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Abstract 10 

This paper presents data from the English Channel area of Britain and Northern France on the 11 

spatial distribution of Lower to early Middle Palaeolithic pre-MIS5 interglacial sites which are 12 

used to test the contention that the pattern of the richest sites is a real archaeological 13 

distribution and not of taphonomic origin. These sites show a marked concentration in the 14 

middle-lower reaches of river valleys with most being upstream of, but close to, estimated 15 

interglacial tidal limits. A plant and animal database derived from Middle-Late Pleistocene sites 16 

in the region is used to estimate the potentially edible foods and their distribution in the 17 

typically undulating landscape of the region. This is then converted into the potential 18 

availability of macronutrients (proteins, carbohydrates, fats) and selected micronutrients. The 19 

floodplain is shown to be the optimum location in the nutritional landscape (nutriscape). In 20 

addition to both absolute and seasonal macronutrient advantages the floodplains could have 21 

provided foods rich in key micronutrients, which are linked to better health, the maintenance 22 

of fertility and minimization of infant mortality. Such places may have been seen as ‘good (or 23 

healthy) places’ explaining the high number of artefacts accumulated by repeated visitation 24 

over long periods of time and possible occupation. The distribution of these sites reflects the 25 

richest aquatic and wetland successional habitats along valley floors. Such locations would have 26 

provided foods rich in a wide range of nutrients, importantly including those in short supply at 27 

these latitudes. When combined with other benefits, the high nutrient diversity made these 28 

locations the optimal niche in northwest European mixed temperate woodland environments. 29 

It is argued here that the use of these nutritionally advantageous locations as nodal or central 30 
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points facilitated a healthy variant of the Palaeolithic diet which permitted habitation at the 31 

edge of these hominins’ range. 32 

  33 
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Introduction 34 

Two fundamental questions in Palaeolithic archaeology are: 1) do lithic distributions represent 35 

activity patterns? And 2) if so what can they tell us about Palaeolithic foraging strategies 36 

especially at the edge of the biogeographical range of hominins? Archaeologists accept that site 37 

distribution in later periods, both before and after the introduction of farming, can be used to 38 

infer subsistence strategies through spatial relationships with environmental factors both for 39 

mobile and sedentary societies [1]. Intuitively these relationships should be stronger for 40 

hominins prior to the innovation of food storage and durable receptacles. Such relationships 41 

should also be most marked at the edge of the geographical range of a species and the 42 

archaeological record suggests that hominins only occupied north-western Europe during cool 43 

to warm temperate conditions at least up until the last glacial cycle [2,3]. For any research into 44 

Palaeolithic site distribution in North West Europe the starting point is that over 90% of Lower 45 

and early Middle Palaeolithic finds and sites in Britain and along the north European seaboard 46 

come from river gravel deposits [4-6], with the remainder mostly coming from raised beaches, 47 

caves or occasionally lakes and sinkholes (particularly dolines in this region). It is not surprising 48 

therefore that a strong taphonomic bias has been assumed given that lithic artefacts can be 49 

regarded as discoidal clasts and that many artefacts, particularly bifaces do exhibit signs of 50 

abrasion due to transport in fluvial environments [6,7]. A second taphonomic factor is the 51 

visibility of these sites caused by the widespread practice of extracting sand and gravel 52 

(aggregate) by hand during the 19th and early 20th century. This fuelled an antiquarian appetite 53 

for lithics from gravel quarries including the payment of workers for ‘hand axes’ recovered, to 54 

the point to which some pits became more valuable for their artefacts than their aggregate [8].  55 

It is very unlikely that rich sites were missed, given the large number of collectors, their 56 

particular preference for bifaces, and the large number of quarries operated principally for 57 

railway ballast and road construction. Several lines of research in geomorphology and 58 

archaeology over the last twenty years suggest that the artefact concentration particularly of 59 

bifaces at what has been termed ‘super-sites’ [9], is not primarily the result of taphonomic 60 

processes.  61 

 62 
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Taphonomic Factors and Site Distribution 63 

For the English Channel River region which is geologically continuous, the first line of evidence 64 

comes from the characteristics of the site distribution and artefact density. In this study we 65 

have used bifaces (including rough-outs) rather than the entire number of lithics collected as 66 

bifaces represent one tool (rather than just knapping activity). Also because they were the most 67 

commonly collected artefact type, they should be conservative in statistical terms and the 68 

problem of between-site collector bias minimised. The frequency distribution of sites by biface 69 

number is highly skewed with most sites producing a small number of artefacts and only a very 70 

few sites producing large numbers (Fig. 1). In this study we have used data collected by Wessex 71 

Archaeology between 1993 and 1997 as part of The English Rivers Palaeolithic Survey and only 72 

that from single quarries (or gravel pits) or adjacent quarries. Although there are problems 73 

defining site size there are fewer than 25 Lower to early Middle Palaeolithic (pre-MIS 5) sites in 74 

the English Channel region that have yielded over 500 bifaces This pattern holds at a variety of 75 

spatial scales as in southwest England one site (Broom) has produced 96% of the bifaces from 76 

the region (20,000 km2). Research focussed on this region involving the location and 77 

enumeration of all known artefacts in museum collections has allowed calculations of the 78 

relative number recovered from valley floors and slopes (Fig. 2). The result is a valley/slope 79 

ratio between 26:1 and 5:1. Moving further east along the southern coast of Britain into the 80 

reach of the palaeo-Solent catchment that falls within the county of Hampshire, only 5 out of 81 

281 sites have yielded 79% of all Lower and Middle Palaeolithic bifaces [10]. This is confirmed 82 

by the extreme rarity of finds on slopes and plateaus in this region, even in intensively field-83 

walked areas. This spatial bias is illustrated by the cumulative plot of artefacts against area for 84 

the South West region (Fig. 2) which is analogous to a variogram with a high ‘nugget value’ and 85 

low range, and conforms to a typical hotspot-type distribution [11]. A very similar spatial 86 

pattern has been found for Palaeolithic sites in the Bose Basin, Guangxi, China [12] and in pre-87 

agricultural archaeology in the USA [13]. Since the area covered by this study has been outside 88 

the maximum area of glaciation throughout the Pleistocene, glacial erosion cannot be the cause 89 

of this strong spatial bias, and although there has been intense and prolonged periglacial 90 

activity, solifluction deposits (locally known as ‘head’) very rarely contain any Palaeolithic 91 
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artefacts although examples are known including the enigmatic site of Knowle Farm in Wiltshire 92 

[13,14]. Another example is a biface from Boxgrove (unit 11) but this was found only 0.4m away 93 

from an unmoved, refitting flake scatter [15], potentially indicating very limited transportation. 94 

The examination of many linear kilometres of exposures of head deposits in south western 95 

England as part of studies of Pleistocene environmental change has produced virtually no 96 

Palaeolithic artefacts [16]. In general solifluction deposits and tributary fluvial gravels deposited 97 

during cold marine isotope stages dilute concentrations in mixed and reworked alluvial 98 

formations as is clearly evident in the Axe Valley in South West England where background 99 

concentrations can be as low as 1 artefact per 200,000 m-3 of gravel [17]. Palaeolithic scatters 100 

do occur on interfluves in this region especially in association with clay-with-flints which is a 101 

Tertiary weathering deposit. However, even at sites with dense scatters of lithics, such as Wood 102 

Hill, Kent and Caddington and Round Green in Bedfordshire bifaces are rare [18,19] and none 103 

approach the numbers seen at the floodplain super-sites. 104 

A second line of evidence is artefact condition. Whilst many artefacts in river gravel deposits 105 

show signs of abrasion such as edge wear and rounding, many do not even those from the 106 

same site and stratigraphic level. At Broom using two different systems for recording lithic 107 

condition, between 27% and 70% are fresh to lightly abraded (Fig 2.) [20]. Geomorphological 108 

research on clast rounding has further suggested that even those bifaces with ‘rolled to very 109 

rolled’ morphologies may not have travelled far, as the rate of rounding is proportional to clast 110 

shape [21] and their tips are frequently not broken. This contention is also supported by 111 

budget-based models of river terrace formation which suggest that the majority of gravels in 112 

terrace staircases in this region are derived from reworking of previous terrace deposits by 113 

lateral channel migration rather than downstream clast-abrasion [22,23]. Even when the lithics 114 

are all abraded to heavily-abraded, as reported for Wood Green and Dunbridge (Fig. 1), the 115 

longitudinal occurrence of the high concentration is clearly peaked at 21-17 km upstream from 116 

the modern river mouth but downstream of the change in bedrock lithology [24]. The 117 

occurrence of both fresh and rolled bifaces in the same sedimentary bed, as at Broom and at 118 

Chard Junction (both in the Axe Valley) also suggest that the majority of the lithics have not 119 

travelled far and most probably are the result of local reworking of artefact spreads on the 120 
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floodplain from adjacent gravel bars or ‘proximal contexts’ so although not truly in-situ they are 121 

still clustered near to the point of original deposition [25]. This also applies to probable lithic 122 

manufacturing sites such as Purfleet [26]. Such dense spreads or ‘pavements’ of lithics are 123 

known from several early Stone Age sites in east Africa such as Olorgesailie [27] and recent 124 

excavations at Rubirizi in Uganda [28]. The distinction between dense concentrations of 125 

artefacts in-situ or in proximal contexts, and the background lithic artefact content of fluvial 126 

gravel, is archaeologically critical as it allows such super-sites to be analysed as part of a 127 

behavioural rather than geomorphological distribution and permits meaningful ecological 128 

interpretation of site distribution. 129 

  130 
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Site Distribution and Niche Reconstruction 131 

The pre-MIS 12 hominin occupation of north-west Europe is only known from a small number 132 

of sites and may have been an Atlantic phenomenon restricted to mild to warm temperate 133 

climates in coastal areas [29]. Post-MIS 12 hominins occupied this region in all interglacials and 134 

some interstadials with the apparent exception of Britain in MIS 5e [30].  The distribution of the 135 

biface-richest post-MIS 12 but pre-MIS 5 sites in Britain and northern France shows a marked 136 

concentration in the lower reaches of river valleys (Fig. 1). The richest sites are defined as those 137 

with over 500 bifaces, which frequently occur together with other knapping products including 138 

cores and flakes (both prepared and non-prepared) of Acheulean and/or Levallois tradition. The 139 

sites can be grouped by catchments all draining into the English Channel or southern North Sea. 140 

In the Exe/Axe basin there is only one site at Broom [7,19]; in the palaeo-Solent and East Sussex 141 

Plain system there are 7: Milford Hill, Wood Green, Dunbridge and Romsey, Hill Head/Rainbow 142 

Bar, Red Barns  Warsash-Hook and Boxgrove [31-35]. Although large numbers of lithics have 143 

been found in the Bournemouth-Christchurch area they are both widely dispersed and come 144 

from a number of terrace units even at the richest site which is Barton on Sea [37]. Similar 145 

areas of high background densities occur elsewhere in the region such as Sturry in Kent [14]. In 146 

the Thames basin there are 11 sites, Furze Platt and Burnham Beaches in the Maidenhead area, 147 

Yiewsley-Drayton-Hayes, Acton and Stoke Newington in the West London area, Croxley Green 148 

in the Colne valley, Swanscombe [36,4] and Clacton in the Thames estuary region [4,14,37] and 149 

the early Middle Palaeolithic sites at Purfleet, Northfleet, and Ebbsfleet also in the Thames 150 

estuary region [38,2]. Across the English Channel the major sites are restricted to the Somme 151 

valley at the sites of Abbeville, St Acheul and Cagny la Garenne. Due to the low gradient and 152 

high tidal range of the Somme, Abbeville is only 3 km upstream of the present natural tidal limit 153 

(NTL) and St Acheul and Cagny are just over 40 kms upstream of the NTL. On the Seine, Elbeuf is 154 

actually at the present tidal limit [39]. In addition to these high-concentration sites there are a 155 

number of recently researched sites which have a small number of artefacts but good 156 

environmental and chronostratigraphic data such as Caours in the Somme Valley and La Celle in 157 

the Upper Seine-Yonne Valley [39-40].  Caours and La Celle have been included in the 158 
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palaeoecological database along with Boxgrove as proxies for natural interglacial conditions and 159 

due to their comprehensive records. 160 

The distance of the sites upstream of the NTL has been estimated from the corresponding 161 

interglacial relative sea level (IRSL) in order to approximate site position at the time of 162 

occupation. Estimation of the tidal limits in the last 4 interglacials (MIS 5e, 7, 9 and 11) have 163 

been made using the LRO4 stack [41] as a proxy for eustatic sea level adjusted for regional uplift 164 

[42] by regarding the associated raised beaches as indicating the interglacial sea level, and using 165 

the MIS 1 floodplain gradient (Table S1). This floodplain method was used in preference to the 166 

river terrace gradients as these are mostly cold-stage gravels and grade to low glacial sea levels 167 

[43,22]. In the absence of any usable Pleistocene data, tidal frames have been assumed as 168 

similar to the present day. The results (Table S2) generally places the upstream sites slightly 169 

further above the NTL than they are today but the sites in the estuarine zone move closer to 170 

the NTL. The additional distances are relatively small being a maximum of 2 km in MIS 9 to a 171 

maximum of 23 km in MIS 7. Palaeoecological data suggests that some sites were closer to the 172 

NTL than predicted here, such as Swanscombe which has ostracod evidence that it was just 173 

above the tidal limit as well as a dolphin vertebra (Ingress Vale Pit) and a marine Gadidae bone 174 

[44, 45]. Although the estimates of site position in relation to IRSL NTL have only been made for 175 

the British sites it is likely that the Somme and Seine sites results would be similar to those from 176 

the north side of the English Channel. One uncertainty associated with these calculations is the 177 

possible coast to inland variation in uplift rates which could have resulted in gradients different 178 

from those used here.  A second uncertainty is that occupation phases at some of the sites 179 

were probably not associated with peak interglacial sea levels such as Swanscombe and Cagny 180 

la Garenne. In these cases the estimation of their position within the valley can only be a 181 

minimum distance from tidal waters. Despite these considerations, it is clear from the 182 

calculations and the geomorphology of the fluvial systems entering the English Channel that 183 

during high or maximum RSLs in each of the last four interglacials all except two of these super-184 

sites would have been within 40 kms of the tidal limit and most were considerably less. The 185 

only other exceptions to this pattern are Boxgrove (unit 4c) which was a coastal plain site close 186 

to a freshwater spring [46-47] and Hoxne which was close to an evolving lake shore/riverine 187 
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setting [48,49]. This 40 kms distance range for the majority of the sites places them within 1 to 188 

2 days walk [50] of access to marine resources. This suggests that although marine resources 189 

may have supplemented diets they were not a major source of nutrient intake. It is also 190 

noticeable that 12 out of the 19 English sites come from tributary junctions reaches (Broom, 191 

Wood Green, Milford Hill, Romsey, Dunbridge, Warsash, Furze Platt, Burnham Beaches, 192 

Yiewsley, Croxley Green, Stoke Newington, Purfleet) in which there would have been a greater 193 

extent of floodplain and channel habitat. The concentration of these super-sites in this zone 194 

raises an important question. Were these lower reaches of valley floors particularly favourable 195 

locations or niches for hominin activities and visitation?  196 

In order to test this hypothesis we have attempted to predict the likely distribution of nutrient 197 

resources during the last 4 temperate interglacials along a transect from valley floor to the low-198 

altitude plateaus which characterise the topography of this region. This is based upon year-199 

round occupation and the fundamental assumption that adequate nutrient intake is critical to 200 

hominin survival throughout the year and in all stages of the life-cycle including pregnancy and 201 

infancy. We also make the assumption that that the nutritional requirements of Middle 202 

Pleistocene hominins (Homo heidelbergensis, Homo neanderthalensis) were related to their 203 

phenotype and environment in a way which both maximised fitness and is comparable to their 204 

nearest living relative (NLR) (i.e. Homo  sapiens). This is justified by the generally held view that 205 

hominin nutrient requirement and digestive physiology appears to be genetically conservative 206 

[50-52]. Although the floodplain offers a wide variety of resources (Table 1) adequate nutrient 207 

intake is critical for hominin survival and procreation. A third but less critical assumption, 208 

particularly pertinent to nutrient requirements, is that energy expenditure patterns in hominins 209 

were not unlike those seen today. Support for this assumption comes from studies of total daily 210 

energy expenditure in contemporary hunter-gatherers which suggests that metabolic rates 211 

were not significantly different when body mass is taken into account [50]. 212 

Research by both archaeologists and Pleistocene scientists over the last fifty years has 213 

produced a significant record of both fauna and flora from both Palaeolithic archaeological sites 214 

and palaeoecological sites without any artefacts. These have included interglacial floral and 215 
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faunal lists for the British Isles [53,45,54) and from the Netherlands [55] and France [56].  We 216 

have used these records (from 37 sites) to compile a list of potentially edible animals and plants 217 

that were present in the lowland landscape in southern Britain and northern France during 218 

temperate periods with a mean annual temperature of 7-12oC, namely MIS 11, 9, 7 and 5e (Fig. 219 

3; Table S3) [57]. Further we have assumed that the only food processing technology available 220 

was roasting over an open fire. It is accepted that this cannot be a complete list and there may 221 

be some taphonomic bias to floodplain environments. An attempt has been made to counter 222 

this by including some species, which on ecological grounds probably were present but for 223 

which we have no fossil data as they are not floodplain species (e.g. Pignut; Conopodium 224 

majus). These are indicated in in the Supplementary Information along with the principal data 225 

sources and the food types with selected data in Table 2. The nutrient and energy values of 226 

these resources have been collated from a wide variety of sources but mostly nutritional 227 

databases (Canadian Ministry of Health, 1999; USDA National Nutritional Database; WHO 228 

Nutritional Landscape Information System). The edible status of these resources is taken from 229 

modern and historical observations and in effect excludes inedible grasses, woody tissues 230 

(except bark) and plants or animals known to be poisonous to humans [58]. Ecological 231 

classifications are taken from a wide variety of sources but particularly [59] for plants and [60] 232 

for mammals.  As a first approximation to estimate nutrient intakes the landscape has been 233 

divided into 7 zones from the river to the plateau tops, which typically is a distance of 10 km 234 

and 150 to 200 m in relative relief (Fig. 3). The floodplain has further been divided into the river 235 

channels, including gravel islands and banks and the remainder of the floodplain including 236 

terraces. The rest of the landscape has been subdivided into forested slopes and plateau, and 237 

two open or large-gap environments. There are no continuous vegetation records that span the 238 

full period from this region but from fragmentary records and correlation with continuous sites 239 

to the south an approximate pattern of forest cover has been reconstructed by [61] which 240 

correlates reasonably well with human occupation (Fig. 3) [3]. Based on the typical mesocratic 241 

vegetation phase of interglacials in this region, forests would have been mixed temperate and 242 

deciduous and dominated by oak (Quercus), elm (Ulmus), lime (Tilia) and beech (Fagus) further 243 

to the south [62]. Although there was both systematic geographical and temporal variation 244 
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during this period the temperate climate and areas of open grassland would have controlled 245 

the diversity of the shrub and herbaceous flora which includes the majority of edible species. It 246 

has been argued from a number of sites that the relative open-ness of interglacial floras was 247 

the result primarily of large herbivores and particularly the steppe mammoth (Mammuthus 248 

trogontherii) [63]. The distribution of large mammals (>30 kg) is assumed to have been even. 249 

However, this has been adjusted to reflect the relative ease of ambush predation and 250 

scavenging on the floodplain due to open conditions and the congregation of animals at 251 

drinking and bathing sites. The open nature of a significant part of the landscape is also 252 

suggested by the presence of horses (Equus) at nearly all sites. Late Pleistocene horses have a 253 

dental crown height ratio of over 5.5 and were therefore adapted to grazing rather than 254 

browsing [64]. There is also evidence from movement ecology that some of the species such as 255 

deer and horses are preferentially attracted to the forest edge, clearings and wetlands 256 

particularly during winter [65,66]. Pending useable data on habitat use and relative kill rates it 257 

has been assumed that the availability/kill ratios (probability of encounter and kill rate) for 258 

clearings is 2:1 and the floodplain 3:1. Evidence-based estimates are extremely difficult but 259 

many of the species are only available to be killed (or gathered) in open habitats; and in terms 260 

of closed forest this would be in natural gaps and the floodplain. It is also likely that many large 261 

birds and herbivores would be at their most vulnerable when in, or at, water. Differential 262 

encounter or kill rates are not used in the summary nutritional values (Fig. 4) as they would 263 

primarily affect total intake per unit energy expended whilst the relative differences result from 264 

the species patterns. For small mammals ecological data has been used to assign species to 265 

principal locations and the herpetofauna and fish have been ascribed solely to the floodplain 266 

since these landscapes contain few persistent natural lakes. Although small in biomass, small 267 

mammals may have been important for prey-shifting (sensu [67]) in times when large mammals 268 

were scarce. Birds have also been classified according to habitat and the higher number of 269 

species in the floodplain corridor is a reflection of the high number of waterfowl recorded from 270 

Pleistocene sites in the region (e.g. Boxgrove [68]). Whilst there may be a bias here the greater 271 

ease of hunting waterfowl and egg collection has not been included although this would also be 272 

greater in the riparian zones. Edible plants are known from all ecological zones with similar 273 
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assemblages from open areas and floodplains, although the nutritional value and ease of 274 

collection almost certainly varied. These species are then totalled to give a comparison of the 275 

zones revealing the greater diversity of edible animals and plants in the floodplain corridor and 276 

in clearings than in the intervening mixed temperate woodland. Certain potential nutrient 277 

sources have not been included particularly mollusca and insects. This is not because the 278 

authors discount them as potential sources, indeed both are potentially high in nutrients, but 279 

because of a lack of data on species-specific nutrient contents in this environment.  280 

Nutritional Diversity 281 

There are over 50 nutrients required to sustain human life and diet has long been regarded as a 282 

driving force in biophysical, social and cultural evolution within the hominin lineage. Nutrients 283 

have classically been divided into 6 major groups (proteins, carbohydrates, lipids, vitamins, 284 

minerals, water). Whilst animal and plant tissues are the principal sources for all 6 groups the 285 

environment can directly supply minerals, including Fe, S, Ca, Na and Se with the principal 286 

source locations being springs and the floodplain in the form of Fe, S and Ca bio-precipitates. 287 

The relatively higher requirement for mineral intake during pregnancy has been associated with 288 

a desire for direct consumption of minerals [69], and mineral springs also attract mammals and 289 

plants which bio-accumulate these minerals, and metals in particular (metalophytes). Although 290 

most emphasis in reconstructions of Palaeolithic diets has been placed on protein intake, fat is 291 

the major energy reserve in hominids and can buffer food scarcity which would have been 292 

more common at the edge of the hominin geographical range. A fat-brain trade-off has also 293 

been proposed as an alternative to the gut-brain trade-off underlying the expensive-tissue 294 

hypothesis of brain enlargement [70, 71]. For over fifty years it has been recognised that there 295 

are certain nutrients which are essential for both human survival and reproduction. These are 296 

primarily micronutrients, vitamins and specific minerals, but also include specific amino acids 297 

and the essential polyunsaturated fatty acids (PUFA) which are obtained from plant sources, 298 

linoleic acid (LA) and α-linoleic acid (ALNA) [72]. LA and ALNA are essential in the diet because 299 

they are the respective precursors of longer chain PUFA including the n-6 fatty acid arachidonic 300 

acid, a precursor of prostanoids, and the n-3 fatty acid - docosahexaenoic acid (DHA) which 301 
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plays a critical role in the development and function of the central nervous system [73] and 302 

which has been shown to modify epigenetic marks directly or indirectly [74].  Because of its 303 

critical role in the brain, DHA has been linked to human brain evolution [75].  Humans are poor 304 

converters of ALNA to DHA, although women do this more efficiently than men which has 305 

implications for the supply of DHA from mother to offspring [76,77], and so preformed DHA 306 

derived from the foods at the land/water interface has been associated with the evolution of 307 

large brained hominins in Africa [78,79]. Edible plants and animals rich in LA and ALNA, and 308 

animals rich in PUFA from plants (LA and ALNA), from meat (arachidonic acid) and fish (DHA) as 309 

groups have been totalled and show a marked increase in the floodplain corridor (Fig. 4).  310 

 311 

For hominins including Neanderthals which have traditionally been seen as top carnivores [80] 312 

there is also a nutritional challenge in the protein ceiling in that protein intake must be 313 

balanced by carbohydrates and/or fats. If not so-called ‘rabbit starvation’ results due to the 314 

finite ability of the liver to regulate the rate-limiting enzymes that synthesise urea resulting in 315 

very high levels of ammonium ions and acidic amino acids in the blood [81]. This is known to 316 

have occurred in modern humans when they have been forced to rely entirely on fat-poor, wild 317 

animals [82]. We have used the plant and animal list to calculate the approximate balance of 318 

energy (kcals), protein and carbohydrates+fats (CF) as a percentage of the total values for the 319 

entire landscape diversity (all zones). As can be seen in Fig. 4 all three are highest in the 320 

floodplain zone, however, the floodplain corridor is the only part of the landscape where CF 321 

sources are potentially more abundant that protein sources. This is due to the availability of 322 

high CF sources including some high fat sources such as fish (particularly eels (Anguilla) which 323 

are available throughout the year), waterfowl and eggs; and high carbohydrate sources 324 

including plants particularly those with underground storage organs (USOs) such as reed mace 325 

(Typha), common reed (Phragmites), water chestnut (Trapa natans) and yellow water lily 326 

(Nuphar lutea). USOs have repeatedly been implicated in hominin evolution and particularly 327 

encephalisation and bipedalism in the Africa [83, 72, 84-85] although this has been challenged 328 

[86]. In order to maintain their protein:CF balance it is likely that hominins would have actively 329 

sought out high carbohydrate sources such as honey (86g 100g-1), aquatic seeds (80g 100g-1), 330 
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berries (13g 100g-1), and hazelnuts (6g 100g-1). A similar propensity may have been displayed 331 

for high fat sources particularly bone marrow (84g 100g-1) and brain (70% fat and rich in 332 

arachidonic acid and DHA), but also hazelnuts (63g 100g-1), eel (42g 100g-1), birds eggs (29g 333 

100g-1) and certain parts of selected mammals such as the tails of beavers (Castor fiber). 334 

Beavers are particularly interesting as they would have been ubiquitous damming all but the 335 

largest channels in this region, and at 20-30 kg they provide as much meat as a small deer 336 

whilst their tails can contain as much as 60% fat in the autumn and winter [87]. Presumably the 337 

same would apply on a larger scale with the large beaver-like rodent (Trogontherium cuvieri) 338 

which was present at Boxgrove, Swanscombe and Hoxne [88-90] but extinct after MIS 11 [91]. 339 

At Hoxne the remains of the otter (Lutra), beaver (Castor fiber), and waterfowl directly 340 

associated with the Acheulean lithics strongly suggested hominin exploitation, although no 341 

butchery marks were found on these species [88]. Bifaces are known to be extremely efficient 342 

butchery tools [92] and the emergence of particularly large and heavy bifaces may be related to 343 

their importance in marrow extraction in smashing the long-bones of large herbivores as well as 344 

for carcass processing.  Likewise the high lipid content of brains including macaque and 345 

hominins [93] is also a potential driving force for the crushing of skulls and consumption of 346 

brain grey and white matter. 347 

In these marginal temperate environments a similar problem arises with essential nutrients 348 

such as taurine, vitamins B6, B12, A and C, and folate. As can be seen from Table 2, viscera, 349 

especially liver, is particularly important in the supply of vitamin B6, B12, A and C as well as 350 

PUFAs, folate and some essential minerals. Fish, including eels are also a rich source of taurine, 351 

B6, B12 and vitamin A. Vitamin C is of particular importance as the body has limited capacity for 352 

retention (approximately 20 days) after which scurvy will arise if intake falls significantly below 353 

the daily requirement [94]. The principal source is herbivore liver, however, since vitamin C in 354 

liver is destroyed by cooking higher intakes are achieved if the liver is consumed raw [95]. Other 355 

sources are mostly seasonal such as berries and leafy vegetables. There are, however, year-356 

round vitamin C sources within the riparian zone such as  many species of the cabbage and 357 

carrot families including the wild cabbage (Brassica oleracea), watercress (Nasturtium 358 

officinale), wild carrot (Daucus carota), wild celery (Apium graveolens) and scurvy-grasses 359 
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(Cochlearia spp.) all of which are found in disturbed floodplain environments and the upper 360 

estuarine zone. Also available year-round are sources of folate such as watercress (Rorippa 361 

nasturtium-aquaticum) and aquatic USOs such as water-chestnut (Trapa natans). USOs are 362 

particularly valuable in late fall and winter when they have their maximum energy values [58, 363 

96]. The same is true for iodine for which there is an easily obtainable year-round source in 364 

non-acidic floodplains in the form of watercress although it would have varied with the geology 365 

and soils of the catchments [97].  Watercress is likely to have been particularly common around 366 

these sites as it benefits from nutrient enrichment in carbonate-rich waters and is tolerant of 367 

heavy grazing [59]. Analysis of the vitamin concentrations in these food sources highlights 368 

another potential problem in that there is very little vitamin E in the meat or indeed fish. 369 

Without adequate intake particularly during lactation there could be a substantial risk of 370 

oxidative damage to tissues (Table 3).  371 

Vitamin D could also be a problem at these latitudes as it is only naturally present in a few 372 

foods such as fish and egg yolks. However, it must be noted this is difficult to assess as a 373 

constraint given the unknown hominin capacity for endogenously produced vitamin D from 374 

sunlight. The balance of Fe, I, Se, vitamins D and E and n-3 fatty acids are important in both 375 

metabolism and inflammation through their role as nuclear transcription factors and this 376 

balance is present in land-water ecosystems [85]. In relation to nutrient balance eels are a 377 

particularly interesting element of the ecology of the region in that they were ubiquitous, 378 

present all year-round, can move over land and would have been naturally attracted to kill and 379 

butchery sites on floodplains due to their ability to be able to detect blood in water. 380 

Furthermore eels are highly valuable nutritionally having almost equal quantities of protein and 381 

fat as well as being high in LCPs, vitamin A and key minerals (P and K). This and the use of other 382 

freshwater fish may be a cause of the greater dietary breadth estimated from isotopic values 383 

from early modern humans in Europe [99,100] but it does not necessarily follow that this was a 384 

unique capability of modern humans. There is also a possible beneficial interaction here 385 

between the presence of beaver dams, which both facilitated river crossing (over the dams) and 386 

created ponds, but which also attracted both game and fish including eels. 387 
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Taken together, the available energy, overall nutritional diversity, and availability of key micro-388 

nutrients the floodplains provide the optimal location in this landscape through easy access to 389 

mammals of nearly all types, fish, waterfowl and edible plants including aquatic plants (Fig. 5). 390 

Unlike other zones the floodplain provides key potential resources for critical periods both 391 

during the year (e.g. for over-wintering [19]) and during critical periods in human life-cycles 392 

such as during pregnancy and breastfeeding. Other ecozones can also provide easy access to 393 

many of these resources, such as natural forest gaps and clearings, but none can provide such 394 

high on-site nutritional diversity. Nutritional diversity can be related to both high fecundity and 395 

lower rates of premature birth and infant mortality [100]. Sites in the wider parts of the 396 

floodplain such as downstream reaches and at confluence zones would have made beneficial 397 

bases or locations of concentrated activity from which other ecological zones could have been 398 

exploited and which would have formed hubs or central places in mobile hunter-forager 399 

circulatory patterns of seasonal mobility [100-101] over ranges of the order of 1000-2000 km2 400 

[101]. This has been proposed as the pattern for Middle-Upper Palaeolithic site hierarchy and 401 

differentiation in the Rhone valley where the sites on the floodplain or valley floor are the long-402 

term residential camps [102].  403 

 404 

Hunter-gatherer Diets, the Palaeodiet and Niche Construction  405 

On the basis of animal bones, artefacts and stable isotope studies Palaeolithic hominins, and 406 

particularly Neanderthals, are generally regarded as top carnivores with meat making up the 407 

vast majority of their diet [9,100]. As a result it has been argued that the palaeodiet was a low 408 

carbohydrate diet (c. 20-40%) but with essential nutrient requirements [103] and that the meat 409 

dependency would have increased with increasing latitude to a maximum in circum-Polar 410 

groups. However, studies of historical and contemporary hunter-gatherers only partially 411 

support this model. One of the problems has been that the vast majority of extant hunter-412 

gatherer groups available for dietary studies are from either the low latitudes (tropics) or from 413 

high-latitudes (circum-Polar zone) with very few from the temperate zone and virtually none 414 

from the Old World temperate zone. Studies of Arctic hunter-gatherers have unsurprisingly 415 



17 
 

shown levels of meat consumption reaching 90-100% by weight [104,79]. However, it has been 416 

argued that there has been under-reporting of the non-meat component in these diets due 417 

both to seasonal variations and social factors [105]. Conversely studies of hunter gatherers in 418 

the tropics demonstrate that no exclusively vegetarian groups exist, and that the lowest meat 419 

intake is 20-30% [83]. Crucially a study of hunter-gathers in the Columbia Plateau [106] 420 

revealed a diet with approximately 30% animal food. Using any of these data the projected 421 

animal food intake for hunter-gatherers living at latitudes of this study (48o-53o) would be 422 

anywhere between 30% and 80% but probably not higher.  423 

Most palaeoecological evidence of diet suffers from major problems of taphonomic bias 424 

particularly through the preferential preservation of bone including evidence of butchery. 425 

Isotopic analysis of bone collagen of Neanderthals suggests values of -21.8 to -19 and δ15N 426 

values of 8 to 12 [107, 97, 94]. Evidence from stable isotopic concentrations in hominin bones 427 

also has a dietary bias because there is a non-linear relationship between animal food intake 428 

and both δ13C and δ15N values [107,108] and low-protein foods that may have been critical to 429 

survival are invisible in isotopic analyses of bone collagen [97]. The result is that on δ13C:δ15N 430 

plots differentiation between individuals who have 75% as opposed to 95% animal foods is very 431 

difficult. This is especially the case if their non-animal intake has been high in δ15N and δ13C and 432 

intake from other lower-protein foods cannot be measured. This problem of equifinality may be 433 

addressed over the next few years by studies of Sr:Ca and Ba:Ca ratios as both Sr and Ba 434 

decrease with increasing trophic level and are high in geophytes/USOs [83].  435 

In summary the existing isotope literature may present a biased picture exaggerating meat 436 

consumption and under-estimating Palaeolithic consumption of plant food particularly critical, 437 

but low-volume, low-protein sources. This is supported by a few studies of independent sources 438 

of dietary information such as dental phytoliths. Data from Spy I and II in Belgium have revealed 439 

starch grains from USOs and grass seeds (Andropogoneae tribe) and from Shanidar III have 440 

produced starch grains of Type 1, probably from water lily [109]. Molar macro-wear studies 441 

[110] have demonstrated high dietary variability in Mediterranean evergreen habitats for both 442 

Neanderthals and early modern humans.  443 
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So far in this paper the concept of niche has been passive and rooted in twentieth century 444 

biology [111] under which environmental factors were seen to act on an organism in a 445 

particular place thereby creating its niche. However, modern concepts of the niche are not only 446 

multi-dimensional but also include the recognition that organisms, especially hominins, do 447 

more than passively survive in that hyperspace but modify their niches and those of other 448 

organisms through their metabolism, activities and choices [112]. The recognition of this 449 

reciprocal relationship lies at the heart of niche construction theory (NCT) as a key element of 450 

evolution [113]. One obvious feedback is the development of clothing allowing occupation 451 

further north and persistence in cool-temperate periods such as interstadials, also damping 452 

physiological selection in response to extreme temperatures [114]. More subtly the 453 

inhabitation and modification of the high-nutrient diversity niche described here may also have 454 

had a significant physiological and genetic legacy, analogous to, but very different from, later 455 

genetic legacies of agriculture. The nutrient diversity and opportunities to expand nutrient 456 

sources may well have propelled both behavioural change such as the increasing intake of 457 

marine foods and the development of fishing and of long-distance foraging seen in the later 458 

Middle and Upper Palaeolithic in this area [115,116]. It may also have introduced an element of 459 

pre-adaptation to increasing diet breadth as epitomised by Homo sapiens. It is argued here that 460 

the result was that hominins located themselves in nutritionally optimum locations at the edge 461 

of their geographical range. Through repeated and/or prolonged occupation of those locales 462 

they altered them, probably creating adaptive responses in both the fauna and flora, and they 463 

were in turn altered by their constructed niche [113] particularly under migration restriction 464 

[117]. This is part of the ‘ebb and flow’ model of occupation of this region [3] and could also be 465 

a selective component of environmental remodelling that favoured adaptive plasticity or 466 

variability selection [116-118] resulting in occupation of the area during the last glacial cycle by 467 

both Neanderthals and modern humans well outside the climatic envelope considered in this 468 

paper. 469 

 470 

Conclusions 471 
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Based on our analysis of multi-disciplinary data we propose that the distribution of the richest 472 

Lower to Middle Palaeolithic archaeological sites in this part of northwest Europe is a real 473 

behavioural distribution reflecting hominin activity patterns rather than a taphonomic 474 

distribution. During the last four interglacials the location of the richest Palaeolithic sites in 475 

terms of biface densities is strongly biased to the lower reaches of river valleys and sites which 476 

were above NTL but in proximity to tidal rivers and estuaries. This may also have been the case 477 

earlier, as suggested by marine molluscs, barnacles and foramnifera at sites such as Pakefield 478 

and Happisburgh III [3] but analysis is prevented by the small number of sites and is 479 

complicated by the breaching of the Weald-Artois anticline creating the Straits of Dover and by 480 

major changes in fluvial geography [120,28].  There are several reasons why lower reach of river 481 

valley floors would have been a favoured habitat in north west Europe including access to 482 

water, safety from predators, lowest river crossing points (natural rivers are shallow and 483 

frequently anastomose in these reaches facilitating crossing) and food resources. In this paper 484 

we have used a database of plant and animals resources known from Pleistocene sites in the 485 

region to compile a potential list of nutritional resources. Through ecological classification the 486 

nutrient landscape can be estimated and this shows a marked potential locational advantage 487 

for floodplain zones as opposed to the forested slopes, plateaus and even clearings. It is argued 488 

that this advantage may have included access to plants and animals which provided both 489 

essential energy and macronutrients but also critical micronutrients which maintained 490 

population health and maximised reproductive success and may have increased cultural 491 

complexity [121]. Such Palaeolithic diets with an aquatic component have been implicated in 492 

‘healthy aging’, an emerging concept in evolutionary nutrition which has as its mantra ‘we are 493 

what we eat, but we should be what we ate’ [122, 87]. It is possible these locations were 494 

perceived as ‘healthy/good places’ to which hominins returned on a regular, and prolonged 495 

basis, and may have been ‘marked’ by their assemblage of artefacts [123]. If these were 496 

important and revisited locations they provide nodal points in the Palaeolithic geography of 497 

north west Europe and support the contention that river valleys provided the nutrient-rich 498 

route-ways of exploration and utilization of Palaeolithic landscapes. A possible symbiotic 499 

interaction through niche creation on floodplains is postulated between hominins, horses, 500 
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freshwater fish (particularly eels) and beavers. It is also proposed that this optimal pattern of 501 

occupation in the nutritional landscape coupled with low population densities was fundamental 502 

to the Palaeolithic diet that was successful in facilitating expansion of hominins outside their 503 

evolutionary homelands and the persistent, if episodic, occupation of the less productive higher 504 

latitude regions of the northern hemisphere for over half a million years. 505 
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Figure Captions 935 

Fig. 1. The distribution of Lower to Middle Palaeolithic (pre-MIS 5) sites in Britain and Northern France 936 

with over 500 bifaces (including roughouts) and other key sites referred to in the text  937 

Fig. 2. Palaeolithic site and find distribution in SW England from PRoSWEB with the cumulative number 938 

of artefacts plotted against area as a measure of the variance of site richness and statistics for find 939 

location. 940 

Fig. 3. Vegetation reconstruction for southern England with SST from ODP 980 and approximate site 941 

chronology. Adapted from Stemerdink et al. (2010). Site code; Ac= Acton, Abb=Abbeville, Br=Broom, 942 

Bx=Boxgrove, C=Clacton, Cao=Caours, Cr=Crayford, D-R= Dunbridge-Romsey, E=Ebsfleet, ElF=Elbouf Fm., 943 

H=Hill Head, LC=La Celle, Nf=Newfleet, S=Swanscombe,  SA=St Acheul, Wg=Woodgreen. Several sites 944 

have not been included as dating is too poor to assign them to an individual stage within the period 945 

(Furze Platt, Burnham Beaches, Yiewsley, Stoke Newington and Croxley Green). 946 

Fig. 4. The nutriscape; a schematic representation of dietary diversity in a transect from valley floor to 947 

plateau top in the English Channel region. The scale (X axis) for each histogram is the number of species 948 

for each of the landscape zones. The variation in the total number of potentially edible species is to 949 

allow for more and less open forest cover.  950 
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Fig. 5. A representation of nutritional landscape ecology for a large temperate floodplain environment. 951 

Adapted from [124].  952 

 953 

Table Captions 954 

Table 1. Potential resources available on the floodplains of medium to large rivers in Britain and N 955 

France during Interglacial and warmer interstadial period of the late Pleistocene. 956 

Table 2. Selected food groups from the database of interglacial flora and fauna for the southern England 957 

and northern France region with nutritional values. 958 

Table 3. Critical nutrients principal sources and health implications. 1 only if eaten raw. 959 

  960 
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Floodplain 
Resource 

Constitutive components 

Raw materials chert/flint/quartzite/andesite…as cobbles & hard rock exposures in gorges, also natural coppicing & saplings 
(due to successional growth on floodplains) suitable for spears & sticks 

Safety caves/rock shelters in gorge reaches, tree-throw pits (more common on floodplains due to restricted tree rooting 
depth) 

Shelter open grass/shrublands (maintained by grazing) in the channel zone & water barriers 
nutrients water: all structural & metabolic processes (flowing (non-stagnant) water)                                                            

proteins: energy+ tissue development & repair (herbivore flesh, fish, USOs)                                                                
carbohydrates: energy+ tissue development & repair (USOs, honey)                                                                                   
lipids (fats): energy+ tissue development & repair (marrow, animal fats, fish)                                                             
vitamins: metabolic function (see text)                                                                                                                                        
minerals: cell structure, metabolic processes (animal & plant foods, mineral springs & precipitates) 

Table 1 Potential resources available on the floodplains of medium to large rivers in Britain and N France during interglacial and warmer 

interstadial periods of the late Pleistocene. 
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Group/Type Genera/species  
included 

kcal 
per 
100g 

Protein
per 
100g 

Carb 
per 
100g 

Fat 
per 
100g 

Fibre 
per 
100g 

PUFA per 

100g n3 

+n6? 

Vit A 
IU 
per 
100g 

Other important nutrients per 100 g 

large herbivore (muscle) bison rhino, bear,  223 18.7 0 15.9 0 0.75 0 Cholesterol (83 mg) 

deer spp. (red deer (venison) 111 22 0.2 2.6 0 0.35 0  Iron, Calcium 

Marrow caribou 786 6.7 0 84  0 0.25 240 Fat (86 g) 

Marrow beef/Aurochs 900 11 0 95 0 0.25 0.26 Fat (96 g), Sodium (139 mg) 

Horse domesticated horse 133 21 0 4.6 0 0.65 0 Cholesterol (52-63 mg) 

small mammals rabbit 114 22 0 2.3 0 0.45 0 Cholesterol (28 mg)  

amphibians frogs, toads. 73 16.4 0 0.3 0 0.10 50  

birds/goose/duck wild duck, geese, 
water fowl 

211 17.4 0 15.2 0 2.02 88 Cholesterol (68 mg) 

eggs/duck eggs chicken*, geese, ducks,  347 17.6 0 29.4 0 1.41 1900 Potassium 

fish/eel eel, stickleback, coarse 
fish 

657 65.8 0 41.6 0  124 Potassium, Phosphorus 

fish/salmon salmon/trout 141 19.9 0 0 0 1.50 280 Calcium 

snails raw snails 90 16.1 2 1.4 0 0.25 100 Iron, Calcium 

hazel nuts hazel nuts 655 16.3 6 63.3 7.7 6.45 34  

aquatic plants (seeds) yellow waterlily  361 7.9 80 0.1 19 0.16 0 Niacine (4.2 mg), VE (35.6 mg), Manganese (0.94 
mg), Zinc (6.3 mg), Magnesium (86 mg) 

aquatic plants (Tubers) Typha, Phragmites, 
Trapa natans (fruits), 
pignut 

80 7.7 79.1 4.9 3.3 0.339 2 VC (42%), Folate, Calcium (50 mg) 

berries/fruit blackberries, cranberry 52.6 1.3 13.1 0 5.0 0 165 Potassium 

leafy veg/ spinach, comfrey, 
scurvy grass. 

24 2.9 3.6 0.4 2.2 0.16 9377 VC, VK, Folate, Manganese, Magnesium 

aquatics leaves watercress 11 2.3 1.3 0.1 0.5 0.03 3191 Calcium, Folate 

salad/lettuce edible leaf plants 13 1.3 2.6 0 1.3 0 469 VC (2.6mg), Folate (27 mg) 

honey bees nests 309 0 85.7 0 0 0 0 Manganese (0.9 mg) 

EAR(Adult male ) modern diet 1900 
kcal 

56 g 
day 

125 g 
day 

30 g 
day 

38 g 
day 

1.6g day 3g 
day 

Calcium (800 mg day), Iron (6 mg day), Vit C (75 
mg day), Vit.B12(2 µg day), Niacine (12 mg day), 
Folate (120 µg day), Phosphorus (580 mg day), 
Magnesium (330 mg day) 
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Table 2. Selected food groups from the database of interglacial flora and fauna for the southern England and northern France region with 

nutritional values. The animals and plants in bold have been used to estimate the nutrient values in the table. * indicates a taxa not present 

in the Early-Middle Pleistocene but used as a nutrient proxy.  Carb, carbohydrate; EAR, estimated average requirements; VC, vitamin C; VK, 

vitamin K; PUFA, polyunsaturated fatty acids;  

 

 

Nutrient Value/deficiency  Sources 

PUFAs Essential in brain development Animal liver, brains, eyes, viscera, fish, some 
plants 

Taurine Important for brain function & eyes Meat, fish 

Vit B6 seborrhoeic dermatitis & if restricted 
can impair fatty acid synthesis 

fish, beef liver and other organ meats, some 
Underground Storage Organs 

Vit B12 Damage to the brain and nervous 
system, cognitive disfunction, mania, 
psychosis, pernicious anemia. 

liver, kidney, fish, shellfish 

Fe, Zn Anaemia, hypoplasty (eye sockets)/DNA 
synthesis… 

Shellfish, liver, meat, nuts, seaweed 

Iodine thyroid function, goitre, cretinism, 
learning difficulties 

Venison, watercress, leafy vegetables 

Folate Required to avoid birth defects (spinal) Animal liver, leafy vegetables, 

Vit A Night blindness- erophthalmia, 
keratomalacia, 

Animal liver, leafy vegetables, eggs, fish, 
berries 

Vit C to avoid scurvy (20 day residence time) Liver, meat1, berries, leafy veg 
 

Table 3. Critical nutrients principal sources and some health implications. 1 only if eaten raw. 

 


