neighbors, ρ(a0, a
′
0)+ρ(a0, a

′′
0) = q(a0, e)−

∑

a1∈µ(a0)∩Ac
1
ρ(a0, a1) for any a0 ∈ Ac

0 and a′0, a
′′
0 ∈ µ(a0) ∩ Ac

0. Denote by

n0 = ⌈(|Ac
0| − 1)/2⌉ the maximum distance between any two vertices in the

cycle. Then the “externality” in the cycle that vertices closer to a0 have on

those further away can be expressed as

x(a0) =
1

2

n0−1
∑

j=0

(−1)j
∑

a∈Ac
0
: d(a,a0)=j

∑

a′∈µ(a)∩Ac
0
:d(a′,a0)≥j

y(a, a′), (23)

and, using the recursive definition of x(aj) in (19) above,

σc

ν(θ)
=
∑

a0∈A
c
0

x(a0)
∂p(a0,eθ)

∂eθ
+

n
∑

j=1





∑

aj∈A
c
j

(

y(a−1(aj),aj)−x(a−1(aj))
)∂p(aj ,eθ)

∂eθ



. (24)

This expression coincides with (20) if Ac
0 = a0, i.e. the cycle has length 0.

Again for each component c the condition σc/ν(θ) =
∑

a∈Ac v(a)
∂p(a,e∗

θ
)

∂eθ
is

equivalent to

n
∑

j=1





∑

aj∈A
c
j

(

y(a−1(aj), aj)− x(a−1(aj))− v(aj)
) ∂p(aj , e

∗
θ)

∂eθ





+
∑

a0∈A
c
0

(x(a0)− v(a0))
∂p(a0, e

∗
θ)

∂eθ
= 0. (25)

Note that (25) becomes (21) if the cycle has length 0. Here v(a0) = x(a0)

holds if payoffs v(a0) solve the system of equations

v(a0) = y(a0, a
′
0)− v(a′0) for all a0, a

′
0 ∈ Ac

0 with a0 ∈ µ(a′0).

Hence, if equilibrium payoffs do not coincide with the matching market

equilibrium payoffs under fully transferable utility, the conditions v(aj) =

y(a−1(aj), aj) − x(a−1(aj)) or v(a0) = x(a0) must fail for some attributes.

Unless distortions for some attribute aj with predecessor ak exactly compen-

sate this, (25) must fail. Even if for some attributes aj and ak the respective

distortions in payoff exactly offset each other, this is not robust to a small

change of ∂p(a,ei)
∂ei

, i.e., a marginal perturbation of the investment technology.

These arguments are summarized in the following statement.
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Fact 3 (Static Assignments). Suppose an equilibrium assignment µ is static.

Then, given µ, equilibrium investments coincide with the ones chosen by a

surplus maximizing social planner if, and only if for all i ∈ I

∑

c∈C

n
∑

j=1





∑

aj∈A
c
j

(

x(aj)− φ(a−1(aj), aj, u
∗
a−1(aj)

)
) ∂p(aj , e

∗
θ)

∂eθ





+
∑

c∈C

∑

a0∈A
c
0

(x(a0)− v(a0))
∂p(a0, e

∗
θ)

∂eθ
= 0,

where x(ai) is defined by (19) and (23).

This condition is satisfied if equilibrium payoffs u∗ coincide with equilib-

rium payoffs when utility is fully transferable (φ(a, a′, u) = y(a, a′)− u).

Suppose now that equal treatment holds, i.e. v(aj) = φ(aj, ak, u
∗
k) for all

ak ∈ µ(aj) for all aj ∈ A. Denote the joint payoff in a match (a, a′) by

ŷ(a, a′) = v(a) + v(a′).

Then v(aj) = ŷ(aj−1, aj) − v(aj−1) for aj ∈ Ac
j and aj−1 ∈ Ac

j−1 ∩ µ(aj) for

distances j = 1, .., n in component c of the graph G. Moreover, v(a0) with

a0 ∈ Ac
0 solve

v(a0) = ŷ(a0, a
′
0)− v(a′0) for all a0, a

′
0 ∈ Ac

0 with a0 ∈ µ(a′0).

Then the condition in Fact 3 is satisfied if y(a, a′) = ŷ(a, a′) for all a, a′ ∈ A

such that a′ ∈ µ(a), i.e., u∗
i + u∗

j = y(ai, aj) for all matches (i, j). This

means that under equal treatment a matching cum investment equilibrium

is surplus efficient if payoffs are ex post efficient, independent of the invest-

ment technology p(a, ei). If payoffs are not ex post efficient the condition in

Fact 3 will not be satisfied when allowing for marginal perturbations of the

investment technology.

Proof of Proposition 4

Fix θ and denote by G and G the graphs associated to µ
θ
and µθ, and their

set of connected components by C and C. A marginal change in investment

implies that G and G will both contain a cycle each in some component.
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The marginal surplus resulting from an increase (decrease) of investment is

then given by
∑

c∈C σc and
∑

c∈C σc, respectively, with σc and σc defined by

(24). There is no marginal deviation from equilibrium investments e∗ that

can increase aggregate surplus if, and only if, for each type θ ∈ Θ

∫

i∈I: θi=θ

∂c(e∗θ , θ)

∂eθ
∈





∑

c∈C

σc,
∑

c∈C

σc



 . (26)

Privately optimal investments in the investment cum matching equilibrium

imply
∂c(e∗θ , θ)

∂eθ
=
∑

c∈C

∑

a∈c

v(a)
∂p(a, e∗θ)

∂eθ
.

Denote by v(a) and v(a) the equilibrium payoffs in assignments µ
θ
and µθ as

defined above. Since µ is a stable assignment, the payoffs v(a) have to satisfy

v(a) ≥ v(a) for all a such that
∂p(a,e∗

θ
)

∂eθ
> 0 and v(a) ≤ v(a′) for all a′ such

that
∂p(a′,e∗

θ
)

∂eθ
< 0. That is, attributes that are scarcer under µ than under

µ receive weakly higher payoffs whereas attributes that are more abundant

receive weakly lower payoffs. Analogously, v(a) ≤ v(a) for all a such that
∂p(a,e∗

θ
)

∂eθ
> 0 and v(a) ≥ v(a′) for all a′ such that

∂p(a′,e∗
θ
)

∂eθ
< 0.

This implies in particular that in an investment cum matching equilibrium

for all agents i of type θ

∂c(e∗θ , θ)

∂eθ
∈
[

∑

a∈A

v(a)
∂p(a, e∗θ)

∂eθ
,
∑

a∈A

v(a)
∂p(a, e∗θ)

∂eθ

]

, (27)

with
∑

a∈A v(a)
∂p(a,e∗

θ
)

∂eθ
≥
∑

a∈A v(a)
∂p(a,e∗

θ
)

∂eθ
.

Hence, using the definitions from above, given a matching equilibrium

that is not static, a marginal change of investment cannot increase surplus,

i.e., condition (26) holds, if

∑

c∈C

σc

ν(θ)
≤
∑

a∈A

v(a)
∂p(a, e∗θ)

∂eθ
and

∑

a∈A

v(a)
∂p(a, e∗θ)

∂eθ
≤
∑

c∈C

σc

ν(θ)
. (28)

Note that by the arguments above lower and upper bounds coincide, if equi-

librium payoffs coincide with those when utility is perfectly transferable.

Otherwise the investment technology has to exactly offset any distortions.
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Proposition 3 implies that if the equal treatment property holds for equi-

librium payoffs in matches µ and µ surplus efficiency of equilibrium payoffs

implies that both conditions in (28) hold with equality.

Example: moral hazard in partnerships

To illustrate the type of non-transferabilities needed for a counterexample,

consider an application: the partnership problem. Two partners i and j exert

effort xi and xj , which affect the probability g(xi, xj) that the partnership

succeeds. In case of success the partnership’s revenue is R(ai, aj), depending

on partners’ attributes, otherwise it is 0. The success probability is given by

g(xi, xj) = xα
i x

1−α
j .

Let α ≥ 1/2. Exerting effort xi an agent incurs utility cost x2
i /2. Non-

transferabilities arise as partners agree on the revenue share s that goes to i,

but cannot use lump sum transfers, e.g. due to liquidity constraints. Hence,

ui = sxα
i x

1−α
j R(ai, aj)− x2

i /2 and uj = (1− s)xα
i x

1−α
j R(ai, aj)− x2

j/2.

Individual optimal effort choice pins down effort levels depending on s:

xi(s) = (αs)
1+α
2 ((1− α)(1− s))

1−α
2 R(ai, aj) and

xj(s) = (αs)
α
2 ((1− α)(1− s))

2−α
2 R(ai, aj).

Therefore individual payoffs depend also on s and are given by

ui(s) = s(αs)α((1− α)(1− s))1−α(1− α/2)R(ai, aj)
2 and

uj(s) = (1− s)(αs)α((1− α)(1− s))1−α(1− (1− α)/2)R(ai, aj)
2.

That is, the sharing rule s determines a pair of ui and uj and thus joint

surplus in match (i, j). This can be used to construct the Pareto frontier,

φ(ai, aj , u) = argmax
s

ui(s) s.t. uj(s) ≥ u.

The sharing rule that maximizes joint surplus in a match (i, j), s∗ solves

max
s

(αs)α((1− α)(1− s))1−αR(ai, aj)
2[(1 + α)/2 + (1/2− α)s)].
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The surplus maximizing sharing rule s∗ is a function of α but not of R(a, a),

and s∗ = 1/2 if and only if α = 1/2. Maximal surplus in match (i, j),

y(ai, aj) = ui(s
∗) + uj(s

∗) is

y(ai, aj)=(αs∗)α((1−α)(1−s∗))1−α[(1 + α)/2 + (1/2− α)s∗]R(ai, aj)
2.

Denote the sharing rule that allows to share joint surplus equally, such

that that ui(ŝ) = uj(ŝ), by ŝ. Setting ui(ŝ) = uj(ŝ) implies ŝ = (1 + α)/3.

Indeed ŝ = 1/2 = s∗ for α = 1/2. Otherwise s∗ > ŝ since ui(s)+uj(s) strictly

increases in s at s = ŝ.

Payoff Agent i

P
ay
o
ff
A
g
en
t
j

φ(a, a, ui)

φ(a′, a′, ui)

φ(a, a′, ui)

y(a, a′)y(a′, a′)

y(a, a)

45◦

Figure 4: Utility Possibility Frontiers

Figure 4 depicts φ(ai, aj, u) for three different matches (a, a), (a, a′), and

(a′, a′) with a > a′. The 45◦ line pins down payoffs for equal sharing and the

dashed lines indicate the surplus maximizing payoff sharing.

Suppose that µ(a) = a in equilibrium (this is implied by, e.g., R(a, a) −
R(a, a′) sufficiently high for all a > a′, see below). To verify that payoffs are

not ex post efficient, compute the difference in y(a, a)/2 = (ui(s
∗)+uj(s

∗))/2

and ui(ŝ) = uj(ŝ) = φ(a, a, u∗
a):

y(a, a)

2
− φ(a, a, u∗

a) =
y(a, a)

2

(

ŝ

s∗

)α(
1− ŝ

1− s∗

)1−α
1 + α + (1− 2α)ŝ

1 + α+ (1− 2α)s∗
.
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Since neither s∗ nor ŝ depend on R(a, a) the difference is a constant fraction

of R(a, a)2. Hence, there is a constant κ(α) > 0 depending only on α > 1/2,

such that for all a ∈ A

y(a, a)/2−E[φ(a, a, u∗
a)] = κ(α)R(a, a)2.

Therefore investments are not surplus efficient unless the investment tech-

nology (∂p(a, ei)/∂ei) exactly compensates the differences κ(α)R(a, a)2.

Hence, a social planner who could enforce a different surplus distribution

than equal sharing could increase aggregate surplus. For instance, set sp =

ŝ + ǫ for each match (i, j). If R(a, a)− R(a, a′) is high enough for all a > a′

full segregation remains the equilibrium outcome and thus ui(s
p) + uj(s

p) >

ui(ŝ) + uj(ŝ) for all matches (i, j). This decreases the difference y(a, a)/2−
E[φ(a, a, u∗

a)] and increases both aggregate surplus and investments.

A sufficient condition to ensure full segregation is that the maximum

utility attribute a can obtain when matching with a′ < a falls short of sharing

the surplus in a (a, a) match, that is, if for all a, a′ ∈ A with a′ < a

(

s

ŝ

)1+α(
1− s

1− ŝ

)1−α
2− αs

2− αŝ
<

(

R(a, a)

R(a, a′)

)2

, (29)

where s = argmaxs ui(s),

s =
4 + 2α + α2 −

√

(2− α)(8− 6α2 − α3)

6α
.

Note that (29) holds whenever the additional revenue generated by having a

high attribute partner, R(a, a)−R(a, a′), is sufficiently great for all attributes.
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