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Appendix A

Al. Appendix A - Comparison of connection test results and

predictions using component method

Al.1 Introduction

This appendix presents a complete set of results for the component-based methods and the
respective experimental test data under both static and dynamic conditions. Some tests used a
single loading ram to provoke a rotation whilst others used dual loading rams to provide direct

axial loads and restrict rotation. The dimensions (Figure A1-1) were recorded prior to each test.
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Figure Al-1: Test dimensions
For dynamic tests the physical movement of the column section is recorded and a comparison
against the prediction using component-based methods shown. In addition the applied
force/moment is plotted against the displacement/rotation. For static tests only the force/moment

against displacement/rotation is presented as there was no need to display the time history analysis.

The dynamic tests are characterised by the diaphragm arrangement used to release the pressure
within the system, where A is the weakest diaphragm arrangement and E the strongest. Hence a
DYN (E) test is likely to have experienced a greater load than a DYN (A) test. The true load was

recorded for each test.
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Al.2 Fin plate connections

Test Loading -
Fail
Noiest Test Type Type ailure
piNt | Moment | pon Bolt in shear
rotation
piNg | Moment | geane Bolt in shear
rotation
FIN3 D1r§ct Static Bolt in shear
tension
Direct No failure during the test but large
FIN4 ek Dyn (E) bearing defamation of the beam web
Tension
was observed
FINs | Moment | o) Bolt in shear
rotation

Al.2.1 Fin plate connection test 1 (FIN1)
Dynamic test (1 thick and 1 thin diaphragm) with single loading ram.
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(c) Rotational acceleration - time (d) Centre of mass displacement
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A1.2.2 Fin plate connection test 2 (FIN2)

0 1 2 3
Rotation (deg)

4

Good correlation between predicted and experimental results for rotation of flying

column

Centre of mass displacement was over predicted
Stiffness of connection from moment-rotation curve was predicted with reasonable

accuracy

Overestimation of ultimate moment capacity

Static test with single loading ram.
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(a) Load - rotation - (b) Moment - rotation
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e Static prediction shows good correlation against the experimental test in the
first phase up to a rotation of 3.2 degrees. Post yield stiffness is overestimated
for specified rotation possibly due to crushing of beam flange

e Sudden increase in stiffness is a result of bearing against the column which
changes the pivot location and thus results in an increase in moment. In the
experimental test this occurs over a rotation of approximately 1 degree

e Failure rotation and moment capacity are reasonably accurate and within 5%
of experimental values

A1.2.3 Fin plate connection test 3 (FIN3)

Static test with dual loading rams for direct tension testing.
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Figure 1-2: Load-displacement comparison (FPC3)

e Initial stiffness due to friction is not very accurate
e Increased stiffness when bolts begin to bear against the plate at 2mm displacement is
captured
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e General shape is predicted well but final displacement is off by approximately 3.5 mm
which is reasonable considering the length of the column section is 2m

Al.2.4 Fin plate connection test 4 (FIN4)
Dynamic test (2 thick diaphragms) with dual loading rams for direct tension testing. The

connection did not fail during the initial dynamic loading phase.
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e No failure was predicted in agreement with the experimental result

e Difficult to test two rams dynamically because the pneumatic system meant slighty unequal
loads were applied through the two rams leading to rotation and oscillations

e The unequal loads recorded in the test were input into the prediction model hence the
resulting oscillations

e The experimental yield load appears to be approximately 60 kN compared to a predicted
value of 40kN with final displacements of 5 and 4 mm respectively
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A1.2.5 Fin plate connection test 5 (FINS)

Dynamic test (2 thin diapragms) with a single loading ram.

(a) Rotation - time (b) Rotational velocity - time
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(e) Load - rotation (f) Moment-rotation
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e General behaviour showed a good correlation with the experimental data
e  Over prediction of the post yield stiffness and moment capacity
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A1.3 Smm FLEXIBLE ENDPLATE CONNECTIONS

Peak Peak
Endplate . Peak Failure . .
Test | rpickness | X228 | nfoment | Rotation | -02ding | applied Failure
Number (mm) Type (kNm) (deg) Time axial load
g (ms) (kN)
. Endplate
FEP1 8 Static 50.2 6.2 - 38.8 fracture
Endplate
FEP2 g Dyn (E) 75 58 | 4 917 fracture
FEP3 8 Dyn (A) 60.1 6.3 39 52.3 No
Endplate
FEP4 8 Dyn (B) 63.4 5.8 40 65.7 P,
FEPS 8 Static 483 6.7 : 56.8 fndplate
racture
FEP6 8 Dyn(® | 731 7.0 47 84.2 Hndplats
racture
FEP9 8 Dyn (A) 54.8 - 40 474 No Failure
FEP9 8 Static 45.7 7.4 - 54.2 Endplate
{cont) fracture
FEP14 8 Dyn@a) | 577 556 37 ( 45.0 Fndplate
racture
FEP16 B
(datalogge ) 3 Yes
r failed to 8 Dyn (A) ) ) (endplate)
trigger)
FEP18 8 Static - . . 260.6 Endplate
Tension fracture
FEP19 8 Dy (E) i i 48 2183 No Failure
ension
FEP19 3 Static ) ) 2811 Endplate
(cont) Tension ) ‘ fracture
Dyn (E) .
FEP20 8 Tension - - 53.2 157.7 No Failure
FEP20 Static Endplate
(cont) 8 Tension ) . ) 280.5 Fracture

A1.3.1 Flexible end-plate test 1 (FEPI)
8mm thick endplate

Static test with single loading ram
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e Experimental elastic stiffness is higher than that predicted however the general trend shows
a good correlation

e The point at which the beam flange contacts the column appears to be out by about %2 of a
degree where the test data shows an increase in stiffness from about 4 degrees rotation

e The prediction model overestimates the failure rotation by nearly 3 degrees

A1.3.2 Flexible end-plate test 2 (FEP2)
8mm thick endplate

Dynamic test with single loading ram
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(a) Rotation-time
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A1.3.3 Flexible end-plate test 4 (FEP4)
8mm thick endplate

Dynamic test with single loading ram
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Rotational Accelration (rad/s2)
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A1.3.4 Flexible end-plate test 5 (FEPS5)

8mm thick endplate

Static test with single loading ram

A1.3.5 Flexible end-plate test 6 (FEP6)

8mm thick endplate

Dynamic test with single loading ram

Applied Load (kN)

55
50
45
40

Moment (kNm)
[§°) (3] (U8 (9%
S W S

90

(a) Moment-rotation

-¢o Test (FEPS)

—Predicted

T T () T T

2 3 4 5 6 7
Rotation (deg)

80

70
60

50 A

40
30 A

20 ~

o

0.01

0.02 0.03 0.04 0.05 0.06
Time (s)

Al3



Appendix A

W (=2} ~

Rotation (deg)
F SN

(a) Rotation-time

— Predicted |
- - Experimental & =i

D6

3
2
1
0 T T T L T
0 0.01 0.02 0.03 0.04 0.05 0.06
Time (s)
(c) Rotational acceleration-time
250 :
200 x
S S
% :' Yy I"
g 150 - ]
E ‘t K 1
"é 100 '7@:"“," Wi l|
e J o
U
< 04+
E | ;
= N )
=] I L]
.g 0 T T T T '\ T
2’ 0 0.01 0.02 0.03 004 0.05 0
-50 4{— —Predicted
- - Experimental
-100 -
Time (s)

(e) Load-rotation

Al4

Rotational Velocity (rad/s)

Centre of mass displacement (mm)

o s 0 w - o
(o] W o W N i w W S Wi W W

(%)
W

W
(=]

o
W

o]
[l

—
W

o

W

0

(b) Rotational velocity-time

L~ —-

—Predicted

- - - Experimental

0 0.01 0.02 0.03 0.04 0.05 0.06
Time (s)

(d) Centre of mass displacement

—Predicted
4 == Experimental

-
-

T T

0 0.01 0.02 0.03 0.04 0.05 0.06
Time (s)
(f) Moment-rotation



Appendix A

90

80

Applied Load (kN)
3] [F%) o h [#2) -~
< < o <o < (=]

<
!

o]

A1.3.6 Flexible end-plate test 9 (FEP9)

8mm thick endplate

Dynamic test with single loading ram
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Rotational Accelration (rad/s2)
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Component-based method overestimates yield load at this loading rate
This results in a stiffer connection and reduced rotation compared to the test result
Both the test and prediction model show that the connection does not fail
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A1.3.7 Flexible end-plate test 11 (FEPI11)
10mm thick endplate

Dynamic test with single loading ram
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(a) Rotation-time (b) Rotational velocity-time
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A1.3.8 Flexible end-plate test 14 (FEP14)
8mm thick endplate

Dynamic test with single loading ram
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Rotational Accelration (rad/s2)
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e No failure recorded in the test or prediction model
e Prediction model overestimates yield load at this loading rate resulting in stiffer connection
and reduced rotation

A1.3.9 Flexible end-plate test 19 (FEP19)
8mm thick endplate

Dynamic test with dual loading rams for direct tension tests

s (a) Displacement - time i (b) Load-displacement
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e No failure recorded in the test or prediction model
e Reasonable prediction of overall load-displacement behaviour but difficult to draw any
definitive conclusions

e The predicted displacement-time history shows secondary oscillations of approximately
120Hz
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Al.4 10mm FLEXIBLE ENDPLATE CONNECTIONS

s Endplate || . | Peak | Failre | Peak | _TonC
Thickness € | Moment | Rotation Loading PP Failure
Number Type : axial load
(mm) (kKNm) (deg) Time (ms) (kN)
FEP7 10 Dyn (B) 86.77 6.2 45 69.2 No Failure
Fracture of
endplate,
FEP7 (cont) 10 Static | 822 9.6 . 92.8 et wieh
crushing and
weld-endplate
interface
FEPS8 10 Static 98 13.2 - 116.7 Endplate
fracture
FEP10 10 Dyn (B) 79.8 7.9 40 71.4 No
FEP10 : Endplate
(cont) 10 Static 76.6 115 - 89.5 fennite, bolt
Endplate
fracture, bolt,
FEP11 10 Dyn (E) 113:5 6.2 39 113.0 elR-siniplite
interface
Endplate
FEP12 10 Dyn (C) 100.4 9.8 40 90.7 Brachure, Bolt
FEP13 10 Sutic | 747 101 . m -~ | W lddplas
interface
FEP15 10 Static | 8LS 9.6 : g4 | Meiplag
interface
Endplate
FEP17 10 | Dyn(a)| o914 71 40 groy || D, el
endplate
interface

A22
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Al.4.1 Flexible endplate test 7 (FEP7)
10mm thick endplate

Dynamic test with single loading ram
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e  Over prediction of yield moment and post yield stiffness

Al.4.2 Flexible endplate test 8 (FEPS)
10mm endplate

Static test with single loading ram.
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A1.4.3 Flexible endplate test 10 (FEP10)
10mm endplate

Dynamic test with single loading ram
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Al.4.4 Flexible endplate test 11 (FEP11)
10mm thick endplate

Dynamic test with single loading ram
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A1.4.5 Flexible endplate test 12 (FEP12)

Dynamic test with single loading ram
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Al.4.6 Flexible endplate test 15 (FEP15)

Static single ram test
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A1.4.7 Flexible endplate test 17 (FEP17)

Dynamic test with single load ram
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B1. Single Degree of Freedom (SDOF) Methods

B1.1 Introduction
An investigation into current methods of structural analysis relating to the field of blast and
explosion loading is presented. In addition a review of blast phenomena is conducted to provide

background to the threat and expected loading conditions.

A common method for analysis of blast effects on structures is the single degree of freedom
method (SDOF); which simplifies the behaviour of a structure or structural element to one point in
the element with an equivalent mass and stiffness. The single displacement variable of this model
can be found and then used to assess the behaviour of the system. SDOF systems have been widely
used to predict the effect of blast on a structure. TM5-1300 (1990) - Structures to resist the effects
of accidental explosions, presents methods of design for structures to resist blast loading based on
SDOF systems. The method is based upon early work by Biggs (1964). Mays and Smith (1995)
provide an explanation of the basis of equivalent SDOF systems and the application of these

techniques to the design of elements is demonstrated for steel and concrete.

The equivalent single degree of freedom method uses the conservation of energy, internal strain
energy and virtual work to create an equivalent lumped mass-spring system. The transformation
factors used to determine the equivalent mass, resistance and loading are based upon the deflected
shape function of the system and the distribution of mass and loading over the original structure.

The dynamic reactions of the element can be calculated using dynamic equilibrium.

An example of an equivalent SDOF system is shown in Figure 1-1.

Disturbing
force, Fe(t)
Disturbing force, F(t) Equivalent ‘
fhbiddbiiidiidi FREps
/ W B !

C Displacement,
Mass and stiffness, M g u

and K Equivalent —————

stiffness, Ke

a) Actual Problem b) Equivalent Problem
Figure 1-1: SDOF system
The equation of motion for the equivalent system is shown in Equation B1. Note that it is general

practice to ignore damping due to the short load duration.
Mgt + kgu = Fg(t) B1.

Where My, kg, u and Fp(t) have the same meanings shown in Figure 1-1. Further analysis of the
method is presented in Section B1.3 but first expected loads need to be characterised.
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B1.2 Background to the threat

B1.2.1 Mechanism of a blast or explosion

In order to design structures to resist blast loading, the blast itself must be quantified. An explosion
is essentially an extremely rapid release of stored potential energy. How this energy is stored
defines the classification of the explosive. For example the rupture of a pressure vessel can result in
shock waves within the air in what is often referred to as a mechanical explosion. Of interest in this
thesis is the use of chemical explosives; where the energy is stored within the explosive material as

chemical bonds. In general there are two main types of chemical explosive; high and low.

A high explosive material can be defined by a shock wave travelling through the explosive material
faster than the speed of sound which is known as detonation [Tyas (2010)]. Once the initial
chemical bonds are broken and energy is released, the pressure rises in the explosive
instantaneously. This increase in pressure causes surrounding bonds to be broken thus starting a
chain reaction until the resistance of the unreacted explosive balances the driving force of the
reacting material. These steady state conditions define the detonation wave speed for the explosive.

This speed is often used to indicate the power of the explosive.

The release of energy in a hydrocarbon explosion is significantly slower than that of a high
explosive. Typically the oxygen required is not stored within the chemical compound and thus the
chemical reaction is usually driven by the rapid burning of fuel with oxygen from the surrounding
air. This process is called deflagration and the intensity of the explosion is dictated by the fuel-air

mixture. The ideal percentage mixture for each fuel is called the stoichiometric mixture.

In either case once the reaction reaches the charge or fuel edge there is no more reactant to
perpetuate the reaction and the wave enters the surrounding air. The resulting wave of pressure
within the air is called the air blast. For a high explosive this wave can typically propagate at a rate

of 8000 m/s whilst for a hydrocarbon explosive this figure is more often 2000 m/s.

The interaction of this blast wave with surrounding objects is of most interest to structural

engineers as this is what constitutes the blast loading.

B1.2.2 Determining the design characteristics of a blast load

Two key aspects of a blast wave are the incident or side-on pressure and the reflected pressure. The
incident pressure (P;) is that associated with a blast wave travelling unimpeded in free air or
parallel to a surface. The reflected pressure (P,) is that which develops upon contact with a rigid
target. This includes the effect of the air particles in the blast wave being brought to rest and
conversion of their kinetic energy to an increase in air density. Thus the reflected pressure is
always higher than the incident pressure. The term overpressure is used to define the pressure over

and above normal atmospheric pressure (P,).
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Figure 1-2: Typical pressure-time history
The time of arrival (¢,) is the time that the blast wave strikes the rigid surface and the length of time
this pressure acts is called the time of duration (¢;). As can be seen from Figure 1-2 the pressure
then becomes negative and reverse loads the object. Although this can be important for long
duration loads (i.e. hydrocarbon or gas explosions) it is often disregarded for high explosives where
the principal damage is assumed to be caused by the very high peak pressures. A final important
parameter of a blast wave is the specific impulse (i;) which can be found by integrating the pressure
over the loading duration. The actual total impulse can then be calculated by multiplying this by the

area of the impacted target.
The methods of predicting these parameters fall into three categories:

e Mathematical
e Empirical
e Numerical

The mathematical methods provide a closed form solution of the shock equations in air [Tyas
(2010)]. Once formulated these are quick to perform but have limited applicability. Air is assumed
to behave as an ideal gas travelling with a shock speed U perpendicular towards a target. This

assumption works well for far-field explosions but breaks down for very high intensity shock

waves.
U
M=—
a
g aumnct Where a is the ambient wave speed in air B2.

U is the shock front velocity

7(M? — 1)
Incident pressure P = % Fa B3.
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_8M2+4

Pewres B4

Reflected pressure

Unfortunately even simple situations such as a real spherical shock cannot be calculated using this

method so alternatives have been developed.

Following World War II the USArmy (1946) produced a report entitled “Effects of impact and
explosion” which analysed the work conducted on high explosives during the war and details the
estimation of pressures and impulses. This method is an empirical approach first noted by
Hopkinson in 1915 which uses what is referred to as cube-root scaling which Baker, Cox et al.

(1983) describe as:

“Self-similar blast waves are produced at identical scaled distances when two expiosive
charges of similar geometry and of the same explosive but of different sizes are detonated

in the same atmosphere”.

This allows the use of a scale distance parameter z to predict peak pressures as long as the
equivalent weight of charge in TNT is known. This system works because as the spherical blast
wave expands in three dimensions, the energy density assoclated with the wave decreases by the
same factor. The energy of the explosion is directly proportional to the charge mass therefore a

scaled distance can be used.

—
Scaled distance vw B5.

s = standoff distance (m)
W = charge mass (kg)

A convenient way of presenting blast wave parameters is to use charts produced from experimental
data plotted against scaled distance. Suitable charts can be found in TM5-1300 (1990) and Mays
and Smith (1995) and programs such as CONWEP use these to produce solutions for problems
with simple geometry. These provided a quick way of gaining initial estimates of the blast
pressures, however a big drawback is the inability to include the interaction effects of other

structures or more complex geometry.

The solution is cither experimental work or to numerically model the air blast. Air3d is a piece of
software developed at Cranfield University as part of the project “An approach to the evaluation of
blast loads on finite and semi-infinite structures” by Rose (2001). The program uses a variant of
the Advection Upstream Splitting Method as devised by Wada (1997) to solve the Euler equations
in three-dimensions. The software can be used to investigate the interaction of objects and shapes

within a blast area and provides pressure-time history over the period of the blast.

Once the peak pressure on a structural element is calculated it is converted to an equivalent force

by multiplying by the arca over which it acts and thus a force-time relationship can be predicted.
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B1.3 The equivalent method and its uses

The Equivalent SDOF method will be reviewed and used to evaluate a structural system. The US
Army Corps of Engineers, USACE (1957), outlines the foundation for this method as well as
providing a detailed explanation for the use of a shape function for the deflected shape. This is used
to predict the deflection at all points on the original structure from the single displacement in the
lumped mass-spring system. Theoretically if the shape function used to calculate the transformation
factors is correct then the response of the SDOF system will replicate the resulting displacement for
that reference point in the structure exactly. However as the shape funciion is found from the
deflected shape it is not possible to predict it exactly and thus assumptions have to be made. The
accuracy of the approach is thus dependent on the chosen deflected shape. The most common
approximation is to use the static deflected shape under the same uniformly distributed load from
the blast loading, however other functions can be used. The use of transformation factors can then

be used to simplify Equation B6:
Ky Mii + Koku = K F(£) B6.

Where:
K;; = mass transformation factor
M = mass of structure
K; = load transformation factor
K = stiffness transformation factor
k = stiffness
k. = equivalent stiffness
F = loading

The calculation of these transformation factors is done by equating the work done (WD), internal
strain energy (U) and kinetic energy (KE) of the two systems. The equivalent system will have the
same maximum displacement (i) and initial velocity (& ) as the actual problem. Reducing the
displacements of a multi degree of freedom system to a single displacement variable requires the
assumption of a deflected shape. As an example the fundamental mode of a simply supported beam
will be used to demonstrate kinematic equivalence between the distributed and equivalent systems.

The deformed shape for the fundamental mode is:

U(X) = Up,aSin (T%x) B7.
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Evaluating WD and KE for this deformed shape gives:

L 2
WD = | F(OuC)? dt = = F(Otmasl BS.
0

pA [t 2 2
KE = TJ‘ u(x)® dx = 0.25 pAL Uy gy B9.
0

B10.

v=s5 oxz KT T3

1t sul(x)° TtEl 2
zf £l (x) dy = Umax
0

The same energies are calculated for the equivalent system in Figure 1-1 (b) from simple spring

theory giving:
WD = Fe(t)Umax B11.
KE = 0.5 M,lypoy? B12.
U = 0.5k, Upax’ B13.

Equating the equations for the actual system to the equivalent ones and recognizing that pAL = M

(total mass of the beam) and FL is the total beam static load provides:

Load Factor
from work Ki=—=————=—=10.6366 B14.

done

Mass Factor

from kinetic

Ky =— =0.5 B1s.
MT M T 4KEu,, 0
energy
Equivalent
stiffness ~ TYE] umaxz ' , TtE] B16
from strain e~ 1l 0.5uUmax” = 7 8 :
energy
Actual beam stiffness for simply supported beam from TM5-1300 (1990)
table 3-8:
 384E B17.
T o513
Stiffness ‘. - ke B Tl'drEl . 384E] B ST[Q' 3 Big

These relationships have been developed based upon the maximum displacement and the kinematic

equivalence of the two systems. The frequency of the equivalent system will now be compared
B6
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against the frequency for the fundamental mode of the actual problem. The exact solution is given

by Baker, Cox et al. (1983) as:

w=m? |—s B19.

For the equivalent system,

_ ke | m*El | E]
“= Im, T J20sm " M B20.

This shows that assuming the fundamental mode for the deformed shape gives a natural frequency

equal to the beam’s fundamental frequency and that the equivalent system’s behaviour is correct.
The same process as detailed above can be done for assuming the deformed shape of the statically

deflected shape given below:

Static deflected 16Upax (x* 34 13%)
u=——7--HI_ x%"—-2Lx" + L°x
o o B21.

Equating the energies of the two systems gives the following results.
Ky =0.50
K; =0.64
k. = 0.64k therefore K5 = 0.64
The stiffness of the equivalent system is the internal force trying to restore it to its static position

therefore it can be shown that the stiffness factor should always equal the load factor.

Ks = K B22.

Using these modified stiffness and mass factors, the frequency of the equivalent system is now:

El
w = 9.889 .IT/[F B23.

Some difference is to be expected between the static deformed shape and the fundamental mode
frequency due to the inclusion of other modes other than the first however this value is still within

0.2 percent.

To reduce the number of coefficients required for analysis, it is common to define a load-mass

factor, K4, where:
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Ky
KLM = —1(—L‘ B24.
Using these new parameters, Eqn 3.6 can then be simplified as follows.
KpyMit + ku = F(t) B25.

The equivalent system equation of motion can therefore be found using a single transformation
factor and assumed deflected shape. Under the loading, the system may undergo a change of state
from elastic through to plastic and a similar method can be done to produce transformation factors
for both plastic and elastic deformations with a variety of support and loading conditions as shown
in Figure 1-3. It should be noted that although a coefficient is applied to the mass to give an

equivalent mass, the actual stiffness of the element is used throughout the analysis.

Renge Load Mass Lood-Mass
f Factor Focter Factor

Edge Conditions and Locding Diagrams c
Behavior Ki Kn Kin

Elastic 0.64 0.50 0.78

l L } Plastic 0.0 0.33 0.66

Elestic Lo 049 0.49
L/2 L/2 Plastic 10 Q.33 0.33

Elaatic Q.58 0.45 0.78

Elasto-
B sl el el R
Plastic 0.50 Q.33 0.86

P Elostic 10 | aa3 0.42

T Th Elasto: | o |.049 | 049

Plastic 1o | o33 0.33

Elastic 0.53 0.41 0.5/

fessainscasicoinesd Elosto | 064 | 050 | o078

—— Plestic | 050 | 033 066
P

$ i j Elastic 1.0 0.37 Q.37

l._t/2 L/2 Plastic | 1.0 033 0.33

frocosctersecerooon Elastic | 0.40 | 026 0.65

| e l Plastic 0.50 033 | 066

;P Elastic 1.0 024 0.2
i . 24 .24
i__i N | pastic | 1.0 033 | o33

Pr2 (P2
Elastic 0.87 0.52 0.60
LA L /3 Ly Plastic 1.Q 0.5 0.56

Figure 1-3: Transformation factors for one-way elements from Table 3-12 of TM5-1300 (1990)

B1.3.1 Numerical solution or constant-velocity method

Numerical methods are used to allow the response of the system to be analysed at each time step as
the loading is applied. The process starts at time equals zero, where the initial conditions are
known, and solves the equation of motion step by step for discrete time intervals. The method
assumes that between discrete time periods the velocity is constant (see Figure 1-4) and hence has

become commonly known as the constant-velocity method. The displacements, u; and ., at time
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periods s and s-1 respectively are used to calculate the acceleration at time s using the equation of

motion. The next stage is to determine the displacement at time s+ using extrapolation.

Usy1 = Ug + uavAt 826.

Where L'lav is the average velocity between time periods s and s+1. The average velocity is simply:

He Mot v At
- ' B27.

Uqy =

This is found by assuming that iis is an average acceleration throughout the time period. This is

equivalent to approximating the acceleration time curve to a series of straight lines as shown in

Figure 1-4.

Substitution of Eqn 3.27 into Eqn 3.26 gives:
Ugpr = 2Us — Usq + us(At)Z B28.

This allows the displacement at the next time step to be calculated.

The accuracy of the calculation is limited by the time interval, At, being kept small in comparison
to the rate of change of acceleration. Biggs (1964) states that accurate results can be achieved by

keeping the time interval smaller than 1/10 of the natural period of vibration of the system.

At Assumed constant-
= velocity time blocks
< .
c |
;% Actual acceleration-
g \\ time curve
°
[4]
Q
<
s-1 s s+1
Time

Figure 1-4: Constant-velocity procedure
The displacements can then be found for each time step starting at time t = 0. However a problem
arises in the first time period in that the previous displacement is unknown. It is therefore assumed

the acceleration is constant during the first time interval. This makes the displacement, for the first

time period only:

1
Usys = Eils(i\t)2 B29.

The equation of motion is thus solved using a spreadsheet and for each successive time period the

displacement is calculated.
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The advantage of this method is that the displacement of the lumped-mass is calculated at each

discreet time step. When all of these displacements are plotted on the same graph, the overall

displacement-time history is depicted.

The general properties of a single degree system are given by:

Natural angular frequency: w, = \/%

Natural time period: T = 22 = 2m \/E
wn k

Natural frequency: f = % = %

B1.4 Bending moments and shear forces

B30.

For simply supported beams with a distributed load, TM5-1300 guidance includes the method to

calculate the maximum support shear using:

Maximum resistance*Length

Maximum Shear = >

The maximum resistance is calculated from the ultimate resistance of the beam. Formula for

alternative support and loading conditions are shown in Figure 1-5.

Edge Conditions ond Looding Dicgroms Support Reaciions,Vs
ul
f L } 2
P
Ru
L/2 L/2 2
L. Reaction §—'a‘i
":r;j R. Reaction =&
P L. Reaction %?i
. L R. Reaction -%%R’L
. ral
| L | 2
P
i ¥ R
bz g L2 g 2
rm::m ruL
¥
| L | Ru
p/2 P2
Ry
L 2

Figure 1-5: Calculating support shear for one-way elements from Table 3-9 of TM5-1300 (1990)
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An alternative method to calculate the shear force is to use the dynamic reactions method where the
analysis includes the inertia forces of the beam upon deflection. The free body diagram of a beam

subjected to dynamic loading is given in Figure 1-6.

F(b)

Figure 1-6: Free body diagram of dynamic problem
The distribution of the inertia force acting on the beam, /(z), is identical to the deflected shape due
to the motion being harmonic. The dynamic reactions acting at the supports, V(t), depend upon both

the load, F(z), and the inertia force.

A convenient way of calculating the dynamic reactions can be achieved by considering one half of

the beam as shown in Figure 1-7. From symmetry the shear force at midspan, S, equals zero.

L2

0.5F(t)

Figure 1-7: Determination of dynamic reactions
The centroid of the inertia force acts at a distance x; from the left hand support. The total moment
of area equals the sum of all the individual moment of areas this can be rearranged to find the point

at which the moment area acts, where u is a function of x defined by the deflected shape.

4 b

2 2

x,-J- u~dx=f ux - dx B31.

0 0
L
fo/zux-dx
X =" B32.

Jo"Furdx

The deflected shape assumed will thus alter the position about which the centroid of the inertia

force acts.

Once the point at which the inertia force acts has been found it is possible to take moments about

this point thus obtaining:
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F(t) L
V(t)x; — Mg — ‘—Z—(Xi = Z) =0 B33.

The bending moment at midspan (Mpg) is calculated from the deflected shape using the engineers

bending formula:

5%u
M =w51 B34.

Rearranging Eqn 3.33 and substituting for M gives:

F(t)L) F(b)

1
V() = % (Mmid ——g )t B35.

This is a general formula to calculate the dynamic support shear force for any assumed deflected

shape.
B1.4.1 Elastic behaviour

The shape functions most often used in analysis are the fundamental mode or the equivalent static

deflected shape given below [Baker, Cox et al. (1983)].

1
HK) = (x* —2Lx® + L3x) B36.

5L*

The point where the inertia force acts, x;, is found using Eqn 3.32:

E
I /2 [__16umax (x*—2Lx3 + L3x)] x - dx

== = B37
) e L .
fo/z%‘i(x“ —2Lx3 + 13x) - dx
Solving this gives:
_ 61L
X = 192 B38.

From Eqn 3.36 it is calculated that:

0°u _ 16 (—12Lx+ 122%)

e SI4 B39.
Substitution from Eqn 3.34, the bending moment at midspan (x=L/2) is therefore:
48u,,
Minig = —75— EI B40.

Equating Equations B35, B36, B38 and B40 provides:
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30.216u
V(t) = 0.1066F (t) +—L"‘”—‘iEl B41.

This can be used to calculate the equivalent support reactions throughout the analysis procedure.

An alternative shape function is the first mode of vibration:

. /TX
U() = Umaxsin (T) B42.

The same method is used to calculate the location of the inertia forces and it can be shown that x; is

El7*u

— . Similarly the midspan moment is ———"*-. Substituting these values into Equation B31
L

T

gives the dynamic reactions as:

V()———3—+ F(t)(OS—é—)

B43.
31.006Umay

= 0.0073F(t) + ——3

The dynamic reactions of a typical SDOF system were analysed using the two shape functions
outlined above. The results are plotted on the same axes and are shown in Figure 1-8. These results
show that the two shape functions produce similar dynamic reactions but that using a sine curve

predicts slightly higher peak values (less than 1% difference).

— Static Deflected Shape
- Sin Curve Deflected Shape
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5 \ \ / \
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&= 10000000 \ \ / \
4} i \. \\
& - \ / \
0 0.00 , - = - —
E 0.01 0,02 003 0.0 005 | ooe 007 008
& -100000.00 - /
{ o
a /
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-300000.00 |
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Figure 1-8: Comparison of dynamic reactions using sin curve and static deflected shape
A similar comparison has been conducted for the midspan bending moments and once again the

sine curve produces a slightly higher peak.
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It must be noted that neither of these functions may be suitable assumptions under blast loading.
This is especially the case for strong, short duration loading where high curvature may expected at

the supports producing much higher shear forces.
B1.4.2 Plastic behaviour

Equations B35 and B37 were calculated for elastic behaviour. If yielding occurs before the
maximum load, then the beam plastic moment, M, replaces the midspan moment in the equations.

For the first mode of vibration (Eqn B43) V becomes:

192M,
V(t) = 0.1073F(t) + i B4a4.

Further, the plastic moment can be expressed in terms of the maximum resistance, R, defined as
the magnitude of the static load necessary to cause a plastic hinge at the center of the beam, Smith

and Hetherington (1994).

8M,
Ry =—— B45.
Thus Eqn. B44 can be expressed in the form:
24
V(t) = 0.1073F(t) + 7 R ™ 0.11F(t) + 0.39R,, B46.

Eqn. 3.46 is of the form given in Smith and Hetherington (1994) Table 10.2 and many other texts
on blast loading. A difference of less than 1% is obtained when the coefficients are calculated from

the static deflected shape.
B1.5 Summary of SDOF methods

Single degree of freedom systems have been used for a long time to allow the analysis of structural
elements under dynamic conditions and have been shown to provide accurate results [Naito and
Wheaton (2006)] as long as certain criteria are met in the analysis. Limitations of the method

include:

¢ End condition assumptions must be made (rigid or simple).

¢ Local deformations of model are not possible.

¢ Non-symmetrical loading conditions are not accounted for.

»  Whilst the method was developed to predict the correct midspan deflection, the
corresponding bending moments and shear forces are calculated from the assumed
deflected shape which is not always the same as the static deflected shape. This

can lead to gross underestimations of loading at the support conditions as
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Paramasivam (2008) found. Alternative deflected shapes can be used but these

must be verified experimentally.

Taking into account these limitations, SDOF systems are useful in providing a quick method of

analysis however a more detailed methodology which can improve upon these limitations is sought.
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