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COMBINING CUES AND RECALIBRATING PRIORS FOR ACCURATE

PERCEPTION

by Iona Stephanie Kerrigan

Our senses allow us to identify objects, materials and events in the world around us,

enabling us to interact effectively with our surroundings. However, perception is

inherently ambiguous, in that each set of sensory data could have resulted from an

infinite number of world states. To find statistically optimal solutions the brain uses

the available sensory data together with its prior knowledge or experience. In addition,

when there are multiple cues available they may be: (i) combined to improve precision

through noise reduction; and/or (ii) recalibrated to improve accuracy through bias

reduction. This thesis investigates cue combination, learning and recalibration through

a series of four studies, using the Bayesian framework to model cues and their

interactions.

The first study finds that haptic cues to material properties are combined with visual

cues to affect estimates of object gloss. It also investigates how the binocular disparity

of specular highlights affects gloss estimates. This is extended in the second study,

which finds that the human visual system does not employ a full geometric model of

specular highlight disparity when making shape and gloss estimates. The third study

replicates and extends previous findings, that auditory and visual cues to temporal

events are optimally combined in adults, by demonstrating that children also optimally

combine auditory and visual cues. Both adults’ and children’s bimodal percepts are

shown to be well predicted by a ‘coupling prior’ model of optimal partial cue

combination. The fourth study finds that the visual system can learn and invoke two

context-specific priors for illumination direction, using haptic shape cues to provide

calibratory feedback during training. It also demonstrates that colour can be learnt as

a contextual cue.

The results of all these studies are considered in the context of existing work, and

ideas for future research are discussed.
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Chapter 1

Literature Review

1.1 The Problem of Visual Perception

To survive and thrive in the world it is necessary to perceive and identify objects,

materials and events. This task, which appears entirely mundane, is actually an

incredible feat. Things in the world may: be made of different materials; have different

sizes, shapes and functions; and be located at different depths or travelling in different

directions. To perceive the world around us the signals received by sensory receptors

must be translated into a coherent and stable percept. The signals received by sensory

receptors are ambiguous as to what they represent in the real world. This ambiguity

can be seen by considering the case of visual perception; one of the tasks for the visual

system is to translate the two dimensional (2-D) image on the retina into a three

dimensional (3-D) percept. Translation from 2-D to 3-D is an example of an ill posed

problem (Poggio & Torre, 1984), with an infinite number of solutions. A problem is

well posed when its solution: exists; is unique; and depends continuously on the data

(Marroquin, Mitter & Poggio, 1987) and ill posed when it fails to meet one or more of

these criteria. To relate this to vision and state it another way, any image on the

retina could have arisen as the result of an infinite number of scenes in the real world,

all of which produce the same image. Another example of an ill-posed perceptual

problem is in factoring a luminance image into surface colour and illumination. A

change in image luminance could result from a change in surface reflectance or a

change in the angle of incidence of the light source (for example due to object shape as

seen in Figure 1.1) or any combination of these factors.

Despite the infinite number of interpretations available, our experience is usually of a

stable 3-D visual world.1 The ambiguity in the retinal image is due to a lack of

1There are instances when two or more interpretations can be perceived (although not simultane-
ously): these scenes are known as bistable or multistable and the perceived object ‘flips’ between the two
(or more) interpretations (Figure 1.2). However, multistable stimuli normally only exist under unusual
viewing conditions, for example in experimental situations, where there are a very limited number of

1
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+

+

+

+

Shading Reflectance

Luminance

Figure 1.1: Luminance as a result of shading or surface reflectance changes
To decompose the luminance image into its shading component and its reflectance
component is a hard problem. The luminance image on the right could be formed from
any of the shading and reflectance patterns on the left - or indeed any of an infinite
number of other combinations of shading and reflectance. There is no way to
determine directly, from a luminance measurement, what the reflectance properties of
an object are since luminance changes may be as a result of a change in orientation
with respect to the light source or of surface reflectance changes.

information: in the case of translation from 3-D to 2-D there is a loss of information

and in the case of surface luminance there is a single measurement which is the result

of several parameters (material properties, object shape, light intensity and lighting

direction). One way to reduce the ambiguity in a scene, and to constrain the number

of possible interpretations, is for perceptual systems to bring not only current

measurements of scene variables but also their previous knowledge and experience to

bear. In this review I will explore Bayesian approaches to the use of current sensory

data and prior knowledge to acheive stable perception. Specifically, I will cover the

following three ways in which perceptual systems can reduce uncertainty and error,

using the Bayesian framework to:

• combine redundant signals, both within and across senses;

cues available. When viewing natural scenes people rarely experience any ambiguity since the visual
system manages to solve the problem of perception sufficiently well under natural conditions.
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Figure 1.2: Necker cube
The Necker cube is a bistable stimulus in which the wire frame can be perceived as a
3-D cube with the front face either on the lower right or on the upper left of the image.

• incorporate prior knowledge to exploit the statistical regularities of the

environment;

• and adapt to changes in statistical regularities (either by recalibration or learning

of new relationships).

Although there are many ways to investigate this topic, I focus primarily on

psychophysical experiments and computational modelling.

1.2 Visual Cues

1.2.1 What is a cue?

In a natural scene there are usually many sensory cues that are able to provide some

information to constrain the number of possible interpretations. At the simplest level a

perceptual cue is a sensed property that correlates with a world property. The types of

world property that are useful for interaction relate to things like what something is

(e.g., shape and/or material), where something is (e.g., depth) and when something

happens (e.g., how many events and relative timing), in addition to the underlying

causal relationships between objects and/or events. In the natural environment there

are many cues, each potentially providing some useful information to enable inference

of properties such as depth, shape and material.

A visual cue might be an image property (e.g., a distortion of a texture pattern) that

over time has been observed to correlate with a scene property (e.g., depth or shape);

on the other hand a visual cue could be a body property (e.g., accommodation) that

correlates with a scene property (e.g., depth). The term ‘cue’ may thus refer to a wide
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variety of different types of information, which can cause confusion. Knill, Kersten &

Mamassian (1996a) set out useful criteria by which descriptors of visual (or any

perceptual) information might be assessed; according to them descriptors of perceptual

information should:

• be well-defined and logically consistent;

• relate the properties of the system’s input to the environmental properties;

• state all prior assumptions about the environment and the system;

• be able to describe a wide range of types of information; and

• provide a language for specifying theories and generating testable hypotheses.

Visual cues, as described above, may not meet all of these criteria. They are ill-defined

and may rely on unstated prior assumptions regarding the structure of the world. For

example, texture is not a cue to shape or depth unless one makes assumptions about

the texture’s homogeneity across the surface. The Bayesian framework provides a

principled method by which to describe perceptual cues in a manner which meets all of

the above criteria. However, even within this framework it is somewhat arbitrary how

different sensory information is segregated into cues by researchers and to some extent

depends on conventional definitions. For example, there is no clear boundary between

texture and linear perspective cues or between specular reflections and shading cues.

1.2.2 The Bayesian Framework

The Bayesian framework is a mathematical method for combining probability

distributions to calculate other probability distributions that were previously unknown

(Bayes, 1783). As it pertains to perception, Bayes’ rule provides a formal method for

combining current inputs to sensory systems with previous knowledge (Knill, Kersten

& Yuille, 1996b; Maloney, 2002b; Mamassian, Landy & Maloney, 2002). The Bayesian

model (shown in Equation 1.1) is composed of four probability distributions: posterior

(p(S|I)); prior (p(S)); likelihood (p(I|S)); and evidence (p(I)).

p(S|I) =
p(I|S)p(S)

p(I)
(1.1)

The evidence represents the probability of the sensory information being veridical or

accurate: since the evidence is usually a constant, Bayes’ rule can be simplified to

Proportionality 1.2.

p(S|I) ∝ p(I|S)p(S) (1.2)
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The likelihood probability distribution represents the probability of the current sensory

information arising from any of an infinite number of world states (Maloney, 2002b).

The likelihood function can also be thought of as the visual system’s model of the

statistical structure of the world, corrupted by noise. The peak of the likelihood

function corresponds to the world state that is most likely to have caused the sensory

data, assuming that all states are equally likely. The likelihood distribution can,

therefore, be used directly to make estimates of world properties; selection of the world

state most likely to have caused the sensory data is a decision rule known as Maximum

Likelihood Estimation (MLE).

MLE does not, however, allow for the fact that different world states occur with very

different probabilities. If the observer has knowledge of the relative prevalence of world

states this can be used to bias estimates of world properties such as shape or depth. In

the Bayesian model, this previous knowledge or experience of the world is represented

by the prior probability distribution. A uniform prior probability distribution

represents the case where all values of a scene property are equally probable (in the

absence of any current sensory information); a non-uniform prior indicates that

particular values are expected to occur more frequently than others. The prior encodes

the relative probabilities of all possible states of a particular world property,

independent from the current sensory data. In the example given in Figure 1.1, each of

the shading and reflectance combinations shown are equally likely to have generated

the luminance image. Using MLE it would be impossible to differentiate between the

infinite number of such shading and reflectance combinations. However, incorporating

the prior expectations that lighting is most often from above, and that reflectance is

most often uniform across the surface of an object, the second option represents a

much more probable world state and so should be preferred.

The combination of likelihood, prior and evidence gives the posterior distribution - the

probability of a world property having particular values, given the current sensory

information. A more refined estimate of a particular world property can then be made

based on the position of the peak of the posterior probability distribution, a decision

rule known as Maximum a Posteriori (MAP) estimation. This is likely to be a better

estimate than with MLE as it takes more information into account (except where the

prior is uniform, in which case the MAP and MLE estimators are equivalent).

A further refinement to this decision rule incorporates the concept of a utility or cost

function, which is combined with the posterior to represent the expected gain or loss in

acting upon a particular perceptual estimate (Maloney, 2002b). For example, the

consequence of overestimating the width of a narrow ledge might be a dangerous fall; a

useful cost function in this case might introduce a bias towards underestimating the

width. Much more mundane scenarios can also benefit from cost functions: for

example, when picking up a cup of tea there is some uncertainty in one’s estimate of

the cup’s size; grasping with a grip aperture equal to that specified by the MAP
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estimate may result in a spillage so some bias toward a larger size estimate may be

introduced to minimise this possibility, as the probability of knocking over the cup is

lower if the grip is too wide than if it is too narrow. In mathematical terms, a cost

function represents the penalty incurred in interpreting a scene property as x̂ when it

is actually x (Berger, 1985); the utility function can then be defined as

U(x̂, x) = −cost(x̂, x) (i.e., the negative cost function). The decision rule in this case

involves maximising expected gain by convolving the posterior probability distribution

with the utility function and taking the mode of this new distribution as an estimate.

Depending on the task, the costs and cost function might vary, and hence the decision

rule might also vary.

The Bayesian framework provides a formal method for describing perceptual cues

which meets all of the criteria set out by Knill et al. (1996a) (Section 1.2.1). In this

framework, a cue can be thought of as the combination of likelihood and prior

probability distributions. The likelihood distribution describes the relationship

between system input and world properties; the prior distribution encodes assumptions

about the environment or system. The Bayesian model is one of statistically optimal

estimation, so provides a benchmark against which to assess human perception.

Particularly important is that this approach provides a language for specifying theories

and generating testable hypotheses.

1.2.3 Examples of Visual Cues

There are many different visual cues which can be used to help estimate a variety

world properties. The following sections describe some examples of cues to shape and

material, taking a Bayesian perspective of the information they provide. The cues I

have selected are each used in the experimental chapters following this review.

1.2.3.1 Shading

Shading describes the variation in grey level across a surface due to the different

orientations of parts of the surface relative to both the light source and observer

(Mallot, 2000). Shading has long been known to be a cue to shape (Brewster, 1826)

and has been used by many artists to create a sense of 3-D shape and depth in

pictures. Luminance changes across an image might be the result of a change in the

colour or material of an object (a reflectance change), however, they might also (or

instead) be due to orientation changes of the surface with respect to the illuminant

(Adelson & Pentland, 1996, see Figure 1.1 for an example of this). As mentioned in

Section 1.1, separation of luminance changes into those due to surface reflectance and

those due to surface orientation is an ill-posed problem.
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For shading to be a cue to shape in a Bayesian sense it must be decomposed into a

likelihood and a prior: the likelihood is the probability of the luminance variation

given each combination of surface shape, lighting direction, lighting intensity and

surface reflectance. Several assumptions must be represented as prior probability

distributions. One such assumption is that there is only one light source in the scene

(Ramachandran, 1988); Ramachandran (1988) showed that where stimuli had opposite

shading patterns in the same scene, one of the shading patterns was interpreted as

convex objects and the other shading pattern was interpreted as concave objects,

implying an assumption of a single light source. Brewster (1826) found that object

shape is interpreted as if the light source is above the object. More recent work has

re-cast this assumption as the ‘light-from-above’ prior (Ramachandran, 1988; Kleffner

& Ramachandran, 1992) or the ‘light-from-above-left’ prior (due to findings that in

most observers there is a bias for them to interpret stimuli as though light comes from

above left, Sun & Perona, 1998; Mamassian & Goutcher, 2001). Evidence that a single

light prior is used across different tasks came when Adams (2007) found significant

correlations between observers’ light priors in a visual search task, shape judgements

and reflectance judgements. However, although a single light prior may be used in

different tasks, it is also flexible and can adapt to changing environmental statistics

(Adams, Graf & Ernst, 2004; Adams, Kerrigan & Graf, 2010). Note that the light

priors described here refer to probability distributions with ‘above’ or ‘above-left’ being

the most probable lighting position, and ‘below’ or ‘below-right’ being the least

probable (but still possible). When shading is interpreted in association with other

shape cues it is therefore still possible to interpret the shading as consistent with light

from other directions.

Another assumption that helps to interpret shading is that reflectance is constant

across the surface of an object, such that gradual changes in luminance are likely to be

due to shading (i.e., surface orientation changes) whilst abrupt changes in reflectance

are usually due to changes in surface pigmentation (Adelson, 2000). Perhaps due to

the number of assumptions that must be made, when other shape cues such as

binocular disparity are present, shading proves to be a relatively weak cue: it has a

relatively small effect on the final shape percept (Bülthoff & Mallot, 1988).

1.2.3.2 Texture

Texture refers to the spatial distribution of markings on a surface. The markings may

exist as a result of the material properties of the surface itself (as in the variation of

colour across a marble floor) or the arrangement of many similar objects on top of the

surface (as in a gravelled path). Information regarding the shape and orientation of the

surface can be determined from the distortion of such patterns due to perspective

effects, however to do so requires certain assumptions about the regularity of the

texture (Aloimonos, 1988).



8 Chapter 1 Literature Review

There are three components of texture that can be used as cues to shape (Cutting &

Millard, 1984; Blake, Bülthoff & Sheinberg, 1996; Knill, 1998): perspective scaling, in

which the size of texture elements decreases with distance from the observer;

perspective foreshortening, in which the aspect ratio of texture elements is compressed

depending on the slant of the object; and the relative position, or density, of texture

elements, which is affected by scene properties such as surface curvature. To make use

of these effects of perspective projection, an observer must make assumptions about

the statistical structure of the texture, namely in the homogeneity (even spacing) and

isotropy (no directional bias) of texture elements (Blake et al., 1996). Deviations from

homogeneity can then be used to make inferences of surface attitude (i.e., slant and

tilt). Similarly, deviations from isotropy of texture elements can be used to infer

foreshortening and surface orientation.

From a Bayesian point of view, each of the perspective effects described above may be

modelled as a separate cue with corresponding likelihood and prior probability

distributions. Knill (1998) presented a mathematical model for implementing these. In

his model, the likelihoods represent the probability of the observed texture pattern

observed given the slant and tilt of the object/surface. Similarly, the assumptions

about homogeneity, isotropy, size and aspect ratio are modelled as prior probability

distributions.

1.2.3.3 Specular Reflections

Specular reflections occur when light is reflected regularly, rather than diffusely, from

the surface of an object. It is these reflections which give surfaces the impression of

gloss or shininess; some materials (e.g., mercury mirrors) reflect all light regularly,

whereas other materials (e.g., plastic surfaces) reflect only some of the light regularly

and some diffusely. Specular reflections are not fixed to the surface of an object, as a

texture pattern would be, rather they change shape and location with movement of the

viewer, object or environment. To interpret the shape of an object by calculating the

transformation that led to the distorted reflection would require the observer to have

an accurate model of the surrounding world (Adelson, 2001). Given the multitude of

different scenes in which a glossy object may be found, this would seem to be

extraordinarily unlikely.

A different method to interpret shape from the distortions in specular reflections relies

on the assumption that image statistics, such as amplitude spectra and distribution of

orientations, are similar across different natural scenes (e.g., Torralba & Oliva, 2003;

Field, 1987). When images are reflected, their statistics are distorted depending on the

surface shape (Longuet-Higgins, 1960; Fleming, Torralba & Adelson, 2004). A

completely flat mirrored surface will reflect exactly the statistics of the real world.

However, if the surface is curved the image statistics will differ from natural scene



Chapter 1 Literature Review 9

statistics as a function of that curvature in relation to viewing position, with the image

compressed at certain points and stretched at others (Fleming et al., 2004). Fleming

et al. (2004) predicted that if people possess a model of natural scene statistics then

they should be able to estimate 3-D shape accurately, even without specific knowledge

of what is in the surrounding scene. To test this prediction they generated irregular

mirrored objects rendered within different real-world scenes. The objects were then

removed from their context and participants adjusted surface normals to indicate their

perception of the slant and tilt of the surface at different points on the object. They

found that people could make shape judgments accurately based solely on specular

reflections.

An additional prediction Fleming et al. (2004) made is that if the scene is structured,

the distorted reflection should lead to characteristic orientation fields across the image.

They suggest that people are able to extract information, from the orientation fields,

about object shape in a similar manner to how they use texture. As has been

mentioned already, for textured surfaces shape can be estimated from the pattern of

compression and rarefaction of the texture across the image. On a mirrored surface,

there is a different, but still systematic, relationship between the shape of the object

and the distortion of natural scene statistics. Whereas texture is distorted by slant but

not by surface curvature, distortions in specular highlights are caused by surface

curvature but not by slant. Fleming et al. described how orientation fields are able to

provide constraints on 3-D shape; however, there are still some ambiguities, such as the

sign of the surface curvature (whether convex or concave). The local constraints

provided by orientation fields can be disambiguated when in combination with other

cues such as the bounding contour or binocular disparity.

As noted above, specular highlights and reflections are cues to material properties, as

well as to shape, with objects tending to look glossier when they have specular

highlights on the surface (Beck & Prazdny, 1981). Fleming & Bülthoff (2005) also

found that adding specular reflections to objects increased the authenticity of the sense

of translucency in materials. They suggest that this is because translucent materials

are often glossy, for example plastic, jade or wax. There are various ways in which

highlights might be used to assist in the evaluation of material properties. Motoyoshi,

Nishida, Sharan & Adelson (2007) found that positive skew of the luminance

histogram might be a relatively simple method of detecting whether a surface is glossy.

The stimuli they used were photographs of painted stucco which varied in albedo and

gloss depending on the type of paint used. In contrast, Anderson & Kim (2009) found

that it was not the skewness of the luminance histogram that affected how glossy a

surface looked but rather the position of the highlights relative to the shading gradient.

Anderson & Kim (2009) split each image used by Motoyoshi et al. (2007) into its

diffuse and specular components; they then rotated the specular highlight components

and asked people to rate how glossy the surfaces looked. The further the highlights
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were offset from the diffuse shading gradient, the less glossy the surfaces looked,

implying that the highlights were interpreted as pigment changes rather than as

specular highlights when they were not aligned with the shading. In later work, they

found the same effect of reduced gloss when highlights were offset from the shading

gradient but still consistent with the underlying shape of the object (Kim, Marlow &

Anderson, 2011). Although specular highlights can be useful indicators of gloss and

shape, in some situations they are uninformative and may even be problematic, for

example when making lightness judgements; in these situations they can be discounted

by the visual system (Todd, Norman & Mingolla, 2004).

1.2.3.4 Binocular Disparity

Binocular disparity is a visual cue which results from the fact that the eyes are at

different positions on the head and therefore each sees the world from a different

viewpoint (Wheatstone, 1838). It is different from the other cues discussed so far in

that rather than arising from the retinal image directly, it results from the observer

comparing the images from two slightly different view points. Absolute depth can be

judged from disparity provided that one knows the distance between one’s eyes. Since

this distance increases during a person’s lifetime, from about 4cm to about 6cm

(MacLachlan & Howland, 2002), it suggests that binocular disparity must be

recalibrated with reference to other cues over an extended period of time. Binocular

disparity is a very useful and reliable cue at short range, however, the utility of

binocular disparity as a cue to depth decreases with distance - precision decreases as

the square of the distance to the object (Hillis, Watt, Landy & Banks, 2004).

Reframing binocular disparity as a Bayesian cue the likelihood is the probability of the

disparity field, given object shape or depth.

One of the difficulties for binocular disparity is knowing how to match up points in the

left and right images: this is known as the ‘correspondence problem’. Julesz (1960,

1964) showed that the visual system can solve the correspondence problem, even in the

absence of other depth cues. He created random dot stereograms in which the left and

right eye images are composed of almost identical configurations of randomly

distributed dots on a plain background. Small differences in the positions of

corresponding dots in the left and right eye images, that are undetectable when viewed

monocularly, result in a variation in disparity across the image when the two are fused,

such that depth and shape become apparent. Marr & Poggio (1976) used random dot

stereograms to test their stereo correspondence algorithm which relied upon two

assumptions: (i) ‘uniqueness’: that each point in the left eye’s image may only

correspond with, at most, one point from the right eye’s image (and vice versa), since

an object or feature can only exist at one location in space; and (ii) ‘continuity’: that

disparity generally varies smoothly with relatively few discontinuities, which usually
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indicate the edge or boundary of an object. Later models have refined and added to

these assumptions, for example Pollard, Mayhew & Frisby (1985) used the same

uniqueness assumption but added an ‘epipolar constraint’. This is a geometric

constraint resulting from the relative viewpoints of the two eyes: for a given point in

the left eye’s image, the corresponding point in the right eye’s image must lie along a

so-called ‘epipolar’ line. Pollard et al. also refined the surface continuity assumption to

a local disparity gradient limit (Burt & Julesz, 1980) which is more robust to jagged

surfaces.

The assumptions described above can help shape perception of matte objects, however,

specular reflections are at a different depth to the surface that generates them and so

can cause large depth discontinuities (and large disparity gradients) on a surface.

Previously, these discontinuities were deemed to be unhelpful for shape perception

(e.g., Oren & Nayar, 1996). More recently, however, it has been shown that since the

disparity of a specular reflection varies from the disparity of the surface generating it in

a regular and predictable manner, it can be used to suggest whether a surface is convex

or concave, in addition to affecting gloss judgments of the surface (Blake & Bülthoff,

1990, 1991; Wendt, Faul & Mausfeld, 2008; Wendt, Faul, Ekroll & Mausfeld, 2010). If

the surface is curved the disparity of the reflection will depend on the convexity or

concavity of the surface. If a surface is convex the reflection will appear to be behind

the surface (a virtual image); if, on the other hand, the surface is concave the reflection

will appear to be in front of the surface (a real image, see Figure 1.3), except under

very unusual viewing conditions. However, for complex glossy objects in complex light

fields specular reflections generate disparity fields that may contain a wide range of

disparities; the corresponding depth field may contain large discontinuities and be

poorly defined or even undefined (Muryy, Fleming & Welchman, 2012).

1.3 Cue Combination

So far each cue has been described in isolation. However, we usually experience the

world around us through a multitude of cues both from a single modality (e.g., vision)

or across different sensory modalities. People seem to be able to usefully combine cues

to perceive the world as a coherent, stable percept both within and across senses which

provides a good reason to study how cues are used in combination. When there are

multiple cues available people can use them in two different (although not necessarily

mutually exclusive) ways: firstly they may combine the cues to improve precision, by

reducing noise (e.g., Ernst & Banks, 2002); alternatively, they may be used to

recalibrate one another to reduce longer-term bias and so increase accuracy in the

future (e.g., Adams, Banks & van Ee, 2001). Precision relates to how noisy or

uncertain a cue is; if there is little noise the cue estimate is reliable and has low

uncertainty: the cue estimate is precise. A cue estimate may be very precise but
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Figure 1.3: Binocular geometry of specular highlight disparity
The binocular geometry of specular highlight disparity on concave and convex surfaces,
adapted and reprinted by permission from Macmillan Publishers Ltd: Nature (Blake &
Bülthoff, 1990), copyright 1990. The highlight appears in front of a concave surface as
a real image but behind a convex surface as a virtual image.

biased; accuracy relates to how biased a cue estimate is, that is how closely aligned the

estimate is to the real world value. In this section I will review literature relating to

noise reduction through cue integration (increasing precision); bias reduction through

recalibration (increasing accuracy) is considered in Section 1.6.1.

1.3.1 Models of Cue Combination

There are two extreme views regarding the modularity of cue combination: if a system

is modular then each ‘module’, in this case each cue, is independent of other modules.

If cues are modular then each may be used independently to estimate a property, such

as depth, before they are combined linearly: this is known as weakly coupled data

fusion (or weak fusion; Clark & Yuille, 1990). An example would be that an estimate

of shape was made from each of texture, binocular disparity and shading before being

combined into a single estimate of shape. The alternative view of modularity in cue

combination is known as strongly coupled data fusion (or strong fusion; Clark & Yuille,

1990). In strong fusion the output of sensory processing modules are able to affect the

progress of other modules by interacting and altering constraints. Additionally, these

outputs may be combined using any combination rule. In this approach cues are not

http://www.nature.com
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evaluated separately before combination but may influence one another throughout the

combination process. Mathematically, the differences between these two approaches

can be seen by comparing Equation 1.3 (weak fusion, the cue estimate (Ŝ) equals the

linear weighted average of modular cue estimates) and Equation 1.4 (strong fusion, the

cue estimate (Ŝ) is a function of all the different available ‘cues’ or information using

an arbitrarily complex combination rule). Between these two extreme views there is a

model known as modified weak fusion (Landy, Maloney, Johnston & Young, 1995).

This is essentially a modular viewpoint but avoids some of the disadvantages of the

weak fusion account. Each of these three models can be instantiated using the

Bayesian framework; each model is described below and their relative strengths and

weaknesses discussed.

Ŝ =

ncues∑
i=1

wif(cuei)

ncues∑
i=1

wi

(1.3)

Ŝ = f(cue1, cue2, cue3...cuen) (1.4)

1.3.1.1 Strong fusion

Strong fusion can be thought of as an extension to the single-cue Bayesian model, in

which a single likelihood is used to encode the probability of the entire image given the

range of possible world states. Strong fusion models assume that cues are not

independently processed before being combined. Within this framework the separation

of cues, such as disparity, shading and texture, is meaningless since cues are considered

to be artificial constructs. The single likelihood thus encapsulates all cues within the

scene, rather than an individual cue. Nakayama & Shimojo (1992) developed a simple

strong fusion model that selects as its interpretation the scene that is most likely to

have generated the image, i.e., it maximises the likelihood of the image given the scene.

They make use of a generic viewpoint assumption, as one would typically have when

mobile, but otherwise omit any prior knowledge that could be incorrect. This model is

essentially the same as the MLE approach to single cue estimation (see Section 1.2.2).

Yuille & Bülthoff (1996) describe a similar model for shading and texture integration in

which the luminance and hue of an object cannot be factored into the two components

(shading an texture) without having first determined the object shape. To calculate

shape from shading requires an assumption of constant albedo across the surface, which

texture always violates. They argue that this inseparability requires a joint likelihood

function and so a strong fusion account is required to model the combination. Bülthoff

& Mallot (1990) showed that observers underestimated the elongation of an ellipsoid
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when using either shading or texture in isolation, but were less biased when both were

present. A weak model of fusion would predict lower response variance but similar bias

in the multi-cue condition; a strong model of fusion, in which cues are able to interact

in a non-linear fashion, seems better able to account for their data. An alternative

explanation is that observers were using an unmodelled prior, e.g., for regular (in this

case, spherical) shapes, which had more influence on the final shape estimate when

only a single cue was available. When both cues were available, the relative influence

of the prior may have reduced resulting in less biased estimation of elongation.

The strong fusion model also allows for the inclusion of prior information and the use

of a MAP estimator; in such cases there is a single prior probability distribution

representing the relative probabilities of each possible world state. Nakayama &

Shimojo (1992) acknowledged that this would be possible but argued that it was not

appropriate for the perception of visual surfaces due to the inherent difficulty in

estimating the prior. For example, the prevalence of particular world properties varies

in different environmental contexts; the prior would therefore need to vary also,

making it unmanageably complex. Alternatively, multiple priors would need to be

learned for the various contexts; I will revisit the issue of learning multiple priors for

different environmental contexts in Section 1.6.2 and Chapter 5.

It is difficult, from a modelling perspective, to empirically test the strong fusion

account since the cues are not separable from one another in a controlled manner. The

interactions between cues may also be arbitrarily complex, so a model describing the

combination of two cues would not be able to predict performance when a third is

added. However, the strong fusion account has several advantages over more modular

approaches: in particular, it allows cues which provide information about qualitatively

different world properties (for example, relative vs. absolute depth) to constrain each

other. Chapter 2 describes a study involving combination of two cues (visual and

haptic) to estimate a purely visual world property (gloss); this could be considered as

strong fusion due to the fundamentally different types of information, however, see also

Section 1.3.1.3 for an alternative approach.

1.3.1.2 Weak fusion

At the other end of the spectrum, the weak fusion model treats each cue as a

completely independent module which, in Bayesian terms, has its own likelihood and

prior probability distributions. In the simplest form of weak fusion, the final estimate

of world state is calculated by generating an individual MAP estimate from each cue

and combining these through linear averaging (e.g., Clark & Yuille (1990)). As there is

redundant information across the different cues, this linear combination will result in a

reduction in the variance of estimates. However, an additional consequence of this

linear combination is that the final estimate will always lie between the two individual
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cue estimates. This form of the weak fusion account is therefore unable to explain the

results of Bülthoff & Mallot (1990) as described in Section 1.3.1.1.

A more general approach to modular cue combination can be achieved by calculating a

joint posterior probability distribution equal to the product of all of the likelihoods

and priors of the cues being modelled (Equation 1.5).

p1,2(S|I) ∝ p1(I|S)p1(S)p2(I|S)p2(S) (1.5)

In the case where the individual estimates are similar and the probability distributions

are all Gaussian, Yuille & Bülthoff (1996) showed that maximising the joint posterior

is equivalent to the simple case of linear averaging described above, where the

individual estimates are weighted according to their reliability (inverse variance).

These assumptions were used by Hillis et al. (2004) to investigate the combination of

texture and disparity cues to slant. However, the form given in Equation 1.5 is more

flexible as it does not require that the estimates are similar, or place any constraints on

the parametric form of the likelihoods or priors.

Adams & Mamassian (2004) showed that the simple linear averaging approach could

not account for the combination of texture and disparity cues to shape. Observers

estimated shape from texture for ambiguous stimuli which were consistent with either

a convex or concave surface: they consistently reported seeing convex shapes. This is

consistent with a prior for convexity, and a bimodal likelihood distribution in which

the convex and concave interpretations are equally likely to have caused the same

image. The stimuli were subsequently disambiguated by adding binocular disparity. In

the case of a concave disparity-defined shape, a cue combination rule based on

weighted averaging would predict that as texture-defined curvature increased, the

overall shape estimate would reduce in concavity (i.e., the surface would look flatter)

since the texture estimate would be increasingly convex. Adams & Mamassian instead

found that such stimuli appeared more concave as the texture-defined curvature

increased: the disparity was disambiguating the bimodal texture cue. Equation 1.5 is

still applicable in this case, but is no longer consistent with a linear weighted average

as the texture likelihood function is not Gaussian in form.

From an empirical perspective the advantages of weak fusion are that it is modular

and the combination rule is simple: if weak fusion occurs then it is meaningful to study

each cue in isolation. The primary problem for the visual system with the weak fusion

account is that different cues contain qualitatively different information. For example,

when estimating depth information one cue may give absolute depth (e.g., binocular

disparity) information whilst another may give only relative depth (e.g., texture). This

qualitative difference means that it is not always meaningful to average across

estimates of different cues (Landy et al., 1995).



16 Chapter 1 Literature Review

1.3.1.3 Modified weak fusion

In response to accounts of strong and weak fusion Landy et al. (1995) put forward the

idea of modified weak fusion (MWF). They consider strong and weak fusion to be at

opposite ends of a spectrum. Modified weak fusion retains the modelling advantages of

weak fusion, such as modularity and a linear combination rule. It also overcomes some

of the problems inherent for the visual system in weak fusion by allowing some

interactions between qualitatively different cues as required to transform all the cue

estimates into the same domain. They call this cue ‘promotion’ - a cue is promoted

when it has missing parameters filled in by other cues in order that the information is

of the same type, for example a relative cue to size or distance, such as texture, might

be promoted, that is have extra constraints added from other available cues, to an

absolute metric cue. This appears to be an example of a strong fusion type interaction;

however, in their model, Landy et al. (1995) allow this kind of interaction to occur

only for the purposes of promotion. Evidence of ‘strong’ interactions beyond these

circumstances would falsify the MWF account.

Adams & Mamassian (2004) argued that explicit cue promotion is not necessary if

additional prior information is incorporated into the model. However, observers in

their study may have used knowledge of the depth of the screen itself (e.g., through

accommodation cues) to promote texture from a relative to an absolute cue to stimulus

depth before combination with binocular disparity (another absolute depth cue).

Texture may in effect already have been promoted before observers’ estimates of depth

were reported.

When cues give rise to the same types of information, weak fusion is indistinguishable

from modified weak fusion as there is no need for cue promotion. Several studies (e.g.,

Adams & Mamassian, 2004; Maloney, 2002a) simply assume that all cues produce

estimates in the same units (i.e., that cues have already been promoted), whereas

others deliberately choose to investigate cues to the same information type (e.g.,

Young, Landy & Maloney, 1993). Hillis et al. (2004) found evidence that disparity

gradient had been promoted to units of surface slant, so that it could be treated as a

direct cue to slant in their combination model. Whilst theoretically more complete

than the weak fusion account, the cue promotion component of MWF is often not

explicitly modelled: the majority of studies of cue combination acknowledge the need

for cue promotion in general but appear to implement a weak fusion model anyway.

1.3.2 Benefits of Cue Combination

In many circumstances the more constrained variant of weak fusion, in which cues

provide the same type of information, give similar estimates and have Gaussian

likelihood and prior probability distributions, is applicable. Where cues can be
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assumed to have been promoted already (e.g., Maloney, 2002a) this approach is also

applicable. Note that many of the benefits described below also apply to more complex

variants of weak and modified weak fusion, where the constraints listed above are not

met.

Estimates of world properties made from any single cue are prone to error and may not

exactly represent the real value of the property in the world. There are two potential

sources of error in the estimation of a world property from a cue: bias and noise. Bias

is a systematic error in which the estimate is consistently incorrect due to poor

calibration of a perceptual cue with respect to the estimated world property. If

estimates from two cues are linearly combined, any bias may average out if the bias is

in different directions. However, it is also possible that several cues may be biased in

the same direction in which case combining cues would offer little or no benefit in bias

reduction.

Noise, on the other hand, results from random measurement error and may vary from

one moment to the next (Hillis, Ernst, Banks & Landy, 2002). The variance of a

perceptual cue’s posterior probability distribution is a measure of the noise associated

with that cue; a posterior with high variance will give rise to a noisy estimate of the

underlying world property value. A cue’s reliability can therefore be defined as the

inverse of its variance. Combination of multiple noisy cues will result in a more precise

and reliable estimate if certain assumptions are met. In particular, if the posterior

probability distributions from which the individual estimates would be drawn are

independent of one another, and are Gaussian in form, then the product of the two

distributions will have a variance less than or equal to that of the lower of the two

individual variances. In other words, the reliability of the combined estimate is at least

as high as (and usually higher than) that of an individual estimate from the more

reliable cue. The combined estimate (the peak of the combined posterior probability

distribution) will lie between the two individual estimates, and nearer the more reliable

of the two (see Figure 1.4). When combining uncorrelated Gaussian distributions in

this way, the result is mathematically equivalent to calculating the linear weighted

average of the two individual estimates, with each component weighted in proportion

to its reliability as defined above (Ernst & Banks, 2002). More formally, this linear

combination rule can be described as in Equation 1.6:

S(d, t) = wdSd(d) + wtSt(t) (1.6)

Where S(d, t) is the combined estimate from two cues, for instance, shape from

disparity and texture, Sd(d) is the estimate from disparity, St(t) is the estimate from

texture and these estimates are weighted by wd and wt respectively. The values of wd

and wt are based on the estimated reliability of each cue.
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Figure 1.4: Combination of cue estimates
Illustration of how combining two cue estimates, differing in reliability, results in less
uncertainty in the combined estimate. This graph shows two individual posterior
distributions (dashed lines) from two cues; each is Gaussian, and the two are
uncorrelated. The product of the two distributions is also shown (solid line); its peak
(i.e., the estimate) lies between the two distributions, biased towards the more reliable
cue, and the joint estimate has a smaller variance than either. This is equivalent to
reliability based cue weighting and is a consequence of multiplying together two
Gaussians with uncorrelated noise.

If Ŝd is the optimal disparity estimate of shape, that is, the estimate that maximises

the probability of shape value given disparity cue p(S|d), and Ŝt is the optimal texture

estimate of shape, that similarly maximises p(S|t); then, Ŝ is the optimal shape

estimate based on disparity and texture - that is the shape S that maximises p(S|d, t).
Yuille & Bülthoff (1996) showed that:

Ŝ = wdŜd + wtŜt (1.7)

where,

wd =

1
σ2
d

1
σ2
d

+ 1
σ2
t

and wt =

1
σ2
t

1
σ2
t

+ 1
σ2
d

(1.8)

and σ2d and σ2t are the variances of the distributions p(S|d) and p(S|t) respectively. By

choosing this way to specify the weights it means they are directly related to the

reliability of the cues themselves. The other advantage of this method is that weights
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are non-negative and sum to one. By weighting the cues in this way it ensures that the

variance in the final estimate is less than or equal to the variance in the most reliable

estimate; the method by which the combined variance (σ2dt) can be calculated is shown

in Equation 1.9.

σ2dt =
σ2dσ

2
t

σ2d + σ2t
(1.9)

Combining estimates using the method described here can be thought of as

‘statistically optimal’ cue integration since it provides a minimal variance unbiased

estimator of a world property (Clark & Yuille, 1990; Landy et al., 1995). It is also

commonly referred to as an ‘ideal observer’ model of cue integration (e.g., Landy et al.,

1995; Hillis et al., 2004; Ernst & Bülthoff, 2004)

1.4 Examples of Cue Integration

Two benefits of cue integration have been outlined: reduction in systematic error

(bias) and random error (variance). The issue of bias reduction and (re)calibration will

be returned to in Section 1.6.1. The following sections describe examples of cue

integration both within a single modality and across different sensory modalities.

1.4.1 Within-modality

Several studies have shown that visual cues are combined in a way consistent with

optimal cue integration. Landy & Kojima (2001) used two different texture cues,

spatial frequency and orientation of texture elements. Two textures were presented in

each stimulus such that there was a boundary part way across the stimulus. Observers

indicated in which of two stimuli (presented simultaneously, one above the other) the

boundary appeared further to the left. In common with later cue integration studies,

cues were presented either individually or in combination. The single-cue trials were

used to calculate discrimination thresholds: a measure of the variance of estimates

associated with each cue in isolation. The individual cue estimates and their respective

variances were then used to generate predictions for combined estimates in the case

where the two cues were presented together, and in particular when they were in

conflict (i.e., the spatial frequency and texture element orientation cues specified

different locations for the boundary in a single stimulus). This cue conflict paradigm is

commonly used to study cue integration as it allows the relative contributions of each

cue to the combined estimate to be determined. If two cues both specify the same

value of a world property, then the individual and combined mean estimates will all be

approximately equal (assuming unbiased estimators and negligible effects of priors or
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other, unmodelled cues) regardless of the weights used in that combination. However,

if the two cues are contrived so as to specify different values, then the combined

estimate will lie somewhere between the two individual estimates, at a value dependent

on the relative weights given to those individual estimates. Optimal cue integration of

this sort may be seen in Figure 1.4: the location of the texture boundary based on

spatial frequency could be represented by the large dashed line on the left; the location

of the texture boundary based on texture element orientation could be represented by

the dotted line on the right. The final estimate (solid line) is the weighted average of

the two cue estimates where those weights are inversely proportional to the individual

cue estimate variances. Landy & Kojima (2001) found that this optimal integration

model predicted their cue conflict data better than a ‘switching’ model, in which

responses were drawn variously from the two single-cue distributions with a probability

dependent on their relative reliabilities. They also compared a number of more

complex models, some of which fitted the data better than the linear weighting model;

however, they acknowledge that this is unsurprising given the increased number of free

parameters available to optimise the fits of such models.

A similar approach was used by Knill & Saunders (2003) to study the combination of

texture and disparity cues to surface slant. In addition to using the cue conflict

paradigm as described above, Knill & Saunders varied the reliability of the texture

cues by altering the slant of a surface (disparity cues maintained approximately the

same reliability across different slants). The reliabilities of texture and disparity cues

to slant were measured using discrimination thresholds for each cue, for each

participant. The variation of texture cue reliability allowed them to test the hypothesis

that weights are not fixed, but rather are proportional to the current cue reliability.

They found that when presented with both cues together, observers applied different

weights to each cue according to the reliability of the current stimulus, and combined

the cues in the statistically optimal fashion described in Section 1.3.2. Hillis et al.

(2004) reported similar findings when varying the reliability of both texture and

disparity cues. Texture reliability was again manipulated by varying surface slant; in

addition, the reliability of disparity was manipulated by varying the viewing distance.

In both cases, observers dynamically adjusted the weight given to each estimate,

suggesting that they were able to estimate the reliability of each cue on a trial-by-trial

basis. An alternative possibility is that cue weights are not explicitly calculated but

rather, probability distributions are represented neurally and are directly combined

with one another (Pouget, Dayan & Zemel, 2003; Knill & Pouget, 2004).

Visual cues are always spatially and temporally co-located because observers have only

a small portion of the visual scene in focus at one time. In most real world situations,

co-located signals have a single underlying cause and any (small) differences are due to

bias and noise. However, in experimental situations it is possible to introduce

unusually large conflicts between cues so that they are cues to different underlying
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values of the property (as described above). So far only the benefits of cue combination

have been discussed; the fusion of two cues, though, also comes with a potential cost:

the observer may lose access to individual cue estimates as described below. If two cues

(S1 and S2) lead to a combined estimate (Ŝ1,2) the weak fusion combination rule is:

Ŝ1,2 = w1Ŝ1 + w2Ŝ2 (1.10)

Hillis et al. (2002) showed that it is possible to make changes to the values of S1 and

S2 such that Ŝ1,2 is constant; to keep Ŝ1,2 constant, for a change in S1 of ∆S1:

∆S2 = −w1

w2
∆S1 (1.11)

If only the joint estimate (Ŝ1,2) is available to the visual system, the observer would be

unable to discriminate between stimuli that are adjusted in a way consistent with

Equation 1.11, even though she would be able to discriminate were either cue

presented individually. Stimuli that are physically different from one other that cannot

be distinguished perceptually are known as ‘metamers’ (Hillis et al., 2002). Hillis et al.

took advantage of this fact to examine whether cue estimates to slant were completely

fused or whether observers retained access to individual cue estimates (disparity and

texture). Using the single cue discrimination thresholds and variances they predicted

which stimuli would be discriminable if only the joint estimate were available and

which would be discriminable if cues were not fused. They found that visual cues were

fused such that there was no access to the individual cue estimates. This finding raises

the question as to how cues might recalibrate one another if they are completely fused:

without separate estimates there would be no error signal to drive recalibration.

Specular reflections and highlights provide cues to both shape and material as

described in Section 1.2.3.3 and Section 1.2.3.4. Cue combination for material

properties has not been widely studied (Adelson, 2001), particularly from an ideal

observer perspective. Highlight disparity is known to be a cue to gloss (Blake &

Bülthoff, 1990, 1991; Wendt et al., 2008, 2010) and can also be used as a cue to shape

(Blake & Bülthoff, 1990, 1991). Blake & Bülthoff found that highlight disparity could

drive shape interpretation of ambiguous shapes (convex vs. concave). However,

although observers adjusted highlight disparity appropriately to increase gloss ratings

for convex shapes, highlight disparity was not adjusted in line with physical geometry

for concave shapes. They suggested that this was due to uncertainty in shape due to

inadequate rendering methods and interpret their findings as though observers

generate a single combination of shape and gloss estimates that is consistent with their

estimate of disparity. Chapter 3 tests whether shape uncertainty can account for their

findings by manipulating the reliability of shape cues and highlight disparity and

asking observers for both an estimate of shape and an estimate of gloss.
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1.4.2 Cross-modality

Just as there are many visual cues to world properties, in normal experience we often

also have access to cues from each of the other sensory modalities. Our sensory

experience is that of a coherent world, in which information across all our senses is

integrated. Early studies of cross-modal cue integration found evidence to suggest

that, rather than being combined, vision tended to dominate haptic information in

shape estimates (e.g., Rock & Victor, 1964). Rock & Victor presented an object to

observers; the object was visually distorted, observers also felt the object and were

asked to estimate its shape, either by drawing it or matching it to another object.

They found that how the object looked was more important when making a decision as

to which other object matched it. This type of finding was initially termed visual

capture (Pick, Warren & Hay, 1969) in a demonstration of the ventriloquist effect,

which showed the dominance of visual cues over auditory cues. The ventriloquist effect

is the phenomenon by which a ventriloquist makes it appear as though her voice comes

from her puppet rather than from herself. The perceptual system assumes a single

source due to the temporal synchrony between the visual motion of the puppet and the

words spoken by the ventriloquist. Estimates of spatial location from audition are

worse than those from vision and so the visual estimate of location ‘captures’ the

auditory estimate of location. Visual capture can be thought of as the idea that visual

cues are in some sense ‘special’ and will always dominate cues from other modalities

when in conflict. Subsequently, this view has been proved wrong by demonstrating

capture by other senses, for example auditory capture of vision for temporal rather

than spatial estimates (Morein-Zamir, Soto-Faraco & Kingstone, 2003).

An alternative interpretation of visual capture in the ventriloquist effect is offered by

Alais & Burr (2004). They demonstrated that the ventriloquist effect may be due to

nearly optimal bimodal integration of the auditory and visual cues. They conducted an

experiment in which participants were required to indicate where light ‘blobs’ or sound

‘clicks’ were in space. The light and sound were presented either separately

(unimodally) or together (bimodally). Two stimuli were presented; the task was to

state which of two presentations was further left. In just the same way as for

within-modality cue combination studies, they estimated the variance associated with

the estimate from each modality in the unimodal task. Subsequently, localisation for

bimodal stimuli was measured. In one presentation auditory and visual cues were

consistent with each other; in the second presentation the auditory and visual stimuli

were displaced from each other so that there was a conflict in the position of the two

stimuli. By comparing which of the two presentations appeared to be further left, it

was possible to estimate the weight attached to each stimulus. It was found that visual

cues and auditory cues are combined such that the more reliable cue dominates the

less reliable cue. When visual cues were reliable, vision dominated, however, when

visual cues were blurred such that they were a less reliable cue to location, audition
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dominated. When the two cues were comparable in terms of reliability the cues were

weighted such that neither sense dominated: equal weighted averaging occurred. In

this study people were explicitly asked ‘to envisage each presentation as a single event’.

It is possible that this instruction increased the integration of the two cues whereas

under natural viewing conditions there would be less integration. This interpretation

of a dynamic re-weighting of cues is able to explain why sometimes one sense ‘captures’

another and sometimes the pattern reverses. Capture can thus be thought of as an

extreme case of cue combination resulting from large differences in the reliabilities of

the cues used.

Ernst & Banks (2002) found evidence that people also use this statistically optimal

strategy when integrating visual and haptic cues to size. They estimated the reliability

(inverse variance) of within-modality judgements using discrimination thresholds as an

index. Performance in bimodal trials was predicted from the reliability of each

unimodal judgement using the optimal cue combination model described in

Section 1.3.2. Observers looked at, or felt, a raised ridge and made a judgement of its

height compared with another ridge that they perceived in the same modality. The

reliability of the visual cue was varied by altering the amount of visual noise in the

scene. As the noise in the visual stimulus increased, its reliability decreased. In

bimodal trials observers both saw and felt the stimulus. The same paradigm was used

as in the study by Alais & Burr (2004) described above: in one presentation the two

cues specified equal heights; in the other presentation of each trial the two cues each

specified different heights. Which stimulus was judged to be taller depended on the

weight given to each size cue. The observed and predicted discrimination thresholds

for bimodal trials were compared and found not to vary significantly from one another,

again suggesting optimal reliability based cue weighting.

The similarities between theories of cross-modal integration and integration of cues

within a modality can be seen in that, in both, cues are weighted based on their

reliabilities. Exactly the same mathematical models as posited for intra-modality cue

combination can be applied to cross-modality combination. The same benefit of noise

reduction applies to cue combination across modalities as within a single modality;

however, as mentioned before this comes at a potential cost in that observers may lose

access to the individual cue estimates. As described in Section 1.4.1, Hillis et al. (2002)

found that people have no access to individual cue estimates within a single modality

(vision). Whereas for visual-visual cues, mandatory fusion is not particularly costly, as

all cue estimates are derived from the same retinal image and correspond to the same

spatial and temporal location, this is often not the case for cues across different

modalities. For example, we commonly interact haptically with one object whilst

looking at another; to combine visual and haptic cues to object shape in this scenario

would be detrimental. Hillis et al. found that although visual and haptic cues to
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object size could be combined to reduce noise, observers did not lose access to

individual cue estimates from each modality.

To decide whether to combine cues, perceptual systems must assess whether two cues

were caused by the same object or event in the world. Within a modality it is usually

apparent whether two cues have a common cause since they are spatially and

temporally synchronous as measured by a single set of sensory apparatus. For auditory

and visual stimuli, cues are more likely to be combined across modalities when they

originate in the same place and at the same time than when they do not (Wallace,

Roberson, Hairston, Stein, Vaughan & Schrillo, 2004). Similarly, visual-haptic cue

integration decreases with increasing spatial separation when making object size

judgements (Gepshtein, Burge, Ernst & Banks, 2005). Helbig & Ernst (2007a) created

visual-haptic stimuli with conflicting cues to object size by distorting the visual image

with a cylindrical lens; they also introduced a spatial separation between the visual

and haptic objects using a mirror. Observers continued to integrate cues when making

size judgements across the two modalities if they could see their own hand touching

the displaced visual object. This suggests that prior knowledge that the visual and

haptic objects are one and the same reduces sensitivity to spatial separation. A

common scenario in which visual and haptic stimuli originate from the same object but

are spatially separated is in tool use; Takahashi, Diedrichsen & Watt (2009) found that

when a tool was used, the degree to which object size cues were integrated across

modalities depended on the spatial separation of the tip of the tool and the visual

object, rather than the separation of the hand holding the tool and the visual object.

These studies suggest a flexible and somewhat complex approach to causal inference.

In addition to spatial separation of cues, cues may also be temporally offset from one

another. A similar process is necessary in this case to decide whether the two cues are

due to the same event or different events. This can be seen in the ‘bounce/stream’

illusion (Sekuler, Sekuler & Lau, 1997). In this illusion two discs move towards each

other, meet and then move away from each other in a manner consistent with either

bouncing off each other or streaming past each other. The proportion of trials for

which the percept is of the discs bouncing off each other can be increased by the

addition of an auditory stimulus played at or near the time of coincidence of the two

discs. The closer the alignment between the auditory stimulus and the discs coinciding,

the higher the proportion of ‘bouncing’ percepts. This result implies that temporal

alignment is used as a cue to causal relationships between stimuli in different

modalities. A further example of this can be seen in the flash/beep illusion (Shams,

Kamitani & Shimojo, 2000): a single flash presented with two beeps tends to appear as

two flashes. Similarly, if two flashes are presented with a single beep they tend to

appear as a single flash (Andersen, Tiippana & Sams, 2004). Shams, Ma & Beierholm

(2005b) modelled this as partial cue integration, where the amount or strength of

integration is modelled as a joint prior on how likely it is that the audio and visual
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events have a common cause. Bresciani, Dammeier & Ernst (2006) demonstrated a

similar illusion using visual-haptic stimuli: the beeps were replaced with taps. They

also modelled it as partial integration but using a ‘coupling prior’ to represent the

influence of one modality on the other (this model is described in more detail in

Chapter 4). Both Shams et al. (2005b) and Bresciani et al. (2006) extend the ideal

observer model of cue combination to take into consideration the circumstances in

which observers should not combine cues as well as when they should. Partial cue

integration using a coupling prior will be considered again in Chapter 4.

The combinations described here are all for stimuli in which the world property value

can be estimated from either modality. For example, slant, size and number of events

are all things which have meaning in both modalities. There are also interactions

between sensory cues which are less clear cut in terms of combining estimates. For

example, the perceived sweetness and saltiness of food is affected by the level of

background noise (Woods, Poliakoff, Lloyd, Kuenzel, Hodson, Gonda, Batchelor,

Dijksterhuis & Thomas, 2011): presenting a sound and asking how sweet or salty it

was would have no meaning. This type of interaction is somewhat unexpected but

highly consistent between people; such interactions have been termed ‘cross-modal

correspondences’ (e.g., Spence, 2011). Cross-modal correspondences have been found

for many different sensory combinations, for example, odour with colour (Demattè,

Sanabria & Spence, 2006) and odour with touch (softness) (Demattè, Sanabria,

Sugarman & Spence, 2006), for further examples see Spence (2011). Cross-modal

interactions or correspondences are interesting, particularly where a cue to a property

only has meaning in one modality but has correlates in another. This could be the case

in material perception where reflectance properties might have auditory or haptic

correlates. Chapter 2 investigates whether the haptic cues of friction and compliance

affect the visual perception of gloss.

1.5 Development of Cue Integration

The preceding sections have made clear that adults are able to combine perceptual

cues in an optimal manner both within and across modalities. However, there has been

limited research into the development of this ability. Nardini, Bedford & Mareschal

(2010) compared the performance of adults with that of 6 to 12 year old children in a

slant discrimination task, using texture and disparity as cues to slant. They measured

discrimination thresholds for each cue individually, and compared these with

discrimination thresholds when both cues were present. If both cues are integrated

optimally, discrimination thresholds would be expected to decrease in magnitude, such

that smaller differences in slant could be detected for the multi-cue stimuli compared

with either cue in isolation. Nardini et al. found this to be the case for both adults

and 12 year old children, however this was not true for 6, 8 or 10 year old children.
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They did find a significant difference in the discrimination performance of 8 year old

children between the disparity-only and combined conditions (disparity being the less

reliable of the two cues when viewed in isolation), suggesting some cue combination

although non-optimal. This comparison was not significant in 6 and 10 year olds. Hillis

et al. (2002) found that when adults combined texture and disparity cues to slant, they

lost access to the individual cue estimates such that they could not distinguish

perceptual metamers (see Section 1.4.1). If children are not integrating the two cues to

slant, then this mandatory fusion is unlikely and we would expect them to maintain

access to the individual cue estimates of slant. Nardini et al. (2010) tested this in a

second experiment, in which metameric stimuli were presented with equal and opposite

slant offsets applied to the texture and disparity images. Observers made ‘same or

different’ judgments for pairs of stimuli with varying combinations of texture and

disparity slant. Adult observers could only discriminate between stimuli on the basis of

a fused slant estimate: metamers could not be discriminated even though the changes

in slant would have been distinguishable in the single cue case. Children (6 years old),

however, did not gain the benefits of cue integration but as a result retained the ability

to discriminate between metameric stimuli as well as they could discriminate between

the slant estimates from individual cues.

No other study has examined the development of optimal cue integration within a

single modality; however, there are some recent studies of the development of

cross-modal cue integration. Gori, Del Viva, Sandini & Burr (2008) tested

visual-haptic cue integration using two tasks: a size discrimination task (‘which block

is taller?’) and an orientation discrimination task (‘which bar is steeper?’). In each

task one stimulus was presented, either visually, haptically or both modalities together;

the other stimulus was then presented and the observer reported either which was

taller or which bar was steeper. Adults and 10 year old children were able to

discriminate between size better in the bimodal condition than in either of the

unimodal conditions, in line with the predictions of statistically optimal cue

integration. The evidence that 8 year olds are able to integrate optimally for size was

somewhat equivocal: they weighted haptic and vision appropriately according to their

relative reliabilities, however, the optimal integration model could not explain the

variance in their responses. It is clear, however, that 5 and 6 year olds do not exhibit

optimal integration strategies for size estimation; they showed a greater reliance on

haptics than would be predicted by its reliability (as determined from unimodal trials).

A similar picture was reported for the orientation discrimination task: adults showed

optimal integration, there was no data reported for 10 year olds and the evidence for 8

year olds suggested that there was some integration but it was not yet optimal. Eight

year olds, in common with younger children (5 and 6 years old) showed underweighting

of haptics relative to its reliability, although 8 year olds to a lesser extent than younger

children. However, the optimal integration model was a better fit to the response data

for 8 year olds than a visual-only or haptic-only model. This data suggests that
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optimal integration strategies for visual-haptic stimuli mature between the ages of 8

and 10 years old. For young children, haptics dominated bimodal size judgements

whereas vision dominated bimodal orientation judgements. This occurred despite

vision being the more reliable unimodal cue for both tasks. Gori et al. suggest that

this may be due to the need to calibrate senses during childhood using whichever sense

is the more suitable for the task, regardless of whether it has the better precision. In

this case size is not something that can be estimated directly from the retinal image as

there is a confound between size and distance in terms of size in the retinal image.

Haptics provides a more direct estimate of size since the position of digits remains

constant with distance. Conversely, orientation can be determined directly from the

retinal image whereas for haptics it requires multiple inputs from either different

fingers or a single digit over time.

If haptics is used to calibrate visual size judgements and vision is used to calibrate

haptic orientation judgements this could explain why the two estimates are not

integrated by young children: the information is better used for calibration than for

noise reduction. To test this theory of cross-modal calibration, Gori, Sandini, Martinoli

& Burr (2010) repeated the haptic size and orientation tasks described above with

visually-impaired children aged 5-19 years old and age matched controls. They found

that haptic size estimates in visually-impaired children were as good or better than the

sighted control group. By contrast, haptic orientation estimates were significantly

worse in visually-impaired children than in the control group, with a notable

exception: one 10 year old child, rather than being congenitally blind, had normal

vision until 32 months old and then became visually-impaired; this child had haptic

orientation thresholds similar to age matched controls. These results support the

hypothesis that vision is used to calibrate haptic orientation estimation. However, the

child who lost vision at 32 months had normal haptic orientation thresholds,

suggesting that the majority of haptic calibration can be completed in 2.5 years and

may not need the extended period of time that Gori et al. (2008) indicate although it

is hard to draw strong conclusions from a single observer. A further study by Gori,

Tinelli, Sandini, Cioni & Burr (2012) tested children with motor disabilities (aged 5-18

years old) on the orientation and size discrimination tasks described above and

compared their performance with age matched controls. Children with motor

disabilities had visual orientation thresholds that were as good as the control group.

However, they had significantly higher visual size discrimination thresholds than the

control group. As in the previous study (Gori et al., 2010), they tested one 17 year old

child who had acquired a movement disorder at 2 years old. This child’s data showed

normal visual discrimination thresholds for both tasks, again suggesting that the

majority of calibration happens very early, perhaps before 2 years of age. Although the

results of Gori et al. (2010) and Gori et al. (2012) support that idea that haptics is

used to calibrate vision it is not clear that optimal cue combination precludes
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continuing recalibration of perceptual cues since there is remarkable flexibility in adult

observers to recalibrate cues (e.g., Adams et al., 2001, 2004, see also Section 1.6.1).

Ernst (2008) suggested an alternative possibility as to why children might not combine

visual and haptic cue estimates: to integrate cues across modalities one must attribute

the two cues to the same world property (a correspondence problem). In the tasks

used by Gori et al. (2008) observers reached behind a screen to feel the haptic stimulus

whereas the visual stimulus was in front of the screen. Although observers were

informed that it was the same object on both sides, protruding through the screen, it

may be that children did not associate the visual and haptic stimuli with one another.

A similar task by Drewing & Jovanovic (2010) addressed this issue by showing a

standard stimulus through lenses such that observers saw and/or felt one stimulus and

compared its size to other (haptic only) stimuli. In the visual and visual-haptic

conditions, observers could see their own hand feeling the object. In this scenario where

the stimuli were co-located and size conflicts between the two modalities were small, a

sub-optimal cue integration model predicted the data for adults and children (5-6 years

old) better than either a switching model or an optimal cue integration model.

To avoid the problem of the two cue estimates being dissociated from one another,

Nardini, Jones, Bedford & Braddick (2008) devised an object positioning task.

Observers walked to and picked up 3 glowing objects within a darkened room where

the only other visual landmarks were 3 illuminated shapes. Subsequently they

attempted to replace the first object back in its original location. Three conditions

were tested: vestibular only; visual only and bimodal (visual and vestibular). In the

vestibular only condition, the three illuminated landmarks were switched off so that

the observer had to rely solely on the vestibular estimate of object location. In the

visual-only condition observers were spun on the spot before replacing the object such

that they could rely only on the visual landmarks. In the bimodal condition the

landmarks remained on and observers were not spun so that both estimates were

available to determine where to place the object. Adult observers demonstrated

optimal integration of the visual and vestibular estimates, replacing the object with

greater accuracy (lower mean square error) and precision (smaller variance) than in

either of the unimodal conditions: the reduction in variance was as predicted for

optimal integration. By contrast, children (both 4-5 year olds and 7-8 year olds)

showed no improvement in mean square error or bimodal variances, indeed these were

not even predicted by using the most reliable single cue (visual landmarks) but were

better predicted by an alternation or switching model in which responses were drawn

variously from the two single cue estimate distributions. This supports the evidence

from Gori et al. (2008) that cross-modal cue combination is not optimal until after 8

years of age. A potential drawback of the studies by Gori et al. (2008) and Nardini

et al. (2008) is that they both require working memory: the former is a two-interval

forced choice design in which the observer must remember how tall or steep the
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previous stimulus was in order to compare the current stimulus; the latter requires

observers not only to estimate position but also to remember that position.

Nardini, Begus & Mareschal (in press) tested visual and proprioceptive cue integration

in a task not requiring memory. A location was marked on the top of a table and

participants indicated its position with a finger using a touch pad on the underside of

the table. In visual only trials, participants saw the marked location whereas in

proprioceptive trials the participant held their finger at the marked location and then

indicated position. In bimodal trials, observers both saw and touched the marked

location whilst they indicated its position on the underside of the table. Adults and

7-9 year old children showed optimal integration: variances were reduced in the

bimodal condition as predicted by a Bayesian model. However, 4-6 year olds and 10-12

year olds did not show the same improvement in variance as predicted by the optimal

integration model (although some children did exhibit some benefit from using both

cues). This is a surprising finding as it suggests that the maturation of cue

combination may not follow a monotonic trajectory. The authors suggest this may be

due to the onset of puberty, a time of rapid growth, requiring recalibration of

proprioception. However, Nardini et al. (2010) found that 8 year olds benefitted from

bimodal visual conditions compared with their least reliable cue in a visual-visual cue

combination task whereas 6 and 10 year olds did not. It may be that puberty causes

not only physical growth but also significant changes in perception.

The development of audio-visual cue integration has not yet been studied within the

Bayesian framework. There is evidence to suggest that children have some capacity to

use information from these two modalities concurrently. McGurk & MacDonald (1976)

found that the auditory and visual components of speech were combined such that a

video of lip movements saying ‘ga’ together with a soundtrack that played ‘ba’ was

perceived as the syllable ‘da’. Children aged 3-4 years old and 7-8 years old experienced

this effect although not as strongly as adults. Subsequently this effect has also been

found in infants (Rosenblum, Schmuckler & Johnson, 1997; Desjardins & Werker,

2004). Tremblay, Champoux, Voss, Bacon, Lepore & Théoret (2007) studied the

McGurk effect across a number of age groups and found that 5-9 year olds integrated

auditory and visual stimuli, but to a lesser extent than 10-14 and 15-19 year olds.

Although the strength of the McGurk effect appears to be greater in older children and

adults, it is not clear whether this is as a result of immature integration mechanisms or

simply differences in the relative reliabilities of the cues at different ages.

Scheier, Lewkowicz & Shimojo (2003) used a version of the bounce/stream task

(described in Section 1.4.2) to assess the capabilities of infants to integrate audio-visual

events. Infants (aged 4, 6 or 8 months old) were habituated to a stimulus that showed

two identical discs streaming past each other whilst a sound played either synchronised

with the discs’ coincidence or 1.3s offset from coincidence (either before or after

coincidence). The test stimulus was then the offset or coincident stimulus respectively.
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They found that 6 and 8 month old infants could discriminate between these stimuli

(as shown by increased looking times) whereas 4 month old infants did not

discriminate between them. The authors interpret this as evidence that 6 and 8 month

old infants experience the illusory ‘bounce’ percept when the sound is concurrent with

the discs’ coincidence but experience streaming when the sound is offset. In a further

experiment, Scheier et al. habituated infants to the sound coincident stimulus

described above and tested looking times when presented with a new stimulus in which

one frame was removed such that the discs no longer overlapped at coincidence but

rather paused: they describe this stimulus as a ‘physical bounce’ as opposed to an

‘illusory bounce’. Looking times indicated that infants did not perceive this as novel,

which Scheier et al. take as further evidence of infants experiencing the illusory bounce

percept. However, they did not test these stimuli without the coincident auditory

stimulus so it is not clear whether infants could distinguish the visual components

without the sound present. This does not, therefore, provide convincing evidence that

the auditory stimulus changed the visual percept. Slater (2003) also suggested that the

ability to distinguish between the coincident and offset auditory stimuli, in the first

experiment described here, might reflect an ability to distinguish the relative timings

of auditory and visual stimuli, rather than an altered visual percept due to changes in

the relative timing of the auditory stimuli as claimed by Scheier et al. (2003).

Another approach to infant audio-visual integration was that of Neil, Chee-Ruiter,

Scheier, Lewkowicz & Shimojo (2006) who compared reaction times of 1-10 month old

infants to unimodal and bimodal stimuli. Stimuli were lights or sounds located either

±25◦ or ±45◦ from the midline. Orienting reaction times were measured for each

stimulus combination (audio-only, visual-only and audio-visual). Bimodal reaction

times were significantly faster than both unimodal conditions for 2-4 and 8-10 month

old infants at 25◦ eccentricity and 0-2, 4-6 and 8-10 month old infants at 45◦

eccentricity. Bimodal reaction times for adults were significantly faster than both

unimodal conditions at both eccentricities. Neil et al. (2006) compared the bimodal

improvement to the improvement predicted by the ‘race model’ (Miller, 1982). In the

race model the sensory inputs are not combined but rather whichever individual

modality is faster on any given trial will trigger a response. If the reaction times for

the unimodal stimuli are variable and the distributions overlap then the race model

predicts that, on average, response times to bimodal stimuli will decrease compared

with stimuli presented in either modality alone. This is stated mathematically by

Miller (1982) as:

p(RT < t|Sa, Sv) ≤ p(RT < t|Sa) + p(RT < t|Sv) (1.12)

Neil et al. (2006) found that the decrease in reaction times in adults and 8-10 month

old infants violated the race model inequality at both eccentricities, suggesting that
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they combine auditory and visual stimuli. The only other group to violate the race

model predictions were 0-2 month old infants at 45◦ eccentricity. The authors suggest

that this latter finding was somewhat unreliable due to large individual differences

between participants; they thus conclude that multimodal integration develops late in

the first year of life. Although they show violations of the race model in adults and

older infants, they do not test whether their findings are consistent with a Bayesian

optimal integration model so it is hard to compare this finding with other multimodal

integration studies.

There have been a couple of studies considering audio-visual integration in older

children: Tremblay et al. (2007) tested children between 5 and 19 years old on the

flash/beep illusion described in Section 1.4.2. They found no significant effect of age

between three groups (5-9, 10-14 and 15-19 years old) in the number of fission or fusion

illusions experienced, concluding that audio-visual cue combination develops before the

age of 5 years old. However, Tremblay et al. did not test an adult control group, so

could not tell whether the fission and fusion illusions were adult-like even in the oldest

age group. The authors also did not test whether the rates of fission and fusion

illusions experienced by their participants were more consistent with optimal Bayesian

cue integration, or more simplistic models such as the ‘switching’ model used by

Nardini et al. (2008). Innes-Brown, Barutchu, Shivdasani, Crewther, Grayden &

Paolini (2011) carried out a similar experiment with an additional adult control group;

they found that children aged 8-17 years old experienced more fission illusions than

adults, but no more fusion illusions. Innes-Brown et al. concluded, in contrast with

Tremblay et al. (2007), that audio-visual integration matures late in childhood.

However, they did not measure the unimodal performance for auditory stimuli, so it is

not possible to reject the alternative hypothesis that differences in audio-visual

performance are due to optimal integration of unimodal cue estimates with differences

in the relative uncertainty of those estimates in childhood. Although they collected

reaction time data, the lack of auditory-only data also precluded testing of the race

model predictions as in Neil et al. (2006).

The conflicting evidence from these studies suggests that audio-visual cue combination

develops some time between 8 months and 17 years old; there is insufficient evidence to

determine at what age audio-visual integration becomes statistically optimal. In

Chapter 4, I test both the bounce/stream and flash/beep illusions in children (5-7

years old) and adults; for the latter experiment, I compare both Bayesian and

switching models of cue integration to determine whether observers behave in a

statistically optimal fashion.
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1.6 Cue Recalibration and Learning

How sensory systems come to represent the relationships between world properties and

sensory inputs is still an open question. Broadly speaking there are two possibilities:

either they are innately specified or they are learnt during a person’s lifetime. These

possibilities are not necessarily mutually exclusive: it could be that some cues are

hard-wired, learned over the evolutionary lifetime of the species, or have genetically

encoded ‘default’ settings but are then adapted over a lifetime, whilst other cues could

be calibrated against the hard-wired cues (Scholl, 2006). However they are acquired,

cues must be continuously updated to reflect changes in the world statistics on which

they rely. Section 1.6.1 reviews evidence for such cue recalibration; Section 1.6.2

explores to what extent adults can learn new cue relationships.

1.6.1 Cue Recalibration

In adulthood, as discussed in Section 1.3, when two cues are available the resultant

estimates are combined. For sensory cues to remain useful they must also be

continuously updated to reflect changes in environmental statistics or physical changes

(e.g., growth, muscle fatigue or ocular changes), a process known as recalibration. It is

possible that when the estimates from two cues are in conflict, rather than (or as well

as) being combined, one (or both) cues could be recalibrated to better fit with the

other estimate. A recalibration of this kind would be recognised by a change in the

estimates from each cue presented individually. The ability to remain plastic and

change the calibration of the cues would be useful so that in the case of injury or a

change in the statistics of the world, perception does not remain biased. One example

whereby the relationship between vision and cues from other modalities changes is

when someone wears a new pair of glasses. It is the ability to recalibrate which means

that after a short while of wearing the glasses and interacting with the world the

wearer does not misestimate size or distance. Adams et al. (2001) tested recalibration

of visual cues and found that changes in perceived slant after wearing a prism in front

of one eye were not due to weight changes, i.e., down-weighting the (now) biased cue of

disparity but rather the binocular disparity cues were recalibrated by adapting the

mapping between disparity and perceived slant. Further evidence that cues can be

recalibrated in adulthood is provided by Atkins, Jacobs & Knill (2003); they showed

that haptic information could recalibrate binocular disparity cues to distance. The

interpretation of stereo depth cues was measured in test trials; subsequently, in

training trials, haptic feedback was discrepant from the visual cues. This led to the

recalibration of stereo cues as measured in test trials after the training period. Similar

haptic recalibration of visual information was shown by Adams et al. (2004): they

showed that the light-from-above prior can be adapted by haptic feedback. They

estimated individuals’ light-from-above priors (see Section 1.2.3.1) by presenting a
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series of ambiguous stimuli and assessing which looked concave and which looked

convex. Participants were then given haptic feedback of shape in an environment in

which the average lighting direction deviated from their original assumption by 30◦.

This had the effect that some of the shapes which had looked concave now felt convex

and vice versa. After training with the haptic feedback their light priors were

estimated again and were found to have changed in the direction of the trained lighting

direction. This generalised to novel stimuli so could not be explained by participants

learning the stimulus set2. In a similar study (Adams et al., 2010) the light-from-above

priors were estimated and then trained with either haptic feedback, haptic and

stereo-visual feedback or stereo-visual feedback. The haptic feedback had the same

effect as described before, however the rate of learning was reduced when both stereo

and haptic feedback were present: the learned shift in light prior was smaller than the

haptic-only training condition. This might have been counter to expectations because

the addition of stereo information increased both the amount and reliability of

feedback. However, the addition of stereo feedback also removed the visual-haptic

conflict: the shape of the surface was clear from the start of each trial and observers

did not need to reinterpret the shape of the stimuli when they touched the surface.

There are two possible explanations for the reduction in learning: (i) haptics may play

a particularly ‘special’ role in the recalibration of visual cues and so it is visual-haptic

conflict that drives recalibration; or (ii) there was no forced re-interpretation of the

stimulus over time because the stereo information was always present: the initial

interpretation was correct. The idea that touch is special and is used to teach or

calibrate visual cues has a long history (Berkeley, 1709) and is intuitively appealing.

To test between these two possibilities the third condition gave stereo feedback that

was intermittent, in the same way that haptic information is intermittent since it is

only available at the point one is touching. The shift in light prior in this condition

was the same as when there was only haptic feedback, suggesting that the key factor in

recalibration is the reinterpretation of the stimulus in a different way. Most of the time

all visual cues occur simultaneously and so it would be unusual, but not impossible, for

one visual cue to recalibrate another; in this sense, haptics could play a special role in

visual recalibration.

1.6.2 Cue Learning

There is mixed evidence as to whether and how adults learn new perceptual cues.

Michel & Jacobs (2007) drew a distinction between ‘parameter learning’ and ‘structure

learning’. Parameter learning involves modification or adaptation of the relationship of

cues to properties in the world but only between relationships that already exist. In

2It is interesting to note that this ability to recalibrate the light-from-above prior is not shared
across all species: chickens raised in an environment in which light always came from below retained a
light-from-above prior, suggesting that this is ‘hard-wired’ (Hershberger, 1970).
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this sense parameter learning is somewhat akin to recalibration (as described above)

although the initial calibration may be that the two cues are uncorrelated but could

plausibly have some relationship to each other. Michel & Jacobs trained observers with

stimuli in which visual motion direction was correlated with an auditory cue (different

frequency bands of filtered white noise). They predicted that observers would be able

to learn the auditory cue to motion direction because movement, in a natural

environment, often causes both visual and auditory stimuli so the two stimuli would be

plausibly related, although uncorrelated previous to the experiment. Observers did

learn this new cue relationship; Michel & Jacobs claim that this is evidence of

parameter learning. Structure learning, by contrast, is defined as the learning of new

cue relationships for which no ecologically valid causal mechanism exists. Michel &

Jacobs tested several examples: they paired a disparity cue with motion direction; a

luminance cue with motion direction; a disparity cue with lighting direction; and an

auditory cue with lighting direction. In each case they argued that there would be no

reason for such cues to be related and so learning of any of these relationships would

constitute structure learning. They found that none of these relationships were learned

by observers and concluded that whilst parameter learning is possible, structure

learning is not possible in adulthood (they acknowledge that structure learning may be

possible or necessary in infancy or early childhood). The problem with this hypothesis,

as it stands, is that anything that is not learnt can be classed as structure learning

whereas anything that is learned can be called parameter learning. The dichotomy

does not produce testable hypotheses as this requires speculation as to which cue

relationships are considered to be plausible and pre-existing. Moreover, the limited

exposure to cues in the laboratory may mean that there was simply insufficient time to

learn the cues which had previously been unrelated. These cues and the world

property with which they are correlated have a long term historical correlation of zero

or close to zero. Any perceptual system would be suboptimal to learn a new cue

rapidly against such a weight of evidence that the cue and property are unrelated.

Haijang, Saunders, Stone & Backus (2006) also found differences in the ability of

observers to learn new cues. They used an associative learning paradigm which pairs

an unconditioned stimulus with a conditioned stimulus until the conditioned stimulus

is able to elicit the same response as the unconditioned stimulus. To use this paradigm

for visual cue recruitment requires that a percept be considered to be a response,

initially an unconditioned response to the original cues and subsequently a conditioned

response to the newly associated cue. A new cue is paired with existing cues that elicit

a certain percept; if the new cue is learned then it will elicit the same percept even

when the pre-existing cues are removed. Haijang et al. used a rotating Necker cube

whose rotation direction was ambiguous, resulting in a bi-stable percept; they added

depth cues to force the perceived direction of rotation. Direction of rotation was

simultaneously associated with another new cue (either position, translation or sound).

They found that the visual cues (position and translation) were both learned by
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observers and acted as a conditioned cue to depth, as measured by direction of

perceived rotation when the Necker cube was presented without any other depth cues.

They refer to this process as ‘cue recruitment’. Unlike the new visual cues, the

auditory cue was not recruited as a cue to rotation direction. More recently, Jain,

Fuller & Backus (2010) used the same rotating Necker cube stimuli but contrasted the

ability to learn ‘intrinsic’ and ‘extrinsic’ cues, finding that whilst the former could be

learned, the latter could not. They define intrinsic cues as cues that are generated by

the same image elements as the object (e.g., position of the Necker cube) whereas

extrinsic cues are not generated by the same image elements (e.g., surrounding annulus

of dots or auditory stimuli). This difference in the ease of cue learning is similar to

that described by Michel & Jacobs (2007) but offers a more testable and precise

distinction between the cases.

Ernst (2007) used a different approach to study cue learning: he suggested that if a

new relationship between cues was learnt then when both cues were present but in

conflict with one another, they would be combined in a Bayesian way and so after

training, observers would not be able to discriminate between stimuli that they could

discriminate before training. He measured unimodal and bimodal discrimination

thresholds for objects with varying luminance (visual cue) and stiffness (haptic cue).

Observers were then trained in a situation in which stiffness and luminance were

artificially correlated (either positively or negatively). If observers learned this

relationship, Ernst suggested that bimodal discrimination performance should improve

in test trials in which the luminance/stiffness relationship was congruent with the

training condition, but deteriorate in test trials where luminance and stiffness were in

conflict with the trained relationship. He found that observers could learn the new cue

relationship and that it had the predicted effect on discrimination thresholds. He

modelled the learned relationship as a 2-D coupling prior representing the strength of

the certainty that the two cues are correlated and hence predictive of one another. A

uniform coupling prior represents the case where the two cues are uncorrelated: any

combination of the two world properties would be considered equally likely. At the

other extreme, if the two world properties are perfectly correlated with zero variance

then the prior also has zero variance and takes the form of a line. In between these two

extremes Ernst (2007) models a prior for partially or weakly correlated cues as a

Gaussian centred on the line of correlation, with the variance representing the level of

uncertainty in the correlation. It is impossible to classify the learning demonstrated in

this study as either parameter or structure learning: the coupling prior could have

existed and been uniform before training (parameter learning) or the coupling prior

could have been created through training (structure learning). The cues learned in this

study do not appear intuitively to have any ecological validity but without extensive

statistical measurements of real world properties it would be impossible to say for

certain; this highlights the main weakness of the parameter vs. structure learning

paradigm.
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Di Luca, Ernst & Backus (2010) found further evidence that seemingly unrelated

visual cues can be learned or recruited, even when the new cue is ‘invisible’ or rather,

unnoticeable. They correlated vertical binocular disparity gradient (created by

magnifying one eye’s input vertically) with the direction of rotation of a cylinder. On

training trials the new cue was paired with other depth cues that disambiguated the

direction of rotation: horizontal disparity and occlusion. This method is comparable

with that used by Haijang et al. (2006) but in this case observers were unaware of the

new cue. They found that vertical disparity gradients were learned as a cue to rotation

direction and the authors describe this as structure learning. They use a slightly

different definition of structure learning to that described above, encompassing any

shift from ‘absence of dependency’ (whether known by the perceptual system or not)

to ‘dependency’ between cues; in other words, the pre-existence of a parameter

specifying the correlation between two cues, such as a coupling prior (Ernst, 2006,

2007), would not render this parameter learning. Using this definition, it is not

necessary to carry out statistical measurements of the correlations between world

properties to identify structure learning; it is sufficient to assess whether observers

know and utilise a dependency between two cues prior to training.

The cues recruited in the study by Haijang et al. (2006) could alternatively be

considered to be contextual cues; when the rotating cube was in a particular location,

or context, it elicited one percept and when in a different context it elicited another.

This is consistent with findings from Atkins et al. (2003) who found that people were

able to learn two calibrations of disparity cues, with each dependent on viewing

distance. In their study, when objects were close, depth-from-stereo estimates were

larger than when objects were further away. Contextual cues have also been found to

be important in visuomotor calibration: Martin, Keating, Goodkin, Bastian & Thach

(1996) trained people over a period of six weeks to learn two different gaze-throw

calibrations. In training sessions participants threw a ball at a target whilst either

wearing or not wearing prism glasses. When tested after training, participants had

learnt to use the contextual cue of wearing the glasses to access an alternative

calibration that was appropriate, even on the first trial of wearing the prisms and the

first trial after wearing prisms. They also found that people were able to retain the two

different gaze-throw calibrations for more than 27 months. In this case the glasses

acted as a contextual cue to which calibration should be used.

Seydell, Knill & Trommershäuser (2010) described context specific cue learning in

Bayesian terms as the ability to learn, store and selectively apply multiple priors for a

single world property depending on the context. They used the cue-conflict paradigm

(described in Section 1.3) to determine the relative weights applied to two cues to

object slant: aspect ratio and binocular disparity. If the true aspect ratio of an object

is known then its slant can be determined from the projected aspect ratio of the image

on the retina; however, this cue requires prior knowledge or assumptions of the true
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aspect ratio. Observers were trained in two contexts defined by object shape (either

ellipses or diamonds). Each observer was trained such that in one of the contexts

(either ellipses or diamonds) the aspect ratio was held constant at 1:1 (either circles or

squares); in the other context, aspect ratio was randomly varied across training trials.

In test trials, the aspect ratio and disparity cues to slant were conflicted by ±5◦

assuming that the true object aspect ratio was 1:1. From observers’ responses the

relative weights given to aspect ratio and disparity were calculated. Seydell et al.

found that more weight was given to aspect ratio in the constant aspect ratio context

than in the random aspect ratio context, suggesting that observers could learn multiple

aspect ratio priors based on shape-defined context. However, when the experiment was

repeated using object colour rather than shape as the contextual cue, observers did not

weight the aspect ratio cue differently between the two contexts after training - even

when explicitly told of the relationship between colour and aspect ratio. It is not clear

why shape but not colour would be learned as a contextual cue; it is possible that

shape and aspect ratio are more commonly related in the natural world (i.e., this is a

more ecologically valid pairing), or that colour is not able to act as a contextual cue.

In Chapter 5, I present a study investigating whether two different lighting direction

priors can be learned and applied where context is specified by colour. This study uses

visual-haptic stimuli to recalibrate the light-from-above prior as described in Adams

et al. (2004, 2010) but extends this method to train two different calibrations, one for

red stimuli and one for green stimuli.

1.7 Summary

The Bayesian approach has provided a strong theoretical framework, able to generate

predictions as to how perceptual systems make use of sensory information. The

formalisation of cues into likelihoods and priors has provided a common structure to

consider cue combination, recalibration and learning both within a single modality and

across multiple modalities. The Bayesian approach has extended our understanding of

all these areas but there are many questions still outstanding. This thesis broadens our

understanding in four key areas, applying the Bayesian framework where possible:

• Although shape and depth perception have been well researched using the

Bayesian framework, less is known about material perception, especially

cross-modal material perception. Chapter 2 expands our understanding of

cross-modal material perception by considering the extent to which the visual

system can make use of the broad range of sensory correlates available from other

sensory systems. Specifically, it investigates the influence of haptic stimuli on a

purely visual property: gloss.
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• Gloss can be a cue not only to material perception but also to shape perception.

Chapter 3 investigates whether the visual system generates a mutually consistent

combination of shape, gloss and highlight disparity estimates; to test this,

highlight disparity and the availability of shape cues are manipulated.

• Chapter 4 investigates the development of cue integration strategies in childhood.

Since relatively little is known about material perception in adulthood, it is

helpful to choose other topics that have previously been investigated in

adulthood. To this end, Chapter 4 investigates audio-visual cue integration,

testing, whether audio-visual integration happens and whether it is optimal (in a

Bayesian sense) by 5-7 years old.

• Chapter 5 contributes to the literature on cue learning in adulthood by asking

whether the visual system is able to learn and implement two context-specific

priors for the same property. The light-from-above prior is one of only a few

priors for which it is well established that they exist and that they can be

recalibrated by a few hours of training (e.g., Adams et al., 2004, 2010). Whether

multiple light priors can be learned for multiple contexts is, however, an open

question.



Chapter 2

Does it feel shiny? Touch

influences perceived gloss

Kerrigan, I. S., Adams, W.J. & Graf, E.W. (under revision for Current Biology) Does

it feel shiny? Touch influences perceived gloss.

Experimental design, data collection, analysis and write-up were completed by Iona

Kerrigan under the supervision of Wendy Adams and Erich Graf.

2.1 Abstract

Our perceptual system combines visual and haptic information to optimize estimates

of 3D properties including slant (Ernst, Banks & Bülthoff, 2000) and size (Ernst &

Banks, 2002). However, the integration of visual and haptic cues to material properties

has been largely overlooked. In two experiments we show that gloss perception, a

primarily visual property, can be modulated by the haptically accessible material

properties of friction and compliance. Observers viewed a single object, rendered with

or without a specular highlight. In visual-haptic trials, observers also ‘felt’ the virtual

object, rendered to feel either soft and rubbery or hard and smooth. Observers judged

whether the object was shiny or matte. We found that how an object feels affects its

perceived gloss; objects that feel hard and smooth look glossier than those that feel

soft and rubbery. Although friction and compliance are not reliable predictors of gloss,

the visual system appears to know and use a probabilistic relationship between these

variables to bias visual perception. This relationship is manifest in a flexible model of

specular highlights: when touch suggests gloss, the visual system accepts highlights

that deviate substantially from geometrically correct locations. In contrast, when the

same visual object feels rubbery, spurious highlights are rejected: the object appears

matte.
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Figure 2.1: Experiment 1: stimuli and results
(A-C) Visual stimulus examples: tilt offsets shown are (A) 0◦, (B) 30◦, (C) -90◦. (D)
Visual-haptic set-up. (E) Data collapsed across shading gradient orientation and sign
of shading-highlight offset; neither variable affected gloss judgements. Error bars give
±1SEM across observers. The 50% thresholds are indicated by large symbols.

2.2 Results & Discussion

Specular reflections occur when some or all light is reflected regularly from a surface,

rather than scattered diffusely. These highlights give an impression of glossiness (see

Figure 2.1A) and can thus be useful in identifying an object’s material properties.

Vision is not the only useful sense in such a task; the haptic (touch) properties of

compliance, surface texture, thermal quality and friction (Lederman & Klatzky, 2009)

can also contribute to material perception. How do these two modalities interact? We

ask whether the perception of visual gloss is influenced by how an object feels. Despite

the fact that gloss is conceived of as a visual feature, we show that the haptically

accessible properties of compliance and friction influence how shiny an object looks.

Specifically, haptic cues changed our observers’ interpretation of visual highlights such

that perceived gloss was systematically affected.

In one visual and two visual-haptic conditions, observers viewed a single smoothly
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shaded disc, with or without a bright spot, and reported whether it appeared glossy or

matte. In visual-haptic conditions, in addition to viewing the (virtual) object,

observers simultaneously ran a finger over it, before responding (Figure 2.1D shows the

visual-haptic set-up). In the ‘glass’ visual-haptic condition, the object had low

compliance and low static and dynamic friction (like smooth glass). In the ‘rubber’

visual-haptic condition, the object had higher compliance and friction (like a squash

ball).

Within each condition we manipulated the spatial alignment between the diffuse

shading gradient and the specular highlight; see Figure 2.1. When the bright spot was

spatially aligned with the bright area of the diffuse shading, it was interpreted as a

highlight on a glossy object (Figure 2.1A). In both experiments, as the

shading-highlight offset increased (Figures 2.1A - 2.1C) the object increasingly

appeared matte (Figures 2.1E & 2.2); at larger offsets the bright patch was ‘explained

away’ as a reflectance change or local spot of high illumination. This effect, formally

evaluated in Experiment 2 (main effect of highlight offset: F (4, 349.0) = 28.81,

p < 0.001), is consistent with previous demonstrations (Anderson & Kim, 2009; Beck

& Prazdny, 1981). We used observers’ tolerance to the shading-highlight offset to

assess the effects of touch (Experiments 1 & 2) and highlight disparity (Experiment 2)

on perception.

Haptic information significantly altered observers’ visual percepts of material

properties (Figure 2.1E). In the ‘glass’ condition of Experiment 1, objects were

classified as glossy for significantly larger shading-highlight misalignments than in the

visual-only condition (p = 0.002 from bootstrapping, after corrections for multiple

comparisons). In contrast, visual-haptic ‘rubber’ objects appeared matte with

significantly smaller shading-highlight offsets (p < 0.001). These results suggest that

our perceptual system has an expectation regarding the glossiness of an object based

on how it feels: hard and smooth objects are shinier than soft and rubbery objects.

In Experiment 2, we investigated how touch cues interact with specular highlight

disparity. Unlike texture, highlights do not lie at the stereoscopically-defined surface

depth. Instead, they lie behind convex surfaces, and in front of concave ones. Previous

work suggests that observers implicitly know and use the geometry of specular

highlights (Blake & Bülthoff, 1990, 1991), such that highlight disparity modulates

perceived gloss. In Experiment 1, highlight depth (as defined by binocular disparity)

was always geometrically correct: the highlight lay behind the convex surface. In

Experiment 2 we introduced two additional highlight disparity depths: zero relative

disparity (lying on the surface, like a paint spot) or reversed relative disparity (floating

in front of the surface). As depicted in Figure 2.2B, we found that highlight disparity

had a substantial and significant effect on gloss perception (F (2, 647.2) = 69.8,

p < 0.001, from three-factor linear mixed model). Observers made the highest

proportion of ‘shiny’ judgements when the highlight was behind the surface, at the
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Figure 2.2: Experiment 2: results
(A) Stimulus categorisations as a function of highlight - shading offset, separated by
visual-haptic condition and averaged across highlight disparities. (B) The same data,
separated by highlight disparity and averaged across the visual and visual-haptic
conditions. Error bars show ±1SEM across observers.

geometrically correct disparity-defined depth. When the highlight lay on the surface

(zero relative disparity) the object was far less likely to be perceived as glossy. This

makes sense: a bright patch at the surface depth is consistent with a local reflectance

change, or a patch of higher illumination (e.g., from a spotlight). Interestingly, when

the highlight was moved further toward the observer (in front of the surface), gloss

percepts increased, although remained lower than for the correct highlight location (all

pairwise comparisons significant, p < 0.001, after Bonferroni corrections). In other

words, our observers were somewhat sensitive to highlight disparity. However, there

were apparent perceptual failures - gloss percepts were promoted when the highlight

was displaced from the surface depth in the incorrect direction (lying in front of the

convex surface). Two factors may have contributed to this effect: first, observers may

have an incomplete, or simplified model of highlight geometry (Kerrigan, Adams, Graf

& Chang, 2011, see also Chapter 3). Secondly, uncertainty in object shape may have

led to incorrect highlight interpretation (Blake & Bülthoff, 1990, 1991): shading cues

were ambiguous, consistent with either a convex or concave surface under different
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illumination directions, and the stereo cues that specified a convex surface were weak.

Specular highlight disparity is itself a potential source of shape information (Blake &

Bülthoff, 1990, 1991); a ‘near’ highlight is consistent with a concave surface, perhaps

adding weight to a concave, glossy surface interpretation, despite reliable haptic

information that the surface was convex.

We confirmed the main effect of haptics on gloss perception reported in Experiment 1.

In Experiment 2, the haptic condition again modulated perceived gloss

(F (2, 616.3) = 43.28, p < 0.001), with ‘glass’ and ‘rubber’ haptic information

respectively increasing and decreasing ‘shiny’ responses, relative to the visual-only

condition (all three pairwise comparisons significant at p < 0.001 after Bonferroni

corrections). Interestingly, we also found an interaction between haptic condition and

the shading-highlight offset (F (8, 242.5) = 3.90, p < 0.001). Observers were more

dependent on shading-highlight offset as a gloss cue on visual-only trials; when haptic

information about material properties was available, observers down-weighted other

gloss cues.

In summary, we show that cross-modal influences are not constrained to the classic

studies of location and shape perception previously reported. Instead, cross-modal

interactions must also be considered within the domain of material perception.

Specifically, we demonstrate that the haptically specified properties of friction and

compliance have a substantial effect on visual gloss judgments. We also confirm

previous findings that appropriate highlight disparity promotes gloss perception

(Wendt et al., 2008, 2010), but suggest that observers are not as sensitive to relative

disparity sign (highlights in front of versus behind a surface) as predicted by a full

model of highlight geometry (Blake & Bülthoff, 1990, 1991).

Both experiments reported here show that the perceptual system incorporates an

assumption that hard, smooth objects are more likely to be shiny than soft, rubbery

objects, but does this have a sound ecological basis? The physical relationships

between gloss, friction and compliance are complex: decreasing surface roughness at

the micro level (e.g., by polishing) can both increase gloss and decrease friction. At

this scale, smoothness modulates friction by altering the contact area between surfaces

(Krim, 2002). Similarly, higher friction can occur between compliant surfaces as they

deform to increase contact. However, friction and gloss can be unrelated in organic

structures, for example, in the nanostructure that controls the low reflectance of moth

eyes (Wilson & Hutley, 1982) or the glossiness of feathers (Maia, D’Alba & Shawkey,

2011). Additionally, the predominant determinant of friction for many solid surfaces

may not be roughness, but adhesive forces between thin adsorbed films on solid

surfaces (Krim, 2002).

One of the main behavioural advantages for a learnt relationship between friction and

gloss may relate to identifying lubricant surface coatings. Whilst lubricants can be
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powdery and matte, they are more often water or oil-based, and highly glossy.

Observers appear to use gloss in assessing the slipperiness of a surface (Joh, Adolph &

Campbell, 2006; Lesch, Chang & Chang, 2008) - there are clear advantages to

identifying a wet, slippery floor. Thus, although friction and compliance may not be

highly reliable predictors of gloss across natural objects, the visual system appears to

have an implicit understanding of the probabilistic relationship between these

variables, and use this to bias visual perception.

2.3 Experimental Procedures

2.3.1 Stimuli & Apparatus

Our visual-haptic set-up (Figure 2.1D) allowed us to simultaneously present visual and

haptic information in the same perceived location on visual-haptic trials (the simulated

object was 57cm from the observer’s eyes). Observers wore stereo shutter goggles

(CrystalEyes) and head position was maintained using a headrest.

The visual stimulus, rendered with the Phong lighting model (Phong, 1975)

implemented in OpenGL, was consistent with a hemisphere squashed in depth by a

factor of 2 and subtended a visual angle of 7◦. Its smooth (Lambertian) shading

gradient was generated by a single simulated distant lightsource, with 30◦ elevation

(angle between the lighting vector and the screen). The tilt of the lighting vector

(angle between the projected lighting vector and the screen’s vertical axis) took one of

five possible values per trial: 0, ±15◦, or ±30◦. The position of the highlight varied

independently of the shading gradient; lighting tilt was changed before highlight

rendering. In Experiment 1 the tilt offset between shading and specularity had one of

nine possible values on each trial: 0◦, ±30◦, ±60◦, ±90◦ or ±120◦. The highlight depth

(as defined by binocular disparity) was always geometrically correct: lying behind the

convex surface. In Experiment 2, the nine possible values of the shading-specularity

offset were 0◦, ±22.5◦, ±45◦, ±67.5◦ or ±90◦. We also introduced two additional

highlight disparity depths: zero relative disparity (lying on the surface, like a paint

blob) or reversed relative disparity (floating in front of the surface).

Haptic information was provided via a PHANToM force feedback device, with haptic

stimuli generated using OpenHaptics (SensAble Technologies). The visual and haptic

stimuli matched in size, shape and location, creating the perception of touching and

viewing a single object. The object felt either hard and smooth (glass condition) or

soft and rubbery (rubber condition). The former had lower compliance, static and

dynamic friction than the latter.
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2.3.2 Procedure

Observers gave informed written consent and the study was approved by the local

ethics committee. Twenty-two observers (all näıve, 2 male, µ= 22.3 years) took part in

Experiment 1 and 24 observers (22 näıve, 7 male, µ= 20.9 years) took part in

Experiment 2. On visual-haptic trials the stimulus was only visible while observers

touched the stimulus. Trials were presented in a pseudo-random order; each

combination of stimulus values was presented once within each of four blocks.

2.3.3 Data Analysis

Data from Experiment 1 were analysed by fitting psychometric functions to the group

data for each condition and comparing the resultant 50% thresholds (using version

2.5.6 of the psignifit toolbox for Matlab, which implements the maximum-likelihood

method described by Wichmann & Hill (2001)). To identify significant differences

between conditions, data were resampled 10,000 times, with replacement, within each

condition and resultant thresholds were compared. Responses in Experiment 2 did not

reach the 50/50 threshold in all conditions; data were analysed using a 3-way repeated

measures linear mixed model in conjunction with pairwise comparisons.





Chapter 3

Highlights, disparity and

perceived gloss with convex and

concave surfaces

Kerrigan, I. S. & Adams, W. J. (under review at Journal of Vision) Highlights,

disparity and perceived gloss with convex and concave surfaces.

Experimental design, data collection, analysis and write-up were completed by Iona

Kerrigan under the supervision of Wendy Adams; Wendy Adams completed data-fitting

and cross-validation analyses. Aaron Shuai Chang carried out data collection for the

supplementary experiment and this data was submitted for his MSc dissertation at the

University of Southampton; it has been analysed separately for this chapter.

3.1 Abstract

Glossy and matte objects can be differentiated using specular highlights: bright

patches in the retinal image produced when light rays are reflected regularly from

smooth surfaces. However, bright patches also occur on matte objects, due to local

illumination or reflectance changes. Binocular vision provides information that could

distinguish specular highlights from other luminance discontinuities; unlike surface

markings, specular highlights lie not at the surface depth, but ‘float’ in front of

concave surfaces and behind convex ones. I ask whether observers implicitly

understand and exploit these peculiarities of specular geometry for gloss and shape

perception. Participants judged the glossiness and shape of curved surfaces that

included specular highlights at various depths.

Observers demonstrated substantial deviations from a full geometric model of specular

reflection. Concave surfaces appeared glossy both when highlights lay in front of and

47
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(incorrectly) behind the surface. Failings in the interpretation of monocular highlights

were also apparent. Highlight disparity had no effect on shape perception. However,

perceived gloss of convex surfaces did follow geometric constraints: only highlights at

appropriate depths produced high gloss ratings. I suggest, in contrast with previous

work, that the visual system invokes simple heuristics as gloss indicators to

accommodate complex reflections and inter-reflections that occur particularly inside

concavities.

3.2 Introduction

The objects and surfaces that we encounter daily are made of a wide variety of

materials (e.g., stone, metal, plastic or fabric). Each of these materials reflect, refract

and transmit light differently, enabling us to distinguish between them. In this chapter

I consider the perception of surface gloss under binocular viewing. Whilst matte

surfaces scatter reflected light in all directions, glossy surfaces reflect some (or all) light

regularly, creating specular highlights. Both monocular and binocular cues can help

observers to identify bright areas in the image that correspond to specular highlights.

The ‘orientation fields’ of highlights provide one monocular cue: when a glossy object

reflects its surroundings, these reflections are distorted according to the object’s

curvature. Unlike texture, highlights tend to ‘cling’ to areas of high curvature

(Longuet-Higgins, 1960), such that they are aligned with long curvature axes (Fleming

et al., 2004). In addition, it has been suggested that images of glossy objects have a

characteristic skew in their luminance distribution that contributes directly to

perceived gloss (Fleming, Dror & Adelson, 2003; Motoyoshi et al., 2007). However,

skew alone is insufficient to promote percepts of gloss, spatial structure is also

important (Fleming et al., 2003). The location and orientation of specular reflections

must be consistent with the object’s shape, as defined, for example, by diffuse shading

patterns (Beck & Prazdny, 1981; Anderson & Kim, 2009; Kim et al., 2011; Marlow,

Kim & Anderson, 2011).

Object or observer motion causes specular highlights to glide across the surface of a

glossy object, rather than moving with it, like texture (e.g., Hartung & Kersten, 2002,

2003; Doerschner, Fleming, Yilmaz, Schrater, Hartung & Kersten, 2011). As binocular

observers, we have access to analogous information even when the object is static, as

we view the object from the separate vantage points of our two eyes. Highlight

location depends on both the shape of the object and viewer position; a single light

source is reflected from different surface points to reach the two eyes. Consequently,

specular highlights do not lie at the stereoscopically defined depth of the reflecting

surface. For simple curved surfaces, as shown in Figure 3.1, highlights lie behind

convex surfaces, but in front of concave surfaces. (For specific, unusual viewing

conditions, such as a light source lying between the surface and its focus point, these
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rules can be broken, such that highlights appear behind concave surfaces.) With more

complex surfaces and lighting, specular reflections generate disparity fields that may

contain a wide variety of both horizontal and vertical disparities, whose corresponding

depth field may contain discontinuities or be ill-defined (Muryy et al., 2012).

Previous work, exploiting simple curved surfaces, and clearly defined highlight

disparity, suggests that observers use an accurate internal representation of highlight

geometry when estimating gloss and shape (Blake & Bülthoff, 1990, 1991). More

recent studies suggest that gloss perception is enhanced when highlight disparity

(depth) is veridical (Wendt et al., 2008, 2010). Chapter 2 found that convex objects

were interpreted as glossy more often when highlight disparity was veridical compared

with when highlights had zero disparity (i.e., highlights lay on the surface). However,

highlights with geometrically incorrect disparity sign (i.e., those lying in front of,

rather than behind, the surface) were also interpreted as glossy more often than when

highlights had zero disparity, although less often than when highlight disparity was

veridical; these results would not be predicted if the visual system used an accurate

model of highlight geometry. In addition, Blake & Bülthoff (1990, 1991) reported

anomalous results for highlights on concave objects, not predicted by an accurate

model of highlight geometry. They attributed these anomalies to rendering limitations

producing conflicts between stereoscopic and monocular shape cues, such that shape

was not reliably defined for concave objects. They concluded that humans:

“employ a physical model of the interaction of light with curved

surfaces...firmly based on ray optics and differential geometry”.

I tested an alternative hypothesis: observers interpret highlights incorrectly on concave

objects due to an incomplete model of highlight geometry. Observers reported both

shape and gloss for surfaces with various highlight locations and shape cues of varying

reliability (Figure 3.2). The results are clear: observers fail to make full use of

highlight disparity when judging gloss on concave surfaces, even when shape is

accurately perceived.

3.3 Methods

3.3.1 Subjects

Ten observers, including both authors, had normal or corrected-to-normal acuity, good

stereovision (<40 seconds of arc, Stereo Fly test, Stereo Optical Company, Inc.) and

no history of amblyopia or strabismus. Participants gave informed consent and the

local ethics committee approved the study.
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CA

B

Figure 3.1: Concave and convex highlight disparity and visual-haptic set-up.
(A & B) The image of a specular highlight appears in front of a concave surface
(positive relative disparity) and behind a convex surface (negative relative disparity),
adapted and reprinted by permission from Macmillan Publishers Ltd: Nature (Blake &
Bülthoff, 1990), copyright 1990. (C) Visual haptic set-up: observers wore stereo
shutter goggles (CrystalEyes) to enable stereoscopic presentation of stimuli; head
position was maintained using a headrest. Haptic feedback was provided via a
PHANToM force feedback device attached to the observer’s right index finger.

3.3.2 Experimental set-up

Visual stimuli were generated using the Phong lighting model (Phong, 1975)

implemented in OpenGL and displayed on a CRT monitor, viewed via a mirror as

shown in Figure 3.1C. Haptic stimuli were generated using OpenHaptics and presented

using a PHANToM force feedback device (SensAble Technologies). This set-up allows

observers to view and touch simulated objects that are spatially aligned.

The study was conducted in a darkened room. Visual stimuli were consistent with one

convex bump and one concave dimple on a plane (see Figure 3.2), illuminated by a

single distant light source. The inclusion of both a convex and concave stimulus

strengthens the shape percept for the concave object due to the single light source

assumption (Kleffner & Ramachandran, 1992) counteracting the effect of the convexity

prior (Langer & Bülthoff, 2001). The resultant shaded discs each subtended 6.6◦ at the

viewing distance of 57cm, and were displaced ±4.2◦ horizontally from the screen’s

centre. Bumps and dimples were spherical sections, whose centres protruded or

recessed 1.1, 1.6 or 2.4cm from the plane of the screen (Figure 3.3 shows cross-sections

of these shallow, medium and tall objects). The lighting direction had a slant of 64◦

(the angle between the lighting vector and the screen normal) and a tilt of 135◦ (the

angle between a horizontal axis in the screen’s plane and the projection of the lighting

http://www.nature.com
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Figure 3.2: Example stimuli stereo pairs for cross fusion.
For demonstration purposes, example stimuli are presented here as stereo pairs for
cross-fusion but were presented stereoscopically via shutter glasses during the
experiment. (A-C) Visual stimuli for medium and high reliability conditions, 1.6cm
height convex target object. Disparity of highlight is: correct; zero (on the surface);
and reversed (i.e., in front of the surface), for A-C respectively. (D) Low reliability
condition, 1.1cm height concave target, disparity of highlight is reversed (i.e., incorrect,
as far behind the surface as a veridical highlight would have been in front). For
concave objects at this shallowest depth (and not for any other objects) the highlight
is close to or off the edge of the object for all disparities and thus has a different shape
in the left and right eyes’ images. (E) Medium and high reliability conditions, 2.4cm
height concave target object. Disparity of highlight is -20 min arc (i.e., incorrect, at the
furthest point behind the surface that was presented). (F) Medium and high reliability
conditions, 2.4cm height concave target object. Disparity of highlight is correct.
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vector). One of the objects had a specular highlight, whose position in depth relative

to the surface (defined by its relative horizontal disparity) varied across trials, in the

range −20 to +30 arc min. The highlight disparity values presented for each shape

included the correct disparity, zero relative disparity, the opposite absolute disparity

and the opposite relative disparity. The vertical disparity of the highlight was

invariant, and geometrically correct. The horizontal disparity of the highlight was

manipulated by changing the simulated eye positions used to generate the specular

component of the stimulus. This allowed horizontal disparity to be manipulated

independently of vertical disparity for the highlight, whilst keeping highlight shape and

size consistent with the rendered surface. More complex illumination fields can

enhance the perception of gloss (Fleming et al., 2003). However, despite a simple point

light source, when the stimuli were viewed stereoscopically with the correct highlight

disparity, authors and observers perceived very glossy surfaces that, in the medium

and high reliability conditions, resembled polished marble. This combination of a

simple surface shape and a single light source allowed us to systematically measure the

effect of horizontal highlight disparity on gloss perception. To provide a ‘matte’

reference, a stimulus with no highlight was also presented, with a bump and dimple of

±0.8cm. At this depth, under the illumination and scene layout described, a glossy

surface has no visible highlight.

On ‘low reliability’ trials, shape was defined primarily by shading, with a very weak

binocular cue from the inter-ocular differences in the shading pattern (Figure 3.2D). In

addition to shading, stimuli in the medium reliability trials were wrapped with a 1/f

noise texture pattern and cast shadows were also rendered, providing more reliable

depth information (see Figures 3.2A - 3.2C & 3.2E). High reliability trials were visually

identical to the medium reliability trials, but included simultaneous and consistent

haptic (touch) shape information. Observers are able to combine haptic and visual

cues to reduce noise in perceptual estimates and disambiguate shape (e.g., Ernst &

Banks, 2002; Adams et al., 2004; Helbig & Ernst, 2007b; Wijntjes, Volcic, Pont,

Koenderink & Kappers, 2009). The scene was only visible whilst observers made

haptic contact with it, ensuring that observers made their judgements based on the

visual-haptic stimulus, rather than an initial, visual-only stimulus. Low coefficients of

static and dynamic friction, and compliance were chosen such that the objects felt

hard and smooth (implemented via OpenHaptics parameters: stiffness = 0.68;

damping = 0.12; static friction = 0.28; and dynamic friction = 0.38).

3.3.3 Procedure

On each trial, an arrow indicated which of the two shaded discs should be judged.

Observers adjusted a visual-haptic pointer on a sliding scale to indicate how shiny the

object looked from ‘not shiny’ (0) to ‘very shiny’ (10). They utilised a wide range of
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response values; surfaces without highlights were given low gloss values (gloss rating

for concave and convex objects: µconcave = 2.41, SEM = 0.57, µconvex = 2.10, SEM =

0.55). Via another sliding pointer, observers adjusted a 2D contour until it matched

the cross-section of the judged shape. Observers were given unlimited time to view the

stimuli and adjust their settings before proceeding to the next trial. Each observer

completed 2 blocks of 133 trials for the medium and high reliability conditions and 4

blocks for the low reliability condition. Each block comprised every combination of

target object position (left/right), bump/dimple height (6 possible values) and

highlight disparity (10 or 11 values, including monocular highlights and highlight

absent condition). Trial order within blocks and block order across participants were

randomised. The study took approximately two hours, including breaks.

3.4 Results

The manipulation of shape reliability was effective in modulating observers’ curvature

perception. With minimal shape cues (low shape reliability condition), the sign of

surface curvature was accurately reported, but curvature magnitude was

underestimated and responses were variable, particularly for concave surfaces (see

Figure 3.3A). When reliable shape cues were available, observers’ convex and concave

surface perception was very accurate (medium and high shape reliability conditions,

Figures 3.3B & 3.3C). Perceived shape was very similar in the medium and high

reliability conditions, with no significant differences between the two except for the

deepest objects (±2.4cm), where slightly more depth was reported in the high

reliability condition (F (1, 7) = 5.70, p = 0.048 (µhigh = 2.6cm, µmedium = 2.3cm) and

F (1, 7) = 27.97, p = 0.001 (µhigh = −2.8cm, µmedium = −2.6cm), respectively). In

other words, the addition of haptic shape information had little effect on shape

perception, suggesting that shape information provided by the visual cues in these

conditions (shading, cast shadows, texture, disparity) was very reliable, allowing

minimal effects of shape priors or residual cues to flatness (accommodation, vergence).

Gloss ratings were also very similar across the medium and high reliability conditions,

with significant differences only for the shallowest concave surface which was rated as

slightly glossier in the medium reliability condition (LHS: F (1, 7) = 6.62, p = 0.037,

µhigh = 7.0, µmedium = 7.6; RHS: F (1, 7) = 9.49, p = 0.018, µhigh = 4.0,

µmedium = 4.9).

Despite excellent shape recovery in the medium and high reliability conditions,

observers showed perceptual failures, relative to a full geometric model, when judging

the gloss of concave surfaces (Figures 3.4A - 3.4C); larger symbols show the

geometrically correct highlight depth for each surface shape - if an accurate model of

highlight geometry were implemented, perceived gloss ratings would peak at these

points. When highlights were located correctly in front of the surface, in agreement
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Figure 3.3: Shape responses for low, medium and high reliability conditions.
(A-C) show shape responses for the low, medium and high reliability conditions
respectively. Each shape is indicated by a different colour - see legend - error bars
show ±1SEM. Adjacent contours show the true stimulus heights, each contour is
aligned with the correct height response on the y-axis. Larger symbols show the
geometrically correct highlight disparity.

with a geometrically accurate model, concave surfaces were perceived as quite glossy

(average gloss rating for correct highlights across medium and high reliability

conditions: 6.48). Also, as expected, gloss ratings were lowest when the highlight lay

on the surface (zero relative disparity, average rating: 4.20); the straightforward

interpretation of this case is a bright patch on a matte object caused by a light paint

spot or local spotlight (Figure 3.2B). The dip in gloss ratings at zero disparity is clear

across surface curvature sign and magnitude. Interestingly, however, as the highlight

moved further away from its correct position, to sit behind the concave surface, that

surface was again perceived as glossy, just as glossy as a surface with a correctly

positioned highlight. In the ‘behind’ position, the highlight is far from correct, but

observers appear to disregard highlight disparity sign for concave objects: both near

and far bright spots are interpreted as highlights (average gloss rating with incorrect

sign, but correct magnitude: 6.90). I tested sensitivity to highlight disparity sign by
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Figure 3.4: Perceived gloss for low, medium and high reliability conditions.
See caption on next page.
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Figure 3.4: (A-C) show perceived gloss for concave shapes in the three reliability
conditions, respectively, whilst (D-F) show perceived gloss for convex shapes. Legend
as in Figure 3.3, error bars show ±1SEM and larger symbols again show the correct
highlight disparity. Gloss ratings for the shallowest concave surfaces have been plotted
separately for objects on the left and right (light and dark green) because when this
object was presented to the right of fixation the highlight was only partially visible to
one eye due to the geometry of the scene, whereas when it was presented on the left, a
large highlight was visible to both eyes.

comparing asymmetric and symmetric curve fits to the gloss rating data; data

following a symmetric pattern would suggest that observers are insensitive to highlight

disparity sign. The asymmetric fit was defined by an inverted Gaussian with five free

parameters (the mean, corresponding to the low point of the function, and separate

spread and scaling parameters on each side of the mean). For the symmetric curve fit,

a single pair of spread and scaling parameters defined the curve on both sides of the

mean. Responses to the medium and high reliability stimuli for concave shapes were

equally well fit by the symmetric model, with the asymmetric model producing only a

modest improvement (reduction in sum of squared residuals: µmedium = 26%,

µhigh = 21%, averaged across object depths). A cross-validation technique revealed

that the asymmetric model was not significantly better than the symmetric model

(p > 0.05 for all concave objects, medium and high reliability conditions, from t-tests

on residuals calculated by excluding each data point in turn). This suggests that

observers disregard the sign of highlight disparity, despite being sensitive to its

magnitude. In fact, some observers appear to lack even a basic model of highlight

geometry, despite good stereoscopic vision: two observers (excluded from all analyses)

were completely insensitive to highlight disparity, perceiving any surface with a

highlight as very glossy, irrespective of highlight depth.

In contrast with concave objects, a more sophisticated model of highlight geometry

predicts observers’ gloss perception of convex objects. Across all observers, convex

objects appeared highly glossy when the highlight disparity was correct or close to

correct (see Figures 3.4D - 3.4F, average gloss rating for correct highlight across

medium and high reliability shape conditions: 8.44). The lowest gloss ratings were

reported when the highlight had zero relative disparity (average gloss rating across

medium and high reliability conditions: 4.86), and ratings were significantly higher for

correct than incorrectly signed highlight disparity (mean rating for reversed highlight

disparity: 5.58). I again tested sensitivity to highlight disparity sign using symmetric

or asymmetric data fits. In the medium and high reliability conditions, where gloss was

strongly modulated by highlight disparity, responses to convex objects were poorly fit

by the symmetric model, with considerably better asymmetric fits (reduction in sum of

squared residuals: µmedium = 53%, µhigh = 50%). Cross validation confirmed that the

asymmetric model provided a better fit for convex objects (all p < 0.05, except 1.6cm

and 2.4cm objects in medium condition: p = 0.06 and p = 0.08). However, note the
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larger error bars for the right hand side of plots 3.4E and 3.4F - some observers were

more sensitive than others to disparity sign; a small sub-group of observers had a

tendency to perceive convex surfaces with a near (incorrect) highlight as glossy. This

was rather surprising given the alternative, viable stimulus interpretation: in the case

of convex objects, a highlight with positive (incorrect) disparity can be perceived as a

separate white object, like a small cloud, floating in front of a matte surface (see

Figure 3.2C). This description fits both informal observations of the convex stimuli and

the majority of the observers’ data. Further analyses confirm that observers are more

sensitive to incorrectly positioned highlights for convex, than for concave objects:

averaged across disparity magnitude, convex objects with highlights (incorrectly) in

front of the surface are perceived as significantly less glossy than concave objects with

incorrect far highlights (t7 = 2.5, p < 0.05; µconvex = 4.9, µconcave = 6.5, averaged

across medium and high reliability and all convex or concave shapes, excluding the

shallowest surfaces, where gloss is complicated by partially occluded highlights - see

below). Furthermore, gloss ratings depend on disparity sign for convex, but not

concave objects (main effect of disparity sign for convex objects: F (1, 7) = 8.1,

p = 0.025; µcorrect = 8.0, µincorrect = 5.4; but not concave objects: F (1, 7) = 4.2,

p > 0.05; µcorrect = 5.9, µincorrect = 6.4).

Across both convex and concave surfaces, highlight disparity had a smaller modulatory

effect on gloss perception in the ‘low’ reliability condition, where the depth of the

surface, and thus the relative depth of the highlight, was not reliably defined (Figures

3.4A & 3.4D).

For all highlight depths, gloss perception of concave surfaces was modulated by the

magnitude of surface curvature: surprisingly, highly curved surfaces produced lower

gloss ratings. The exception is the shallowest concave surface on the right of fixation

(Figures 3.4A - 3.4C lowest line) - in this configuration only a sliver of a highlight was

visible on the edge of the surface, and observers rated this surface as least glossy. I

implemented the Phong model (Phong, 1975) to produce highlights whose spread is

modulated by surface curvature (compare Figures 3.2A and 3.2D). The shape-gloss

relationship in the data suggests that observers perceive surfaces with larger highlights

as glossier, consistent with previous and recent evidence (Beck & Prazdny, 1981;

Anderson, Marlow & Kim, 2012). This is true for gloss judgments of both concave and

convex surfaces (main effect of highlight size, as indexed by object shape: concave

surfaces F (3, 21) = 7.5, p = 0.018, G-G correction, ε = 0.44; convex surfaces

F (2, 14) = 7.5, p = 0.051, G-G correction, ε = 0.56). The shallowest concave shape

(1.1cm), presented on the right of fixation (small highlight) was perceived as less glossy

than the same shape presented on the left (large highlight, p = 0.002); it was also less

glossy than the 1.6cm concave surface (p = 0.011, Bonferroni corrected comparisons).

The shallowest convex surface (large highlight) appeared glossier than deeper surfaces

(1.1cm vs. 1.6cm, p = 0.051). This shape effect for convex surfaces was more
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pronounced with incorrectly positioned highlights (interaction between highlight sign

and shape magnitude F (2, 14) = 7.3, p = 0.029, G-G correction, ε = 0.52); it appears

that the ‘larger highlights = more glossy’ heuristic appears to come into effect when

there is uncertainty in the interpretation of a potential highlight (concave objects,

convex objects with misplaced highlights). There was also an interaction between

highlight disparity sign and shape magnitude for concave objects (F (3, 21) = 3.4,

p = 0.036); the modulation of gloss perception by highlight disparity is slightly

different for the shallowest concave object presented on the right of fixation (bottom

line, Figure 3.4C).

Why might the visual system use highlight size as a gloss cue? Smoother surfaces

actually create smaller, more focused highlights, given a single distant light source.

However, in the more complex light fields that typically illuminate natural scenes, very

glossy or mirrored objects reflect the surrounding scene more sharply than matte

objects (Pellacini, Ferwerda & Greenberg, 2000) and so may produce multiple large,

bright areas.

Further limitations to the observers’ model of highlight geometry were revealed when

they viewed monocular highlights (within otherwise binocular scenes). Monocular

highlights occur in normal viewing of glossy surfaces such as the stimuli used in this

study, either when the surface does not extend far enough to ‘capture’ one eye’s

highlight, or when the light’s path is occluded by the surface (the potential reflection

point lies within a shadow). For a given scene it is geometrically plausible to have a

monocular highlight visible to one eye, but not to the other eye. However, observers do

not display this sensitivity, making equal, moderately glossy judgements for a

monocular highlight presented to either the correct or incorrect eye (right hand

component of each plot in Figure 3.4).

3.5 Discussion

Observers’ interpretation of specular highlights reveals a limited geometric model.

Although the glossiness of convex surfaces is perceived broadly in line with the

expectations of an accurate geometric model, this is not the case across all stimuli:

bigger highlights signal more gloss; monocular highlights viewed with either eye

suggest moderate gloss. Surprisingly, for concave surfaces, highlights in entirely the

wrong depth location - behind the surface - signal high gloss.

When the visual system is presented with a highlight at the wrong depth location (e.g.,

behind a concave surface rather than in front of it) it must find some ‘explanation’ of

the retinal input. One interpretation, given a misplaced highlight, would be to amend

the estimate of surface shape to accommodate it, e.g., a concave surface with a far

(incorrect) highlight could be perceived as glossy and convex. Although
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convex/concave reversals driven by highlight disparity have been reported elsewhere

(Blake & Bülthoff, 1990, 1991), highlight disparity had little effect on perceived shape

in the current study. It may be that a prior for overhead lighting (e.g., Kleffner &

Ramachandran, 1992; Adams et al., 2004) and weak disparity cues remained strong

enough to veto a reversed curvature interpretation even in the ‘low reliability’

condition. In a supplementary experiment I explored this possibility further by making

object curvature more ambiguous with simulated lighting from the left or right.

However, perceived curvature sign continued to be unaffected by highlight disparity -

see Appendix 3.A for details. Rather than changing their shape estimate, observers

perceived concave surfaces to be glossy, even when the binocular highlights were

inconsistent with that interpretation. This failure to reject an interpretation of gloss

was not due to uncertainty in shape as suggested by Blake & Bülthoff (1990, 1991):

even when shape information was reliable and shape estimates were accurate, observers

perceived concave surfaces with incorrect highlights as glossy.

A potential interpretation of an errant bright spot positioned behind a concave surface

is of a light source viewed through a transparent surface. Is it possible that observers

perceived not gloss, but transparency? Gloss and transparency are somewhat related:

the separation of image components at different depths, corresponding to reflections

and surface texture, is similar to that necessary to perceive transparency (Anderson,

2011) and gloss has even been conceptualised as a form of transparency (Mulligan,

1993). Furthermore, transparent objects are often glossy (Fleming & Bülthoff, 2005);

the surface structure required to transmit light regularly will also result in mirror-like

reflection of any reflected light. However, it is unlikely that observers perceived

transparency from the experimental stimuli: casual inspection of Figure 3.2E reveals a

percept of gloss rather than transparency; other transparency cues are absent - the

surface in front of the light source is not visible with reduced contrast, and nothing else

can be seen through the surface. Instead, it seems that the visual system determines

that the bright spot in the image is a specular highlight on a glossy, concave object.

Why might the visual system accept this interpretation? Firstly, if a light source is

very close to a concave surface (between the surface and its focal point) a virtual, far

image is produced. For the stimuli used here, such a light source would need to be less

than 1.7cm or 2.7cm from the deepest or shallowest concavities respectively, and closer

still to produce highlights at the actual disparity-defined depths presented to

observers. Such light sources (unlike the simulated distant one) would be clearly visible

in the image. Alternatively, light sources at low elevation (close to the image plane),

could in theory produce inter-reflections leading to spurious binocular matches. Whilst

these interpretations are inconsistent with the stimulus images, the visual system

apparently knows that the relationship between highlight disparity and gloss is more

complex for concave objects, and thus regards a highlight on a glossy surface as the

most plausible explanation for the errant bright region. Observers thus perceived
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highlights either in front of, or behind concave surfaces as indicative of gloss. Only

highlights lying at the surface depth result in a perception of a matte surface.

Observers did implement the constraints of highlight geometry when assessing the

glossiness of convex surfaces. This could be because highlight geometry is simpler for

the convex than for the concave case: for convex surfaces, highlight images will always

be virtual, located behind the surface, and not subject to surface inter-reflections. In

contrast, given particular viewing and lighting conditions, highlights can appear either

in front of or behind a concave surface, or can be partially or completely occluded from

view by the surface itself. It appears that observers invoke a simplified model of

highlight geometry that is robust to the complexities of reflections and inter-reflections

inside concave objects, perceiving any potential highlight that lies off the surface (i.e.,

with non-zero relative disparity) as evidence of gloss. Additionally, due to the statistics

of objects in our environment, observers may have had more experience with convex

objects than concave, and may thus have more reliable representations of their

highlight geometry.

Despite a simplified model of gloss, we rarely make errors in our estimates of object

material. No doubt other cues to surface shape and gloss are exploited, such as the

alignment of specularities and diffuse shading (Anderson & Kim, 2009; Beck &

Prazdny, 1981), the relationship between highlight colour and surface colour (Nishida,

Motoyoshi, Nakano, Li, Sharan & Adelson, 2008), flow fields of local image orientations

in richer light fields (Fleming et al., 2004) and highlight motion (Hartung & Kersten,

2002, 2003; Wendt et al., 2010; Sakano & Ando, 2008; Doerschner et al., 2011).

However, it remains surprising that the binocular disparity of specular highlights,

which could be such a valuable cue to surface gloss and shape, constrains perception in

an incomplete manner.

3.A Appendix

In a supplementary experiment, we investigated whether highlight disparity would

have an effect on perceived curvature sign when shape was more ambiguous. To this

end, simulated illumination was from the left or right (lighting tilt = 0◦ or 180◦),

rather than from above-left (consistent with a light-from-above prior). In addition,

shading and texture were consistent with an object height of ±1.1cm, but the disparity

of this shading and texture was consistent with a flat surface (as in Blake & Bülthoff

(1990, 1991)). Observers estimated surface shape (via a sliding pointer, as in our main

experiment) on trials with a ‘concave highlight’ (positive highlight disparity, consistent

with a concave interpretation), ‘convex highlight’ (negative highlight disparity,

consistent with a convex object) or no highlight.
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In contrast to previous findings (Blake & Bülthoff, 1990, 1991), highlight disparity had

only a small effect on the sign of curvature; all objects were perceived as convex on the

majority of trials (proportion perceived as convex: 70.7%, 86.9% and 73.2% for

‘concave’, ‘convex’ and no highlight conditions, respectively). An ANOVA revealed a

significant effect of highlight condition (F (2, 26) = 4.73, p = 0.032, G-G correction,

ε = 0.70), but this was driven by a significant difference between the ‘no highlight’ and

‘convex highlight’ conditions (Bonferroni pairwise comparisons, p = 0.028, other

comparisons n.s.). Thus, we failed to replicate Blake & Bülthoff’s finding that highlight

disparity sign determined perceived curvature. Disparity sign did affect quantitative

depth: the magnitude of depth estimates varied significantly according to the highlight

condition (concave highlight: 1.12cm, convex highlight: 1.35cm, no highlight: 1.06cm,

F (2, 26) = 12.21, p = 0.001), with significant differences between positive (‘concave’)

and negative (‘convex’) highlight disparity (p = 0.006) and between the ‘convex’ and

‘no highlight’ conditions (p = 0.007, Bonferroni pairwise comparisons).

In summary, therefore, our supplementary experiment found that highlight disparity

has little effect on perceived curvature sign, and a small but significant effect on

curvature magnitude. There was an effect of highlight presence, with the ‘convex’

highlight producing more convex responses than no highlight. This finding is in

agreement with a bias reported elsewhere (Bouzit, Adams & Graf, 2007); the presence

of a highlight acts as a cue to convexity because highlights are more likely to be

occluded on concave objects. Why did we fail to find the large effects of highlight

disparity on perceived curvature sign, as reported previously? In contrast with

previous studies (Blake & Bülthoff, 1990, 1991), our observers estimated quantitative

depth, rather than making a 2AFC on convexity sign. This methodological difference,

alongside stimulus differences may account for the somewhat disparate findings (our

lack of any significant effect on curvature sign). Their stimuli showed convex and

concave regions within the same object, so a convexity prior (e.g., Langer & Bülthoff,

2001) would have little effect on perceived curvature sign. In contrast, our stimuli were

separated spatially which could have increased the influence of the convexity prior on

the attended object (van Doorn, Koenderink & Wagemans, 2011). Together, these

results suggest that whilst highlight disparity sign can be used as a cue to object

shape, it is a very weak cue and will normally be dominated by other cues or biases,

such as the convexity prior.





Chapter 4

Development of audio-visual

integration

Experimental design, data collection, analysis and write-up were completed by Iona

Kerrigan under the supervision of Wendy Adams. Fiona Berry, Nesta Caiger, Emma

Ryan and Katie Hobbs helped with data-collection for these experiments and the data

from both experiments were submitted for their BSc dissertations at the University of

Southampton; they have been analysed separately for this chapter.

4.1 Introduction

To maintain a stable, unified percept of the world, it is helpful to combine information

from different sensory cues. Shape and depth information is combined both within a

single sensory modality (e.g., Hillis et al., 2004; Knill & Saunders, 2003) and across

multiple modalities (e.g., Ernst et al., 2000). By combining multiple information

sources it is possible to reduce uncertainty in estimates of world properties - for

example combination of visual and haptic estimates of slant gives rise to a more precise

estimate (Ernst & Banks, 2002). Chapter 2 and Chapter 3 considered how a similar

approach can be applied to material perception. This chapter investigates whether

optimal cross-modal integration is developed in 5-7 year old children. Since research

into optimal integration for material perception is still in its infancy, an audio-visual

task was chosen to investigate the development of cross-modal integration; this has the

advantages that adult audio-visual integration has previously been characterised as

optimal (e.g., Alais & Burr, 2004; Shams et al., 2005b) and that the equipment

required to present stimuli could be transported easily to the primary school where the

children were tested. Audio-visual cue integration has been shown to give rise to a

variety of interesting illusions which are described below.

63
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The ventriloquist effect occurs when a sound appears to originate from a different

location to its actual source, due to a synchronous, spatially separated visual stimulus.

Early studies attributed this effect to visual ‘capture’ of the auditory stimulus such

that vision dominates the percept (e.g., Pick et al., 1969). The idea that vision is

always ‘superior’ to audition was subsequently disproved in demonstrations of apparent

‘capture’ of vision by other senses under certain conditions (e.g., auditory capture of

vision, Morein-Zamir et al., 2003). The assumption that vision will always capture

audition arose because vision is usually superior to audition for spatial tasks, however,

for temporal tasks audition is usually better and so it appears that there is auditory

capture of vision (Morein-Zamir et al., 2003). Alais & Burr (2004) showed that the

theories of visual or auditory capture were somewhat limited as they can only describe

the extreme cases where vision or audition is much more reliable than the other. They

modulated the reliability of visual stimuli in a localisation task and were able to

recreate both auditory and visual ‘capture’ of the other sense; they also demonstrated

that when the reliabilities of auditory and visual stimuli were similar, neither sense

dominated and responses were an average of the two estimates. They explained their

findings as optimal Bayesian integration of auditory and visual cues, each weighted in

proportion to its relative reliability. The different theories of cue combination are

discussed in more detail in Section 1.3.

Another example of visual percepts being altered by the addition of an auditory

stimulus is demonstrated in the ‘bounce/stream’ effect (Sekuler et al., 1997). In this

illusion, two identical discs move towards one another and continue past each other.

Most adult observers perceive this as two objects moving past each other (‘streaming’).

However, the addition of a sound at the objects’ coincidence results in a changed

percept in which the objects appear to ‘bounce’ off one another. Whilst the

bounce/stream effect has been widely studied in adults, only one study has examined

it in childhood (Scheier et al., 2003). Scheier et al. (2003) used looking-time measures

to determine whether infants experience this illusion; they found that infants from six

months of age could discriminate between trials in which the sounds were presented

either at the point of the discs’ coincidence or offset in time by 1.3 seconds (the visual

stimuli remained identical in both conditions). They attributed this to a percept of

bouncing when the sound was coincident, and a percept of streaming when the sound

was offset. However, looking time measures can be very difficult to interpret and Slater

(2003) proposed an alternative explanation in which infants might experience the same

visual percept in both conditions (sound coincident and sound offset) but respond to

differences in audio timing relative to that percept.

The visual scene in the bounce/stream effect is ambiguous in the sense that both

interpretations (bouncing or streaming) are consistent with the visual stimulus.

Auditory stimuli can also alter the perception of visual scenes in which there is an

underlying reality but which are ambiguous due to noise in sensory estimators, as
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demonstrated in the ‘illusory flash’ or ‘fission’ effect (Shams et al., 2000). This effect

occurs when a single visual flash is presented together with two or more auditory

beeps, leading to the perception of more than one flash. A related illusion is the

‘fusion’ effect (Andersen et al., 2004) in which fewer beeps than flashes are presented,

and the observer perceives fewer flashes as a result. Both of these effects have been

widely studied in adults; in addition to psychophysical evidence for perceptual

integration (e.g., McCormick & Mamassian, 2008), neuro-imaging studies have shown

that auditory stimuli used in these tasks can modulate activity in primary visual

cortex (e.g., Shams, Iwaki, Chawla & Bhattacharya, 2005a; Shams, Kamitani,

Thompson & Shimojo, 2001; Watkins, Shams, Tanaka, Haynes & Rees, 2006; Watkins,

Shams, Josephs & Rees, 2007).

Very few studies have examined the developmental timecourse of fission and fusion

effects. Tremblay et al. (2007) compared these effects across three age groups: 5-9,

10-14 and 15-19 years old. They found that no difference existed in the number of

either fission or fusion illusions between the different age groups. They suggest that

this is due to the audio-visual integration mechanisms necessary for the task

developing very early: before 5 years old. However, it is not clear that 15-19 year olds

would experience the same audio-visual percepts as mature adults: no adult control

group was reported in this study. The fusion effect appears from their data to be

weaker (although not significantly) in 15-19 year olds than in the younger groups,

possibly suggesting continuing maturation of audio-visual integration. The size of

fission or fusion effects does not directly allow evaluation of audio-visual integration

mechanisms. To determine whether an optimal Bayesian integration strategy is used

(Section 1.3) unimodal percepts must be measured in order to generate predictions of

responses to both cue conflict and congruent bimodal trials.

Tremblay et al. (2007) compared the strength of the fission and fusion illusions between

age groups but did not use unimodal response data to predict conflict trial responses

so could not conclude whether an optimal integration strategy was used by any of the

groups. Despite this they conclude that audio-visual mechanisms are mature by the age

of their youngest participants: 5 years old. In a more recent study of fission and fusion

illusions in children, Innes-Brown et al. (2011) compared a group of 8-17 year olds with

adults using the fission/fusion task. In contrast with Tremblay et al. (2007), they claim

that audio-visual integration is immature in 8-17 year olds, being greater and less

selective than in adults, with children experiencing more fission illusions. However,

these claims may be unjustified: although they find a larger fission effect in children, it

could be that this is as a result of an optimal integration strategy but with greater

uncertainty in visual estimates. The higher uncertainty (variance) in children’s visual

estimates could result in the auditory estimate being weighted more heavily and hence

dominating. Since there are no unimodal auditory trials reported, it is not possible to

compare the reliability of each modality’s estimate or to test for optimal integration.
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The contradictory conclusions of Tremblay et al. (2007) and Innes-Brown et al. (2011)

stem from a common weakness in their approaches: they do not measure visual and

auditory unimodal estimates and so are unable to distinguish whether differences in

children’s and adults’ experiences of the fission/fusion illusions result from different

integration strategies or a common strategy with different relative cue reliabilities.

A number of studies have suggested that sensory integration develops relatively late,

becoming statistically optimal between 8 and 12 years old (Gori et al., 2008; Nardini

et al., 2008, 2010, see also Section 1.5). Nardini et al. (2008) found that, in contrast

with adults, children below 8 years old did not integrate visual cues with vestibular

and proprioceptive cues to benefit from a reduction in uncertainty. Nardini et al.

(2010) showed that two visual cues, texture and disparity, are not optimally integrated

in 6 year olds, resulting in greater uncertainty in slant estimates but improved ability

to discriminate between the two cues as compared with adults. The uncertainty

reduction due to sensory integration was found to be fully developed by 12 years old.

Visual-haptic integration is also sub-optimal before 8 years old, with one sense

dominating the other even if the dominant sense is not the most reliable (Gori et al.,

2008). Gori et al. found that between the ages of 8 and 10 years old this visual-haptic

integration becomes statistically optimal. Late development of sensory integration

(both within and between senses) has been posited to allow access to individual

sensory estimates, and so enable detection of conflicts between these estimates; this in

turn may provide the error signals required to drive recalibration as the body develops

(Gori et al., 2008; Nardini et al., 2010). Each of these studies involves either

comparison of multiple stimuli (Nardini et al., 2010; Gori et al., 2008) and/or working

memory demands (Gori et al., 2008; Nardini et al., 2008). In young children, the noise

added by these additional task demands may overwhelm any small decreases in

bimodal variance (compared with unimodal variances) such that even if they used an

optimal integration strategy, it might not be detected (Nardini et al., in press).

Whilst it is helpful to consider the audio-visual integration abilities of children over the

age of 8 (as Innes-Brown et al. did), given the evidence from these studies that sensory

cue combination matures between approximately 8 and 12 years old, it would also be

useful to consider the abilities of children younger than 8 years old. Whereas previous

studies tested the size of the fission/fusion effect in childhood, to test whether cue

combination is optimal it is necessary to measure unimodal cue estimates to generate

predictions for bimodal conditions. The study presented here compares a group of 5-7

year olds with adults on both the bounce/stream and fission/fusion tasks. These tasks

offer two tests of integration abilities: the bounce/stream task considers whether sound

can affect the percept of a visual stimulus; the fission/fusion task is a stronger test

which, through modelling responses, allows quantitative predictions regarding how

sound affects the percept of a visual stimulus. Neither of these tasks has memory

demands beyond reporting the percept on each trial.
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4.2 Experiment 1: Bounce/Stream

4.2.1 Method

4.2.1.1 Participants

Observers were students at the University of Southampton (adults) and pupils at a

local primary school (children). None of the participants were experienced

psychophysical observers and all were näıve to the purposes of the experiment. All

observers had normal or corrected-to-normal vision and normal hearing and gave

informed consent before the experiment, which was approved by the local ethics

committee. In addition to the child’s consent, parents of child observers gave informed

consent for their child to participate.

Twenty-seven adults participated in exchange for course credit. The mean age was

20.8 years (standard deviation = 2.5 years). Fifty-six children participated in this

study; the mean age was 79.9 months (6.7 years, standard deviation = 7.0 months).

Most (52) of these children also participated in the second experiment.

4.2.1.2 Apparatus

Stimuli were generated and displayed using Matlab 2009b and the Psychophysics

Toolbox (Brainard, 1997; Pelli, 1997; Kleiner, Brainard & Pelli, 2007). Visual stimuli

were presented on either a MacBook Pro or MacBook running OS X version 10.6.6.

The viewing distance was 60cm, in a room with normal levels of ambient light.

Auditory stimuli were presented via headphones.

4.2.1.3 Stimuli

Visual stimuli were white discs subtending an angle of 1◦ with a luminance of

15.0cd/m2 on a mid-grey background. The discs appeared in the top corners of the

screen and travelled diagonally across the centre at a speed of 6◦ per second, forming

an X shape (see Figure 4.1)). These stimuli produce one of two perceptual

interpretations: on reaching the screen’s centre, the discs either appear to (i) continue

their path, ‘streaming’ past each other, or (ii) ‘bounce’ off each other. To allow

participants to understand and identify the two percepts, practice trials used two discs

of different colour and luminance (dark blue and light pink) to create unambiguous

‘bounce’ or ‘stream’ trials. On experimental (ambiguous) trials the discs were both

white. However, pilot data showed that on ambiguous trials with identical discs,

children perceived bouncing on nearly all trials (µ=81%; 8 out of 12 participants

responded bouncing on more than 90% of trials). To allow us to explore the effects of
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Time

Figure 4.1: Schematic of stimuli for ‘bounce/stream’ experiment

auditory stimulus components, we manipulated the experimental stimuli to bias the

children’s percepts toward streaming: the luminance of one disc was decreased slightly

(14.1cd/m2) and its size was increased (to subtend an angle of 1.04◦). This

manipulation was extremely difficult to detect, even for the experimenters who were

aware of the differences. Observers were not informed of the bias, however it did

produce more balanced ‘bounce’ and ‘stream’ responses. For adults, the two discs were

identical on experimental trials. Trials were either silent or accompanied by a 17ms

beep of 1500Hz (56dB, chosen to be clearly audible but not uncomfortably loud),

150ms before coincidence, at coincidence or 150ms after coincidence.

4.2.1.4 Procedure

Eight unambiguous practice trials (four bounce, four stream, half with a beep at

coincidence, half without) were used to check that the participant understood the task.

Adults completed 80 experimental trials (20 repetitions of each of 4 sound conditions:

absent, pre, at and post coincidence). Children completed 20 trials (5 repetitions x 4

sound conditions). In both cases, observers made a two-alternative forced choice

(2AFC) between whether the discs bounced or streamed past each other by selecting

an icon representing the movement. Adults sat alone to complete the study whereas a

researcher sat with each child. There were up to four children participating in the

room at one time.
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Absent Pre Coincident
(µ = 0.40) (µ = 0.60) (µ = 0.67)

Pre (µ = 0.60) p < 0.001? - -

Coincident (µ = 0.67) p < 0.001? p = 0.042? -

Post(µ = 0.60) p < 0.001? p = 1 p = 0.046?

Table 4.1: Comparisons of all participants’ ‘bounce’ responses by timing of
auditory stimulus
Pairwise comparisons of the proportion of ‘bounce’ responses in each of the auditory
timing conditions. Means are given in the column and row headings and all p-values
are Bonferroni corrected; ? indicates significant differences (p < 0.05). Timing of
auditory stimulus is relative to the coincidence of visual discs.

4.2.2 Results

For each auditory condition and for each participant the proportion of trials was

calculated in which the discs were perceived to have bounced rather than streamed.

An ANOVA was used to explore the effects of age group (adults, children) and

auditory condition (sound absent, pre-, at- and post-coincidence)

There was no main effect of age group; our stimulus manipulation was successful in

biasing child observers towards a streaming response, producing the same overall

proportion of ‘bounce’ responses for adults and children (adults vs children,

F (1, 81) = 0.21, p > 0.05).1 Observers were sensitive to both the presence and relative

timing of auditory stimuli (main effect of auditory condition: F (3, 243) = 25.19,

p < 0.001, G-G corrections, ε = 0.80). Participants experienced significantly more

bouncing percepts when the auditory stimulus was present than absent and

significantly more bouncing percepts when the auditory stimulus was at the discs’

coincidence than when it was offset in either direction (see Table 4.1 for details).

There was, however, an interaction between auditory condition and age group

(F (3, 243) = 4.61, p = 0.007, G-G correction ε = 0.80). For children, ‘bounce’ responses

were significantly more prevalent when the beep was present than absent (pairwise

comparisons shown in Figure 4.2). However, bounce responses were not significantly

different between the three beep present conditions (pre, coincident, and post).

In contrast, adults were sensitive not only to the presence or absence of the auditory

stimulus, but also to its timing relative to the visual stimulus. The proportion of

bouncing responses was highest when the auditory stimulus was coincident with the

discs intersecting and lowest when the auditory stimulus was absent. When the

auditory stimulus was presented 150ms pre- or post- the intersection of the discs, the

proportion of bouncing trials was significantly higher than in the absent condition and

1However, as children got older the proportion of trials which they perceived as ‘bounce’ trials reduced
(correlation of age in months vs. mean ‘bounce’ responses across all auditory conditions, r = −0.34,
p = 0.01).
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Figure 4.2: Mean proportion of bounce responses at each timing interval.
Adult data is shown in red; child data is shown in blue. Significant pairwise
comparisons (Bonferroni corrected) are shown. In addition to these, there was a
marginally significant difference in the children’s data between the proportion of trials
perceived as bouncing for the beep absent condition and the post coincidence beep
condition (p = 0.073). Error bars represent ±1 SEM.

significantly lower than in the coincident condition (see Figure 4.2 for details of

pairwise comparisons). This adult pattern is consistent with previous results (Sekuler

et al., 1997).

To explore more fully the different patterns observed in children and adults the

possible causes of the interaction were separated into two factors: firstly, the presence

or absence of the auditory stimulus could affect the percepts of children and adults

differently; secondly, the two groups may be differently sensitive to the relative timing

of the auditory stimulus compared with the visual stimulus. To test for the former, the

difference between sound present (coincident) and sound absent conditions were

compared in adults and children. The presence of the auditory stimulus promoted

bouncing percepts (main effect of sound present: F (1, 81) = 47.48, p < 0.001). There

was no effect of age although there was a significant interaction: adults experienced a

larger increase than children in the proportion of bouncing percepts when the sound
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Absent Coincident

Adults 0.32 0.71

Children 0.48 0.63

Table 4.2: Mean proportion of ‘bounce’ responses by presence of auditory
stimulus in adults and children

Coincident Offset

Adults 0.71 0.59

Children 0.63 0.61

Table 4.3: Mean proportion of ‘bounce’ responses by temporal alignment of
auditory and visual stimuli in adults and children

was present compared with when it was absent (F (1, 81) = 9.31, p = 0.003, means

shown in Table 4.2).

Before testing for the possibility that the interaction may have been partially caused

by differences in responses with different relative timing, the ‘pre’ and ‘post’ conditions

were tested to check for significant differences. Responses to pre and post conditions

were not significantly different for either adults or children and so an average was

taken and named the ‘offset’ condition. The offset condition was then compared with

the coincident condition in adults and children. Participants were sensitive to the

relative timing of the auditory stimulus compared with the visual stimulus (main effect

of relative timing: F (1, 81) = 10.24, p = 0.002). There was no effect of age but there

was a significant interaction between age and relative timing: adults appeared to be

more sensitive to the relative timing than children, experiencing a greater reduction in

bouncing percepts than children when the auditory stimulus was offset rather than

aligned with the discs’ visual coincidence (F (1, 81) = 5.43, p = 0.022, means shown in

Table 4.3).

Taken together, these results suggest that whilst both adults and children are sensitive

to the presence of an auditory stimulus when interpreting a visual scene, the presence

of that auditory stimulus has a greater effect on visual percepts for adults than it does

for children. In addition, children are less sensitive to the relative timing of the

auditory and visual stimuli than adults: they may integrate over a wider time window

than adults.

Given the greater sensitivity of adults to the relative timing of the auditory stimulus,

it is possible that the older children we tested would show some increase in sensitivity

compared with the younger children. However, a correlation between age (in months)

and sensitivity to relative timing (proportion of ‘bounce’ responses in coincident

condition - proportion of bounce responses in offset condition) showed no increase in

sensitivity with age (at least not within ±150ms, r = 0.16, p = 0.24).



72 Chapter 4 Development of audio-visual integration

4.3 Experiment 2: Fission/Fusion

4.3.1 Method

4.3.1.1 Participants

Observers were students at the University of Southampton (adults) and pupils at a

local primary school (children). None of the participants were experienced

psychophysical observers and all were näıve to the purposes of the experiment. All

observers had normal or corrected-to-normal vision and normal hearing and gave

informed consent before the experiment, which was approved by the local ethics

committee. In addition to the child’s consent, parents of child observers gave informed

consent for their child to participate.

In the second experiment (flash/beep), forty adults participated in exchange for course

credit. The mean age was 21.0 years (standard deviation = 2.3 years). Sixty children

participated in this study; the mean age was 80.3 months (6.7 years, standard

deviation = 6.8 months).

4.3.1.2 Apparatus

Apparatus were as described in Section 4.2.1.2.

4.3.1.3 Stimuli

Visual stimuli were white discs that subtended an angle of 2◦ with a luminance of

23.8cd/m2 on a black background, horizontally displaced by 5◦ either to the left or

right of fixation. For each flash, the disc was presented for 1 frame (16.7 ms) and off

for 4 frames (adults) or 9 frames (children) (see Figure 4.3). The auditory stimulus

was either absent or concurrent with the flashes. One, two or three beeps (7 ms long,

440Hz, 60dB) were played, starting simultaneously with the onset of the first flash;

flash and beep frequencies were matched such that subsequent beeps were aligned to

subsequent flashes when present.

4.3.1.4 Procedure

A black screen was presented with a white fixation cross in the centre. The participant

clicked on this cross to start the trial, ensuring central fixation. On each trial the white

disc flashed on either once, twice or thrice and participants reported the number of

perceived flashes (one, two or three). Adults completed 8 repetitions of each trial type
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Figure 4.3: Schematic of stimuli for ‘flash/beep’ experiment
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Table 4.4: Combinations of stimuli used in flash/beep trials
Ticks mark the combinations of number of flashes and beeps used; F2B3 and F3B2
were omitted to reduce the number of trials that children completed.

(half presented to the left and half presented to the right of fixation), see Table 4.4 for

detail as to which trial types there were. After the audio-visual trials, there were 8

repetitions of auditory-only trials (also shown in Table 4.4); participants responded to

say how many beeps they heard. The procedure was identical for children and adults

except that children completed only 2 repetitions. Again, adults completed the

experiment alone whereas children sat with a researcher.

4.3.2 Results

4.3.2.1 Analysis

The strength of the fusion effect was defined as the difference in mean response

between the two and three flash visual-only trials and the corresponding two or three

flash trials with a single beep (i.e., F2B0− F2B1 and F3B0− F3B1). If the auditory

stimulus has no effect, i.e., there is no fusion effect, this difference will be zero. The

larger the difference in these two responses (more positive), the greater the fusion
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Figure 4.4: Mean number of flashes perceived as a function of audio-visual
discrepancy.
Adult data (N = 40) is shown with dashed lines, child data (N=60) is shown with solid
lines. The deviation of data lines from horizontal shows the effect of the number of
beeps on the perceived number of flashes. The fusion effect (where present) is shown
on the left half of the graph (number of beeps < number of flashes). The fission effect
is shown on the right half of the graph (number of beeps > number of flashes). Error
bars represent ±1 SEM.

effect. Similarly, the strength of the fission effect was defined as the difference in mean

response between the single flash trials with either 2 or 3 beeps and the visual-only

single flash trials (i.e., F1B2− F1B0 and F1B3− F1B0). Again, if the auditory

stimulus has no effect, i.e., there is no fission effect, this difference will be zero. The

larger the difference between these responses (more positive), the greater the fission

effect. The fusion and fission effects are illustrated by the means shown in Figure 4.4.

4.3.2.2 Fusion Effects

The fusion effect was tested by comparing the fusion strength (as defined in

Section 4.3.2.1) across three conditions: baseline (unimodal, fusion strength = F2B0 -

F2B0 = F3B0 - F3B0 = 0); small audio-visual discrepancy (fusion strength = F2B0

- F2B1); and large audio-visual discrepancy (fusion strength = F3B0 - F3B1).

Participants, across age groups, experienced significant fusion effects (main effect of

audio-visual discrepancy on fusion strength: F (2, 196) = 16.07, p < 0.001). Compared
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with unimodal stimuli, participants experienced a significant fusion effect when

presented with two flashes and one beep but not when there were three flashes and one

beep (µF2B0−F2B1 = 0.30, p < 0.001; µF3B0−F3B1 = 0.13, p = n.s., Bonferroni

corrected comparisons). There was significantly more fusion in the two flash, one beep

condition than the three flash, one beep condition (p = 0.008, Bonferroni corrected).

Children experienced a significantly greater fusion effect than adults (main effect of

age group on fusion strength: F (1, 98) = 10.13, p = 0.002; µadults = 0.05,

µchildren = 0.24). There was also an interaction between audio-visual discrepancy and

age group (F (2, 196) = 6.47, p = 0.002): adults showed only a marginally significant

fusion effect when two flashes were presented with a single beep (µF2B0−F2B1 = 0.11,

p = 0.085, Bonferroni corrected) and no fusion effect when three flashes were presented

with a single beep (µF3B0−F3B1 = 0.04, p = n.s., Bonferroni corrected); children, by

contrast, experienced significant fusion effects in both cases (µF2B0−F2B1 = 0.49,

p < 0.001; µF3B0−F3B1 = 0.22, p = 0.046, Bonferroni corrected). However, the fusion

effect was stronger when the audio-visual discrepancy was smaller (p = 0.006,

Bonferroni corrected).

4.3.2.3 Fission Effects

The fission effect was tested by comparing the fission strength (as defined in

Section 4.3.2.1) across three conditions: baseline (unimodal, fission strength = F1B0 -

F1B0 = 0); small audio-visual discrepancy (fission strength = F1B2 - F1B0); and

large audio-visual discrepancy (fission strength = F1B3 - F1B0). Participants, across

age groups, experienced significant fission effects (main effect of audio-visual

discrepancy on fission strength: G-G correction for non-sphericity, ε = 0.89;

F (2, 196) = 129.24, p < 0.001). Compared with unimodal stimuli, participants

experienced a significant fission effect when presented with either one flash and two

beeps or one flash and three beeps (µF1B2−F1B0 = 0.50, p < 0.001; µF1B3−F1B0 = 0.82,

p < 0.001, Bonferroni corrected comparisons). There was significantly more fission

when the audio-visual discrepancy was larger (p < 0.001, Bonferroni corrected).

Children experienced a significantly greater fission effect than adults (main effect of

age group on fission strength: F (1, 98) = 12.10, p = 0.001; µadults = 0.33,

µchildren = 0.56). There was also an interaction between audio-visual discrepancy and

age group (F (2, 196) = 25.33, p < 0.001): adults showed significant fission effects when

a single flash was presented with either two or three beeps (µF1B2−F1B0 = 0.48,

p < 0.001; µF1B3−F1B0 = 0.49, p < 0.001, Bonferroni corrected) but there was no

significant difference between these two cases; children also experienced significant

fission effects in both cases (µF1B2−F1B0 = 0.53, p < 0.001; µF1B3−F1B0 = 1.15,

p < 0.001, Bonferroni corrected), however, unlike adults the fission effect was stronger

when audio-visual discrepancy was greater (p < 0.001, Bonferroni corrected).
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4.3.2.4 Modelling

In agreement with previous studies (Tremblay et al., 2007; Innes-Brown et al., 2011),

the preceding results show that the fission illusion is stronger in children than in

adults; furthermore, we find this also to be the case for the fusion illusion. However, it

is not clear that this is the result of children using a different cue combination strategy

to adults: an alternative explanation may be that they are using the same strategy as

adults, but that their unimodal estimates have different relative reliabilities compared

with adults and hence are weighting the two cues differently to adults. It is clear from

the response means that both adults and children are using the information from both

modalities to perceive the number of flashes on any given trial, but the means on their

own do not provide sufficient information to determine cue combination strategy.

There are at least two possible mechanisms by which these results could be obtained:

both optimal integration and ‘switching’ between the two cue estimates could result in

the observed means. However, the two strategies would result in different response

variances for different trial types. For non-conflict (congruent) trials (e.g., F1B1,

F2B2), optimal partial integration should result in a response variance lower than that

measured in visual-only trials; a switching strategy could result in either a lower or a

higher response variance than that measured in visual-only trials, depending on

whether the visual and auditory unimodal estimates were closely aligned or not. For

conflict trials (e.g., F1B3, F2B1) optimal partial integration predicts the same decrease

in response variance as for congruent trials; however, a switching model predicts that

response variance will increase in cue-conflict trials since the means of the two

estimates will not be aligned. Here we compare these two models of cue combination,

using measurements of unimodal response variance to generate predictions for

cross-modal trials; these predictions are then compared to the measured response

variance.

Unimodal variances for 1, 2 and 3 flashes/beeps were calculated separately for each

participant before averaging across participants; this was done to remove the effect of

different response biases which could have artificially inflated an overall

(cross-participant) measure of response variance. Since there were no significant

differences between the variances for 1, 2 or 3 events in either modality, the unimodal

variances were also averaged across number of events to give a single variance for each

modality (σ2v and σ2a for visual and auditory variance respectively). These were used as

inputs to the models described below to generate predictions of variance in bimodal

conditions. The empirically measured response variance in each of the bimodal

conditions was also calculated separately for each participant before averaging across

participants.

Another step common to both models is to calculate the strength of the effect of

auditory stimuli on visual estimates using the method described by Bresciani et al.
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(2006). A linear regression was calculated between response error and the difference

between the number of beeps and flashes; the gradient of the regression line provides a

measure of the auditory influence on vision. Response error was calculated by

subtracting the mean response (across all participants) for the unimodal visual trials

from the mean response to equivalent bimodal trials (i.e., trials with the same number

of flashes but varying numbers of beeps). If the gradient of the regression line is zero

that may be interpreted as the auditory stimulus having no influence on the visual

percept: vision and audition are not combined. If, on the other hand, the gradient of

the line is one, this may be interpreted as the visual percept being entirely dominated

by the auditory percept. A gradient over 0.5 would mean that the auditory estimate

was weighted more than the visual estimate, a gradient less than 0.5 would mean that

that the visual estimate was weighted more than the auditory estimate. Both children

and adults gave more weight to the visual estimate than the auditory estimate,

although children gave more weight to audition than adults did: for adults, the

gradient ∆v|a = 0.17 (R2 = 0.64); for children, ∆v|a = 0.38 (R2 = 0.72).

4.3.2.5 Coupling Prior

The first model uses a coupling prior (Ernst, 2006; Bresciani et al., 2006); this

represents the joint distribution of the two world properties being perceived (in this

case the number of flashes and number of beeps). If the beeps and flashes are believed

to have the same cause, the coupling prior takes the form of the identity line nbeeps =

nflashes. If the beeps and flashes are thought to be completely unrelated, the coupling

prior is completely uniform such that any combination of nbeeps and nflashes is equally

probable. In between these two extremes, the coupling prior is aligned with the

identity line, but with a Gaussian spread. The prior then encodes the belief that the

two cues are somewhat likely to have the same cause, but may not always. The

probability that the two world properties have the same cause is represented by the

variance of the Gaussian spread. The two extremes described above can be modelled in

the same way, but with zero variance (full coupling) or infinite variance (no coupling)

respectively. The optimal Bayesian integration described in Section 1.3.2 is consistent

with Bayesian integration using a coupling prior that has zero variance: the two signals

are completely integrated and the weights are based solely on the reliability of the two

cues. The coupling prior is multiplied with the joint likelihood distribution for the two

cue estimates to obtain the posterior (illustrated in Figure 4.5). Subsequently a

decision rule is applied to the posterior to obtain a bimodal estimate; here we use

MAP estimation (as defined in Section 1.2.2).

To calculate the variance of the coupling prior for each group of participants (adults

and children) we used the equations set out in Bresciani et al. (2006): the relative
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Figure 4.5: Examples of the effect of coupling prior variance on posterior
distribution
Each row shows a 2D likelihood, coupling prior and resultant posterior probability
distributions: darker areas show higher probability. The likelihoods in these examples
have equal variance in the visual and auditory cue estimate (equally reliable cues).
The visual cue in this example is 1 flash and the auditory cue is 3 beeps and so the
combined likelihood is centred on 1 flash/3 beeps. The coupling prior varies in each
row: in the first row it is small and uniform; this is equivalent to a belief that the two
cues are independent and so any combination is equally likely (no coupling). The
resulting posterior distribution is positioned identically to the likelihood. The second
row shows a Gaussian coupling prior with a small variance: this is equivalent to the
belief that two events often, but not always, have the same underlying cause. The final
estimate lies between the likelihood and the prior. The third row shows an example of
full coupling: the coupling prior is a delta function, this corresponds to the belief that
the two events are completely determined by one another. The final estimate lies along
the line of the prior since all other combinations are impossible.
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influence of audio on vision,

α = arctan
σ2v
σ2a

= arctan
∆v|a

∆a|v
, (4.1)

where ∆a|v is the change in auditory percepts due to visual stimuli (this was not

measured in this experiment, but rather calculated using Equation 4.1). Then degree

of coupling,

C = ∆v|a + ∆a|v, (4.2)

and

C =
σ2likelihood(α)

σ2likelihood(α) + σ2prior(α)
, (4.3)

with

σ2likelihood(α) = σ2v cos2(α) + σ2a sin2(α), (4.4)

and

σprior(α) = σp cos(|α− 45◦|). (4.5)

Solving for σ2p gives the coupling prior variance; the prior itself is calculated as a

Gaussian distribution ‘extruded’ along the identity line. In this model a lower variance

indicates stronger integration as the expectation that nflashes = nbeeps is higher.

Likewise, a higher variance indicates weaker integration and a lower expectation that

nflashes = nbeeps. This coupling prior is independent of current stimulus values.

For each bimodal condition we use participants’ unimodal data to approximate the

likelihood as a two-dimensional Gaussian distribution centred on (µv, µa) (the mean

responses for unimodal trials with the corresponding number of flashes and beeps

respectively) with variances (σ2v , σ
2
a) (the unimodal response variances as calculated in

Section 4.3.2.4). The posterior probability distribution for the current condition is

calculated by multiplying the likelihood by the prior and normalising (see Figure 4.6);

the variance in the visual axis of the resulting distribution is the predicted response

variance for that condition (see Figure 4.7).

4.3.2.6 Switching Model

The second model is a cue switching model; such models have previously been applied

to other cue combination tasks (e.g., Landy & Kojima, 2001). Here we model the

responses for the number of flashes as being drawn variously from the visual-only

response distribution and the auditory-only response distribution. The weight given to

auditory information (the change in visual estimates due to the audio influence) was

calculated using the slope of the same regression line as in the coupling prior model

(∆v|a). The proportion of times in which responses were drawn from the auditory-only

likelihood distribution (La) was ∆v|a. The proportion of times that responses were
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Figure 4.6: Plots of likelihood, coupling prior and posterior distributions in
adults and children
As in Figure 4.5, each row shows a 2D likelihood, a coupling prior and the resultant
posterior probability distributions; again, darker areas have higher probability. Just as
in Figure 4.5 this example shows distributions for 1 flash and 3 beeps; the combined
likelihood is centred on the mean unimodal responses to 1 flash and 3 beeps
respectively. The first row shows the adults’ data: the reliability of the auditory cue is
higher than that of the visual cue (σauditory = 0.15, σvisual = 0.42, respectively) which
is why the likelihood is relatively compressed in the auditory axis. The coupling prior
is a Gaussian with σp = 0.42. The second row shows the children’s data: the auditory
and visual cue reliabilities are more similar (σauditory = 0.36, σvisual = 0.45,
respectively) and so the likelihood is less compressed in the auditory axis than the
adults’ likelihood. The coupling prior is a Gaussian with σp = 0.31, this is narrower
than the adult’s coupling prior, suggesting a stronger belief that the events in the two
modalities have a common cause.

taken from the visual-only likelihood distribution (Lv) was 1−∆v|a. The visual and

the auditory likelihood probability density functions are one-dimensional Gaussian

distributions with means µv and µa, and variances σ2v and σ2a for vision and audition

respectively. The combined likelihood (Lav) for each bimodal condition is then

calculated as:

Lav(nflashes, nbeeps) = (1−∆v|a)Lv(nflashes) + ∆v|aLa(nbeeps). (4.6)

The predicted response variance for the switching model is the variance of Lav, which

varies with nflashes and nbeeps (see Figure 4.7).
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Participant Group Coupling Switching

Adults 0.0046 0.0368
Children 0.0089 0.1037

Table 4.5: Mean Square Error of response variance predictions for the
Coupling Prior and Switching models

4.3.2.7 Comparison of Models

To compare the two models of cue combination with the empirical data, the mean

square error (MSE) was calculated across conditions between the coupling and

empirical response variances, and between the switching and empirical response

variances, i.e.:

MSEmodel =

nconditions∑
i=1

(σ2model(i)− σ2empirical(i))2

nconditions
(4.7)

Table 4.5 shows the results of this analysis; for both adults and children, the MSE is

considerably smaller for the coupling model than the switching model, suggesting that

the former is better able to predict response variances in bimodal trials.

A qualitative prediction of the coupling prior model is that response variance would be

the same in congruent and conflict bimodal trials. However, despite the coupling prior

model being a better fit to the data than the switching model, there was a significant

increase in response variance in conflict trials compared with congruent trials (adults:

t(39) = 5.85, p < 0.001, µcongruent = 0.12, µconflict = 0.21; children: t(59) = 3.08,

p = 0.003, µcongruent = 0.13, µconflict = 0.22). This suggests that although the coupling

prior model provides a better fit than the switching model, it is not able to explain

fully the observed data.

4.4 Discussion

The results from both experiments show that both adults and children combine

information from visual and auditory cues when generating visual percepts.

In Experiment 1 we replicated the bounce/stream effect previously found in adults

(Sekuler et al., 1997) and extended this to show that children also experience increased

‘bounce’ percepts in the presence of an auditory stimulus. Previously, Scheier et al.

(2003) found that 6 month old infants experience the bounce/stream illusion; by

contrast, the children in our study experienced bouncing percepts in the vast majority

of trials. This necessitated the addition of a bias towards streaming in the visual

stimuli to enable measurement of the effect of auditory stimuli on visual perception.

Even with the addition of a streaming bias, the proportion of ‘bouncing’ responses
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Figure 4.7: Variance for data and model predictions
The audio and visual variance are for unimodal trials. The audio-visual variance and
predicted variances are for bimodal trials - as indicated on the x-axis.
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reduced with increasing age. Given the difficulty in interpreting looking-time data, it

may be that the infants in Scheier’s study, like our children, predominantly

experienced a bouncing percept and were instead responding to temporal changes in

the auditory stimuli rather than perceiving the bounce/stream illusion.

The children in our study also demonstrated less sensitivity to the temporal offset

between visual and auditory stimuli than adults. This suggests that they may have less

certainty in their temporal judgements and so are less able to determine whether two

events were synchronous. A consequence of this increased uncertainty might be the

need to employ a longer integration window to benefit from cue combination. To

quantify the difference in integration window between adults and children, it would be

necessary to present visual and auditory stimuli with a broader range of temporal

offsets and to measure the accuracy of their temporal judgements.

There is another explanation of the bounce/stream effect which argues the effect is (at

least partially) due to attentional disruption: in adults bouncing percepts increased

both when there were distractors present and when there was an additional

discrimination task (Watanabe & Shimojo, 1998). They suggest that attention may

enable the perception of continuous motion. In this case the increased bouncing

percepts in childhood may be as a result of immature attentional processes.

Experiment 2 provided a stronger test of audio-visual cue integration. In common with

previous studies we found that adults experience the fission illusion (e.g., Shams et al.,

2000). We found only marginally significant evidence that adults experience the fusion

illusion reported by others (e.g., Andersen et al., 2004). We demonstrated that children

experienced the fission illusion to a greater extent than adults (as in Innes-Brown et al.,

2011) and furthermore that they also experience a stronger fusion illusion than adults.

Innes-Brown et al. (2011) also reported increased fusion illusions in children (although

not significantly), and the data reported by Tremblay et al. (2007) also appears to

show a trend for more frequent fusion illusions in younger compared with older

children, although again not significantly. Innes-Brown et al. (2011) concluded that:

“These results show that the mechanisms that integrate auditory with

visual integration, giving rise to the flash-beep illusion, do not follow a

linear developmental trend with age in this group of normally developing

children.”

On the contrary, we have shown here that differences in frequency of illusion between

adults and children are not necessarily the result of immature integration mechanisms,

but rather may be caused by optimal integration of less reliable unimodal estimates in

children. We compared a partial integration (coupling prior) model (Bresciani et al.,

2006) and a switching model with the empirical data, and found the former to generate

better predictions of response variance in both adults and children. The means were
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qualitatively consistent with both the switching and the partial integration model, but

quantitative predictions of the means cannot be made since they were used to predict

the response variance.

These results are consistent with the visual-haptic integration reported by Bresciani

et al. (2006); our data also supports the findings of Shams et al. (2005b) that the

fission and fusion illusions result from optimal cue integration. Both their model and

the coupling prior approach used here incorporate a finite probability that the two cues

have separate causes. As such, rather than fully integrating the two cue estimates as in

the standard Bayesian model, they are partially integrated such that estimates in one

modality have a lesser effect on estimates in the other modality than would be

predicted from their relative reliabilities alone.

Previous studies (e.g., Gori et al., 2008; Nardini et al., 2008, 2010) found that optimal

sensory integration develops relatively late in childhood, maturing between

approximately 8 and 12 years old. In contrast, we have shown that in the case of

audio-visual cues, optimal integration strategies may already be in place in our

participants (5-7 years old, mean age 6.7 years old). The late development of cue

integration strategies has been thought to arise from a need to continue to calibrate

cues through childhood, for example recalibrating haptics as the body grows (Gori

et al., 2008). However, optimal cue integration in adults does not preclude continuing

cue calibration: Adams et al. (2004) found that haptics can recalibrate the

light-from-above prior and Adams et al. (2010) found that binocular disparity could

also recalibrate the light-from-above prior.

Although the coupling prior integration model generated better quantitative variance

predictions than the switching model, neither model exactly matched the empirical

data. Indeed, the switching model better fitted the pattern of response variance from a

qualitative point of view: response variance increased in conflict trials compared with

congruent trials. There are several reasons why the models may not match the

observed data: firstly the response method truncated the range of responses such that

observers could never respond more than three or less than one. This prevented

response variances from being symmetric in the one and three event conditions, which

could have affected both the predictions and empirical responses in the bimodal

conditions. The unimodal response variances used to generate the predictions were

also likely to have been underestimated; due to the very small number of trials per

participant (adults: 8, children: 2) and the relatively high reliability of the auditory

stimuli, a number of participants exhibited accuracy rates of 100% resulting in a

variance estimate of zero. In future studies it would be helpful to increase the number

of trial repetitions and expand the range of allowed responses to enable better

measurement of variances. However, it might not be possible to increase the number of

trials for children by a great deal as they have a limited concentration span.

Decreasing the reliability of the auditory stimuli might also mitigate against the
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problem of measuring zero variance. However, the stimuli for the current study were

chosen to allow close comparison with previous studies; this would be more difficult

with modified stimuli.

Finally, the coupling prior model could be tested further by collecting auditory

responses to the same audio-visual stimuli (i.e., reporting the number of beeps heard).

The posterior probability distribution generated by the coupling prior model can be

used to make predictions of both visual and auditory responses to bimodal stimuli (by

finding the MAP estimate in each dimension); if the two modalities have similar

reliabilities and integration is not complete (i.e., the coupling prior has non-zero

variance) then visual responses to bimodal stimuli would be predicted to lie closer to

the corresponding unimodal visual estimate then the unimodal auditory estimate, and

vice versa. Measuring auditory responses would also give direct access to a

measurement of ∆a|v (effect of visual stimuli on auditory responses), such that the

coupling prior variance could be calculated with fewer assumptions, as in Bresciani

et al. (2006). This measurement would also benefit from the two modalities having

similar reliabilities: if, as in the current study, the unimodal auditory estimates have a

much lower variance than the unimodal visual estimates then the effect of visual

stimuli on auditory estimates (∆a|v) is very small and hence hard to detect. Therefore,

it would be helpful in future studies to decrease the reliability of the auditory stimuli

such that the two modalities have similar reliabilities.

Looking beyond temporal audio-visual cue integration, the ventriloquist effect is a

well-established example of optimal integration of spatial cues in adulthood; studying

this effect in children of a similar age to the present study would provide further

evidence as to the development of children’s cue integration strategies.

In summary, both experiments suggest that audio-visual integration is well developed

in 5 to 7 year olds; children employ an optimal partial integration strategy, just like

adults, but experience audio-visual illusions differently to adults due to differences in

unimodal cue reliabilities and differences in the variance of their coupling priors.

Neither experiment provides evidence to suggest that adults integrate auditory and

visual information in a qualitatively different way to children as had been suggested

previously for visual-haptic, visual-vestibular and visual-visual cue integration (Gori

et al., 2008; Nardini et al., 2008, 2010).
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Kerrigan, I. S. & Adams, W. J. (under review at Cognition) Learning different light

prior distributions for different contexts.

Experimental design, data collection, analysis and write-up were completed by Iona

Kerrigan under the supervision of Wendy Adams. Data from six participants in the

mixed condition were submitted for Iona Kerrigan’s MSc dissertation at the University

of Southampton; it has been reanalysed, together with data from the other twenty

participants, for this chapter.

5.1 Abstract

The pattern of shading across an image can provide a rich sense of object shape. Our

ability to use shading information is remarkable given the infinite possible

combinations of illumination, shape and reflectance that could have produced any

given image. Illumination can change dramatically across environments (e.g., indoor

vs. outdoor) and times of day (e.g., midday vs. sunset). Here I show that people can

learn to associate particular illumination conditions with particular contexts, to aid

shape-from-shading. Following a few hours of visual-haptic training, observers

modified their shape estimates according to the illumination expected in the prevailing

context. Our observers learned that red lighting was roughly overhead (consistent with

their previous assumption of lighting direction), whereas green lighting was shifted by

10◦. Learning was more efficient when training for the two contexts (red or green light)

was mixed rather than sequentially blocked.

87
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5.2 Introduction

Humans cope with reddish illumination at sunset or flickering coloured lights at the

disco - managing to decompose shading patterns into reflectance and shape variations -

but how? Our impressively robust ability to estimate our surroundings, given complex

and ambiguous retinal input relies heavily on prior knowledge - we bias perceptual

estimates toward the most likely scenes. For example, we bias estimates of illumination

direction toward overhead (e.g., Kleffner & Ramachandran, 1992; Adams, 2007) and

estimates of surface shape toward convexity (Langer & Bülthoff, 2001; Adams &

Mamassian, 2004) in alignment with the statistics of our environment (Potetz & Lee,

2003). The perceptual assumptions or ‘priors’ used for the tasks of material perception

(Chapter 2 and Chapter 3) are not well researched; however, it is well known that light

priors facilitate the notoriously under-constrained problem of recovering

shape-from-shading (e.g., Kleffner & Ramachandran, 1992; Adams, 2007). This

chapter builds on our knowledge of light priors to investigate whether the adult human

visual system can learn and selectively invoke multiple context-specific priors.

For optimal performance, humans should (i) respond to long-term changes in scene

statistics by updating their priors and (ii) select the correct prior for a given context.

We know that humans do the former: in contrast with chickens (Hershberger, 1970),

human observers change their light prior in response to appropriate haptic (Adams

et al., 2004) or visual feedback (Adams et al., 2010). Here I ask whether humans also

do the latter: can we learn different prior assumptions for different contexts? There is

no clear consensus: although Adams et al. (2004) found that a modified light-prior

generalised to novel stimuli, Adams et al. (2010) noted that modified light-priors were

retained for several weeks beyond training, after observers had returned to their

normal environment, in which lighting was presumably, on average, overhead. This

latter finding suggests that observers learnt separate, context-dependent light priors,

with the experimental set-up acting as a contextual cue.

Here I ask whether humans can learn two light priors, each invoked by a different

illumination colour. To induce colour-dependent learning, visual-haptic feedback was

modulated by the simulated illumination colour: when scenes were illuminated by red

light, feedback was consistent with the observer’s baseline light prior distribution. In

contrast, under green illumination, feedback was consistent with a new lighting

distribution.
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Figure 5.1: Apparatus & visual test trials.
(A) The visual-haptic experimental set-up. (B) Examples of visual-only test trials: the
simulated lighting is either red (upper row) or green (lower row). Observers briefly
viewed the four shaded discs before indicating whether the cued object was concave or
convex (in or out).

5.3 Methods

5.3.1 Apparatus & Stimuli

Observers simultaneously viewed and felt virtual objects (see Figure 5.1A). Haptic

scenes were presented via a ‘thimble gimbal’ attached to a force-feedback device

(Ghost libraries, PHANToM, SensAble Technologies). Visual stimuli (Figures 5.1B &

5.2C - 5.2F), generated using OpenGL, were presented via a front-silvered mirror.

Their perceived location (at a visual distance of 56cm) matched the location of the

haptic stimuli, giving the impression of a single visual-haptic scene. A headrest and

bite-bar maintained head position and an eye-patch eliminated binocular depth cues.

The room was completely dark, other than the light emitted by the visual display.

5.3.2 Visual Test Trials

Pre- and post-training trials contained solely visual (no haptic) information. Observers

viewed four shaded discs, each subtending 5.6◦ and offset from the screen’s centre by

5.3◦ (see Figure 5.1). Each disc was consistent with a hemisphere squashed in depth by

a factor of 2, illuminated by a distant light source. The slant of the light source (the

angle between the lighting vector and the screen normal) was 68.2◦. The light source



90 Chapter 5 Learning different light prior distributions for different contexts

tilt (the angle between the projected lighting vector and the vertical axis in the plane

of the screen, θ) varied across trials. This illumination tilt, with object shape (convex

vs. concave) determined the shading orientation of each disc. Within each trial, one,

two or three discs had a shading gradient direction of θ and the remaining disc(s) had

a shading gradient of θ + 180◦, such that observers generally perceived both convex

and concave objects to be present. The simulated scene was white, with either a red or

green simulated light source although stimuli were equally consistent with red and

green scenes illuminated by white light.

Observers judged the shape (concave vs. convex) of one object (cued by a star). The

observer’s light prior was estimated from the set of 288 visual trials (24 equally spaced

θ values x 2 colours x 6 repetitions), lasting approximately 10-15 minutes (see

Figure 5.2A).

5.3.3 Training Trials

Visual-haptic training was similar to that used previously (e.g., Adams et al., 2004, see

Figures 5.2C - 5.2F). Observers viewed four shaded discs (as in test trials), but also

explored the scene haptically by running a finger (in a thimble gimbal) over the

simulated objects. This haptic information disambiguated each object’s shape, and

thus also the lighting direction. However, the relationship between shading orientation

and haptic shape depended on colour (see Figure 5.2B). On ‘red’ trials, stimuli were

consistent with the observer’s baseline light prior; haptic shape matched the observer’s

pre-training shape responses. On ‘green’ trials, however, the lighting direction was

drawn from a range shifted by ±30◦ relative to the observer’s baseline prior (13

observers were assigned a +30◦ shift, 13 a −30◦ shift). Thus, on ‘green’ trials, some

objects previously perceived as convex now felt concave, and vice versa.

After haptically exploring the scene for a minimum of 7s, including ‘touching’ all four

objects, the observer pressed a button to continue. One of the objects then appeared

visually (without haptics) in the centre of the screen for 1s and the observer judged its

shape (convex/concave). By subsequently viewing and touching the object, observers

gained feedback on their response. Each training set comprised 224 visual-haptic

training trials (48 equally spaced θ values x 2 colours x 2 repetitions + 2 extra

repetitions of 8 θ values within conflict regions x 2 colours), lasting approximately

60-90 minutes. There is some evidence that people and animals learn to discriminate

between two contingencies more quickly when trials are intermixed than when they are

blocked (e.g., Mitchell, Nash & Hall, 2008; Honey, Bateson & Horn, 1994). To identify

whether a similar advantage is observable for this context-dependent learning task, I

assigned observers to either an (i) mixed or (ii) blocked variant. In the first variant,

red and green trials were randomly mixed throughout test and training. In the second,

colour was fixed within blocks of 24 trials.
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Figure 5.2: Visual-haptic training trials.
See caption on next page.
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Figure 5.2: (A) Proportion of responses that were convex, as a function of shading
orientation, for one observer. The shaded region thus also reflects their baseline light
prior distribution, with the mean of the light prior given by the red arrow. (B) Two
trained light priors. The red region indicates the range of stimulus shading orientations
that ‘felt’ convex during red visual-haptic training trials - it matches the range of
orientations perceived as convex at baseline. The green region indicates the
orientations that ‘felt’ convex during green visual-haptic trials. (C-F) Schematic
representation of a training trial: (C) Observers explored the scene both haptically and
visually and then (D) viewed a single disc for 1s before (E) judging its shape. (F)
Viewing and touching the single stimulus provided feedback.

5.3.4 Procedure

On day 1, each observer completed a set of visual-only trials, followed (after a short

break) by a train-test session (one set of visual-haptic training trials, one set of visual

test trials). On day 2, they completed two train-test sessions, separated by at least one

hour.

5.3.5 Participants

Twenty-six näıve observers completed the experiment (mixed variant: 10 participants;

blocked variant: 16 participants). All had normal or corrected-to-normal visual acuity

and normal colour vision. Participants gave informed written consent and the local

ethics committee approved the study.

5.3.6 Possible Outcomes

What might observers learn from the visual-haptic training? What colour-dependent

or colour-independent changes in shape perception might be seen? First, observers

might show no learning: if colour were ignored as a ‘nuisance’ variable, haptic feedback

would appear noisy and inconsistent and thus might be discounted. Second, observers

might ignore colour, but still modify their behaviour to reflect the aggregate of all

feedback. Their light priors would thus move toward the average of the two trained

lighting distributions, irrespective of stimulus colour. Finally, observers may learn

(consciously or unconsciously) that particular colours are associated with particular

lighting distributions. This would allow them to apply different prior distributions over

lighting direction in different colour contexts. This context-specific learning would

result, post-training, in different measured light priors for different coloured test

stimuli - the same shading orientation would induce different perceived shapes under

different illumination colours.
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5.4 Results

Light priors were estimated by fitting a simple Bayesian model to each observer’s test

and training data (see Adams et al. (2010); essentially, the peak of the light prior is

given by the peak of the ‘convex’ responses). I first checked whether the perceived

shape of red and green stimuli differed prior to training. Three observers were

excluded (one from the mixed condition, two from the blocked condition) as their red

and green baseline priors differed (ps = 0.015; 0.015; and 0.003, from bootstrapping).

A single baseline light prior was estimated for each remaining observer, using their

combined red and green pre-training data (µ = −9.61◦, σ = 13.61◦, across observers).

All subsequent data were separated by colour to estimate colour-specific light priors.

Results are shown in Figure 5.3. Training had a significant effect on shape perception

(F (3, 63) = 6.61, p = 0.003, ε = 0.67, G-G correction for non-sphericity, from 3 factor

ANOVA (amount of training, training type and illumination colour), partial

η2 = 0.24). As training progressed, observers’ light prior distributions moved toward

the trained lighting direction. Significant learning occurred after two sets of training

(normalised baseline light prior = 0◦, vs. mean penultimate and final light priors

µ = 7.71◦ and µ = 9.45◦, p = 0.012 and p = 0.042 respectively, from Bonferroni

corrected comparisons).

Importantly, observers did show some context dependent learning: light priors were

shifted significantly further from baseline when measured with green than with red test

stimuli (F (1, 21) = 5.28, p = 0.032, partial η2 = 0.20). However, learning was not

entirely context dependent: significant changes in light prior were observed for both

illumination contexts by the end of training (green: µ = 9.77◦, red: µ = 6.61◦, t-tests

against zero: p = 0.011 and p = 0.045, respectively).

In line with previous work (e.g., Mitchell et al., 2008; Honey et al., 1994), those trained

in the intermixed condition showed significantly more learning than those in the

blocked condition (15.25◦ vs. 3.64◦ in the final test session, significant main effect of

training type (blocked vs. intermixed): F (1, 21) = 4.31, p = 0.05, partial η2 = 0.30).

No interactions were significant.

5.5 Discussion

I show that the visual system is able to learn and implement separate light priors for

different contexts. After training, the perceived shape of ambiguous shaded objects

was modulated by illumination colour. Observers were able to switch between two

different, colour-contingent light priors on a trial-by-trial basis. However, this

colour-contingent behaviour was implemented unconsciously - at debrief, observers
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Figure 5.3: Light priors before and after training
(A) in the intermixed condition and (B) blocked condition. To allow meaningful
comparisons across observers, each observer’s data were normalised by his or her
baseline light prior, and light priors for observers who trained with a -30◦ shift were
multiplied by -1.
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were unaware of any differences between red and green stimuli, consistent with recent

evidence that observers can learn cue relationships of which they are unaware (Di Luca

et al., 2010). Context-dependent use of priors has clear benefits: implementing a light

prior that accurately reflects the lighting statistics of the current context will lead to

more accurate shape judgements. Interestingly, however, the observed learning was not

entirely context-specific; observers did not fully differentiate on the basis of colour but

instead showed a combination of colour-specific and colour-independent learning. This

may reflect robustness to temporary, perhaps spurious changes in cue contingencies;

previous experience suggests that illumination direction and colour are not strongly

correlated. In other words, this learning response may not reflect a limitation in our

ability to learn, but rather an optimal strategy given the likelihood of such changes.

This robustness has been modelled using Kalman filters where weight is given to both

historical and current input (e.g., Burge, Ernst & Banks, 2008). A similar logic applies

to the incomplete learning found here (final average ‘green’ light-prior 9.77◦, vs.

trained light-prior of 30◦) and in previous studies with comparable training, where

observers learned only a third (11◦) of the trained light prior shift (Adams et al., 2004).

Other research has investigated the priors over aspect ratio that contribute to

orientation estimation (an elliptical retinal image may be perceived as a slanted circle).

Knill (2007) demonstrated that observers use visual-haptic feedback to modify their

prior on the aspect ratio of ellipses. Similarly to Adams et al. (2010), Knill noted that

observers’ priors did not readapt on exposure to the normal environment, suggesting

that learning was specific to the laboratory context. Later, Seydell et al. (2010)

demonstrated that observers can learn separate aspect ratio priors for different shapes

(diamonds vs. ellipses) but appear unable to learn aspect ratio priors conditioned on

object colour. The authors suggest that colour cannot be used to modulate observers’

shape priors because colour is deemed to be unrelated to aspect ratio by the visual

system: there is no ecological reason to link colour with aspect ratio. This study shows

that colour can act as a contextual cue; it may be that a relationship between

illumination colour and illumination direction is deemed more plausible by the visual

system.

A similar argument is presented by Michel & Jacobs (2007). They suggest that

learning will be relatively easy when an existing relationship is modified (parameter

learning). In contrast, learning a new relationship (structural learning) will be difficult

or impossible: they tested whether observers could learn an association between

illumination direction and stimulus depth, but concluded that they could not. Under

this framework, observers learned the distinction between colour contexts because

colour and illumination direction are sometimes related in the real world: the

relationship has ecological validity. However, it remains unclear whether, given enough

training, observers would be able to learn two different light priors for contextual cues

that are ecologically unrelated to illumination (e.g., object shape or texture). Ernst
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(2007) demonstrated that people can learn to associate low-level cues (luminance and

stiffness) that have previously been unrelated. This suggests ecological validity is not a

necessary condition for learning.

In broad agreement with Michel & Jacobs (2007), Backus and colleagues have shown

that some cue associations are easier to learn than others (for a review see Backus,

2011). They asked which novel cues may be ‘recruited’ such that they influence the

interpretation of an ambiguous rotating structure from motion (SFM) stimulus.

Haijang et al. (2006) and Jain et al. (2010) found that some cues (location, motion

direction) were recruited as contextual cues that modulated SFM perception. However,

they found that other cues (e.g., auditory cues and extrinsic visual cues) were not

recruited to disambiguate the SFM stimulus (but see also Backus, Jain & Fuller, 2011).

I suggest that when a pair of cues has previously been unrelated in the environment,

the visual system should represent this information; strong evidence that particular

signals are unrelated allows the visual system to avoid learning new, spurious

relationships. In contrast, learning will be faster when the visual system holds little

information about whether or not two signals are correlated, or data that they are

sometimes correlated. In this way, modification of cue relationships may be better

characterised as a continuum rather than by dichotomies such as parameter vs.

structural learning.

In summary, I show that colour can be learned and used as a cue to context: observers

are able to selectively invoke different light priors in different contexts, allowing

accurate recovery of shape from shading in their current environment. This use of

context-dependent priors will assist the visual system as it moves between lighting

environments, particularly when direct information about the prevailing illumination

conditions is ambiguous.
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Discussion

6.1 Motivation for thesis

Perception is an ill-posed, under-constrained problem (Poggio & Torre, 1984) and so

sensory systems must make use of probabilistic relationships between sensory data and

world properties. Over the past 20 years or so, the Bayesian framework has proved to

be a flexible method for implementing probabilistic models of many different

perceptual cues, both individually and in combination. It has been shown to be a

strong predictor of human perception, able to account for many different experimental

effects (e.g., Yuille & Bülthoff, 1996; Ernst & Banks, 2002; Knill & Saunders, 2003;

Bresciani et al., 2006; Körding & Wolpert, 2004; Weiss, Simoncelli & Adelson, 2002).

Within the Bayesian framework, perceptual estimates are generated from the

combination of one or more likelihoods (the probability of the current sensory data

given each world state) with one or more priors, which instantiate the assumptions

necessary to interpret the sensory data (the probability of each world state

independent of the current sensory data). Where sensory cues are independent of each

other they can each be modelled by an individual likelihood; where they are not

independent they may be modelled by a single joint (multi-dimensional) likelihood.

The product of likelihood and prior probability distributions is the posterior, which

represents the probability of each world state given the current sensory data. The

posterior in combination with some decision rule gives a perceptual estimate of the

world property (Maloney, 2002b). Two commonly used decision rules are Maximum a

Posteriori or MAP estimation: the peak of the posterior distribution is chosen as the

perceptual estimate; and maximum likelihood estimation (MLE) which is the same as

MAP estimation if a uniform prior is assumed.

In our natural environment there are usually myriad sensory cues available that

provide some information about various properties such as object shape and material.
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The redundant information they contain can improve the precision of perceptual

estimates, if the cues are used together (e.g., Ernst & Banks, 2002; Alais & Burr,

2004). There are various models of cue combination (described in further detail in

Section 1.3.1), each of which may be instantiated using the Bayesian framework.

Strong fusion (Clark & Yuille, 1990) describes the case where cues may interact with

each other in arbitrarily complex ways. From a Bayesian perspective this is modelled

as a single likelihood distribution and a single prior (which may be uniform) (e.g.,

Nakayama & Shimojo, 1992). These probability distributions cannot be factorised into

the constituent cues’ likelihoods and priors. At the other end of the spectrum, weak

fusion (Clark & Yuille, 1990) considers all cues to be separable and, where they are

independent from one another, to be linearly combined. This has the advantage that

cues can be studied in isolation and then used to generate predictions of perceptual

performance when multiple cues are available. Modified weak fusion is a compromise

between the two extremes in which cues may interact with one another for the

purposes of cue ‘promotion’ but are otherwise linearly combined (Landy et al., 1995).

Most studies of cue combination follow a modified weak fusion approach but assume

(either implicitly or explicitly) that cue promotion has already happened (e.g., Adams

et al., 2004; Maloney, 2002a). One general method to implement weak or modified

weak fusion, using the Bayesian framework, is to multiply all the individual cue

likelihoods and priors together to give the joint posterior distribution (Yuille &

Bülthoff, 1996). The estimate can then be selected from the posterior distribution in

the same way as for an individual cue.

Perceptual cues are combined both within (e.g., Knill & Saunders, 2003; Hillis et al.,

2002, 2004) and across (e.g., Ernst & Banks, 2002; Alais & Burr, 2004; Hillis et al.,

2002) modalities to improve the precision and accuracy of perception. Most cue

combination studies have focused on geometric properties such as shape (Ernst &

Banks, 2002; Helbig & Ernst, 2007b; Wijntjes et al., 2009) or location (Alais & Burr,

2004), or temporal properties such as the number of events (Shams et al., 2005b;

Bresciani et al., 2006). At least as important for effective interaction with the

environment is knowing the material properties of objects and surfaces (Adelson,

2001). For example, when walking on a surface it is useful to adapt one’s gait

depending on the properties of the surface: whether hard or soft and whether slippery

or rough. Similarly, an estimate of the strength and rigidity of an object may give

some information as to its suitability for use as a tool. There are several possible

reasons for the relative paucity of research into material perception: Adelson (2001)

suggests a linguistic bias in our tendency to discuss ‘things’ rather than ‘stuff’ but

there are also practical issues in experimental design. Limitations in the computational

capability of graphical hardware and software have meant that it is only relatively

recently that rendering any realistic materials has been possible. There are still some

limitations, for example in rendering the effects of inter-reflections between multiple

objects and in rendering the reflective properties of more complex materials such as
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human skin which exhibits subsurface scattering of light (Jimenez, Sundstedt &

Gutierrez, 2009). Similar constraints exist in the rendering of haptic material

properties. For example, the PHANToM technology used in the experiments in

Chapter 2 and Chapter 5 can replicate proprioceptive forces (friction and compliance)

but not fine grained textures or other tactile and thermal properties. Some of these

limitations could be avoided by using real objects within an augmented reality set-up

similar to that used by Di Luca, Knörlein, Ernst & Harders (2011).

To further our understanding of the perception of material properties, Chapter 2 and

Chapter 3 investigated gloss perception. There are many cues to material properties;

Chapter 2 specifically asked whether the haptic cues of friction and compliance could

affect perceived gloss. It also considered whether the binocular disparity of highlights

affected gloss perception. Highlight disparity contributes not only to gloss perception

but also to shape perception (Blake & Bülthoff, 1990, 1991): Chapter 3 explored the

relationship between highlight disparity and perceived shape and gloss, specifically

considering whether an accurate model of highlight geometry is implemented to

constrain both shape and gloss percepts.

Although the combination of spatial and temporal cues is well established in

adulthood, less is known about how and when these capabilities develop. There has

been mixed evidence as to the age at which cue combination strategies mature, with

some studies suggesting that the use of multimodal cues is possible in infancy (Scheier

et al., 2003) and others suggesting that adult strategies do not develop until 10 years

old, or older (Gori et al., 2008; Nardini et al., 2008; Innes-Brown et al., 2011).

Chapter 4 used two experiments to test audio-visual integration capabilities in children

and compared their performance to that of adults, within a single quantitative

framework. The first experiment addressed a relatively broad question: do auditory

stimuli affect visual percepts in the target age group? The second experiment

compared two different models of behaviour: (i) a coupling prior model based on the

Bayesian framework and (ii) a switching model, to test whether differences in

performance between adults and children are due to differences in the precision of

individual estimators and/or the priors used, or whether they are implementing

qualitatively different cue combination strategies.

Cue combination is one way to improve the reliability of perceptual estimates; another

way in which multiple cues can be used to improve perception is in the recalibration of

likelihoods and priors. Both likelihoods and priors can be recalibrated over time in

order to reflect more accurately the current environmental statistics (e.g., Adams

et al., 2001, 2004) but there is less evidence as to whether we can learn and store

multiple context-specific priors. Seydell et al. (2010) found that observers could learn

to use context-specific priors for aspect ratio where the context was specified by shape

but not when context was specified by colour. They suggest that this is due to a

constraint on learning contextual cues that are not plausibly related to the estimated
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property (i.e., the colour of an object has a less plausible relationship to its aspect

ratio than shape). Chapter 5 considered whether there is a fundamental limitation on

learning colour as a contextual cue by asking whether observers could learn and use

two separate light priors, each contingent on colour.

The following section provides an overview of the main findings from each of the

experimental chapters presented in this thesis and considers the implications and ideas

for future research.

6.2 Key Findings, Implications and Future Research

6.2.1 Haptic cues are combined with visual cues to affect perceived

gloss

Chapter 2 showed that our perceptual system combines information across modalities

to optimise estimates not only of geometric properties such as slant (Ernst et al.,

2000), size (Ernst & Banks, 2002) and shape (Helbig & Ernst, 2007b; Wijntjes et al.,

2009), but also of material properties such as gloss. Although gloss is a visual property,

the perceptual system uses the haptic properties of friction and compliance to affect

the visual estimate. This suggests that observers have an expectation about the

glossiness of an object based on how it feels: when the object felt smooth and hard,

like glass, observers were more likely to report that the object was glossy than when

there were no haptic cues. This was indexed by how great a deviation in the alignment

between specular highlights and shading gradients observers tolerated before making

matte responses. Conversely, when the object felt rougher and softer, like rubber,

observers were less tolerant of deviations in the alignment between specular highlights

and shading gradients than when there were no haptic cues available.

The strong effect of haptic information on the perception of gloss found in these

experiments is especially striking considering the relative paucity of haptic information

available to observers. In everyday interactions, as people make judgements about

objects, they typically have access to both kinaesthetic and cutaneous aspects of

haptic information. Cutaneous inputs are from the mechanoreceptors and

thermoreceptors in the skin and kinaesthetic inputs are from mechanoreceptors

embedded in muscles, tendons and joints (Lederman & Klatzky, 2009). Using the

PHANToM to present virtual haptic stimuli it is possible to present only the

kinaesthetic forces which act upon a person as she explores an object and not the

cutaneous elements such as fine grained texture or thermal properties. It seems likely

that the effect of haptics on the visual percept of gloss noted here would be even

stronger if cutaneous cues were also present in the scene, although this is a question for

further investigation. Another difference between the method used here and real world
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interactions was that as participants touched objects and assessed their compliance

they were not able to see comparable deformations on the visual objects. This would

have been more important for the softer, rubbery objects than the hard, glassy objects

since glass does not visibly deform. However, for the rubbery objects, the lack of

visible deformations could have reduced the sense that the felt object was one and the

same as the seen object, thus reducing observers’ dependency on the haptic

information and leading to greater attendance to the visual information. The outcome

of this would have been that there was no discernible difference between the visual and

visual-haptic conditions: despite the lack of coherency in deformation, it appears that

people were perceiving the felt and seen objects as one since the haptic cues did have

an effect on their visual percept for both the rubber and glass conditions.

There has been little other work regarding the interaction between visual and haptic

cues to material properties. Observers are able to combine information from touch and

vision to improve acuity when making judgements of the roughness of surfaces made of

varying grades of sandpaper (Lederman & Abbott, 1981; Heller, 1982). In these tasks

the smaller the difference in grade that can be detected, the greater the acuity. These

are perhaps unusual stimuli that do not reflect many normal objects; nonetheless they

demonstrate that we do combine information from different senses when making

judgements of material properties. In common with the aforementioned studies on

visual-haptic cue combination for geometric properties, these studies of texture

perception were founded on the premise that each property is accessible both visually

and haptically. In most studies of cross-modal integration researchers have measured

the response from each modality and then compared this with the response from both

modalities together (e.g., Alais & Burr, 2004; Ernst et al., 2000; Ernst & Banks, 2002;

Lederman & Abbott, 1981). To assess whether there is statistically optimal (or near

optimal) integration the usual method is to compare the variance in estimates from

each modality with those from the two modalities together. If there is optimal cue

combination then the variance in the estimates from both cues combined will be less

than, or equal to, the variance in the estimates from the least variable of the two cues.

Unfortunately this method is not appropriate for assessing the cue combination in the

current study of haptics and gloss, as it is not clear what it would mean for someone to

explore an object haptically and estimate whether it is shiny or not. Gloss, unlike size,

slant or surface roughness, is primarily a visual property, although given that haptics

affects gloss perception it appears that there are haptically accessible correlates of

gloss. It might be that there is a process akin to cue promotion (see Section 1.3.1.3)

required to change the haptically accessible correlates into an estimate of gloss. Having

unknown haptic correlates makes further quantitative analysis of these results difficult

since it is not clear whether there are two estimates of gloss, one visual and one haptic

that are later combined, whether there are strong fusion type interactions between the

two properties or whether there is a bias (perhaps using a coupling prior) towards
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interpreting the visual scene in a particular way when certain haptic information is

present.

An alternative interpretation of the results presented in Chapter 2 is that the haptic

stimuli introduced a response bias, at a higher cognitive level, rather than affecting the

actual percept of gloss. This hypothesis could be tested in a future study by measuring

discrimination thresholds for both properties individually (haptic and gloss), and using

these to create stimuli that would be metameric under full optimal integration (see

Section 1.4.1). The individual cues in metameric stimuli would be incongruent, that is,

the haptic and visual cues would be varied in opposite directions (e.g., hard and matte

or soft and glossy). Congruent stimuli would also need to be tested, in which the two

cues would be varied in the same direction (e.g., hard and glossy or soft and matte).

The difference in discrimination performance between congruent and incongruent

stimuli, when compared with a standard stimulus, would provide a measure of the

degree to which the haptic and visual cues to material are integrated at a perceptual

level.

Other studies have demonstrated the complementary effect, that visual cues can affect

estimates of haptic properties, using the ‘material-weight illusion’ (e.g., Buckingham,

Cant & Goodale, 2009). Objects that had identical size and mass were rated as having

different weights depending on the material they appeared to be made from:

polystyrene was rated as heavier than wood which was rated as heavier than metal.

Conversely, objects that had different mass (although still identical size) were

perceived as having the same weight when the visual properties were manipulated

appropriately: the lightest object appeared to be made of polystyrene, the middle

object appeared to be made of wood and the heaviest object appeared to be made of

metal. Learned associations between the visual cues and haptic material properties

would seem to drive the material-weight illusion; similar learned associations between

haptic and visual material properties would explain the effect presented here as well.

In addition to the novel finding that haptic cues affect perceived gloss, the results

confirm previous findings that the further a specular highlight is offset from the

shading gradient, the less likely it is that the object will be interpreted as shiny

(Anderson & Kim, 2009; Kim et al., 2011; Beck & Prazdny, 1981). This is further

evidence against the suggestion by Motoyoshi et al. (2007) that glossiness is dependent

on the skewness of the luminance distribution of an image; the spatial relationships

between shading and specular highlights are also important.

An alternative, more indirect way, to investigate observers’ interpretation of a

potential highlight would be to use highlight colour. The colour of a specular highlight

usually indicates the colour of the illuminant, whereas the colour of the diffuse

reflectance component depends on both the illuminant colour and the surface colour. If

a bright patch in the image is interpreted as a specular highlight (i.e., the surface is



Chapter 6 Discussion 103

seen as glossy), the colour of the highlight can be used to discount the illuminant

colour from the surface and so will change the perceived surface colour (Snyder,

Doerschner & Maloney, 2005). If, on the other hand, the highlight is interpreted as a

pigment change on a matte object, the colour of the diffuse shading will be presumed

to be a reflection of white light from a surface of that colour. The colour of diffuse and

specular reflections from the object could be manipulated, with observers asked to

match the surface colour to sample colours. The advantage of having an indirect

measure of gloss, like this, is that observers sometimes found it difficult to classify

objects as shiny or matte whereas a colour matching task may be easier.

6.2.2 Highlight disparity cues affect perceived gloss without

reversing shape percepts

The second experiment in Chapter 2 further investigated how highlight disparity

affects perceived gloss. Three different highlight disparities were used: correct for the

convex surface; zero relative disparity, that is, the same as the surface of the object (as

though there was a pigment change); and reversed (correct for a concave object of the

same size and curvature). Previous studies by Wendt et al. (2008, 2010) found that the

presence of disparity affected the authenticity and strength of perceived glossiness but

they did not consider negative disparities, i.e., highlight disparities consistent with a

concave object.

Chapter 2 showed that there was a significant effect of highlight disparity on the

percept of gloss. Objects which had a highlight disparity consistent with the other cues

to convex shape looked shinier than objects where the highlight was consistent with a

concave object, which in turn looked shinier than objects where the highlight was

consistent with a pigment change. These results fit well with previous findings that the

strength of gloss percepts is affected by highlight disparity (Wendt et al., 2008, 2010),

and extend them by also considering the effect when the highlight disparity is

inconsistent with the shape specified by other stereo cues. The significant difference

between each of the ‘convex’, ‘concave’ and ‘pigment’ conditions suggests that the

effect of highlight disparity on gloss perception is described by a non-symmetric

function, whereby highlight disparity has the greatest effect when the sign is consistent

with surface shape, still has some effect when it is inconsistent and has the least effect

when it is consistent with a surface pigment change. Indeed an asymmetric model was

found to fit the gloss response data from convex objects better than a symmetric

model in Chapter 3. That gloss ratings for the ‘concave’ (reversed highlight disparity)

condition would be higher than those for the ‘pigment’ (zero relative highlight

disparity) condition is somewhat surprising as both are inconsistent with a highlight

on the observed convex object. One possible explanation for the observed pattern of

gloss percepts is that specular highlight disparity provides a cue to both gloss and
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shape (e.g., Blake & Bülthoff, 1990, 1991); the conflict between highlight disparity

(suggesting object concavity) and other cues to shape (surface disparity specifying

object convexity and ambiguous shading consistent with either interpretation) may

have increased shape uncertainty, potentially resulting in the perception of a concave

object. In this case, the highlight would then appear to be in the correct position and

so the object would appear glossy.

Chapter 3 considered whether shape conflict could explain the findings from the

previous experiment as well as results reported by Blake & Bülthoff (1990, 1991).

Blake & Bülthoff found that observers were sensitive to the geometry of highlight

disparity when judging the shape of both convex and concave objects; observers also

adjusted highlight disparity in a geometrically consistent fashion when asked to

maximise the perceived gloss of a convex object. However, when maximising the

perceived gloss of a concave object, observers adjusted highlight disparity such that it

was consistent with a surface pigment change or a glossy, convex surface. Blake &

Bülthoff attributed the deviations from a geometric model of highlight disparity to

shape cue conflicts resulting in shape uncertainty.

The results presented in Chapter 3 showed that increasing shape cue reliability

increased the effect of highlight disparity on gloss; this is unsurprising since the more

certain the observer is about the surface disparity, the more able she is to determine

precisely the relative highlight disparity. If the observer is more certain what the

relative highlight disparity is, that disparity will have more effect on her gloss

judgements. However, Chapter 3 also shows that even when shape is well-defined using

reliable shape cues, gloss perception is not consistent with a geometric model of

highlight disparity. This is in contrast with the conclusions of Blake & Bülthoff (1990,

1991).

There were some differences between the results of Chapter 2 and Chapter 3. Gloss

judgements of convex surfaces in the former appeared to be inconsistent with a

geometric model of highlight disparity whereas in the latter they were consistent.

Methodological differences between the two experiments may go some way to

explaining these discrepancies. In Chapter 2 observers made two-alternative forced

choice responses between ‘shiny’ and ‘not shiny’ compared with continuous responses

in Chapter 3. Gloss is not a binary concept; there are gradations which mean it is

possible to say that although one material is shinier than another, both are glossy.

There were also large individual differences between observers’ gloss responses for

convex surfaces: despite good stereoacuity, a subset of observers tended to perceive

surfaces with the incorrect sign of highlight as glossy. The perception of gloss for

concave surfaces deviated from a geometric model of highlight disparity: although the

size of highlight disparity mattered, the sign did not.
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The difference in gloss judgements between concave and convex objects with incorrect

highlight disparity suggests that observers have a better model of the geometry of

highlights for convex surfaces. There are several possibilities as to why this might be.

Firstly, observers may simply have less experience with concave surfaces than convex

ones and so may not have learned completely the rules governing shape and material

perception. Secondly, the geometry is simpler for convex surfaces - they always

generate virtual highlights, regardless of where the light source is located. Concave

surfaces may, depending on the position of the light source, generate either real or

virtual highlight disparities; in addition to this there may be inter-reflections in

concave surfaces which might further complicate the highlight disparity relationship.

Training observers with glossy concave surfaces might improve their models of

highlight geometry to cope with the extra complexities and/or lack of experience with

concave surfaces.

The experiment presented in Chapter 3 varied horizontal disparity whilst keeping

vertical disparity constant by manipulating the simulated inter-pupillary distance in

both horizontal and vertical axes. Another interesting line of enquiry would be to

maintain horizontal highlight disparity whilst manipulating vertical disparity to

explore the effect on gloss and shape perception. At present it is only possible to vary

separately and systematically the vertical and horizontal disparities of specular

reflections generated by a simple object illuminated by a single point light source;

stimuli like those used in Chapter 3 would be suitable to compare the effects of varying

horizontal and vertical highlight disparities. More complex surfaces and light fields

produce a wide range of horizontal and vertical disparities; the only systematic

manipulation possible in this case is to vary the simulated horizontal inter-pupillary

distance (e.g., Muryy et al., 2012), the effect of which can vary dramatically across the

disparity field. The manipulation of horizontal inter-pupillary distance could equally

be applied to the simpler stimuli described above, where it could be used to explore

the interaction between horizontal and vertical highlight disparity in a more controlled

fashion than is possible when using complex light fields.

6.2.3 Young children display evidence of optimal audio-visual cue

integration

Chapter 2 and Chapter 3 advanced our understanding of cue integration in adulthood

by extending the classic studies of cue integration for geometric properties to the topic

of material perception. Although it seems clear that adults are able to integrate cues

to improve the precision of cue estimates in a range of perceptual tasks, it is not clear

when these capabilities develop. To investigate the age at which cue integration

develops it was desirable to choose a topic in which adult cue integration has been well

established using quantitative models, and in which the required experimental
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equipment could be easily transported to allow data collection at a local school. In

response to these constraints, two audio-visual computer based tasks were designed

(Chapter 4) to test and compare audio-visual integration capabilities in children and

adults.

The first experiment tested whether auditory stimuli can affect children’s visual

percepts using the bounce/stream illusion. The extent to which the rate of bouncing

percepts increases in audio-visual trials compared with visual only trials can be used as

an indication of the extent to which auditory information is integrated with visual

information. The second experiment used the fission and fusion illusions to provide a

stronger test of audio-visual integration capabilities in adults and children by making

quantitative predictions of performance under two different strategies: optimal partial

cue integration and a switching model.

Only one previous study had investigated the bounce/stream effect in childhood

(Scheier et al., 2003) and they used pre-verbal infants so had to rely on looking time

measures as a proxy for whether percepts were different when an auditory stimulus was

added to the visual scene. They concluded that infants did experience the

bounce/stream effect but there remains some debate as to how to interpret the

looking-time measures used (Slater, 2003). Chapter 4 showed that children had a

strong tendency to interpret all of the stimuli as ‘bouncing’, a tendency that reduced

with age. The tendency for children to see all stimuli as bouncing is inconsistent with

the conclusions drawn by Scheier et al. (2003): the results presented here suggest that

the infants in their study may not have perceived the bounce/stream effect but were

instead responding to differences in the timing of the auditory stimulus relative to the

visual scene.

The tendency for the proportion of ‘bouncing’ percepts to reduce with age in the

children studied might result from the development of attentional processes rather

than cue combination. In adulthood the proportion of ‘bouncing’ percepts increased

both with the addition of visual distractors and an additional discrimination task

(Watanabe & Shimojo, 1998); it is possible that the auditory stimulus acted as a

distractor that interrupted attention from the visual stimuli. Watanabe & Shimojo

(1998) suggested that attention is necessary for the perception of continuous motion

and that when distracted the motion percept will be disrupted - reducing the

probability of a streaming percept. One way to test this possibility would be to repeat

the bounce/stream experiment presented here but to include a condition in which

there are visual distractors and compare the effect of additional visual and auditory

stimuli on the proportion of bounce percepts. If the effect is a purely attentional one,

then visual distractors should have the same effect as the auditory ones in increasing

the proportion of bounce percepts in children. If, on the other hand, the increase in

bouncing percepts is (partially) due to audio-visual integration, then the visual
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distractors should have a lesser effect on the proportion of bounce percepts than the

auditory stimuli.

The bounce/stream effect experiment provided evidence that auditory stimuli can

affect visual percepts in 5-7 year old children but could not determine whether this was

as a result of optimal cue integration. The second experiment in Chapter 4 used the

fission and fusion illusions to test quantitative predictions of audio-visual cue

integration. It provided evidence that children aged 5-7 years not only integrate

auditory and visual cues but that they do so in the same way as adults: the response

variance from both adults and children was better predicted by a coupling prior model

of optimal integration than by a switching model.

Two previous studies have used the fission and fusion illusions to investigate whether

children integrate audio-visual information, but with contradictory conclusions.

Tremblay et al. (2007) found that there was no difference in the number of either

fission or fusion illusions between 3 age groups in the range 5-19 years old. Despite not

including an adult control group, they concluded that audio-visual cue integration

mechanisms were already mature in the youngest age group (5-9 years old). Conversely,

Innes-Brown et al. (2011) found that children (8-17 years old) experienced a larger

fission effect than adults. They concluded that audio-visual integration is immature in

8-17 year olds. However, in both cases the methodology and analysis do not justify

such strong conclusions. In particular, the size of fission and fusion effects do not

provide a direct measure of audio-visual integration strategies as the reliability of the

individual cue estimates may also differ between adults and children. In such a case,

the same strategy might lead to different responses. To determine whether a common

audio-visual integration strategy is used in childhood and adulthood it is necessary to

determine how percepts in bimodal trials are related to percepts on unimodal trials.

The second experiment in Chapter 4 demonstrated the same differences in fission

effects between adults and children as were found by Innes-Brown et al. (2011), in

addition to differences in the strength of fusion effect. These differences could have led

to the same conclusion, that audio-visual integration mechanisms are immature in 5-7

year olds. However, subsequent modelling of bimodal response variance using unimodal

percepts as inputs allowed comparison of the strategies used by adults and children.

Modelling showed that the response variance was better predicted by the coupling

prior model than the switching model for both adults and children. The differences in

number of fission and fusion illusions between adults and children can be explained by

differences in the relative reliabilities of the auditory and visual cue estimates and

differences in the strengths of their coupling priors, rather than differences in

integration strategy. Neither model was entirely accurate; in particular, the coupling

prior model failed to predict the small increase in response variance in conflict trials

compared with congruent trials, for both adults and children. There were a number of

experimental factors which might have contributed to the differences between the
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empirical and predicted behaviour. Firstly, the permitted response range was fixed

such that response distributions were truncated, and therefore asymmetric in the one

and three event conditions. Additionally, the very small number of trials in each

condition and the high reliability of the auditory stimuli resulted in several observers

having a unimodal accuracy rate of 100%, and consequently a variance estimate of

zero; this is almost certainly an underestimate. These weaknesses could be addressed

in future studies by expanding the range of permitted responses; increasing the number

of trials per condition; and reducing the reliability of the auditory stimuli, perhaps by

increasing background noise levels. However, it would be necessary to ensure that such

changes did not make the task too difficult for the youngest participants.

One additional enhancement which would further test the coupling prior model would

be to collect auditory responses (‘how many beeps?’) as well as visual responses on

bimodal trials. This would reduce the number of assumptions required to calculate the

coupling prior variance, by giving a direct measure of the effect of visual stimuli on

auditory responses. Measuring auditory and visual responses would also allow

estimation of the auditory and visual marginal posterior distributions independently of

one another, providing a means to test the prediction of the coupling prior model that

these two distributions need not be identical under partial coupling.

Other studies have only found optimal integration with appropriate cue weighting in

children older than those in the current study: they found that optimal integration

developed at some point in the age range of 8 to 12 years old (Gori et al., 2008;

Nardini et al., 2008, 2010, in press). As discussed in Section 4.1, Nardini et al. (in

press) noted that most of these studies also had working memory demands (Gori et al.,

2008; Nardini et al., 2008) and/or required comparison of multiple stimuli (Gori et al.,

2008; Nardini et al., 2010). These additional task demands could obscure any small

decreases in bimodal variance resulting from an optimal integration strategy. To

counter these problems, Nardini et al. (in press) devised a task with neither working

memory demands nor a 2AFC design (described further in Section 1.5). They found

that, like adults, children in the age range 7 to 9 years old used an optimal integration

strategy and appropriate cue weightings whereas younger (4-6 year old) and older

(10-12 year old) children did not use appropriate cue weightings. A common weakness

across all of these studies is that they equate optimal integration with full coupling.

Both audio-haptic (Bresciani et al., 2006) and audio-visual (Chapter 4) integration are

well modelled in adulthood by partial cue integration using a coupling prior to

represent the strength of coupling. This is also the case for children in audio-visual

integration (Chapter 4). It is possible that children in the study by Nardini et al. (in

press) were able to estimate their own cue reliabilities and weight cues appropriately at

4-6 and 10-12 years old, but that they were using a partial cue integration strategy

with a weaker degree of coupling than adults and 7-9 year old children. This may also
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have been the case in other studies of the development of optimal cue integration (e.g.,

Gori et al., 2008; Nardini et al., 2008, 2010).

The coupling prior used to model the results in Chapter 4 could be applied more

generally to the study of perceptual cue integration. It models the correlation between

two perceptual cues and allows interactions between cues to different world properties.

When two cues provide estimates of the same property, partial coupling allows

estimates from each cue to have different values to one another. Another way to think

about this is that partial coupling allows the possibility that the two cues are from

different sources and hence the estimates from each cue may differ, despite being

drawn from the same multidimensional posterior distribution: the peak of the marginal

posterior distributions for each cue may be different to one another. For example, in

the audio-visual partial integration described in Chapter 4 a single two-dimensional

posterior distribution is generated from the joint likelihood and coupling prior

distributions. The visual and auditory perceptual estimates may take different values

since partial coupling allows the two marginal posterior distributions to be different.

The coupling prior could provide a method to model more complex cue interactions

using the Bayesian framework. For example, in Chapter 2, haptic cues affected

perceived gloss but it is possible that visual gloss cues might also affect haptic

estimates of material properties (e.g., compliance or friction) and that the correlation

between these very different cues to material properties could be instantiated using a

coupling prior. The coupling prior represents learned correlations between perceptual

measurements and although it has so far been used mainly to instantiate weak or

modified weak fusion models (e.g., Bresciani et al., 2006), it can also instantiate

stronger forms of fusion in which cues cannot meaningfully be promoted to the same

perceptual units (e.g., Ernst, 2007).

6.2.4 Multiple context-specific light priors can be learned for

shape-from-shading

In addition to cue integration strategies that help with precision of perception, sensory

systems are also able to use their knowledge of environmental statistics, in the form of

prior probability distributions, to improve the accuracy of perception. Relatively little

is known about the priors used for material perception compared with those used for

shape perception, which is why the light-from-above prior was chosen as a target for

investigation in Chapter 4. The light-from above prior, that facilitates shape from

shading, is known to exist (e.g., Kleffner & Ramachandran, 1992) and to be

recalibrated in adulthood with a few hours of training (Adams et al., 2004, 2010). For

light priors to be maximally useful they should not only be recalibrated but the visual

system should learn cues to context such that the prior probability distribution is

different in contexts where the illumination statistics (e.g., average lighting direction)
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differ. Chapter 5 showed that the visual system can learn and selectively invoke

context-specific light prior distributions for illumination direction, with each prior

dependent on colour. Observers were unaware that they did this despite switching

between the two different light priors on a trial-by-trial basis. Only part of the trained

shift in illumination direction was learned during the training period: approximately a

third of the trained shift, in common with other studies (e.g., Adams et al., 2004).

There was also some generalised learning: observers showed a shift in both contexts

despite only one context having been manipulated. In contrast with Seydell et al.

(2010), who found that colour could not be learned as a contextual cue to the aspect

ratio of shapes, the data presented in Chapter 5 shows that colour can be learned as a

context-specific cue to illumination direction. Seydell et al. found that shape (e.g.,

ellipses vs. diamonds) could be learned as a cue to aspect ratio, even though colour

was not. They suggest that the reason colour was not learned in their study is because

there was no pre-existing relationship between object shape and colour. Using their

framework one could conclude that colour was learned as a cue to illuminant direction

because there is a plausible causal link between colour and illumination direction: the

illuminant could be a coloured lightsource at a particular position. Several other

studies have suggested that it is hard (or maybe impossible) to learn new cue

relationships where there is no plausible ecologically valid relationship between the two

variables (e.g., Michel & Jacobs, 2007; Jain et al., 2010); this is often dichotomised into

types of cue relationships that can be learned (e.g., parameter learning (Michel &

Jacobs, 2007) or intrinsic cues (Haijang et al., 2006; Jain et al., 2010)) and cue

relationships that cannot be learned (e.g., structure learning (Michel & Jacobs, 2007)

or extrinsic cues (Jain et al., 2010)). However, since there are no set criteria by which

to determine whether a cue relationship is plausible, it is hard to predict in advance of

training whether that relationship should be learned. It is also difficult to show with

certainty that new cue relationships cannot be learned, as failure to learn within an

experimental context may simply be due to strong prior knowledge that two cues are

unrelated: if this is the case, then an impractically long training period might be

required for learning to be detected.

The two colours trained as contextual cues in this study were red and green; although

sometimes treated as such, colour is not a categorical variable but rather a continuum.

An interesting question arises as to whether the trained observers learned two distinct

1-dimensional light prior distributions or whether they learned a 2-dimensional prior

for the correlation between chromaticity and illuminant direction, which could be

considered a coupling prior. To test this observers could be trained using the method

described in Chapter 5 but with both trained colours offset from baseline (by different

amounts, but in the same direction) then tested using three illuminant colours: red;

green; and a colour perceptually midway between the two (yellow/orange). If a

coupling prior between chromaticity and illuminant direction has been learned, it would

be expected that the light prior for the orange/yellow illuminant would lie in between
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the red and green light priors. If, on the other hand, two distinct light priors have been

learned, the third condition should appear aligned with the baseline light prior.

6.3 Coupling Priors for Perception

The use of coupling priors together with Bayesian statistics more generally provide a

conceptual framework in which to consider the findings of this thesis. Coupling priors

can be used to describe cue combination - as they were in Chapter 4. There they were

used to describe the influence of an auditory estimate on a visual percept. As noted in

Section 6.2.3, the same conceptual framework could be applied to the finding that

haptic material cues affect perceived gloss. If there is knowledge of the correlation

between haptic cues and gloss, there should also be some effect of gloss on haptic

material property estimates; this hypothesis could be tested using a coupling prior

model. However, there are various experimental reasons why this could be difficult:

the scales for each property would need to be perceptually linear; the joint posterior

distribution would need to be estimated so as to know its covariance as well as the

variances of the marginal posterior distributions in each dimension, requiring a

response in both modalities for each trial. If the joint posterior and likelihood were

assumed to be bivariate Gaussians this would restrict the form of the coupling prior to

a linear path with Gaussian spread. However, it would not be constrained to the

identity line, indeed, in general, for the case of cues to different world properties there

is no meaningful identity line since units would be arbitrarily defined.

In addition to being used for cue combination, coupling priors may also be used to

model cue recalibration. Previous studies of the development of optimal cue integration

found that it developed relatively late (between 8 and 12 years old: Gori et al., 2008;

Nardini et al., 2008, 2010), and suggested that this is possibly as a result of the need to

calibrate cues (Gori et al., 2008; Nardini et al., 2010). In the standard Bayesian cue

combination model, a combined cue estimate is the average of two (or more) cue

estimates, each weighted by their reliability (see Equation 1.7 and Equation 1.8). This

is mathematically equivalent to the case in which the coupling prior is a delta function

along the identity line, i.e., ‘full’ coupling. In this scenario the perceptual system loses

access to the separate cue estimates since the resulting marginal posterior distributions

are identical for both cues. Since the two estimates are now identical, they cannot be

used to calibrate one another. If, on the other hand, the degree of coupling is not

complete (i.e., the variance of the coupling prior is greater than zero), it is possible for

the two cue estimates to differ as the marginal posterior distributions are not identical

(see Section 6.2.3). The difference in the cue estimates could then be used as an error

signal to drive recalibration. Ernst & Di Luca (2011) propose a mathematical model

for estimating and correcting for biases in sensory estimates (effectively calibrating the

individual cues) based on the coupling prior model. In their model, the discrepancy
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between the two coupled cue estimates is considered an optimal estimator of the

combined biases of the two sensory signals; they combine this with a ‘bias prior’

probability distribution (representing the probability of each sensory estimate being

biased) to obtain an estimate of the sensory bias from each cue. The form of the bias

prior is not necessarily related to the relative reliabilities of the two cues, since it

relates to systematic rather than random error; it is therefore possible for the less

reliable cue to have the greater calibratory effect on the more reliable cue, if the

perceptual system believes the less reliable (noisier) cue to be more accurate (less

biased). One difficulty with this approach is that it is unclear what form the bias prior

should take, or how a perceptual system would learn and subsequently calibrate this.

Future research could usefully be directed at developing a method for estimating

observers’ bias priors experimentally, in order to establish whether they exist (i.e., are

non-uniform) and to generate further testable predictions. For example, measuring the

bias prior for a pair of cues A and B, then subsequently for cues B and C, would allow

the relative probabilities of bias from cues A and C to be estimated, from which a

prediction regarding relative recalibratory effects between the two cues could be made.

Ernst (2007) showed that a coupling prior could also model the learning of a new

relationship between two previously unrelated cues (stiffness and luminance). In this

case the perceptual system’s representation of the covariance of stiffness and luminance

increased from zero over the course of training in an environment in which the two

cues were correlated. The learning of a new cue relationship in this way between two

or more cues could be considered as either the construction of a new coupling prior or

the modification of a uniform coupling prior. It is, in principle, impossible to tell the

difference, in human perceptual systems, between these two possibilities since the same

decisions would result in the absence of a prior as in the presence of a uniform prior.

In theoretical terms these two possibilities are different as the modification of an

existing relationship may be known as recalibration or parameter learning whereas the

construction of a new coupling prior would be structure learning (Michel & Jacobs,

2007). However, in biological systems, where one does not know which cue

relationships are already represented in the brain, the distinction between parameter

and structure learning cannot be determined.

6.4 Conclusion

The experiments presented in this thesis have extended our understanding of how

perceptual cues are combined and priors are recalibrated to improve the precision and

accuracy of perception. Despite the importance of the perception of material

properties for effective interaction with the world, this area has previously been

somewhat neglected (Adelson, 2001), although there has been growing interest in

recent years. The findings from Chapter 2 and Chapter 3 contribute to this body of
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work, demonstrating that haptic cues can influence the perception of gloss and that

although specular highlights can be a useful cue to gloss, the visual system does not

possess a full geometric model of highlight disparity.

The development of cue combination strategies is another area of cue combination

which has received relatively little attention: a few previous studies have found that

adult-like cue integration strategies start to be used from about 8-12 years old (Gori

et al., 2008; Nardini et al., 2008, 2010, in press). Using a coupling prior model,

Chapter 4 showed that cue combination, at least for audio-visual cues, is already

mature at 5-7 years old, although performance is quite different between adults and

children due to differences in the relative reliabilities of cues and the strength of

coupling used. This may also be the case for other combinations of cues such as

visual-haptic or visual-visual cue integration. Maturity of cue integration strategies

does not, however, preclude learning new cue relationships beyond childhood;

Chapter 5 demonstrated that adults have the ability to learn and invoke multiple

context-specific light priors, using illuminant colour as a contextual cue.

The twin benefits of cue interaction: (i) noise reduction through integration and (ii)

bias reduction through recalibration have both been shown in this thesis to occur in

adulthood, as well as the learning of new cue relationships. It has also been shown

that children benefit from noise reduction by integrating cue estimates at an age where

they were previously thought to be using redundant cues purely for the purpose of

(re)calibration. The coupling prior model of partial cue integration (suggested by

Ernst, 2006) is able to unify these processes into a common framework, the predictions

of which could inform future research into human perceptual processes.





References

Adams, W. J. (2007). A common light-prior for visual search, shape and reflectance.

Journal of Vision, 7 (11), 11, 1–7.

Adams, W. J., Banks, M. S., & van Ee, R. (2001). Adaptation to three-dimensional

distortions in human vision. Nature Neuroscience, 4 (11), 1063–1064.

Adams, W. J., Graf, E., & Ernst, M. (2004). Experience can change the

‘light-from-above’ prior. Nature Neuroscience, 7 (10), 1057–1058.

Adams, W. J., Kerrigan, I. S., & Graf, E. W. (2010). Efficient visual re-calibration

from either visual or haptic feedback: the importance of being wrong. Journal of

Neuroscience, 30 (44), 14745–14749.

Adams, W. J. & Mamassian, P. (2004). Bayesian combination of ambiguous shape

cues. Journal of Vision, 4 (10), 921–929.

Adelson, E. H. (2000). Lightness perception and lightness illusions. In M. Gazzaniga

(Ed.), The New Cognitive Neurosciences (pp. 339–351). Cambridge, MA: MIT Press.

Adelson, E. H. (2001). On seeing stuff: The perception of materials by humans and

machines. Proceedings of the SPIE, 4299, 1–12.

Adelson, E. H. & Pentland, A. (1996). The perception of shading and reflectance. In

D. Knill & W. Richards (Eds.), Perception as Bayesian inference chapter 11, (pp.

409–424). Cambridge University Press.

Alais, D. & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal

integration. Current Biology, 14, 257–262.

Aloimonos, J. (1988). Shape from texture. Biological Cybernetics, 58, 345–360.

Andersen, T. S., Tiippana, K., & Sams, M. (2004). Factors influencing audiovisual

fission and fusion illusions. Cognitive Brain Research, 21, 301–308.

Anderson, B. L. (2011). Visual perception of materials and surfaces. Current Biology,

21 (24), R978–R983.

115



116 REFERENCES

Anderson, B. L. & Kim, J. (2009). Image statistics do not explain the perception of

gloss and lightness. Journal of Vision, 9 (11), 10, 1–17.

Anderson, B. L., Marlow, P., & Kim, J. (2012). Disentangling 3D shape and perceived

gloss [Abstract]. Journal of Vision, 12 (9), 947a.

Atkins, J. E., Jacobs, R. A., & Knill, D. C. (2003). Experience-dependent visual cue

recalibration based on discrepancies between visual and haptic percepts. Vision

Research, 43 (25), 2603–2613.

Backus, B., Jain, A., & Fuller, S. G. (2011). Cue recruitment for extrinsic signals after

training with low-information stimuli [Abstract]. Journal of Vision, 11 (11), 983a.

Backus, B. T. (2011). Recruitment of new visual cues for perceptual appearance. In
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