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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Doctor of Philosophy

WIND TURBINE AERODYNAMICS IN FREESTREAM TURBULENCE

by Yusik Kim

Topics in wind turbine aerodynamics are reviewed. These include the effect of freestream

turbulence on the flows over wind turbine blades; dynamic stall phenomenon; and rota-

tional augmentation. The advantages of numerical studies on these topics are highlighted

and large-eddy simulation (LES) is selected to overcome the defects for other numerical

approaches, e.g. Reynolds Average Navier-Stokes (RANS), on such applications.

The atmospheric boundary layer in which wind turbines operate is almost always

turbulent, and it has a strong influence on aerodynamic loads for wind turbines. To

generate inflow turbulence in LES calculations, a new synthetic turbulence inflow con-

dition is developed which is computationally efficient and satisfies the divergence-free

condition. To investigate the effect of freestream turbulence on wind turbine blades, a

flow over a static airfoil is simulated as a baseline case and the results (e.g. surface pres-

sure and skin-friction) show good agreement with DNS data. The developed turbulent

inflow condition is then applied in the upstream region of the airfoil and the unsteady

surface pressure shows good agreement with the analytical solution by Amiet [2–4] at

zero incidence. This provides a tool for aerodynamic predictions and unsteady surface

pressure analysis of wind turbine flows subjected to freestream turbulence on which cur-

rently no reliable theory or prediction model exists in general situations. The capability

of LES on highly separated and strong 3-D flows, e.g. dynamic stall is demonstrated.

Details in the LES results can give a deep insight for developing wind turbine design

tools. The turbulent inflow generated by the new inflow method is applied for the flow

over a pitching airfoil and this is the first numerical study for the effect of freestream

turbulence on dynamic stall to our knowledge. Aerodynamic hysteresis for the pitching

airfoil subjected to freestream turbulence shows consistent results with those from wind

tunnel measurements. The snapshots and the aerodynamic forces of the calculated flow

fields explicitly reveal the influence of freestream turbulence on the flow over the pitch-

ing airfoil: the separated flow is suppressed resulting in the lift increase. The last part

of the thesis is devoted to understanding the mechanism for the rotational effect of wind

turbines, known as ‘rotational augmentation’. A sectional blade flow in a rotating ref-

erence frame is simulated and the Coriolis effect is exclusively identified as the primary

mechanism for rotational augmentation.
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Nomenclature

Roman symbols

A surface area vector [m2]

AP , Al coefficients in discretized equations, see Eq. 4.5 [.]

aij amplitude tensor, Eq. 2.41 [m s−1]

B boundaries [.]

bj digital filter coefficient, Eq. 2.50 [.]

c chord length [m]

Cf skin-friction coefficient [.]

Cp pressure coefficient [.]

C ′
p pressure fluctuation coefficient [.]

CD drag coefficient [.]

CDES model constant in DES model [.]

CL lift coefficient [.]

CM moment coefficient [.]

CMTS model constant in MTS SGS model, Eq. 2.33 [.]

Cn universal constant, Eq. 2.23 [.]

CT model constant in MTS SGS model, Eq. 2.35 [.]

CSGS constant in SGS model [.]

Cs Smagorinsky constant [.]

C ′
s model constant in blending model, Eq. 2.69 [.]

CXC model constant, Eq. 2.51 [.]

Cν Eq. 2.36 [.]

C(r) correlation function [.]

D drag [kg m s−2]

d wall distance [m]

dt time step [s]

dx grid size [m]

E(κ) energy spectrum [m3 s−2]

E Eq. 5.6 [.]

e turbulent kinetic energy in Meteorology [m2 s−2]

e, exp exponential [.]

F face flux vector [.]

xxiii



xxiv NOMENCLATURE

Fe face-centre flux [.]

Fs sampling rate [s−1]

F Fourier transform [.]

f arbitrary function [.]

fI shape function, Eq. 2.53 [.]

f ′r additional term, Eq. 7.12 [m s−2]

fSB separation bubble frequency [s−1]

fs shedding frequency [s−1]

f∗ normalized frequency [s−1]

G filter function [.]

Gpp spectral density of pressure difference [kg2 m−2 s−4]

g transfer function, Eq. 5.5 [.]

H mixed layer height [m]

H Heaviside function [.]

I integral length scale [m]

K turbulent kinetic energy [m2 s−2]

Kes estimated SGS kinetic energy, Eq. 2.34 [m2 s−2]

KSGS SGS kinetic energy [m2 s−2]

kred reduced frequency [.]

L lift [kg m s−2]

Lx, Ly, Lz computational domain length [m]

Lij resolved turbulence stress tensor [m2 s−2]

log logarithmic [.]

l cell centre distance [m]

lDES length scale in DES model [m]

lDDES length scale in DDES model [m]

lhyb length scale in IDDES model [m]

lLES length scale in LES model [m]

lRANS length scale in RANS model [m]

lr length for the refined region [m]

l0 largest length [m]

lSB separation bubble thickness [m]

M Mach number [.]

N eddy points [.]

Nlow number of grid points on the lower airfoil surface [.]

NR number of grid points on R [.]

NW number of grid points on W [.]

NUS number of grid points on US [.]

Nup number of grid points on the upper airfoil surface [.]

Ns number of sampling [.]

Nx, Ny, Nz number of grid points [.]



NOMENCLATURE xxv

N ′
z number of grid points after refinements [.]

N normal distribution [.]

NS Navier-Stokes operator [.]

n surface normal unit vector [.]

P cell centre point [.]

p pressure [kg m−1 s−2]

p∞ reference/ambient pressure [kg m−1 s−2]

p∗∗, p∗∗∗ corrected pressure in PISO [kg m−1 s−2]

R computational domain radius [m]

Rij Reynolds stress tensor [m2s−2]

Re Reynolds number [.]

Q second invariant of the velocity gradient [m−1]

q dynamic pressure [kg m−1 s2]

r separation distance [m]

r random number [.]

rd squared ratio of model length scale, Eq. 2.75 [.]

S rate of strain tensor [s−1]

S surface area [m2]

Sφ source term [.]

s surface tangential unit vector [.]

St Strouhal number [.]

T characteristic time [s]

Tij SGS stress tensor at the test filter level [m2 s−2]

t time [s]

t∗ normalized time [.]

TI turbulence intensity [.]

TI0 turbulence intensity at the inflow [.]

Ub prescribed bulk velocity [m s−1]

Ueff effective velocity [m s−1]

ULEV LEV convection velocity [m s−1]

Uγ yawed velocity [m s−1]

U∞ freestream velocity [m s−1]

U0 translational velocity [m s−1]

U, V mean velocity [m s−1]

u, v, w velocity components [m s−1]

uθ, uy, ur velocity components in cylindrical coordinate [m s−1]

Urot rotating velocity [m s−1]

u′ fluctuation velocity vector [m s−1]

u∗ intermediate velocity vector, Eq. 2.51 [m s−1]

ug generated velocity, Fig. 4.6 [m s−1]

uτ friction velocity [m s−1]



xxvi NOMENCLATURE

u+ normalized velocity [.]

u∗, u∗∗ intermediate velocity in PISO [m s−1]

US computational domain upstream length [m]

VC cell volume [m3]

W computational domain wake length [m]

W∗ convective velocity scale, see [165] [m s−1]

y0 distance of the wall [m]

y1 distance of the first wall-off cell centre [m]

y+1 normalized wall distance [.]

x′ chord aligned coordinate [m]

Greek symbols

α angle of attack [◦]

αLEV mean angle of attack for LEVs [◦]

αeff effective angle of attack [◦]

βm limiter, Eq. 3.25 [.]

Γ diffusivity coefficient [.]

γ yaw angle, Fig. 1.1 [◦]

γ diffusivity for the dynamic mesh, Eq. 6.2 [.]

∆ mesh related length scale [m]

∆|| wall parallel grid size [m]

∆ filter length scale [m]

δ half channel depth [m]

δij Kronecker delta [.]

δ99 thickness for 99% freestream velocity [m]

δ∗ displacement thickness [m]

∆p pressure difference [kg m−1 s−2]

∆x+,∆y+,∆z+ normalized grid size [.]

ε turbulent kinetic energy dissipation rate [m2 s−3]

ε∗ error for velocity, Eq. 4.21 [m s−1]

εSGS Eq. 2.38 [m2 s−3]

η smallest scale [m]

η∗ wall normal distance normalized by δ∗ [.]

κ von Kármán constant [.]

κ wave number [m−1]

κc cut-off wave number [m−1]

λ tip speed ratio [.]

ν kinematic viscosity [m2 s−1]

νblend blended turbulent kinematic viscosity [m2 s−1]

νt turbulent kinematic viscosity [m2 s−1]

νSGS subgrid-scale kinematic viscosity [m2 s−1]



NOMENCLATURE xxvii

ν̃ modified eddy viscosity, Eq. 2.71 [m2 s−1]

ξ∗ error for pressure, Eq. 4.21 [kg m−1 s−2]

ρ fluid density [kg m−3]

τ rij residual (or SGS) stress tensor [m2 s−2]

τw wall shear stress [m2 s−2]

Φ turbulence spectrum [m s−2]

Φ phase angle shift [rad]

φ, ψ general scalar property [.]

φa azimuth angle [◦]

φ, ψ intermediate velocity vector [m s−1]

ω pitching frequency [rad s−1]

ω specific dissipation rate [s−1]

Ω angular velocity [rad s−1]

Oversymbols

φ̄ filtered

φ̃ test or explicitly filtered

〈φ〉 or φ assembly averaging operator

φ̂ property in spectral space

Abbreviations

ABL Atmospheric Boundary Layer

BEM Blade Element Momentum

BL Boundary Layer

CD Central Differencing

CFD Computational Fluid Dynamics

CFL Courant Friedrichs Lewy

DDES Delayed Detached Eddy Simulation

DES Detached Eddy Simulation

FSM Forward Stepwise Method

FVM Finite Volume Method

HAWT Horizontal Axis Wind Turbine

HIT Homogeneous Isotropic Turbulence

IDDES Improved Delayed Detached Eddy Simulation

LES Large Eddy Simulation

LEV Leading Edge Vortex

LLM Logarithmic Layer Mismatch

LSB Laminar Separation Bubble

NVL Normalized Variable Approach

MTS Mixed Time Scale

MSD Modelled Stress Ddepletion
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PBC Periodic Boundary Condition

PC PitChing

PDE Partial Differential Equation

PIMPLE PIso + siMPLE

PISO Pressure Implicit with Splitting of Operatprs

PSD Power Spectral Density

RANS Reynolds Averaged Navier Stokes

SGS Sub Grid Scale

SIMPLE Semi-Implicit Method for Pressure-Linked Equation

ST STatic

TI Turbulence Intensity

TKE Turbulent Kinetic Energy

TSR Tip Speed Ratio

UD Upwind Differencing

WT Wind Turbine

XC Xie and Castro [183]

XCMC XC Mass Correction

XCDF XC Divergence Free



Chapter 1

Introduction

1.1 Background

According to the models used by the Intergovernmental panel on climate change, the

global carbon emission will have to be cut to half of their 1990 levels by 2050 to keep

the global temperature from increasing more than 2◦C above the pre-industrial levels.

For rich countries that means an 80% cut in their emissions which is the consensus of

the G8 group of nations in 2008, by that date. This is a reduction of two tonnes of CO2

equivalent per head per year [28]. Due to the carbon emission regulation, interest in

renewable energy which generates zero or near-zero carbon has increased these days but

the portion of power from renewable energy sources is still less than 1% of the overall

power generation in the world. Wind energy is one of the most successful renewable

energy sources. Therefore the need to improve competitiveness of wind energy through

cost reduction and new innovative aerodynamic design [155] is increasing.

Generating electricity using wind turbines has a long history. The first electricity

generation from a wind turbine was in 1887 [155]. Despite the long history of the wind

turbines, wind turbine designers still rely on safety factors and empiricism due to the

inaccurate prediction of wind loads on the blade. Also, physical understanding of wind

turbine aerodynamics is far from complete. Over-designed wind turbines are less cost-

effective and a poor prediction model weakens reliability of wind energy. Simms et al.

(2001) [149] reported that turbine power predictions ranged from 25% to 175% of that

measured under the simplest situation, i.e. no-yaw (see Fig. 1.1), steady-state and

no-stall conditions. These differences are not desirable considering the increase of the

modern wind turbine size because the cost of wind turbine installments grows with the

size of the wind turbine [153].

In this chapter, topics of wind turbine aerodynamics are explained. Literature on

each topic is reviewed and the objectives of the research are clarified towards the end

1
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Figure 1.1: A sketch of the azimuth angle, φa (left) and the yaw angle, γ (right) in
wind turbine aerodynamics.

of this chapter which attempt to unveil the complexity of wind turbine aerodynamics.

More comprehensive reviews on wind turbine aerodynamics can be found in [44, 45, 155].

1.2 Topics in wind turbine aerodynamics

The aerodynamics of wind turbines include various topics from static airfoil characteris-

tics to geographical wind assessments. Fig. 1.2 shows some major topics in wind turbine

aerodynamics.

1.2.1 2-D airfoil database

One may think that there is a huge difference between a 2-D airfoil and a 3-D rotating

blade and one may also wonder whether the 2-D airfoil data is useful to wind turbine

aerodynamics. We can recognize why the 2-D airfoil database is required once we un-

derstand the prediction methods of wind turbines. Many of the prediction methods

for the wind turbine performance, such as blade element-momentum (BEM) technique,

require 2-D airfoil data as an input parameter (prediction methods for the wind turbine

performance are well summarized by Hansen et al. (2006) [45]). A substantial number

of airfoil characteristics in the aerospace engineering industry have been accumulated

but the data on high angles of attack and thick airfoils are relatively sparse. These data

are necessary for assessing wind turbine aerodynamics. Thus building a reliable 2-D

airfoil database with various angles of attack and airfoils would serve, as the backbone

of modelling and prediction for wind turbine aerodynamics.
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Figure 1.2: Topics in wind turbine aerodynamics (in boxes): their reasons of study
and/or causes

1.2.2 The effect of turbulence on wind turbine aerodynamics

From the windmill to modern commercial wind turbines, all such devices are placed on

the earth’s surface. The surface is covered with the atmosphere and the lowest part is

the atmospheric boundary layer (ABL) which is almost always turbulent. Consequen-

tially, turbulence is an unavoidable factor in wind turbine aerodynamics and different

turbulence levels lead to different aerodynamic characteristics for the blade. Therefore

the turbulence effects on the airfoil characteristics are important issues in wind turbine

aerodynamics. For realistic prediction methods for the wind turbine performance, the

structure and characteristics of the atmospheric boundary layer need to be understood.

Before literature for the effects of turbulence on airfoil flows is reviewed, the character-

istics of the atmospheric boundary layer are summarized.

Atmospheric boundary layer

Stull (1988) [165] defined the atmospheric boundary layer as, “part of troposphere that is

directly influenced by the presence of the earth’s surface, and responds to surface forcings

with a timescale of about an hour or less”. The thickness of the atmospheric boundary

layer (order of 1km) varies depending on the pressure, latitude and temperature. Above

the atmospheric boundary layer, there is a free atmosphere which is of the order of

11km thick as shown in Fig. 1.3(a). Even the largest modern wind turbine, up to 200m

height, lies within the atmospheric boundary layer, thus the atmospheric boundary layer

directly affects the wind turbines’ performance. The characteristics of the boundary layer

compared with the free atmosphere are listed as [165],

• Almost continuously turbulent over its whole depth.
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Surface

1km, Atmospheric Boundary Layer

11km, Free Atmosphere

100m, Surface Layer

(a) (b)

Figure 1.3: (a) The structure of the atmosphere (not to scale) and (b) the vertical
profile of normalized turbulence kinetic energy in the daytime at 1200 (dashed line),
1400 (thick solid line) and 1600 (thin solid line) [10].

• Strong drag against the earth’s surface. Large energy dissipation.

• Rapid turbulence mixing in the vertical and horizontal direction.

• Near logarithmic wind speed profile in the surface layer.

The bottom 10% (50-100m) of the atmospheric boundary layer is the surface layer,

see Fig. 1.3(a), and this layer has approximately constant shearing stress (in the vertical

direction), where the flow is insensitive to the earth’s rotation. The wind structure of

the surface layer is determined primarily by the surface friction and vertical gradient

of temperature. The rest of the atmospheric boundary layer has a variable shearing

stress and its wind structure is influenced by the surface friction, temperature gradient

and also the earth’s rotation. Fig. 1.3(b) shows the vertical profile of turbulent kinetic

energy (TKE) in the atmospheric boundary layer. H is approximated to the thickness of

the atmospheric boundary layer during the daytime. e denotes the TKE and W∗ is the

convective velocity scale (see Stull (1988) [165] for the definition) which reaches 1−2m/s

in the daytime with vigorous heating at the ground.

The effect of turbulence on the flow over an airfoil

Wind turbines are operated in the atmospheric boundary layer and are subjected to

complicated environments. To simplify the problem, the effect of freestream (isotropic

and shear-free) turbulence on airfoil aerodynamics was investigated. This topic was

initiated to detect the discrepancies of airfoil measurements in different wind tunnels in

the 1930s [164]. Stack (1931) [164] measured the effects of different turbulence intensities

on aerodynamic performances for five different airfoils including NACA 0006 and NACA
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0021. The objective of this study was to identify discrepancies in the test results from

different wind tunnels. It showed the maximum lift increased as the turbulence level

increased.

Hoffmann (1991) [49] tested a NACA 0015 airfoil to observe effects of freestream

turbulence. The Reynolds number in his experiment was 250, 000, freestream turbulence

intensity varied from 0.25% to 12% and aspect ratio of the test wing was 2.9. He reported

that the maximum lift coefficient increased with increasing freestream turbulence up to

9% without a significant increase of the drag coefficient. Oil flow visualizations showed

that the laminar separation bubble disappeared in high freestream turbulence and the

stall angle was delayed to a higher point.

Huang and Lee (1999) [52] tested the effects of turbulence on the surface flow charac-

teristics and aerodynamic forces on a NACA 0012 airfoil. They tested various Reynolds

numbers, Re = 30, 000 − 120, 000, with various angles of attack up to 20◦. They re-

ported that separation points are delayed towards the trailing edge as the turbulence

intensity increases. However, the freestream turbulence effect was not obvious at the high

Reynolds number. This might be due to too low turbulence intensities (TI < 0.65%) in

their work. In addition, they found that the bubble length reduced significantly when

the turbulence intensity increased. The lift-to-drag ratio decreased and stall was delayed

as the turbulence intensity increased.

A sectional blade of wind turbines experiences wide angles of attack, more than

90◦ in extreme cases. The lower layer of the atmosphere and the wake from wind

turbines in a wind farm are in the high turbulence regions. Thus a wide range of

different angles of attack and turbulence intensities have to be considered for wind

turbine aerodynamics. Devinant et al. (2002) [23] measured the flow over a NACA

644-421 airfoil for varying turbulence intensities, 0.5% < TI < 16%, angles of attack,

−10◦ < α < 90◦ and Reynolds numbers, 100, 000 < Re < 700, 000. They reported that

the freestream turbulence intensity affected aerodynamic characteristics for the airfoil

and these effects were also a function of Reynolds number. Increases of the turbulence

level decreased the lift gradient in the linear region (before stall) and also delayed the

separation point. The maximum lift coefficients tended to increase as Reynolds number

increased but the Reynolds number effects were not significant in high turbulence.

A numerical study on the effect of turbulence on the flow over an airfoil was con-

ducted by Gilling (2009) [37], but he reported that the turbulence effects on the stall

angle could not be predicted by the method that he applied. He used the detached

eddy simulation for the turbulence model and a synthetic turbulence inflow to generate

freestream turbulence. An advanced approach, such as LES, might be needed to capture

the effect of freestream turbulence over the flow over an airfoil.
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1.2.3 Dynamic stall

Operating conditions for wind turbines provide the situation in which dynamic stall

can occur. Dynamic stall is a phenomenon associated with an unsteady airfoil motion

that presents large hysteresis on the lift and pitching moments while the time varying

incidence is beyond its static stall angle [15]. On a pitching airfoil, stall appears at a

higher angle of attack than the static stall angle. Also the lift and moment reveal large

hysteresis with respect to angle of attack [98]. Yawed flow (when wind is not normal to

the rotating plane of a turbine), wind shear, tower shadow, gust, atmospheric turbulence

and wake from the upstream turbine in a wind farm, all generate an unsteady inflow

condition which can lead to dynamic stall.

Fig. 1.4 shows the chronological events of dynamic stall for a pitching NACA 0012

airfoil at kred = 0.15, Re = 2.5 × 106 and α = 15◦ + 10◦sin(ωt) (see Eq. 1.1 for kred).

Carr et al. (1977) [15] reported that virtually all airfoils experienced a fully developed

dynamic stall. They presented an illustrative description of the dynamic stall events as

shown in Fig. 1.4. Dynamic stall is initiated as the pitching airfoil passes its static stall

angle at (a) in Fig. 1.4. The boundary layer is thin and there is no discernible flow

reversal within the viscous layer, i.e. stall is delayed. The reversed flow emerges from

the trailing edge and proceeds towards the leading edge as incidence increases while the

inviscid flow is still attached at (b) in Fig. 1.4. When the viscous flow can no longer

remain attached, an energetic vortex develops at the leading edge ((e) in Fig. 1.4). The

generated vortex which is called the leading edge vortex (LEV), grows fast and convects

downstream rapidly. The LEV creates a low pressure region over the airfoil resulting

in an increase in the lift slope (see (e) - (h) in Fig. 1.4) while the LEV resides on the

upper airfoil surface. As the LEV passes the pitching pivot point, the pitching moment

starts to drop, referred as the moment-stall [15] at (f) in Fig. 1.4, and the flow is fully

separated after the LEV sheds from the trailing edge. The flow is attached again as

incidence passes the lowest angle of attack.

Many experimental studies were conducted on dynamic stall. Carr et al. (1977)

[15] performed the experiments to examine the effects of the leading edge shape, camber

and variable parameters based on a NACA 0012 airfoil. They summarized that airfoil

geometry, frequency of pitching, amplitude of pitching and Reynolds number were the

parameters affecting dynamic stall, in order of decreasing importance. They also re-

ported that locations of the flow reversal and flow separation were distinctively different

on a pitching airfoil while they occurred at almost the same point on a static airfoil.

For the purpose of helicopter rotor design, extensive studies on dynamic stall of oscillat-

ing airfoils were performed [15, 95, 98, 99]. Their interests were, however, on relatively

small amplitudes of oscillation and small mean angles of attack because helicopters were

designed to avoid deep stall conditions [12].
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Figure 1.4: The events of dynamic stall on a NACA 0012 airfoil [15].
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Figure 1.5: A local angle of attack of the wind turbine blade under the yawed flow.
z is the axis of rotation, Uγ is the yawed flow velocity, Urot is the rotating speed, α is
the local angle of attack and Ueff is the effective velocity.

Does dynamic stall occur on wind turbines?

In wind turbine aerodynamics, dynamic stall is characterized by the rotating frequency of

wind turbines. As the upstream wind is not normal to the rotating plane, the sectional

blade operates in a periodically oscillating condition at the frequency of the turbine

rotation. Fig. 1.5 shows the sectional changes of angle of attack under yawed flow. Note

that dynamic stall can also occur due to a dynamic inflow and atmospheric turbulence

etc. but the mechanism for dynamic stall is the same in principle.

One may argue whether dynamic stall occurs on a wind turbine or not because, at

a glance, the blade does not seem to rotate fast enough to go through such a dramatic

unsteady phenomenon. To understand this question, we need to consider the relation

between the period (time unit) for the rotation and the time scale for the flow over each

section of blades. This relation leads us to the reduced frequency,

kred =
ωc

2U∞
, (1.1)

where ω is the pitching frequency, c is the chord length and U∞ is the freestream velocity.

In wind turbine aerodynamics, ω is characterized by the rotating frequency of the blade

and U∞ is determined by the upstream velocity and the radius distance from the hub, see

Eq. 1.2. A considerable number of works were conducted on dynamic stall for variable

reduced frequencies both on pitching airfoils [15, 85, 98, 99, 120] and rotating blades
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Figure 1.6: A reduced frequency (kred) contour for various freestream velocities (U∞)
at different radial positions (r). It is assumed that the angular frequency is 15 rpm and
constant chord is 2m.

Figure 1.7: Experimental data [1] for the effect of freestream turbulence on the lift
coefficients for a pitching airfoil. A NACA 644-421 airfoil was used and the conditions
were Rec ≈ 106, α = 8◦ + 12◦sin(ωt) and kred = 0.183.
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Table 1.1: Summary of literature on dynamic stall. α0 and α1 are the mean angle and pitching amplitude. The tip speed ratio (TSR) is
TSR = rΩ/U∞ and kred from the rotating blades are based on Ueff in Eq. 1.2

Authors Method Re [106] kred Airfoils α0 [◦] α1 [◦]

Oscillating
airfoil

Carr et al. [15] Experiment 1.3− 3.5 0.02− 0.25 NACA0012,
cambered
airfoils

6− 15 6− 14

McCroskey et al. [99], Mc-
Calister et al. [97]

Experiment 0.5− 4 0.05− 0.25 NACA0012,
7 more types

6− 15 6− 14

Piziali [120] Experiment 2 0.04− 0.2 NACA0015 4− 17 2− 5
Ekaterinaris and Menter [29] CFD 2− 4 0.1 NACA0012,

NACA0015
4− 15 4.2− 5

Raffel et al. [123] Experiment 0.373 0.15 NACA0012 15 10
Ramsay et al. [126] Experiment 0.75− 1.4 0.025− 0.1 S809 8− 20 5.5−10
Barakos and Drikakis [5] CFD 1− 4.6 0.1− 0.25 NACA0012,

NACA0015
2.8−17 2.4−10

Lee and Gerontakos [85] Experiment 0.135 0.025− 0.1 NACA0012 0− 10 5− 15
Amandolèse and Széchényl [1] Experiment 1 0.018− 0.18 NACA

644-421
12 2− 8

Wang et al. [177] CFD 0.135− 0.373 0.1− 0.15 NACA0012 10− 15 10− 15

Authors Method TSR kred Airfoils

Rotating
blade

Butterfield et al. [12] Experiment 2.82 0.04− 0.12 S809
Shipley et al. [145] Experiment 1.7− 6.3 0.04− 0.21 S809
Schreck and Robinson [141] Experiment 2.5− 4.2 0.03− 0.26 S809
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(a) Ekaterinaris and Menter (1994) [29] (b) Wang et al. (2010) [177]

Figure 1.8: Hysteresis of the aerodynamic forces: (a) NACA 0015 airfoil, α(t) = 15◦+
10◦ sin(ωt), kred = 0.1, Re = 2× 106; (b) NACA 0012 airfoil, α(t) = 10◦ + 15◦ sin(ωt),
kred = 0.1, Re = 1.35× 105.

[12, 126, 145]. Previous studies are summarized in Table 1.1. To estimate the reduced

frequency for the rotating blades, the effective velocity, Ueff , is used instead of U∞ in

Eq. 1.1 and it is defined as,

Ueff =
√
(U∞)2 + (rΩ)2, (1.2)

where Ω is the angular velocity of turbines. Modern large wind turbines have a 100m

(or even larger) blade diameter and the cut-in and cut-out wind speeds are generally

5m/s and 25m/s respectively. With these conditions, reduced frequencies at each radial

position (r) are shown in Fig. 1.6. The reduced frequencies based on the operating con-

ditions of a modern large wind turbine as shown in Fig. 1.6, are mostly placed within the

range at which dynamic stall was reported in literature (see Table 1.1). Thus dynamic

stall does occur on wind turbines.
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Numerical studies on dynamic stall

As computing power has increased, dynamic stall on a pitching airfoil has been investi-

gated by calculating the Reynolds Averaged Navier-Stokes (RANS) equations. Ekateri-

naris and Menter (1994) [29], Barakos and Drikakis (2000) [5] and Wang et al. (2010)

[177] presented numerical studies on dynamic stall and these showed good agreement

with the measurements for some cases. Ekaterianris and Platzer (1997) [30] presented

a comprehensive review on the prediction methods for dynamic stall. They pointed out

that RANS approaches were not adequate to predict the aerodynamic hysteresis for the

complex flows, such as the flow reattachment during the downstroke and deep stall.

Fig. 1.8(a) shows the hysteresis of aerodynamic forces on a NACA 0012 airfoil

by using RANS turbulence models. The drag and pitching moment coefficients reveal

oscillatory behaviours due to strong 3-D effects during the downstroke. Wang et al. [177]

confirmed that 2-D RANS models were limited where the flow was fully detached, e.g. at

a high angle of attack (see Fig. 1.8(b)). They reported that advanced CFD methods such

as large-eddy simulations or detached-eddy simulations had to be adopted to capture

the hysteresis more accurately.

The effect of freestream turbulence on dynamic stall

As mentioned earlier in Sec. 1.2.2, the wind turbine’s operating condition is always

turbulent. Thus it is of great interest to investigate the effect of turbulence on dynamic

loads on wind turbines but there is little work on this subject. Amandolèse and Széchényi

(2004) [1] tested the effects of the mean angle of attack, reduced frequency, pitching

amplitude and turbulence intensity on dynamic stall of a pitching airfoil. They reported

that the lift overshoot and time delay of the maximum lift in dynamic stall decreased as

the turbulence intensity decreased. There is no numerical work on this subject to our

knowledge.

1.2.4 Rotational augmentation

Rotational augmentation is the phenomenon that stall occurs at a higher angle of attack

on a rotating blade than that on a static airfoil. Rotational augmentation is generally

known as stall delay but the term, rotational augmentation, is used in this study to

avoid the confusion with the stall delay in dynamic stall. Fig. 1.9 shows the rotational

augmentation on a rotating blade. In many prediction models for the wind turbine per-

formance, 2-D airfoil data are used as input parameters. Understanding and identifying

the exact mechanism for rotational augmentation is necessary in extrapolating the 2-D

airfoil data to the prediction models.

Rotational augmentation was observed for the first time by Himmelskamp (1945)

[47]. Through analytical, experimental, numerical approaches and their cross valida-

tions, rotational augmentation was characterized, measured and quantified. Some of
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Figure 1.9: Normal force coefficients measured on a rotating blade and a static airfoil
(· · · , wind tunnel). Data was taken from an S809 airfoil with a constant 0.5m chord,
zero twist, 5m blade, 72RPM rotating speed [44].

these works simply observed the phenomena and some explained the mechanisms for

rotational augmentation.

An analytical solution for the 3-D laminar boundary layer on a rotating flat plate

was suggested by Fogarty (1951) [33]. He presented the radial velocity profile on the

rotating laminar boundary layer and reported that the separation line was unaffected by

the rotation. Fogarty’s [33] solution was further developed by different research groups

[50, 106, 131, 168] for general cases such as the flow in a rotating helical coordinate

system. Lakshminarayana et al. (1972) [80] derived the momentum integral equations

for the turbulent boundary layer on a rotating helical blade and showed reasonable

agreement for the skin-friction with the measurement.

In experiments, comparisons for the aerodynamic forces between a rotating blade

and static airfoil were conducted by [13, 129, 138] and they all showed the lift enhance-

ment especially at the inner section of the rotating blade. Schreck and Robinson (2002)

[138] reported the relations between the spanwise pressure gradient and normal force

amplification on the rotating blade surface. Their following works [137, 139, 140] char-

acterized rotational augmentation further. McCroskey and Yaggy (1968) [100] reported

that the cross flow on a helicopter blade tended to delay the separation on the retreating

side of the rotor. The cross validation between measurements and calculations were also

reported in [51, 142].
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Sicot et al. (2008) [148] measured effects of grid turbulence and rotation on the

separation point of the rotating blade. They reported that the separation points showed

little differences between rotating and non-rotating blades at the given turbulence in-

tensity (TI ≈ 9%). The separation points, however, were delayed towards the trailing

edge as the turbulence intensity increased for both rotating or non-rotating blades.

Several numerical approaches with the simplified boundary layer equations were used

to predict the lift enhancement for a wind turbine blade [11, 18, 26, 154]. Snel et al.

(1994) [154] modified the boundary layer equations based on an order-of-magnitude anal-

ysis so that the rotational effects were taken into account in the 2-D modified boundary

layer equations. They reported that higher lift coefficients were predicted near the rotat-

ing axis (i.e. near the hub). Corten (2001) [18] took into account the contribution of the

radial velocity in Snel et al.’s equations. Wood (1991) [181], Tangler and Selig (1997)

[169] confirmed that the rotational effects (e.g. higher lift near the hub) were small for

attached flows. They noted that the local solidity (c/r) was an important parameter

in the rotational effects. This was because c/r determined the local angle of attack

based on the relation, Urot = rΩ. As r decreased (closer to the hub), Urot decreased

and the effective angle of attack increased resulting in flow separations (see Fig. 1.5).

Thus the solidity was equivalent to the radial position on the rotating blade. Sørensen

et al. (2002) [156] simulated a full scale blade flow in a rotating reference frame with

a RANS model and the result showed good agreement with measurement. Quasi-3D

Navier-Stokes equations were derived by Chaviaropoulos and Hansen (2000) [17], Shen

and Sørensen (1999) [144] and it was confirmed that the rotational effects depended on

the radius to chord ratio (r/c). Gross et al. (2012) [39] computed a sectional blade in

a rotating reference frame and they reported that the radial flow destabilized the flow

and thus delayed separation.

The mechanism for rotational augmentation were explained in several ways [17, 39,

44, 46, 154, 156, 170] but perhaps they are all related. The mechanisms which have

been introduced in literature can be summarized mainly in two groups. Firstly, the

centrifugal force pushes the air on the blade to the tip and the mass depletion due to the

radial flow thins the boundary layer thickness leading to a low pressure on the suction

side. This mechanism is called centrifugal (or spanwise, radial) pumping. Secondly,

the radial flow to the blade tip provides the Coriolis acceleration toward the trailing

edge. This acceleration acts as a favourable pressure gradient and thus increases the lift.

Gross et al. [39] further scrutinized the mechanisms for rotational augmentation. They

argued that the spanwise flow provided the cross-flow instability which triggered early

transition, and then it delayed separation and increased lift. They excluded the mass

depletion effect by adopting a periodic boundary condition in the spanwise direction for

the sectional blade simulation. However, they did not differentiate the contribution of

the Coriolis effect on rotational augmentation from the cross-flow instability.
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The mechanism for rotational augmentation is not fully understood yet and it is

important to understand this to design prediction models.

Figure 1.10: A sketch for a wind farm array from Manwell et al. (2002) [93].

Figure 1.11: A wind farm array loss from Manwell et al. (2002) [93].

1.2.5 Wind turbine siting and turbine wake

Once a wind turbine is designed, a single or a group of wind turbines has to be placed at

a certain site with a certain configuration. Depending on the place and the configuration,
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Figure 1.12: The root-mean-square of the turbulence fluctuations downwind of a wind
turbine where λ is the tip speed ratio from Manwell et al. (2002) [93].

total energy generation varies, thus the wind turbine siting is also a critical issue in wind

turbine aerodynamics.

The major objective of siting studies is to allocate wind turbine(s) to maximize the

power output and to minimize noise emissions and visual effects [93]. The scope of the

siting study has a very wide range, from the resource assessments of a geographical

scale to decision making of a single wind turbine placement on a site or in a wind farm.

Placing of an individual wind turbine is called micrositing [93]. Due to this wide scope

of range, the wind turbine siting study has to consider many other factors apart from

the aerodynamic or meteorological aspects, such as ecological impact, safety, public

acceptance and infrastructure costs etc. Most of these factors are beyond the scope of

the current study but some aspects of siting study are summarized which are directly

related to aerodynamics such as the effects of wind shear, atmospheric turbulence and

wake interaction.

Kinetic energy in the wind is extracted by wind turbines, thus the downstream wind

(wake) has a lower wind speed and higher turbulence level than the prevailing wind.

The power output of wind turbines placed in the downstream wake, decreases due to

the low wind speed and the wake-induced fatigue of these turbines increases due to the

high turbulence level.

Array loss

The energy production from a wind farm is not the same as the sum of the energy

outputs from a stand-alone wind turbine under the same wind conditions, i.e. mean
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wind velocity, turbulence intensity etc. This difference is referred as the array loss and

defined as,

Array loss = 1− Annual energy of whole array

(Annual energy of one isolated turbine)(total no. of turbines)
. (1.3)

The downwind, cross flow spacing (see Fig. 1.10 for the definitions) and the turbu-

lence intensity are the main parameters of the array loss. Fig. 1.11 shows the array loss

from a 6 by 6 hypothetical wind farm that has 8 turbine blade diameter of a downwind

spacing among individual turbines. It illustrates that the effects of the cross spacing

and turbulence intensity on the array loss are significant.

Turbine wake

The turbine wake affects the inflow conditions for the downstream turbines thus it affects

the performance of them. Fig. 1.12 shows the root-mean-square of the turbulence

fluctuations at different downstream (unit of rotor diameter) locations at a given tip

velocity ratio and 0.08 turbulence intensity. Tip vortices induce a higher turbulence

level at the annular region of the blade tips and wake turbulence gradually recovered

to the level of the ambient turbulence intensity as it is convected to the downstream

region.

1.2.6 Summary on the issues raised in the topics

Some of the major topics in wind turbine aerodynamics are reviewed and key points for

each topic are introduced. Among these topics, the effect of turbulence on the flow over

an airfoil, dynamic stall and rotational augmentation are directly related to the wind

turbine aerodynamics in atmospheric turbulence and its rotating mechanism.

The effects of turbulence on the flow over an airfoil were measured in the

wind tunnel and quantified with variable parameters, e.g. airfoil geometry, turbulence

intensity etc. There are still issues to be addressed in this subject such as the effect of

the turbulence length scale. Also numerical studies on this subject were not successful

to date. Due to advantages in the numerical study, it is important to develop a reliable

framework of numerical approaches for turbulence effects on wind turbine blades. For

example, it is relatively easy to reproduce realistic turbulence (e.g. inhomogeneous and

shear stress containing) in numerical simulations.

In literature, many measurements and simulations showed that dynamic stall oc-

curs on a wind turbine blade when it is subjected to various operating conditions such as

yawed flow, wind shear etc. Predictions for the dynamic loads on the blade are impor-

tant as they determine the expected service life. An accurate prediction for stall delay



18 Chapter 1 Introduction

and dynamic stall is still challenging with a conventional approach such as RANS, thus

an advanced approach, e.g. LES, is required for the reliable prediction for dynamic loads

on wind turbines and perhaps for improving RANS models. In addition, the effects of

freestream turbulence need to be taken into account because they are intrinsic parts of

the wind turbines’ operating conditions.

Previous studies on rotational augmentation have contributed to characterizing

and understanding this phenomenon but it is not fully clarified yet what are the causes of

the rotational augmentation and their significance. Numerical simulations can elucidate

physical aspects of these questions in a manner which is difficult to achieve in a wind

tunnel experiment. The radial flow due to the centrifugal acceleration and Coriolis

effects in the chordwise direction can be dealt with separately in numerical simulations.

Therefore individual and combined roles of these factors on rotational augmentation can

be understood by an appropriate numerical approach.

1.3 Thesis outline

Most of the existing numerical prediction methods for wind turbine performance such as

blade element momentum (BEM), lifting line or surface methods and their applications,

require 2-D airfoil data as input parameters. Errors in these predictions are mainly

attributed to different behaviours of the boundary layer between a 2-D airfoil and 3-D

rotating blade. Note that the boundary layer in this context means the flow adjacent

to the blade, not the atmospheric boundary layer. For deeper understanding of wind

turbine aerodynamics and better prediction models, an alternative approach is desirable

which does not depend on 2-D airfoil data sets.

Thanks to ever growing computing power, details of the boundary layer on wind tur-

bine blades can nowadays be resolved by numerical methods. Wind turbine designers

can be free from many empirical models, if the crucial details of the boundary layer on

the blade are available. Thus boundary layer resolving CFD is adopted for this study

in order to understand the wind turbine aerodynamics and to improve the aerodynamic

load predictions. Although the boundary layer can be resolved with the enhanced com-

puting power, turbulence in the wind turbine flow still needs to be modelled (or partially

modelled) due to its wide range of scales. Among different types of turbulence models, a

RANS approach adopts an averaging concept in which the velocity can be decomposed

into the mean and the fluctuations. The turbulence model in the RANS approach should

represent all turbulence fluctuations. Wind turbine blades experience a wide range of

angles of attack due to the atmospheric boundary layer and their rotation. Under this

wide range of angles of attack, stall is frequent over the blade. To estimate the peak

power and dynamic loads under deep stall, unsteady effects have to be considered. The

unsteady RANS (URANS) can provide a time dependent solution but the separation
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of time scales between unsteady flows and turbulence is ambiguous. Especially, when

the time scale of the atmospheric turbulence is comparable with that of rotation, the

URANS approach is debatable. To avoid this ambiguity, large-eddy simulation (LES)

is adopted for the current study. Details of the main concept and related techniques for

LES are presented in Ch. 2. The discretization practices which are important for the

current research are reviewed in Ch. 3.

To investigate the effects of turbulence on wind turbine aerodynamics, a time depen-

dent turbulent inflow boundary condition is used for LES calculations. Two conditions

need to be satisfied for the turbulent inflow boundary condition in the present study.

Firstly, the turbulence generation technique should be substantially more efficient com-

pared with the computational time required for developing turbulence naturally from

the laminar state. Secondly, the turbulent inflow technique should not produce unphys-

ical pressure fluctuations as the instantaneous pressure is important for dynamic load

predictions and aeroacoustic analysis on wind turbines. To achieve the second condition,

the turbulent inflow has to satisfy the divergence-free condition. Therefore, a new tur-

bulent inflow for LES which is computationally efficient and satisfies the divergence-free

condition is developed in that regard. This new model is presented in Ch. 4 with the

assessment of the performance on a plane channel flow.

The new turbulent inflow is then applied to the flow over a static airfoil to provide

a reliable framework that is applicable to the flow over wind turbines subjected to

freestream turbulence. Details of the methodology and results are presented in Ch.

5. A pitching airfoil is simulated in Ch. 6 to demonstrate the capability of LES on

capturing the dynamic stall characteristics. The developed turbulent inflow is used to

investigate the impact of freestream turbulence on the dynamic stall characteristics in

the same chapter.

The mechanism for rotational augmentation has been explained mainly in two groups;

the mass depletion by the centrifugal pumping and Coriolis acceleration toward the

trailing edge. However, it has so far not been attempted to identify their contributions

separately. In Ch. 7, an attempt is made to isolate the Coriolis effect on rotational

augmentation. A sectional blade is simulated in a rotating reference frame. In this sim-

ulation, the mass depletion due to the centrifugal pumping and cross-flow instability due

to the radial flow are excluded. Therefore the Coriolis effect is identified as the primary

mechanism for rotational augmentation. The conclusions and suggestions follow in Ch.

8.

Finally, the novel aspects of the thesis are listed,

• A new turbulent inflow condition is developed which is computationally efficient

and satisfies the divergence-free condition. (Chapter 4, the major part is published

in Kim, Castro, Xie. Comput. Fluids, 2013 [69])
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• A reliable framework is suggested for a numerical study regarding the effects of

freestream turbulence on aerodynamics and unsteady surface pressure analysis of

wind turbine flows. (Chapter 5, part of the work is reported in Kim, Castro, Xie.

UK WES conference, Southampton, UK, 2012 [68])

• The LES capability is demonstrated for highly separated and strong 3-D flows,

e.g. dynamic stall. (Chapter 6, part of the work is reported in Kim, Castro, Xie.

DLES9, Dresden, Germany, 2013 [70])

• The first attempt is made to investigate the effect of freestream turbulence on

dynamic stall via numerical approaches. (Chapter 6, part of the work is reported

in Kim, Castro, Xie. DLES9, Dresden, Germany, 2013 [70])

• The role of the Coriolis effect on rotational augmentation is demonstrated through

numerical tests. (Chapter 7, part of the work is reported in Kim, Castro, Xie.

DLES9, Dresden, Germany, 2013 [70])



Chapter 2

Large-eddy simulations :

concepts, modelling and

boundary conditions

2.1 Scale separation and governing equations

Turbulence has a wide range of spatial and temporal scales, with the disparity of scales

increasing with Reynolds number. The ratio between the largest (l0) and smallest (η),

but yet dynamically active, scales in homogeneous isotropic turbulence is [133],

l0
η

= O
(
Re3/4

)
. (2.1)

This means that the number of grid points scales as O(Re9/4) for a 3-D turbulent flow

to resolve all dynamics of motion in the numerical solution. In the fields of aeronautics

and wind energy aerodynamics, Reynolds number reaches O(108) [133]. Thus resolving

all scales of turbulence at a practical Reynolds number is not possible even with to-

day’s largest super computers. Due to this limit, turbulence needs to be modelled; here

the term ‘modelling’ is interpreted in different ways depending on which decomposing

method is used. For instance, if one decomposes the flow into mean and fluctuating parts

through an ensemble averaging operation, this modelling is called the Reynolds Averaged

Navier-Stokes (RANS) approach. If one decomposes the flow into large and small eddies

through a filtering operation then it is called large-eddy simulation (LES). The scale

separation between the large and small motions through the filtering operation is a crit-

ical concept in LES calculations. The terms ‘large’ and ‘small’ are interchangeably used

with ‘large� filtered� resolved’ and ‘small � residual � unresolved� subgrid ’.

21
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filter width, Δ
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Figure 2.1: The concept of the filtering operation in a (a) physical space and (b)
spectral space (in log-scale) where E(κ) is the energy spectrum and κ is a wavenumber.
The thick and thin lines represent filtered and residual motions respectively. The sketch
is taken from Ferziger and Perić (2002) [32], Sagaut (2006) [133].

Typical filtering operations are explained in Sec. 2.1.1.

2.1.1 Spatial filtering

Fig. 2.1 shows the concept of the decomposition between the filtered and residual

motions. The cut-off wavenumber, κc, is related with the filter width, ∆, as κc = π
∆
.

The cut-off wavenumber needs to be placed at higher than the energy containing range
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Figure 2.2: Filter functions in (a) physical space and (b) spectral space [122].

for LES, see Fig. 2.1(b). To separate the large and small scales, Leonard (1974) [87]

introduced a filter operator and it can be applied to the velocity vector fields U as,

U(x) =

∫
G(r)U(x− r)dr, (2.2)

where U is a filtered velocity vector and (̄ ) indicates the filtered property. The filter

function, G, is associated with the filter width and it is defined in spectral space by

using Fourier transform, F ,

Û(κ) = F{U},
= Ĝ(κ)Û(κ),

(2.3)

where the filter function in spectral space is defined as [122],

Ĝ(κ) =

∫ ∞

−∞
G(r)e−iκrdr = 2πF{G(r)} (2.4)

and (̂ ) indicates properties in spectral space. There are three classical filter functions

and they are shown below in a one-dimensional form.

• Box (top-hat) filter:

G(r) =
1

∆
H(

1

2
∆− r), (2.5)

Ĝ(κ) =
sin1

2κ∆
1
2κ∆

. (2.6)

• Gaussian filter:

G(r) =

(
6

π∆
2

)1/2

exp

(−6r2

∆
2

)
, (2.7)
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Ĝ(κ) = exp

(
−κ

2∆
2

24

)
. (2.8)

• Sharp spectral filter:

G(r) =

(
sin(πr/∆)

πr

)
, (2.9)

Ĝ(κ) = H(κc − |κ|), (2.10)

where H is the Heaviside function. Fig. 2.2 shows the filter functions above, in both

physical and spectral space. The box filter has a sharp cut (local) in physical space but

it does not in spectral space while the opposite is true for the sharp spectral filter. The

Gaussian filter is non-local both in physical and spectral space [133]. Piomelli (1999)

[116] applied the three filtering operations on the test function E as shown in Fig. 2.3.

The top hat and Gaussian filters smooth both large and small structures while the sharp

spectral filter only affects the scale beyond the cut-off wavenumber.

Figure 2.3: Filtering of a test function, E, —— unfiltered, + sharp spectral, ♦

Gaussian, 4 top hat, - - κ−5/3 [116].

2.1.2 Unsteady filtered Navier-Stokes equation

By using the filtering methods introduced in the preceding section, the filtered Navier-

Stokes equations can be derived. To show the filtering procedure on the Navier-Stokes

equations, three filter properties are introduced [133] first,

1. Conservation of constant

a = a⇔
∫ ∞

−∞
G(r)dr = 1. (2.11)
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2. Linearity

φ+ ψ = φ+ ψ, (2.12)

where φ and ψ are general scalar properties.

3. Commutation with derivation

∂φ

∂x
=
∂φ

∂x
. (2.13)

The commutation property is valid with constant filter width, i.e. isotropic filter.

When the flow is inhomogeneous, such as a wall-bounded flow, it would be desirable

to use a spatially varying filter, i.e. G(r,x). When the filter operator is a function

of space, Eq. 2.14 shows that G(r,x) does not commute with the derivative by using

simple differential algebra,

∂φ

∂x
=

∫
G(r,x)

∂φ

∂x
dr

=

∫
∂

∂x
[G(r,x)φ] dr −

∫
φ
∂

∂x
G(r,x)dr

=
∂φ

∂x
−
∫
φ
∂

∂x
G(r,x)dr.

(2.14)

The second term in the right-hand side of Eq. 2.14 appears due to the non-uniform

filter size, which is desirable for many applications. This additional term is referred

to as the commutation error. It would be small with a gradually changing filter width

since ∂
∂xG(r,x) ≈ 0, and thus the commutation errors are not considered in the current

study. Further discussions and demonstrations on the commutation error can be found

in [36, 89].

The incompressible unsteady Navier-Stokes equations in Cartesian coordinates are,

∂ui
∂xi

= 0, (2.15)

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

(
ν
∂ui
∂xj

)
, (2.16)

where ρ is the fluid density and ν is the kinematic viscosity. Using the filtering operator,

Eq. 2.2, throughout the whole domain, the unsteady filtered Navier-Stokes equations

can be obtained,
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NS(u) =
∫
G(r) [NS(u)] dr, (2.17)

where NS is the Navier-Stokes operator. By applying the filter properties in Eqs. 2.11

- 2.13, the unsteady filtered Navier-Stokes equations become,

∂ūi
∂xi

= 0, (2.18)

∂ūi
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
ν
∂ūi
∂xj

)
. (2.19)

Filtering the Navier-Stokes equations introduces an unknown term, which originates

from the second term on the left-hand side (convective term) due to its nonlinearity. This

term can be decomposed into the product of the filtered velocities and the contributions

of the residual parts.

uiuj = (ui + u′′i )(uj + u′′j ) = uiuj + τ rij , (2.20)

where u′′i is the residual fluctuation and τ rij is the residual-stress tensor or subgrid-scale

(SGS) stress tensor. Note that ui = ui. To close the filtered Navier-Stokes equations,

this term has to be modelled. τ rij in Eq. 2.20 represents the contribution of the residual

motions. Conventionally it is written in the form of a diffusion term on the right-hand

side of the filtered Navier-Stokes equations, see Eq. 2.21.

∂ūi
∂t

+
∂ūiūj
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
ν
∂ūi
∂xj

− τ rij

)
. (2.21)

For clarification of the velocity scale notations in large-eddy simulations, the re-

lation among the instantaneous velocity (ui), resolved (filtered) velocity (ūi), residual

fluctuation (u′′i ), mean resolved velocity (Ui) and resolved fluctuation (u′i) are defined

as,

ui = ūi + u′′i

= Ui + u′i + u′′i .
(2.22)

2.2 Subgrid scale modelling

The principle of LES is to separate the scales into large (filtered) and small (residual)

scales through the filtering operation. The filtered scale is resolved explicitly by the
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governing equations, Eq. 2.21, and the residual part is modelled by subgrid-scale (SGS)

modelling. The most important idea behind the SGS modelling is the scale invariance

property. The Smagorinsky model [151] which is a simple and widely used SGS model is

introduced in the following section. Some other SGS models which are important for the

current study are reviewed as well. A complete review on LES modelling was presented

by Sagaut (2006) [133].

The scale invariance property in turbulent flows was implied by Kolmogorov (1941)

[74]. Kolmogorov hypothesized that a range of scales exists in which the length scales

are much smaller than the large and energy containing scales but is much larger than

the viscous length scale. In this range, the velocity field is ‘statistically isotropic’ and

the energy transfer from the large to small scales (energy cascade) is an inviscid process,

since the viscous scale is too small to act at this range, i.e. inertial subrange in Fig.

2.1(b). Then the only important quantity is the energy transfer rate from the large to

small scales through the cascade process. When the energy injection and transport from

the large scale to the next scale level are balanced, i.e. in equilibrium, then the velocity

in the inertial subrange only depends on the energy dissipation rate, ε, and the local

length scale, r. Further details on the Kolmogorov hypothesis can be found in Hinze

(1975) [48] and Pope (2000) [122]. In spite of the success of the Kolmogorov hypotheses,

the notions of ‘local isotropy’ and ‘scale independence’ between large and small scales

are constantly under revision [14, 186] and details on this discussion would be out of the

scope for the current study.

The scale invariance property implies that the normalized velocity increment on

dimensional grounds is ∆ur/(rε)
(1/3) where ∆ur = u(x + r) − u(x) [163]. Then the

longitudinal structure function is defined as,

〈∆unr 〉 = Cn (rε)
n/3 , (2.23)

where the integer n is the moment of velocity increments and Cn is a universal constant

[163]. The SGS stress tensor τ r in Eq. 2.21 is also scaled with the velocity increment

∆ur on dimensional grounds as,

τ r ∼ 〈∆u2r〉. (2.24)

Using Eqs. 2.23 and 2.24, the moment of velocity increments for the SGS stress

contribution is determined, i.e. n = 2. Then the SGS stress contribution is scaled as

τ r(r) ∼ (rε)2/3 for r in the inertial subrange. It implies that τ r(r) is scale invariant

which means that C−2/3τ r(Cr) is unchanged with the scale transform r → Cr where C
is a positive constant [102]. Eqs. 2.23 and 2.24 are the most important properties of

the scale invariance for the SGS modelling and some models which are based on these

properties are introduced.
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2.2.1 Smagorinsky model

Viscous stresses are proportional to the strain rate of the velocity in Newton’s law

of viscosity. This relation is extended to model turbulence stresses in many RANS

approaches, which is called the turbulent viscosity hypothesis introduced by Boussinesq

(1877). Smagorinsky [151] applied the turbulent viscosity hypothesis on the deviatoric

part of the SGS stress as,

τ rij = −2νSGSS̄ij +
1

3
τkkδij , (2.25)

where the Kronecker delta δij = 1 for i = j, otherwise δij = 0. The SGS eddy viscosity,

νSGS , is local and instantaneous. The Smagorinsky model is analogous to the Prandtl’s

mixing length model but the filter length, ∆, is used as the characteristic length scale.

In general, the grid size, ∆, is used for the filter length and the cube root of the control

volume is used for the grid size, i.e. ∆ = (∆1∆2∆3)
1/3. Based on the scale invariance

property, the eddy viscosity in the Smagorinsky model is proportional to the product of

a length scale, ∆, and velocity scale, ∆|S|,

νSGS = (Cs∆)2|S̄|, (2.26)

where Cs is the Smagorinsky constant and |S̄| =
√
2S̄ijS̄ij . Though the Smagorinsky

model is simple and does not produce numerical instability, it has disadvantages. The

model constant in the Smagorinsky model depends on a specific type of flow such as

Cs = 0.17 for homogeneous turbulence [101] and Cs = 0.065 for a plane channel flow

[107]. The Smagorinsky model needs a wall damping function such as the van Driest

damping to reduce the eddy viscosity in the viscous layer and also νSGS does not vanish

in a laminar flow as long as the strain rate is non-zero as Eq. 2.26.

2.2.2 Dynamic Smagorinsky model

As the coefficient in the Smagroinsky model is not universal and one needs to know Cs in

Eq. 2.26 a priori for different types of flow. Germano et al. (1991) [35] suggested a new

approach which dynamically determined the model constant by comparing subgrid-scale

stresses at two different filtered levels. For this purpose, the test filter was introduced

and the test filer length, ∆̃, was assumed to be larger than the filter length, ∆. The

SGS stresses at these two filter levels are defined as (cf. Eq. 2.20)

Tij = ũiuj − ũiũj , (2.27)

τ rij = uiuj − uiuj . (2.28)
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Using Eqs. 2.27 and 2.28, the resolved turbulence stress, Lij , is defined as,

Lij = Tij − τ̃ rij

= ũiuj − ũiũj .
(2.29)

It is noted that Lij is presented with all known terms in Eq. 2.29. Then the

deviatoric part of the SGS stresses at the two filtered levels are modelled in Eqs. 2.30

and 2.31 as in the Smagorinsky model (Eqs. 2.25 and 2.26),

Tij −
1

3
Tkkδij = −2C ′

s∆̃
2
|S̃|S̃ij , (2.30)

τ rij −
1

3
τ rkkδij = −2C ′

s∆
2|S|Sij ., (2.31)

where C ′
s is the model constant which would be determined dynamically. By substituting

Eqs. 2.30 and 2.31 into Eq. 2.29, the deviatoric part of the resolved turbulence stress is

written as

Lij −
1

3
Lkkδij = 2C ′

s

(
∆

2 |̃S|Sij − ∆̃
2
|S̃|S̃ij

)
, (2.32)

where Lkk = Tkk − τ̃ rkk. The model coefficient in the dynamic Smagorinsky model can

be calculated at each grid point and time step because all terms are known in Eq. 2.32

except C ′
s. As the model constant can be negative number depending on the solution

of flow, this model is capable of taking into account for backscatter, i.e. energy transfer

from small scales to large scales. However, a large negative coefficient induces instability

and thus an averaging operation in time and space was adopted to remedy this issue

[122].

2.2.3 Mixed-time-scale model (MTS)

Inagaki et al. (2005) [54] suggested the mixed-time scale model. This model is based

on the scale similarity hypothesis proposed by Bardina (1983) [6]. The scale similarity

hypothesis assumes that the statistical structure of a tensor based on the subgrid scale

is similar to that based on the smallest (yet larger than SGS) resolved scale. The

SGS tensor is approximated by scaling an analogous tensor from the highest resolved

frequency through a frequency extrapolation [133].

νSGS = CMTSKesTS , (2.33)
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Kes = |ūi − ˜̄ui|2, (2.34)

T−1
S =

(
∆√
Kes

)−1

+

(
CT

|S|

)−1

, (2.35)

where CMTS and CT are 0.05 and 10 respectively and (˜) in Eq. 2.34 is the explicit filter

operator. Kes is the estimated SGS kinetic energy by using the explicitly filtered scale,

∆̃, and the ratio between the explicit and cut-off filter sizes is ∆̃/∆ = 2, in general. The

estimated SGS kinetic energy guarantees that νSGS is close to zero in laminar flows as

˜̄ui = ūi. TS in Eq. 2.35 is a harmonic average of the characteristic time scales between

the cut-off (∆/
√
Kes) and large (1/|S|) scales [54].

The dynamic Smagorinsky model by Germano et al. (1991) [35] does not need a wall

damping function because the model constant is dynamically estimated but it suffers

from a numerical instability due to the possibility of negative eddy viscosity in the model.

To remedy this issue, a spatial average in the homogeneous direction or clipping the

negative eddy viscosity to zero have been used. However there is no universal averaging

strategy for general flows and some applications do not have homogeneity. Also clipping

the eddy viscosity can lead to a poor result [54]. The MTS model does not require a

wall damping function nor any type of a temporal or spatial averaging procedure. It is

also suitable for transitional flow due to the estimated SGS kinetic energy in Eq. 2.34.

Note that the MTS model was implemented in OpenFOAM and tested in the channel

and airfoil flows.

2.2.4 Transport-equation SGS model

The idea of the transport-equation SGS model is that it estimates the velocity scale

from the SGS kinetic energy (
√
KSGS), rather than the velocity scale from the product

of the resolved velocity gradient and the length scale as in the Smagorinsky model, i.e.

∆|S̄| [174]. An additional transport equation is used to calculate KSGS and the SGS

eddy viscosity is defined as,

νSGS = Cν∆
√
KSGS . (2.36)

This model is flexible to solve νSGS under a dynamic flow field and the transport

equation for KSGS is,

∂KSGS

∂t
+
∂ūjKSGS

∂xj
=

∂

∂xj

[
νSGS

σK

∂KSGS

∂xj

]
+ νSGS |S̄|2 − εSGS (2.37)
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with εSGS = Cε
K

3/2
SGS

∆
, (2.38)

where Cν = 0.094 and Cε = 0.93 [122]. Performance for the transport equation model has

been demonstrated on homogeneous isotropic turbulence [174] and a turbulent boundary

layer [136].

2.3 Inflow boundary conditions

Partial differential equations cannot be solved without imposing proper boundary condi-

tions (BCs). In aerodynamics, especially for convective flows, inflow conditions strongly

influence the results. Direct numerical simulation (DNS) and large-eddy simulation

(LES) all resolve the unsteady, three-dimensional and energy-containing eddies. For a

laminar inflow, ‘smooth’ velocity profiles naturally provide sufficient inlet conditions,

whereas appropriate details of the fluctuating motions are required for a turbulent in-

flow. For wind engineering applications, turbulent inflow conditions are important for

generating atmospheric turbulence. Thus a physically reasonable and computationally

efficient turbulent inflow method is critical in determining the effects of turbulence on,

for example, wind turbine aerodynamics and also other associated applications such as

prediction of peak loads on buildings and bridges.

The simplest way to develop turbulence is to use a long enough upstream region

to develop the flow. Jarrin et al. (2006) [58] mentioned that a theoretical distance of

adjustment for the distance of developing the turbulent flow from a laminar flow is 110

δ for the plane channel flow (δ is the half depth of the channel). It is impractical to

use such a long upstream region to develop the turbulent flow. The computational cost

for the upstream region would far exceed that of the part in which one is interested.

Temporally developing flows (e.g. homogeneous isotropic turbulence) allow one to use

periodic boundary conditions (PBC) as inflow conditions. However, spatially developing

flows such as boundary layers cannot adopt the PBC in the streamwise direction as an

inflow boundary condition.

Present inflow methods so far fall mainly in two categories. The first is the recy-

cle/rescale method (Sec. 2.3.1) in which inflow data is collected either from a certain

point downstream of the same simulation or from an auxiliary simulation. The second

is the synthetic approach (Sec. 2.3.2), in which artificially generated turbulence fluctua-

tions are provided, using random sequences. Usually, statistical information required for

representing the inflow turbulence includes first and second moments, space and time

correlations and spectra. Comprehensive reviews according to these categories can be

found in, for example, Keating et al. (2004) [66], Jarrin (2008) [57] and Tabor and

Baba-Ahmadi (2010) [167].
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2.3.1 Recycling methods

Periodic BC

main domain

Saved Data

Inlet

(a) pre-computed

Inlet main domain

mapping plane

(b) internal mapping

Figure 2.4: Sketches for recycling methods; (a) pre-computed method, (b) internal
mapping method.

There are three major recycling methods: periodic boundary condition, pre-computed

method and internal mapping methods (see Fig. 2.4). A canonical way to reach the

fully developed flow for simple flows such as channel and pipe flows is applying periodic

boundary conditions in the axial-direction. This method uses outlet data and introduces

them at the inlet thus it can only be applied for the repeated geometry.

The pre-computed method separately calculates a fully developed flow field using a

periodic channel flow and the data in time and space is saved. Then it is introduced at

the inlet of the main domain. This method is computationally demanding due to a huge

storage space requirement for the pre-computed data.

The internal mapping method merges the pre-calculated domain with the main do-

main. At a certain upstream point, data is collected on a plane and reintroduced at the

inlet. This method is more economical than the pre-computed method but once an error

is reintroduced, it can be intensified as it circulates between the inlet and the collecting

plane [58, 113].

Lund et al. (1998) [92] suggested a recycling method to tackle the turbulent inflow

condition of spatially developing flow on a flat plate. This method was a simplification of

Spalart and Leonard’s (1987) [160] method. At a few boundary layer thickness distances

downstream, data was collected. The data was separately rescaled in the inner and outer

layers and reintroduced at the inlet. Pamies et al. (2009) [113] pointed out that Lund et

al.’s [92] method was accurate and inexpensive; only 5δ was required to reach the desired
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data [161]. However there were a few drawbacks of this method [58, 113]. One of the

major drawbacks was that the recycling procedure introduced a spurious periodicity in

the streamwise direction due to a repeating inflow condition.

2.3.2 Synthetic methods

A synthetic method as a turbulent inflow condition means that turbulence is generated

by superimposing artificially generated fluctuations on the statistically averaged prop-

erties. Synthetic methods do not use the recycling process, thus they are free from the

drawbacks in the recycling methods [113]. This is because an ideal random sequence

does not allow periodicity. The most straightforward way to generate turbulence fluc-

tuation is to use a set of random numbers, ri = N (0, 1), where N (0, 1) indicates the

normal distribution with zero mean and unit variance, see Eq. 2.39.

ui = Ui + ri

√
2

3
K, (2.39)

where K is the turbulent kinetic energy. ri should be a different set of random number

on each velocity component i. However, Klein et al. (2003) [73] reported that turbulence

by Eq. 2.39 decayed quickly and had no clear difference with the laminar inflow. If the

signal consists of a pure random number as in Eq. 2.39, then it does not have any

coherent structure; there are no energy containing (large) scales of motions. Thus the

simple random signal becomes laminar as soon as it convects downstream.

To impose coherent structures on a random sequence, a usual relation for the inlet

velocities for synthetic turbulence can be shown as

ui = Ui + aiju∗,j , (2.40)

where i, j = 1, 2, 3. ui is an instantaneous velocity which is imposed at the inlet bound-

ary, Ui is a mean velocity, aij is an amplitude tensor and u∗,j is an unscaled fluctuation

with a zero mean and unit variance. Lund et al. [92] suggested a form for aij , using

Cholesky decomposition of the Reynolds stress tensor, Rij ,

aij =




√
R11 0 0

R21/a11
√
R22 − a221 0

R31/a11 (R32 − a21a31)/a22
√
R33 − a231 − a232


 . (2.41)

This provides scaling and cross-correlations for u∗,j in Eq. 2.40. Here, the scaling

means that once the Reynolds stress tensor is available from DNS or experiments as

input data, random numbers with a zero mean and a unit variance can be scaled as

root-mean-square of the Reynolds stress by Eq. 2.41. To impose spatial and temporal
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correlations, several approaches were suggested for the synthetic methods and they can

be categorized into two groups: one is the spectral method in which superimposing is

executed in spectral space. The other is the algebraic method in which the superimposing

is executed in physical space [57].

Spectral methods

Kraichnan (1969) [77] decomposed the signal into Fourier modes to investigate scalar

diffusion in homogeneous isotropic turbulence. The unscaled fluctuation velocity, u∗, in

Eq. 2.40 is synthesized in a spectral space as,

u∗(x) =
∑

κ

ûκe
−iκ·x, (2.42)

where κ is a wavenumber, ûκ = |ûκ|eiΦκ is a complex number and Φκ is a random

phase angle, Φ ∈ [0, 2π]. ûκ can be calculated from the prescribed energy spectrum, i.e.

|ûκ| ≈ E(κ)1/2. Then Eq. 2.42 can be written as,

u∗(x) =
∑

κ

√
E(|κ|)e−iκ·x+Φκ . (2.43)

This method is widely used to initialize homogeneous isotropic turbulence. Lee et

al. (1992) [84] applied this inverse Fourier transform for a prescribed spectral density

function to provide temporal correlations of the velocity fluctuations. They tested it

for isotropic turbulence. Rai and Moin (1993) [124] and Le et al. (1997) [83] used a

similar method to test a spatially developing boundary layer and a backward-facing step

flow respectively. Le et al. [83] reported that ten step heights were required for the

recovery of turbulence characteristics due to the randomized phase angle in Lee et al.’s

[84] approach.

Another spectral synthetic method was proposed by Smirnov et al. (2001) [152] for

inhomogeneous and anisotropic turbulence. This model was simplified by Batten et al.

(2004) [7] and they applied their model on the hybrid RANS/LES channel flow. Keating

et al. (2004) [66] tested Batten et al.’s [7] method on a plane channel flow and reported

that 20δ is required to recover the desired properties (e.g. skin friction and Reynolds

stresses).

Algebraic methods

Klein et al. (2003) [73] proposed another synthetic method by using a Gaussian window

to provide spatial correlations. They described this as a digital filter. The spatial

correlations are imposed on a random number sequence, rm = N (0, 1), by using the

digital filter method. The intermediate velocity signal ψm in 1-D is,
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ψm =
N∑

j=−N

bjrm+j , (2.44)

where N is associated with the integral length scale and bj is the filter coefficient. Note

that the subscripts, m, j are the position indices. To estimate the filter coefficient bj ,

Klein et al. [73] adopted the Gaussian autocorrelation function with the separation

distance r and the integral length scale I,

C(r) = exp

(
−πr

2

4I2

)
. (2.45)

The autocorrelation C(r = i∆x) on the discretized grid points with the size of ∆x

was calculated by using ψm,

〈ψmψm+i〉
〈ψmψm〉 = C(r) = exp

(
− π(i∆x)2

4(n∆x)2

)
= exp

(
− πi2

4n2

)
, (2.46)

where I = n∆x. The filter coefficient bj was approximated by using Eqs. 2.44 and 2.46

with some properties of the normal distribution on the random number, i.e. 〈rmrl〉 = 0

and 〈rmrm〉 = 1 where l 6= m,

bj =
b′j

(
N∑

l=−N

b′
2
l

)1/2
with b′j = exp

(
−πj

2

2n2

)
. (2.47)

It was shown that N = 2n = 2 I
∆x in Eqs. 2.44 and 2.47 was enough to capture twice

the length scale. Based on Eq. 2.44, it is straightforward to generate spatial correlations

for a 2-D space as in Eq. 2.48,

ψm,l =

N∑

j=−N

N∑

k=−N

bjbkrm+j,l+k, (2.48)

and similarly for a 3-D space. After generating a spatially correlated signal, the cross

correlation is implemented by Cholesky decomposition (Eq. 2.41). Klein et al.’s method

can be applied to inhomogeneous turbulence with arbitrary inlet geometry, but it be-

comes very expensive with a high resolution [58]. Xie and Castro (2008) [183] improved

Klein et al.’s [73] method. They argued that the autocorrelation is close to an expo-

nential function [109] rather than Gaussian, especially when the separation r is large

which corresponds to large structures. So they used the exponential function for the

autocorrelation as in Eq. 2.49 (cf. Eq. 2.45),



36 Chapter 2 Large-eddy simulations : concepts, modelling and boundary conditions

C(r) = exp
(
−πr
2I

)
, (2.49)

and the filter coefficient was re-estimated as,

bj =
b′j

(
N∑

l=−N

b′
2
l

)1/2
with b′j = exp

(
−π|j|

n

)
. (2.50)

Xie and Castro [183] generated only one slice of a 2-D signal (Eq. 2.48) by using the

filter coefficient in Eq. 2.50 at each time and correlated it with the 2-D signal from the

previous time level. They used an exponential function for the correlation in time,

u∗,i(t+∆t) = u∗,i(t)exp

(
−CXC∆t

T

)
+ ψi(t)

[
1− exp

(
−2CXC∆t

T

)]0.5
, (2.51)

where the model constant CXC = π/2 and T is the Lagrangian time scale which is

estimated by using T = I/U . Again, I is a turbulence integral length scale and U is a

mean convective velocity. This exponential correlation function was originally suggested

by Hanna et al. (2002) [43]. Note that the subscript i is a vector index, i.e. i = 1, 2, 3.

The process in Eq. 2.51 effectively imposes an exponential correlation in the streamwise

direction. In general, the integral length scales, I, depend on each velocity component

and direction, see Eq. 2.52.

Iij =

∫ rij,0.1

0
Ci(rêj)dr, (2.52)

where Ci(rêj) is the correlation function. i and j correspond to the components of

the velocity vector and directions respectively, and rij,0.1 is the separation distance for

Ci(rêj) = 0.1.

Kim, Xie, Castro (2011) [71] applied the exponential correlation procedure in Eq.

2.51 to all three directions. So it was expected to be less expensive than the Xie and

Castro model [183] and more flexible, in that it allowed spatially varying length scales.

In addition, the new model was easier to implement than the Xie and Castro model. This

approach was called the forward stepwise method (FSM). Details of this method and

the assessment of performance on a turbulent channel flow are presented in Appendix

A.

Jarrin et al. (2006) [58] proposed another algebraic synthetic method. Turbulence

spots were randomly distributed within the specified region and correlations were pro-

vided by a spatial integration of the shape function, fI(x). The integration interval
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Figure 2.5: The number of grid points to resolve the boundary layer. Present capa-
bilities is by the time when Piomelli and Balaras (2002) [117] is published.

was based on turbulence length scales. They used the shape function over randomly

distributed eddy points. When the velocity signal is generated on the interval, [a, b], the

shape function satisfies the normalization condition,

1

∆

∫ +∆

−∆
f2I (x)dx = 1, (2.53)

where ∆ = b− a+ 2I. For simplicity, a one-dimensional spatially correlated signal is,

u∗(x) =
1√
N

N∑

i=1

εifI(x− xi), (2.54)

where N is the number of eddy points, εi is either +1 or −1 which are random variables

with a zero mean and unit variance, fI(x − xi) is the velocity distribution of the eddy

located at xi (shape function) and I is the length scale. For the two-point correlation,

the shape function, fI , satisfies,

C(r) =
1

∆

∫ ∆/2

−∆/2
fI(x)fI(x+ r)dx. (2.55)

2.4 Wall boundary conditions

There are two main reasons why wall models are desirable in LES calculations. The

first reason is that resolving all near wall structures in high Reynolds number flow is
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impractical. To capture the near wall dynamics, a very fine mesh is needed. Fig. 2.5

is the estimation of the number of grid points required to resolve inner layer of flat

plate boundary layer flow, given by Piomelli and Balaras (2002) [117]. Based on this

relation the number of grid points to resolve the inner layer of wall-bounded flows at

Reynolds number 5 × 106 is over 1010 which is 99% of total grid points. Considering

modern large horizontal axis wind turbines (HAWT), the Reynolds number of the blade

is approximately 106 to 107 at a windy area where the wind velocity is 10− 15 m/s. At

these Reynolds numbers, resolving all the scales of motions in the inner layer using LES

is not feasible. This is the primary reason that one needs wall models which present

acceptable first and second moments.

The second reason for wall modelling is that the SGS model error increases as flow

approaches the wall. The slow fluid pocket in the viscous sub-layer bursts out to the

inner layer through the buffer layer and this event introduces fast fluid pockets to the

viscous sub-layer. This intermittent process is highly anisotropic and induces backward

energy cascades which undermines not only the SGS model but also eddy viscosity

assumptions. Ideally, a perfect wall model can dispose of the SGS model errors near the

wall [117]. Many wall modelling methodologies for LES can be found in Piomelli and

Balaras (2002) [117], Fröhlich and von Terzi (2008) [34], Leschziner and Tessicini (2009)

[90]. Some popular methods are introduced briefly in this section.

2.4.1 Wall stress models

The wall stress models aim to provide the estimated wall shear stress on a coarse grid

where the mesh is incapable of resolving a sharp gradient in the boundary layer near

the wall, i.e. the no-slip condition is not used. The wall stress model provides a locally

averaged shear stress on the wall boundary while the nature of LES is unsteady and

instantaneous. The concept of this approach, however, is applied in advanced hybrid

RANS/LES methods, such as the segregate scheme in Sec. 2.4.2.2, therefore it is worth

exploring its principles. The basic idea is that the sum of molecular and SGS viscosity

at the first off-the-wall grid point is provided by using the statistical relation such as the

law of the wall.

Schumann Model

Schumann (1975) [143] suggested a wall model which works for channel flow. It is,

τw,12 =

(
ū1(y1)

〈ū1(y1)〉

)
〈τw〉 , (2.56)

ū2 = 0, (2.57)

τw,32 =
2

Reτ

(
ū2(y1)

y1

)
, (2.58)
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where 〈 〉 is a statistical average operator and subscript 1, 2, 3 denotes the streamwise

(x), wall normal (y) and spanwise (z) directions, respectively, and y1 is the distance of

the first off-the-wall grid point. The mean velocity profile can be obtained from the law

of the wall and the mean shear stress is derived from the driving pressure gradient in

the plane channel.

Grötzbach Model

Grötzbach (1987) [40] improved Schumann’s wall model. This model follows the same

method to calculate the wall shear stress as Schumann’s wall model, but it does not

need 〈τw〉 a priori. This is calculated from the friction velocity, uτ , from the law of the

wall,

u+1 =
〈U1(y1)〉
uτ

=
1

κ
log(y1uτ/ν) + 5.5± 0.1. (2.59)

Shifted correlations Model

Rajagopalan and Antonia (1979) [125] showed that the correlation between velocity and

wall shear stress increases when the relaxation time is considered. This is because there

is an inclined structure between the velocity fluctuation and the wall shear stress.

τw,12 =

(
ū1(x+∆s, y1, z)

〈ū1(x, y1, z)〉

)
〈τw〉 , (2.60)

ū2 = 0 (2.61)

and τw,32 =
2

Reτ

(
ū2(x+∆s, y1, z)

〈ū1(x, y1, z)〉

)
, (2.62)

where ∆s is

∆s =




(1− y1)cot(8

◦) for 30 ≤ y1
+ ≤ 50− 60

(1− y1)cot(15
◦) for y1

+ ≥ 60
. (2.63)

Ejection Model

Piomelli et al. (1989) [119] explained that the wall shear stress is highly dependent

on whether the fluid motion is towards the wall or away from the wall. When the

fluid pocket moves toward to the wall, it spins up the longitudinal and the lateral vortex

tube. These spins induce the vortex stretching which intensifies the velocity fluctuations

resulting in an increase of the wall shear stresses. When the fluid pocket moves away

from the wall, reversal mechanisms weaken the wall shear stress.

τw,12 = 〈τw〉 − Cuτ ū2(x+∆s, y1, z), (2.64)

ū2 = 0 (2.65)
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and τw,32 =
τw

ū1(y1)
ū3(x+∆s, y1, z), (2.66)

where C is the model constant. 〈τw〉 can be computed from the law of the wall and ∆s

is identical to Eq. 2.63.

2.4.2 Hybrid RANS/LES

A hybrid RANS/LES type wall model uses RANS (mostly unsteady RANS) or a RANS

based equation near the wall and uses LES away from the wall. The Reynolds stress in

RANS (this is different from the SGS stress) is responsible for representing all scales of

fluctuations. The resolved velocity from the RANS simulation is an ensemble averaged

value while that from LES is from large scale motions. In general, the rate of change of

the resolved velocity in the RANS region is much slower than that in the LES region in

wall-bounded turbulence. This makes it possible for RANS to adopt much higher mesh

aspect ratios, e.g. ∆x/∆y or ∆z/∆y, near the wall compared with those required for

LES. The gain of the hybrid RANS/LES comes from the more generous requirement

of the near wall meshing strategy for the RANS calculations. Hybrid RANS/LES as a

wall model for LES can be categorized in several branches depending on what governing

equations are used and how the models define the interface between RANS and LES.

2.4.2.1 Unified scheme

The unified scheme is also known as a global scheme, which is the counter part of a

segregated (or zonal) scheme described in Sec. 2.4.2.2. Thus it is also called a non-zonal

scheme. The classification of these schemes is explained well by Fröhlich and von Terzi

(2008) [34]. The governing equations for RANS and LES, as presented in Eqs. 2.67

and 2.68 respectively, are similar in form. Thus it is possible to use only one governing

equation for two different turbulent viscosities, i.e. νt and νSGS , by using a weighting

function.
∂〈ui〉
∂t

+
∂〈ui〉〈uj〉
∂xj

= −1

ρ

∂〈p〉
∂xi

+
∂

∂xj

(
(ν + νt)

∂〈ui〉
∂xj

)
, (2.67)

∂ūi
∂t

+
∂ūiūj
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
(ν + νSGS )

∂ūi
∂xj

)
, (2.68)

where 〈 〉 is an ensemble average operator for RANS and (̄ ) is a filtered operator for

LES.

Blending model

The blending model is one of the simplest models of the unified schemes. This model

has a blended viscosity, which is a sum of fractions of the RANS and SGS viscosities.
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b c

Figure 2.6: Different types of the mesh for boundary layers. The dashed line repre-
sents the velocity profile [157]. Mesh strategy: (a) the wall parallel grid size is larger
than the boundary layer thickness; (c) the grid is fine enough to capture all eddies for
LES calculations; (b) a mesh is in-between the strategies (a) and (c).

Fan et al. (2001) [31] modified the shear-stress transport (SST) turbulence model in a

blending model. The original SST turbulence model by Menter (1994) [103] used the

K−ω model for the near wall region and used the K− ε model away from the wall. Fan

et al. [31] adopted LES for the outer region instead of the K − ε model. The blending

model can be written as,

νblend = fνt + (1− f)νSGS = f
K

ω
+ (1− f)C ′

s

√
K∆, (2.69)

where C ′
s is 0.01 and,

f = tanh(η4) with η =
1

ω
max

{
500ν

d2
;

√
K

CSGSd

}
, (2.70)

where CSGS is constant in the SGS model and d is the wall distance. Turbulence

properties such as the length scale and turbulent viscosity in the model are switched

at the sharp interface between the RANS and LES regions. The velocity and pressure

fields do not present discontinuities at the interface.

Detached eddy simulation

Detached eddy simulation (DES) is one of the most widely known hybrid RANS/LES
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Figure 2.7: Profiles for the mean velocity profiles in the plane channel flow by using
DES model [117]. Each profile is shifted by six u+ units in vertical direction and the
bullet points indicate the interface between the RANS and LES regions.

models. Spalart et al. (1997) [159] introduced a new Spalart-Allmaras model by modi-

fying the dissipation term in the eddy viscosity transport equation, which is underlined

in Eq. 2.71. The length scales for the RANS and LES regions are defined separately,

i.e. the wall-normal distance for RANS and the grid size for LES.

∂ν̃

∂t
+ 〈uj〉

∂ν̃

∂xj
= cb1(1− ft2)S̃ν̃ −

1

σ

[
∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]

−
[
cw1fw − cb1

k2
ft2

]( ν̃

lDES

)
.

(2.71)

The coefficients and closure functions can be found in a report from Langley Research

Center, NASA [132]. lDES is given by,

lDES = min(d;CDES∆), (2.72)
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where d is the wall distance, ∆ = max(∆x; ∆y; ∆z) and ∆i is the grid size in the direction

i. The original intention for the DES model was to use the RANS model for the entire

boundary layer and to use LES model where the flow was separated. For this purpose,

the effective wall parallel grid size, CDES∆||, should be larger than the thickness of the

boundary layer so that lDES is equal to d in Eq. 2.72 for the entire boundary layer

(see Fig. 2.6(a)). However, it can be problematic when the mesh is fine, so that the

length scale transition occurs within the boundary layer but the mesh is still too coarse

to resolve the eddies within it (see Fig. 2.6(b)). In such a case, the modelled Reynolds

stress is diminished due to excessive dissipation in Eq. 2.71 and unsteady fluctuations

are under-predicted due to the coarse mesh. In consequence, the total turbulence level

decreases in the boundary layer. Spalart et al. (2006) [158] referred to this reduced

modelled Reynolds stress as the modelled-stress depletion (MSD). Menter and Kuntz

(2004) [104] showed that the flow separation over an airfoil occured earlier with DES

model than that with the RANS model due to the MSD. They called this phenomenon

the “grid-induced separation”. Note that Fig. 2.6(c) shows a mesh which is suitable

for pure LES. Nikitin et al. (2000) [111] attempted to use DES on a plane channel flow

with different Reynolds numbers. They observed that the mean velocity profiles were

mismatched near the RANS and LES interfaces as shown in Fig. 2.7. This is called the

log-layer mismatch (LLM).

Two papers followed to remedy the modelled-stress depletion and log-layer mismatch

[146, 158]. Spalart et al. (2006) [158] suggested delayed detached eddy simulation

(DDES) to improve the DES model. The model length scale for DDES is,

lDDES = lRANS − fdmax(0; lRANS − lLES), (2.73)

where

fd = 1− tanh[(8rd)
3], (2.74)

rd =
νt + ν√

∂ui
∂xj

∂uj

∂xi
κ2d2

(
∼= (model length scale)2

(wall distance)2

)
, (2.75)

where κ is the Kármán constant. The length scale for the RANS region is the wall

distance as in the original DES model [159], i.e. lRANS = d. The length scale in

the LES region is lLES = ΨCDES∆ where Ψ is a low-Reynolds number correction, see

Spalart et al. (2006) [158]. The limiter function, rd, is a square of the ratio between

the model length scale and wall distance as shown in Eq. 2.75. The aim of the limiter

is to ‘preserve RANS’ or ‘delay LES’ in the boundary layer. The limiter equals to

one (leading to fd = 0) in a logarithmic layer and gradually approaches zero near the

boundary layer edge. The original idea was suggested by Menter and Kuntz (2004)

[104]. These parameters ensure that the boundary layer remains in the RANS region
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Figure 2.8: A sketch of the segregated scheme [90]. LES-RANS transfer: the resolved
velocity and pressure in the LES region provide the boundary conditions to the RANS
equation. RANS-LES wall-shear-stress transfer: the unsteady wall-shear-stress is esti-
mated in the RANS region based on the resolved velocity and pressure from LES and
it provides the wall boundary condition to LES.

independent of the mesh and wall distance. Thus these parameters can prevent the grid-

induced separation which is the consequence of the modelled-stress depletion (MSD).

Shur et al. (2008) [146] improved the DDES model further which was called IDDES.

The length scale for IDDES is,

lhyb = f̃d(1 + fe)lRANS + (1− f̃d)lLES , (2.76)

where,

f̃d = max{(1− fdt), fB}. (2.77)

The details of the blending functions can be found in the original paper [146]. If

the inflow is laminar, f̃d = 1 − fdt and fe = 0, i.e. IDDES becomes DDES. If the

inflow is turbulent, however, f̃d = fB and fe is non-zero. fB is a function of the wall-

distance d and maximum cell size ∆max. It ensures that the length scale changes rapidly

from lRANS to lLES at the interface. The elevating function, fe, prevents the excessive

reduction of the Reynolds stress near the RANS-LES interface.

2.4.2.2 Segregated scheme

This scheme is also called a zonal scheme because the RANS and LES regions are

divided at a prescribed interface and an independent governing equation is needed for

each region. The gain from such a scheme is that two-way coupling is possible between

RANS and LES without degrading their compatibility. Two-way coupling means that

the LES provides the temporal velocity and pressure fields to RANS, then RANS can

provide the wall shear stress to LES as a boundary condition in an iterative way, see
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Fig. 2.8. A fine wall-normal mesh (y+1 ≈ 1) for the RANS equation is overlapped over

the coarse mesh for the LES equation. The velocity and pressure are calculated in the

global (coarse) mesh for LES by using Eq. 2.68. At the first cell-centre point of the LES

mesh, the wall shear stress is provided from the RANS equation. Generally the RANS

equation is solved with a simple algebraic turbulence model such as a mixing-length

model [90],

νt
ν

= κy+w

(
1− e−y+w/A

)2
, (2.78)

where κ is von Kármán constant and y+w is the normalized wall distance. Wang and Moin

(2002) [176] used a simple mixed-length eddy viscosity model for the RANS equation

and they reported that the trailing-edge separation was accurately predicted by using

their model.

2.5 Employment of the methods

The filtering concepts, subgrid scale modelling, inflow and wall boundary conditions for

LES have been reviewed. The specific methods which are employed in the later chapters

are listed. The Smagorinsky SGS model in Sec. 2.2.1 is used for plane channel flows

in Ch. 4 and the mixed-time scale SGS model in Sec. 2.2.3 is employed for all airfoil

flow simulations in Chapters 5, 6 and 7. An explicit filtering operation is needed for the

mixed-time scale SGS model, so the top-hat filter (Eq. 2.5) in Sec. 2.1.1 is adopted for

that purpose. There is little difference between the Smagorinsky and MTS models in

applying them to a channel flow. However, laminar-turbulent transition over an airfoil

is poorly captured by the Smagorinsky model, while the MTS model presents a good

prediction of the skin-friction compared with DNS data. (see Ch. 5).

For the turbulent inflow condition, Xie and Castro’s [183] method in Sec. 2.3.2 is

used to assess the performance of the new inflow technique in Ch. 4. No specific wall

modelling strategy is employed in the thesis but the potential for the wall boundary

conditions in Sec. 2.4 to overcome the limit of LES for wall-bounded high Reynolds

number flows are discussed in Sec. 8.2.





Chapter 3

Finite volume discretization

3.1 Introduction

Analytical solutions for partial differential equations (PDE) provide continuously vary-

ing values for dependent variables within the domain as long as they exist explicitly.

Apart from some specific cases, most of the PDEs’ solutions are not known, such as

for the Navier-Stokes equations, and they can be approximated numerically through

discretization methods. The purpose of the discretization is to transform the partial

differential equations into a corresponding system of algebraic equations [59], such that

the solution for the PDE can be approximated on discrete grid points in the domain.

The open-source CFD code, OpenFOAM [112], is used for the present study. It is a

finite-volume based solver in which the domain is subdivided into arbitrary unstructured

control (or cell) volumes. The solution for the finite-volume method is calculated and

stored at the cell-centroid on each control volume, unlike in finite-difference or finite-

element methods. Some approximations arise to deal with the finite-volume method

and different approximations are adopted for the sake of boundedness and accuracy

of the solution. Basic principles for the finite-volume discretization are introduced in

this chapter and some of the approximations which are used in the current study are

also explained. Details on the finite-volume method are found in many textbooks and

literature. Therefore a complete overview of this method is avoided.

3.2 Generic transport equation

The transport equation for a general scalar, φ, is,

∂φ

∂t
+∇ · (uφ) = ∇ · (Γ∇φ) + Sφ, (3.1)

47
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where Γ is the diffusivity coefficient and Sφ is the source term. It is assumed that

all velocity fields and fluid properties are known. For the finite-volume method, the

transport equation in Eq. 3.1 is integrated over the control volume VC and the integral

form of the conservation equation is then,

∂

∂t

∫

VC

φdVC +

∫

VC

∇ · (uφ)dVC =

∫

VC

∇ · (Γ∇φ)dVC +

∫

VC

SφdVC . (3.2)

The integral conservation equation is valid on an individual control volume and so

it is on the entire domain [32]. Gauss’ divergence theorem is used to transform some of

the volume integrals in Eq. 3.2 to surface integrals [21].

∂

∂t

∫

VC

φdVC

︸ ︷︷ ︸
Temporal derivative

+

∫

A
dA · (uφ)

︸ ︷︷ ︸
Convection

=

∫

A
dA · (Γ∇φ)

︸ ︷︷ ︸
diffusion

+

∫

VC

SφdVC

︸ ︷︷ ︸
Source

, (3.3)

where A is the outward pointing surface area vector of a control volume. Each term in

Eq. 3.2 has its own physical meaning as explained in Versteeg and Malalasekera (2007)

[174]

• Temporal derivative : rate of change of the total amount of φ in the control volume.

• Convection : net rate of decrease (outward flux) of φ due to convection.

• Diffusion : net rate of increase (negative outward flux) of φ due to diffusion.

• Source : rate of creation of φ due to sources.

The surface and volume integrals in Eq. 3.3 require a certain level of approximations

in actual calculations. These are explained in the following sections.

P N

A

Fe

Figure 3.1: A sketch for neighbouring control volumes.
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3.2.1 Surface integrations

Fig. 3.1 shows a sketch of two cell-volumes adjacent to each other where the point P

is the cell-centre for the cell and the point N is the cell-centre for the neighbour. The

surface integrations over the cell-volume (e.g. convection and diffusion terms in Eq. 3.3)

are the sum of each cell-face value which leads to,

∫

A
dA · F =

∑

k

[∫

A
dA · F

]

k

=
∑

k

[A · 〈F 〉]k , (3.4)

where F is the face flux vector, which can be (uφ) for the convection term or (Γ∇φ)

for the diffusion term, see Eq. 3.3. Note that k is the cell-face index. To calculate the

surface integration, the face flux vector, F , should be known everywhere on the surface

area, A, so that the mean face flux at the kth face, 〈F 〉, can be calculated. However,

the face flux value is generally not known for the finite-volume method as the solution

is stored only at the cell-centroid [32]. Therefore an approximation must be introduced

for the integration in Eq. 3.4. The simplest way is the mid-point rule: the mean face

flux is approximated as the face-centre flux, F e, see Fig. 3.1.

∑

k

[A · 〈F 〉]k ≈
∑

k

[A · F e]k . (3.5)

This approximation becomes exact as |A| → 0, i.e. infinite grid points. A higher

order of approximation is possible but this would be difficult to be implemented in 3-D

domains [32]. The face flux at the cell-face centre, F e, in Eq. 3.5 needs to be inter-

polated from cell-centre values around the cell-face. Different interpolation schemes are

desirable for the convection and diffusion terms, depending on the flow conditions. Some

interpolation schemes which are particularly useful for the current study are introduced

in Sec. 3.3. Using Eq. 3.5, the convection and diffusion terms in Eq. 3.3 are written,

respectively,

∫

A
dA · (uφ) =

∑

k

[A · (uφ)]k , (3.6)

∫

A
dA · (Γ∇φ) =

∑

k

[A · (Γ∇φ)]k . (3.7)

3.2.2 Volume integrations

The temporal derivative and source terms in Eq. 3.3 require integrations over the cell-

volume. This can be achieved by a simple approximation that the mean value of a cell

is approximated as the cell-centre value as shown in Eqs. 3.8 and 3.9.
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∂

∂t

∫

VC

φdVC =
∂

∂t
〈φ〉VC ≈ ∂

∂t
φPVC , (3.8)

∫

VC

SφdVC = 〈Sφ〉VC ≈ Sφ,PVC , (3.9)

where the subscript P indicates the variables at the cell-centre point. The volume

integrals are easy to calculate since all variables are available on the cell-centre point,

P , for the finite-volume calculations, therefore, no interpolation is needed [32]. This

approximation becomes exact when the integrands (i.e. φ, Sφ) are constant or linearly

varying across the cell-volume. A higher order approximation would be possible with

polynomial shape functions, but it is rarely used.

3.2.3 Time discretization

The spatially discretized transport equations are written by combining Eqs. 3.3 - 3.9,

d

dt
φPVC +

∑
A · (uφ) =

∑
A · (Γ∇φ) + Sφ,PVC . (3.10)

The cell-face index k in the convection and diffusion terms is omitted for brevity.

Time can be discretized by using a marching manner which means that information

propagates only forward in time. This is similar to the initial value problem of an

ordinary differential equation [32] and Eq. 3.10 is re-written as,

dφP (t)

dt
= f(t, φ(t)), (3.11)

where

f(t, φ(t)) =
1

VC

[
−
∑

A · (uφ) +
∑

A · (Γ∇φ) + Sφ,PVC

]
. (3.12)

The right-hand side of Eq. 3.11 also contains the dependent variable, φ, of which the

value can be chosen either from the current or previous time levels. One way of doing it

is that the dependent variables in f(t, φ(t)) are only taken from the previous time step.

This is called an explicit method [32]. When the time indices are t+∆t→ n+1, t→ n

and t−∆t→ n− 1, the explicit Euler (first-order) method is,

φn+1
P − φnP

∆t
= f(tn, φ(tn)). (3.13)

This method is easy to implement and solve but create a restriction on the time

step due to a stability issue. The Runge-Kutta method is an another explicit approach
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but has a higher accuracy than Euler method. It is a weighted average of increments

between time levels n+ 1 and n. The fourth order accuracy is generally adopted [166],

φn+1
P − φnP

∆t
=

1

6
(k1 + 2k2 + 2k3 + k4), (3.14)

where

k1 = f(tn, φ(tn)),

k2 = f(tn +
∆t

2
, φ(tn) +

∆t

2
k1),

k3 = f(tn +
∆t

2
, φ(tn) +

∆t

2
k2),

k4 = f(tn +∆t, φ(tn) + ∆tk3).

(3.15)

Implicit methods are unconditionally stable and thus a much larger time step can

be adopted. The implicit Euler method is,

φn+1
P − φnP

∆t
= f(tn+1, φ(tn+1)). (3.16)

The second order accuracy of this implicit method, see Eq. 3.17, is called the back-

ward differencing scheme and it is used for all simulations in following chapters.

3φn+1
P − 4φnP + φn−1

P

2∆t
= f(tn+1, φ(tn+1)). (3.17)

P N
�

�
P

� � � �

Figure 3.2: Face interpolation.
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3.3 Interpolation practices

To discretize the finite-volume based transport equation such as Eq. 3.3, interpolations

are needed because some surface or volume integrals need the cell-face value of dependent

variables as presented in Sec 3.2. Specifically, the integrands in the convection term

A·(uφ) in Eq. 3.6 and diffusion termA·(Γ∇φ) in Eq. 3.7 are calculated by interpolating

the cell-centre values. Some interpolation schemes are briefly introduced in this section.

More complete descriptions can be found in Ferziger and Perić (2002) [32] and Jasak

(1996) [59].

Fig. 3.2 shows a sketch for the face value interpolation. P and N are the nodal points

neighbouring the face f . The face variable, φf , can be calculated by interpolating the

neighbouring points,

φf = fxφP + (1− fx)φN . (3.18)

In general, fx is defined as the distance ratio between neighbouring points,

fx =
fN

fP
. (3.19)

This scheme is called the central differencing (CD) scheme and is desirable for LES

calculations. It should be noted, however, that the central differencing scheme presents

numerical oscillations and it does not guarantee convergence (boundedness) [174] unless

the mesh is sufficiently fine. A discretization scheme which guarantees the boundedness

is the upwind differencing (UD) scheme which is defined as,

φf =




φP for A · u ≥ 0

φN for A · u < 0
. (3.20)

The upwind differencing scheme satisfies the boundedness but is diffusive and dis-

sipative. In LES calculations, a diffusive scheme can be problematic because the SGS

contribution is relatively small and the excessive diffusivity in the upwind differencing

scheme can overwhelm the SGS contribution [21].

To overcome the boundedness issue in the central differencing and the excessive

diffusivity issue in the upwind differencing, the normalized variable approach (NVA)

was introduced by Leonard (1988) [88]. The normalized variable is defined as,

φ̃ =
φ− φU
φD − φU

, (3.21)
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Figure 3.3: Variation of φ around face f [59]. C is the cell-centre point. U and D are
the cell-centre points at the upstream and downstream cells respectively.

Figure 3.4: Differencing schemes in the normalized variable diagram [59].

where φU and φD are depicted in Fig. 3.3. Normalized variables at C and f are also

defined in the same manner,

φ̃C =
φC − φU
φD − φU

, (3.22)
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φ̃f =
φf − φU
φD − φU

. (3.23)

The relation between φ̃C and φ̃f depends on the differencing scheme and these

relations are shown in Fig. 3.4. In NVA, the differencing scheme is switched depending

on φ̃C to maintain both the boundedness and accuracy. Jasak (1996) [59] proposed a

blending function (called the Gamma scheme) for a smooth transition between upwind

and central differencing schemes which is defined as,

• φ̃C ≤ 0 or φ̃C ≥ 1 then use the upwind differencing scheme :

φ̃f = φ̃C , (3.24)

• 0 < φ̃C < βm then use the blending function :

φ̃f = − φ̃
2
C

βm
+

(
1 +

1

2βm

)
φ̃C , (3.25)

• βm ≤ φ̃C < 1 than use the central differencing scheme :

φ̃f =
1

2
+

1

2
φ̃C , (3.26)

where βm is the ‘limiter’ which is 1
10 ≤ βm ≤ 1

2 . The Gamma scheme maintains the

central differencing scheme predominantly throughout the domain and the upwind dif-

ferencing scheme is partially applied to avoid numerical oscillations. There is a smooth

transition between central differencing and upwind differencing schemes through the

blending function.

3.4 Employment of the methods

The finite-volume method and some approximations for the discretization on the generic

transport equation have been briefly reviewed. The specific schemes which are employed

in the later chapters are listed. The second-order backward differencing scheme for the

temporal discretization, Eq. 3.17, is used for all turbulent flow simulations in Chs. 4 -

7. For the convection term, the second-order central differencing interpolation scheme

in Sec. 3.3 is adopted for the plane channel flow in Ch. 4 and airfoil flow in Ch. 5. To

avoid numerical oscillations near the strong shear layer at deep stall, the second-order

bounded (Gamma, [59]) interpolation scheme in Sec. 3.3 is adopted for the pitching and

rotating airfoil simulations in Chs. 6 and 7.



Chapter 4

Divergence-free turbulence inflow

conditions on a plane channel flow

4.1 Introduction

Several turbulent inflow conditions for LES are reviewed in Sec. 2.3. Only very few pa-

pers in literature, however, introduce synthetic inlet turbulence satisfying the divergence-

free condition. Smirnov et al. (2001) [152] considered the divergence-free condition using

a superimposition of harmonic functions to provide synthetic turbulence. Huang et al.

(2010) [53] improved the Smirnov method by imposing von Kármán spectra rather than

a Gaussian model. Kornev and Hassel (2007) [76] derived the velocity potential which

satisfies the divergence-free condition and then numerically calculated the solution. Po-

letto et al. (2011) [121] recently proposed a similar method and showed a significant

decrease of pressure fluctuations in a turbulent channel flow using their new method.

Nevertheless, none of these authors analysed in any depth the impact of the inflow

condition on pressure fluctuations, such as variance and spectra. For many applica-

tions the pressure fluctuation field is of primary interest. The major objective in the

present work was therefore to develop a more satisfactory method in this regard. A

divergence-free inflow generation method is proposed here, which is based on Xie and

Castro’s method [183] (hereafter, XC) with a slight, but crucial, modification of the

incompressible flow solvers. This is described in Sec. 4.2, followed by a simple accuracy

analysis. Results of simulations of a plane channel flow and comparisons between these

and those obtained using the original method [183] and periodic inlet-outlet boundary

conditions, as well as direct numerical simulation (DNS) data for the same flow [110],

are presented in Sec. 4.3. The summary and concluding remarks follow in Sec. 4.4. The

results in the chapter were reported in the journal paper by Kim, Castro, Xie. Comput.

Fluids, 2013 [69].

55
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4.2 Methodology

4.2.1 A length scale reconsideration in the XC model

The XC model is a synthetic turbulence generation method and imposes correlations

using an exponential function to satisfy the prescribed space and time correlations.

This model is reviewed in Sec. 2.3. It is noted that the correlation functions in XC

were modelled as C(r) = exp(−πr
2I ). Based on DNS data [56, 110] of turbulent channel

flows, the exponential model for the correlations was examined carefully at different

wall-normal distances. If the integral length scale is defined as the enclosed area of the

correlation function (see Eq. 2.52), the function C(r) = exp(−πr
4I ) gives a better fit

compared to C(r) = exp(−πr
2I ) for the XC model. Therefore the filter coefficient was

revised as,

bj =
b′j

(
N∑

l=−N

b′
2
l

)1/2
with b′j = exp

(
−π|j|

2n

)
, (4.1)

(cf. Eq. 2.50) and the model constant in Eq. 2.51 was set to CXC = π/4 for the present

study.

4.2.2 Inlet mass flux correction

Ideally the 2-D plane of velocity fluctuations generated from Eq. 2.51 has a zero mean.

However usually the mean is not strictly zero because the size of the inlet area is finite in

practice. Thus the instantaneous mass flux at the inlet by using the XC model changes

very slightly in time. A small fractional difference in the mass flux may lead to significant

modifications on the global pressure because of the nature of incompressible flow. Other

types of inflow generators might have a similar issue due to the finite number of sampling

points or interpolation errors, rather than the specific way of producing the synthetic

inflow turbulence. Effects of the non-constant mass flux on the pressure fluctuations

were reported in Poletto et al. (2001) [121] through numerical studies. Artificial pressure

fluctuations due to the time dependent mass flux were observed in Gungor et al. (2012)

[41] using a recycling/rescaling inflow method.

A simple correction is introduced to maintain a constant mass flux [121]. The in-

stantaneous velocity at the inlet boundary is corrected as,
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ui =
Ub

Ub,T
ui,T ,

where, Ub,T =

∫
S un,TdS

S
,

(4.2)

where ui,T is the generated velocity from the XC model and un,T is the component of

ui,T normal to the inlet boundary. S is the surface area of the inlet, Ub is the prescribed

bulk velocity and Ub,T is the instantaneous bulk velocity calculated from the uncorrected

velocities. Simulations which use the corrected velocity in Eq. 4.2 will be denoted by

XCMC. The effects of the mass flux correction on the pressure and velocity fields are

reported in Sec. 4.3.

4.2.3 Divergence-free modification

To satisfy the divergence-free condition, first the generated synthetic turbulence is in-

serted on a plane near the inlet after having solved the momentum equations. The

velocities are then adjusted by the velocity-pressure coupling procedure. This means

that, on application of the pressure-correction step, the imposed velocities on the plane

where the synthetic turbulence is introduced only act as intermediate velocities. Apply-

ing synthetic turbulence on the inlet boundary itself, in contrast, fixes those velocities

as final velocities throughout one time step.

Once the synthetic turbulence goes through the velocity-pressure coupling proce-

dure, the velocities are adjusted and are not generally exactly the same as the original.

Nevertheless the changes are expected to be small [75]. The important feature of the

method presented here is that it does not require any additional computational cost. A

brief description of the standard sequence of velocity-pressure coupling procedure with

incompressible flow solvers is presented to show the modification for the divergence-free

method.

4.2.3.1 Velocity and pressure coupling procedure

The non-dimensionalised incompressible Navier-Stokes equations without any source

term, in Cartesian coordinates, are

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Re

∂τij
∂xj

, (4.3)

∂ui
∂xi

= 0, (4.4)



58 Chapter 4 Divergence-free turbulence inflow conditions on a plane channel flow

where i, j are vector indices and Re is the Reynolds number. Eq. 4.3 can be written in

a semi-discretized form at each node (suffix P ) as [32],

APu
n+1
i,P +

∑

l

Alu
n+1
i,l = −

(
∂pn+1

∂xi

)

P

+Qi, (4.5)

where n is the time index and l denotes the neighbouring points around node P , whose

choice depends on the discretization schemes. Qi is a sum of boundary conditions and

quantities at previous time levels. Eq. 4.5 can be re-written as,

un+1
i,P =

Qi −
∑

lAlu
n+1
i,l

AP
− 1

AP

(
∂pn+1

∂xi

)

P

. (4.6)

The first term on the right-hand side can be written in a brief form as,

ũn+1
i,P =

Qi −
∑

lAlu
n+1
i,l

AP
, (4.7)

so that

un+1
i,P = ũn+1

i,P − 1

AP

(
∂pn+1

∂xi

)

P

. (4.8)

Requiring un+1
i,P to be divergence free and applying the divergence operator on Eq.

4.8 leads to,

∂

∂xi

[
1

AP

∂pn+1

∂xi

]

P

=

[
∂ũn+1

i

∂xi

]

P

. (4.9)

Eqs. 4.8 and 4.9 are essentially discretized forms of the momentum and continuity

equations respectively and now the pressure field is directly solved by using the velocity

field in Eq. 4.9. Both un+1 and pn+1 are unknown so they need to be solved for

simultaneously; there are several methods for this calculation. The PISO algorithm by

Issa (1985) [55] is one of the most widely used method for a transient solver thus it is

introduced here. See Appendix B for other coupling algorithms. The PISO algorithm

comprises one predictor and multiple, generally two, corrector steps. In the predictor

step, an intermediate velocity u∗i is calculated based on p, Al and AP at the previous

time level,

u∗i,P = ũ∗i,P − 1

AP

(
∂pn

∂xi

)

P

, (4.10)
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where u∗i generally does not satisfy the divergence-free condition. To satisfy this re-

quirement, corrections are introduced for both velocity and pressure, u∗∗i = u∗i + u′i,

p∗ = pn + p′. Then the first corrector step is,

u∗∗i,P = ũ∗i,P + ũ′i,P − 1

AP

(
∂p∗

∂xi

)

P

, (4.11)

with

ũ′i,P = −
∑

lAlu
′
i,l

AP
. (4.12)

ũ′i is neglected at the first corrector step and applying the divergence operator to

Eq. 4.11 to calculate p∗ yields

∂

∂xi

[
1

AP

∂p∗

∂xi

]

P

=

[
∂ũ∗i
∂xi

]

P

. (4.13)

Note that the corrected velocities u∗∗i satisfy the divergence-free condition. The ne-

glected term ũ′i in Eq. 4.11 can be approximated via introducing one further correction,

u∗∗∗i = u∗∗i + u′′i , p
∗∗ = p∗ + p′′. This leads to the second corrector step,

u∗∗∗i,P = ũ∗i,P + ũ′i,P − 1

AP

(
∂p∗∗

∂xi

)

P

= ũ∗∗i,P − 1

AP

(
∂p∗∗

∂xi

)

P

.

(4.14)

The corrected pressure p∗∗ can be calculated requiring that the further corrected

velocities u∗∗∗i are divergence free,

∂

∂xi

[
1

AP

∂p∗∗

∂xi

]

P

=

[
∂ũ∗∗i
∂xi

]

P

. (4.15)

More corrector steps are possible but it has been shown that further corrections are

superfluous for most practical purposes [55]. u∗∗∗i and p∗∗ are considered to be accurate

approximations of the exact solutions, un+1
i and pn+1, and they are ready to be used

for the next time step. The equations used here are consistent with those in the source

code in OpenFOAM v1.7.1 [112] and literature [e.g. 32] as shown in Appendix C.
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4.2.3.2 Divergence-free inflow condition method

Based on the XC method, a new method with the divergence-free condition satisfied is

suggested and is denoted by XCDF. In Eq. 4.10, ũ∗i can be considered as the velocity

excluding contributions of the pressure gradient [32]. The idea of the divergence-free

turbulence method is to let ũ∗i on one 2-D transverse plane near the inlet contain tur-

bulence and then correct them with appropriate pressure contributions to satisfy the

divergence-free condition. The velocity fluctuations generated from the XC model are

imposed appropriately on the 2-D plane at x = x0 (see Sec. 4.3), rather than at the

inlet as in Xie and Castro (2008) [183]. After the predictor step, Eqs. 4.11 and 4.13 at

x = x0 are modified as,

u∗∗i,P = ũg∗i,P − 1

AP

(
∂p∗

∂xi

)

P

, (4.16)

∂

∂xi

[
1

AP

∂p∗

∂xi

]

P

=

[
∂ũg∗i
∂xi

]

P

, (4.17)

where ũg∗i is defined in the same way as in Eq. 4.12; Eqs. 4.11 and 4.13 are not changed

in the rest of the domain. ug∗i (x0) is the generated velocity using the XC model. Note

that ũ′i in Eq. 4.16 is neglected as in the standard PISO algorithm.

Now the first corrected velocity u∗∗i in Eq. 4.16 satisfies the divergence-free condi-

tion and contains turbulence motions. Substituting the generated velocity ug∗i for the

predicted velocity u∗i at x = x0 is rather analogous to imposing momentum sources in

the computational domain or, perhaps, to placing ‘shark teeth’ shape 2-D elements in a

wind tunnel near the inlet to produce a ‘simulated’ atmospheric boundary layer [19].

A similar modification is introduced in the second corrector step. Eqs. 4.14 and 4.15

at x = x0 thus become

u∗∗∗i,P = ũg∗∗i,P − 1

AP

(
∂p∗∗

∂xi

)

P

, (4.18)

∂

∂xi

[
1

AP

∂p∗∗

∂xi

]

P

=

[
∂ũg∗∗i

∂xi

]

P

. (4.19)

The same generated velocities as in Eq. 4.16 are imposed at x = x0, i.e. u
g∗∗
i (x0) =

ug∗i (x0). Further correction steps are possible but simulations showed no further improve-

ment in terms of the development distance of wall skin friction and pressure fluctuations.

Thus u∗∗∗i and p∗∗ are considered to be the solution for the next time level. Note that

the corrected velocities u∗∗∗i , in Eq. 4.18 are not used to calculate u∗,i(t + ∆t) in Eq.
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2.51, so that the velocity correction in Eq. 4.18 would not affect the correlations which

are imposed in Eqs. 2.44 - 2.51. Further analysis and remarks are presented below in

subsections 4.2.3.3 and 4.3.4.1.

4.2.3.3 Accuracy analysis for the XCDF model

The PISO algorithm is a non-iterative method in the sense that the momentum equation

is solved only once within one time step. Once the velocity is predicted based on the

pressure and flux at the previous time level then it is adjusted through several corrector

steps. Thus it is important to show that the final corrected velocities are a reasonable

approximation. Comprehensive studies by Issa [55] on the accuracy and stability for

the PISO algorithm showed that the errors induced in each predictor and corrector step

decay with some power of the time step, i.e. dtn.

Synthetic turbulence is substituted only on one transverse 2-D plane (near the in-

let); the velocity-pressure coupling procedure in the rest of the whole domain remains

unchanged. We would therefore not expect the modification to lead to solution diver-

gence. It is nonetheless desirable to consider accuracy and consistency for the sake of

reliability of the overall model. The decay of errors can be estimated in terms of dt

both analytically and numerically. The analysis presented below, however, should be

considered only as a guideline since, like that in Issa [55], it is based on linear partial

differential equations. It must be tested in actual computations. Thus the full effects of

the modification for the XCDF model is analysed and validated in Sec. 4.3.

Euler time discretization is adopted for the accuracy analysis but other discretization

methods should, in principle, provide the same conclusion. As in Issa (1985) [55], AP

in Eq. 4.5 is decomposed into two parts, one is for the temporally discretized term and

the other is for the rest,

AP =
1

dt
+A′

P , (4.20)

For the accuracy analysis, new error terms for velocity and pressure are introduced,

εki = un+1
i − uki ,

ξl = pn+1 − pl,
(4.21)

where k = ∗, ∗∗, ∗ ∗ ∗ and l = n, ∗, ∗∗. Subtracting Eq. 4.10 from Eq. 4.8 gives,

AP ε
∗
i,P = −

∑

l

Alε
∗
i,l −

(
∂ξn

∂xi

)

P

, (4.22)

where ξn is O(dt) via Taylor series expansion under the Euler discretization scheme, i.e.

ξn = pn+1 − pn = O(dt).
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Rewriting Eq. 4.22,

ε∗i,P
dt

= −A′
P ε

∗
i,P −

∑

l

Alε
∗
i,l −

(
∂ξn

∂xi

)

P

, (4.23)

yields ε∗i = O(dt2).

In a similar way, we subtract Eqs. 4.16, 4.17 from Eqs. 4.8, 4.9 and get the error

equations on the 2-D plane where synthetic turbulence is imposed,

AP ε
∗∗
i,P = −

∑

l

Alε
g∗
i,l −

(
∂ξ∗

∂xi

)

P

, (4.24)

and

∂

∂xi

[
1

AP

∂ξ∗

∂xi

]

P

=
∂

∂xi

[
− 1

AP

(
∑

l

Alε
g∗
i,l

)]

P

, (4.25)

where εg∗i = un+1
i − ug∗i . It is difficult to accurately estimate εg∗i at this stage. Never-

theless it is inherently no greater than the full difference of the generated (uncorrected)

velocities between the time steps n+1 and n. When the time indices are t+∆t→ n+1

and t→ n in Eq. 2.51, the full difference of the generated velocity, εgi , can be estimated

by combining Eqs. 2.40 and 2.51,

εgi = aij

(
un+1
∗,i − un∗,i

)

= aij


−u

n
∗,i

(
1− e(−

CXT
T

dt)
)

︸ ︷︷ ︸
∼O(dt)

+ψn
i

(
1− e(−2

CXT
T

dt)
)0.5

︸ ︷︷ ︸
∼O(dt)


 .

(4.26)

Then it is estimated that εgi = O(dt) and εg∗i = O(dt). We assume ε∗i=O(dt2) is still

valid for the pressure in the rest of the domain (i.e. except for x = x0). Then the

velocity error along the streamwise direction, i.e. ε∗i=O(dt2) (for x 6= x0 ) and εg∗i (for

x = x0) is in a Dirac delta function form. Note in Eq. 4.25, the left-hand side term

is a second order spatial derivative, whereas the right-hand side term is a first order

spatial derivative. As usual for simpler analyses, we start by considering a 1-D form of

Eq. 4.25 in which synthetic velocity fluctuations are imposed only at x = x0. Given

that non-dimensional equations are being used and the CFL number dt × u/dx ∼ 1,

integrating Eq. 4.25 in space leads to ξ∗=O(dxεg∗)=O(dtεg∗). Nevertheless, our real

problem is 3-D and thus it is difficult to give an accurate estimation for ξ∗ in terms of

εg∗. If we agree that neither ξ∗ = O(εg∗i ) nor ξ∗ = O(dtεg∗i ) is an accurate estimation,

perhaps ξ∗ = O(dtβεg∗i ) = O(dt1+β) is a slightly better one, where 0 < β < 1.
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Using Eq. 4.24 and following the same procedure as for the estimation for ε∗i , we

obtain ε∗∗i = O(dt2). It is to be noted that ξ∗ = O(dt1+β) and ε∗∗i = O(dt2) are the

largest possible errors at x = x0; further downstream the errors reduce to the levels

suggested in Issa [55].

The errors in the second corrector step are calculated by subtracting Eqs. 4.18 and

4.19 from Eqs. 4.8 and 4.9. The magnitudes of the errors from this step are the same as

those in the first corrector step because the same generated velocity is imposed at the

second corrector too. Thus the maximum errors are ξ∗∗ = O(dt1+β) and ε∗∗∗i =O(dt2)

on the transverse plane x = x0.

This analysis has revealed that the maximum velocity error (i.e. at x = x0) is one

order higher than the truncation error (i.e. ∼ O(dt) for the Euler discretization). How-

ever, the maximum pressure error is less than one order higher than the truncation error

O(dt). As discussed earlier, the modification is applied only on one 2-D plane. Again it

is expected that the errors are not significant near the plane and decay downstream to

the levels suggested in Issa [55].

In order to get more confidence in the error analysis, the decay of the errors are nu-

merically calculated for plane channel flows and are compared with those using periodic

in-outlet boundary conditions (PBC). The computational details for the two cases are

identical except for the inflow conditions. Details of the numerical settings are presented

in Sec. 4.3. The spanwise- and time-averaged profiles of the errors for velocity and pres-

sure are presented in Fig. 4.1. Note that the velocity error from case XCDF is based

on the generated velocity field on the plane at x = x0, i.e. |ε∗| = |un+1
1 − ug∗1 |, and the

pressure error ξ∗ is that defined in Eqs. 4.21 and 4.25. Note also that we are not able

to get exact solutions un+1
i and pn+1 as in Eq.4.21, thus the final numerical solutions

are used instead. Statistics for |ε∗| and ξ∗ obtained from using the XC model would be,

in principle, the same as those from PBC as no velocity-pressure coupling modification

was made in the XC model. Therefore, a comparison between cases PBC and XCDF is

presented.

It is not surprising that the absolute magnitudes of the velocity errors for case

XCDF are significantly greater than those for case PBC in Fig. 4.1(a). However, the

error decay with time step for case XCDF is similar to that for case PBC shown in the

inset at the upper corner of the figure. Both cases clearly show that as dt → 0, the

velocity errors decay towards zero at a rate close to dt−1, confirming the εg∗i = O(dt)

behaviour estimated analytically. Again, the errors at x = x0 shown here are the worst

possible for case XCDF, whereas in the regions downstream (i.e. x/δ > 5), they are

close to those for case PBC. This confirms that the errors decays downstream to the

levels suggested in Issa [55].

The pressure errors for cases PBC and XCDF in Fig. 4.1(b) show rather similar

magnitude as that of the velocity errors. However the decay rate of the pressure errors
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for case XCDF seems significantly slower than that of the velocity errors. This is because

the pressure errors are also affected by the spatial discretization error as in Eq. 4.25.

In these tests the mesh size was fixed in order to check the error decay rates in terms

of time step, and also to save computational cost. It is expected that varying the grid

size with the time step and keeping the CFL number dt × u/dx unchanged would lead

to a faster decay rate of the pressure errors for case XCDF. Because it is impossible to

get the exact solutions, the numerical procedure for the error estimation is not identical

to the analytic procedure discussed earlier. Nevertheless, the former in general confirms

those suggested by the latter. Again the numerical procedure shows that the errors in

velocities and pressure decrease with decreasing time step dt. This suggests that our

modification with the PISO procedure is self-consistent.

4.3 Validations of turbulent inflow conditions on a plane

channel flow

The XC, XCMC (see, Sec. 4.2.2) and XCDF methods are used as inflow conditions to

simulate a plane channel flow. These models are assessed through a validation against

using periodic in-outlet boundary conditions (PBC) for the plane channel flow. The

purpose of using periodic simulation data (as done in a number of previous papers -

e.g. [7, 58, 66, 73, 173, 183]) is simply to provide a straightforward validation for the

inflow method without the other uncertainties which would inevitably arise when using

non-periodic test cases. Once the method is validated on a channel flow, it can be used

for both free and wall-bounded flows. The input parameters, such as Reynolds stresses

and integral length scales, can be obtained from the available experimental data and/or

appropriate empirical stress ratios [e.g. 184].

Table 4.1: Summary of boundary conditions for different cases. Ui is the mean velocity
and d/dn is a normal derivative to the boundary. The transverse plane is placed at x0
where the synthetic turbulence is imposed for XCDF.

Case Inlet Outlet x0/δ = 1

PBC PBC PBC n/a
XC XC dui/dn = 0, p = p∞ n/a
XCMC XCMC dui/dn = 0, p = p∞ n/a
XCDF ui = Ui, dp/dn = 0 dui/dn = 0, p = p∞ XCDF

4.3.1 Numerical description

The Reynolds number of the channel flow based on the friction velocity, uτ and the half

depth of the channel, δ, was Reτ = 395. The domain size was 60δ × 2δ × 3.5δ in the

streamwise (x), wall-normal (y) and spanwise (z) directions respectively (see Fig. 4.2).
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Figure 4.1: Profiles of error of (a) the streamwise velocity component, |ε∗|, and (b)
pressure, |ξ∗|, with different time steps at the plane where synthetic turbulence is
imposed, see Eq. 4.21 for definition. Case PBC: dt∗ = 0.002 �, dt∗ = 0.004 ∆; XCDF:
dt∗ = 0.002 −, dt∗ = 0.004 −−, dt∗ = 0.01 −· where dt∗ = dt× uτ/δ. The insets show
the errors against the time step dt∗ at y = 0.5δ. The errors are normalized by the bulk
mean velocity and density.
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y y
Flow

Figure 4.2: A sketch of the computational domain (not to scale) for a channel flow.

A uniform mesh was used in the streamwise and spanwise directions and a stretched

mesh in the wall-normal direction for which y+1 ≤ 1 was satisfied at the first cell centre.

All statistics were averaged over 40t∗, where t∗ = tuτ/δ, and the averaging started

after an initialization period of 20t∗. The Smagorinsky subgrid-scale model with van-

Driest damping [172] was adopted with the constant Cs = 0.065 [107]. The time step

was chosen such that the CFL number was less than unity, corresponding to ∆t∗ =

∆t × uτ/δ = 0.002. A second order, implicit scheme was used for time discretization,

with a second order central difference scheme for spatial discretization. The transient

incompressible flow solver in OpenFOAM 1.7.1 [112] was used and the PISO algorithm

was adopted for the velocity-pressure coupling. The number of pressure correctors was

set to two. We noticed that increasing the number of correctors did not improve the

results.

A periodic boundary condition was applied in the spanwise direction and no-slip

wall boundary conditions were applied on the bottom and top walls for all cases. Other

boundary conditions are summarized in Table 4.1. For the XCDF model, generated

synthetic turbulence from Eq. 2.40 by using the XC model was imposed at the cell

centres of a yz plane which was placed in the domain near the domain inlet, e.g. at

x = x0 = δ rather than at the inlet boundary (i.e. x = 0). Meanwhile, the mean velocity

profile was specified at the domain inlet to fix the mass flow rate to a constant. Ideally,

the shifted inflow plane is to be placed as close as possible to the inlet boundary to save

computational cost. The XCDF model works well for x0 ≥ 0.5δ. However, we noticed

that placing the plane at the centres of the first cell from the inlet, generates higher

peaks of time- and spanwise- averaged variance of the wall pressure fluctuations near

the inlet. This might be due to the fixed mean velocity specified at the inlet boundary

and the nature of the incompressible flow. Nevertheless, the magnitude of these pressure

variance peaks are far less than those generated by the XCMC model.
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Figure 4.3: Integral length scales in (a) the streamwise direction and (b) the spanwise
direction (right). Symbols are from DNS [110], lines are specified length scales as input
data of the XC, XCMC and XCDF models. The definition of Iij is written in Eq. 2.52.
Note I21 = I31, I13 = I23 and Ii2 = Ii3.

4.3.2 Specifying input parameters

The XC, XCMC and XCDF models need first and second moment statistics and integral

length scales as input parameters. These were taken from DNS data [110] and case PBC.

The integral length scales were calculated by integrating two-point correlations until the

value of the correlation reached 0.1. The correlations are taken from DNS data [110].

Nine integral length scales were estimated for the three components of the velocity vector

(u, v, w) in all three directions (x, y, z) (see Eq. 2.52). For instance, the integral length

scale in the spanwise direction (j = 3) for the correlation Ci (i = 1) (i.e. based on the

u1 component) is I13. The channel flow in the wall-normal direction is inhomogeneous

thus Ii2 cannot be obtained by using Eq. 2.52. For simplicity, it was assumed that

Ii2 = Ii3. Fig. 4.3 shows the integral length scales used for the input data of the XC,

XCMC and XCDF models. It is to be noted that we managed to use as much as possible

the available reference data to have a rigorous test. In more practical applications, it is

straightforward to use fewer integral length scales.

For the inflow models, the distribution of the x-direction length scales, Ii1, along

the wall-normal direction is a function of the local mean velocity, U1(y). Only one 2-D

slice of the signal is generated and convected into the domain at every time step. Thus

we get Ii1(y) = Ti1 × U1(y) using Taylor’s hypothesis where Ti1 is the Lagrangian time

scale. The local turbulence intensity is mostly far less than 0.3 for the test case, thus

Taylor’s hypothesis holds across the domain [179]. Implementations of the generated

velocity by the models were performed on a virtual uniform mesh and then they were

interpolated to the non-uniform mesh at the inlet.
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Table 4.2: Resolutions and the domain size of the channel flow for Reτ = 395. The
DNS data is taken from Moser et al. (1999) [110].

Case Nx Ny Nz ∆x+ ∆y+min ∆y+max ∆z+ Lx Lz

DNS 256 193 192 10.0 · 6.5 6.5 2πδ πδ
PBC 80 60 70 39.5 2 27.6 19.8 8δ 3.5δ
PBC2 160 128 140 19.8 2 10 9.88 8δ 3.5δ
PBC3 320 192 280 9.88 2 5.74 4.94 8δ 3.5δ
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Figure 4.4: Profiles of (a) the mean velocity and variance in (b) streamwise, (c)
wall-normal and (d) spanwise directions from the channel flow. The LES results with
the periodic boundary condition are compared with DNS data [110]. Superscript +
indicates that the quantities are normalized by the friction velocity uτ and kinematic
viscosity ν.

4.3.3 Baseline simulations

To serve as reference case, a plane channel flow with the periodic in-outlet boundary

condition was calculated and compared with DNS data [110]. Three different resolutions

were tested as summarized in Table 4.2. Note that the domain size in the streamwise

direction for the baseline case (8δ) was shorter than that for the turbulent inflow case

(60δ) to reduce computational costs. However this size was large enough to capture the
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Figure 4.5: Profiles of (a) the resolved shear stress 〈u′v′〉+ and (b) sum of the resolved

and SGS (τ r+12 , thin-lines) shear stresses, see Eq. 2.20 for τ rij . Superscript + indicates
that the quantities are normalized by the friction velocity uτ and kinematic viscosity
ν.

largest structure in the channel at Reτ = 395. The largest structure can be estimated

from the autocorrelation function which is available in Moser et al. (1999) [110].

Fig. 4.4 shows the mean velocity and Reynolds stress profiles in the channel flow.

The mean velocity profiles show reasonably good agreement for all cases with the ref-

erence but some deviations are observed in the Reynolds stress profiles especially near

the maxima (y/δ ≈ 0.1). As the number of grid points increases, the LES results tend

to approach the DNS data. Note that the resolution for case PBC3 is nearly the same

as for DNS but the results show slight differences, especially for 〈v′v′〉+, 〈w′w′〉+. The

PBC3 calculations with and without the SGS model did not show noticeable differences

in all the statistics. Therefore the difference between the cases PBC3 and the reference

DNS is due to the difference in the numerical schemes for each case. A high-order finite

difference method was used in Moser et al. (1999) [110] while second-order finite volume

method is used in the current study. The high-order scheme would need less grid points

than the low-order one to capture the same fluctuations.

The SGS contributions of the Reynolds shear stress with the different resolutions

are examined in Fig. 4.5. Fig. 4.5(a) shows the resolved shear stresses and they

are consistent with Fig. 4.4. The results tend to approach the reference data as the

resolution increases. Total Reynolds shear stresses, i.e. 〈u′v′〉+ + τ r+12 , are shown in Fig.

4.5(b). All calculations match DNS data with a good accuracy. The SGS contributions,

τ r+12 , increase as the resolution decreases. This is because the Smagorinsky model uses

the grid size (∆) as the characteristic length scale in the model, i.e. νSGS = (Cs∆)2|S|,
see Sec. 2.2.1. A sharp drop of τ r+12 at y+ ≈ 8 for case PBC is due to the van Driest

wall damping function.

Over-predictions of the mean velocity at the channel centre and 〈u′u′〉+ near the wall,

and under-predictions of 〈v′v′〉+ and 〈w′w′〉+near the wall for case PBC are common

observations with a similar resolution of LES calculations [e.g. 9, 57]. However, case
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PBC generally shows reasonable results for the first and second moments compared

with DNS data. The purpose of the channel flow calculations is to serve as reference

data for the assessment of the turbulent inflow condition. Thus the resolutions for case

PBC are used for the turbulent inflow cases in the following section.
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Figure 4.6: A typical example of the changes of the streamwise velocity before and
after the continuity equation (Eq. 4.9) is satisfied. ugi is the XC model generated veloc-
ity before the continuity equation, and ui is the adjusted velocity after the continuity
equation.

4.3.4 Results and discussion

In the XCDF model, the synthetic turbulence is imposed on a transverse plane at x = x0

and is adjusted through the velocity-pressure coupling procedure. The changes are

expected to be small, otherwise the Reynolds stresses and the integral length scales used

to generate the synthetic turbulence must be reconsidered. Fig. 4.6 shows a typical

example of the changes of time series of the streamwise velocity before and after the

continuity equation is satisfied. As expected, the difference between the two sets of

velocities is very small.

An accurate prediction of the pressure fluctuations is the focus of the present work.

Fig. 4.7(a) show the effects of the mass flux correction and the divergence-free modifica-

tion on the dimensionless time- and spanwise-averaged variance of the normalised wall

pressure fluctuations, 〈p′2w〉+ = 〈p′2w〉/(ρ2u4τ ). Significantly higher wall pressure fluctua-

tions are introduced by the XC model near the inlet, and they decrease monotonically to

zero at the outlet where the pressure was fixed to a constant ambient pressure. In con-

trast, the variances of the wall pressure fluctuations for both cases XCMC and XCDF

are in good agreement with the reference data (i.e. PBC) downstream of x/δ = 10.

The simple mass correction in case XCMC brings a significant improvement on pressure
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Figure 4.7: (a) Development of dimensionless time- and spanwise- averaged vari-
ance of the wall pressure fluctuations, 〈p′2w〉+. The inset shows a zoomed view of the
dashed box on the left bottom corner. (b) Profiles of dimensionless time- and spanwise-
averaged variance of pressure fluctuations in the wall-normal direction at the different
downstream locations, 〈p′2〉+. PBC �, XC —, XCMC −−, XCDF − · −.

fluctuations and its performance in Fig. 4.7(a) seems similar to that of case XCDF.

However, the generated inflow synthetic turbulence in case XCMC does not satisfy the

divergence-free condition, and there must be some signature for this.

In checking the Probability Density Functions (PDFs) of the pressure fluctuations

sampled at various stations at the centre of the channel (see Fig. 4.8), we observed more

extreme peak pressure fluctuations in case XCMC compared to case XCDF. Fig. 4.8

shows that the occurrence of extreme peak pressure fluctuations for case XCMC can be

more than twice that of case XCDF. This certainly shows an good feature of the XCDF

model.

Unphysical peaks near the inlet are generated for both cases where the synthetic

turbulence was imposed. Case XCMC gave an order higher pressure fluctuations near

the inlet compared with case XCDF (see the inset in Fig. 4.7(a)). The XCMC model
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Figure 4.8: Probability Density Functions (PDFs) of dimensionless pressure fluctua-
tions p′+ = p′/ρu2τ sampled at x/δ=5, 10, 20, 30, 40, 55 and y/δ=1. The total number
of samples is 2.4× 106.
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Figure 4.9: Profiles of statistics at x = 20δ obtained from using different inflow
methods are compared with those for case PBC.
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Figure 4.10: (a) Development of dimensionless wall shear stress τ+w . (b) Profiles of
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Figure 4.11: Iso-surface of Q = 200 in (x/δ ≤ 32, 0 < y/δ < 0.25). XCMC model
(top), and XCDF model (bottom).
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Figure 4.12: Power spectral density of pressure fluctuations (a,b) and the streamwise
velocity fluctuations (c,d) at y/δ = 1. (a,c) x/δ = 10; (b,d) x/δ = 55. All quantities
are normalized appropriately by ρ, uτ and δ.

may thus be less satisfactory than the XCDF model if the region of interest is close to

the inlet.

Fig. 4.7(b) show profiles of the dimensionless time- and spanwise-averaged variance

of the pressure fluctuations, 〈p′2〉+ = 〈p′2〉/(ρ2u4τ ), at different downstream locations.

The pressure fluctuations for case XCDF downstream from x/δ = 10 and for case XCMC

from x/δ = 20 are in an excellent agreement with the reference data (i.e. PBC). Note

that the 〈p′2〉+ for case XC is far too large to be shown in Fig. 4.7(b).

It is of interest to check the turbulence statistics profiles. As a typical example, Fig.

4.9 present the time- and spanwise-averaged velocity and velocity fluctuation variances

at x = 20δ obtained from using the different inflow methods. All of the quantities are

normalised appropriately by friction velocity uτ and they all show a good performance

when compared with the reference - case PBC. This suggests that the three inflow models

show a similar performance in this aspect.

The flow development in terms of the recovery distances of wall shear stress and

Reynolds shear stress is crucial for the inflow methods. Fig. 4.10(a) shows dimension-

less wall shear stress τ+w = τw/(ρu
2
τ ). In spite of the significantly different pressure

fluctuations between cases XC and XCMC shown in Fig. 4.7, the wall shear stress and
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Reynolds shear stress profiles for both cases are almost identical as shown in Fig. 4.10.

The development distance in terms of the recovery of the wall shear stress and Reynolds

shear stress for the XC and XCMC models is x/δ ≈ 10, which is similar to those in Deck

et al. (2011) [22] in which a turbulent boundary layer was simulated using a different

synthetic turbulence inflow method [57]. The development distance for case XCDF is

noticeably greater than those for cases XC and XCMC, partly because the effective in-

flow plane for case XCDF is at x0 = δ. Nevertheless, the error of wall shear stress at

x/δ = 15 for case XCDF is within 5%. Setting the 5% error as the criterion to define

the development distance, then it is 14δ for the XCDF model counting from the plane

at x0.

Fig. 4.10(b) shows dimensionless Reynolds shear stress profiles−〈u′v′〉+=−〈u′v′〉/u2τ .
The error of Reynolds shear stress (at x/δ = 10, y/δ = 0.1) for case XCDF is within

5%. To visualize the near wall structures, the second invariant of the velocity gradient

tensor can be used – often called the Q-criterion (e.g. [27]), which is written as

Q =
1

2
(ΩijΩij − SijSij), (4.27)

where Ωij = ( ∂ui
∂xj

− ∂uj

∂xi
)/2 and Sij = ( ∂ui

∂xj
+

∂uj

∂xi
)/2. Essentially Q is the balance

between the rotation (Ωij) and strain (Sij) rates. Thus a positive value of Q indicates

that the strength of rotation overcomes that of the strain. Fig. 4.11 shows the iso-

surface Q = 200 in the upstream region of the domain for XCMC and XCDF models.

XCMC shows a delay of development of near-wall structures, which is consistent with

Fig.4.10(a). However, XCMC and XCDF models show almost the same performance

downstream of x/δ = 10.

Power Spectral Densities (PSD) of the pressure fluctuations and streamwise velocity

fluctuations at two typical stations are shown in Fig. 4.12. These are consistent with

Figs. 4.7 and 4.10. The PSD of the pressure fluctuations for case XC (in which the

constant mass flux condition is not satisfied) is over-predicted by orders of magnitude

through much of frequency range, whereas those for cases XCMC and XCDF show

a reasonable agreement with the reference data (PBC) at x/δ = 10 and even better

agreement at x/δ = 55. Spectra of the streamwise velocity fluctuations for all cases

are in good agreement at most frequencies in Figs. 4.12(c) and 4.12(d). The maximum

frequency that can be resolved by the current time step (Nyquist limit) f = 1
2∆t = 250.

The maximum frequency is further restricted by the spatial resolution. Note that CFL<

0.4 at the middle of the channel.

4.3.4.1 Remarks on the XCDF model

It is a significant challenge to solve the divergence-free problem which arises in applying

synthetic inflow conditions, especially since the latter should include crucial features like
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turbulence integral length scales, spectra, Reynolds stresses, anisotropy and inhomogene-

ity, and whilst maintaining high computational efficiency. The proposed divergence-free

XCDF model certainly is not free of limitations. The development distance in terms

of the skin friction needs to be improved if estimation of the skin friction is of major

interest. Combining the XCDF model with some up-to-date stochastic forcing methods

such as Laraufie et al. (2011) [81] would improve the development distance. Impos-

ing the synthetic turbulence on a transverse plane near the domain inlet does increase

computational resources by less than 2% for these test cases, hence this overhead is

negligible.

Based on the statistics from the current test cases, the divergence-free inflow method

does not seem to be superior in all aspects compared to a simple mass flux correction

approach. However, XCDF has distinctive features. Firstly, the mass correction factor,

Ub/Ub,T , in Eq. 4.2 ranges 1 ± 0.02 for the current test case which is relatively high

considering Ub/uτ = 18.33. In practical applications, a very coarse mesh at the inlet

may be adopted (i.e. fewer sampling points). And subsequently the mass correction

factor can be even greater which can lead to a noticeable alteration in the prescribed

Reynolds stress in Eq. 2.41. In such situations, one could argue that the mass flux

correction effectively modifies the input turbulence parameters. Secondly, there is an

unphysical peak of pressure fluctuations near the inlet as shown in Fig. 4.7(a). It

decays rapidly but may cause unphysical and unacceptably high noise levels for some

aeroacoustic applications, especially when the region of interest is inevitably close to the

inlet. Thirdly, we noticed that the XCMC model generated more extreme peak pressure

fluctuations at the middle of the channel compared to case XCDF, though these are not

clearly shown in the spectra of pressure fluctuations.

The modification to the PISO algorithm is similar in some respects to the body-

force approach, e.g. [65, 67, 81]. However, there are clear differences too. For example,

in Keating et al. (2006) [67], the stochastic force is isotropic. XCDF, on the other

hand, can reproduce specified anisotropy by providing individual Reynolds stresses and

integral length scales. Also no empirical constant is involved in the XCDF model, unlike

in typical body-force approaches.

Laraufie et al. (2011) [81] suggests that the development distance decreases with

increasing Reynolds number, thus applicability of the XCDF model will likely improve

further for spatially developing flows at high Reynolds numbers. For example, we have

used the XCDF model to simulate surface pressure fluctuations on the Commonwealth

Advisory Aeronautical Council (CAARC) standard building at a Reynolds number 3×
105 based on the free stream velocity and the height of the building [20]. The validation

against wind tunnel experiments has been very promising.

The divergence-free model can be easily implemented in other CFD codes. For

example, a similar method has been used in an in-house code [118]. Our method has
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been tested using both PISO and PIMPLE (i.e a combination of PISO and SIMPLE,

see Appendix B) solvers in OpenFOAM, which suggests the significant potential of the

method.

4.4 Summary

A new divergence-free synthetic turbulence inflow technique has been developed with

incompressible flow solvers. To satisfy the divergence-free criterion, the velocity-pressure

coupling (PISO) procedure is modified slightly by substituting the generated synthetic

turbulence for the intermediate velocities on a transverse plane near the domain inlet

before the corrector steps are performed. The synthetic turbulence is mildly adjusted

through the correctors and thus is divergence-free. It is to be stressed that this modifi-

cation of the PISO procedure costs no additional CPU time.

The effects of the modification of the PISO algorithm on solution accuracy have been

examined analytically and numerically. The maximum error (always on the transverse

plane where synthetic turbulence is imposed) is, for the velocity, one order of magnitude

higher than the truncation error, whereas the maximum error for the pressure is less

than one order of magnitude higher than the truncation error. This is not surprising

because imposing the synthetic turbulence within the domain (rather than at the inlet)

is similar in some respects to a body-force approach. Maximum disturbances occur

where the synthetic turbulence is imposed. Nevertheless, the errors decay downstream

(e.g. x/δ > 5) to the levels suggested in Issa (1985) [55].

The suggested divergence-free turbulence inflow model XCDF has been tested on a

channel flow and compared with the XC model [183] and the XC model with a mass

flux correction – XCMC. Both XCDF and XCMC give very significant improvements

on the computed pressure fluctuations. For example, the variance and spectra of the

pressure fluctuations are in good agreement with reference data obtained from a plane

channel flow using axially periodic boundary conditions. In addition, the XCDF model

is genuinely divergence-free and provides solution improvements in other respects too,

such as more reasonable peak pressure fluctuations.

In applications where only time averaged pressure and aerodynamic forces (e.g. mean

lift and drag on a wind turbine blade or mean wind loads on a building) are of inter-

est, the XC and XCMC models are generally satisfactory. However, if instantaneous

forces (e.g. peak structural wind loads in wind engineering applications) are the focus,

the divergence-free method XCDF is recommended. In particular, the XCDF method

can be very useful in some applications in which the turbulence motions are required

to insert in the computation domain. For example, the XCDF method can be used at

the interfaces of the coupling of a weather-scale model and a street-scale LES model to
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provide sufficient turbulent fluctuations when nested meshes are used.



Chapter 5

The effect of freestream

turbulence on the flow over a

static airfoil

5.1 Introduction

The effect of turbulence on the aerodynamic characteristics of an airfoil are important

in wind turbine aerodynamics because the operating condition (atmospheric boundary

layer) of wind turbines are mostly turbulent. Upstream turbulence can modify transi-

tion, separation points on the turbine blade and also acoustic-noise emissions from the

blade. Thus it is of great interest to understand the effects of turbulence on the aero-

dynamic characteristics of an airfoil. Currently, many of the prediction tools for wind

turbine performance use 2-D airfoil data measured from wind tunnels for a laminar

inflow condition [155].

The atmospheric boundary layer is complicated. It is anisotropic and contains wind

shear and temperature gradients etc. To simplify the problem, isotropic and shear-free

freestream turbulence is considered in the present study. The divergence-free turbulence

inflow condition (XCDF, see Ch. 4) is applied to the flow over a NACA 0006 airfoil

at Re = 50, 000. The length of the laminar separation bubble on a thin airfoil such

as NACA 0006 is shorter than that on a thick airfoil at low Reynolds number. As the

Reynolds number increases, the laminar bubble tends to be avoided [91]. Then the flow

topology over the thin airfoil at low Reynolds number is closer than that over the thick

airfoil to the flow topology at high Reynolds number. Thus a NACA 0006 airfoil case is

selected for the test case and validated using LES.

The objectives for this chapter are twofold; the first is to provide a reliable framework

that can be applicable to an aerodynamic and unsteady surface pressure analysis for wind

79
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Figure 5.1: A sketch of the domain.

turbine blades with upstream turbulence. The second is to quantify and understand the

effect of freestream turbulence on the aerodynamic loads and unsteady surface pressure

on an airfoil. Sec. 5.3 presents a simulation for an airfoil flow for a laminar inflow

condition as a baseline case and the results are compared with the DNS data by Jones

et al. (2008) [61]. Raw data of the reference was provided by a personal communication

[61, 62]. The numerical method and domain information are described in Sec. 5.2.

Based on the baseline simulation, the effect of freestream turbulence on the flow over a

static airfoil is examined at 0◦ and 7◦ angles of attack. This is presented in Sec. 5.4 and

a summary is following in Sec. 5.5. Some results and discussions on this subject were

reported in the conference paper, Kim, Xie, Castro. UK WES conf., Southampton, UK,

2012 [68].

5.2 Methodology

The domain shape and mesh topology around the airfoil for the baseline simulation are

shown in Figs. 5.1 and 5.2. The purpose of the rectangular shape of the inlet was to

resolve freestream turbulence by adopting a quasi-rectangular mesh on the upstream

region. This rectangular mesh was applied from the boundary ‘B1’ to a distance 2.1c

from the leading edge. From this 2.1c upstream location to a 1c upstream distance from

the leading edge, the mesh was gradually adopted to the C-type mesh as shown in Fig.

5.2(b).
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Figure 5.2: Mesh topology for (a) the whole domain and (b) near the leading edge.
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The first grid point was placed at 2×10−4c away from the airfoil surface to ensure that

y+1 ≈ 1. Pointwise V16 was used to generate all meshes. The role of the SGS model is

important for the baseline simulation because a laminar separation bubble, reattachment

and transition points occur over the upper airfoil surface. These phenomena are poorly

captured with the Smagorinsky model [151], while the mixed-time-scale SGS model (see

Sec. 2.2.3) is adequate in such situations as the SGS contribution becomes zero in the

laminar region. Thus MTS SGS model was adopted. Model constants for the MTS

model were modified by Krishnan et al. (2009) [78] and were CMTS = 0.03, CT = 10.

A simple top-hat filter was applied for the explicit filter in the MTS model.

Averaging started once the lift coefficient reached a statistically converged state and

averaging was performed over 30T approximately, where T = c/U∞ and U∞ was the

freestream velocity. Spanwise averaging was also conducted for all figures for 3-D cases.

The time step was t/T = 3 × 10−4 which satisfied the condition that the maximum

CFL
(
∆tU
∆x

)
number was less than 1.3. A second order, implicit scheme was used for the

temporal discretization and a second order central difference scheme was used for the

convection term. The transient incompressible flow solver from OpenFOAM 1.7.1 was

used and the PISO algorithm (see Sec. 4.2.3.1) was adopted for the velocity-pressure

coupling. Pointwise V16 was used to generate all meshes.

A periodic boundary condition was applied in the spanwise direction for 3-D cases

and no-slip wall conditions were used on the airfoil surface for all calculations. Other

boundary conditions for the baseline simulation (Base) are summarized in Table 5.1.

The boundary conditions for other cases are also found in the table and details for

these cases will be explained in the following sections. The freestream velocity at the

boundaries was determined by the angle of attack, α, on each case, i.e. u = U∞cos(α),

v = U∞sin(α). Note that the coordinates x, y and z represent the streamwise, cross-

flow and spanwise direction respectively, with the origin at the leading edge of the airfoil

throughout all simulations.

Table 5.1: Summary of the boundary conditions for different cases. U∞ is the
freestream velocity and d/dn is normal derivative to the boundary. The transverse
plane is placed at x0/c = −7 where the XCDF model (see Ch. 4) is imposed.

Case B1 B2 B3 B4 x0/c

Base ui = U∞, ui = U∞, dui/dn = 0, dui/dn = 0, n/a
dp/dn = 0 dp/dn = 0 p = p∞ p = p∞

3DTA0 ui = U∞, slip-wall, dui/dn = 0, slip-wall, XCDF
dp/dn = 0 dp/dn = 0 p = p∞ dp/dn = 0

3DTA7 ui = U∞, ui = U∞, dui/dn = 0, dui/dn = 0, XCDF
dp/dn = 0 dp/dn = 0 p = p∞ p = p∞
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5.3 Baseline simulations: laminar inflow

In order to save CPU time, tests for mesh convergence and domain size in the streamwise

and cross-flow directions were conducted on a 2-D domain without the SGS model for

the baseline simulations. The mesh convergence tests without the SGS model in the 2-D

domain are useful as LES requires a very fine resolution, close to DNS, near the wall.

The grid points around the airfoil were increased until the pressure and skin-friction

coefficients converged leaving the other conditions and the mesh unchanged. Based on

the tests on the 2-D mesh, a 3-D mesh was generated by extruding the 2-D mesh in the

spanwise direction.

Table 5.2: The computational domain size in unit c and number of grid points in the
2-D domain, see Fig. 5.1. Note that Nup and Nlow are the number of grid points on
the upper and lower airfoil surface respectively.

2D1 2D2 2D3 2D4 2D5

US [c] 8 8 8 8 8
R [c] 8 8 8 10 8
W [c] 5 5 5 5 5

NUS 363 363 363 363 363
NR 330 330 330 340 330
NW 150 150 150 165 150
Nup 533 400 266 266 393
Nlow 533 400 266 266 150

5.3.1 Two-dimensional domain

Details of the domain size and number of grid points are tabulated in Table 5.2. The

surface pressure and skin-friction coefficients are shown in Fig. 5.3 for the 2-D cases

and there are no noticeable differences between cases 2D1 (the finest grid) and 2D2 (the

medium grid). Cp and Cf for case 2D3 show, however, the different peak values and

locations of laminar separation bubbles on the upper surface compared with those for

cases 2D1 and 2D2. The peak value of the skin-friction decreases 30% for case 2D3

compared to that for case 2D1. The reattachment point is delayed from x/c = 0.14 for

case 2D1 to x/c = 0.25 for case 2D3.

Jones et al. (2008) [61] investigated the requirement of the domain size on the flow

over a NACA 0012 airfoil at Re = 50, 000. In Jones et al. [61], an integral characteristic

boundary condition [171] was adopted at the inlet to minimize unwanted reflection from

the computational boundaries. It was reported that R = 7.3, W = 5 (see Fig. 5.1)

were sufficient to capture the potential flow. For the current case, a domain size R = 8,

W = 5 was used. The domain size R = 10, W = 8 (2D4) was tested to confirm that
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Figure 5.3: The effects of the domain size and grid points around the airfoil in the
2-D domain on (a) pressure coefficients, (b) skin-friction coefficients. Re = 50, 000 and
α = 7◦.

the current size of the domain is sufficiently large. The azimuthal distribution of the

pressure, p − p∞, for 2c and 3c displacements from the trailing edge are shown in Fig.

5.4. Azimuthal distributions show good agreement among cases 2D1, 2D3 and 2D4 with

negligible differences in the wake region. It is concluded that the domain size R = 8,

W = 5 is adequate to capture the potential flow at these given conditions on the NACA

0006 airfoil. The mesh for case 2D5 was carefully designed so that it produced reasonably

similar results with cases 2D1 and 2D2 by using the minimum number of grid points.

The results from case 2D5 are the same as those from case 2D1 as shown in Fig. 5.3.

Thus the mesh for case 2D5 was chosen and used to generate the 3-D mesh.
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Figure 5.4: The azimuthal distribution of the pressure, p−p∞

ρU2
∞

. The azimuthal angle

[◦] begins at the trailing edge in the anti-clockwise direction. The distance from the
trailing edge is (a) two chord length and (b) three chord length.

Table 5.3: The computational domain size in unit c and number of grid points in the
spanwise direction. Note that all 3-D meshes are generated based on the 2D5 mesh in
Table 5.2.

3D1 3D2 3D3 3D4

Lz [c] 0.2 0.2 0.2 0.4

Nz 64 32 16 64

5.3.2 Three-dimensional domain

The 2-D simulations without the SGS model were conducted for the mesh convergence

and domain size tests. The effect of the domain size and resolution in the spanwise

direction were examined and the details of mesh information are presented in Table

5.3. The effects of the resolution in the spanwise direction were tested to investigate

a minimum requirement of the grid points in the span as shown in Fig. 5.5. Cases

3D1, 3D2 and 3D3 contain 64, 32 and 16 grid points in the spanwise direction while the

domain width is the same which is 0.2c. Fig. 5.6 shows the resolution in wall-units for

case 3D2. The resolution in wall-unit is calculated as,

∆x+i =
∆xi

√
|τw|

ν
, (5.1)

where xi = z, n, s representing the spanwise, surface-normal and surface-tangential

components respectively. ∆z+max for case 3D2 is around 20 on the suction side, thus

∆z+max for cases 3D1 and 3D3 would be 10 and 40 respectively. Jones et al. [61] used



86 Chapter 5 The effect of freestream turbulence on the flow over a static airfoil

x/c

C
p

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

DNS
3D1
3D2
3D3
3D4

(a)

x/c

C
f

0 0.2 0.4 0.6 0.8 1-0.02

-0.01

0

0.01

0.02

0.03

(b)

Figure 5.5: The effect of domain width and grid points on an airfoil in the 3-D domain.
(a) Pressure and (b) skin-friction coefficients for Re = 50, 000 and α = 7◦.

∆z+max = 6.49 on a flow over a NACA 0012 airfoil using DNS and Sandham et al.

(2002) [134] used ∆z+max = 7.5 on a turbulent plane channel flow using DNS. For LES

calculations, Jarrin (2008) [57] had tested various resolutions for turbulent plane channel

flow and reported that the flow was reasonably well resolved for ∆z+ < 19. Thus the

flows for cases 3D1 and 3D2 are considered to be well-resolved under the criterion of the

mesh requirement for the LES calculations of the turbulent plane channel flow.

In Fig. 5.5, the pressure and skin-friction coefficients show little difference between

cases 3D1 and 3D2, but those for case 3D3 present significant difference especially where

the laminar separation bubble exists. The profiles for the mean velocity and turbulence

fluctuations over the upper airfoil surface are compared with the reference data in Fig.
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Figure 5.6: Wall-unit resolutions normalized by the skin-friction from case 3D2. s
and n are the surface tangential and surface normal direction components respectively.
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Figure 5.7: The profiles over the upper surface for the (a) mean streamwise velocity,
(b) streamwise turbulence fluctuation, (c) Reynolds shear stress and (d) cross-flow
turbulence fluctuation for Re = 50, 000 and α = 7◦. — DNS [61], −−3D1, − · −3D2,
− · ·−3D3, see Table 5.3.
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Figure 5.8: The mean velocity magnitude |U |/U∞ with streamlines for case 3D2,
Re = 50, 000 and α = 7◦. The coordinates are normalized by the chord.

5.7. Consistency is also found in all flow profiles above the upper airfoil surface. All

turbulence fluctuations for case 3D3 are over-predicted and the mean velocity near the

airfoil shows a positive value for 0.2 ≤ x/c ≤ 0.3 while those for other cases show negative

values. This can be interpreted as case 3D3 presents a shorter laminar separation bubble

than the other cases.

The computational domain size in the spanwise direction was investigated. von Terzi

(2004) [175] had simulated a backward-facing step flow and reported that a minimum of

four times the step height was required for the domain width which was approximately

the reattachment length in the backward-facing step flow. Jones et al. [61] applied this

relation between the domain width and step height to the flow over an airfoil and set

Lz = 0.2c as their spanwise domain size. Fig. 5.8 shows the mean velocity magnitude

with streamlines. The laminar separation bubble thickness is approximately 0.05c which

suggests the domain width 0.2c is required for the current case. To confirm the analogy

in Jones et al. (2008) [61], actual calculations were performed. Cases 3D2 and 3D4 were

based on an identical 2-D mesh (2D5 in Sec. 5.3.1) and had the same resolution in the

spanwise direction but with different domain widths. The domain width for case 3D2

was 0.2c and that for case 3D4 was 0.4c. As shown in Fig. 5.5, the results for cases 3D2

and 3D4 show no evident difference and fairly good agreements with DNS data. Thus

the domain width of Lz = 0.2c is considered adequate for the baseline simulation.
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5.4 The effect of freestream turbulence

The baseline simulation (3D2) was described in the previous section and the results

showed good agreement with the DNS data. Based on the baseline simulation, the

effects of freestream turbulence are investigated by using the divergence-free turbulence

inflow (XCDF model, see Ch. 4) on the flow over a NACA 0006 airfoil at 0◦ and 7◦

incidence. Surface forces and pressure are analysed and compared with appropriate

analytical solution and measurements.

5.4.1 Upstream turbulence

Figure 5.9: A box domain for homogeneous isotropic turbulence.

To characterize upstream turbulence, a new mesh was generated as shown in Fig.

5.9 in which the upstream region of the domain was the same as case 3D2, but the airfoil

was removed and the downstream part of the mesh was the same as the upstream one.

Two different turbulence intensities (TI0 = 5%, 10%) were used where the subscript

’0’ denotes input variables. The upstream turbulence characteristics were quantified in
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Table 5.4: Upstream turbulence characteristics: turbulence intensity (TI), integral
length scales and Reynolds number on the domain without the airfoil. The inflow is
generated at the origin (x/I11 = 0) and the airfoil will be placed at x/I11 = 23.3 . Note

that ReI = U∞I11
ν and Reλ =

(
20
3 ReI

)1/2
[122]. I11 = I21 = I31 and I11 = 3Ii2 = 3Ii3

where i = 1, 2, 3.

x/I11 TI[%] I11/c ReI Reλ
0 5 0.3 15,000 316
23.3 2.1 0.352 16,250 342

0 10 0.3 15,000 316
23.3 3.8 0.267 19,000 298
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Figure 5.10: The autocorrelations for the streamwise component of velocity at differ-

ent downstream locations. r is the normalized separation, r = tU∞

I11
and CE(r) is the

modelled correlation function which is defined as CE(r) = exp
(

π
4I11

r
)
in the XCDF

model, see Sec. 4.2.1.

the domain without the airfoil which is called an ‘empty box case’. Then the same

turbulence characteristics were used for the flow over the airfoil.

The turbulence length scales in the atmospheric boundary layer ranges from 0.001

to 500m [63]. The turbulence scales which are greater than the order of magnitude of

the chord length have to be considered as an unsteady inflow condition [147]. Thus the

integral length scales were set to the size which is comparable with the chord length

and they were Ii1 = 3Ii2 = 3Ii3 = 0.3c where i = 1, 2, 3, see Eq. 2.52. The grid size

normalized by the integral length scale (I11) was ∆x = 0.246I11, ∆y = 0.167I11 and

∆z = 0.021I11. If it is considered that when 80% kinetic energy is resolved an LES is

‘good’, then the resolution ∆x ≈ 1
6I is required for LES calculations of homogeneous

isotropic turbulence (HIT) [122]. The current grid size for the upstream region is a

reasonable resolution in that regard.

The coordinate for the empty box case was normalized by the integral length scale,

I11. The boundary conditions were identical with case 3DTA0 in Table 5.1. Numerical

schemes and the coordinate system were unchanged as in Sec. 5.2 but the origin was
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Figure 5.11: The streamwise component of velocity normalized by the freestream
velocity at the middle of the domain for TI0 = 5%.
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Figure 5.12: (a) A one-dimensional energy spectrum, E11, of the streamwise velocity
component normalized by the local turbulent kinetic energy at x/I11 = 23.3 (see Table
5.4). The dot-dashed line is the inertial region value, 2.5. (b) The turbulent kinetic

energy normalized by the input value k0. The dot-dashed line is from k
k0

∼
(

x
I11

)
−n

.

The suffix ‘0’ indicates the input variables

placed where synthetic turbulence was imposed. The distance between the inlet and the

origin was 3.33I11. The time step normalized by I11 and U∞ was t× U∞/I11 = 0.0133.

The domain width and number of grid points in the spanwise direction was the same as

those in case 3D2.
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Figure 5.13: Anisotropy of upstream turbulence.

The turbulent characteristics at the origin and at the point where the leading edge

will be placed (x/I11 = 23.3) are summarized in Table. 5.4. The integral length scale

at x/I11 = 23.3 was not known a priori, so it was estimated by using autocorrelations

after the calculations of the empty box case were finished. Time series of the streamwise

component velocity was used to calculate the autocorrelations at different downstream

locations and they are shown in Fig. 5.10. C(r) in the vicinity of the synthetic turbulence

imposition, i.e. x/Ii1 = 0.333, agrees well with the target function, CE(r), for both

TI0 = 5% and 10%. As the flow convects downstream, the autocorrelations adjust

to a Gaussian shape at r ≈ 0. The calculated integral length scales at x/I11 = 23.3

are shown in Table 5.4. A snapshot of the streamwise component of the instantaneous

velocity contour is shown in Fig. 5.11. Synthetic turbulence was imposed at x/I11 = 0.

The airfoil will be placed at x/I11 = 23.3 in the following section thus the prime interests

are focused on the region for 0 < x/I11 < 23.3.

Fig. 5.12(a) shows the (compensated) one-dimensional energy spectrum of the

streamwise velocity fluctuations at x/I11 = 23.3 for two turbulence intensities. The iner-

tial subrange (constant value) can be found for both cases. The highest wavenumber that

can be resolved by the current resolution (Nyquist limit) is κmaxI11 = 1
2
2π
∆xI11 = 12.8

but E11 starts to drop κI11 ≈ 5. This phenomenon is associated with the SGS model,

filtering method and numerical scheme. The top-hat filter was adopted for the explicit

filter in the mixed-time-scale SGS model (Sec. 2.2.3). Piomelli (1999) [116] showed

that the top-hat filter smoothed the structures which was larger than the cut-off size

in spectral space, see Fig. 2.3. Xie et al. (2004) [185] also observed similar behaviours

from their finite volume based LES calculations.

To calculate the Kolmogorov length scale, η = (ν3/ε)1/4, the dissipation rate, ε,

is estimated by comparing the compensated energy spectrum in Fig. 5.12(a) with the

universal energy spectrum in the inertial subrange,

E11(κ) = CKε
2/3κ−5/3, (5.2)
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where CK = 0.49 is the Kolmogorov constant [122]. Based on the estimated ε, the ratios

between the grid size and the Kolmogorov length scale have values ∆x/η = 37.9 and

63.4 for TI0 = 5% and 10% respectively. It is shown that the current grid size is much

larger than the Kolmogorov length scale and LES is designed for such a case.

Fig. 5.12(b) shows the rate of changes of turbulent kinetic energy normalized by

the input value along the streamwise direction. Note that the suffix ‘0’ indicates the

input variables. There are over-shoots at the first cells away from the origin. Then

k/k0 decreases as x/I11 increases. The peaks at the first cells were not observed in

the channel flow in Ch. 4. These were improved as the domain width increased i.e.

k/k0 ≈ 1 at x/I11 = 0. Thus it is concluded that the peaks are produced due to the

geometrical constraints (the domain width required by the airfoil simulations) rather

than the inflow generation technique. A small increase of the turbulent kinetic energy

is seen at x/I11 ≈ 1. This is because synthetic turbulence is adjusted to the governing

equation and boundary conditions as soon as it is introduced within the domain, resulting

in a temporal increase of the turbulent kinetic energy.

In homogeneous isotropic turbulence, turbulent kinetic energy decays with time or

space. The rate of decay has been studied extensively and it is known that the variance

of turbulence follows 〈u′u′〉 ∼ x−n. But different values of the decay exponent n were

reported from experiment [79] and DNS calculation [127] varying from 1.02 to 1.2. The

decay exponent for the empty box case shown in Fig. 5.12(b) is around n = 0.35 which

is much lower than that reported in literature. This may be due to a relatively narrow

domain width (Lz = 0.2c) considering the integral length scale in the spanwise direction

(Ii3 = 0.1c). It may be also because the resolutions for the current case is relatively

coarse for the turbulence kinetic energy to decay naturally. However, the focus here is

to generate an isotropic turbulence field in the upstream region of the airfoil and the

resolution will be much finer in the vicinity of the airfoil in the following section. The

calculated turbulence intensities at which the airfoil will be placed are TI = 2.1% and

3.8% as shown in Table 5.4.

The degree of isotropy is examined along the streamwise direction by comparing the

ratios of the velocity fluctuations between the streamwise and the other components

as shown in Fig. 5.13. At x/I11 = 23.3, u′

rms
v′rms

≈ 1.3 − 1.4, u′

rms
w′

rms
≈ 0.8 − 0.9 for both

turbulence intensities. It is concluded that a relatively good isotropy is achieved with

both turbulence levels considering the ratio of velocity variance differs by 10 − 30% in

most wind tunnel measurements [150].

Though some parts of the inertial subrange are resolved and reasonably good degree

of isotropy is achieved in the empty box case, upstream turbulence does not decay with

the rate for finely controlled homogeneous isotropic turbulence as in literature due to

some constraints for the airfoil simulations. The aim for the empty box cases, however, is

to investigate the effect of the given upstream turbulence characteristics on the flow over
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Figure 5.14: Instantaneous z-component of vorticity at the mid-span for case 3DTA0.
The contour is normalized by U∞ and c.

an airfoil rather than trying to achieve a high degree of an accuracy for the turbulence

decay rate.
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Figure 5.15: The coefficients of (a) the surface pressure and (b) skin-friction. Exp
[178]: laminar inflow for Re = 2.4−5.1×106. XFOIL [25]: laminar inflow, Re = 50, 000
with no boundary layer tripping.

5.4.2 Zero degree incidence

For the flow over an airfoil at 0◦ incidence, 5% of turbulence intensity was imposed on

a transverse 2-D plane in the upstream region of the airfoil. The 2-D plane was parallel

to the inlet and placed at x/c = −7 which was 1c away from the inlet. This case is

called case 3DTA0. See Table 5.1 for the boundary conditions. A symmetric mesh with

respect to the chord line was used and this mesh was generated by a mirror-copy of the

upper part of the mesh for case 3D2 in Sec. 5.3.2, so that the upper and lower parts of

the mesh were symmetric. Roughly 11.8×106 total grid points were needed for the case

3DTA0.
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Figure 5.16: The profiles of the streamwise velocity components over the upper surface
at different downstream locations in wall-units. The linear line indicates U+ = y+. Note

U+ = U(x)
uτ (x)

and y+ = y0uτ (x)
ν where y0 is the distance from the wall, uτ (x) =

√
τw(x)

ρ

and τw(x) is the wall shear stress.

5.4.2.1 Aerodynamic characteristics

Synthetic turbulence from the upstream region approaches the airfoil and interacts with

the boundary layer on the airfoil as shown in Fig. 5.14. The coefficients of the surface

pressure and skin-friction are compared with the data from Weiberg and Dannenberg

(1954) [178] and XFOIL 6.96 [25]. Both reference data were taken under laminar up-

stream flows but it seems that the effect of upstream turbulence on the surface forces

is very weak for a symmetric airfoil at zero incidence because the surface forces show

little difference between cases with and without upstream turbulence. Similar results

were found in Bertagnolio (2008) [8]. Fig. 5.15 shows that all Cp agree well with each

other and Cf drops continuously along the x direction indicating that transition does

not occur on either surface of the airfoil.

Fig. 5.16 shows the profiles of the streamwise velocity component over the upper

surface at different downstream locations. The velocity profiles are close to the linear

line for y+ < 10 at most locations. Note that the dashed-line indicates U+ = y+,

i.e. laminar profile. The profiles become steeper as they approach the trailing edge

due to the adverse pressure gradient on the airfoil surface as shown in Fig. 5.15(a)

[94]. The profiles of the streamwise fluctuations have maxima at the same wall-unit

distance, y+ ≈ 15, regardless of the x locations as shown in Fig. 5.17(a) but the

magnitudes increase as x increases. Fig. 5.17(b) shows the streamwise fluctuations

normalized by the corresponding fluctuations from the empty box case at x/I11 = 23.3.

The streamwise fluctuations ( 〈u′u′〉
〈u′u′〉0

) approach unity for y0/c > 3 × 10−2 which means
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Figure 5.17: The profiles of the streamwise fluctuations over the upper surface at
different downstream locations (a) presented in wall-units and (b) normalized by 〈u′u′〉0
from the empty box case at x/I11 = 23.3 (equivalent to x/c = 0) for TI0 = 5% in Sec.
5.4.1. y0 is the distance from the wall and the dashed-line is unity.

that the fluctuations are recovered to the background fluctuation away from the airfoil

surface.

5.4.2.2 Surface pressure characteristics

Freestream turbulence induces unsteady pressure fluctuations as it passes over a lifting

surface. This unsteady surface pressure is a major source of the far field noise [105].

In aeroacoustic applications, it is important to predict the unsteady surface pressure
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Figure 5.18: The spectral density of pressure difference at different chord locations.
- - Amiet [2–4] (Eq. 5.7), — 3DTA0 (Eq. 5.4). Note that Gpp∗ = Gpp/q

2 where
q = 1/2ρU2
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is the dynamic pressure.
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when the object encounters a broad range of wavenumber components in upstream

turbulence. This is because the unsteady surface pressure is used for input parameters

in many aeroacoustic analogies. The spectral density of the pressure difference between

the upper and lower surfaces of the airfoil is analysed and compared with the analytical

solution by Amiet [2–4]. At zero angle of attack, the analytical solution provides the

spectral density of the pressure difference between upper and lower surfaces of a flat

plate when sinusoidal upwind gusts impinge on it in inviscid flows. Mish and Devenport

(2006) [105] formulated the solution and compared with their measurements. Before

briefly explaining the Amiet’s model, the spectral density of the pressure difference at

‘x’, Gpp(x, f), is defined as,

Gpp(x, f) = lim
T→∞

1

2T
E [∆p̂(x, f)∆p̂(x, f)∗]

= lim
T→∞

1

2T

∣∣∣∣
∫ T

−T
∆p(x, t)e−i2πftdt

∣∣∣∣
2

= lim
T→∞

2

T

∣∣∣∣
∫ T

0
∆p(x, t)e−i2πftdt

∣∣∣∣
2

,

(5.3)

where ∆p̂(x, f) and ∆p(x, t) are the pressure differences between the upper and lower

surfaces at x in the frequency and time domain respectively. The complex conjugate

is denoted by an asterisk (∗) and the expected value by E[ ]. In actual calculations,

measurement time, T , is finite and it is written as T = Ns∆t in discrete signals and so

∆p(x, t) = ∆p(x, n∆t). Eq. 5.3 in discretized form is,

Gpp(x, f) =
2

Ns∆t

∣∣∣∣∣

Ns−1∑

n=0

∆p(x, n∆t)e−i2πfn∆t

∣∣∣∣∣

2

=
2

NsFs

∣∣∣∣∣

Ns−1∑

n=0

∆p(x, n∆t)e−i2πfn

∣∣∣∣∣

2

,

(5.4)

where Ns is the number of sample and Fs is the sampling rate which is 1/∆t.

Amiet’s [2–4] model constructs Gpp(x, f) by adding a range of modes which have

different wavenumbers in the spanwise direction. The idea behind the analytical solution

is to use the transfer function, g, in Eq. 5.5 which associates the turbulent velocity with

an airfoil pressure jump [2]. The pressure difference in Eq. 5.3 can be presented as a

function of the turbulent velocity, i.e. ∆p(x, t) = f(u′(t)) and the pre-defined energy

spectrum provides the magnitude of the turbulent velocity per unit frequency. In Amiet’s

model, the origin is placed at the leading edge and all parameters are normalized by the

half chord length, b, thus the trailing edge is placed at x = 2 where x is the streamwise
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direction and z is the spanwise direction. Note that y was adopted as the spanwise

direction in literature [3, 4, 105]. The transfer function of the model is,

g(x, κx, κz) = −E(x, κz)
πβ

{
πx
{
(κ2z/β

2 − µ2)1/2 + i(µM + κx)
}}−1/2

×e−x(κ2
z/β

2−µ2)1/2+iµMx,

(5.5)

where κx, κz are the wavenumbers in the streamwise and spanwise directions which

are normalized by b. The parameters β and µ are functions of Mach number (M),

β =
√
1−M2 and µ =Mκx/β

2. The function E is,

E(x, κz) = 1− (x/2)1/2
{
1− erf

[(
2(2− x)(κ2z/β

2 − µ2)1/2
)1/2]}

, (5.6)

where the error function (erf) defined as erf(ζ) = 2/
√
π
∫ ζ
0 exp(−t2)dt for any complex

number ζ. The function E is used only for κz ≥ (M/
√
1−M2)κx, otherwise it has

another definition. For the current case, only Eq. 5.6 is used because only incompressible

flows are considered, i.e. M ≈ 0. The spectral density function is then,

Gpp(x, f) = 16πU∞(πρb)2
∫ ∞

0
g∗(x, κx, κz)g(x, κx, κz)× Φww(κx, κz)e

iκzηzdκz, (5.7)

where U∞ is the freestream velocity and ρ is the fluid density. Note that ηz is the

spanwise separation, i.e. ηz = z− z′ and only ηz = 0 is considered for the present study.

Φww is the two-dimensional turbulence spectrum [115],

Φww(κx, κz) =
4〈u′u′〉
9πκ2e

κ̂2x + κ̂2z

(1 + κ̂2x + κ̂2z)
7/3

, (5.8)

where κe = 0.7468/I and I is the integral length scale. κ̂i = κi/κe (i = x, z) and 〈u′u′〉
is the variance of the streamwise velocity fluctuation.

To apply Amiet’s model [2–4] for case 3DTA0, the input length scale was estimated

from the autocorrelation at x/Ii1 = 23.3 as shown in Table 5.4 and the streamwise

velocity fluctuation was taken at the same location which was 〈u′u′〉/U2
∞ = 0.00102. The

analytical solutions of Amiet’s model [2–4] (Eq. 5.7) by using these input parameters

are shown in Fig. 5.18 and they are compared with the calculated Gpp (Eq. 5.4) for

case 3DTA0. The calculations show very good agreement with Amiet’s model [2–4] for

all locations. The tendency of Gpp for case 3DTA0 follows the analytical solution as

well. The decrease rate of Gpp for f c
U∞

> 0.3 matches well with the analytical solution

and the magnitude of Gpp decreases as x increases. The lowest frequency, f c
U∞

= 0.25

corresponds to 4 flow passes over the airfoil. High frequency bumps are observed for
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f c
U∞

> 102 which are also found in channel flows with the XCDF model, see Fig.

4.12(a). The bumps tend to diminish as the tolerance for the implicit linear solver

decreases indicating that these are numerical errors. Also, their magnitudes are very

small and occur in a very high frequency range thus they are negligible.

The magnitude of Gpp would decrease as the turbulence intensity decreases. For the

laminar inflow case, Gpp approaches zero and Amiet’s model, Eq. 5.7, also shows the

same phenomenon. The turbulence spectrum decreases as the turbulence level decreases

as in Eq. 5.8. The reduction would be proportional to the variance of turbulence fluctu-

ations, 〈u′u′〉. In this section, the calculated Gpp subjected to the specified turbulence

characteristics, showed good agreement with the reference [2–4]. Thus it is shown that

the current framework is a reliable approach for an unsteady surface pressure analysis

and the same framework is now applied on the flow over an airfoil with non-zero inci-

dence. This is important because the analytical solution by Amiet [2–4] is valid at 0◦

incidence only and there is no reliable analytical solution for non-zero incidence to date.

By using LES, one can simulate an airfoil flow for any angle of attack.

5.4.3 Non-zero degree incidence

The XCDF model was applied to the flow over an airfoil at 0◦ incidence in the previous

section. Two different turbulence levels (TI0 = 5%, TI0 = 10%) were imposed in the

upstream region of the airfoil at 7◦ incidence by using the mesh for case 3D2. This

case is called case 3DTA7. Tables 5.1 - 5.3 show the details of the mesh and boundary

conditions for case 3DTA7.

Table 5.5: The effect of freestream turbulence on the lift and drag coefficients.

Case CL CD CL/CD

3D2 0.638 0.0665 9.59
3DTA7 (TI0 = 5%) 0.648 0.0523 12.4
3DTA7 (TI0 = 10%) 0.635 0.0478 13.3

5.4.3.1 Aerodynamic characteristics

Fig. 5.19 shows snapshots of the spanwise vorticity component for cases 3D2 and 3DTA7

for two turbulence intensities. Some numerical oscillations in the vorticity fields are ob-

served near the boundary layer edge regardless of the inflow conditions. This may

indicate that the flow is slightly under-resolved in that region. For the laminar inflow, a

clean free shear layer develops from the leading edge. Also leading edge separation is ob-

served and the flow breaks down to turbulence due to Kelvin-Helmholtz instability. For

the turbulent inflow, the vortical structure near the leading edge shows a clear difference

compared to that for the laminar inflow. The free shear layer is disturbed by freestream
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(a)

(b)

(c)

Figure 5.19: Instantaneous z-component of vorticity at mid-span for (a) case 3D2
(TI = 0%), (b) case 3DTA7 for TI0 = 5% and (c) TI0 = 10%. The contours are
normalized by U∞ and c.
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Figure 5.20: A structure of a mean laminar separation bubble with the mechanism
for instability and transition [180].

turbulence and the size of the separation bubble significantly decreases for TI0 = 5%

and it is hard to discern the separation bubble for TI0 = 10%. This is because the size of

separation bubbles is very sensitive to the upstream disturbances [42]. Fig. 5.20 shows

a sketch of the mechanism for instability and transition in a laminar separation bubble

[180] with laminar inflow. When the upstream flow is turbulent, the nonlinear interac-

tion may be significant prior to the laminar separation bubble. It increases momentum

transport normal to the shear layer and leads to an early reattachment compared with

that for the laminar inflow case.

The pressure and skin-friction coefficients for all cases are shown in Fig. 5.21. A

pressure plateau on the upper surface in cases 3DTA7 for different turbulence levels

clearly illustrates the decrease of the bubble size due to freestream turbulence. The

negative peaks of the skin-friction for cases 3DTA7 approach the leading edge as the

turbulence intensity increases. The reattachment point can be identified as the station

where the sign changes of the skin-friction on the upper surface. It changes from x/c =

0.445 for the laminar inflow case to x/c = 0.139 and x/c = 0.089 for TI0 = 5% and

TI0 = 10%, respectively.

Freestream turbulence from the upstream region interacts with the boundary layer

on the airfoil surface and it expedites the transition. It is reasonable to speculate that

the boundary layer with the upstream turbulence at low Reynolds number would be

similar to that with a laminar inflow at high Reynolds number in some aspects. In Fig.

5.21(a), the pressure coefficients for the current cases are compared with the XFOIL data

[25] which was conducted with a laminar inflow at α = 7◦ and Reynolds number varying

from 0.1 × 106 to 2 × 106. A rapid development of the pressure peak near the leading

edge is observed as Reynolds number increases, which is typical of thin airfoils [178].

The shape of Cp from the calculations tends to approach that of the highest Reynolds

number case for XFOIL as the turbulence level increases. Thus it can be concluded

that the boundary layer at low Reynolds number for the turbulent inflow shows similar

characteristics to that at high Reynolds number with laminar inflow in terms of the

mean surface pressure.
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Figure 5.21: The effect of freestream turbulence on the (a) pressure coefficients and
(b) skin-friction coefficients at Re = 50, 000 and α = 7◦. The effective turbulence
intensities at the leading edge are 3.2% and 6.1% respectively, see Table 5.4. Note that
TI0 = 0% corresponds to case 3D2. The same airfoil and angle of attack were adopted
for the XFOIL data [25]. The upstream condition was laminar and Reynolds number
varied; 1× 105, 2× 105 and 2× 106.

Fig. 5.22 shows the effect of freestream turbulence on the mean streamwise velocity

profiles near the separation bubble. The boundary layer for the laminar inflow case are

separated (negative streamwise velocity) near the wall for all locations. The thickness

of the bubble decreases and the reattachment point approaches the leading edge as the

turbulence intensity increases due to a higher momentum mixing. The flows are attached

for both TI0 = 5% and 10% at x/c = 0.14. This is consistent with the skin-friction as

shown in Fig. 5.21(b).
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Figure 5.22: The effect of freestream turbulence on the streamwise component of the
mean velocity profiles near the separation bubble for α = 7◦. — TI0 = 0% (3D2), - -
TI0 = 5%, -·- TI0 = 10%. Note y0 is the distance from the wall.
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Figure 5.23: (a) The thickness of the separation bubble, lSB , at different chord loca-
tions and (b) the corresponding frequency, fSB = U∞/lSB .

The integrated lift and drag coefficients and their ratios are shown in Table 5.5.

The lift coefficients change non-monotonically as the turbulence intensity increases and

this depends on the length and magnitude of the pressure plateau as shown in Fig.

5.21. The drag coefficients decrease monotonically as the inflow turbulence increases.

These changes compared with the laminar inflow case, are mainly due to the decrease

of the separation bubble size. Though the lift decreases for TI0 = 10% compared to

that for TI0 = 5%, the drag decreases as the turbulence level increases resulting in an
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Figure 5.24: The displacement thickness, δ∗ =
∫ δ99
0

(1− u(y)/U∞)dy, for cases
3DTA7 for TI0 = 5%, 10% at different x locations. Note that δ99 is the thickness
of the 99% freestream velocity.

increase of the lift-drag ratio. Thus freestream turbulence gives a favourable effect on

the aerodynamic performance in the current study.

5.4.3.2 Surface pressure characteristics

The effects of freestream turbulence on the surface pressure characteristics at 7◦ inci-

dence are examined in this section. Fig. 5.25 shows the spectral density of the pressure

difference (Eq. 5.4) for cases 3DTA0 and 3DTA7 at different downstream locations. At

f c
U∞

= O(10), two order of magnitudes higher of Gpp is predicted for case 3DTA7 at

TI0 = 5% than that for case 3DTA0 for all x locations. It is reasonable to estimate

the characteristic size of the separation bubble, lSB, for cases 3DTA7 as the distance

from the airfoil surface to the point of the maximum streamwise velocity (i.e. thickness

of the bubble) [42]. Then the size (lSB) and frequency (fSB = U∞/lSB) of separation

bubbles are estimated from Fig. 5.22 and they are shown in Fig. 5.23. It should be

noted that the bubble thickness shows little difference between cases for two different

turbulence intensities based on the current definition of the thickness. But the shapes

of the boundary layer are noticeably different as shown in Fig. 5.22. The gradient of

boundary layer is steeper for TI0 = 10% than that for TI0 = 5%. This difference in the

boundary layers is shown clearly in the displacement thickness, see Fig. 5.24.

In Fig. 5.23, the characteristic size (bubble thickness) increases and frequency de-

creases as x increases for 0.04 < x/c < 0.14. The estimated frequency (Fig. 5.23(b))

at each x location shows a similar (approximately doubled) value with the secondary

peak frequency for GPP in Fig. 5.25 at each corresponding x location. Note that the

secondary peak frequencies are marked with the bars in Fig. 5.25. This shows that the

bubble thickness is a reasonable approximation for the characteristic size of the separa-

tion bubble. The secondary peak frequency tends to decreases as x increases and this

is consistent with Fig. 5.23(b). Therefore the increment of the Gpp magnitude near the
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Figure 5.25: The effect of freestream turbulence and incidence on the spectral density
of pressure difference (Eq. 5.4) at different chord locations. — TI0 = 5% 3DTA0,
- - TI0 = 5% 3DTA7, -·- TI0 = 10% 3DTA7. Note that GPP∗ = GPP /q

2 where
q = 1/2ρU2

∞
is the dynamic pressure.
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Figure 5.26: The effect of freestream turbulence on the pressure fluctuations on the
upper airfoil surface at 7◦ incidence.

secondary peak for cases 3DTA7 is attributed to the separation bubble which is absent

at zero incidence.

The spectral density increases as the entry upstream turbulence level increases at

7◦ for x/c < 0.09. However, at x = 0.14, the Gpp magnitude for case 3DTA7 for

TI0 = 5% is similar or somewhat larger than that for TI0 = 10% as shown in Fig.

5.25(d). This is interesting since higher pressure fluctuations are expected with higher

upstream turbulence. To understand this, the surface pressure fluctuations are shown

in Fig. 5.26. The surface pressure fluctuation is defined as,

Cp′ =
prms
1
2ρU∞

, (5.9)

where prms is the root-mean-square of the pressure fluctuations. Cp′ for case 3DTA7

for TI0 = 10% shows higher magnitudes over most of the chord than those for TI0 = 5%

except for 0.09 < x/c < 0.19. This is because the peak pressure fluctuations occur

further away from the leading edge at lower turbulence intensity than those at higher

one which is consistent with Figs. 5.21(b) and 5.25. In the region 0.09 < x/c < 0.19,

Cp′ for TI0 = 5% is greater.

5.5 Summary

The effect of freestream turbulence on the flow over a NACA 0006 airfoil is examined. As

a baseline simulation, the flow over the airfoil at 7◦ incidence with a laminar inflow con-

dition is simulated and the results are compared with DNS data [61]. The surface forces,

reattachment points and flow profiles over the airfoil surface are well predicted. Thus
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it is demonstrated that the LES calculations with the mixed-time scale SGS model are

able to simulate the flow with a laminar/turbulent transition. The baseline simulation

provides the reference case for the turbulent inflow cases.

To quantify the characteristics of upstream turbulence, a box domain without the

airfoil was set up and the turbulent inflow was imposed on the 2-D transverse plane near

the inlet. An inertial subrange in the energy spectrum is captured and a reasonable

degree of isotropy is achieved at the point where the airfoil is placed. The decay rate of

turbulence is under-predicted compared to that reported in literature due to a relatively

small domain width and a coarse mesh. However, the focus is to provide “reasonable

turbulence” immediately upstream of the leading edge.

The divergence-free version of Xie and Castro’s inflow method (Ch. 4) is applied on

the flow over the airfoil. The effects are examined using both aerodynamic and surface

pressure characteristics. The spectral density of pressure difference (Gpp in Eq. 5.4)

on the airfoil surface at 0◦ incidence shows good agreement with the analytical solution

[2–4]. This would be challenging with other synthetic turbulence inflow techniques

which do not satisfy the divergence-free condition as the computed pressure fluctuations

from non-divergence-free turbulence generator are generally huge (see Ch. 4), i.e. the

magnitude of spectral density of pressure difference would be much higher. Thus the

current approach provides a reliable framework for aerodynamics and unsteady surface

pressure analysis of airfoil flows in a general situation.

The impact of freestream turbulence at 7◦ angle of attack is investigated as an ex-

ample. The separation bubble is diminished as the turbulence level increases resulting

in an increase of the lift to drag ratio. Overall magnitudes of Gpp increase with the

angle of attack and also an increase of the turbulence level. A footprint for the sepa-

ration bubble is observed in Gpp near the secondary peak frequency. The characteristic

frequency of the separation bubble is estimated by using the bubble thickness, lSB, i.e.

fSB = U∞/lSB. It is shown that the secondary peak frequency for Gpp corresponds to

the estimated frequency of the separation bubble. The spectral density of the pressure

difference, Gpp, varies at different x locations and its magnitude is proportional to the

local surface pressure fluctuations.
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Dynamic stall

6.1 Introduction

At yaw, wind turbine blades operate in a periodically oscillating condition and dy-

namic stall appears frequently [138]. The generated forces lead to accumulating fatigue

within the blades reducing their expected service life. Ekaterinaris and Menter (1994)

[29] reported that the predicted load hysteresis using Reynolds Averaged Navier-Stokes

(RANS) approaches tended to deviate from the experimental data, especially for the

deep stall case. For the better prediction on the flow over a pitching airfoil, an LES

approach is adopted. The methodology used for the present work is summarized in Sec.

6.2. For a baseline simulation, static and pitching NACA 0012 airfoils are simulated and

the results are validated against experimental data by Lee and Gerontakos (2004) [85]

and Rinoie and Takemura (2004) [128]. These are presented in Sec. 6.3. The Reynolds

number based on the chord, c, and freestream velocity, U∞, is Re = 135, 000 for both

the static and pitching airfoils. The angle of attack is 10◦ for the static airfoil and

α(t) = 10◦ + 15◦sin(ωt) for the pitching airfoil. The pitching frequency is presented as

the reduced frequency, kred = ωc
2U∞

(Eq. 1.1) and kred = 0.025− 0.1 for this study. The

pitching axis is at the quarter chord point from the leading edge.

This chapter is mainly composed of two parts. Firstly, significant features of dy-

namic stall such as stall delay and leading edge vortices (LEV) are characterized by the

aerodynamic forces and flow visualizations (Sec. 6.4). Secondly, the effect of freestream

turbulence on the flow over a pitching airfoil are investigated (Sec. 6.5). The summary

of the chapter is presented in Sec. 6.6. Part of this work was presented in a conference

paper by Kim, Castro, Xie. DLES9, Dresden, Germany, 2013 [70].

109
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Figure 6.1: Mesh topology for (a) case PC5 as in Table 6.4 and (b) the modified
version of case PC5.
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6.2 Methodology

Two independent methodologies were adopted for the static and pitching airfoils. A

common methodology for both cases is described first, then details will be explained

in the following sections. For the common set-ups, a typical C-type mesh was applied

as shown in Fig. 6.1(a). The mixed-time-scale (MTS) SGS model [54] was used with

CMTS = 0.03 and CT = 10 as model constants [78] and a simple top-hat filter was

applied for the explicit filter. A second order, implicit scheme was used for the temporal

discretization and the bounded second order (Gamma) scheme [59] was used for the

convection term. The time step was t/T = 1.5 × 10−4 and the maximum CFL ≈ 2.

The transient incompressible flow solver from OpenFOAM was used and the PIMPLE

algorithm (see Appendix B) was adopted for the velocity-pressure coupling. The number

of outer correctors was set to two and the number of pressure correctors was set to three.

Pointwise V16 was used to generate all meshes.

A

ub

Figure 6.2: The surface area vector A and boundary velocity vector ub on the control
volume for the dynamic mesh. Dots are cell vertices.

6.2.1 Dynamic mesh

The pitching motion of the airfoil was predefined and the dynamic mesh approach was

adopted for the internal mesh to accommodate the deformation of the domain due to

the airfoil motion. The term “dynamic mesh” refers to the relative distances among

grid points changing in time to adjust to an unsteady motion of the subject through

squeezing and stretching cells. The pimpleDyMFoam solver in OpenFOAM was used for

the dynamic mesh. For the finite volume method, the conservation equation of property,

φ, over an arbitrary moving control volume, VC , in integral form is (cf. Eq. 3.3),

d

dt

∫

VC

φdVC +

∫

A
dA · (u− ub)φ =

∫

VC

∇ · (Γ∇φ)dVC , (6.1)

where u is the fluid velocity vector, A is the outward pointing surface area vector and

ub is the boundary velocity vector of the cell-face, see Fig. 6.2. Note that Γ is the
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diffusivity coefficient. The local boundary velocity, ub, is interpolated from the point

velocity, up, which is imposed at each vertex of the control volume. To govern the vertex

motion, the Laplacian operator with a diffusivity, γ, is adopted [60],

∇ · (γ∇up) = 0. (6.2)

The boundary conditions for Eq. 6.2 are enforced from the known boundary motion,

e.g. a symmetric or moving wall. Then the vertex position at the time level n + 1 is

calculated by using up,

xn+1 = xn + up∆t. (6.3)

The mesh quality around moving object is important while the mesh away from the

boundaries has more freedom to deform. The diffusivity, γ, in Eq. 6.2 has an influence

on the mesh deformation and several types of the diffusivity were examined by [60] such

as,

• Constant : γ =constant,

• Linear : γ = 1
l ,

• Quadratic : γ = 1
l2
,

• Exponential : γ = e−l,

where l is the cell centre distance to the nearest selected boundary. Fig. 6.3 shows the

effect of the diffusivity on the mesh quality for the trailing edge of the moving airfoil

demonstrated by [60]. For the quadratic diffusivity, the mesh quality is superior to that

(a) γ =constant (b) γ = 1
l2

Figure 6.3: The effect of diffusivity, γ, on the mesh quality around the moving airfoil
trailing edge [60].
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for the constant diffusivity. Thus the quadratic diffusivity was adopted for the current

study. As all grid points move based on Eq. 6.3, an explicit interface between the static

and dynamic mesh region is not required. Further demonstrations of the dynamic mesh

in OpenFOAM can be found in Kassiotis (2008) [64] and Moradnia (2008) [108].

Table 6.1: Summary of the boundary conditions for a static (ST) and pitching (PC)
airfoils. U∞ is the freestream velocity and d/dn is a normal derivative to the boundary.
The transverse plane is placed at x = x0 where the synthetic turbulence (XCDF) is
imposed. See Fig. 6.1 for the mesh type.

Mesh type B1 B2 B3 B4 x0/c = −7

C-type ui = U∞, ui = U∞, dui/dn = 0, dui/dn = 0, n/a
(ST, PC) dp/dn = 0 dp/dn = 0 p = p∞ p = p∞

Modified ui = U∞, ui = U∞, dui/dn = 0, dui/dn = 0, XCDF
(PC) dp/dn = 0 dp/dn = 0 p = p∞ p = p∞

EM1 EM2
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3

E
M
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l 1r
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l 2r

Figure 6.4: A local refined mesh for the static airfoil case. The size of refined region
(RR) is characterized by the lengths, lr1, lr2, lr3 and lr4 , see Table 6.2.

Table 6.2: Types of the refined regions (RR) and their sizes (lr), the directions to
refine (Dir). Different refinement regions are applied for different cases, see Table 6.3.
lr1− lr4 are depicted in Fig. 6.4.

RR lr1 lr2 lr3 lr4 Dir Cases

RR1 0.5c 0.7c 0.3c 0.5c x, y ST2D1,2

RR1 0.5c 0.7c 0.3c 0.5c x, y, z ST3D1,2,3

RR2 0.25c 0.4c 0.2c 0.35c z ST3D2,3

RR3 0.1c 0.2c 0.1c 0.2c z ST3D3

6.3 Baseline simulations

The mesh convergence tests were conducted for the static and pitching airfoils as baseline

simulations. A local refinement mesh was used for the static airfoil and a structured mesh
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Figure 6.5: A sketch of the domain (not to scale) and the boundary conditions.

Table 6.3: The computational domain size for the static airfoil and number of grid
points before the refined mesh is applied. Nup and Nlow are the number of grid points
on the upper and lower airfoil surfaces respectively. Note that Nz is the number of grid
points in the spanwise direction. The refinement ratio is 2 and N ′

z is the final number
of grid points in the spanwise direction after the refinement is applied. See Fig 6.5 for
R and W .

ST2D1 ST2D2 ST3D1 ST3D2 ST3D3

R [c] 22 22 22 22 22
W [c] 33 33 33 33 33
Lz [c] n/a n/a 0.25 0.25 0.25

NR 70 200 70 70 70
NW 66 66 66 66 66
Nup 367 733 367 367 367
Nlow 106 211 106 106 106
Nz n/a n/a 16 16 16
N ′

z n/a n/a 32 64 128
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was used for the pitching airfoil cases. For the local refinement mesh, ‘refineMesh’ utility

in OpenFOAM [112] was used based on structured mesh generated by using Pointwise.

The purpose of the static airfoil case is to compare the results for the pitching airfoil

case to those for the static airfoil case at a given angle of attack.

6.3.1 Mesh convergence tests for the static airfoil

For the static airfoil case, 10◦ incidence was applied at Re = 135, 000. To obtain the

mean aerodynamic forces, averaging started once the lift coefficient reached a statistically

converged state and averaging was conducted over 10T where T = c/U∞. Spanwise

averaging was also conducted for all figures for 3-D cases. The boundary conditions

for the static airfoil case (ST) are summarized in Table 6.1 and periodic boundary

conditions were used in the spanwise direction for 3-D cases. The coordinates x, y and

z with the origin at the leading edge of the airfoil represented the streamwise, cross-flow

and spanwise direction respectively.

In order to save CPU time, the mesh convergence tests in the streamwise and cross-

flow directions were conducted on the 2-D domain without an SGS model. The number

of grid points was increased until the surface forces for the 2-D simulations did not

change. The first off-wall grid point was placed at y1 ≈ 1× 10−4c near the leading edge

and y1 ≈ 3× 10−4c for the trailing edge before the refined mesh was applied.

A local refined mesh was applied for the static airfoil case to reduce the computa-

tional costs as shown in Fig. 6.4. The size of the refined region is characterized with

lr1, lr2, lr3 and lr4 and the details of the refined regions are summarized in Table 6.2.

The number of grid points and domain sizes for the mesh convergence tests before the

local refinement was applied, are summarized in Table 6.3. The refinement ratio was 2,

i.e. the grid size was halved in any direction where the refinement was applied.

Fig. 6.6 shows the surface pressure and skin-friction coefficients for cases ST2D1 and

ST2D2 and they match very well with each other. Thus the mesh for case ST2D1 was used

to generate the 3-D mesh. The 3-D mesh was generated by extruding the ST2D1 mesh

into the spanwise direction with 16 grid points. Then the local refinement was applied,

see Tables 6.2 and 6.3. The number of grid points in the spanwise direction after the

local refinements is N ′
z as shown in Table 6.3. The total number of grid points for case

ST3D3 is about 21 × 106. In contrast, a structured mesh without the local refinement

would require 33 × 106 grid points approximately, for the same resolution around the

airfoil.

Fig. 6.7(a) shows the pressure coefficients for the 3-D cases and they show reasonably

good agreement with the experimental data [128] in spite of the different spanwise res-

olutions. In contrast, the skin-friction coefficient more closely approaches the measured
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Figure 6.6: The effect of resolution on the (a) pressure and (b) skin-friction coefficients
for the 2-D static airfoil at α = 10◦.

values as the number of grid points increases in the spanwise direction. The reattach-

ment points are at x/c = 0.1 for the experiment [128], x/c = 0.18 for case ST3D1,

x/c = 0.14 for case ST3D2 and x/c = 0.09 for case 3ST3D3. Also the magnitudes of the

peaks in Cf near the leading edge due to the laminar separation bubble increases as

the number of grid points increases in the spanwise direction. Case ST3D3 shows good

agreement with the reference data in terms of Cp and Cf , thus this case is considered

as the baseline simulation for the static airfoil flow in the following sections.
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Figure 6.7: The effect of resolution in the spanwise direction on the (a) pressure and
(b) skin-friction coefficient for the 3-D static airfoil at α = 10◦. The inset shows a
zoomed view near the leading edge. Data for Exp1 is taken from Rinoie and Takemura
(2004) [128].

6.3.2 Mesh convergence tests for the pitching airfoil

The pitching motion was described by the angle of attack, α = 10◦ + 15◦ sin(ωt) where

ω was the pitching frequency and the reduced frequency is kred = ωc
2U∞

, see Eq. 1.1.

For the mesh convergence tests, kred = 0.1 was adopted. The initial angle of attack

was set to 10◦ ↓. Note that ‘↑’ indicates pitch-up and ‘↓’ indicates pitch-down. Pitch-

up motion has a negative sign for the pitching moment. The mean angle of attack,
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Figure 6.8: The effect of resolution and domain size on the lift, drag and moment
coefficients for the pitching airfoil at kred = 0.1 and α = 10◦ + 15◦sin(ωt).
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Table 6.4: The computational domain size in unit c and number of grid points for
pitching (PC) airfoils. Note that the domain size in the upstream direction is the same
as that in radial direction, R, for the modified mesh as shown in Fig. 6.1. See Fig 6.5
for R and W .

PC1 PC2 PC3 PC4 PC5 PC6

R [c] 22 22 22 22 22 22
W [c] 33 33 33 33 33 33
Lz [c] 0.5 0.5 0.5 0.5 0.5 1

NR 206 323 206 206 206 206
NW 66 66 81 81 81 81
Nup 386 386 700 386 386 386
Nlow 193 193 193 193 193 193
Nz 40 40 40 80 20 80

Figure 6.9: A snapshot of the velocity magnitude normalized by U∞ for case PC5
at kred = 0.1 and α = 22.9◦ ↑. A dashed-line is drawn along the shear layer near the
leading edge.

10◦, was presented by the velocity components at the boundaries, u = U∞ cos(10◦) and

v = U∞ sin(10◦). The Reynolds number for all pitching cases was Re = 135, 000.

Two types of mesh topology were used for the pitching airfoil cases; the C-type mesh

was adopted for the laminar inflow and the modified mesh (Fig. 6.1(b)) was used for

the turbulent inflow. The mesh around the airfoil was identical for both meshes. The

quarter chord point was placed at x = 0.25c where x, y and z were the streamwise,

cross-flow and spanwise directions. The first grid point from the airfoil was located at a

distance 1 × 10−4c near the leading edge and 3 × 10−4c near the trailing edge. Aspect
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ratios were 15 at the leading edge and 2.3 at the trailing edge. Symmetric boundary

conditions were applied in the spanwise directions and other boundary conditions for

the pitching airfoil case (PC) are tabulated in Table 6.1. The mesh convergence tests

for the pitching airfoil were conducted and the domain size and number of grid points

are summarized in Table 6.4.

Fig. 6.8 shows the lift, drag and moment hysteresis from the mesh convergence tests.

Data in Fig. 6.8 is taken after the first α = 0◦ ↑ which corresponds to 12 flow passes

over the chord (tU∞/c) after the initial condition. Only the first cycle after the first

α = 0◦ ↑ for all cases is shown in Fig. 6.8 because the hysteresis from successive cycles

matches together with only small deviations.

A strong shear layer is developed near the leading edge as shown in Fig. 6.9. It is

important that the mesh is fine enough to capture the shear layer. Thus the effects of the

resolution in the cross-flow direction (PC1 and PC2) and chordwise direction (PC1 and

PC3) were tested. The effect of the resolution in the spanwise direction was of interest

because the transition and reattachment points were sensitive to the spanwise resolution

for the flow over a static airfoil (see Sec. 6.3.1). Thus the effect of the spanwise resolution

was tested in cases PC1, PC4 and PC5. Cases PC3 and PC6 were set to investigate the

domain width effect on the hysteresis for the pitching airfoil. The results from all these

cases agree reasonably well with each other. The angles where the maximum lift occurs,

are around 23◦ ↑ and the size of hysteresis loops is very similar for all cases. Thus the

mesh for case PC5 is used as the baseline simulation for the pitching airfoil in following

works. It is noted that about 700 CPU hours were required to simulate a few cycles of

pitching motion using 96 processors for case PC5.

6.4 Dynamic stall events

Table 6.5: The effect of the reduced frequency on important unsteady aerodynamic
values. αL,max is the angle of attack where the maximum lift occurs.

Case kred CL,max CM,min CD,max αL,max

Exp [85] 0.025 1.47 -0.143 0.425 17.5◦

Exp [85] 0.05 1.87 -0.211 0.66 21.1◦

Exp [85] 0.1 2.44 -0.263 0.91 24.7◦

LES2 0.025 1.49 -0.159 0.412 16.4◦

LES2 0.05 1.74 -0.287 0.629 19.5◦

LES2 0.1 2.01 -0.345 0.856 22.8◦

Dynamic stall is a phenomenon associated with an unsteady airfoil (or lifting sur-

face) motion that presents large hysteresis on the lift, drag and pitching moment while

incidence is beyond its static stall angle [15]. At a certain pitching angle which exceeds
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Figure 6.10: The effect of the reduced frequency on the lift, drag and moment coefficients. — Exp [85], - - LES1, -·- LES2. The results for cases
LES1 and LES2 are calculated with the mesh for case PC5 and 3 cycles were used for the phase average. Note that forces for LES2 are taken from
only part of the airfoil surface, 0 < x/c < 0.8.
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Figure 6.11: See Fig. 6.10 for caption.
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the static stall point, the flow on the airfoil is still attached, i.e. stall is delayed. As the

pitching angle increases, the lift and moment change rapidly as the flow starts to de-

tach, i.e. dynamic stall occurs. Complex flow phenomena are investigated by analysing

surface forces, pitching moments and flow fields.

Based on the mesh used for case PC5, the effect of the reduced frequencies, k = 0.025,

0.05 and 0.1, on the forces and moments hysteresis is investigated as shown in Figs. 6.10

and 6.11. From the first α = 0◦ ↑, three cycles were used for the phase average. The

results are compared with experimental data [85] that were averaged over 100 cycles.

Though the phase-averaged data from the LES calculations in Figs. 6.10 and 6.11 were

not fully converged, the stall angle and size of hysteresis were nearly the same at each

cycle. Therefore, a longer phase average would not be expected to improve agreement

between the simulation and experimental data. The load hysteresis from the simulations

are integrated over the airfoil surface while those from the experiment were integrated

over a line along the pressure tabs. It is also noted that adopting 1c domain width (PC6)

did not present noticeable differences in force and moment hysteresis compared to 0.5c

(PC3).

In the experiment [85], CL, CD and CM were calculated from pressure tab mea-

surements and these tabs were placed at 0 < x/c < 0.8 over the airfoil surface. For

an accurate comparison, two sets of airfoil surfaces were used to calculate the surface

forces; the first set used the entire airfoil surface (LES1) and the second one used a part

of the airfoil surface which covered 0 ≤ x/c ≤ 0.8 (LES2). In consequence, case LES2

shows better agreement with the reference data than case LES1 for all predictions as

shown in Figs. 6.10 and 6.11. Important unsteady aerodynamic values are summarized

in Table 6.5 and compared with the experimental data.

Generally, all aerodynamic coefficients match well with the measurements. As the

reduced frequency increases, the magnitudes of the peaks for CL, CD and CM increase

and the angle for the maximum lift increases. The same trend was also reported in

literature [15, 98]. Note that the moment coefficients for the experimental data [85] was

divided by 0.15 because the chord length (c = 0.15m) was not taken into account when

CM was calculated in their original works. This was confirmed by Prof. Timothy Lee

[85] via a personal communication.

The lift coefficients for kred = 0.025, 0.05 show very good agreement while those

for kred = 0.1 show somewhat different behaviours; the CL loop has a larger area and

maximum lift is lower for the calculations than those for the experiments. Uncertainties

on the aerodynamic loads and pitching moment in the measurements were discussed in

Lee and Gerontakos (2004) [85] and it is quoted here,

“The effect of the length of the Tygon tubing was a simple time constant delay on

all pressure signals with frequency above 2.95 Hz, which rendered a limited reduced fre-

quency kred of 0.0993 at U∞ = 14ms−1 or Re = 1.35 × 105 in the present experiment.
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Therefore, as a result of the difficulties encountered with the inevitable lag in the trans-

ducer’s response, the curves of lift and pressure drag coefficients, CL and CD, and the

pitching-moment coefficient, CM , for kred > 0.1 can only be considered qualitatively, but

large hysteresis effects are apparent nevertheless.”

If the measurement data can only be considered qualitatively for kred > 0.1, then

the question is whether the deviations between the calculations and measurements for

kred = 0.1 in Figs. 6.10 and 6.11 are derived from the response lag in using the Tygon

tubing. This question was sent to Prof. Timothy Lee [85] and the response is quoted

below,

“The tubing length did not seem to be problematic; we did try with half the length

(at certain orifices) and did not see any disparity. I guess that it would also be difficult

to compute the CL during downstroke before the reattachment. As far as the accuracy

of kred = 0.09 case (especially during downstroke), the jury is still out there.

The downstroke data could be tricky due to the massive leading edge vortex induced

separated flow. The corresponding surface pressure measurements could therefore be

debatable. But again at this low Re, the experimental data could vary between researchers

due to different flow qualities/facilities and the experimental setups. Your simulation

results however seem to agree with the experimental data quite nicely at kred = 0.05 and

0.025; I can only say that the leading edge vortex disruption/bursting maybe less rigorous

(for kred = 0.025, 0.05).”

It would be challenging to measure the surface pressure when the leading edge vortex

is very strong during the downstroke in experiments. LES, in contrast, does not suffer

with a technical limit to measure the surface pressure as long as the large structures are

resolved accurately. A reasonable phase-average was conducted to obtain the statistical

data and the mesh convergence tests showed that a wider domain width (PC6 in Table

6.4) did not show noticeable difference on the hysteresis loop. Therefore, the current

calculations are reliable for kred = 0.1.

Laminar separation bubble diminishing

During the pitch-up process, the boundary layer on the suction side of the airfoil is

suppressed and the size of the laminar separation bubbles significantly diminishes or

disappears. Fig. 6.12 shows comparisons between the static and pitching airfoils at a

similar incidence. For the pitching airfoil for kred = 0.05, the pressure coefficient and

vorticity field at α = 5.9◦ ↑ do not show any indication of laminar separation bubbles.

In contrast, a negative pressure plateau on Cp due to the laminar separation bubble was

observed from the measurement [85] of the static airfoil flow as shown in Fig. 6.12(a).

This indicates the diminishing or disappearance of the laminar separation bubble on the

pitching airfoil. The instantaneous spanwise component of vorticity at the middle section

confirms that the boundary layer is attached on the pitching airfoil at this incidence.
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Figure 6.12: (a) The pressure coefficient and (b) instantaneous z-vorticity at the
middle section for case PC5 at α = 5.9◦ ↑ and kred = 0.05. The vorticity contour is
normalized by c and U∞. The experimental data [85] was conducted on a static airfoil
at α = 6◦ with the same airfoil and Reynolds number.

Boundary layer suppression

The boundary layer suppression is observed at a relatively high angle of attack (yet lower

than the dynamic stall angle). Note that the static stall occurs at around 13◦ [85] at

the given conditions. Fig. 6.13 shows the contours of instantaneous velocity magnitude

for the static and pitching airfoils at α ≈ 10◦. The boundary layer thickness for the

pitching airfoil is thinner than that for the static airfoil near the trailing edge. Thus the

boundary layer for the pitching airfoil is suppressed compared with that for the static

airfoil at similar incidence.
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Figure 6.13: Instantaneous velocity magnitude contour near the trailing edge for the
static (top: ST3D3, α = 10◦) and pitching (bottom: PC5, α = 10.1◦ ↑, kred = 0.05)
airfoils at the middle section of the span. The velocity contour is normalized by U∞.

This boundary layer suppression is mainly due to the time lag of the boundary layer

development on moving subjects [82, 86]. When the airfoil is pitching, the flow around

it at a given geometric angle of attack (angle between the freestream velocity direction

and chord line) does not ‘see’ the same flow topology as that around the static airfoil

at the same geometric angle of attack. This is because the flow over the pitching airfoil

‘remembers’ its history. During the upstroke, the boundary layer of the pitching airfoil

looks suppressed because it ‘remembers’ the previous (in time) flow topology which is

produced at lower incidence.

The pitching airfoil passes the static stall angle, α ≈ 13◦ ↑ [85], without any dis-

cernible change in the lift coefficient slope for all reduced frequency ranges as shown
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Figure 6.14: (a) The pressure and (b) skin-friction coefficients at two different states
during the upstroke, α = 16.6◦ ↑ and 19.2◦ ↑. The reduced frequency is kred = 0.05
and the mesh for case PC5 is used. A spanwise average is applied to calculate the data
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Figure 6.15: Negative pressure peaks over the airfoil for kred = 0.05 by using the PC5
mesh, α = 16.6◦ ↑ (top), 19.2◦ ↑ (bottom). The pressure fields are normalized by ρU2

∞
.
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in Fig. 6.10, i.e. stall is delayed. Stall delay phenomena are due to a combination of

the aforementioned laminar separation bubble diminishing and the lag of the boundary

layer development (BL suppression). For the rigorous understanding for stall delay on

a pitching airfoil, unsteady boundary layers have to be well understood but this has not

yet been accomplished [86].

ωt [°]

C
L

-90 0 90 180 270

0

1

2

kred=0.025
kred=0.05
kred=0.1

(25° )(α=-5° ) (-5°)(10° ↑ ) (10° ↓ )

Figure 6.16: The lift coefficients (from LES2 in Fig. 6.10) versus period at different
kred. The dots indicate the lift peaks due to the shedding of the leading edge vortices.
The vertical dot-line indicates the static stall angle, i.e. α = 13◦ [85].

Leading edge vortex

As angle of attack increases, the 1st leading edge vortex (LEV) is initiated. When each

LEV is generated and convects downstream, a lift increase follows. The reason for this

increment was well commented by Dickinson and Götz (1993) [24]. They mentioned

that “attached bubble (LEV) greatly enlarges the effective camber of the wing, and thus

increase the production of conventional potential lift, which results from potential flow

around the airfoil and application of the Kutta condition at the trailing edge”. The LEV

initiation, convection and its influence to the lift, drag and pitching moment are the

most important phenomena in dynamic stall events. Thus, the characteristics of the 1st

LEV are quantified for kred = 0.025− 0.1.

The convection speed of the leading edge vortex (ULEV ) with respect to the chord

line at α = 0◦, can be quantified by measuring the travelling time of the pressure

peaks on the suction side of the airfoil [38]. Fig. 6.14 shows the pressure and skin-

friction coefficients at two different angles of attack. A strong leading edge vortex

presents peaks of Cp and Cf which are marked in the figure. Then ULEV is estimated

by using the time interval between the two incidences and the distance between the

peak points. The negative peaks on the pressure contours at the same incidence in Fig.

6.15 (dashed circles) confirm the correlation between the LEV and the surface forces.
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By using this estimation, it is shown that ULEV ≈ 0.25U∞ for kred = 0.025 − 0.1. It

is noticed that the LEV convection speed is independent of kred. Green et al. (1992)

[38] measured the LEV convection speed with various types of airfoils. They concluded

that the LEV convection speed was independent of the airfoil motion, and also reported

that ULEV ≈ 0.26U∞ − 0.31U∞ at the maximum pitch angle αmax ≈ 25◦ for the NACA

0012 airfoil. A similar LEV convection velocity, ULEV ≈ 0.3U∞, was also reported by

other group [16]. Considering uncertainties in determining vortex cores, the difference in

the LEV convection speed between the current case and those in literature is relatively

small.

Fig. 6.16 shows CL versus period for a better reading. The bullet points represent

the peaks due to the leading edge vortex convection over the upper airfoil surface. The

magnitudes of the first and second peaks decrease as the reduced frequency decreases.

The maximum-lift angle approaches the static stall angle as the reduced frequency de-

creases. At very small pitching frequency, a quasi-steady state would be achieved and

the coefficients for the pitching airfoil would show no difference from those for the static

case at the corresponding incidence. McAlister et al. (1978) [96] reported that the aero-

dynamic forces are quasi-steady for kred < 0.004. The shedding frequency between the

first and second leading edge vortices are characterized by the Strouhal number,

St =
fsc sinαLEV

U∞
, (6.4)

where fs is the shedding frequency and αLEV is the mean angle of attack between

the first and second LEV peaks. Then the Strouhal number for the present study

(kred = 0.025 − 0.1) is St ≈ 0.1. This Strouhal number is lower than the well-known

bluff-body shedding frequency, St ≈ 0.2 [130]. Zaman et al. (1989) [187] reported that

the Strouhal number of the flow over a static airfoil varies depending on angle of attack.

They showed that St ≈ 0.2 when α > 18◦ (post-stall) and St ≈ 0.02 when α < 15◦

(pre-stall) for the flow over the airfoil. The shedding frequency for the current case lies

between these two regimes. This is because the pitching angle passes across both pre-

and post-stall regimes and the shedding frequency shows the combined characteristics

of both regimes.

Figs. 6.17 and 6.18 show important features for dynamic stall by using snapshots of

the spanwise component of vorticity and pressure field at kred = 0.05. Each snapshot of

the flow is marked on the lift and moment coefficients in Fig. 6.19 and it is summarized

as,

1. α = 10◦ ↑ : Laminar separation bubble and boundary layer are suppressed com-

pared to that on a static airfoil at the same angle of attack.

2. α = 13◦ ↑ : The lift keeps increasing above the static stall angle without discernible
changes of the lift coefficient slope.
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(a) 1. α = 10◦ ↑ (b) 2. α = 13◦ ↑ (c) 3. α = 18.2◦ ↑ (d) 4. α = 19.9◦ ↑ (e) 5. α = 22.4◦ ↑

(f) 6. α = 23.3◦ ↑ (g) 7. α = 24.8◦ ↑ (h) 8. α = 25◦ (i) 9. α = 10.2◦ ↓ (j) 10. α = 4◦ ↓

Figure 6.17: The instantaneous z-component of vorticity normalized by c and U∞ for kred = 0.05 at the middle section of the span. Note that the
chord line is aligned to the x-axis at α = 10◦ as the mean angle of attack is presented by the velocity components at the boundaries, u = U∞ cos(10◦)
and v = U∞ sin(10◦).
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(a) 1. α = 10◦ ↑ (b) 2. α = 13◦ ↑ (c) 3. α = 18.2◦ ↑ (d) 4. α = 19.9◦ ↑ (e) 5. α = 22.4◦ ↑

(f) 6. α = 23.3◦ ↑ (g) 7. α = 24.8◦ ↑ (h) 8. α = 25◦ (i) 9. α = 10.2◦ ↓ (j) 10. α = 4◦ ↓

Figure 6.18: The instantaneous pressure normalized by ρU2
∞

for kred = 0.05 at the middle section of the span.
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Figure 6.19: (a) The lift and (b) moment coefficients (from LES2 in Fig. 6.10) versus
period at kred = 0.05. The numbers correspond with the snapshots in Figs. 6.17 and
6.18. 1: α = 10◦ ↑, 2: α = 13◦ ↑, 3: α = 18.2◦ ↑, 4: α = 19.9◦ ↑, 5: α = 22.4◦ ↑, 6:
α = 23.3◦ ↑, 7: α = 24.8◦ ↑, 8: α = 25◦, 9: α = 10.2◦ ↓, 10: α = 4◦ ↓.

3. α = 18.2◦ ↑ : The moment coefficient starts to drop rapidly, i.e. moment stall.

The lift coefficient slope increases rapidly and low pressure is formed at the suction

side as the first leading-edge vortex is initiated.

4. α = 19.9◦ ↑ : The lift coefficient reaches the maximum and starts to decrease.

The moment coefficient reaches the minimum. A large area of low pressure at

the suction side is observed while the first leading-edge vortex keeps convecting

downstream.
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5. α = 22.4◦ ↑ : The lift coefficient increases again as the second leading-edge vortex

is generated and convected downstream.

6. α = 23.3◦ ↑ : The lift coefficient passes the second peak as the second leading-

edge vortex passes over the half chord. The moment coefficient reaches its second

minimum. An evident tip vortex is formed which is entrained by the leading-edge

vortex as it passes over the trailing edge.

7. α = 24.8◦ ↑ : A small increase of the lift is observed due to the third leading-edge

vortex.

8. α = 25◦ : The maximum angle of attack is reached and a large vortex is shedded.

9. α = 10.2◦ ↓ : The flow begins to be attached.

10. α = 4◦ ↓ : The flow is fully attached.

A dynamic stall event for kred = 0.025− 0.1, α = 10◦ + 15◦ sin(ωt) at Re = 135, 000

has been presented. Distinctive features of dynamic stall such as laminar separation

bubble diminishing, boundary layer suppression and leading edge vortex, are explained

and quantified for an example reduced frequency, kred = 0.05.

Qualitative comparisons of the flow field with measurements and RANS calculations

are depicted in Fig. 6.20. Instantaneous streamlines and spanwise vorticity component

show similarities with those from the experimental data by Raffel et al. (1995) [123]. The

spanwise vorticity component in the current simulation reveals random-like distributions

within the leading edge vortex which were also observed in the experiment, see Figs.

6.20(a) and 6.20(c). However these details were not found in the RANS calculations

by Wang et al. (2010) [177], as shown in Fig. 6.20(e), which is not surprising. This

demonstrates the potential of the LES techniques, which can be used to acquire a deep

insight for wind turbine flows and to improve RANS models for such flows.

6.5 The effect of freestream turbulence

The developed synthetic turbulence model (XCDF in Ch. 4) was adopted to investigate

the effect of freestream turbulence on the pitching airfoil by using the PC5 mesh in Table

6.4 for kred = 0.05. Two different turbulence intensities, TI0 = 5% and 10%, were used

where suffix ’0’ denotes the input variable. The upstream turbulence characteristics

were quantified in the domain without the airfoil and this case is called the ‘empty box

case’. Then the same turbulence characteristics were used for the flow over the pitching

airfoil.
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(a) z-vorticity (b) Streamlines

(c) z-vorticity (d) velocity vector and streamline

(e) z-vorticity

Figure 6.20: Qualitative comparisons of the flows over a pitching NACA 0012 airfoil.
(a) and (b): LES calculations by using the PC5 mesh at the middle section of the
airfoil at α = 23.3◦ ↑ (Re = 135, 000, α(t) = 10◦ + 15◦sin(ωt), kred = 0.1); (c) and
(d): experiment by Raffel et al. (1995) [123] at α = 24◦ ↑ (Re = 373, 000, α(t) =
15◦ + 10◦sin(ωt), kred = 0.15); (e): RANS calculations by Wang et al. (2010) [177] at
α = 23.7◦ ↑ (Re = 373, 000, α(t) = 15◦ +10◦sin(ωt), kred = 0.15). Note that all figures
are instantaneous snapshots.
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6.5.1 Upstream turbulence

Upstream turbulence was assessed with a similar approach as in Sec. 5.4. To characterize

upstream turbulence, a new mesh was generated in which the upstream region of the

domain was the same as the modified mesh as shown in Fig. 6.1(b) but the airfoil was

removed and the downstream part of the mesh was the same as the upstream one. The

boundary conditions, numerical schemes and domain size were the same as those for

case PC5. The time step, normalized by I11 and U∞, was ∆t× U∞/I11 = 0.0133.

Two different turbulence intensities, TI0 = 5% and 10%, were imposed on a 2-D

transverse plane at x/c = −7 in the coordinate system for case PC5. The integral

length scales for the XCDF model were Ii1 = 0.3c, Ii2 = 0.15c and Ii3 = 0.15c in

the streamwise, cross-flow and spanwise directions, respectively, where i indicates the

velocity components, see Eq. 2.52. The grid size normalized by the integral length

scale was ∆x = 0.333I11, ∆y = 0.252I11 and ∆z = 0.083I11. The coordinate for the

empty box case was normalized by the integral length scale (I11) and the origin was

placed where the synthetic turbulence was imposed. The position where the airfoil,

would then, be placed was at x/I11 = 23.3. The turbulent characteristics at these two

points, x/I11 = 0 and x/I11 = 23.3, are summarized in Table. 6.6. The integral length

scale and Reynolds numbers at x/I11 = 23.3 were estimated after the calculations for

the empty box case were finished. Note that Eq. 2.52 was used to estimate the integral

length scale at x/I11 = 23.3.

Table 6.6: Upstream turbulence characteristics: turbulence intensity (TI), integral
length scales and Reynolds number on the domain without the airfoil. The inflow is
generated at the origin (x/I11 = 0) and the airfoil will be placed at x/I11 = 23.3. Note

that ReI = U∞I11
ν and Reλ =

(
20
3 ReI

)1/2
[122]. I11 = I21 = I31 and I11 = 2Ii2 = 2Ii3

where i = 1, 2, 3.

x/I11 TI[%] I11/c ReI Reλ
0 5 0.3 40,500 520
23.3 4.5 0.43 58,050 622

0 10 0.3 40,500 520
23.3 6.3 0.47 64,350 650

Fig. 6.21(a) shows the (compensated) one-dimensional energy spectrum of the

streamwise velocity fluctuations normalized by the local turbulent kinetic energies at

x/I11 = 23.3. The inertial subrange (a plateau value) is visible for both cases. The

highest wavenumber that can be resolved by the current resolution (Nyquist limit) is

κmaxI11 = 1
2
2π
∆xI11 = 9.42 but E11 starts to drop κI11 ≈ 2.5. This phenomenon is asso-

ciated with the SGS model, resolution, filtering method and numerical scheme. Firstly,

the top-hat filter would smooth the large structure in spectral space as discussed in

Sec. 5.4.1, see also Fig. 2.3. Secondly, the numerical scheme has an effect on the early
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Figure 6.21: (a) A one-dimensional energy spectrum, E11, of the streamwise velocity
component normalized by the local turbulent kinetic energy at x/I11 = 23.3 (see Table
6.6). The dot-dashed line is the inertial region value, 2.5. (b) The turbulent kinetic
energy which is normalized by the input value k0. The dot-dashed line is from k
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Figure 6.22: Anisotropy of upstream turbulence.

drop of E11. The Gamma scheme [59] (Sec. 3.3) was used for the current study. This

scheme is a bounded second order scheme and inherently more diffusive than the central

differencing scheme. It leads to a further drop in the high wavenumber range as shown

in Fig. 6.21(a). The ratios between the grid size and estimated Kolmogorov length

scale are calculated in the same method as in Sec. 5.4.1 and they are ∆x/η = 199 and

257 for TI0 = 5% and 10% respectively. It shows that the current grid size is placed

substantially above the dissipation range.

The effect of the Gamma scheme is also found in the decay rate of turbulence. Fig.

6.21(b) shows the rate of changes of the turbulent kinetic energy normalized by the

input values k0 along the x direction. The estimated exponent is larger, n = 0.7, than

that with the central differencing scheme as in Sec. 5.4.1 which was n = 0.35. This

is mainly due to the bounded numerical scheme in the present study. Although the

Gamma scheme is diffusive, it guarantees the boundedness. Thus numerical oscillations
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are avoided near the strong shear layer or in the deep stall regions owing to the dynamic

mesh.

Although some discrepancies from the turbulence characteristics reported in litera-

ture are observed in the present study, the focus of the work here is to generate reasonable

freestream turbulence and quantify its characteristics immediately upstream of the lead-

ing edge which are the integral length scales and turbulence intensities. It is also to be

noted that the mesh is the region where the airfoil is placed will be refined in Sec. 6.5.2.

This will improve the simulation of the turbulence decay.

The degree of isotropy is shown in Fig. 6.22. The ratios of turbulence fluctuations

are u′

rms
v′rms

≈ 2 and u′

rms
w′

rms
≈ 3 at x/I11 = 23.3 where the airfoil will be placed and they

approach unity as x increases. It should be noted that a better degree of isotropy is

achieved when periodic boundary conditions were applied in the spanwise direction.

Again the purpose of this study is to investigate the effect of the given freestream

turbulence characteristics on the flow over a pitching airfoil rather than to predict an

accurate decay of homogeneous isotropic turbulence. Therefore turbulence intensities

5% and 10% with current configurations are applied to the pitching airfoil flow and

the turbulence characteristics at x/I11 = 23.3 are considered as effective freestream

turbulence at the leading edge.

6.5.2 The effect of turbulence intensities

Two different turbulence intensities, TI0 = 5%, 10%, were imposed on the transverse

plane at x/c = −7 in the upstream region of the pitching airfoil for kred = 0.05. Fig.

6.23 shows the effect of freestream turbulence on aerodynamic characteristics. Generally

freestream turbulence does not significantly change the force and moment hysteresis at

the given conditions. The angles for the maximum lift, drag and minimum moment are

nearly the same as those for case TI0 = 0%. The magnitudes for maximum drag and

minimum moment decrease for the turbulent inflow cases. The drag coefficients in the

pre-stall regime show no difference between laminar and turbulent inflow cases. This

indicates that most of the drag is contributed by the pressure difference rather than the

skin-friction. Thus the maximum drag reduction at α ≈ 20◦ ↑ for the turbulent inflow

cases is because the pressure drag contribution is reduced by freestream turbulence. The

moment stall is when the first leading edge vortex passes the half chord, see α = 19.9◦ ↑
in Figs. 6.18 - 6.19 for more details. Freestream turbulence disturbs the leading edge

vortex and it may affect the minimum pitching moment. Figs. 6.24(a) and 6.24(e) show

snapshots of the spanwise vorticity component near the angle for the minimum moment,

α = 20.3◦ ↑. Strong vortices on the latter half chord are observed for the laminar inflow

case but these are scattered and relatively weak at a similar location for the turbulent

inflow case.
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Figure 6.23: The effect of freestream turbulence on the lift, drag and moment coef-
ficients. Case TI0 = 0% used the mesh for PC5 and the same mesh was used for the
turbulent inflow cases. The effective turbulence intensities at the leading edge are 4.5%
(TI0 = 5%) and 6.3% (TI0 = 10%), see Table 6.6. For all cases, kred = 0.05.
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(a) TI0 = 0%, α = 20.3 ↑ (b) TI0 = 0%, α = 21.6 ↓ (c) TI0 = 0%, α = 17 ↓ (d) TI0 = 0%, α = 14.2 ↓

(e) TI0 = 10%, α = 20.3 ↑ (f) TI0 = 10%, α = 21.6 ↓ (g) TI0 = 10%, α = 17 ↓ (h) TI0 = 10%, α = 14.2 ↓

Figure 6.24: The instantaneous z-vorticity at the mid-span for TI0 = 0% (top-row) and TI0 = 10% (bottom-row). Vorticity fields are normalized
by U∞ and c.



140 Chapter 6 Dynamic stall

The most evident impact of freestream turbulence occurs on the lift coefficient during

the downstroke. The lift increases for the turbulent inflow case compared with that for

the laminar inflow case. The average increment is ∆CL ≈ 0.2 during the downstroke.

Similar results were reported by Amandolèse and Széchényi (2004) [1]. They measured

the upstream turbulence effects on the flow over a pitching airfoil (see Fig. 1.7 [1]). In

their work, the maximum lift angles showed little change while the lift increments were

observed during the downstroke as the turbulence intensity increased. For the current

study, the lift increment from case TI0 = 5% to 10% is noticeable for 18◦ ↓< α < 16◦ ↓
but the difference during the rest of the downstroke is within the uncertainties of the

coefficient. This can be due to several reasons. First, the difference of the effective

turbulence intensities at the leading edge, TI = 4.5% and 6.3%, is small between two

cases so that their effects on the lift hysteresis are not significant (see Table 6.6). The

ratio of the turbulence intensities between TI0 = 10% and 5% should be, ideally, two

in the downstream region, but 6.3%
4.5% = 1.4 at x/I11 = 23.3. This discrepancy is due

to the symmetry boundary condition in the spanwise direction. If only the streamwise

fluctuation, 〈u′u′〉, in which the effect of the boundary condition in the spanwise direction

is minimal, is considered, 〈u′u′〉 at the leading edge for TI0 = 10% is nearly doubled

compared to that for TI0 = 5%. Note that the periodic boundary condition in the

spanwise direction could not be used due to the dynamic mesh. The mesh convergence

tests were conducted with the symmetric boundary condition and adopting 1c domain

width showed no noticeable difference in the load hysteresis compared with 0.5c. Second,

the stall mechanism is different between the two airfoils. The NACA 0012 airfoil for the

current study is the leading edge separation type while a NACA 644-421 airfoil which is

the trailing edge type was used in Amandolèse and Széchényi (2004) [1]. The geometry

effect may be stronger than the turbulence effect for the NACA 0012 airfoil.

Fig. 6.24 shows some typical snapshots of the instantaneous spanwise component of

vorticity on the pitching airfoil with laminar and turbulent inflows. The flows are fully

detached and Kelvin-Helmholtz shedding is observed along with the shear layer from the

leading edge for the laminar inflow case. For the turbulent inflow, upstream turbulence

of which length scales are comparable with the chord length (e.g. Fig. 6.24(f)) interacts

with the separated flow and makes the flow more chaotic compared with that for the

laminar inflow case. The separated flows are suppressed by freestream turbulence though

the impact varies with incidence. These interactions lead to a decrease of the separated

region and an increase of the lift during the downstroke. Especially the influence of

freestream turbulence is evident at α = 14.2◦ ↓ near the leading edge as shown in Fig.

6.24(h).
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6.6 Summary

The dynamic stall events on a pitching airfoil have been investigated. The lift, drag

and moment hysteresis show good agreement with the experimental data [85] at three

different reduced frequency, kred = 0.025, 0.05 and 0.1. The laminar separation bub-

ble diminishing and boundary layer suppression on the pitching airfoil are illustrated

through the surface forces and flow contours. The leading edge vortex is quantified

in terms of its convective speed and shedding frequency and compared with those in

literature. The capability of LES is demonstrated for highly separated flows at deep

stall.

The effect of freestream turbulence on the flow over a pitching airfoil is examined

based on the baseline case which is simulated for the laminar inflow. The empty box

simulations have been conducted to quantify upstream turbulence. Some deviations in

the turbulence characteristics are observed compared with those in literature due to the

SGS modelling, numerical scheme, filtering method and resolution. However, the focus

here is to provide reasonable turbulence characteristics in the upstream region of the

leading edge, which are turbulence intensities and integral length scales.

The lift, drag and moment coefficients for the pitching airfoil flow show the effect

of upstream turbulence. The magnitudes for maximum drag and minimum moment

decrease with the turbulent inflows which are mainly attributed to the suppression of

separated flows by freestream turbulence. The most evident impact of freestream turbu-

lence occurs on the lift coefficient, i.e. the lift increasing by ∆CL ≈ 0.2 with freestream

turbulence during the downstroke. A similar trend is found from experimental works [1].

The snapshots of the vorticity fields at different incidence also confirms that freestream

turbulence has an impact on the flow around the pitching airfoil. The separated flows

during the downstroke are disturbed and suppressed by freestream turbulence resulting

in the lift increase.

This is the first attempt for applying an LES calculation on the flow over a pitching

airfoil with the moderate Reynolds number, Re = 135, 000, to the author’s knowledge.

The required massive computational resources make these tasks even more difficult.

About 700 CPU hours were required to simulate a few cycles of pitching motion using

96 processors.





Chapter 7

Rotational augmentation

7.1 Introduction

The boundary layer on a wind turbine blade is different from that on a static airfoil. It

is essentially a three-dimensional flow due to the rotation. The fluid particle near the

rotating blade is pushed away from the rotating axis such that a spanwise flow occurs

towards to the blade tip when it is seen from a rotating frame of reference. This is due

to the centrifugal force. The difference between the boundary layers on the rotating

blade and the stationary blade is conjectured to be the main reason for the deviations

between the predicted and measured aerodynamic loads for wind turbines [149]. On a

rotating blade, stall occurs at a higher angle of attack than on a static airfoil [44]. This

phenomenon is referred to as rotational augmentation. Wind turbine design tools which

use a static airfoil data tend to underestimate the power output at a given velocity, due

to rotational augmentation.

There are two main explanations of the mechanisms for rotational augmentation;

(a) mass depletion: the centrifugal force pushes the air in the radial direction and the

mass depletion due to the radial flow reduces the boundary layer thickness resulting in

a lower pressure on the suction side. (b) Coriolis effect: the radial flow to the blade

tip provides Coriolis acceleration toward the trailing edge. This acceleration acts as

favourable pressure gradient and thus suppresses the separation and increases the lift.

In order to identify the Coriolis effect on rotational augmentation, the mass depletion

is not considered [39] and a NACA 0012 airfoil is used. This airfoil is a leading edge

separation type and the transition point is very close to the leading edge. Thus it is

expected that the effect of the early transition by the radial-flow instability (see Sec.

1.2.4) would be minor for this airfoil. Therefore the aim of this study is to exclusively

identify whether the Coriolis force is one mechanism of rotational augmentation.

In this chapter, the idealized model derived by Gross et al. (2012) [39] which is

presented in Sec. 7.2, is adopted to investigate the rotational effect on an airfoil under

143
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pre- and post- stall regimes. Then, Gross et al.’s model [39] is applied to a rotating

laminar boundary layer and the results are compared with the analytical solution derived

by Fogarty [33]. In Sec. 7.3, the flow over a static NACA 0012 airfoil is simulated as a

baseline simulation at Rec = Ueffc/ν = 135, 000 where Ueff is the effective velocity (see

Fig. 7.1). The validated model in Sec. 7.2 is applied to the sectional rotating blade in

a rotating reference frame at two angles of attack (α = 10◦, 14◦) and two radius-chord

ratios ( rc = 2.5, 10). This is presented in Sec. 7.4 and the summary follows in Sec. 7.5.

Part of this work was presented in a conference paper by Kim, Castro, Xie. DLES9,

Dresden, Germany, 2013 [70].

7.2 Methodology

As the baseline simulations, the flow over a static airfoil under pre- (α = 10◦) and post-

(α = 14◦) stall regimes were simulated and they were validated with experimental data

[85, 128]. The same methodology as the static airfoil case in Sec. 6.3.1 was adopted

for the baseline simulations, unless otherwise mentioned. The Reynolds number was

defined as Rec = Ueffc
ν where Ueff was the effective velocity which was determined by

the rotational and freestream velocities as shown in Fig. 7.1. A new variable, Rotation

number, was introduced and defined as,

Ro =
Ωc

U∞
, (7.1)

where Ω was the angular velocity. OpenFOAM-2.1.0 was used for the flow solver.
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Figure 7.1: (a) The coordinate system for the rotating blade and (b) definition of the
effective velocity, Ueff , where α is angle of attack, Urot = Ωr and U∞ is the freestream
velocity. Note that the angular velocity vector, Ω = [0,−Ω, 0]T .
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7.2.1 The model for the rotational effect

The general governing equations for the mass and momentum conservations of incom-

pressible flow in an arbitrary non-inertial frame of reference are [162],

∇ · u = 0, (7.2)

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u− U̇0 − Ω̇× r −Ω× (Ω× r)− 2(Ω× u), (7.3)

where u and r are the relative velocity and position vectors respectively, with respect

to the arbitrary non-inertial reference frame. Ω and U0 are the angular velocity and

translational velocity of the origin of the non-inertial reference frame relative to an

inertial frame. Note that it is a common momentum conservation equation up to the

second term on the right-hand side of Eq. 7.3 and the rest of the terms are due to the

non-inertial frame of reference.

For the current study, the rotating axis is fixed in time and the angular velocity is

constant. Thus the third and fourth terms on the right-hand side of Eq. 7.3 vanish.

Gross et al. [39] developed a model for the rotational effects on a sectional blade and

this model was applied for the current study. They derived the model equations by

using an order-of-magnitude analysis on the Navier-Stokes equations in the cylindrical

coordinate system. In the order-of-magnitude analysis, the boundary layer thickness

and the velocities are scaled with

δ ∼
√
νc

Ωr
, (7.4)

uθ, uy, ur ∼ Ωr, (7.5)

where Ω is the magnitude of the angular velocity. Then the stress tensor τij is scaled

with ρν Ωr
δ , pressure with ρ(Ωr)2 and the differentials are scaled with (r∂θ, ∂y, ∂r, ∂t) ∼

(δ, δ, δ, δ/(Ωr)).

Considering Ω̇ = 0, U̇0 = 0, the additional term in the right-hand side of Eq. 7.3 is

reduced to f r = −Ω× (Ω× r)− 2(Ω× u). The order-of-magnitudes for the governing

equations in Eqs. 7.2 - 7.3 are obtained in a cylindrical coordinate system with the

scaling properties, see Eqs. 7.6 - 7.9.

∂uθ
r∂θ︸︷︷︸
∼Ωr

δ

+
∂uy
∂y︸︷︷︸
∼Ωr

δ

+
∂ur
∂r︸︷︷︸
∼Ωr

δ︸ ︷︷ ︸
(Ωr)1.5(νc)−0.5

= − ur
r︸︷︷︸
∼Ω

, (7.6)
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where the convective derivative is

u ·∇ =
1

r
uθ

∂

∂θ
+ uy

∂

∂y
+ ur

∂

∂r
, (7.10)

and the Laplacian operator is

∇ ·∇(= ∇2) =
1

r2
∂2

∂θ2
+

∂2

∂y2
+

1

r

∂

∂r

(
r
∂

∂r

)
. (7.11)

The method intends to simulate the small sectional part of an infinitely long blade

at the radius, r, from the rotating axis as shown in Fig. 7.1(a). Assuming that the

radius, r, is large compared to the chord length, the high order terms of r are retained,

i.e. r1.5 in the continuity and r2.5, r2, r1.5, r in the momentum equations. Therefore

the highlighted terms with the red colour are neglected, i.e. r0 in Eq. 7.6 and r−1,

r0.5 in Eqs. 7.7 - 7.9. When the radius is sufficiently larger than the domain width, it

is assumed that the radial variation is small and periodic boundary conditions in the

spanwise direction are used. Under these assumptions, the governing equations can be

written in Cartesian coordinates by using x, y, z = rθ, y, r and u, v, w = uθ, uy, ur. As

shown in Fig. 7.1(a), the blade rotates around the y-axis, Ω = [0,−Ω, 0]T and the radius

vector is aligned with the z-axis, r = [0, 0, r]T , in the rotating frame of reference. In

such situations, the source term f ′r on the right-hand-side of the Cartesian coordinates

system is,
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f ′r = −Ω× (Ω× r)− 2(Ω× u) +
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(7.12)

This source term is essentially the same as case “C” in Gross et al. (2012) [39] which

was derived under the same assumptions as Eq. 7.12. Note that this source term in the

Cartesian coordinates vanishes far away from the airfoil because w = 0 and u = zΩ, i.e.

the potential flow is recovered.

The SGS model is not shown explicitly in Eqs. 7.6 - 7.12. The mixed-time scale

model (MTS) [54] was used for the current study which was based on the eddy viscosity

model. This model is a function of the rate of strain tensor and estimated SGS kinetic

energy (see Sec. 2.2.3) which are frame-indifferent. Also, the angular velocity Ω is

constant for the current study thus the MTS model is frame-indifferent at the given

conditions. The model, therefore, satisfies the basic constraints for an SGS model in a

non-inertial reference frame suggested by Speziale (1989) [162]. From a practical point

of view, the rotational effect on the SGS model would be very small as LES requires a

very fine mesh. Thus the SGS model is not shown explicitly in Eqs. 7.6 - 7.9 but it is

taken into account in the actual calculations.

7.2.2 Validations for the rotational effect model

It is straightforward to implement Gross et al.’s [39] model; adding a source term (Eq.

7.12) on the right-hand-side of the momentum equations of the source code OpenFOAM

in the Cartesian coordinate. Gross et al. qualitatively compared their model with a full

blade simulation at low Reynolds number. In this section, this model is quantitatively

validated with an analytical solution developed by Fogarty (1951) [33]. The source term

in Eq. 7.12 was applied for a rotating laminar boundary layer. It was assumed that the

radial changes are small within the domain, thus the periodic boundary condition was

applied in the radial direction as shown in Fig. 7.2. An infinitely thin wall of length X0

was placed in the middle of the computational domain and its leading edge was located

at the origin, as shown in Fig. 7.2(b). The domain width in the spanwise direction

was 0.025X0 and the number of grid points in this direction was 4. A uniform velocity
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Figure 7.2: A sketch of (a) a boundary layer on a rotating plate and a domain (thick
dashed-line) in cylindrical coordinates and (b) the approximated domain in Cartesian
coordinates to apply the model for rotation, Eq. 7.12. Note that the shaded area
represents an infinitely thin plate and the leading edge (LE) is placed at the origin.
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Figure 7.3: The velocity profiles for the flow on the rotating laminar boundary layer.
Computed data were collected at x = 0.875X0. The reference data (solid line) is taken
from Fogarty [33]. Note that positive w means radial flow away from the rotating axis.

U∞ was imposed at the inlet boundary (B1) and ReX = U∞X0
ν = 40, 000. The inlet

boundary condition was set to a fixed velocity and zero pressure gradient. The outlet

boundary conditions (B2, B2, B3) were set to zero velocity gradients and a constant

value of pressure. A uniform mesh was used in the steamwise direction on the plate

and the grid size in this direction was ∆x = 0.005X0. The first wall-off grid point was

placed at y1 = 2.5 × 10−4X0. 60 grid points were placed in the cross-flow direction on

each side of the wall and they were gradually stretched out to the boundaries. A second

order scheme was used for both temporal and convective terms and the time step was

0.0025tU∞

X0
.

To verify the ‘large r’ assumption for the current model, three different r
X0

values

were tested which were 2, 5 and 20. The streamwise and spanwise velocity profiles

are shown in Fig. 7.3. η∗ is the wall normal distance normalized by the displacement

thickness, δ∗ =
∫∞
0

(
1− u(y)

U∞

)
dy at the measured point. The angular velocity, Ω, for

each case was determined by the relation, Ω = U∞

r , and x was the distance from the

leading edge. The streamwise velocity profile from Fogarty [33] was essentially the

Blasius boundary layer profile. All velocity profiles were collected at x = 0.875X0 and

the profiles taken from other positions also agreed with each other when they were

normalized with appropriate properties. The magnitude for the calculated freestream

velocities in Fig. 7.3 is over-predicted by 1% but it asymptotes to unity as η∗ increases.

Cases for the doubled domain size and number of grid points in the y-direction were also

simulated but no noticeable difference was found.

The radial velocity profiles, w, for r
X0

= 5, 20 are in agreement with each other and

they underestimate by about 10% the maximum w compared with the reference profile.



150 Chapter 7 Rotational augmentation

However the shape of the profiles are similar with the reference’s. It is hard to expect

a perfect match for the radial velocity profiles between Fogarty [33] and Gross et al.’s

[39] methods since Fogarty [33] is based on simpler assumptions. For r
X0

= 2, the radial

velocity profile is slightly under-predicted (approximately 10%) compared with those for
r
X0

= 5, 10. This may be because the ‘large r’ assumption starts to be less appropriate at

some point for r
X0

< 5. But the general shape and peak radial velocity point for r
X0

= 2

still show reasonable agreement with the profiles for r
X0

= 5, 20. The corresponding

parameters of r
X0

is r
c for the airfoil case and it ranges from r

c = 2.5 to 10 for the current

study. Thus the source term, Eq. 7.12, is applied to the airfoil flow cases in the following

section.
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Figure 7.4: The pressure coefficients on the 3-D static airfoil at α = 14◦ (left) and
lift coefficients (right). Data for Exp2 is taken from Lee and Gerontakos (2004) [85].

7.3 Mesh convergence tests and validations

The baseline simulation for the pre-stall regime (α = 10◦) was examined and validated

in Sec. 6.3.1. This case is called case S10 hereafter. With the same configurations for

case S10, the post-stall regime case of a stationary airfoil was simulated at an incidence

angle 14◦, which is called case S14.

Fig. 7.4 shows the pressure coefficient for case S14 and lift coefficients for cases

S10 and S14. The pressure coefficient on the upper airfoil surface for case S14 is flat

indicating that the flow is fully separated. Lift coefficients for cases S10 and S14 are

plotted and compared with the experimental data [85]. The lift coefficients are slightly

over-predicted for both angles of attack but the stall point lies between the two angles

as in the experiment. The trend and magnitude of the pressure coefficients for the

calculations agree very well with the experimental data, thus these two stationary cases

are considered as the baseline simulations.
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7.4 The effect of the rotation

Based on the simulations of stationary cases, the rotational effect was applied by using

the source term in Eq. 7.12. The rotational effect was characterized by the Rotation

number as in Eq. 7.1. Reynolds number, angle of attack and radius were set an input

variables, and the other variables were determined as,

Ueff = Rec
ν

c
,

Urot = Ueffcosα,

Ω =
Urot

r
,

U∞ = Ueffsinα,

Ro =
Ωc

U∞
.

(7.13)

The variables are summarized in Table 7.1. The radius to chord ratios, r/c = 2.5,

10, represent the inner (i) and outer (o) regions of the blade respectively.

Table 7.1: Summary of the variables. For all cases, Rec = 135, 000.

Case α r/c Ro

S10 10◦ n/a 0
S14 14◦ n/a 0
R10o 10◦ 10 0.567
R10i 10◦ 2.5 2.27
R14o 14◦ 10 0.401
R14i 14◦ 2.5 1.6

Fig. 7.5 shows the surface pressure and skin-friction for all cases. At α = 10◦,

the boundary layer on the upper airfoil surface is mostly attached and there is little

difference in the surface forces regardless of the radius-chord ratios. Some oscillations

are observed in Cf for 0.1 < x/c < 0.3 in Fig. 7.5(b). These may be due to a relatively

short averaging period, i.e. 10 c
Ueff

. These may due to At α = 14◦, the rotational effect is

still weak at r/c = 10 but a significant negative pressure coefficient on the upper airfoil

surface is found at r/c = 2.5 (R14i) which corresponds to an inner region of the blade.

Further discussions on the negative pressure coefficient on the upper airfoil surface for

case R14i will be followed later in this section.

Fig. 7.6 presents the velocity profiles to investigate the boundary layer developments

on the upper airfoil surface. All velocity profiles are almost identical when the flow is

attached (α = 10◦) regardless of r/c. The pressure and skin-friction coefficients in Fig.

7.5 confirms this. However, a different phenomenon is found when the boundary layer is
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Figure 7.5: The effect of rotation on the surface pressure (left) and skin-friction
coefficients (right).

separated (α = 14◦). The streamwise velocity profiles for cases S14 and R14o are nearly

the same but there are noticeable spanwise velocities observed for case R14o. Note that

the positive spanwise velocity represents the flow away from the rotating axis, see Fig.

7.1. The impact of this spanwise flow is hardly seen in the surface forces as shown in

Figs. 7.5(c) and 7.5(d). For case R14i, the thickness of the boundary layer is mostly

smaller than in cases S14 and R14o (see Fig. 7.6(c)). Also the peak spanwise velocity

for case R14i is larger than the magnitude of the freestream velocity for x/c < 0.5.

Schreck and Robinson (2002) [138] conducted a full-scale horizontal axis wind turbine

experiment and a similar tendency was reported. They compared the surface pressure

distributions on the turbine blade when the turbine was parked (stationary) and rotating.

A significant negative pressure along the chord was found on the suction side of the

rotating blade while the pressure distribution was nearly flat for the stationary case

especially near the hub, i.e. R = 0.3, see Fig. 7.7.

Fig. 7.8 shows snapshots of spanwise velocity fields. At α = 10◦ (left column),

the boundary layer is very thin which corresponds with Fig. 7.6(a) and little of the

rotational effect is observed. In contrast, the spanwise velocity increases as Rotation

number increases at α = 14◦ (right column). The boundary layer becomes thinner case

R14i than that for case S14 due to the rotation effect.
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Figure 7.6: The effect of rotation on the profiles for the streamwise (left) and spanwise
(right) velocity components. Legend is the same as in Fig. 7.5.

(a) (b)

Figure 7.7: The surface pressure distributions on the (a) stationary and (b) rotating
blades from a horizontal axis wind turbine blade at zero yaw by Schreck and Robinson
(2002) [138]. R is the distance from the hub normalized by the rotor radius.
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(a) S10 (b) S14

(c) R10o (d) R14o

(e) R10i (f) R14i

Figure 7.8: Instantaneous spanwise velocity components normalized by Ueff . Positive
values represent the outward direction from the rotating axis.

Similar trends can be found in the spanwise and streamwise vortices in Figs. 7.9

and 7.10 respectively. The Kelvin-Helmholtz instability is clearly found near the leading

edge for all cases. The effect of the rotation is small in the pre-stall regime (left column)

and becomes apparent in the post-stall regime (right column). At α = 14◦, the point

of the transition onset seems to approach the leading edge, albeit small, and the angle

between the airfoil surface and shear layer decreases as the Rotation number increases,

see Fig. 7.9. The streamwise vorticity is also of interest because the spanwise velocity

presents a boundary layer (shear flow) in this direction as shown in Fig. 7.8. Again, a

weak dependency of the rotation is found when the flow is attached, while the streamwise

vortex near the leading edge, see Figs. 7.10(d) and 7.10(f), become apparent as Rotation

number increases when the flow is detached, i.e. α = 14◦. Especially strong streamwise

vortices are formed from the leading edge for case R14i as shown in Fig. 7.10(f).

An idealized test case is adopted for this study that allows a periodic boundary con-

dition in the spanwise direction, i.e. the spanwise flow is well developed and statistically
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(a) S10 (b) S14

(c) R10o (d) R14o

(e) R10i (f) R14i

Figure 7.9: Instantaneous spanwise vorticity fields near the leading edge. The con-
tours and coordinates are normalized by Ueff and c.

steady. In this configuration, the reduction of boundary layer thickness by the mass

depletion due to the centrifugal pumping is excluded, which was explained as one of

the primary mechanisms of rotational augmentation [46]. Without this mass depletion

on the boundary layer, Gross et al. [39] still observed the boundary layer suppression

and rotational augmentation from their calculations. They concluded that the spanwise
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(a) S10 (b) S14

(c) R10o (d) R14o

(e) R10i (f) R14i

Figure 7.10: Instantaneous streamwise vorticity fields near the leading edge. The
contours and coordinates are normalized by Ueff and c.

flow provided the cross-flow instability which triggered the early transition [135] thus it

delayed the separation and suppressed the boundary layer.

The airfoil in Gross et al. (2012) [39] was S809 and this airfoil was a trailing edge
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separation type while a NACA 0012 used for the current study is a leading edge sep-

aration type. The transition point on the leading edge separation type airfoil is very

close to the leading edge for Re > 70, 000 [91]. The transition occurs x/c < 0.1 for

the stationary cases as shown in Figs. 7.5 and 7.9. Thus it is expected that the effect

of the early transition by the cross-flow instability on the aerodynamic forces would be

minimal for the current case. Then it can be concluded that the Coriolis acceleration

in the chordwise direction is a primary mechanism for rotational augmentation for the

current study.

7.5 Summary

Rotational effects are examined for the flow over an airfoil under pre- and post-stall

regimes to understand the Coriolis effect on rotational augmentation. The model for the

rotational effect derived by Gross et al. [39] in the rotating reference frame is adopted.

This model is applied on the rotating laminar boundary layer and validated with the

analytical solution by Fogarty [33]. The calculated radial velocity for the boundary layer

shows reasonable agreement with the analytical solution for the radius to plate length

ratio, 2 ≤ r
X0

≤ 20.

The stationary airfoil flows are calculated as baseline simulations and the results

show good agreement with the experimental data. Based on these calculations, the ro-

tational effect for the different radius-chord ratios (i.e. Rotation number) is examined.

The rotational effect is evident only when the flow is detached at the small radius-chord

ratio, i.e. r/c = 2.5. A small radius-chord ratio corresponds to the inner part of the

rotating blade and a similar trend was found in the full scale wind turbine measurements

[138]. This implies that the Coriolis effect is a primary mechanism for rotational aug-

mentation, because the mass depletion and early transition are absent for the current

configuration. The surface pressure, skin-friction and the snapshots of the contours such

as the spanwise velocity and vorticity are all consistent, and collectively confirm that

the rotational effect is evident on the separated flow at the small radius-chord ratio.

Thus it is exclusively identified that the Coriolis effect is a primary factor in rotational

augmentation with a leading edge separation type of an airfoil.
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Conclusions and suggestions

Research key points are drawn for wind turbine aerodynamics in which large-eddy sim-

ulations are used. The studies are focused on the effects of freestream turbulence on a

wind turbine blade. The primary results are summarized and suggestions are given for

future work.

8.1 Conclusions

For an efficient and realistic turbulent inflow condition for large-eddy simulation, a new

divergence-free synthetic turbulence inflow technique is developed for incompressible flow

solvers. The divergence-free condition is critical to the unsteady load and aeroacoustic

noise predictions for wind turbines. To satisfy the divergence-free condition, the velocity-

pressure coupling procedure (PISO) is modified slightly by substituting the generated

synthetic turbulence before the corrector steps are performed. It is easy to implement the

new model into other velocity-pressure algorithms such as PIMPLE. The impact of the

modification for the velocity-pressure coupling algorithm is examined analytically and

numerically. The maximum disturbances occur where synthetic turbulence is imposed

and the errors decay to sufficiently small values downstream where the object of interest

would be placed. The suggested divergence-free turbulence inflow model (XCDF) has

been tested for a channel flow and compared with the XC model [183]. XCDF provides

significant improvements on the computed statistics of the pressure fluctuations, such

as the variance and spectra. A simple mass flux correction on the XC model also brings

a similar improvement with XCDF, but the XCDF model is genuinely divergence-free

and provides more reasonable peak pressure fluctuations.

The XCDF model is applied to the flow over a NACA 0006 airfoil. The effects of

freestream turbulence on the aerodynamic characteristics and unsteady surface pressure

are examined. The spectral density of the pressure difference on the airfoil surface, Gpp,

159
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at zero incidence shows good agreement with the analytical solution [2–4]. Thus the

current methodology can be applied on an airfoil flow subjected to freestream turbulence

for both aerodynamic and aeroacoustic analyses. This is important because no reliable

analytical solution is available for the flow over an airfoil at non-zero incidence so far.

By using large-eddy simulation, one can simulate an airfoil flow at any given angle of

attack. As an example, the turbulence impacts on the flow over an airfoil at 7◦ incidence

is examined. The separation bubble is diminished as turbulence level increases resulting

in the increase of the lift-drag ratio. The secondary peak in Gpp is observed at the

frequency which corresponds to the characteristic frequency for the separation bubble.

The dynamic stall events on a pitching airfoil are investigated by using large-eddy

simulation. Generally, aerodynamic hysteresis shows good agreement with the experi-

mental data [85] for the reduced frequency kred = 0.025 − 0.1. These frequencies are

typical of operating conditions for wind turbines (see Fig. 1.6 and Table 1.1). The

laminar separation bubble diminishing and boundary layer suppression on the pitching

airfoil are illustrated by the surface forces and flow contours. The leading edge vor-

tex is quantified in terms of its convective speed and shedding frequency. The results

are comparable with those in literature. It is demonstrated that the LES calculation

is capable to capture a strong unsteady 3-D phenomenon at deep stall. Based on the

simulations for the pitching airfoil with the laminar inflow, the XCDF model is applied

to investigate the turbulence effects on dynamic stall. The magnitudes of the maximum

drag and minimum moment decrease for the turbulent inflow cases. These are mainly

attributed to the suppression of the separated flow by freestream turbulence. The most

evident impact of freestream turbulence occurs on the lift coefficient, i.e. the lift increas-

ing, ∆CL ≈ 0.2, during the downstroke. A similar trend is found in the experimental

works for a different airfoil [1]. The snapshots of the vorticity fields at different incidence

confirm that freestream turbulence affects the flow around the pitching airfoil.

Rotational effects are examined for the flow over an airfoil under pre- and post-

stall regimes to identify the Coriolis effect on rotational augmentation. By using the

rotational model by Gross et al. [39], a periodic boundary condition is applied in the

spanwise direction on the sectional blade simulation. The rotational effect is evident only

when the flow is separated at the small radius-chord ratio which corresponds to the near

hub region. The surface pressure, skin-friction and the snapshots for the contours such

as the spanwise velocity and vorticity are all consistent, i.e. an evident rotational effect

on the separated flow at the small radius-chord ratio. For the current configuration,

the mass depletion due the centrifugal pumping and early transition by the cross-flow

instability are absent. Therefore, the Coriolis effect is exclusively identified as a primary

factor for rotational augmentation for a leading edge separation type airfoil.
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Figure 8.1: A contour of flow regimes for a NACA0012 airfoil at angles of attack
versus Reynolds number. Shadded regions denote tentative approximate boundaries
for the regimes [182].

8.2 Suggestions

A few points which are not covered in the current study are included here as a guideline

to future works.

• The XCDF model is developed in grounds of incompressible fluids and an extension

of this model to compressible flow solvers would be very useful. The divergence-

free condition in the XCDF model is not available in compressible flows, thus

other constraint needs to be considered. It would be relatively easy to extend the

XCDF model to an implicit compressible flow solver, e.g. the PISO method for

compressible flows by Issa (1985) [55]. This is because the continuity equation,

with the equation of state, is constructed in the form of a Poisson equation and the

system of algebraic equations need to be solved iteratively. Thus the algorithm for

the implicit compressible flow solvers would be similar to that used in Sec. 4.2.3.

However, it will probably need a further constraint or an advanced technique such

as the energy conservation, to extend the XCDF model to explicit compressible

flow solvers.

• NACA 0006 and NACA 0012 airfoils are used in the present study because many

details of reference data are available on these airfoils and the fundamentals (the

effect of turbulence, dynamic stall behaviours and mechanisms for the rotational
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effects etc.) behind the airfoil aerodynamics are, in principle, similar. A study

with airfoils which are widely used in the wind energy community such as S809,

NACA 44xx or NACA 63-4xx [155] would have a more direct impact on wind

turbine design.

• Fig. 8.1 shows the regimes of flow patterns over a NACA 0012 airfoil [182]. Due to

the limit of the computational power, the Reynolds number for the current study

ranges from 50, 000 to 135, 000 which is in the lower limit of the turbulence regime.

For a large wind turbine, the Reynolds number is usually over 106. Therefore it

is desirable to increase the Reynolds number in future works. Adopting a wall-

modelling method (see Sec. 2.4) would be an alternative approach but clarifying

the uncertainty in the method is a challenging task.

• Additionally, the effect of more realistic atmospheric turbulence on wind turbine

blades is also of great interest. This includes the wind shear, gust and anisotropic

turbulence effects.
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Forward stepwise method

The forward-stepwise method (FSM) follows the ideas from Xie and Castro (2008) [183]

(the model by Xie and Castro is called XC). The exponential correlation procedure

is applied to all three directions while the XC model used it only in the streamwise

direction as in Eq. 2.51. The FSM method is consistent in imposing correlations and

simplifies the code compared with the XC model.

A.1 Mathematical formulation

The formulations for generating the unscaled velocity fluctuation (u∗,j in Eq. 2.40) in

FSM are shown in Eqs. A.1 - A.3. For the first step, a 2-D random number slice,

r(t, j, k), with a zero mean and unit variance is generated. Based on r(t, j, k), the

correlations in each direction are successively imposed by using the exponential function.

The variables, φ(t, j, k), ψ(t, j, k) and u∗(t, j, k), are intermediate 2-D vector fields and

the last is correlated in the t, j, k directions where t corresponds to the streamwise

direction. Only one 2-D vector slice of random numbers is generated at each time step.

φ(t, j + 1, k) = φ(t, j, k)exp

(
−Cw

ny

)
+ r(t, j, k)

[
1− exp

(
−2Cw

ny

)]0.5
, (A.1)

ψ(t, j, k + 1) = ψ(t, j, k)exp

(
−Cw

nz

)
+ φ(t, j, k)

[
1− exp

(
−2Cw

nz

)]0.5
, (A.2)

u∗(t+∆t, j, k) = u∗(t, j, k)exp

(
−Cw

nt

)
+ψ(t, j, k)

[
1− exp

(
−2Cw

nt

)]0.5
, (A.3)
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where ni is defined in Eq. A.4 for the computational grid size, ∆x, and time step, ∆t.

ni =





Ii
∆xi

, (i = y, z)

T
∆t , (i = t)

, (A.4)

where I is the integral length scale and T is the Lagrangian time scale. T is determined

by using Taylor’s hypothesis, i.e. T = I/U . The integral length scale in the streamwise

direction (t) does not appear explicitly in the model. Cw is a model constant in the

present work and tests showed that Cw = 0.41 produces the best results with the given

length scales and Reynolds stresses.

The variables, φ, ψ and u∗, are all vectors and each vector component needs the

same procedure as in Eqs. A.1 - A.3. u∗ has unit variance but does not contain cross-

correlation. Lund et al. [92] suggested Eqs. 2.40 and 2.41 to provide cross-correlations

to u∗. Therefore the mean velocity, Reynolds stresses and integral length scales are

input parameters for the FSM model as in the XC model.

A.1.1 Proof A

It is important for the FSM model to prove that, A. the intermediate variables in

Eqs. A.1 - A.3 satisfy the target correlation function, e.g. u∗(x+ r)u∗(x) = C(r) =

exp(−Cw
r
I ) where (̄ ) is an assembly average operator; B. the later correlation imposing

process in one direction does not affect the former in an other direction. For the proofs,

two conditions and one property are introduced by using a random number X.

• Zero mean condition : X = 0,

• Unit variance condition : XiXi = 1,

• Zero covariance property : XiXj = 0, i 6= j.

In proof A, it is shown that the intermediate variables have the target correlation.

For example, Eq. A.3 is used and the same proof can obviously be applied to Eqs.

A.1, A.2. For the sake of simplicity, the intermediate vectors (φ, ψ, u∗) are treated as

scalar and model constant is assumed to be unity Cw = 1. Also exp(−1/ni) = Ani and

exp(−2/ni) = A2
ni for neatness. Then Eq. A.3 is re-written as,

u∗(t+∆t, j, k) = u∗(t, j, k)Ant + ψ(t, j, k)[1−A2
nt]

0.5. (A.5)

The autocorrelation, u∗(t+ τ, j, k)u∗(t, j, k), with the separation of τ = l∆t (l is a

positive integer) is then,
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u∗(t+ l∆t, j, k)u∗(t, j, k)

=
{
u∗(t+ (l − 1)∆t, j, k)Ant + ψ(t, j, k)[1−A2

nt]
0.5
}
u∗(t, j, k)

= u∗(t+ (l − 1)∆t, j, k)u∗(t, j, k)Ant + ψ(t, j, k)u∗(t, j, k)[1−A2
nt]

0.5

= u∗(t+ (l − 1)∆t, j, k)u∗(t, j, k)Ant

= u∗(t+ (l − 2)∆t, j, k)u∗(t, j, k)A
2
nt

...

= u∗(t, j, k)u∗(t, j, k)A
l
nt

= Al
nt = exp

(
− l

nt

)
.

(A.6)

Note that,

u∗(t, j, k)u∗(t, j, k) = 1,

ψ(t, j, k)u∗(t, j, k) = 0.
(A.7)

By using the same approach, it can be shown for φ and ψ as,

φ(t, j +m∆y, k)φ(t, j, k) = exp

(
−m

ny

)
, (A.8)

ψ(t, j, k + n∆z)ψ(t, j, k) = exp

(
− n

nz

)
. (A.9)

Therefore the proof A shows that the Eqs. A.1 - A.3 have statistically correct

correlation functions as they are imposed.

A.1.2 Proof B

In proof B, it is shown that each correlation procedure does not modify the formal

procedure. For simplicity,

u∗(t+ l∆t,m1, n1) = u′l, u∗(t+ l∆t,m2, n2) = u′′l ,

ψ(t+ l∆t,m1, n1) = ψ′
l, ψ(t+ l∆t,m2, n2) = ψ′′

l ,
(A.10)

wherem1 6= m2 and n1 6= n2. The two point correlation for u∗(t,m1, n1) and u∗(t,m2, n2)

leads to,
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u′lu
′′
l =

(
u′l−1Ant + ψ′

l−1[1−A2
nt]

0.5
) (
u′′l−1Ant + ψ′′

l−1[1−A2
nt]

0.5
)

= u′l−1u
′′
l−1A

2
nt + ψ′

l−1ψ
′′
l−1[1−A2

nt]
0.5×2 +

(
u′l−1ψ

′′
l−1 + u′′l−1ψ

′
l−1

)
Ant[1−A2

nt]
0.5

= u′l−1u
′′
l−1A

2
nt + ψ′

l−1ψ
′′
l−1[1−A2

nt]
0.5×2

=
(
u′l−2u

′′
l−2A

2
nt + ψ′

l−2ψ
′′
l−2[1−A2

nt]
0.5×2

)
A2

nt + ψ′
l−1ψ

′′
l−1[1−A2

nt]
0.5×2

= u′l−2u
′′
l−2A

2×2
nt + ψ′

l−2ψ
′′
l−2[1−A2

nt]
0.5×2

[
1 +A2

nt

]

= u′l−2u
′′
l−2A

2×2
nt + ψ′

l−2ψ
′′
l−2[1−A2×2

nt ]

...

= u′0u
′′
0A

2×l
nt + ψ′

0ψ
′′
0 [1−A2×l

nt ]

≈ ψ′
0ψ

′′
0 .

(A.11)

It should be noted that l is large enough to neglect A2×l
nt in Eq. A.11. nt is constant

in time and,

ψ′
l−1ψ

′′
l−1 = ψ′

l−2ψ
′′
l−2 = ... = ψ′

0ψ
′′
0 ,

u′l−lψ
′′
l−l = u′′l−lψ

′
l−l = 0.

(A.12)

Eq. A.11 shows that the two point correlation on the u∗ field is the same as that in

the ψ field. This means the latter correlation procedure does not affect the former. In

the same approach, the two point correlation for ψ(t, j +m∆y, k) and ψ(t, j, k) leads,

ψ(t, j +m∆y, k)ψ(t, j, k) = {ψ(t, j +m∆y, k − 1)Anz + φ(t, j +m∆y, k − 1)[1−A2
nz]

0.5}
× {ψ(t, j, k − 1)Anz + φ(t, j, k − 1)[1−A2

nz]
0.5}

= ...

= ψ(t, j +m∆y, 0)ψ(t, j, 0)A2×k
nz

+ φ(t, j +m∆y, 0)φ(t, j, 0)
[
1−A2×k

nz

]

≈ φ(t, j +m∆y, 0)φ(t, j, 0)

= exp

(
−m

ny

)
.

(A.13)

In Eq. A.13, k should be large enough so that A2×k
nz (= exp(− 2k

nz
)) is negligible. The

proof B shows that the later correlation procedure in one direction does not affect the
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former in an other direction, i.e. the correlation functions are statistically independent.

A.2 A comparison between the XC and FSM models

The formulations for the FSM model are shown in the previous section. Its performance

is assessed here and comparisons with the XC model are presented. The XC and FSM

models are applied at the inlet of a plane channel flow and the results are compared

with those by using periodic in-outlet boundary conditions (PBC). The purpose of using

periodic simulation data is simply to provide a straightforward validation for the inflow

method. All numerical conditions for the XC and FSM models are identical with those

in Ch. 4 unless otherwise mentioned. For the XC model, the revised model coefficient

was adopted here, see Sec. 4.2.1.
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Figure A.1: Integral length scales in (a) the streamwise direction and (b) the spanwise
direction. Symbols are from DNS [110], lines are specified length scales as input data
for cases XC1 and FSM1. The definition of Iij is shown in Eq. 2.52. Note I21 = I31,
I13 = I23 and Ii2 = Ii3.
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Figure A.2: Developments of the wall shear stress, τ+w = τw
ρu2

τ

.

The XC and FSM models need the first and second moment statistics as input

parameters. These statistics were taken from case PBC in Sec. 4. The length scales

which are used for the current case are shown in Fig. A.1. The cases with these length
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Figure A.3: The effect of the input length scales on developments of Reynolds stresses
for the XC model. � PBC, 4 XC1, — XC2, - - XC3.
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Figure A.4: The effect of the input length scales on developments of Reynolds stresses
for the FSM model. � PBC, © FSM1, - - FSM2, − · ·− FSM3.
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scales are called XC1 and FSM1 respectively. For the sensitivity tests of input length

scales, a halved (cases XC2 and FSM2) and doubled (cases XC3 and FSM3) values of

the length scales used for cases XC1 and FSM1, were adopted.

A certain axial distance is required before the turbulence becomes fully developed

with a turbulence inflow. Thus a key assessment criterion is the development distance.

For this purpose, the wall shear stress and Reynolds stress profiles are compared with

those from case PBC in Sec. 4. Fig. A.2 shows development of the wall shear stress. The

〈τw〉+ for case XC1 converges by x/δ ≈ 12 and that for case FSM1 does so a little later,

at x/δ ≈ 14. These convergence distances based on the wall shear stress are similar to or

slightly shorter than those reported in literature using synthetic methods [58, 66]. After

the wall shear stress is converged, it stays at the target value, unity, until the outlet.

The Reynolds stress profiles for all cases are presented in Figs A.3 and A.4. Note

that the profiles for case PBC are target values. All profiles for cases XC1 and FSM1

show good agreement with those for case PBC for x/δ ≥ 20. It is found that 〈u′u′〉+ and

〈w′w′〉+ are developed earlier than the other profiles; their profiles match well with the

reference data at x/δ = 10. It seems to be more difficult to predict the 〈v′v′〉+ profile

compared with other profiles at x/δ = 10 and this leads to a slow development in the

Reynolds shear stress 〈u′v′〉+. The Reynolds-stress equation is shown in Eq. A.14 and

the first term on the right-hand-side is the rate of production. When i = 1 and j = 2,

Eq. A.14 is reduced to the Reynolds shear stress equation and the production term

becomes −〈v′v′〉∂U∂y for k = 2. Note that the wall-normal (k = 2) gradient is only non-

zero for the channel flow. Thus 〈v′v′〉+ plays an important role in the Reynolds shear

stress development and an accurate prediction of 〈v′v′〉+ helps early flow developments.

Jarrin et al. (2006) [58] reported that a higher 〈v′v′〉+ at the inlet helps the momentum

mixing near the wall resulting in faster flow developments.

∂〈u′iu′j〉
∂t

+ Uk

∂〈u′iu′j〉
∂xk

=−
(
〈u′iu′k〉

∂Uj

∂xk
+ 〈u′ju′k〉

∂Ui

∂xk

)

+

〈
p′

ρ

(
∂u′i
∂xj

+
∂u′j
∂xi

)〉

− ∂

∂xk

(
〈u′iu′ju′k〉+

〈p′uj〉
ρ

δik +
〈p′ui〉
ρ

δjk − ν
∂〈u′iu′j〉
∂xk

)

− 2ν

〈
∂u′i
∂xk

∂u′j
∂xk

〉
.

(A.14)

The sensitivity tests for the input length scales have been conducted to observe

their effects on the performance of the XC and FSM models. Nine components of the

length scale are required as input data. The test considers only halved (cases XC2 and

FSM2) and doubled (cases XC3 and FSM3) values of those in cases XC1 and FSM1.

Developments of the wall shear stress along the channel for each case are shown in Fig.



Appendix A Forward stepwise method 171

A.2. Cases which adopt the halved and doubled length scales tend to slow down the flow

development. Cases with the original length scales (XC1 and FSM1) reach the target

value earlier than the other cases but eventually all cases approach the target value.

Though case FSM1 reaches the target value earlier than case FSM2, it shows a slightly

greater initial drop than case FSM2. Since one of the main objectives of the inflow

condition is to minimize the development distance, the initial drop is not a crucial issue

in the assessments.

Figs A.3 and A.4 show the profiles of Reynolds stresses. Cases with the original

length scales (XC1 and FSM1) generally show better agreement with case PBC than

the other cases at most of locations. The 〈v′v′〉+ for the XC model tends to be over-

predicted as the input length scales increase for x/δ < 30. Case XC2 presents a curved

〈u′v′〉+ profile in the region for y/δ > 0.1 and x/δ > 40 in Fig. A.3. As the length scale

increases (e.g. XC1, XC3), the 〈u′v′〉+ profile is improved (straightened). The Reynolds

stress profiles for the FSM model, however, are less sensitive to the input length scales,

as shown in Fig. A.4(b).

A.3 Summary

Overall, the XC model shows marginally better performance (i.e. a shorter distance of

flow developments) than the FSM model. However, there are still advantages of the FSM

model; the procedure for imposing the correlations is consistent in all three directions

which makes the FSM method easy to implement and slightly less expensive. Potentially

the FSM model is also more flexible for using spatially varying length scales whereas the

XC model becomes quite complicated if varying length scales are to be used (see also

[173]). However, the XC model is mainly adopted for the the current study, i.e. Chs. 4

- 6 since it is considered that the flow development distance is the first criteria of the

inflow condition assessment.





Appendix B

Velocity and pressure coupling

with incompressible solvers

A succinct explanation for the difficulty of calculating the pressure field in the Navier-

Stokes equations and an idea for the velocity-pressure coupling was given by Ferziger

and Perić (2002) [32] and it is quoted here,

“Solution of the Navier-Stokes equations is complicated by the lack of an independent

equation for the pressure, whose gradient contributes to each of the three momentum

equations. Furthermore, the continuity equation does not have a dominant variable in

incompressible flows. Mass conservation is a kinematic constraint on the velocity field

rather than a dynamic equation. One way out of this difficulty is to construct the pressure

field so as to guarantee satisfaction of the continuity equation. ”

The pressure can be associated with the velocity via the continuity equation. The

most widely used coupling algorithm for a transient solver is PISO [55] which is explained

in Sec. 4.2.3.1. This algorithm can be summarized by the following steps,

1. The momentum equation is solved by using the values of flux and pressure from

the previous time. This step is called the momentum predictor, Eq. 4.10, because

the velocity field is solved with the previous pressure and flux.

2. The pressure is corrected by solving the continuity equation, Eq. 4.13. This step

is called the pressure corrector.

3. The velocity is then corrected (Eq. 4.11) by using the corrected pressure field

from the pressure corrector step. This is known as a projection method because

the divergence-producing part is projected out [32].

4. Steps 2-3 are repeated for a pre-specified number of pressure correctors. This

non-iterative calculation (i.e. the momentum predictor is not repeated within one

173
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time step) presumes that the final velocity and pressure fields are correct after the

specified number of corrector steps [174].

For the steady-state problem, the system of algebraic equations, Eqs. 4.8 and 4.9

are solved iteratively as the effective time step is much larger than that for unsteady

problems. In such case, the SIMPLE algorithm by Patankar [114] is used. The main

difference with the PISO algorithms is that the momentum and continuity equations

are solved iteratively with some relaxation factors in the SIMPLE algorithm. It is

summarized by the following procedure,

1. The momentum equation is solved with the under-relaxation factor, αU [59], by

using values of the flux and pressure from the previous time level.

2. The pressure is corrected by solving the continuity equation but a fraction of the

correction is updated by using the relaxation factor, αp,

p∗ = pn + αpp
′, (B.1)

where 0 < αp < 1. Note that p∗ = pn + p′ in PISO.

3. The velocity is corrected (Eq. 4.11) by the corrected pressure in step 2.

4. Go to step 1 and repeat steps 1-3 until the predefined tolerance is met.

A combination of the SIMPLE and PISO algorithms is possible for a large time-

step transient solver [112] which is called PIMPLE. In the PIMPLE algorithm, the

momentum equation is solved repeatedly as in SIMPLE but multiple corrector steps are

performed (as in PISO) within the SIMPLE iteration.



Appendix C

Consistency in the PISO

algorithm

Notations for the PISO algorithm in literature and some source codes may be confusing

for whom is not fully aware of the method. Therefore consistency among the equations

used in this study, OpenFOAM code v1.7.1 (OF) [112] and Ferziger and Perić [32] are

shown here for the reader’s convenience.

C.1 A note on notations in Ferziger and Perić

Taking the divergence, Eqs. 4.11 and 4.10 are rewritten respectively as,

∂

∂xi

[
1

AP

∂

∂xi
(pn + p′)

]

P

=

[
∂

∂xi

(
ũ∗i + ũ′i

)]

P

−
[
∂u∗∗i
∂xi

]

P

, (C.1)

and

∂

∂xi

(
1

AP

∂pn

∂xi

)

P

=

[
∂ũ∗i
∂xi

]

P

−
[
∂u∗i,P
∂xi

]

P

. (C.2)

Subtracting Eq. C.2 from Eq. C.1, neglecting ũ′i and requiring ∂u∗∗i /∂xi = 0 yields,

∂

∂xi

(
1

AP

∂p′

∂xi

)

P

=

[
∂u∗i
∂xi

]

P

. (C.3)

This equation is identical to Eq. 7.39 in [32].Neglecting ũ′i in Eq. 4.11 and subtract-

ing the equation from Eq. 4.14 leads,
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u′′i,P = ũ′i,P − 1

AP

(
∂p′′

∂xi

)

P

, , (C.4)

which is identical to Eq. 7.43 in [32]. Taking divergence and requiring ∂u′′i /∂xi = 0

(note u∗∗i and u∗∗∗i are divergence free), Eq. C.4 is written as,

∂

∂xi

[
1

AP

∂p′′

∂xi

]

P

=

[
∂ũ′i
∂xi

]

P

. (C.5)

This is identical as Eq. 7.44 in [32].

C.2 A note on notations in the OpenFOAM code

Again for the reader’s convenience, a brief description and the PISO source code in OF

are respectively presented here and in C.3.

• The prediction equation Eq. 4.10, corresponds to line 75 in the OF code in C.3.

• The corrector steps Eqs. 4.11 and 4.14 (with ũ′i,P neglected) correspond to line

123 in the OF code in C.3. Note that ũ∗i,P in Eq. 4.11 is temporally saved as U

in line 123 in the OF code. Similarly the flux of ũ∗i,P is temporally saved as phi in

line 97 in the OF code in C.3.

• Poisson equations, Eqs. 4.13 and 4.15, correspond to line 97 in the OF code in

C.3.

The generated velocity by the XCDF model is substituted after the predictor step

but before the flux of ũ∗i,P is constructed, i.e. between the lines 84 and 85 in the original

OF code in C.3.

C.3 pisoFOAM.C in OpenFOAM v.1.7.1

00032 \*---------------------------------------------------------------------------*/

00033

00034 #include "fvCFD.H"

00035 #include "singlePhaseTransportModel .H"

00036 #include "turbulenceModel .H"

00037

00038 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

00039

00040 int main(int argc , char *argv [])

00041 {

00042 #include "setRootCase.H"

00043
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00044 #include "createTime.H"

00045 #include "createMesh.H"

00046 #include "createFields.H"

00047 #include "initContinuityErrs .H"

00048

00049 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

00050

00051 Info << "\nStarting time loop\n" << endl;

00052

00053 while (runTime.loop ())

00054 {

00055 Info << "Time = " << runTime.timeName () << nl << endl;

00056

00057 #include "readPISOControls.H"

00058 #include "CourantNo.H"

00059

00060 // Pressure -velocity PISO corrector

00061 {

00062 // Momentum predictor

00063

00064 fvVectorMatrix UEqn

00065 (

00066 fvm::ddt(U)

00067 + fvm::div(phi , U)

00068 + turbulence ->divDevReff(U)

00069 );

00070

00071 UEqn.relax ();

00072

00073 if (momentumPredictor )

00074 {

00075 solve(UEqn == -fvc::grad(p));

00076 }

00077

00078 // --- PISO loop

00079

00080 for (int corr =0; corr <nCorr; corr ++)

00081 {

00082 volScalarField rAU (1.0/ UEqn.A());

00083

00084 U = rAU*UEqn.H();

00085 phi = (fvc:: interpolate(U) & mesh.Sf())

00086 + fvc:: ddtPhiCorr(rAU , U, phi);

00087

00088 adjustPhi(phi , U, p);

00089

00090 // Non - orthogonal pressure corrector loop

00091 for (int nonOrth =0; nonOrth <= nNonOrthCorr; nonOrth ++)

00092 {

00093 // Pressure corrector

00094

00095 fvScalarMatrix pEqn

00096 (

00097 fvm:: laplacian(rAU , p) == fvc::div(phi)

00098 );

00099

00100 pEqn.setReference(pRefCell , pRefValue );

00101

00102 if
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00103 (

00104 corr == nCorr -1

00105 && nonOrth == nNonOrthCorr

00106 )

00107 {

00108 pEqn.solve(mesh.solver("pFinal"));

00109 }

00110 else

00111 {

00112 pEqn.solve ();

00113 }

00114

00115 if (nonOrth == nNonOrthCorr)

00116 {

00117 phi -= pEqn.flux ();

00118 }

00119 }

00120

00121 #include "continuityErrs.H"

00122

00123 U -= rAU*fvc::grad(p);

00124 U.correctBoundaryConditions ();

00125 }

00126 }

00127

00128 turbulence ->correct ();

00129

00130 runTime.write ();

00131

00132 Info << "ExecutionTime = " << runTime.elapsedCpuTime () << " s"

00133 << " ClockTime = " << runTime.elapsedClockTime () << " s"

00134 << nl << endl;

00135 }

00136

00137 Info << "End\n" << endl;

00138

00139 return 0;

00140 }

00141

00142

00143 // ************************************************************************* //
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[32] Ferziger JH, Perić M. Computational Methods for Fluid Dynamics. Springer, 2002.

[33] Fogarty LE. The laminar boundary layer on a rotating blade. J. Aeronaut. Sci.,

18(4):247–252, 1951.
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Laboratoire de Mécanique et Technologies, 2008.

[65] Keating A, Piomelli U. A dynamic stochastic forcing method as a wall-layer model

for large-eddy simulation. J. Turb., 7, 2006.

[66] Keating A, Piomelli U, Balaras E, Kaltenbach HJ. a priori and a posteriori tests

of inflow conditions for large-eddy simulation. Phys. Fluids, 16:4696–4712, 2004.

[67] Keating A, Prisco GD, Piomelli U. Interface conditions for hybrid RANS/LES

calculations. Int. J. Heat Fluid Flow, 27:777–788, 2006.

[68] Kim Y, Castro IP, Xie ZT. Divergence-free turbulence inflow conditions for large-

eddy simulations of flows around an airfoil. UK WES conf., Southampton, UK,

2012.

[69] Kim Y, Castro IP, Xie ZT. Divergence-free turbulence inflow condition for large-

eddy simulations with incompressible flow solvers. Comput. Fluids, 84:56–68, 2013.

[70] Kim Y, Castro IP, Xie ZT. Large-eddy simulations for wind turbine blade: rota-

tional augmentation and dynamic stall. Direct Large Eddy Simulation 9, Dresden,

Germany, 2013.

[71] Kim Y, Xie ZT, Castro IP. A forward stepwise method of inflow generation for

LES. Sixth Int. Conf. Fluid Mech., Guangzhou, China, 2011.

[72] Kim Y, Xie ZT, Castro IP. Numerical study of 3-D effects on dynamic stall of a

wind turbine blade. 13th Int. Conf. Wind Eng., 2011.

[73] Klein M, Sadiki A, Janicka J. A digital filter based generation of inflow data for

spatially developing direct numerical or large eddy simulations. J. Comput. Phys.,

186:652–665, 2003.

[74] Kolmogorov AN. The local structure of turbulence in incompressible viscous fluid

for very large Reynolds numbers. Proc. R. Soc. Lond. A, 434(1890):9–13, 1991.



184 BIBLIOGRAPHY

[75] Kondo K, Murakami S, Mochida A. Generation of velocity fluctuations for inflow

boundary condition of LES. J. Wind Eng. Ind. Aerodyn., 67-68:51–64, 1997.

[76] Kornev N, Hassel E. Synthesis of homogeneous anisotropic divergence-free turbu-

lent fields with prescribed second-order statistics by vortex dipoles. Phys. Fluids,

19, 2007.

[77] Kraichnan R. Diffusion by a random velocity field. Phys. Fluids, 13:22–31, 1969.

[78] Krishnan L, Sandham ND, Steelant J. Shock-wave/boundary-layer interactions in

a model scramjet intake. AIAA J., 47:1680–1691, 2009.
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