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Al. Appendix A - Comparison of connection test results and 

predictions using component method 

A l l Introduction 

This appendix presents a complete set of results for the component-based methods and the 

respective experimental test data under both static and dynamic conditions. Some tests used a 

single loading ram to provoke a rotation whilst others used dual loading rams to provide direct 

axial loads and restrict rotation. The dimensions (Figure Al-1) were recorded prior to each test. 

LDGl LDG2 

t Load CeB B Load Cell A 

Figure Al-1: Test dimensions 

For dynamic tests the physical movement of the column section is recorded and a comparison 

against the prediction using component-based methods shown. In addition the applied 

force/moment is plotted against the displacement/rotation. For static tests only the force/moment 

against displacement/rotadon is presented as there was no need to display the time history analysis. 

The dynamic tests are characterised by the diaphragm arrangement used to release the pressure 

within the system, where A is the weakest diaphragm arrangement and E the strongest. Hence a 

DYN (E) test is likely to have experienced a greater load than a DYN (A) test. The true load was 

recorded for each test. 
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AppgndixA 

A1.2 Fin plate connections 

Test 
Number 

Test Type 
Loading 

Type 
Failure 

FINl 
Moment-
rotation 

D y n ( q Bolt in shear 

FIN2 
Moment-
rotation 

Static Bolt in shear 

FIN3 
Direct 
teKion 

Static Bolt in shear 

FIN4 
Direct 

Tension 
Dyn (E) 

No failure during the test but large 
bearing defamation of the beam web 

was observed 

FIN5 
Moraent-
rotmtion 

Dyn (A) Bolt in shear 

Ajf J J jFw cofwecAww fesf 7 

Dynamic test (1 thick and 1 thin diaphragm) w i ± single loading ram. 
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(c) Rotational acceleration - time (d) Centre of mass displacement 
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(e) Load - rotation 
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- - Dynamic (FPCl) 

(f) Moment - rotation 
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50 
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Rotation (d%) 

# Good correlation between predicted and experimental results for rotation of flying 
column 

# Centre of mass displacement was over predicted 
# Stiffness of connection from moment-rotation curve was predicted with reasonable 

accuracy 
» Overestimation of ultimate moment capacity 

Al.2.2 Fin plate connection test! (FIN2) 

Static test with single loading ram. 
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# Stadc prediction shows good correlation against the experimental test in the 

Grst phase up to a rotadon of 3.2 degrees. Post yield st i fkess is overestimated 

for specified rotation possibly due to crushing of beam flange 

# Sudden increase in stiEkess is a result of bearing against the column which 

changes the pivot locadon and thus results in an increase in moment. In the 

experimental test this occurs over a rotadon of approximately 1 degree 

# Failure rotadon and moment capacity are reasonably accurate and within 5% 

of experimental values 

Al,2.3 Fin plate connection test 3 (FIN3) 

Stadc test with dual loading rams for direct tension tesdng. 
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250 -

Predicted 

Experimental. 
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14 

Figure 1-2: Load-displacement comparison (FPC3) 

Inidal stiAiess due to hicdon is not very accurate 

Increased st i ffness when bolts begin to bear against the plate at 2mm displacement is 

captured 
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Appendix A 

# General shape is predicted well but final displacement is off by approximately 3 J mm 

which is reasonable considering the length of the column section is 2m 

Dynamic test (2 thick diaphragms) with dual loading rams for direct tension testing. The 

connection did not 6ul during the initial dynamic loading phase. 
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(d) Bolt group forces in conqxment model 
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No failure was predicted in agreement with the experimental result 

DifGcuit to tesl two rams dynamically because the pneumatic system meant slighty unequal 

loads were applied through the two rams leading to rotation and oscillations 

The unequal loads recorded in the test were input into the prediction model hence the 

resulting oscillations 

The experimenlal yield load appears to be approximately 60 kN compared to a predicted 

value of 40kN with Gnal displacements of 5 and 4 mm respectively 
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Al.2.5 Fin plate connection test 5 (FINS) 

Dynamic test (2 thin diapragms) with a single loading ram. 

(a) Rotation - time (b) Rotational velocity - time 
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(f) Moment-rotation 

1 

o 

70 -

6 0 -

50 -

40 -

30 -

20 -

10 ^ 

0 

- 1 0 

—Predicted 

- - Experimental 

2 3 4 

Rotati(m (deg) 

General behaviour showed a good correlation with the experimental data 
Over prediction of the post yield stiffness and moment capacity 
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A13 8mm FLEXIBLE ENDPLATE CONNECTIONS 

Test 
Number 

Endplate 
Thickness 

(mm) 

Loading 
Type 

Peak 
Moment 

(kNm) 

Failure 
Rotation 

(deg) 

Peak 
Loading 

Time 
(ms) 

Peak 
applied 

axial load 
(kN) 

Failure 

FEPl 8 Static 50.2 6.2 - 58.8 
Endplate 
&acture 

FEP2 8 Dyn (E) 75 5.8 40 97.7 
Endplate 
&acture 

FEP3 8 Dyn (A) 60.1 6.3 39 5 2 3 No 

FEP4 8 Dyn (B) 63.4 5.8 40 65.7 
Endplate 
fracture 

FEP5 8 Static 4 8 3 6.7 - 5 6 ^ 
Endplate 
&acturc 

FEP6 8 Dyn (E) 73.1 7.0 47 84.2 
Endplate 
&acture 

FEP9 8 Dyn (A) 54.8 40 47.4 No Failure 

FEP9 
(conO 

8 Static 45.7 7.4 - 54.2 
Endplate 
fracture 

FEP14 8 Dyn (A) 57.7 5.6 37 45.0 
Endplate 
&acture 

FEP16 
(datalogge 
r failed to 

trigger) 

8 Dyn (A) - -

Yes 
(endplate) 

FEP18 8 
Static 

Tension 
- 260.6 

Endplate 
fracture 

FEP19 8 
Dyn (E) 
Tension 

48 218.3 No Failure 

FEP19 
fcont) 

8 
Static 

Tension 
- 281.1 

Endplate 
fracture 

FEP20 8 
Dyn (E) 
Tension 

53.2 157.7 No Failure 

FEP20 
(cont) 

8 
Static 

Tension 
- - 280.5 

Endplate 
Fracture 

Al.3.1 Flexible end-plate test 1 (FEPl) 

8min thick endplate 

Static test with single loading ram 
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—Predic ted 

-o-Test (FEPI) 

Rotation (deg) 

# Experimental elastic stiSness is higher than that predicted however the general trend shows 
a good correlation 

# The point at which the beam flange contacts the column appears to be out by about ys of a 
degree where the test data shows an increase in s t i fkess &om about 4 degrees rotation 

# The prediction model overestimates the failure rotation by nearly 3 degrees 

A13.2 Flexible end-plate test! (FEP2) 

Rmm thick endplate 

Dynamic test with single loading ram 
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(a) Rotadoo-tiine 
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A133 Flexible end-plate test 4 (FEP4) 

8mm thick endplate 

Dynamic test with single loading ram 
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AL3.4 Flexible end-plate test 5 (FEP5) 

8mm thick endpiate 

Static test with single loading ram 

(a) Moment-rotation 

-o- Test (FEP5) 

—Predicted 

—r-

2 3 4 5 

RotaMoa (deg) 

A 1.3.5 Flexible end-plate test 6 (FEP6) 

8mm thick endplate 

Dynamic test with single loading ram 
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(a) Rotation-dmc (b) Rotational velocity-time 
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(a) Rotadon-dme 
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Component-based method overestimates yield load at this loading rate 

This results in a stifPer connecdon and reduced rotadon compared to the test result 
Both the test and predicdon model show that the connection does not f ^ l 
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Al.3.7 Flexible end-plate test 11 (FEPll) 

10mm thick endplate 

Dynamic test with single loading ram 
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Al.3.8 Flexible end-plate test 14 (FEP14) 

8mm thick endplate 

Dynamic test with single loading ram 

< 15 

0.05 0.1 0.15 
RotmOoa (d*g) 

0.25 
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» No fWlure recorded in the test or prediction model 
" Prediction model overestimates yield load at this loading rate resulting in stiffer connection 

and reduced rotation 

Al.3,9 Flexible end-plate test 19 (FEP19) 

8mm thick endplate 

Dynamic test with dual loading rams for direct tension tests 

(a) Displacement - time 
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No failure recorded in the test or prediction model 
Reasonable prediction of overall load-displacement behaviour but diKcult to draw any 
deGnitive conclusions 
The predicted displacement-time history shows secondary oscilladons of approximately 
120Hz 
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A1.4 10mm FLEXIBLE ENDPLATE CONNECTIONS 

Test 
Number 

Endplate 
Thickness 

(mm) 

Loading 
Type 

Peak 
Moment 

(kNm) 

Failure 
Rotation 

(deg) 

Peak 
Loading 

Time (ms) 

Peak 
applied 

axial load 
(kN) 

Failure 

FEP7 10 Dyn (B) 8 6 J 7 6.2 45 6 9 ^ No Failure 

FEP7 (cont) 10 Static 8 Z 2 9.6 92.8 

Fracture of 
endplate, 
beam web 

crushing and 
weld-endplate 

inter&ce 

FEP8 10 Static 98 13.2 - 116.7 
Endplate 
fracture 

FEPIO 10 Dyn (B) 79.8 7.9 40 71.4 No 

FEPIO 

fomO 
10 Static 76.6 11.5 - 89.5 

Endplate 
fracture, bolt 

FEP l l 10 Dyn (E) 113.5 6.2 39 113.0 

Endplate 
fracture, bolt, 
weld-endplate 

interface 

FEP12 10 D y n ( q 100.4 9.8 40 90.7 
Endplate 

&acture, bolt 

FEP13 10 S&dc 74.7 10.1 - 89.1 
Weld-endplate 

interface 

FEF15 10 Stadc 81.5 9.6 - 97.4 
Weld-endplate 

inkrface 

FEP17 10 Dyn (A) 91.4 7.1 40 8 7 1 

Endplate 
&acture, weld-

endplate 
interface 
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AlA.l Flexible endplate test 7 (FEP7) 

10mm thick endplate 

Dynamic test with single loading ram 
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Tlmc(s ) 

0.15 

A23 





* Over prediction of yield moment and post yield stiffness 

A14.2 Flexible endplate test 8 (FEP8) 

10mm endplate 

Static test with single loading ram. 
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Al.4.3 Flexible endplate test 10 (FEPIO) 

lOmm endplate 

Dynamic test with single loading ram 
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AlAA Flexible endplate test 11 (FEPll) 

10mm thick endplate 

Dynamic test with single loading ram 

"S 70 . 
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Rotation (deg) 

O.OS 

A27 





AL4.5 Flexible endplate test 12 (FEP12) 

Dynamic test with single loading ram 
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Al,4.6 Flexible endplate test 15 (FEP15) 

Stadc single ram test 

% 60 -
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-o- Experimental (FEP15) 
: 1 1 1 i 1 1 i 1— 

0 1 2 3 4 5 6 7 8 9 10 
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* Close prediction of yield moment, plastic stiffness and ultimate capacity 
# Bearing rotation is over predicted by a;q)roxiniate]y degree 

A1.4J Flexible endplate test 17 (FEP17) 

Dynamic test with single load ram 
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Appendix B 

Bl. Single Degree of Freedom (SDOF) Methods 

Bl.l Introduction 

An investigation into current methods of structural analysis relating to the jGeld of blast and 

explosion loading is presented. In addition a review of blast phenomena is conducted to provide 

background to the threat and expected loading conditions. 

A common method for analysis of blast effects on structures is the single degree of 6eedom 

method (SDOF); which simpliGes the behaviour of a structure or structural element to one point in 

the element with an equivalent mass and sti&iess. The single displacement variable of this model 

can be found and then used to assess the behaviour of the system. SDOF systems have been widely 

used to predict the e^ect of blast on a structure. TM5-1300 (1990) - .Sfrucfweg fo r&gisf (Ae 

presents methods of design for structures to resist blast loading based on 

SDOF systems. The method is based upon early work by Biggs (1964). Mays and Smith (1995) 

provide an explanation of the basis of equivalent SDOF systems and the application of these 

techniques to the design of elements is demonstrated for steel and concrete. 

The equivalent single degree of freedom method uses the conservation of energy, internal strain 

energy and virtual work to create an equivalent lumped mass-spring system. The transformation 

Actors used to determine the equivalent mass, resistance and loading are based upon the deflected 

shape function of the system and the distribution of mass and loading over the original structure. 

The dynamic reactions of the element can be calculated using dynamic equilibrium. 

An example of an equivalent SDOF system is shown in Figure 1-1. 

Dimturbing 
force, Fm(t) 

Disturbing force, F(t) Equivalent 
mass, Me 

Displacement, 
Maw end stiffness, M _ . , 

andK Equivalent 
stiffness, Ke 

a) Ac tua l P rob lem b) Equiva lent P rob lem 

F i g u r e 1 -1 : S D O F s y s t e m 

The equation of motion for the equivalent system is shown in Equation B l . Note that it is general 

practice to ignore damping due to the short load duration. 

Wgii + kgu = Fg(f) Bl. 

Where Mg, w and fgCf) have the same meanings shown in Figure 1-1. Further analysis of the 

method is presented in Section B1.3 but first expected loads need to be characterised. 

Bl 



Appendix B 

B1.2 Background to the threat 
Bl.2.1 Mechanism of a blast or explosion 

In order to design structures to resist blast loading, the blast itself must be quantised. An explosion 

is essentially an extremely rapid release of stored potential energy. How this energy is stored 

deGnes the classiGcation of the explosive. For example the rupture of a pressure vessel can result in 

shock waves within the air in what is often referred to as a mechanical explosion. Of interest in this 

thesis is the use of chemical e^glosives; where the energy is stored within the explosive material as 

chemical bonds. In general there are two main types of chemical explosive; high and low. 

A hig^ explosive material can be deGned by a shock wave travelling through the explosive material 

faster than the speed of sound which is known as detonation [Tyas (2010)]. Once the initial 

chemical bonds are broken and energy is released, the pressure rises in the explosive 

instantaneously. This increase in pressure causes surrounding bonds to be broken thus starting a 

chain reaction until the resistance of the unreacted explosive balances the driving force of the 

reacting material. These steady state conditions deSne the detonation wave speed for the explosive. 

This speed is often used to indicate the power of the explosive. 

The release of energy in a hydrocarbon explosion is signiScantly slower than that of a high 

explosive. Typically the oxygen required is not stored within the chemical compound and thus the 

chemical reaction is usually driven by the rapid burning of fuel with oxygen from the surrounding 

air. This process is called deflagration and the intensity of the explosion is dictated by the fuel-air 

mixture. The ideal percentage mixture for each fuel is called the stoichiometric mixture. 

In either case once the reaction reaches the charge or fuel edge there is no more reactant to 

perpetuate the reaction and the wave enters the surrounding air. The resulting wave of pressure 

within the air is called the air blast. For a high explosive this wave can typically propagate at a rate 

of 8000 m/s whilst for a hydrocarbon explosive this Ggure is more often 2000 m/s. 

The interaction of this blast wave with surrounding objects is of most interest to structural 

engineers as this is what constitutes the blast loading. 

Bl.2.2 Determining the design characteristics of a blast load 

Two key aspects of a blast wave are the incident or side-on pressure and the reDected pressure. The 

incident pressure ( f j is that associated with a blast wave travelling unimpeded in free air or 

parallel to a s u r f ^ . The reflected pressure (f^) is that which develops upon contact with a rigid 

targeL This includes the effect of the air particles in the blast wave being brought to rest and 

conversion of their kinetic energy to an increase in air density. Thus the reflected pressure is 

always higher than the incident pressure. The term overpressure is used to deGne the pressure over 

and above normal atmospheric pressure (fg). 
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Figure 1-2: Typical pressure-time history 

The time of arriva] (fg) is the time that the blast wave strikes the rigid surface and the length of time 

this pressure acts is called the time of duration (f^). As can be seen from Figure 1-2 the pressure 

then becomes negative and reverse loads the object. Although this can be i n ^ r t a n t for long 

duration loads (i.e. hydrocarbon or gas explosions) it is often disregarded for high explosives where 

the principal damage is assumed to be caused by the very h i ^ peak pressures. A final important 

parameter of a blast wave is the specific impulse (Q which can be found by integrating the pressure 

over the loading duration. The actual total impulse can then be calculated by multiplying this by the 

area of the impacted target. 

The methods of predicting these parameters W1 into three categories: 

Mathematical 
Empirical 
Numerical 

The mathematical methods provide a closed form solution of the shock equations in air [Tyas 

(2010)]. Once formulated these are quick to perform but have limited ^)plicability. Air is assumed 

to behave as an ideal gas travelling with a shock speed perpendicular towards a target. This 

assumption works well for &r-field explosions but breaks down for very high intensity shock 

waves. 

Mach number 

U M = — 
a 

Where o is the ambient wave speed in air 

is the shock front velocity 

B2. 

Incident pressure P, = 
7(^2 - 1) 

P. B3. 
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n * . 8W: + 4 

UnforOmately even simple situations such as a real spherical shock cannot be calculated using this 

method so alternatives have been developed. 

Following World War n the USArmy (1946) produced a report entitled c / im/wcf oW 

which analysed the work conducted on high explosives during the war and details the 

estimation of pressures and impulses. This method is an empirical approach Grst noted by 

Hopkinson in 1915 which uses what is referred to as cube-root scaling which Baker, Cox et al. 

(1983) describe as: 

wovgg org af WenZico/ J c a W wAen nvo oyZofive 

cAargigs ggo/mgfTy o/kf game eap/bfzve ore defo/iafeff 

w fAg awMg afmo^Agrg". 

This allows ± e use of a scale distance parameter z to predict peak pressures as long as the 

equivalent w e i ^ t of c h a r ^ in TNT is known. This system works because as the spherical blast 

wave expands in three dimensions, the energy density associated with the wave decreases by the 

same &ctor. The energy of the explosion is directly proportional to the charge mass therefore a 

scaled distance can be used. 

g 

Scaled distance 25 

f = standoS distance (m) 
W = charge mass (kg) 

A convenient way of presenting blast wave parameters is to use charts produced from experimental 

data plotted against scaled distance. Suitable charts can be found in TM5-1300 (1990) and Mays 

and Smith (1995) and programs such as CONWEP use these to produce solutions for problems 

with simple geometry. These provided a quick way of gaining initial estimates of the blast 

pressures, however a big drawback is the inability to include the interaction effects of other 

structures or more complex geometry. 

The solution is either experimental work or to numerically model the air blast. Air3d is a piece of 

software developed at Cranfield University as part of the prcyect "A/i fo (Ag gvo/wafion 

on /inifg fg /nf - i f^ t fg Arwcmrgg" by Rose (2001). The program uses a variant of 

the Advection Upstream Splitting Method as devised by Wada (1997) to solve the Euler equations 

in three-dimensions. The software can be used to investigate the interaction of objects and shapes 

within a blast area and provides pressure-time history over the period of the blast. 

Once the peak pressure on a structural element is calculated it is converted to an equivalent force 

by multiplying by the area over which it acts and thus a force-time relationship can be predicted. 
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B1.3 The equivalent method and its uses 

The Equivalent SDOF method will be reviewed and used to evaluate a structural system. The US 

Army Coips of Engineers, USAGE (1957), outlines the foundation for this method as well as 

providing a detailed explanation for the use of a shape function for the deflected shape. This is used 

to predict the deflection at all points on the original structure from the single displacement in the 

lunq)ed mass-spring system. Theoretically if the sh^)e function used to calculate the transformation 

Aictors is correct then the response of the SDOF system will replicate the resulting displacement for 

that reference point in the structure exactly. However as the shape function is found from the 

deflected shape it is not possible to predict it exactly and thus assumptions have to be made. The 

accuracy of the approach is thus dependent on the chosen deflected shape. The most common 

approximation is to use the static deflected shape under the same uniformly distributed load from 

the blast loading, however other functions can be used. The use of transformation factors can then 

be used to simpli^ Equation B6: 

Kj^Mu + Ksku = B6. 

Where: 

Xw = mass transformation factor 

M = mass of structure 

jQ, = load transformation factor 

A j = st i fkess transformation factor 

A: = sti&iess 

A:, = equivalent stiffness 

F = loading 

The calculation of these transformation factors is done by equating the work done (WD), internal 

strain energy ([/) and kinetic energy (KE) of the two systems. The equivalent system will have the 

same maximum displacement (wm«) and initial velocity ( w ) as the actual problem. Reducing the 

displacements of a multi degree of freedom system to a single displacement variable requires the 

assumption of a deflected shape. As an example the fundamental mode of a simply supported beam 

will be used to demonstrate kinematic equivalence between the distributed and equivalent systems. 

The deformed shape for the fundamental mode is: 

u W ^ B7. 
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Evaluating WD omf KE for this deformed gives: 

f t ^ 2 
= -F(f)l4naz^ 

0̂ ^ 

KE = ^ [ u(x)^ dx = 0.25 pAL 
2 Jo 

B8. 

B9. 

The same energies are calculated for the equivalent system in Figure 1-1 (b) from simple spring 

theory giving: 

WD = FMumax Bll. 

KE = 0.5 B12. 

V = B13. 

Equating the equations for the actual system to the equivalent ones and recognizing that /lAZ, = M 

(total mass of the beam) and fZ, is ± e total beam static load provides: 

Load Factor 
f . y WD 2 2 
Bern work = B14. 

done 

Mass Factor 

from kinetic j/ _ ^ - 2KEu^ 
2 

oz 

*7miz energy 

Equivalent 

B16 
from strain " 4 [3 ' - 2 p 
energy 

Actual beam stiAiess for simply supported beam from TM5-1300 (1990) 
table 3-8: 

k 
384F/ 

5L3 

k, 7 384E7 5?̂ * 
Factor 2 7 3 8 4 " ° ' ^ ^ ^ 

These reladonships have been developed based upon the maximum displacement and the kinematic 

equivalence of ± e two systems. The &equency of the equivalent system will now be compared 
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against the frequency for the fundamental mode of the actual problem. The exact solution is given 

by Baker, Cox et al. (1983) as: 

W = 
E/ 

B19. 

For the equivalent system. 

= = " W B20. 

This shows that assuming the fundamental mode for the deformed s h ^ gives a natural frequency 

equal to the beam's fundamental frequency and that the equivalent system's behaviour is correct. 

The same process as detailed above can be done for assuming the deformed shape of the statically 

deflected shape given below: 

S^tic deflected ^ ^ B21. 

shape 5L* 

Equating the energies of the two systems gives the following results. 

Km = 0.50 

Kt = 0.64 

kg = 0.64A: therefore Ks = 0.64 

The stiKness of the equivalent system is the internal force trying to restore it to its static position 

therefore it can be shown that the stiffness factor should always equal the load ^ctor. 

B22. 

Using these modified stiffness and mass factors, the frequency of ± e equivalent system is now: 

w = 9.889 
\ 

B23. MA3 

Some difference is to be expected between the static deformed shape and the fundamental mode 

&equency due to the inclusion of other modes other than the first however this value is still within 

0.2 percenL 

To reduce the number of coeSicients required for analysis, it is common to define a load-mass 

factor, where: 
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B24. 

Using these new parameters, Eqn 3.6 can then be simpliGed as follows. 

+ ku = F(t) B25. 

The equivalent system equation of motion can therefore be found using a single transformation 

factor and assumed deflected shape. Under the loading, the system may undergo a change of state 

from elastic through to plastic and a similar method can be done to produce transformation factors 

for both plastic and elastic deformations with a variety of support and loading conditions as shown 

in Figure 1-3. It should be noted that although a coefficient is applied to the mass to give an 

equivalent mass, the actual stiSness of the element is used throughout the analysis. 
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Figure 1-3: Transformation factors for one-way elements from Table 3-12 of TM5-1300 (1990) 

Bl.3.1 Numerical solution or constant-velocity method 

Numerical methods are used to allow the response of the system to be analysed at each time step as 

the loading is applied. The process starts at time equals zero, where the initial conditions are 

known, and solves the equation of motion step by step for discrete time intervals. The method 

assumes tMt between discrete time periods the velocity is constant (see Figure 1-4) and hence has 

become commonly known as the constant-velocity method. The displacements, w, and at time 
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periods j and respectively are used to calculate the acceleration at time s using the equation of 

motion. The next stage is to determine the displacement at time g+7 using extr^x)lation. 

Hg+l = U; + B26. 

Where is the average velocity between time periods s and g+7. The average velocity is simply: 

We — 
At 

+ iLAC B27. 

This is found by assuming that is an average acceleration throughout the time period. This is 

equivalent to approximating the acceleration time curve to a series of straight lines as shown in 

Figure 1-4. 

Substitution of Eqn 3.27 into Eqn 3.26 gives: 

y-s+t ^ 2Us - B28. 

This allows the displacement at the next time step to be calculated. 

The accuracy of the calculation is limited by the time interval, At, being kept small in comparison 

to the rate of change of acceleration. Biggs (1964) states that accurate results can be achieved by 

keeping the time interval smaller than 1/10 of the natural period of vibration of the system. 

Assumed constant-
vek)cAy time Wocks 

Actual accekratlon-
time curve 

Figure 1-4: Constant-velocity procedure 

The displacements can then be found for each time step starting at time t = 0. However a problem 

arises in the Srst time period in that the previous displacement is unknown. It is therefore assumed 

the acceleration is constant during the first time interval. This makes the displacement, for the first 

time period only: 

B29. 

The equation of motion is thus solved using a spreadsheet and for each successive time period the 

displacement is calculated. 
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The advantage of this method is that the displacement of the lumped-mass is calculated at each 

discreet time step. When all of these displacements are plotted on the same graph, the overall 

displacement-tiinG history is depicted. 

The general properties of a single degree system are given by; 

Natural angular frequency: = J— 

Natural time period: T ^ 2 7 1 ^ 

Natural &equency: / = ^ ^ 

B30. 

B1.4 Bending moments and shear forces 
For simply supported beams with a distributed load, TM5-1300 guidance includes the method to 

calculate the mammum support shear using: 

IvfaauiimrD Slieaf == 
Maximum resistance*Length 

The iTiATimnm resistance is calculated from the ultimate resistance of the beam. Formula for 

alternative support and loading conditions are shown in Figure 1-5. 
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Figure 1-5: Calculating support shear for one-way elements from Table 3-9 of TM5-1300 (1990) 
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An alternative method to calculate the shear force is to use the dynamic reactions method where the 

analysis includes the inertia forces of the beam upon deflection. The free body diagram of a beam 

subjected to dynamic loading is given in Figure 1-6. 

Figure 1-6: Free body diagram of dynamic problem 

The distribution of the inertia force acting on the beam, is identical to the deflected shape due 

to the motion being harmonic. The dynamic reactions acting at the supports, depend upon both 

the load, f (f), and the inertia force. 

A convenient way of calculating the dynamic reactions can be achieved by considering one half of 

the beam as shown in Figure 1-7. From symmetry the shear force at midspan, S, equals zero. 

0.5 Fd) 

Figure 1-7: Determination of dynamic reactions 

The centroid of the inertia force acts at a distance JCf from the left hand support. The total moment 

of area equals the sum of all the individual moment of areas this can be rearranged to find the point 

at which the moment area acts, where u is a function of % de6ned by the deflected shape. 

4 r /2 
I u - = I lur' 
0̂ -/Q 

z, = 
jg ux • dx 

B31. 

B32. 

The deflected shape assumed will thus alter the position about which the centroid of the inertia 

force acts. 

Once the point at which the inertia force acts has been found it is possible to take moments about 

this point thus obtaining: 
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- Wmw - — ^ Z f - - j - 0 B33. 

The bending moment at midspan (Mmw) is calculated from the defected shape using the engineers 

bending formula: 

S'^u 
B34. 

Rearranging Eqn 3 3 3 and substituting for M gives: 

F(OZ.\ F(f) 1 / f i r ; 

This is a general formula to calculate the dynamic support shear force for any assumed deflected 

shape. 

Bl.4.1 Elastic behaviour 

The shape functions most often used in analysis are the fundamental mode or the equivalent static 

deflected shape given below [Baker, Cox et al. (1983)]. 

The point where the inertia force acts, x;, is found using Eqn 3.32: 

B36. 

jV2 _ 2lx^ + l^x)] X • dx 

Solving this gives: 

61L 
B38. 

From Eqn 3 3 6 it is calculated that: 

5^u 16u-^a-^(—12Lx + 12x^) 

Substitution from Eqn 3.34, the bending moment at midspan (%=l/2) is therefore: 

B39. 

48u ina% rr 
Mmuf = B40. 

Equating Equations B35, B36, B38 and B40 provides: 
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yCt) = 0.1066F(f) + 
30.216U, 

L3 B41. 

This can be used to calculate the equivalent support reactions throughout the analysis procedure. 

An alternative shape function is the Grst mode of vibration: 

u(x) = UmaxSin ( y ) B4Z 

The same method is used to calculate the location of the inertia forces and it can be shown that i:/ is 

—. Similarly the midspan moment is 
;r 

gives the dynamic reactions as: 

U 
. Substituting these values into Equation B31 

V(t) = 
Elir^u, 

+ F a ) ( o . 5 - 0 

31.006U 

L3 

= 0.1073F(t) + 

B43. 

L3 
EI 

The dynamic reactions of a typical SDOF system were analysed using the two shape functions 

outlined above. The results are plotted on the same axes and are shown in Figure 1-8. These results 

show that the two shape functions produce similar dynamic reactions but that using a sine curve 

predicts slightly higher peak values (less than 1% diC^erence). 
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Figure 1-8: Comparison of dynamic reactions using sin curve and static deflected shape 

A similar comparison has been conducted for the midspan bending moments and once again the 

sine curve produces a slightly higher peak. 
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It must be noted that neither of these functions may be suitable assumptions under blast loading. 

This is especially the case for strong, short duration loading where high curvature may expected at 

the supports producing much higher shear forces. 

Bl.4.2 Plastic behaviour 

Equations B35 and B37 were calculated for elastic behaviour. If yielding occurs before the 

mmYimiim load, then the beam plastic moment, Mp, replaces the midspan moment in the equations. 

For the Grst mode of vibration (Eqn B43) 7 becomes: 

igZMm 
V(t) = 0.1073F(t) + B44. 

Further, the plastic moment can be expressed in terms of the mATimTim resistance, deGned as 

the magnitude of the stadc load necessary to cause a plastic hinge at the center of the beam, Smith 

and Hetherington (1994). 

= — B45. 

Thus Eqn. B44 can be expressed in the form: 

24 
V(t) = 0.1073F(t) + — « O.llFM + 0.39A^ B46. 

Eqn. 3.46 is of the form given in Smith and Hetherington (1994) Table 10.2 and many other texts 

on blast loading. A difference of less than 1% is obtained when the coefGcients are calculated &om 

the static deflected shape. 

BL5 Summary of SDOF methods 

Single degree of freedom systems have been used for a long time to allow the analysis of structural 

elements under dynamic conditions and have been shown to provide accurate results [Naito and 

Wheaton (2006)] as long as certain criteria are met in the analysis. Limitations of the method 

include: 

* End condition assun^)tions must be made (rigid or sin^)le). 

* Local deformations of model are not possible. 

* Non-symmetrical loading conditions are not accounted for. 

* Whilst the method was developed to predict the correct midspan deflection, the 

corresponding bending moments and shear forces are calculated &om the assumed 

deflected shape which is not always the same as the static deflected shape. This 

can lead to gross underestimations of loading at the support conditions as 
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Paramasivam (2008) found. Alternative deflected shapes can be used but these 

must be verified experimentally. 

Taking into account these limitations, SDOF systems are useful in providing a quick method of 

analysis however a more detailed methodology which can improve upon these limitations is soughL 
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