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Chapter 1

Introduction

Factor models have a long history in the field of Statistics, with the seminal paper of

Spearman (1904) on measuring intelligence, commonly referred to as one of the pre-

cursors of this literature. Since this early work and the extensive research that has

followed on, factor models have become an important research area for both theorists

and practitioners. The main usefulness of factor models is their ability to reduce the

dimensionality of a large data set into a smaller set of common drivers or factors. This is

achieved through the decomposition of a large panel data set into a small linear combina-

tion of uncorrelated common factors (latent variables) and an idiosyncratic component.

Factor models have also attracted considerable interest from Economists. Early influen-

tial papers go back to Sharpe (1964) who proposed a common risk factor for modelling

asset returns in his Capital Asset Pricing Model and Ross (1976)’s Arbitrage Pricing

Theory with multiple factors used to explain the comovement of asset returns. Natu-

rally, within this early work, the techniques used for modelling and extracting factors

operated under strong assumptions that ruled out features commonly encountered in

economic time series, such as heteroskedasticity, cross-sectional correlation, structural

breaks or the handling of settings in which both the time series and individual dimen-

sions could be very large. Equally importantly, the issue of the determination of the

number of common factors in a formal and statistically rigorous way remained an open

question until the recent work of Bai and Ng (2002) and others.

The goal of this thesis is to make a contribution to the literature on factor models by

offering practitioners some new techniques designed to improve the modelling of a large

data set as a factor model with the potential presence of structural breaks. The the-

sis also contains an important applied component that aims to better understand the

1



Introduction 2

usefulness of factor models for forecasting purposes in the context of the Brazilian un-

employment rate. The various toolkits we propose in this thesis rely on the approximate

factor model setting recently explored in the work of Bai (2003) and Bai and Ng (2002).

In matrix notation a factor model can be viewed such as Xt = FtΛ
′ + et, where Xt is

a T × N matrix of observations, Λ is a k × N matrix of factor loadings, F is a T × k
matrix of common factors, with k denoting the number of factors, and, et is a T × N
matrix idiosyncratic components.

The estimation procedure used in this thesis lies on asymptotic principal components.

The problem requires the minimization of V (k) = min
ΛFk

1
NT

∑N
i=1

∑T
t=1

(
Xit−Λk′

i F
k
t

)2

which does not lead to a unique solution but indeed to a unique sum of squared residuals.

We cannot estimate Λ and F simultaneously because they are not uniquely identifiable.

To facilitate it computationally, if T < N , we calculate the covariance of the dataset

as Σ = XX ′, to have it as a (T × T ) matrix and let the normalization F̂ F̂ ′/T = I

an identity matrix. We achieve the estimates as follows: the common factors F̂ = V

(we choose the k eigenvectors of Σ to be the common factors, corresponding to the k

largest eigenvalues), and the factor loadings are given by Λ̂ = (V ′X)/N ; the common

components χ̂ = F̂Λ′ = (V V ′X)/T and the idiosyncratic errors, ê = X − χ̂.

If instead we have T > N , we could normalize the optimization problem differently to

facilitate computationally. We calculate Σ = X ′X to have it as a (N × N) matrix.

The normalization now makes ΛΛ′/N = I, an identity matrix. Then the estimates of

the common factors are F = (XV )/N and the factor loadings Λ = V (we choose k

eigenvectors of Σ to be the factor loadings, corresponding to the k largest eigenvalues);

common components χ = FΛ
′
= (XV V ′)/N ; and the idiosyncratic errors e = X − χ.

The choice of the method does not matter because factors estimated by either eigende-

composition schemes have equivalent column spaces. They are scaled versions of each

other. The sign of the factors are not identifiable which allows one to sign-adjust the

factors accordingly (see Theorem 1 of Stock and Watson (2002a)). The reason for this

is that the estimated factors and factor loadings using either schemes will not be numer-

ically the same. However, the common components are identical: χ̂ ≡ χ.

Chapter 2 proposes a new toolkit for uncovering the presence of breaks in the structure

of a factor model. Our proposed method relies on the observation that an omitted

break in factor loadings translates into an overestimated number of factors when the

latter is estimated via Bai and Ngs model selection based approach (see Breitung and

Eickmeier (2011)). We therefore introduce a recursively implemented model selection

based approach that is designed to take advantage of this feature. Our recursively

estimated number of factors displays a clear jump at the time when a structural breaks
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occurs and this allows us to propose a graphical approach for uncovering breaks in

loadings.

Chapter 3 introduces a novel model selection based estimator of the number of factors

that is robust to the presence or absence of structural breaks in the underlying factor

model. More specifically, our estimator remains consistent even if the underlying model

contains breaks in its loadings. This subsequently allows us to introduce a decision based

rule for detecting whether a break is truly present.

Our results in Chapters 2-3 are closely related to the recent literature initiated by Bre-

itung and Eickmeier (2011), Chen et al. (2012) and Han and Inoue (2012). A common

feature of those papers is the introduction of techniques designed to detect the presence

of a structural breaks in the loading matrix of a factor model. Breitung and Eickmeier

(2011) developed a SupWald type test, assuming cross-sectional independence and op-

erating on a series by series basis while Chen et al. (2012) have shown that a structural

break in the factor loadings of a factor model can be viewed as a structural break in the

coefficients of a regression model linking one of the estimated factors to the remaining

ones. The former can then be detected via a conventional SupWald type test statistic.

Finally, Han and Inoue (2012)’s approach relies on a Wald type test of stability on the

covariance matrix of the estimated factors.

The motivation of the analysis of structural breaks in factor models can be thought

in occasions when over time dimension a factor loses its importance or a new factor

kicks in. In multifactor models describing asset returns for instance the importance of

some factors such as size may vanish over time while other risk factors may emerge

(e.g. liquidity factor, macroeconomic risk factor). Furthermore, this motivation can

be illustrated with Chen et al. (2012) forecasting simulations. They show the impact of

large structural breaks in forecast exercises when estimated factors are used as predictors.

In these simulations the mean square errors (MSEs) increase as structural breaks also

increase, in such a way that the forecasts neglecting structural breaks in the factor

models generate inferior forecasts (larger MSEs).

Chapter 4 of this thesis is an applied exercise exploring the use of factor analysis for

forecasting purposes. We explore a rich dataset that includes labor market related

historical time series across all major Brazilian metropolitan areas as well as aggregate

monthly macroeconomic and monetary related variables in order to forecast the Brazilian

unemployment rate. The number of factors is estimated via Bai and Ngs model selection

criteria and forecast accuracy comparisons are made across a large number of estimated

models including methods that involve forecast combinations and forecast encompassing.

Our findings suggest that a simple forecast combination approach using a diffusion index
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model is able to provide very accurate predictions of Brazilian unemployment rates.

Chapter 5 concludes.



Chapter 2

Detecting Structural Breaks in

Factor Models: A Recursive

Model Selection Based Approach

2.1 Introduction

With the growing availability of large datasets, factor models have attracted considerable

attention from both theorists and practitioners due to their ability to reduce dimension-

ality in a convenient and optimal way. A factor model aims at reduce the dimensionality

of a large dataset by formulating the variables involved as linear combinations of a small

number of common factors. In economics, early work in applied factor analysis goes back

to Sharpe (1964) who formulated the Capital Asset Pricing Model using the market re-

turn as the common risk factor linking a large number of individual returns and Ross

(1976) who modeled the Arbitrage Pricing Theory along the idea of multiple common

factors explaining asset returns. More recently, factor models have regained popularity

within the forecasting literature due to the advantages of using of composite predictors

(or common factors) summarising information from across hundreds of series (see Stock

and Watson (2002a,b)). Similarly, factor augmented VAR models, commonly referred

to as FAVARs, have allowed practitioners to use very large datasets in a convenient and

feasible way thanks to the dimensionality reduction features of factor models.

In most recent applications, factor models have typically been constructed using a large

number of economic and financial time series spanning very long periods. When using

common factors extracted from hundreds of macroeconomics time series as predictors

of quantities such as inflation it is common practice to use quarterly or monthly series

from as early as the post war period. Similarly, it is not uncommon to see the estimation

5
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of factor models in finance (e.g. the Fama and French (1993) three factor model) being

performed using data from the 60s or 70s onwards. The use of such long data spans nat-

urally raises the issue of model stability and may raise concerns about the suitability of

imposing time invariance of factor loadings in such settings (see Banerjee and Marcellino

(2008)). The structure of a factor model may also change over time due to a factor losing

its importance or a new factor kicking in. In multifactor models describing asset returns

for instance the importance of some factors such as size may vanish over time while other

risk factors may emerge (e.g. liquidity factor, macroeconomic risk factor). The goal of

this chapter is to develop a series of methods designed to uncover the presence of such

instabilities within otherwise standard linear factor models. Our goal is solely that of

uncovering the presence of a structural break rather than being also able to distinguish

between different sources of breaks which we leave for further research (e.g. breaks in

loadings versus breaks in the covariance matrix of factors through new factors kicking

in for instance).

Our work is inspired by the model selection based methods developed in Bai and Ng

(2002) and which have become one of the most commonly used approaches for estimating

the number of common factors linking a large number of time series. The main novelty

of this chapter however is based on a recursive implementation of the Bai and Ng type

model selection criteria as opposed to their more commonly used full sample implemen-

tation. We estimate the common factors and their number using asymptotic principal

component methods and model selection principles implemented recursively. The recur-

sive profile of the model selection criteria evaluated à la Bai and Ng allows us to obtain

a sequence of optimal number of factors in each recursion/time period. This profile of

recursively estimated number of factors is the key ingredient in our decision based rule

for deciding between stability and break scenarios and relies on the observation that a

jump in the estimated number of factors is associated with a break in either the loadings

or the number of factors driving the system. There is in fact a one to one relationship

between the presence of a break in the structure of a factor model and the jumps that

characterize our recursive estimator of the number of common factors. We use this in-

formation to propose a simple to use and easily implementable graphical approach for

uncovering structural instabilities in factor models. This then allows us to construct

a modified estimator of the number of factors that corrects for the distortions induced

by the presence of structural breaks. At this stage it is also interesting to recall that

early approaches used to determine the number of common factors were also based on

graphical methods and Cattell’s Scree Test in particular (Cattell (1966)) which plotted

the eigenvalues of a particular sample covariance matrix against the numbers of factors.

More recently, Forni and Reichlin (1998) have also relied on a graphical approach for

estimating the number of common factors within a sectoral dataset.
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The issue of structural breaks in factor analysis is a very recent concern that was initiated

by a small number of authors working on factor based modeling methodologies. The

issue was first raised in the work of Stock and Watson (2008) who argued that breaks in

loadings are of little consequence on forecast accuracy provided that they are small. From

a methodological perspective however, the first paper that explored formal methods of

uncovering structural breaks in factor models was Breitung and Eickmeier (2011) who

introduced a Sup Wald type test for detecting a structural break in factor loadings. The

test is implemented on a series by series basis assuming cross-sectional independence.

Breitung and Eickmeier’s work was closely followed by Chen et al. (2012) who developed

a more comprehensive and more widely applicable methodology by showing that the

presence of a break in the loadings of a factor model translates into a break in the

regression coefficients of an auxiliary regression linking one factor with the remaining

ones. This break can subsequently be detected through a standard SupWald type test

procedure. Similarly, Han and Inoue (2012) have also proposed a new test for detecting

breaks in the loadings of a factor model that relies on constructing a Wald type test of

stability for a particular sample covariance matrix obtained using estimated factors.

At this stage it is very important to emphasize that all of the above mentioned methods

for uncovering breaks rely on the availability of an estimator of the number of common

factors, typically taken to be Bai and Ng’s model selection based estimator. The latter

is typically estimated using full sample information and ignores the impact of underlying

instabilities. In this chapter we argue that our proposed methodology and the resulting

estimator of the number of common factors can also be used as a valuable input in the

implementation of the methods developed in Chen et al. (2012) or Han and Inoue (2012).

The plan of our chapter is as follows. Section 2.2 introduces the factor model of in-

terest and outlines the type of model instabilities we will be considering. Section 2.3

introduces our recursive model selection based approach for estimating the number of

common factors and highlights its properties. Section 2.4 is an extensive simulation

study exploring the properties of our proposed method and its implementation across a

variety of scenarios while Section 2.5 compares the performance of our approach with

Breitung and Eickmeier (2011), Chen et al. (2012) and Han and Inoue (2012). Section

2.6 proposes an empirical application using the existing dataset from Section Stock and

Watson (2005) and Section 2.7 concludes.
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2.2 Modeling Changes in the Factor Structure

We consider the following linear factor model

X
(N×T )

= Λ
(N×r)

F ′
(r×T )

+ e
(N×T )

(2.1)

where X is the N × T matrix of the observed dataset, F is a T × r matrix of common

factors, Λ is the N×r matrix of factor loadings and e is the N×T matrix of idiosyncratic

errors. The above specification views the series in X as being linearly linked to r common

factors and an idiosyncratic error term with ΛF ′ denoting the common component. It is

in this sense that factor models are able to reduce the dimensionality of a large system.

For later use it is also convenient to view each component of X as stacking the elements

Xit = Λ′iFt + eit so that F = (F1, . . . , FT )′ and Λ = (Λ1, . . . ,ΛN )′. Note that both the

loading matrices Λi and the factors Ft are unobserved by the researcher.

Structural change in a factor model specification such as (2.1) may take multiple forms.

As in Breitung and Eickmeier (2011) we could think of the factor loadings changing over

time as in

Xit =

Λi,1F
′
t + εit t = 1, ..., `

Λi,2F
′
t + εit t = (`+ 1), ..., T.

(2.2)

or more compactly, using indicator functions, as

Xit = Λi,1 F
′
t I(t ≤ `) + Λi,2 F

′
t I(t > `) + εit. (2.3)

Here the factor model in (2.1) is subject to a structural break in its loadings. The break

occurs at some unknown time ` after which the loading matrix switches from Λi,1 to

Λi,2. Following Chen et al. (2012) it is also useful to reformulate (2.2) or (2.3) as

Xit = Λi,1 F
′
t +Bi G

′
t + εit (2.4)

with Bi = Λi,2 − Λi,1 referring to the size of the break and Gt ≡ FtI(t > `). The above

notation also makes clear the fact that a factor model with a break in its loadings and

say r factors can be rewritten as a factor model with constant loadings but a greater

number of factors (see Breitung and Eickmeier (2011)).

Our goal in this chapter is to propose a method of detecting the presence of a break as

in (2.2) or (2.3) by taking advantage of the fact that a model with a break in its loadings

can be equivalently written as a model with time invariant loadings associated with a

larger number of factors (e.g. r0 + 1 versus r0) and hence the most commonly used Bai

and Ng type model selection criteria for estimating the number of factors will lead to an
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overestimation of the true number of factors. As mentioned above this point was made

in the earlier work of Breitung and Eickmeier (2011) and formally proved in Chen et al.

(2012, Proposition 2).

The key idea proposed in this chapter is to introduce a recursive approach for the

determination of the number of factors. This allows us to determine whether a break has

occurred by taking advantage of the fact that following the occurrence of break the Bai

and Ng type model selection criteria will tend to overestimate the true number of factors.

When estimated in a recursive manner therefore, we should expect the number of factors

to exhibit a jump following the occurrence of the break. Although our methodology is

unable to disentangle breaks in loadings from breaks in the deeper factor structure (e.g.

in the moments of the factors themselves) it is able to accurately detect the presence of

a break under both scenarios.

2.3 Recursive Estimation of the Number of Factors: Re-

cursive Implementation of Bai and Ng’s Model Selec-

tion Criteria

Bai and Ng (2002) have introduced a wide range of information theoretic criteria designed

to estimate the number of factor within linear factor models. Letting k index the number

of factors assumed to be between zero and some given upper bound kmax, the generic

form of Bai and Ng’s criteria for each value of k is given by

IC(k) = lnV (k, F̂ k) + kg(N,T ) (2.5)

where V (k, F̂ k) =
∑N

i=1

∑T
t=1(Xit − Λ̂′iF̂

k
t )2/NT and g(N,T ) is a deterministic penalty

term (e.g. g(N,T ) = lnC2
NT /C

2
NT for C2

NT = min(N,T )). For each possible k, the

estimated factors F̂t and their respective factor loadings Λ̂i, are estimated via asymptotic

principal components. The estimated number of factors is given as the solution to the

following optimization problem

k̂ = arg min
0≤k≤kmax

IC(k). (2.6)

Here we propose to assess the presence or absence of a break within (2.1) by implementing

the above model selection procedure in a recursive manner. We let

V`

(
k`, F̂

k`
t

)
=

1

N`

N∑
i=1

∑̀
t=1

(Xit − Λ̂′iF̂
k`
t )2 (2.7)
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denote the recursively estimated error variance for each possible value of ` starting with

a given lower bound, say ` so as to ensure estimability and with ` = `, ` + 1, . . . , T . In

what follows we set ` = [Tπ] with π denoting the minimum fraction of observations we

wish to allow. Suppose for instance that T = 100 and π = 0.3. The above recursive

sum of squared errors will generate 71 possible values for V` under (t = 1, . . . , 30),

(t = 1, . . . , 30, 31), . . ., (t = 1, . . . , 30, 31, . . . , T ). For each possible value of ` = `, . . . , T

our approach requires estimating the factors via asymptotic principal components and

computing all possible value of the estimated error variance function in (2.7). Note that

we let k` ∈ [0, kmax] for each possible value of `. This then allows us to construct the

following recursive model selection criteria à la Bai and Ng

ICp1,` (k`) = ln(V`) + k`

(
N + `

N`

)
ln

(
N`

N + `

)
(2.8)

ICp2,` (k`) = ln(V`) + k`

(
N + `

N`

)
lnC2

N` (2.9)

ICp3,` (k`) = ln(V`) + k`

(
lnC2

N`

C2
N`

)
(2.10)

with C2
N` = min (N, `). The above criteria are computed for each possible value of ` and

we let k̂` denote the following optimal choice of the number of factors obtained à la Bai

and Ng

k̂` = arg min
0≤k`≤kmax

IC`(k`) (2.11)

with IC` referring to one of the above three criteria. In words, for each possible value

of ` we compute all possible values of the model selection criteria for k` ∈ [0, kmax] and

subsequently estimate k̂` as the value of k` that leads to the smallest model selection

criterion.

Before proceeding further it is important to highlight some basic feasibility requirements

for the validity of our procedure. Since our recursions are assumed to start at some

known lower bound, say ` = [Tπ], it is naturally understood that the true break fraction

π0, if present, must be such that π0 > π.

Before focusing on the properties of k̂` under the structural break model it is important

to also highlight the type of breaks that we expect our procedure to be able to uncover.

As discussed in Stock and Watson (2008) for instance, only big jumps in the loading

coefficients can be expected to be detectable. This concept has been formalized for the

first time in Chen et al. (2012).
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The following Proposition provides the key rationale for the use of our proposed recursive

approach. It shows that in large samples our recursively estimated number of factors

converges to the true number of factors, say r0, prior to the occurrence of a break but

after the occurrence of a break the convergence is towards a quantity that is greater

than r0 if and only if large breaks take place. Borrowing the framework and definitions

of structural breaks in Chen et al. (2012, p. 5) we operate under the assumption that

the loadings may be subject to large breaks or small breaks. More specifically, if we

partition B as (4.2) into two components, say B = [Blarge Bsmall] with Blarge being an

N × d1 matrix associated with large breaks and Bsmall being an N × d2 associated with

small breaks and such that d1 + d2 = r we have

Proposition 2.1: (i) Assuming that the loading coefficients in (2.3) are only subject

to small breaks as defined in Assumption 1 of Chen et al. (2012) and operating under

the same assumpions as in Chen et al. (2012), we have P [k̂` = r0] → 1 for π < π0 ans

P [k̂` = r0] → 1 for π ≥ π0 as (N,T ) → ∞. (ii) Assuming that the loading coefficients

in (2.3) are subject to both small and large breaks as defined in in Assumption 1 of Chen

et al. (2012) we have P [k̂` = r0]→ 1 for π < π0 and P [k̂` = r0 + d1]→ 1 for π ≥ π0 as

(N,T )→∞.

The above proposition whose proof follows directly from Proposition 2 in Chen et al.

(2012) highlights the fact that our recursive approach will lead to an estimated number

of factors that is inflated by d1 after the occurrence of the break at time `0. This is also

the main rationale for our decision rule based approach to detecting the occurrence of

such breaks. Our approach relies on comparing the sequence of recursively estimated

number of factors k̂` with the full sample counterpart k̂(≡ k̂T ) defined in (2.6). Plotting

the sequence of the recursively estimated number of factors k̂` against ` yields a simple

graphical approach to uncovering a break.

Decision Rule (Graphical Approach): If the k̂` sequence plotted against ` = `, . . . , T

exhibits at least one jump occurring between ` and T , select model (2.2). Select model

(2.1) otherwise.

In Figure 2.1 below we present a simple simulated example to illustrate the usefulness

of the above decision rule.

For this single realization the data is of length N=T=100 assuming a simple one-factor

model (r0 = 1) across the entire sample length and a change in the number of factors

occurring at time `0 = 50. This artificially generated example illustrates very clearly

the jump in ˆ̀ taking place at time t = `0 = 50. The estimated number of factors is such

that k̂` = 1 for t < 50 and switches to k̂` = 2 for t ≥ 50.
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Figure 2.1: DGP: r0 = 1 with a large break at t = `0 = 50

A modified estimator of the number of factors Perhaps more interestingly

we can also use our decision rule to propose a modified estimator of the number of

factors that is adjusted for the presence of breaks (jumps). More formally if φ denotes

the number of jumps that occur in the k̂` series plotted against `, we can define our

modified estimator of the true number of factors as

k̂∗ = k̂T − φ. (2.12)

In the context of Figure 2.1 for instance we have k̂T = 2 and φ = 1 so that k̂∗ = 1 is

our modified estimator of the true number of factors. This clearly corresponds to the

underlying DGP which had r0 = 1 and a single break in its loadings. When φ = 0 our

modified estimator is clearly identical to Bai and Ng’s full sample based estimator.

Naturally our proposed graphical approach should be viewed as a preliminary diagnostic

tool since it does not provide a formal way of conducting inferences about r0 due to the

unknown distributional properties of the discrete sequence k̂`. This shortcoming is in

a way similar to the shortcomings that characterize all estimators of discrete quantities

such as k̂. The latter are typically taken as equal to their true counterparts and are

not tested for. A more formal approach to assessing the presence of a jump in our k̂`
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sequence could be to implement a standard mean shift test using a SupWald type test

statistic.

2.4 Monte Carlo Simulations for the Recursive Model Se-

lection based Information Criteria

We initially consider a model characterized by the presence of a single break in its

loadings occurring at time `0 and a fixed number of factors r0 across time (DGP1)

Xit =



r0∑
j=1

Λi,1F
′
tj + εit for t = 1, ..., `0

r0∑
j=1

Λi,2F
′
tj + εit for t = (`0 + 1), ..., T

(2.13)

Our Monte-Carlo simulations rely on alternative parameterizations of our specification

in (2.13) and are conducted using 1000 replications, taking all random variables as

standard normally distributed. Regarding the sample size, cross-sectional dimension

and location of the break point we set {T,N, `0, `} = {100, 100, 50, 30} throughout.

Alternative choices for the break point location have also been considered and led to

outcomes very similar to the ones presented below. One may also wonder what would

happen in different sample sizes. As we increased N and/or T our graphical approach

was able to pick up the jump in a timelier manner (at or around `0) while with smaller

sample sizes the jump occasionally took place at later periods. As expected, there were

also instances where k̂` was not characterised by a jump when the true DGP contained

a break in its loadings.

Since our goal is to highlight the reliability of our approach based on observing a jump

in k̂` we proceed as follows. For each realization of our DGP in (13) we compute our

recursive estimator of the number of factors k̂` across ` = 30, . . . , 100 i.e. k̂30, k̂31,

k̂33, . . ., k̂100. The latter are subsequently averaged across our 1000 replications as∑1000
h=1 k̂

(h)
30 /1000 etc. Those averages are subsequently plotted against ` and displayed

in Figures 2.2-2.10 below.

In the context of model (13), in DGP1 we set r0 = 1 and experiment with breaks

of size zero (no break), B = 0.3, B = 0.5 (Figure 2.2), B = 0.7 (Figure 2.3), B =

0.9 (Figure 2.4) and B = 1 (Figure 2.5); Our results corroborate unequivocally the

results presented in Table 1 of Breitung and Eickmeier (2011) who considered a similar

experiment. Despite the fact that r0 = 1 throughout the entire sample size, the model

selection based estimators tend to point to a greater number of factors as predicted by
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Proposition 2 of Chen et al. (2012). Looking at Figure 2.2 for instance we note that

the number of factors estimated using the full sample (i.e. k̂100) is on average equal

to 2(= 2r0) when using the criterion ICp3 at T = 100; about 1.6 on average across

1000 replications when using ICp1 at T = 100; and, about 1.2 on average across 1000

replications when using ICp2 again at T = 100.

It is important to note that since the plots involve averages across 1000 replications

there were specific instances in which ˆ̀ displayed no jump even though the underlying

DGP had B = 0.5. Said differently, we have that occasionally the recursive estimator is

not picking up the break yielding this smooth looking transition.

Overall we observe a clearly visible smooth transition in our recursively estimated num-

ber of factors k̂` starting at or around t = `0 and which we interpret as evidence of

parameter instability (recall that our plots display averages across replications). This

transition from one to a greater number of factors starts to occur after about five periods

under ICp1, eleven periods under ICp3 and only one period for ICp3. Similar patterns

also characterize our experiments presented in Figures 2.2-2.10. In all cases, either when

the time dimension increases and/or as the size of the break also increases, the smooth

looking transition becomes steeper indicating a sharper ability to detect the break. We

should stress that, in tables to be presented later, we display precisely the number of

times a break is detected (analogously one could think of the number of times the break

is not detected) out of 1000 simulations, in different time locations.

When the break is large as when B = 0.7, B = 0.9 or B = 1 (see Figures 2.3-2.5) all

three information criteria detect the structural break immediately at the time it takes

place. Looking at Figure 2.5 for instance we note that the recursively estimated number

of factors display an abrupt jump at or in the very close vicinity of ` = 50 and all three

criteria tend to display a very similar behavior on average. Table 2.1 below also displays

the frequencies of correct decision associated with each criterion. We note that if our

concern is that of detecting a break (rather than pinpointing its precise location), our

recursive method has accuracy rates close to 100% under large breaks (here for B ≥ 0.7).
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Figure 2.2: DGP1 Comparing the performance of the recursive information criteria
for a structural break of size B = 0.5.

Figure 2.3: DGP1 Comparing the performance of the recursive information criteria
for a structural break of size B = 0.7.
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Figure 2.4: DGP1 Comparing the performance of the recursive information criteria
for a structural break of size B = 0.9.

Figure 2.5: DGP1 Comparing the performance of the recursive information criteria
for a structural break of size B = 1.



Chapter 2. Detecting Structural Breaks in Factor Models: A Recursive Model Selection
Based Approach 17

Our second specification considers a factor model with a change in its factor structure

modeled as a new factor kicking in after some time period `0 (DGP2)

Xit =

Λi,1Ftr0 + εit for t = 1, ..., `0

Λi,1Ftr0 + Λi,2Gtq0 + εit for t = `0 + 1, ..., T
(2.14)

Up to time `0 the model is characterized by r0 factors while after time `0 the number

of factors jumps to r0 + q0. Unlike our DGP1 we do not assume a break in the factor

loadings. We consider two alternative parameterizations of (2.14).

DGP2a (Figure 2.6) : Xit =

{
Λi,1Ftr0 + εit for t = 1, ..., 50

Λi,1Ftr0 + Λi,2Gtq0 + εit for t = 51, ..., T

where r0 = 1, q0 = 1. And,

DGP2b (Figure 2.7) : Xit =


r0∑
j=1

Λi,1Ftj + εit for t = 1, ..., 50

λi,2Gtq0 + εit for t = 51, ..., T

where r0 = 2, q0 = 1.

Results for the above two parameterizations are presented in Figures 2.6-2.7 which dis-

play the profile of the recursively estimated k̂′`s. We again note that under both scenarios

our recursively estimated number of factors exhibit a jump that occurs in the vicinity

of t = `0 ≡ 50.

Our proposed modified estimators of the number of factors associated with DGP2a and

DGP2b are given by

k̂∗DGP2a = 2− 1 = 1

and

k̂∗DGP2b = 3− 1 = 2

As before, the recursive information criteria overestimate the number of factors, and the

graphical analysis is similar to larger structural breaks of DGP1. All of the recursive

information criteria detect the change in the factor structure right after its occurrence,

and the number of factors moves away from one to two.

Now, extending the analysis, not only we allow for the number of factors to change at

some point in the time dimension, but we also allow the number of factors to decrease,

resulting in the graph of Figure 2.7. In this DGP two factors (r0 = 2) disappear when

the changes in the factor structure take place, and one new factor (q0 = 1) kicks in. For
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Figure 2.6: DGP2a Comparing the performance of the recursive information criteria
when there is only factor along the model but a new factor takes places after the change

in the factor structure.

instance, this situation could be thought in cases when a set of independent economies

form an economic blocs of any type (monetary, customs or trade blocs). Perhaps, a

smaller quantity of factors explains the comovement of a dataset after a bloc is formed.

The information criteria perform correctly before the change in the factor structure

pointing out to two factors, but after that the recursive information criteria move to

three factors when in reality there is only one. Instead of decreasing the number of

factors as it is the case in the true model, it is actually doing the opposite. The result

of DGP2b highlights the fact that the information criteria overestimate the number of

factors whenever there is any type of relatively large temporal instability.

The purpose of the above experiments was to highlight the timely nature of the recursive

estimator of the number of factors k̂`, which tends to jump exactly at or at the close

vicinity of t = `0. The jump occurs regardless of whether the structural break occurs in

the loadings or in the deeper factor structure characterizing the DGP.

The goal of this chapter is to propose a method for detecting the presence of a break and

not necessarily that of estimating the number of factors. For this reason it is important

to conduct a more comprehensive simulation study designed to assess the performance
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Figure 2.7: DGP2b Comparing the performance of the recursive information criteria
when there are two factors before the change in the factor structure and only one (new)
factor after the change in the factor structure: the number of factors decrease after the

structural change.

of our decision rule based detection of a structural break. More specifically, using the

above DGP we computed the number of times our decision rule led to a linear versus

a structural break type decision across our 1000 replications. Results are displayed in

Tables 2.1-2.2 below and focus solely on the use of the criteria ICp1,` and ICp2,`.

Note that the detection of a break through our decision rule is equivalent to deciding

for a structural break in the factor model so that the figures presented in the top right

panels of Tables 2.1-2.2 can be interpreted as the power performance of our decision rule

when B 6= 0 and as its size when B = 0.

The true break is set at t = 50. From the figures presented in Tables 2.1-2.2, we note

that even under a medium sized break of B = 0.5, our decision based rule points to

a break 60% of the time, and under large breaks 100% of the time when the recursive

method is allowed to cover the entire data span (i.e., when T = 100).

Examining Table 2.1 more closely, where ICp1,` has been used, for DGP1 B = 0.0

(no break), the frequency of break detection is zero across the entire time dimension.

Considering the case of a large break (e.g. B = 1) we note that at t = `0 + 1 = 51, the

frequency of break detection is only 4.6% but it quickly reaches a frequency of about 91%



Chapter 2. Detecting Structural Breaks in Factor Models: A Recursive Model Selection
Based Approach 20

at t = 60. Full detection is achieved at t = 75. For DGP2a and DGP2b the associated

correct decision frequencies are very large; full precision is achieved with DGP2b when

the number of factors decreases after the break. Similar results are achieved with the

use of ICp2,` albeit with slightly less accuracy.

Table 2.1: Frequencies of break detection (in %) in each of the DGPs using ICp1,`

N = 100, T = 100, break at t = 50, 1000 simulations
DGP a la Breitung and Eickmeier (2011)

Size of the Break
True Number of Factors

Frequency of break
in the Loadings detection (in %) at

t = 51 t = 60 t = 75 t = 100

DGP1

B = 0.0 0 0 0 0
B = 0.5 1 before and 1 after the break 0 2.6 31.1 60
B = 0.7 keeping the same factor 0.5 45.4 97.3 99.9
B = 0.9 2.7 84.8 99.9 100
B = 1.0 4.6 90.9 100 100

DGP2a -
1 before the break that dies out

2.6 81.4 100 100
1 new after the break

DGP2b -
2 before the break that die out

100 100 100 100
1 after the break

2.5 Comparing with the Test Based Approaches of Bre-

itung and Eickmeier (2011), Chen et al. (2012) and

Han and Inoue (2012)

At this point it is useful to highlight the key differences between our approach and the

methods proposed by Breitung and Eickmeier (2011), Chen et al. (2012) and Han and

Inoue (2012). Firstly, our approach does not require prior knowledge of the number

of factors. The need for prior knowledge of the number of factors, typically estimated

according to the Bai and Ng model selection criteria, may adversely impact these three

existing methods and may lead to misleading results. In this regard, the tests proposed

in Han and Inoue (2012) and Chen et al. (2012) most likely need the factors to be

overestimated to achieve better performance.1 Secondly, to detect nonlinearities in factor

models, contrary to the methods available so far, our approach seems to be reliable even

under very small sample sizes. Finally, our approach is based entirely on model selection

principles and does not require any distributional results.

1See Remark B of Breitung and Eickmeier (2011).
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Table 2.2: Frequencies of break detection (in %) in each of the DGPs using ICp2,`

N = 100, T = 100, break at t = 50, 1000 simulations
DGP a la Breitung and Eickmeier (2011)

Size of the Break
True Number of Factors

Frequency of break
in the Loadings detection (in %) at

t = 51 t = 60 t = 75 t = 100

DGP1

B = 0.0 0 0 0 0
B = 0.5 1 before and 1 after the break 0 0.2 10.6 21.5
B = 0.7 keeping the same factor 0.4 26.9 87.3 96.3
B = 0.9 1.6 73.8 99.6 100
B = 1.0 2.9 85.8 99.9 100

DGP2a -
1 before the break that dies out

1.3 71.2 100 100
1 new after the break

DGP2b -
2 before the break that die out

100 100 100 100
1 after the break

2.5.1 Breitung and Eickmeier (2011)

a Breitung and Eickeimer’s method accounts for two possible scenarios: if the break

location is known, and if it is unknown. Firstly, if the location is known if the break

location is known, their test is equivalent to a Chow (1960) type of test for each of the

series on the estimated number factors using Bai and Ng (2002) information criteria to

select the number of factors. If the break location is unknown, they use a Sup-type

test, as in the fashion of Andrews (1993). Breitung and Eickeimer’s null hypothesis

tests the stability of the factor loadings individually, by regressing each variable onto

the estimated factors.

As discussed in Chen et al. (2012), the method proposed by Breitung and Eickmeier

(2011) faces the following three issues. Firstly, their test may fail to detect the presence

of a break since the number of factors is very likely to be overestimated. This situation

is likely to occur under large breaks and when Bai and Ng (2002) information criteria

is used as a prior method to estimate the number of factors. Factor models subjected

to a large break can be viewed as a factor model with additional factors (an augmented

model), as a linear model. However, factor models that are subjected to a large break are

in fact non-linear. In these situations, their test may face an augmented model and will

fail to detect the presence of the break. Secondly, Breitung and Eickmeier (2011) test

is applied in a series by series basis. The authors impose strong operating assumptions

on the idiosyncratic error term of the factor model which are not realistic for economic

time series. They impose this to make their pooled test statistics, and thus go on to

proceed with an analysis of the stability of the factor loadings. Thirdly, as their test is

constructed according to a series by series structural break test framework, and since the

factor space is overestimated with the conventional information criteria, their method
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is also susceptible to incorrectly identifying which of the time series are subjected to a

break.

The type of structural break studied here so far is borrowed from Breitung and Eickmeier

(2011). Our method has shown promising results because we are not misled by any

overestimation of the conventional information criteria.

Comparison with Breitung and Eickmeier (2011) Comparing our approach to

that of Breitung and Eickmeiner, when no breaks are assumed, our method does not

detect any break in any time in the recursive estimate. This can be seen in the first line

of table 2.1 (DGP1, B=0). The estimate is time consistent, as expected, and this result

corroborates the simulations of Bai and Ng (2002). On the other hand, Breitung and

Eickmeier (2011) tests may find it difficult to detect the linearity of the model with full

precision. Nevertheless, in their Table 2.2, amongst their proposed tests, one appears to

show better performance for the empirical size in most of sample sizes.

When dealing with breaks of known location (Table 3 of Breitung and Eickmeier (2011)),

their tests yields more empirical power in cases of larger sample sizes and larger breaks.

In their best performance they achieve 44, 60% average frequency of rejecting of the

null hypothesis of a break in N = 50 variable-specific tests for structural breaks, with

T = 200. Fixing N = 50, smaller time dimesions T never give more power than the

latter percentage we mentioned.

Breitung and Eickmeier’s tests are not recursive, which means that the results apply to

the entire sample size and moreover, their tests are applied individually to each variable.

Chen et al. (2012) highlight the possibility of arriving at incorrect conclusions arising

from the use of this procedure. For instance, according to simulations performed by Chen

et al. (2012), by submitting the Breitung and Eickmeier (2012) tests to relatively larges

breaks, in a fixed proportion of 50% of the variables, rejection of the null hypothesis of

no break can be raised in up to 90% of the variables. Additionally, with larger breaks,

the number of factors will be overestimated and their tests will lose power with, at most,

30.2% rejection of the null hypothesis of no break with a sample size of N = 100 and T

= 300 (Table 3 in Chen et al. (2012)).

Furthermore, when the recursive method is allowed to cover the entire data span (i.e.,

when t = 100), for B = 0.5, our decision based rule suggests a break 60% of the time,

and 100% of the time for larger breaks . In the latter cases, our method produced 100%

correct detection of the break in simulations performed (rejecting the null hypothesis of

no break 100% of the time).
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2.5.2 Chen et al. (2012)

Chen et al. (2012) offer two tools. The first one, which is the main one, focuses on the

detection of large breaks. This is developed in a two-step framework. In the first step the

factors and the respective number of factors are estimated according to the conventional

Bai and Ng (2002) information criteria. Chen et al. (2012) are aware of the fact that

those information criteria will overestimate the number of factors in break scenarios, as

they demonstrate. In the second step, using the factors and the number of factor, the

procedure is to investigate the dependence properties of the estimated factors. They

do it implementing a well-known structural breaks test such as Andrews (1993), but

adapting it to detect breaks in the coefficient of the factors.

The structural break test is implemented by regressing one of the estimated factors onto

the set of other factors, and the structural break is verified in the coefficients of these

regressors. If a structural break is detected in one of the coefficients, then the factor

model is subjected to structural breaks, either in the factor loadings or in the factor

structure (e.g., the appearance of a new factor). A methodological advantage of Chen

et al. (2012) is that other regression-oriented methods used to detect structural breaks

can also be implemented, allowing their method not only to be easily implemented but

also to be tested by other regression-oriented structural tests.

The second tool offered by Chen et al. (2012) is used to distinguish whether the break

is either a change in the actual number of factors, or only in the factor loadings. This

test is analyzed by ranking the covariance matrix of the estimated factors. If the matrix

it is a full rank matrix, then the break is in the factor structure; if the matrix rank is

reduced, it highlights a break in the factor loadings. In the present study, however, the

aim is to detect the break not the source of the break, the Chen et al. (2012) first tool

used.

While comparing our approach to that of Chen et al. (2012) we believe that our approach

could complementary. This is because we are not required to choose a number of factors

prior to implementing the structural break test as they do. Chen et al. (2012) choose

the number of factors with the conventional information criteria taken from Bai and Ng

(2002) conventional information criteria. As explained by Chen et al. (2012), the size

and power of their tests may vary considerably as a different number of factors is chosen.

In this regard, an overestimation of the number of factors is preferable for them.

Comparison with Chen et al. (2012) To compare the graphical approach used

in this study to Chen et al. (2012), two DPGs were taken from them, performing 1000

RMCS, with N = T = 100. The first DGP contains no break, as follows:
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DGP3 :Xit =
r∑

j=1

λiFtj + εit

Ftj = βjF(t−1)j + υtj

where r = 3, β1 = 0.8, β2 = 0.5, β3 = 0.2;

with λi, εit and υtj i.i.d. standard normal variables.

The DGP3 specification contains three factors (as in Chen et al. (2012)). Our approach

detects three factors in all 1000 simulations. Hence, under the null hypothesis of no

large breaks, the approach used here outperforms the results obtained by Chen et al.

(2012). It is unnecessary to show these results graphically, since the number of estimated

factors always equals three. In this case, Chen et al. (2012) verify the empirical size of

their tests using different numbers of estimated factors. Contrasted to the approach

used in this study, the tests performed by Chen et al. (2012) are highly dependent on

both the dimension of the sample sizes, and also on the choice of the number of factors

in the regression-oriented structural break tests. Chen et al. (2012) evaluate their test

with two, three and four factors. When we generated a linear model with no breaks,

the recursive information criteria achieves the expected outcome. That is, selecting

the correct number of factors throughout the whole sample. This enables the correct

inference that there are no large breaks (no jumps).

k̂∗DGP3 = 3− 0 = 0

where k̂∗DGP3 = 3 is in fact the true number of factors. In other words, the recursive

information criteria detects no large breaks.

One of the alternatives of Chen et al. (2012) is described in DGP4. It deals with

structural breaks in the factor loadings of sizes B = 0.2 and B = 0.4. The structural

breaks are located in the middle of the time dimension. This DGP can be expressed as

follows:
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DGP4 (Figure 2.8) :Xit =
r∑

j=1

λi,1Ftj + εit for t = 1, ..., 50

Xit =
r∑

j=1

(λi,1 + b)Ftj + εit for t = 51, ..., T

Ftj = βjF(t−1)j + υtj

where r = 2, β1 = 0.8, β2 = 0.2, B = 0.2 and B = 0.4;

with λi, εit and υtj i.i.d. standard normal variables.

When the break is relatively small, such as when B = 0.2, the recursive method is unable

to move away from the linear model. That is, the graphical method suggests that there

is no change in the number estimated factors. This is to be expected, since the Bai

and Ng (2002) information criteria correctly estimate the true number of factors under

mild temporal instabilities as evidenced in this case. Using our graphical approach the

changes in the number of factors become visible immediately after the structural break,

in the occasion of larger breaks such as when B = 0.4. This result applies regardless of

the information criteria. As it can be seen in our Tables 2.3-2.4, the number of factors

starts to become overestimated immediately after the break, and increases monotonically

as the time dimension increases. In other words, the break is captured immediately

after it occurs. For ICp1,`, when t = 51, one period after the structural break, 0.2%

of the simulations detect a large break (overestimation of the number of factors). This

percentage increases to 42.8% at t = 60 to 96.9% at t = 75 only 25 periods after the

occurrence of the break, and then to 100% at t = 100. The analysis for the ICp2,` is

analogous (Figure 2.8).

Contrasting with this, under these DGPs, the Chen et al. (2012) tests have different

results depending on the selected number of factors. In their framework the performance

is improved when the number of factors is overestimated. Additionally, the performance

is also improved when the dimension of the sample sizes are larger.

As Chen et al. (2012) is not a recursive test, in the last time observation forN = T = 100,

the power of their test is very weak when assuming the number of factor equals two.

Most of their tests perform well when the number of factors equals three or four, with

the Wald test being the best one for rejecting the null hypothesis of no break with 100%

precision. As the true number of factors is not known, one has to test across different

numbers of factors to infer where breaks occur. A benefit of our recursive approach is

that no prior estimation of the number of factors is needed.
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Figure 2.8: DGP4 Comparing the performance of the recursive information criteria
using a Chen et al. (2012) DGP, B = 0.4.

k̂∗DGP4 = 3− 0 = 3 for B = 0.2

where k̂∗DGP4 = 3 is in fact the true number of factors for B = 0.2 . In other words, the

recursive information criteria detect no large breaks.

This result is also in line with Bai and Ng (2002) and Stock and Watson (2002a). These

authors explain that the estimate of the factors remains consistent under small temporal

instability. However, as we see below, larger instabilities affect the recursive information

criteria estimates:

k̂∗DGP4 = 4− 1 = 3 for B = 0.4

where k̂∗DGP7 = 3 is in fact the true number of factors for B = 0.4.
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Table 2.3: Frequencies of break detection (in %) in each of the DGPs using ICp1,`

A break detection means a wrong estimate of the true number of factors
N = 100, T = 100, break at t = 50, 1000 simulations

Size of the Break
True Number of Factors

Frequency of break
in the Loadings detection (in %) at

t = 51 t = 60 t = 75 t = 100

DGP3 -
DGP a la Chen et al. (2011)

0 0 0 0
2 factors with no breaks

DGP4
B = 0.2 DGP a la Chen et al. (2011) 0 0 0 0
B = 0.4 2 factors with one break 0.2 42.8 96.9 99.7

DGP5

B = 1/3 DGP a la Hi and Inoue (2011) 0.1 30.6 91.4 99.6
B = 2/3 3 factors 5.5 92.0 100 100
B = 1 with 6.8 95.6 100 100
B = 2 one break 2.0 78.6 99.9 100

DGP6

B = 1, α = 0.2 DGP a la Hi and Inoue (2011) 0 20.2 80.9 98.2
B = 1, α = 0.4 3 factors with one break 1.4 71.9 100 100
B = 1, α = 0.6 across different fractions 3.6 89.4 100 100
B = 1, α = 0.8 of the factor loadings 5.8 93.6 100 100

Table 2.4: Frequencies of break detection (in %) in each of the DGPs using ICp2,`

A break detection means wrong estimation of true number of factors
N = 100, T = 100, break at t = 50, 1000 simulations

Size of the Break
True Number of Factors

Frequency of break
in the Loadings detection (in %) at

t = 51 t = 60 t = 75 t = 100

DGP3 -
DGP a la Chen et al. (2011)

0 0 0 0
2 factors with no breaks

DGP4
B = 0.2 a la Chen et al. (2011) 0 0 0 0
B = 0.4 2 factors with one break 0.1 24.4 86.8 97.2

DGP5

B = 1/3 DGP a la Hi and Inoue (2011) 0 30.6 91.4 99.6
B = 2/3 3 factors 2.9 84.7 99.9 100
B = 1 with 5.0 91.0 100 100
B = 2 one break 1.1 64.5 99.3 99.9

DGP6

B = 1, α = 0.2 DGP a la Hi and Inoue (2011) 0 7.2 57.6 87.8
B = 1, α = 0.4 3 factors with one break 0.6 55.1 99.6 100
B = 1, α = 0.6 across different fractions 1.5 81 100 100
B = 1, α = 0.8 of the factor loadings 3.7 88.5 100 100

2.5.3 Han and Inoue (2012)

The test proposed by Han and Inoue (2012) lies on a null hypothesis of a covariance

matrix of the estimated factor loadings according to Bai and Ng (2002) that is constant

over time. As previously discussed, their tests perform better when the number of

factors is overestimated. In order to compare performances, some of their DGPS were

submitted to the recursive information criteria used in this study.

The first one, DGP5, adds the possibility for the size of the structural break to be larger

than those previously considered. The results remain with the expected intuition. The

second one, DGP6, considers the case in which not all of the factor loadings are subjected



Chapter 2. Detecting Structural Breaks in Factor Models: A Recursive Model Selection
Based Approach 28

to structural breaks, but only a fraction of them. Still, in this case, the results show no

surprises, as will be explored below.

Comparing with Han and Inoue (2012) DGP5 is the A1 DGP of Han and Inoue

(2012). It is designed to verify the power of their tests when the magnitude of the

break in the factor loadings increases, with an additional feature that the variance of

the idiosyncratic error term is different than the value of one, and chosen such that

R2 = traceE(εε′)/traceE(XX ′) is 50%.

DGP5 (Figure 2.9) :Xit =
r∑

j=1

λi,1Ftj + κεit for t = 1, ..., 50

Xit =

r∑
j=1

(λi,1 − b)Ftj + κεit for t = 51, ..., T

Ftj ∼ i.i.d. N(0, 1), κ =
√

(1 + b2/4)r, r = 3

λi,1 ∼ i.i.d. N(b/2, 1), B = {1/3, 2/3, 1, 2}

In their simulations, Han and Inoue (2012) to verify the power of their tests, with

N = T = 100, in the cases of smaller breaks (B = 1/3), they reject the null of no break

in only less than 10% of the simulations. In this situation they improve performance

when the sample sizes increase significantly, reaching full precision of rejecting the null

hypothesis of no break with N = T = 500. The tests used by Han and Inoue (2012)

need larger breaks to improve performance under smaller datasets.

When DGP5 is subjected to our recursive approach, all of the structural breaks are

detected without depending on either the dimension of the sample size or on the size

of the structural break. At N = T = 100 and B = 1/3, 99.6% of rejection of the null

hypothesis of no break is achieved. Han and Inoue (2012) achieve less than 10% of

rejection. More importantly, as our method is recursive, the structural break is detected

immediatly its occurrence, with a frequency of 0.1% at t = 51, 30.6% at t = 60, and

91.4% at t = 75. Furthermore, by adjusting for the occurrence of the large structural

breaks, the true number of factors can be retrieved, such that k̂∗DGP5 = 3.

k̂∗DGP5 = 4− 1 = 3 for B = {1/3, 2/3, 1, 2}

where k̂∗DGP5 = 3 is in fact the true number of factors.
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Figure 2.9: DGP5 Comparing the performance of the recursive information criteria
using a Han and Inoue (2012) DGP

Han and Inoue (2012) depend on the prior estimate of Bai and Ng (2002). As the sizes

of the breaks increase (B = 2/3, B = 1 or B = 2), the number of factors becomes

overestimated in all of the simulations. This helps their test to achieve full precision in

rejecting the null hypothesis of no break in most of the sample sizes.

In our recursive case the same intuition was also found with the additional benefit

that the recursive frequencies increased substantially, pointing out the occurrence of the

break.

The results for DGP5 in Tables 2.3-2.4 (ICp1,` and ICp2,`) clearly show that as either

the size of the break increase, or the time dimension increase, or both, the proportion

of large break detection also increases. An exception arises here when the break is ‘very

large’. For example, say for example when B = 2. In this case, the detection of the

break is smaller, but still follows the previous reasoning.

DGP6 follows the same structure as DGP5 and it is the DGP A2 of Han and Inoue

(2012). The difference here is that the structural breaks take place only in a fraction

of the factor loadings, and not in all of them. We chose the proportions α of the factor

loadings to undergo a structural break, with α = {0.2, 0.4, 0.6, 0.8}, of size B = 1, as in

Han and Inoue (2012).

k̂∗DGP6 = 4− 1 = 3 for α ∈ {0.2, 0.4, 0.6, 0.8}, and B = 1
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Figure 2.10: DGP6 Comparing the performance of the recursive information criteria
using a Hi and Inoue (2011) DGP, where α is the fraction of factor loadings subjected

to a structural break of size B = 1

DGP6 (Figure 2.10) :Xit =
r∑

j=1

λi,1Ftj + κεit for t = 1, ..., 50

Xit =
r∑

j=1

(λi,1 −M)Ftj + κεit for t = 51, ..., T

Ftj ∼ i.i.d. N(0, 1), κ =
√

(1 + b2/4)r, r = 3

λi,1 ∼ i.i.d. N(b/2, 1), B = 1, α ∈ {0.2, 0.4, 0.6, 0.8}

M an N × k̂` with the first proportion α of rows equals to b,

and the elements of the other rows equals zero

Compared to the previous simulations, we have established that B = 1 can be considered

a large structural break in the factor loadings due to its impact on the conventional

criteria. The results shown in Figure 2.15 demonstrate that for a fraction of at least

α = 0.4 of the factor loadings undergoing a structural break, the overestimation of

the number of factors begins immediately after the structural break. In the recursive

estimates, we have the following frequencies of rejecting the null of no break: 0.6% at

t = 51, 55.1% at t = 60, 99.6% at t = 75 and 100% at t = 75. All the frequencies

increase monotonically for larger αs (Figure 2.10).
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When comparing this with the results of Han and Inoue (2012) for α = 0.4, our test is

more powerful as it achieves full precision in the recursive exercise for N = T = 100. For

larger fractions full precision of rejecting the null hypothesis was achieved even before

T = 100 (in some cases for t = 75), whereas Han and Inoue (2012) do not achieve this

outcome in any of their cases for T = 100.

What has been found is that not all the factor loadings (i.e. not all the variables) are

required to undergo a structural break for the factor model to change its structure over

the time. Then adjusting for the occurrence of breaks to reestimate the number of

factors k̂∗DGP6 = 3.

In all cases, for larger proportions of factor loadings undergoing a structural break, as

the time dimension is further away from the structural break, the frequency of structural

break detections also increases. Again, Han and Inoue (2012) will need larger datasets

to improve their results. However, are not required to obtain a larger data set to achieve

this.

2.6 Empirical Application

We use the dataset from Stock and Watson (2005) to apply the recursive model selection

based information criteria.2 A pretreatment is needed as required for factor analysis:

logarithms taken when necessary, differences taken until stationarity is achieved, seasonal

adjustment, outliers3 removal and normalization (zero mean and unit variance). The

procedure of Stock and Watson (2005) was followed using a balanced monthly dataset

from 1960:01 to 2003:12, consisting of 528 time series observations for each of the 132

variables. Following the suggestion in Breitung and Eickmeier (2011), who use the same

dataset, we assessed the dataset with outliers adjusted and without adjusted outliers.

We first assessed the conventional information criteria for the entire dataset and for

subsamples of candidate structural break of 1984:01 for the US economy, when output

growth and inflation showed lower volatility, starting the so-called Great Moderation.

Results for both outliers adjusted and not adjusted datasets, are displayed in Table 2.5.

The results in Table 2.5 corroborate the RMCS in the sense that ICp2 is the most

parsimonious criterion, followed by ICp1 and ICp3; the latter fails to do as required.

2This dataset is available on their website and we downloaded it in the 10th of June, 2011:
http://www.princeton.edu/ mwatson/wp.html

3We define an outliers exactly as footnote 11 of Breitung and Eickmeier (2011). An observation of
each (stationary) variable with absolute median deviations larger than six times the interquartile range
is considered an outlier and is replaced by the median value of the preceding five observations.
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Table 2.5: Conventional Bai and Ng (2002) Information criteria

Outliers not adjusted Outliers adjusted

ICp1 ICp2 ICp3 ICp1 ICp2 ICp3

1960:01 to 2003:12 12 12 12 7 (7) 6 12
1960:01 to 1983:12 9 6 12 6 (4)∓ 6 12
1984:01 to 2003:12 12 9 12 10 (6)� 6 12

Notes:
Results of Breitung and Eickmeier (2011) shown in brackets.
The maximum number of factors allowed is 12. Symbols:
∓ 5-8 factors resulted in very close criteria in their numerical statistical terms; and,
� 7-11 factors resulted in very close criteria in their numerical statistical terms.
By “very close” we mean that each of the information criterion statistic used to
estimate the number of factors differs from each other by a value less than or equal to 0.001;
hence they are very close.
Breitung and Eickmeier (2011) also found results along similar numbers.

The maximum number of estimated factors was 12 and ICp3 reached this upper limit

number in all empirical exercises.

Figure 2.11: Recursive information criteria with Stock and Watson (2005) data
1960:01 to 2003:12. Results start to be estimated at 30% of the sample, that is, at

1973:03

The entire dataset Our recursive information criteria starts to display results at

30% of the time dimension, and the number of factors estimated are plot in Figure

2.11. The dataset of Stock and Watson (2005) contains 528 monthly observations for

each of the 132 variables. Hence, the number of factors starts to be estimated at ob-

servation 158, which corresponds to 1973:04. The results of the recursive exercise for
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outliers not-adjusted (left-hand side) and adjusted outliers (right-hand side) are shown.

The results are not strong enough to suggest that the conventional information criteria

are sufficiently reliable since it is clear that the recursive information criteria shown

graphically displays jumps in the number of estimated factors as the time dimension

increases (ICp1,` changes the number of factors in 1973:08, 1977:09 and 2000:08, and,

ICp2,` changes the number of factors in 1973:09, 1976:07, 1977:08 and 1983:06).

Oil Crises In Figure 2.11, the adjusted outliers (right-hand side), the number of

estimated factors is highly unstable (many jumps) before 1984:01 (vertical line), for

both ICp1,` and ICp2,`. This instability could be explained by the two oil crises (1973

and 1979), which were sources of nonlinearities in this US dataset. In other words,

the instability during the 1970s is an explanation of this event, and therefore these big

economic events are captured as changes in the factor structure.

Great Moderation Again in Figure 2.11, from 1983:06 onwards, the number of

estimated factors becomes rather stable in both information criteria. That is, in both of

the recursive estimates the occurrence of the Great Moderation can be inferred. The last

jump in ICp1,` occurred at 1977:09 (from 5 to 6 factors) before the Great Moderation.

Afterwards, a jump took place only at 2000:09, from 6 to 7 factors. The ICp2,` criterion

may suggest that a structural break took place at 1983:06, from 5 to 6 factors, and

no changes in the factor structure is seen afterwards. There is a vertical line drawn

at 1984:01 where the Great Moderation is known to have started, this is to help with

identification.

It has been found that from 1984:01 until early in the 2000s, there are no changes in

the number of factors. This suggests a period of stability in the comovement of this

dataset. However, the non-adjusted outliers (left-hand side) result in too many factors

and jumps, which makes inference difficult.

The results show that the number of factors changes considerably along the time di-

mension, describing the usefulness of the recursive approach for uncovering the factor

structure. We suggest that in order to determine the number of factors the recursive

information criteria should be applied in the entire sample, and then our method from

equation (2.12) should be used.

Using our modified estimator of the number of factors Using the method

described in equation (12) on the adjusted outliers (right-hand side) of Figure 2.11, the

number of estimated factors are the following:
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ICp1,` Locations of changes in the number of factor estimates: 1973:08, 1977:09 and

2000:08. Then, k̂T = 7 is the number of factors estimated at the last time dimension

(equivalently using the conventional Bai and Ng (2002) criteria; the notation k̂T is used

henceforth for this purpose), and φ = 3 is the number of jumps using the recursive

graphical approach. Then the modified estimator to retrieve a more parsimonious num-

ber of factors aiming to achieve an estimator closer to the true number of factors (if not

the actual number), can be used as follows:

k̂∗ICp1,`
= 7− 3 = 4 (2.15)

Applying the same reasoning for ICp2,` we have:

ICp2,` Locations of changes in the number of factor estimates: 1973:09, 1976:07,

1977:08 and 1983:06. Then, k̂T = 6, φ = 4.

k̂∗ICp1,`
= 6− 4 = 2, (2.16)

Splitting the dataset The sample was also split as in Stock and Watson (2008) and

Breitung and Eickmeier (2011). This approach can be considered ad hoc since splitting

the sample can lead to a different comovement of the remaining datasets. Furthermore,

one could still think of an existing structural break in a series, individually around a

certain date, but, it is still unknown if this structural break in this series could indeed

lead to a possible change in the factor structure. Nevertheless, we split the sample to

investigate this alternative.

To follow Stock and Watson (2005) and Breitung and Eickmeier (2011) closely, we split

the sample in two at 1984:01. Then we perform the recursive information criteria on

the subsamples with results shown in Figures 2.12 and 2.13. Splitting the dataset into

smaller subsets at predetermined dates is not conclusive, because changes in the number

of factors may appear at other time locations. Analyzing the dataset with adjusted

outliers (right-hand side), Figure 2.12 shows two changes in the factor structure for

ICp1,` and three changes for ICp1,`. They both result with the same number of factors,

but ICp2,` is subjected to a bigger adjustment in this case, as shown below.
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Figure 2.12: Recursive information criteria with Stock and Watson (2005) data
1960:01 to 1984:01; results start to be estimated at 30% of the sample, that is, 1973:03

Using the method described in equation (12), with the adjusted outliers (right-hand

side) of Figure 2.12, the number of estimated factors are the following:

ICp1,` Locations of changes in the number of factor estimates: 1971:05 and 1971:12.

Then, k̂T = 6, φ = 2.

k̂∗ICp1,`
= 6− 2 = 4 (2.17)

ICp2,` Locations of changes in the number of factor estimates: 1970:02, 1975:08 and

1976:07. Then, k̂T = 6, φ = 3.

k̂∗ICp1,`
= 6− 3 = 3, (2.18)

Again, using the method described in equation (12), on the adjusted outliers (right-hand

side) of Figure 2.13, the number of estimated factors are the following:

ICp1,` Locations of changes in the number of factor estimates: 1990:02, 1991:03,

1991:11, 1996:06, 1999:09, 2002:03, 2003:01. Then, k̂T = 10, φ = 7.

k̂∗ICp1,`
= 10− 7 = 3 (2.19)
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Figure 2.13: Recursive information criteria with Stock and Watson (2005) data
1984:02 to 2003:12; results start to be estimated at 30% of the sample, that is, 1990:01

ICp2,` Locations of changes in the number of factor estimates: 1992:01, 1994:02,

1995:05 and 2001:03. Then, k̂T = 6, φ = 4.

k̂∗ICp2,`
= 6− 4 = 2, (2.20)

In Figure 2.13 there are seven jumps with ICp1,`. The conventional criteria yields ten

factors, then, it results in three factors with our modified estimator (10-7=3). In its

turn, ICp2,` has four jumps, leading to two factors (6-4=2).

Our results also suggest that the overestimation of the number of factors may likely

to be the case in many empirical applications that use the conventional Bai and Ng

(2002) information criteria. This is possibly due to unknown nonlinearities in the factor

structure. Our method can help to recalculate the true number of factors, adjusting for

changes in the factor structure. Then, in factor model applications one may apply our

recursively information criteria in the entire dataset to uncover nonlinearities in factor

models, following with our modified estimator to retrieve a more parsimonious number

of factors.

2.7 Conclusion

In this chapter our goal was to propose an alternative approach to determine the number

of factors in large approximate factor models under nonlinear structures. The method-

ology expands on the information criteria proposed by Bai and Ng (2002) by uncovering
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the time dimension of the factor structure and applying it recursively at each point in

the time dimension, rather than applying it once in the entire sample. Then, a sim-

ple method to adjust for the overestimation of the number of factors is offered. It is

a modified estimator to achieve a more parsimonious number of factors. Overall, our

approach aims to enable the detection of changes in the factor structures, likely to result

in changes in the number of factors along the same factor model. We suggested that our

method should be used in the entire sample, without the need for splitting the sample

at predetermined dates. In this manner, a practitioner could estimate the factor space

and use our approach to uncover nonlinearities of a factor model, without running the

risk of inadvertently overestimating the number of factors.



Chapter 3

Structural Changes in Large

Dimensional Factor Models:

Model Selection Based Inference

3.1 Introduction

The primary usefulness of factor models is to condense the information included in a

large dataset into a small number of common factors. Typically, the underlying large

data set is expressed as a linear combination of a small set of common factors which may

or may not have a direct economic interpretation. Examples include empirically derived

asset pricing model aiming to decompose stock returns into a linear combination of risk

factors (e.g. the Fama and French three factor model) amongst numerous others.

The goal of a factor model based investigation typically involves estimating the number

of factors associated with a dataset Xit i = 1, . . . , N , t = 1, . . . , T together with the

loadings or sensitivities corresponding to each factor. In this context a popular method

with wide applicability and generally weak underlying assumptions is Bai and Ng’s model

selection based approach (see Bai and Ng (2002)). The latter views the problem of the

determination of the number of factors as a model selection problem where one chooses

an optimal model via the optimisation of an information theoretic criterion. Estimation

is performed using asymptotic principal components and the method is valid under both

large N and large T.

More recently numerous authors have also raised the possibility that linear factor models

may occasionally be subject to structural breaks. One such example involves a factor

model whose factor loadings undergo a structural change after some unknown period.

38



Chapter 3. Structural Changes in Large Dimensional Factor Models: Model Selection
Based Inference 39

Three important papers that have formally tackled the issue of the detection of the num-

ber of breaks in factor models are Breitung and Eickmeier (2011), Chen et al. (2012) and

Han and Inoue (2012). All three papers aim to develop methods for uncovering the oc-

currence of breaks in the loadings of an otherwise linear model through the development

of formal test based methods (e.g. SupWald, Chow).

The goal of this chapter is to instead propose a model selection based approach for

the detection of breaks in the loadings of factor models. We view the problem of the

estimation of the number of factors and the detection of the potential presence of a

break in their loadings jointly.

We initially develop a novel estimator of the number of common factors that is robust to

the presence or absence of a break in the factor loadings. This is particularly important

since it is well known that conventional criteria are unable to point to the correct number

of factors if the underlying model has a break. Typically when the presence of a break

is ignored, the Bai and Ng type of model selection criteria lead to an overestimated

number of factors both in small and large samples.

We subsequently use our novel estimator to introduce a simple decision rule based ap-

proach to detecting whether a break is truly present or not. This is achieved through

a comparison of our novel estimator of the number of factors with the conventional one

obtained under the assumption of linearity (i.e. the standard Bai and Ng criteria).

Since the existing test based methods for detecting the presence of a break (e.g. Breitung

(2011), Chen et al. (2011), Han and Inoue (2011)) all require an estimated number

of factors as an input we also view our proposed estimator as a valuable input for the

implementation of such tests since our estimator remains consistent regardless of whether

the underlying model has a break or not.

The plan of the chapter is as follows. In Section 3.2 we introduce the core factor model

and our proposed model selection based estimator of the number of factors. Section

3.3 focuses on a decision rule based approach for deciding between a linear or break

based factor model specification. Section 3.4 evaluates the performance of our proposed

methods within a comprehensive simulation exercise. Section 3.5 concludes.
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3.2 Detecting a Break in Loadings: A Model Selection

Based Approach

Following standard notation in the literature we formulate our core linear factor model

as

Xti = FtΛ
′
i + eti (3.1)

where i = 1, 2, ..., N and t = 1, 2, ..., T are the cross-section and time series dimen-

sions respectively; X is an N × T matrix of the observed dataset; Λi = [λi1, ..., λir],

F ′t = [f1t, ..., frt]
′, εit and r represent, respectively, the factor loadings, the factors, the

idiosyncratic components and the corresponding number of factors.

The type of nonlinearity we are interested in this chapter is given by a single structural

break that shifts the loading coefficients at some unknown time period. More specifically,

we write

Xit =

Λi,1F
′
t + εit for t = 1, ..., `

Λi,2F
′
t + εit for t = (`+ 1), ..., T

(3.2)

with ` denoting the break point location. Here Λi,1 = [λi,1, ..., λN,1], Λi,2 = (Λi,1 + B)

with B denoting the size of the break. For further use we also define the break fraction

time location π as ` = [Tπ] with π ∈ (0, 1). Note also that the number of factors remains

the same before and after the break. Using indicator functions model (3.2) can also be

reformulated as

Xit = Λi,1F
′
tI1 + Λi,2F

′
tI2 + εit (3.3)

Our initial goal is to propose an estimator of the true number of factors regardless of

whether the true model is (3.1) or (3.2)-(3.3). This will then allow us to introduce a

decision rule based approach for distinguishing between (3.1) and (3.2).

Letting Σ(k, F k) denote the error variance obtained from (3.1) when k factors have

been imposed we recall that the standard linear based model selection criteria used for

estimating the number of unknown factors are expressed as

ICL(kL) = ln |Σ̂(kL, F̂
kL)|+ kLg(N,T ) (3.4)

with g(N,T ) denoting a deterministic penalty term that is a function of both the cross

sectional and time series dimension. As a matter of notation we index the number of

factors obtained from (3.5) as kL to highlight the fact that the model selection criterion

is evaluated from the linear factor model specification. Here 0 ≤ kL ≤ kLmax and

following Bai and Ng, the optimal number of factors is estimated as the minimiser of
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ICL(kL). Formally k̂L = arg min0≤kL≤kLmax
ICL(kL). At this stage it is also important

to recall the now well known result that if the factor model is characterised by a break

in its loadings the estimator given by k̂L will typically overestimate the true number of

factors r0 (see Breitung and Eickmeier (2011), Chen et al. (2012) and Han and Inoue

(2012)).

We now introduce a generalized model selection criterion designed to be suitable under

both linear and structural break specifications. Specifically, our criterion is denoted

ICNL(.) and specified as

ICNL(`, kNL) =

{
`

T
ln |Σ̂1(kNL, F̂

kNL)|+ kNLg(`,N)

}
+

{
T − `
T

ln |Σ̂2(kNL, F̂
kNL)|+ kNLg(T − `,N)

}
.

(3.5)

Here Σ̂1(kNL, F̂
kNL) refers to the residual variance obtained from a fitted linear model

with kNL factors using t = 1, . . . , ` and Σ̂2(kNL, F̂
kNL) is the residual variance corre-

sponding to the post break regime. Note that the number of underlying factors is not

allowed to change before and after the break location.

This information criterion allows for a joint estimation of the location of the break

and of the number of factors. For each 0 ≤ kNL ≤ kNL,max and each ` = `1, ..., `2

(say, `1 = [T 0.10] ad `2 = [T 0.90]) the factor models are estimated and IC(`, kNL)

evaluated. The optimal number of factors and break point location are then obtained

as the joint minimisers of IC(`, kNL).

3.2.1 Theoretical Properties of the Information Criterion

Our estimation procedure follows exactly the ones developed in Bai and Ng (2002) and

Bai (2003). Briefly speaking, the main feature of their estimation procedure in a factor

model framework is increment of the flexibility that allows for cross-sectional and serial

dependence, together with heteroskedasticity in the idiosyncratic component (eit), in

addition to weak dependence between the factors and these errors.

The assumptions of Bai and Ng (2002) and Bai (2003) ensure consistent asymptotic

principal component estimation of the factors and factor loadings required for the model

in (3.1). However, following the same arguments as they did, our nonlinear estimator

kNL is also consistent for the true number of factors.

Using a factor model as in equation (3.2), and as mentioned above, with the same

estimation procedure of Bai and Ng (2002) and Bai (2003), we are still capable of

consistently estimating the correct number of factors when structural breaks take place,
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without the danger of inadvertently overestimating the number of factors. The following

proposition states this consistency.

Proposition 1. Suppose that Assumptions of Bai (2003) hold in addition to Assumption

1 of Chen et al. (2012) (Breaks). As (T,N) → ∞ we have lim`,N→∞ P (k̂NL = r0) = 1,

where r0 is the true number of factors, provided that the penalty terms satisfy:

(i) g1(`,N)→ 0 and min(`,N)g1(`,N)→∞; and,

(ii) g2(T − `,N)→ 0 and min(T − `,N)g2(T − `,N)→∞.

Proposition 1 establishes the consistency of our nonlinear information criterion to esti-

mate the true number of factors r0, regardless whether (3.1) or (3.2) hold. The important

point to make here is that k̂NL is a very useful estimator since it is not biased upwards

as it is for the case of k̂L when the underlying model has a break. It is this feature

of k̂NL relative to k̂L that we will use to propose a decision rule based approach for

distinguishing between (3.1) and (3.2). Said differently, Bai and Ng (2002) information

criteria (k̂L) are not overparameterized if the model is like in equation (3.1), but it is so

in cases like (3.2).1

Defining the criterion: the penalty term We borrow a penalty term from Bai

and Ng (2002) which satisfies the above conditions and accommodate it nonlinearly as

follows: g1(`,N) can be defined as ln min (`,N)
min (`,N) and g2(T − `,N) as ln min (T−`,N)

min (T−`,N) . Then

our criterion becomes

IC(`, kNL) =

{
`

T
ln |Σ̂1(kNL, F̂

kNL)|+ kNL

(
ln min (`,N)

min (`,N)

)}
+

{
T − `
T

ln |Σ̂2(kNL, F̂
kNL)|+ kNL

(
ln min (T − `,N)

min (T − `,N)

)} (3.6)

This information criterion displays the same advantages as those of Bai and Ng (2002)

(such as being a function of both N and T ), but with the additional feature to accom-

modate nonlinearities in the factor loadings, as we described above.

3.3 Detecting Structural Breaks in Factor Models: A Model

Selection Approach

Is the Factor Model Linear or Nonlinear? A decision rule can be offered that

enables one to tell whether the model is linear or nonlinear.
1See Bai and Ng (2002) theorem 2.
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For the linear model, Bai and Ng (2002) explore various data generating processes (DGP)

to show that their information criteria consistently estimate the true number of factors

under at only mild instabilities in the factor loadings.

From now on, let the linear information criterion from Bai and Ng (2002) be their

ICp2(kL),

ICp2(kL) = ln |Σ̂(kL, F̂
kL)|+ kL

(
N + T

NT

)
ln (min (T,N)) (3.7)

where |Σ̂(kL, F̂
kL)| is the average residual variance when kL factors are estimated using

the linear information criterion, and
(
N+T
NT

)
ln
(

NT
N+T

)
is the deterministic penalty term

of this criterion.

The Decision Rule As stated above, the linear information criteria will overestimate

the number of factors when a structural break takes place, while the nonlinear infor-

mation criterion consistently estimates the correct number of factors under structural

breaks in the factor loadings. With this in mind, the decision rule compares the num-

ber of factors estimated by the nonlinear IC(`, kNL) and the linear information criteria

ICp2(kL).

The practical implementation of the proposed decision rule follows a three-step guideline.

In the first step, one should estimate the number of factors according to Bai and Ng

(2002), assuming linearity to obtain k̂L. Hence, for each kL = 0, ..., kLmax, we obtain

ICp2(kL) as in Bai and Ng (2002), to select the kL that leads to the smallest ICp2(kL),

for example k̂L. Using this k̂L the magnitude of ICp2(k̂L) is stored.

In the second step, one should estimate the number of factors assuming a structural

break in the factor loadings, using our information criterion to obtain k̂NL. Analo-

gously, each kNL = 0, ..., kLmax and each ` = `1, ..., `2 are used to obtain IC(`, kNL),

and to choose the ` and kNL that jointly minimize IC(`, kNL). That is, (̂̀, k̂NL) =

arg min
`,k̂NL

IC(`, kNL) will be found, feeding (̂̀, k̂NL) into IC(`, kNL) we obtain a nu-

merical value for IC(̂̀, k̂NL).

Finally, in the third step one should compare the estimates and observe whether ICp2(kL) <

IC(`, kNL) to determine whether we have a linear model; if not, the model is nonlinear.

It can also be put as follows:

Decision Rule

{
k̂NL < k̂L the model is nonlinear

k̂NL = k̂L the model is linear
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Expressed in words, if the number of factors estimated with the nonlinear criterion is

smaller than the linear one, the model is nonlinear; otherwise, the model is linear. A

possibility not considered in the decision rule is the case of k̂L < k̂NL, which never

occurred in the experiments we performed. We explored various DGPs from Bai and

Ng (2002), Breitung and Eickmeier (2011), Chen et al. (2012) or Han and Inoue (2012)

and on none of the occasions did this possibility occur.

Then one should note the relationship of the decision rule with the linear and nonlinear

information criteria. The decision rule is solely based on the comparison of the estimated

number of factors of the linear and the nonlinear information criteria. Since the linear

information criterion is designed for linear frameworks only, it will overestimate the

number of factors in structural break scenarios. Meanwhile, the nonlinear information

criterion will not. Hence, the nonlinear information criterion yields a more parsimonious

factor models. This is the key information in our decision rule.

3.4 Monte Carlo Simulations for Consistency of the Re-

sults

The following tables show by simulations that not only is it possible to consistently

estimate the true number of factors under structural breaks in the factor loadings, but

also to detect whether the factor model is linear or nonlinear. The DGPs are inspired

by those constructed in Breitung and Eickmeier (2011), Chen et al. (2012) and Han and

Inoue (2012).

The primary goal of these papers is to detect structural breaks in factor models. How-

ever, they all depend on the choice of the number of factors which are estimated ac-

cording to the information criteria of Bai and Ng (2002). The Breitung and Eickmeier

(2011) method faces difficulties detecting correctly the occurrence of a structural break

in occasions when the factor space estimated by the aforementioned information criteria

because a factor model with a structural break can be written as a linear model with

an additional factor. On the other hand, the tests proposed by Chen et al. (2012) and

Han and Inoue (2012) perform better in circumstances when the number of factors is

overestimated. In their framework they apply different number of factors with their

methods before diagnosing the possibility of a structural break.

We show in simulations below that our information criterion consistently estimates the

correct number of factors regardless the true model either linear or nonlinear. Addi-

tionally, we are also able to tell whether the model is linear and nonlinear. That is,

our decision rule systematically selects the linear (nonlinear) specification when the true
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model is linear (nonlinear). It is also important to emphasize that our method does not

require an ex-ante estimation of number of factors since it is itself a method to estimate

the number of factors.

For each DGP below we offer two sets of results. The first one presents the number of

estimated factors using ICp2(kL) and IC(`, kNL). The entries in each respective tables

are the averages of the estimated number of factors on 1000 simulations, using these

information criteria. With this output one is able to visualize the impact of the estimate

of the number of factors as a consequence of structural breaks in the factor loadings,

using ICp2(kL) and IC(`, kNL).

The second one presents the average frequency (in %) of the 1000 simulations that aims

to identify whether the model is linear or nonlinear. Precisely, these entries yields the

frequencies of nonlinear models detected in the 1000 simulations using our proposed

decision rule. An entry of 0 (100) means that in 1000 simulations this decision rule has

detected 0% (100%) nonlinear models.

DGP of Breitung and Eickmeier (2011) This analysis begins with a DGP in the

fashion of Breitung and Eickmeier (2011), with results shown in Tables 3.1-3.3. The

analysis of Tables 3.1 and 3.2 emphasizes that k̂L overestimates r0, whilst k̂NL behaves

nicely. Table 3.3 shows the performance of the decision rule.
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In Table 3.1, when the structural break is B = 0.5 or larger, ICp2(kL) clearly overesti-

mates the number of factors. When the structural breaks are larger than this, almost

all simulations overestimate the number of factors to two factors, when in fact there is

only one factor in the model.

Table 3.1: Estimating the Number of factors

DGP3.1: Xit = Λi,1F
′
t,1I1 + Λi,2F

′
t,1I2 + εit

r0 = 1, B is the size of the breaks, and Λi,2 = Λi,1 +B

Number of factors using ICp2(kL)
Dimensions Size of the structural break
N T B = 0 B = 0.1 B = 0.3 B = 0.5 B = 0.7 B = 0.9 B = 1

100 40 1 1 1 1.097 1.691 1.936 1.970
100 60 1 1 1 1.124 1.852 1.986 1.997
100 200 1 1 1 1.814 2 2 2
100 500 1 1 1 2 2 2 2
200 60 1 1 1 1.354 1.957 1.997 2
500 60 1 1 1 1.543 1.989 2 2
1000 60 1 1 1 1.599 1.993 2 2
40 100 1 1 1 1.066 1.806 1.988 1.997
60 100 1 1 1 1.118 1.905 2 2
200 100 1 1 1 1.698 1.999 2 2
500 100 1 1 1 1.937 2 2 2
60 200 1 1 1 1.348 1.997 2 2
60 500 1 1 1 1.784 2 2 2
60 1000 1 1 1 1.935 2 2 2
20 20 1.004 1.004 1.003 1.031 1.187 1.438 1.549
50 50 1 1 1 1.028 1.485 1.873 1.937
80 80 1 1 1 1.093 1.856 1.991 1.998
100 100 1 1 1 1.223 1.955 2 2
200 200 1 1 1 1.987 2 2 2
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Table 3.2: Estimating the Number of factors

DGP3.1: Xit = Λi,1F
′
t,1I1 + Λi,2F

′
t,1I2 + εit

r0 = 1, Λi,2 = Λi,1 +B

Number of factors using IC(`, kNL)
Dimensions Size of the structural break
N T B = 0 B = 0.1 B = 0.3 B = 0.5 B = 0.7 B = 0.9 B = 1

100 40 1 1 1 1 1 1 1
100 60 1 1 1 1 1 1 1
100 200 1 1 1 1 1 1 1.011
100 500 1 1 1 1 1 1 1.003
200 60 1 1 1 1 1 1 1
500 60 1 1 1 1 1 1 1
1000 60 1 1 1 1 1 1 1
40 100 1 1 1 1 1 1 1.002
60 100 1 1 1 1 1 1 1.003
200 100 1 1 1 1 1 1 1
500 100 1 1 1 1 1 1 1
60 200 1 1 1 1 1 1 1
60 500 1 1 1 1 1 1 1
60 1000 1 1 1 1 1 1
20 20 1 1 1 1 1 1.004 1.006
50 50 1 1 1 1 1 1 1
80 80 1 1 1 1 1 1 1
100 100 1 1 1 1 1 1 1
200 200 1 1 1 1 1 1 1.006

In Table 3.2 the entries have the same meaning but now under IC(`, kNL) to select the

number of factors. The results enable us to correctly determine the number of factors

for any size of structural breaks in the factor loadings.

Although the results in Table 3.2 estimate the true number of factors consistently,

whether the model is linear or nonlinear in the sense of being subjected to structural

breaks in the factor loadings. Using the decision rule, 1000 simulations were run to

detect the decision frequencies of a model with a structural break.
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Table 3.3: Detecting whether the model is linear or nonlinear

DGP3.1: Xit = Λi,1F
′
t,1I1 + Λi,2F

′
t,1I2 + εit

r0 = 1, Λi,2 = Λi,1 +B

Decision Frequencies of a model with a structural break
Dimensions Size of the structural break
N T B = 0 B = 0.1 B = 0.3 B = 0.5 B = 0.7 B = 0.9 B = 1

100 40 0 0 0 9.7 69.1 93.6 97.0
100 60 0 0 0 12.4 85.2 98.6 99.5
100 200 0 0 0 81.4 100 100 98.9
100 500 0 0 0 100 100 100 99.7
200 60 0 0 0 35.4 95.7 99.7 100
500 60 0 0 0 54.3 98.9 100 100
1000 60 0 0 0 59.9 99.3 100 100
40 100 0 0 0 6.6 80.6 98.8 99.7
60 100 0 0 0 11.8 90.5 100 100
200 100 0 0 0 69.8 99.9 100 100
500 100 0 0 0 93.7 100 100 100
60 200 0 0 0 34.8 99.7 100 100
60 500 0 0 0 78.4 100 100 100
60 1000 0 0 0 93.5 100 100 100
20 20 0.4 0.4 0.3 3.1 18.7 43.8 54.9
50 50 0 0 0 2.8 48.5 87.3 93.7
80 80 0 0 0 9.3 85.6 99.1 99.8
100 100 0 0 0 22.3 95.5 100 100
200 200 0 0 0 98.7 100 100 99.4

The results in Table 3.3 show that, as the sizes of the structural break increase, the

decision frequencies which indicate the model is subjected to a structural break also

increase. Comparing Table 3.3 with the results in Breitung and Eickmeier (2011)2 it

can be seen that the frequency rates at which the decision rule is detecting nonlinearities

is satisfactorily high.

2See their Table 3 and also note that in their test they impose strong operating assumptions on the
idiosyncratic error term of the factor model, assuming cross-sectional independence
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DGPs of Chen et al. (2012) We now deal with two DGPs related to Chen et al.

(2012). The first one is a linear factor model, containing no breaks. The specification is

a three-factor model described below.

DGP3.2 :Xit =
r∑

j=1

λiFtj + εit

Ftj = βjF(t−1)j + υtj

where r0 = 3, β1 = 0.8, β2 = 0.5, β3 = 0.2;

with λi, εit and υtj i.i.d. standard normal variables.

In all simulations of the DGP3.2, both the nonlinear information criterion, IC(`, kNL),

and the linear criterion ICp2(kL) detect three factors. With respect to the decision rule,

it tells with 100% precision that the factor model is linear, which means the rule is

identifying the specification correctly. It is important to hihglight that when the true

model is linear, nonlinear information criterion is also able to detect the correct number

of factors, performing equally well with respect to the linear information criterion.

The other specification is nonlinear, and is inspired by Chen et al. (2012). It is designed

in DGP3.3, with results shown in Tables 3.4 and 3.5. It considers two sizes of structural

breaks, B = 0.2 and B = 0.4, respectively. For the smaller break, B = 0.2, both

ICp2(kL) and IC(`, kNL) achieve a relatively good accuracy in terms of estimating the

correct number of factors. In this case it was learned that B = 0.2 is mildly unstable

since it does not affect the estimation of ICp2(kL).

ForB = 0.4 with results shown in Table 3.4, the performances of ICp2(kL) and IC(`, kNL)

clearly differ. For a break of this size, the number of factors is overestimated in all cases

with ICp2(kL). As the dataset dimensions increase, the estimate moves to three fac-

tors (the true number of factors is two). On the other hand IC(`, kNL) gives a precise

estimate of the true number of factors.

In Table 3.5, the performance of the decision rule is verified considering both sizes of

structural breaks. For the smaller one, B = 0.2, the frequencies of break detections are

very small. This corroborates the results shown in Table 3.4. However, no frequency pat-

tern of break detections, for this small structural break could be indentified. Intuitively

it can be said that since the structural break is small, the decision rule becomes puzzled

as the dataset dimension increases, without suggesting that the model is nonlinear.

Analyzing the case of B = 0.4, the frequencies of break detection increase as the dataset

dimensions increase (either N or T ). For larger dataset dimensions (for example, a
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Table 3.4: Estimating the Number of factors

DGP3.3: Xit =
∑r

j=1 λi,1Ftj + εit for t = 1, ..., T/2

Xit =
∑r

j=1(λi,1 +B)Ftj + εit for t = (T/2 + 1), ..., T
Ftj = βjF(t−1)j + υtj

where r0 = 2, β1 = 0.8, β2 = 0.2, B = 0.2 and B = 0.4;
with λi, εit and υtj i.i.d. standard normal variables.

Number of factors using
ICp2(kL) IC(`, kNL)

Dimensions Size of the structural break
N T B = 0.2 B = 0.4 B = 0.2 B = 0.4

100 40 2.001 2.673 1.994 1.996
100 60 2.001 2.852 2 2
100 200 2.002 2.999 2 2
100 500 2.009 3 2 2
200 60 2 2.941 2 2
500 60 2.001 2.989 2 2
1000 60 2.002 2.992 2 2
40 100 2.004 2.848 2 2
60 100 2 2.922 2 2
200 100 2.003 2.997 2 2
500 100 2.023 3 2 2
60 200 2 2.998 2 2
60 500 2 3 2 2
60 1000 2 3 2 2
20 20 2.013 2.256 2.021 2.075
50 50 2 2.506 1.996 1.997
80 80 2 2.858 2 2
100 100 2 2.970 2 2
200 200 2.01 3 2 2

minimum of N = 80 and T = 80), the frequencies of break detection are relatively large,

indicating that the model is nonlinear in at least 80% of the simulations.

In Chen et al. (2012), the frequencies of rejecting the null hypothesis of no break are also

high (see their Table 2); but, the tests have to be implemented using different numbers

of factors, and this is an extra decision to the practitioner.

DGPs of Han and Inoue (2012) Tables 3.6-3.9 show the results of ICp2(kL) and

IC(`, kNL), and of the decision rule, but with two DGPs taken from Han and Inoue

(2012).

DGP3.4 in Tables 3.6-3.7 analyzes four different sizes of structural breaks. In the factor

models of this DGP the variance of the idiosyncratic error term is different than one,

and is chosen such that R2 = trE(εε′)/ trE(XX ′) is 50%, including a relatively larger

structural break.
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Table 3.5: Detecting whether the model is linear or nonlinear

DGP3.3: Xit =
∑r

j=1 λi,1Ftj + εit for t = 1, ..., T/2

Xit =
∑r

j=1(λi,1 +B)Ftj + εit for t = (T/2 + 1), ..., T
Ftj = βjF(t−1)j + υtj

where r0 = 2, β1 = 0.8, β2 = 0.2, B = 0.2 and B = 0.4;
with λi, εit and υtj i.i.d. standard normal variables.

Decision Frequencies of a model
with a structural break

Dimensions Size of the structural break
N T B = 0.2 B = 0.4

100 40 0.7 67.4
100 60 0.1 85.2
100 200 0.2 99.9
100 500 0.9 100
200 60 0 94.1
500 60 0.1 98.9
1000 60 0.2 99.2
40 100 0.4 84.8
60 100 0 92.2
200 100 0.3 99.7
500 100 2.3 100
60 200 0 99.8
60 500 0 100
60 1000 0 100
20 20 15.6 29.9
50 50 0.4 50.7
80 80 0 85.8
100 100 0 97
200 200 1 100

In all four sizes of structural breaks the linear criterion ICp2(kL) overestimates the

number of factors. It gives four factors in most of the cases. However, our IC(`, kNL)

shows consistency. Its consistency can be seen as it gets closer to three factors (the true

number of factors) as the increases with dataset dimension.

In Table 3.6, for the case of a relatively larger structural break (B = 2) the ICp2(kL) still

selects the number of factors incorrectly. The IC(`, kNL) achieves the more accurate

results in the sense of getting close to the true number of factors as the time dimension

increases. For cases of T ≤ 80, the IC(`, kNL) slightly underestimates the number of

factors. For the other cases, the results become again become quite consistent, but never

achieve full precision as in structural breaks of other sizes.

The decision rule with the DGP3.4, with results shown in Table 3.7, is able to determine

whether the model is linear or nonlinear with high frequencies in all cases. As the size

of the structural break increases, the precision of our decision rule also increase, getting

very close to 100% in most cases. Nevertheless, we slightly lose some precision for the
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Table 3.6: Estimating the Number of factors

DGP3.4: Xit =
∑r

j=1 λi,1Ftj + κεit for t = 1, ..., T/2

Xit =
∑r

j=1(λi,1 −B)Ftj + κεit for t = (T/2 + 1), ..., T

Ftj ∼ i.i.d. N(0, 1), κ =
√

(1 + b2/4)r0, r0 = 3
with b an element of matrix B

λi,1 ∼ i.i.d. N(b/2, 1), B = {1/3, 2/3, 1, 2}

Number of factors using
ICp2(kL) IC(`, kNL)

Dimensions Size of the structural break
N T B = 1/3 B = 2/3 B = 1 B = 2 B = 1/3 B = 2/3 B = 1 B = 2

100 40 3.685 3.998 3.998 3.974 2.966 2.903 2.717 1.227
100 60 3.999 3.999 4 3.974 2.999 2.999 2.987 1.890
100 200 4 4 4 4 3 3 3 3.004
100 500 4 4 4 4 3 3.001 3.001 3.006
200 60 3.946 4 4 3.997 3 2.997 2.984 1.750
500 60 3.979 4 4 4 3 3 2.985 1.640
1000 60 3.983 4 4 4 3 2.998 2.990 1.620
40 100 3.809 4 3.999 3.934 3 3 3.007 2.716
60 100 3.872 4 4 3.991 3 3 3.005 2.931
200 100 3.997 4 4 4 3 3 3 2.904
500 100 3.999 4 4 4 3 3 3 2.887
60 200 3.996 4 4 4 3 3 2.984 2.983
60 500 4 4 4 4 3 3 3 2.994
60 1000 4 4 4 4 3 3 3 2.994
20 20 3.262 3.549 3.375 2.263 3.999 3.685 3.313 2.050
50 50 3.450 3.995 3.992 3.537 2.994 2.986 2.920 1.701
80 80 3.799 4 4 3.985 3 3 2.999 2.622
100 100 3.944 4 4 3.999 3 3 3 2.913
200 200 4 4 4 4 3 3 3 3.007

relatively larger break (B = 2), but the decision rule is still able to disentangle a linear

from a nonlinear model.

In DGP3.5 the size of the structural break is fixed to B = 1. We pay attention to the

behavior of the information criteria and of the decision rule, when the proportion of

variables with a structural break increases.

We compare the information criteria in Table 3.8. In the case of ICp2(kL), the overes-

timation of the number of factors becomes clear as the proportion of variables with a

structural break increases. That is, when α increases. But as before, the overestimation

is also clear as the dataset dimensions increases. Contrarily, our IC(`, kNL) does is not

negatively affected as α increases. Furthermore, as the dataset dimensions increase the

precision of selecting the correct number of factors becomes fully accurate, regardless of

the proportion of variables with a structural break.
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Table 3.7: Detecting whether the model is linear or nonlinear

DGP3.4: Xit =
∑r

j=1 λi,1Ftj + κεit for t = 1, ..., T/2

Xit =
∑r

j=1(λi,1 −B)Ftj + κεit for t = (T/2 + 1), ..., T

Ftj ∼ i.i.d. N(0, 1), κ =
√

(1 + b2/4)r, r = 3
with b an element of matrix B

λi,1 ∼ i.i.d. N(b/2, 1), B = {1/3, 2/3, 1, 2}

Decision Frequencies of a model with a structural break
Dimensions Size of the structural break
N T B = 1/3 B = 2/3 B = 1 B = 2

100 40 70.4 100 100 100
100 60 99.9 99.9 100 99.9
100 200 100 100 100 99.6
100 500 100 100 100 99.4
200 60 94.6 100 100 100
500 60 97.9 100 100 100
1000 60 98.3 100 100 100
40 100 80.8 99.9 99.2 97.9
60 100 87.2 100 99.5 99.3
200 100 99.7 100 100 100
500 100 99.9 100 100 100
60 200 99.6 100 100 100
60 500 100 100 100 100
60 1000 100 100 100 100
20 20 16 31.9 42 46.6
50 50 45.4 99.5 100 97.1
80 80 79.9 100 100 99.6
100 100 94.4 100 100 100
200 200 100 100 100 99.3
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Table 3.8: Estimating the Number of factors

DGP3.5: Xit =
∑r

j=1 λi,1Ftj + κεit for t = 1, ..., T/2

Xit =
∑r

j=1(λi,1 −M)Ftj + κεit for t = (T/2 + 1), ..., T

Ftj ∼ i.i.d. N(0, 1), κ =
√

(1 + b2/4)r, r = 3
λi,1 ∼ i.i.d. N(b/2, 1), B = 1, α ∈ {0.2, 0.4, 0.6, 0.8}

M an N × k̂` with its first proportion α of rows equals b,
with b an element of matrix B

and the elements of the other rows equals zero

Number of factors using
ICp2(kL) IC(`, kNL)

α is the fraction of N variables
Dimensions with a structural break of size B = 1
N T α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 0.2 α = 0.4 α = 0.6 α = 0.8

100 40 3.582 3.977 3.996 3.9980 2.742 2.747 2.742 2.746
100 60 3.693 3.998 3.999 4 2.988 2.987 2.988 2.987
100 200 3.999 4 4 4 3 3 3 3
100 500 4 4 4 4 3 3 3 3
200 60 3.918 3.999 4 4 2.985 2.987 2.988 2.986
500 60 3.970 4 4 4 2.985 2.985 2.985 2.986
1000 60 3.981 4 4 4 2.990 2.989 3 2.990
40 100 3.551 3.995 3.999 3.999 2.999 2.999 2.999 3.001
60 100 3.706 4 4 4 3 3 3 3
200 100 3.993 4 4 4 3 3 3 3
500 100 3.999 4 4 4 3 3 3 3
60 200 3.953 4 4 4 3 3 3 3
60 500 3.992 4 4 4 3 3 3 3
60 1000 4 4 4 4 3 3 3 3
20 20 2.716 3.069 3.317 3.417 3.159 3.2 3.239 3.281
50 50 3.279 3.920 3.989 3.991 2.917 2.920 2.922 2.926
80 80 3.649 3.999 4 4 3 3 3 3
100 100 3.878 4 4 4 3 3 3 3
200 200 4 4 4 4 3 3 3 3

In terms of the decision rule, it follows the expected intuition: as more variables contain

a structural break and/or the dataset dimensions increase, the decision rule exhibits

consistency and it is fully correct in most of the cases.
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Table 3.9: Detecting whether the model is linear or nonlinear

DGP3.5: Xit =
∑r

j=1 λi,1Ftj + κεit for t = 1, ..., T/2

Xit =
∑r

j=1(λi,1 −M)Ftj + κεit for t = (T/2 + 1), ..., T

Ftj ∼ i.i.d. N(0, 1), κ =
√

(1 + b2/4)r, r = 3
λi,1 ∼ i.i.d. N(b/2, 1), B = 1, α ∈ {0.2, 0.4, 0.6, 0.8}

with b an element of matrix B
M an N × k̂` with its first proportion α of rows equals b,

and the elements of the other rows equals zero

Decision Frequencies of a model with a structural break
α is the fraction of N variables

Dimensions with a structural break of size B = 1
N T α = 0.2 α = 0.4 α = 0.6 α = 0.8

100 40 71 99.1 100 100
100 60 69.8 99.9 99.9 100
100 200 99.9 100 100 100
100 500 100 100 100 100
200 60 92 99.9 100 100
500 60 97.2 100 100 100
1000 60 98.1 100 100 100
40 100 55.2 99.6 100 99.8
60 100 70.6 100 100 100
200 100 99.3 100 100 100
500 100 99.9 100 100 100
60 200 95.3 100 100 100
60 500 99.2 100 100 100
60 1000 100 100 100 100
20 20 23.1 33.1 38.6 42.6
50 50 34.3 93.4 99.7 99.8
80 80 64.9 99.9 100 100
100 100 87.8 100 100 100
200 200 100 100 100 100
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3.5 Conclusion

This chapter offers two tools to investigate nonlinearities in factor models. The first one

is a nonlinear information criterion that enables one to determine the correct number

of factors in either a linear or a nonlinear factor model. The nonlinearities take place

in the factor loadings only, without changes in the number of factors. The second

tool is understood as a decision rule to decide whether a factor model is in fact linear

or nonlinear. Perhaps our contributions can complement to the Bai and Ng (2002)

information criteria, which is designed only for linear datasets, and also to Breitung and

Eickmeier (2011), Chen et al. (2012) and Han and Inoue (2012), who model tools to

detect structural breaks in factor models. A topic for parallel research is the case that

occurs when the number of factors change at some point in the time dimension. For

simplicity it has not been considered in this chapter.



Chapter 4

Forecasting Brazilian

Unemployment Rates with

Diffusion Indexes

4.1 Introduction

An accurate prediction of the unemployment rate is of crucial importance for economists,

policy specialists and the wider business community. The problem is of particular in-

terest for the Brazilian case, an emerging economy that ranks amongst the ten largest

GDPs in the world, whilst at the same time displays particularly high unemployment

rates. Over the past two decades the Brazilian economy has experienced double-digits

unemployment rates combined with high inflation rate and often hyperinflation following

Cagan’s concept.1 For instance, between 1979 and 1994 the Brazilian economy under-

went thirteen stabilization plans devoted mainly to overcome the problem of high rates

of inflation. All of those plans were unsuccessful with the exception of the Real Plan2

implemented in July 1994. The latter was successful in bringing inflation rates to rea-

sonable levels and since then the Brazilian monetary policy has relied on a tough Taylor

rule3 in the sense of being heavily weighted on the inflation rate coefficient.

The Taylor rule of the Real Plan was first implemented with a currency board policy

until January 1999; for the time being it has followed an inflation targeting policy. The

behavior of the Taylor rule in the Brazilian economy can be well highlighted during

1Cagan (1956) considers a scenario of more than 50% inflation rate per month as hyperinflation and
the Brazilian economy has faced it particularly in the late 80’s and early 90’s.

2See Salgado et al. (2005).
3See Taylor (1993) seminal paper. The use of a Taylor rule for the Brazilian economy has been

recognized by Salgado et al. (2005) and Moura and de Carvalho (2010) amongst others.
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the events of the financial crises fn Mexico 1994, Russia 1997, Southeast Asia 1999,

Argentina 2001 and the Brazilian presidential electoral process in 2002. During all these

events the Brazilian Central Bank increased the short term interest rates significantly,

aiming primarily to avoid undesired high inflation rates. If from one hand the inflation

rate has been under control, the unemployment rate has been high ever since. This said,

the direct effect of an increasing of short terms interest rates on unemployment rates is

a common sense, and not surprisingly, high unemployment rates in Brazil have been of

interest to policy makers and researchers, and we are motivated from this context.

The objective of this chapter is to forecast unemployment rates using diffusion indexes

(DI), as originally proposed by Stock and Watson (1998). By diffusion indexes it is meant

to use the estimated unobserved factors in the forecast exercise. With results from both

forecasts and factor analysis we additionally offer some intuition to the policy implication

of the context. On the forecast side, the results tell us not only how useful our dataset

(formed with labor market and/or macroeconomic and monetary related variables) is in

the construction of DI forecasts, but also when they are useful in the sense of different

forecast horizons, and in the use of different blocks (i.e., subsets of the dataset) to

estimate DI. We explore various blocks to investigate their different usefulness in the

forecast exercise. The point is that more data does not necessarily improve DI forecasts,

as explained by Ng and Boivin (2006). Factors estimated with different blocks (possibly

with different number of variables) may span a different factor space and consequently

may underly a different comovement and have different usefulness to the forecaster. As

seen in Stock and Watson (1998, 2002a,b, 2006), variables such as GDP (and other

measures of output) or inflation rate have been largely used as the target variable.

Presumably, these applications use a dataset that attempt to capture the behavior of

the whole economy as it would be expected for instance to forecast GDP, meaning that

a proper dataset should include all, if possible, of the sectors of the economy.

On the factor analysis side - despite the that fact that our central goal is forecast-

oriented - these results are used to contrast the economic history of our context to

uncover possible patterns of covariability of the dataset. The latter results of course do

not imply any sort of causality since this is not regression-oriented either.

The novelty of our work are twofold. Firstly, it lies in the use of a rich dataset that

includes labor market related historical time series across all major Brazilian metropoli-

tan areas as well as aggregate monthly macroeconomic and monetary related variables

to forecast Brazilian unemployment rate using factor models, a methodology not used

so far for this particular context of that country. Secondly and also related, at the best

of our knowledge there is no work devoted to forecast the Brazilian unemployment rate.
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The main objective of the factor models is to allow a dataset to be explained by small

number of unobserved common forces. In a time series framework, a factor model

allows a matrix formed of N time series to be represented by two unobserved orthogonal

components: a common and an idiosyncratic. In this way, the N time series are driven

by a small number of common forces (say k < N common factors) and idiosyncratic

components. Applications of factor models have motivated economists in various ways

(e.g., arbitrage pricing theory, building economic indicators, monetary policy analysis

or forecasting economic variables).4

Furthermore, factor models estimation and inference approaches can be distinguished

into two groups: classical factor models (CFM) and modern factor models (MFM).5

CFM is well documented in the statistics literature, such as in Anderson (2003), whereas

MFM can be exemplified for instance with the approximate factor model initiated by

Chamberlain and Rothschild (1983). In line with Chamberlain and Rothschild (1983), we

make use of the approximate dynamic factor model via asymptotic principal components

(APC) written in the static version. We will refer henceforth to the approximate static

factor model (ASFM), which is related to the Stock and Watson (1998, 2002a,b, 2006)

and Bai and Ng (2002, 2010) and Bai (2003) estimation and inference procedures. The

limitations of CFM to accommodate economic data characteristics motivated the MFM

(hereafter ASFM). This is briefly explained in section 2.

We forecast unemployment rates in a three-step procedure. First, we estimate the factor

model in order to extract the DI. Secondly, we select the number of factors via informa-

tion criteria of Bai and Ng (2002). Finally, in the third step, we forecast unemployment

rates, constructing a DI forecast. We have Brazilian unemployment rate as our target

variable (the variable to be forecast), say yrt+h (where h is the forecast horizon and

the superscripts refer to the time dependence of the projection), as a function of the

estimated factors and possibly of the lagged values of the target variable. We promote

competition of forecast accuracy amongst the estimated DI forecasts against a bench-

mark. Our estimated choice of benchmark is an AR(4) with a constant, chosen via Box

and Jenkins type of model selection for a univariate process. The accuracy is measured

through a symmetric loss function, a mean squared error (MSE) of each forecast, to be

compared with the MSE of the benchmark. Furthermore, statistical significance evalu-

ation and comparison of the MSEs are made via the celebrated Diebold and Mariano

(2002) method. Yet, we verify the possibility of forecast encompassing and forecast

combination as suggested by Diebold and Lopez (1996) and Timmermann (2006), and

references therein. In the case of forecast combination we also test statistical significance

4A review of applications and theoretical results can be seen in Bai and Ng (2008c), Stock and Watson
(2010), Reichlin (2003) and Breitung and Eickmeier (2006).

5Following Bai (2008) terminology.
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evaluation and comparison of the MSEs against the benchmark. More precisely, forecast

encompassing is made via Chong and Hendry (1986) and forecast combination is made

in three methods: simple averaging, variance-covariance as in Bates and Granger (1969),

and regression-oriented as in Granger and Ramanathan (1984).

In the forecasting exercise we have also divided our dataset into six blocks. These blocks

are divided accordingly to the characteristic of the variables. In this way we have also

promoted competition within factor-based forecasts that contain factors estimated from

blocks that do not have information in common (not a single time series in common).

This procedure allows some factor-based forecasts to have two factors estimated inde-

pendently. In this regard we have estimated factors that underly different comovements

to investigate the usefulness of block estimates to better explore the dataset.

Policy implications are twofold. Firstly, from factor analysis results (i.e., the ranking of

commonalities which accounts for the covariability of the variables in the constructions

of the factors), comparing the commonalities of labor market variables with macroeco-

nomic and monetary related variables suggests that in general those factors estimated

do not follow the same patter since they are well defined in the way they are weighted by

their commonalities. We are dealing with the factors resulted from the model selection

based information criteria. Checking the ranking of the commonalities of the estimated

factors encompassing the entire dataset, labor market variables dominate the common-

ality ranking. Even when we include six lags of interest rates the results do not change

much. Therefore, in terms of covariability captured by the factor analysis we could say

that labor market, and macroeconomic and monetary related variables do not follow a

similar patterns (or have different commovement). Further, we calculate the correla-

tion coefficient matrix and a discrepancy statistics6 of the space spanned amongst the

estimated factors across the different blocks. The results from these exercises corrobo-

rate with the intuition from the ranking of commonalities in the sense that the factors

with similar leading commonalities display higher correlation and less discrepancy (and

vice-versa, specially, as one would expect, in those cases that factors are estimated with

dataset that do not have information in common).

Secondly, from the forecasting exercises, policy implications are such that factor-based

forecasts improve when forecast combination with the benchmark is used, in the following

cases: two-month-ahead forecast using the factors estimated with a block of macroeco-

nomic and monetary related variables; four-month-ahead forecast using both the factors

estimated with a block of macroeconomic and related variables and the factors estimated

with a block unemployment rate related variables; and six-month-ahead forecast for all

6We calculated it similar to Ng and Boivin (2006). These authors, however, use this type of statistics
to verify discrepancy between simulated true model variables with their corresponding estimates.
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estimated factors. Following Diebold and Mariano (2002) evaluation method, overall

our findings suggest that the factor-based forecasts with forecast combination produce

a substantial improvement with respect to the benchmark model, particularly for two-,

four- and six-month-ahead forecasts (we have forecasts for one-, two-, four-, six-, eight-

and twelve-month-ahead).

The remaining of the chapter is organized as follows. In section 4.2 we discuss the

methodological approach used: factor analysis, information criteria, DI forecasting and

forecasting accuracy. In section 4.3 the these results are presented. Finally, section 4.4

concludes. 4.2

4.2 Forecasting Methodology

Our forecasting methodology embraces some modeling techniques that we explain below

in the following order: DI forecast, the factor model, estimation of the factor model,

information criteria to choose the number of factors, choice of a benchmark model, out-

of-sample loss function and forecast accuracy, and finally, forecast encompassing and

combination.

DI Forecast We forecast using unobserved estimated factors and lagged values of

the variable to be forecast as explanatory variables. The model can be put as follows:

yrt+h = α+ β′FFt + β′wwt + εrt+h (4.1)

where t = 1, ..., r, ..., T is the time series dimension; Ft are the common factors to be

estimated (the number of factors to be chosen via information criteria); h is the forecast

horizon, whilst the superscript r refer to the dependence of the projection (forecast at

time r); wt is a vector of useful observed variables that helps in the forecasts of yt+h

(e.g., lags of y); and, εt+h is the forecast error.

We forecast estimating equation (4.1) recursively. We use data from 1 + h, ..., r for the

target variable, and 1, ..., r − h of the explanatory variables. The model is estimated

recursively up to r, where the forecast of horizon h is made; and then the target variable

is estimated again up to 1, ..., r + 1, r + 2, ..., T , with the explanatory variables being

estimated up to r−h+ 1, r−h+ 2, ..., T −h, where the forecasts are made, with respect

to the dependence of the projection. For instance, let (T = r+ p) be our entire sample.

Then we keep reestimating the model using dataset from r to T − h to forecast h steps
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ahead; we end up with (p− h+ 1) h-step-ahead forecasts of ŷ, and (p− h+ 1) forecast

errors (say, ert+h = yrt+h − ŷrt+h).

The h-step-ahead forecast is a “point forecast” (point r+h), assuming a linear relation-

ship in the forecast equation. Following Stock and Watson (2002a) the feasible forecasts

can be estimated using the estimated factors and parameters, converging to the opti-

mal infeasible forecast. Moreover, the forecast is well-behaved under OLS estimation,

leading to asymptotically efficient factors (Theorem 2 of Stock and Watson (2002a)).

The Factor Model A factor model can be viewed as follows:

xit = λ
′
iFt + eit (4.2)

where xit are the observed variables described in a matrix with i cross sectional variables

across t time series observations (i = 1, ...N ; and t = 1, ....T ); λ
′
i is a vector (r × 1) of

factor loadings; Ft is a vector (r × 1) of common factors; λ
′
iFt = Cit where Cit is the

common component; and eit is the idiosyncratic component of xit. Both λ
′
iFt and eit

are not observable.

In matrix notation the factor model can be described as follows:

Xt = FtΛ
′ + et (4.3)

where Xt = [X ′1, X
′
2, ..., X

′
N ] is a T ×N matrix of observations; Λ = [λ1, λ2, ..., λN ]′ is a

k×N matrix of factor loadings; F = [f1, f2, ..., fT ] is a T ×k matrix of common factors,

with k the number of factors; and et = [e′1, e
′
2, ..., e

′
N ] is a T × N matrix idiosyncratic

components.

To accommodate economic times series we need to distinguish the estimation and infer-

ence approach of CFM and an ASFM. A CFM requires that N , the number of variables

(or T , the number of time series observations) to be fixed and small. Moreover, CFM

requires that: et and Ft to be i.i.d. random variables with zero means; et and Ft to

be orthogonal, and also independent cross-sectionally; E(ftf
′
t) = I, where I is an iden-

tity matrix (i.e., factors are orthogonal); and, the factor loadings are fixed constants

Λ. These assumptions lead us to a covariance matrices of et and Xt to be represented

respectively as E(etet) = Φ (where Φ is a diagonal matrix) and E(XtX
′
t) = ΛΛ′+Φ = Σ.

As explained in Bai and Ng (2002), CFM is not appropriate for economic applications.

This is because of the following: (i) dataset dimensionality in economics should not

be restricted to size dimension; (ii) we frequently have cross-sectional and time series
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dependence in the error structure of economic dataset; (iii) estimation of CFM is via

maximum likelihood estimator which is not tractable when the number of parameters

become very large; and finally, (iv) in economics we are mostly interested in the estima-

tion of common factors that underlie the observed variables and this is not consistently

estimated in the CFM.

We work with ASFM framework with time domain.7 An advantage of the ASFM is that

it requires only the choice of the number of factor as an auxiliary parameter, whereas

a disadvantage is the lack of the ability to capture possible dynamics in the the factors

(leads and lags of the factors). If we are to include such dynamics (i.e., a lagged factor)

in the static models, it is viewed as the inclusion of another factor. As highlighted in

Boivin and Ng (2005), the use of dynamics (in frequency domain) or static models (in

time domain) is purely a decision of the practitioner. Nonetheless, these author point

out arguments in favor of DI forecasting with the static model, due to the fact that it is

more flexible to the dataset, as there are less parameters to estimate, and it is easier to

implement.8

Results in Bai and Ng (2002) have shown the asymptotic results of the estimates: factor

estimates converges in probability to its true value up to a rotation, the covariance matrix

of the true factors also converges in probability; the non-random factors loadings also

have be bounded and each factor one has a unique contribution to the variance of Xt (for

random factor we have to add that λ′is have to be independent of the factors and of the

idiosyncratic errors); the factors are not the same (non-degenerate) and each has its own

distinguish contribution to the variance of Xt; the idiosyncratic component are allowed

to be dependent serially and cross-sectionally (non-diagonal covariance matrix of the

idiosyncratic terms) and heteroskedasticity can as well be found in these dimensions.9

In fact we deal with dynamic factors, such that Ft is dynamic in the sense that A (L)Ft =

ut, where A (L) is a polynomial matrix of the lag operator. However, the model is not

dynamic in the Xt side directly and hence the model is viewed as static with respect to

the relationship between Xt and Ft. In this way the factors are carried out contempo-

raneously such that the factor loadings are real numbers. That is the reason that the

7For frequency domain see the generalized approximate dynamic factor model developed in Forni
et al. (2000). By generalization it is meant that both N and T tend to infinity. The key characteristic of
this model is that it allows the factors to be written with their leads and lags which can be an advantage
for economic applications. A drawback is that it requires the need of the determination of more auxiliary
parameters, in addition to the complication to determine the number of factors. Extensions of Forni
et al. (2000) can be found in Forni et al. (2004) and Forni et al. (2005).

8Stock and Watson (1998, 2002a,b, 2006), Bai and Ng (2002, 2006, 2008a,b,c, 2010) and Bai (2003)
describe the estimation, inference and possible applications (including forecast) of the ASFM.

9The approximate dynamic factor model of Chamberlain (1983) and Chamberlain and Rothschild
(1983) allow for cross-section correlation of the idiosyncratic component; whereas the factor model of
Geweke (1977) and Sims et al. (1977) have orthogonal idiosyncratic component.



Chapter 4. Forecasting Brazilian Unemployment Rates with Diffusion Indexes 64

model can be given as in (4.2) and a dynamics can be viewed as the inclusion of an

additional factor. Finally, we should assume a balance panel for the dataset.

Estimation of the Factor Model The estimation consists of the optimizing the

following function:

V (k) = min
ΛFk

1

NT

N∑
i=1

T∑
t=1

(
Xit−λ

k′
i F

k
t

)2
(4.4)

where V (k) is the sum of squared residuals, considering a k-factor model.

Information Criteria (IC) to Choose the Number of Factors We choose the

number of factors via IC Bai and Ng (2002).

The main result of Bai and Ng (2002) is that the proposed IC consistently estimates

the number of factors, for both the cross-section N and time series T dimensions. The

advantage of their information criteria is that the penalty for overfitting is now a function

of N and T simultaneously, differently from the standard IC such as the Akaike and the

Schwartz which are either a function of N or T .10 The information criteria are the

following:

ICp1 (k) = ln
(
V
(
k, F̂ k

))
+ k

(
N + T

NT

)
ln

(
NT

N + T

)
(4.5)

ICp2 (k) = ln
(
V
(
k, F̂ k

))
+ k

(
N + T

NT

)
lnC2

NT (4.6)

ICp3 (k) = ln
(
V
(
k, F̂ k

))
+ k

(
lnC2

NT

C2
NT

)
(4.7)

where, C2
NT = min (N,T ).

Choice of benchmark model As explained in Stock (2001) one faces a trade-off

between the choice of more sophisticated versus simpler models in a forecast exercise.

By using more sophisticated models (say, with more parameters to estimate) one can

reduce the estimated errors. On the other hand, one increases the estimation error of

the parameters themselves, as having more parameters bring more uncertainty of those

estimates. As highlighted by Stock (2001), competing models under these circumstances

can be chosen via the use of a simple benchmark model, reliable enough to help model

comparison.

10The information criteria of Bai and Ng (2002) which is now very popular have been applied for
instance, by Stock and Watson (2006, 2008 and 2010) and Breitung and Eickmeier (2006), amongst
many others.
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We assume a linear time series AR model type as the benchmark, yt = c+
∑6

i=1 φiyt−i+εt,

where φi, ..., φ6 are the parameters of the model, c is a constant and εt the error term.

We select the AR order via Box and Jenkins type of model selection for a univariate

process - standard methods such as significance level of coefficients, Akaike and Bayesian

information criteria (AIC and BIC), autocorrelation function (ACF) and partial autocor-

relation function (PACF), and Breusch-Godfrey serial correlation LM test of residuals.

Our attempt goes up to an order up to six in the AR model.

Out-of-Sample Loss Function and Forecast Accuracy The forecast of model

(4.1) is made via OLS which makes it convenient to assume a squared loss function as

a baseline to evaluate the performance of our forecasts. We first calculate the MSE

given by l = E(yrt+h − ŷrt+h)2/(p − h + 1) of each of the competing models and com-

pare with the benchmark. We then calculate a relative-MSE (Rel.MSE) as follows:

Rel.MSE(factor-based) = MSE(factor-based)/MSE(AR(s)) where s is the order of the

AR. A Rel.MSE greater than one implies that the AR(s) forecast is better than the

Rel.MSE for that factor-based and vice-versa.

As expected whilst comparing MSEs (or equivalently Rel.MSEs), this exercise will always

give us a ‘better’ model since it is very unlikely two forecast exercise have precisely the

same MSE, and an ambiguous conclusion can be achieved. To overcome ambiguity we

test the statistical significance of the MSEs to promote competition amongst forecasting

models. We apply the evaluation method of Diebold and Mariano (2002).

Let m1 be our model one to compete against model two, m2; that is, yr,m1

t+h and yr,m2

t+h

respectively. The estimation of these models lead us to two loss squared functions,

lm1 = (yr,m1

t+h − ŷ
r,m1

t+h )2 and lm2 = (yr,m2

t+h − ŷ
r,m2

t+h )2, where d = lm1− lm2 . We are interested

in a linear regression model of dt+1 = c + ut+1 where c is a constant. The hypothesis

testing is H0 : c = 0 against Hm1
1 : c < 0 or Hm2

1 : c > 0. In order to overcome the

error heteroskedasticity and autocorrelation of the error structure we apply the Newey

and West (1987) consistent (HAC) standard errors. If a calculated t-ratio (henceforth

DM -statistics) is statistically significant and the constant is negative m1 defeats m2 or

vice-versa. If the test is not statistically significant, nothing can be said about m1 and

m2 defeating each other.

Forecast Encompassing and Combination If we cannot achieve a conclusion

after using Diebold and Mariano (2002) evaluation method, we proceed with a pair-

wise encompassing following Diebold and Lopez (1996) and Timmermann (2006) and

references therein. We run a regression of the observed dataset on the forecast of the
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competing models, m1 and m2, as in Chong and Hendry (1986), as follows:

yrt+h = βm1 ŷ
r,m1

t+h + βm2 ŷ
r,m2

t+h + εrt+h (4.8)

The test is the interpretation of the significance of the coefficients. Whenever (βm1 , βm2) =

(1, 0) model one encompasses model two. Contrarily, if (βm1 , βm2) = (0, 1) model two

encompasses model one. Any other values of the coefficients we do not have forecast

encompassing.

When forecast encompassing still uncertain, we do a forecast combination of the forecasts

since none of the forecasting models are dominating each other. Forecast combination

can be viewed as putting a weight ω and (1− ω) on models m1 and m2 respectively, in

such a way that the resulting is a composite forecast, yct+h, is the following:

yct+h = ωŷr,m1

t+h + (1− ω)ŷr,m2

t+h (4.9)

An issue in forecast combination is to find a reliable method for computing the weights.

We explore it in three ways. Firstly we carry out a simple averaging method giving

equal weights. In our pair-wise case the weights are simply 0.5 and we refer this fore-

cast combination to yc1t+h. Secondly, we follow the variance-covariance by Bates and

Granger (1969), referring this forecast combination to yc2t+h, in which the weights are

(1/σm1)/[(1/σm1) + (1/σm2)] for model one and (1/σm2)/[(1/σm1) + (1/σm2)] for model

two, where σm1,2 are the MSEs of models one and two, respectively. The third case, the

forecast combination is referred to yc3t+h, following Granger and Ramanathan (1984). For

this case we have a regression of observed dataset onto the forecasts m1 and m2. After

doing these three forecast combination we use again Diebold and Mariano (2002) test

for individual statistical comparison between yc1t+h, yc2t+h and yc3t+h against the benchmark

to verify if any of the forecast combination has brought performance improvement.

4.3 Empirical Work

4.3.1 Dataset Specifications

Our dataset consists of 69 monthly time series (including interest rates lagged from one

to to six months) ranging from 1998:01 to 2009:01, described in Tables 4.1 and 4.2 in the

Appendix A.11 The dataset is divided into six blocks, as follows: all 63 contemporaneous

11The usual Taylor rule uses one lag interest rates as a dependent variable of contemporaneous interest
rate, amongst other dependent variables. Since many studies diverge in terms of what is the precise
monetary mechanism transmission of the short term interest rates, and this is out of the scope of this
chapter, we decided to include up to six lags of interest rates in the factor analysis exercise.
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variables (Tables 4.1 and 4.2, excluding lags of interest rate) coded (FC); all dataset

including the 63 contemporaneous dataset and 6 lags of nominal interest rate (Tables

4.1 and 4.2) having a total of 69 variables coded (FL); labour market dataset with 43

variables (Table 4.1) coded (LB); 35 variables (Table 4.1 - restricted to unemployment

rates) coded (UN); only contemporaneous monetary variables, 20 variables (Table 4.2,

excluding lags of interest rate) coded (MC); and the 20 contemporaneous monetary

variables adding 6 lags of nominal interest rates, having a total of 26 variables (Table

4.2) coded (ML). Full description of the dataset treatment is in the Appendix A.

4.3.2 Forecasting Results

We report short-horizon results for h equals one-, two- and four-month-ahead forecasts

and long-horizon for six-, eight- and twelve-month-ahead forecast. The dependent vari-

ables is the Brazilian total unemployment rate and it undergoes a logistic transfor-

mation (see Koop and Potter (1999)). The unemployment rate Ut is transformed to

Yt = ln
(

Ut
1−Ut

)
. This transformation makes the bounded [0, 1] time series of unem-

ployment rates to be now unbounded. The point is that the error structure of a linear

forecast regression with a bounded dependent variable may not result in bounded errors.

However, with the transformed series we overcome this issue in the forecasting exercises.

An issue Koop and Potter (1999) left unanswered is about imposing stationarity to the

transformed series. In our case Yt is integrated of order one, I(1), and we induce sta-

tionarity by taking first difference. Alternatively we could use unemployment growth

Estimated factors are all considered I(0). The benchmark is an AR(4) with a constant.

12

Our dataset ranges from 1998:01 to 2009:01, which provides 133 observations. With the

dataset treatment we end up with 132 observations as we lose the first one to induce

stationarity. In the forecasting model we first estimate using data until 2006:11 (esti-

mation window). We are using approximately 20% of the full sample size to be generate

our forecast (a well-accepted rule of thumb is about 10% to 15%). We then forecast

unemployment rate using data raging from 2006:12 to 2009:01 (forecasting window).

The number of forecasts is of the size (p− h+ 1), where p = 26. That is, the number of

forecast values decrease as the horizon increases.

Results of forecasts are in Appendix D and Figures 4.1-4.3 in Appendix E. Table 4.6

displays the MSEs of the factor-based forecasts and of the benchmark AR(4); and the

Rel.MSE is given by the former divided by the latter. Most of the results in these

Tables show that the Rel.MSE are less than one, with six-month-ahead forecast with the

12Results are available upon request.



Chapter 4. Forecasting Brazilian Unemployment Rates with Diffusion Indexes 68

lowest Rel.MSE. If we were to take into consideration only Rel.MSE for our forecasting

conclusion, we could already choose a ‘winning’ model already. However, as explained in

section 2.1 we shall verify the statistic significance of the MSEs using the DM -statistics

to compare competing forecasts.

In Table 4.7 we analyze the DM -statistics to compare the competing models. For

six-month-ahead forecast, the factor-based forecasts containing factor estimated from

blocks FL, FC, LB and UN have shown better forecast than the AR(4) benchmark. The

factor-based forecasts with factors estimated from a dataset with macroeconomic and

monetary related variables (MC and ML) do not show any improvement in any horizon.

In addition to this, none of all of the other factor-based forecast are worst off than the

AR(4) benchmark.

A question that arises is how the factor-based forecasts behave whilst competing amongst

themselves. Looking at DM -statistics, with results in Table 4.8, all possible combina-

tions of pair-wise competition of factor-based forecasts display least one winning factor-

based forecast in each of the forecast horizons. As a result, none of the factor-based

forecasts from factors estimated with a dataset with macroeconomic and monetary re-

lated variables (MC and ML) defeat any of the other factor-based forecasts (FL, FC,

LB and UN). But as we will see later on all of the factor estimates have their different

usefulness across different horizons, particularly whilst making use of forecast combina-

tion.

For now we proceed attempting a factor-based forecast using two estimated factors that

contain blocks that do not have information in common to compete with the AR(4)

benchmark with results in Table 4.9. We have the following factor-based forecast with

two estimated factors: LB and ML, LB and MC, UN and ML, and finally, UN and MC.

By doing this the results are not visually improved in terms of Rel.MSE with respect

to Table 4.6 cases (that is, with only one factor included). But again, six-month-ahead

forecast shows a better result. However, analyzing the DM -statistics for these forecasts

in Table 4.10 better results are achieved. Despite the fact that only six-month-ahead

forecasts are better with the inclusion of two factor in the forecast, the factors including

blocks of macroeconomic and monetary related variables are now all useful in the forecast

exercise. In contrast with Table 4.6 when the factor-based forecasts using the estimated

factors MC and ML individually did not perform better than the AR(4) benchmark,

now these factors become useful as we use each of them together with UN and these

forecasts perform better than the AR(4) benchmark.

To further understand the results we verify forecast encompassing with all factor-based

forecasts against the AR(4) benchmark. These results are described in Tables 4.11 and

4.12 where no forecast encompassing is seen. As explained in section 2.1 this outcome
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motivates forecast combination. We evaluate the performance of forecast combination in

terms of the Rel.MSE and the DM -statistics test; the forecast combination is the factor-

based forecast combined with the AR(4) benchmark, against the AR(4) benchmark.

Using a simple averaging (equal weights) forecast combination, results displayed in Table

4.13, there is substantial performance improvement in all the Rel.MSE (except for the

forecast combinations using macroeconomic and related variables for eight-month-ahead

in which the Rel. MSE are greater than one); in magnitude, the rest of the Rel. MSE

are smaller than previous factor-based forecast. Applying DM -statistics test for this

case, described in Table 4.14, results under forecast combination for forecast horizons

of two, four an six-month-ahead are now defeating the AR(4) benchmark. Notably, for

two-month-ahead forecast, MC and AR(4), and ML and AR(4), are now both defeating

the AR(4) benchmark. For four-month-ahead forecast, ML and AR(4) is the winning

model; whilst for six-month-ahead forecast, all factors-based forecast used in the forecast

combination have shown to be statistically better than the benchmark AR(4).

Making used of variance-covariance weight method, with results displayed in Tables

4.15 and 4.16, we achieve quiet similar results as in the simple averaging case. However,

now the forecast combination of UN and AR(4) appears to perform better than the

AR(4) benchmark for four-month-ahead forecast. Additionally, we also have ‘winners’

in terms of DM -statistics test for the combinations of MC and AR(4), and of ML and

AR(4) in the two-month-step ahead forecast of UN and AR(4), and of ML and AR(4)

for the four-month-step ahead forecast and for all factor-based forecast used in the

forecast combination for the six-month-step ahead forecast. Finally, the last forecast

combination we attempt is the regression method. The results are in Tables 4.17 and

4.18. In terms of Rel.MSE. we cannot deny we have improved against the benchmark

AR(4). Nevertheless, less improvement is achieved when compared to the the variance-

covariance method for the DM -statistics test.

Overall we found that factor-based forecasts have improved substantially against the

choice of an AR(4) benchmark forecast particularly for the two-, four- and six-month-

ahead forecasts generated from the forecast combination using the variance-covariance

method (Table 16) of Bates and Granger (1969). The ‘winners’ of Table 4.16 are dis-

played in levels against the historical dataset in Table 4.19 (Appendix D) and in Figures

4.1-4.3 (Appendix E).
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4.3.3 Factor Analysis Results

Choice of Factors via IC Information Criteria of Bai and Ng (2002) indicate one

factor for each of the blocks of dataset. The results are in the Appendix B, Table 4.3.13

Comparing these results with the tools developed in the preceding chapters allow us

to conclude this is a linear factor model, that is, the dataset does not contain relevant

structural breaks. We ended up with one factor, hence, no overestimation of the number

of factors in a recursive exercise (hence no jumps).

The Nature of the Factors (commonalities) In the Appendix C, Table 4.4 we

show the corresponding covariability explained by each factor with respect to each block

of dataset. For expositional purposes we show the covariability of the first ten factors.

Obviously, blocks with fewer variables will display higher covariability of the dataset set

explained by the first factors, because there are less factors. For instance, let us consider

the block FL (69 variables), in which a factor model would originally calculate 69 factors.

If each factor had the same importance they would individually explain 1.45% of the

covariability of the dataset; however, the first factor for this block explains 10.10%.

To understand the nature of the factors we check the commonalities (the corresponding

squared of each element of the factor loadings with respect to a variable - which tells

the covariability of that variable explained by that factor).14 The complete output for

commonalities for the factors chosen via IC is in Table 4.5; since IC results accounts

for one factor in each block of dataset, this is the the factor taken into consideration in

Table 4.5.

Overall an analysis of FL and FC suggest that these factors are strongly leaded by labor

market variables, whereas macroeconomics and monetary related variables appear to be

less important, concentrated in the second half of the commonalities. Using only labor

market variables, the factors LB and UN display results with similar intuition in the

sense that both of their commonalities are well characterized with better ranked variables

of metropolitan areas that are more important economically. For ML and MC, both are

factors are leaded by contemporaneous interest rates (NIR). These results suggest the

factors we estimated with different blocks are not describing the same comovement.

For instance, for the factor FL, the top five commonalities have either variables of

the Brazilian aggregate unemployment and employment (TBR, PEBR and OBR), and

about Sao Paulo unemployment and employment variables (TSP and POSP). These

13Codes taken from Professor Serena Ng’s website and the results generated from Matlab 2009b.
14These values can also be achieved by the statistical R2 of a linear regression of each individual

variable against the respective factor.
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results bring an intuitive interpretation as the unemployment and employment variables

in aggregate terms for Brazil and Sao Paulo metropolitan area (Sao Paulo is the largest

economy amongst the six metropolitan areas) are leading the ranking of commonalities

of that factor that contains the entire dataset, including lags of interest rate.15 Fol-

lowing the ranking of highest commonalities of FL, variables TBH, TPOA, HBR, OSP

and TDF complete the top ten. What this is saying is that this factor is leaded by

Brazilian aggregate and the variables of largest economies of the metropolitan areas.

Amongst the other metropolitan areas, such as Salvador and Recife, they do not appear

in the top twenty commonalities. Furthermore, the first macroeconomic and monetary

related variable to appear is Exports, ranked twenty-third followed by SI, NIR, PS and

M1 lying between thirtieth and thirty-third positions in the ranking. In the factor FC

the commonalities related to macroeconomic and monetary related variables concen-

trate again in the second half of the ranking, together with less economically important

metropolitan areas (Recife and Salvador).

The factors estimated with macroeconomic and monetary related variables, ML and MC,

both have NIR leading the ranking of commonalities followed by SM2 and SI. Imports is

ranked in fourth place, followed by exports and velocity of money, international reserves

and M4. Except NIR1 that is the ninth highest commonality in ML, another lagged

nominal interest rates appear only in the second-half of FL ranking. For instance,

NIR6, NIR5 and NIR2 are in the last five positions.

In the Appendix E, Figures 4.4-4.9 we plot each estimated factor against the variable

ranked in the first commonality (used here as a measure of the variability of that variable

explained by the respective factor). That is: FL, FC, LB and UN, each of them are

plotted against total Brazilian unemployment Rate (TBR); and ML and MC, each of

them are plotted against NIR. These factors could be interpreted as indexes of the those

variables. In Figure 4.7 use a sign-adjust to the factors whenever necessary, such that

the factor should follow the variable reasonably well (or better than all of the other

variables).

Correlation and Discrepancy amongst the Estimated Factors In Table 4.20

we show a simple correlation coefficient matrix of the estimated factors. In terms of

these correlations the estimated factors can be divided into three groups: (i) FC and

FL; (ii) LB and UN, and (iii) MC and ML.

The factors estimated with the entire dataset including lagged interest rates and without

lagged interest rates, factors FL and FC respectively, are highly correlated with each

15The ranking of GDP amongst the metropolitan areas our dataset account for are the following: 1.
Sao Paulo (SP); 2. Distrito Federal (DF); 3. Belo Horizonte (BH); 4. Porto Alegre (POA); 5. Salvador
(SA); and 6. Recife (RE).
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other (0.9995); and these factors are also relatively well correlated with the factor LB,

estimated with labour market variables (0.9622 and 0.9670, respectively). When it

comes to the factor UN, estimated with only unemployment rate variables, this factor is

still relatively well correlated with FL (-0.8668), FC (-0.8762) and of course even higher

correlated with LB (-0.9550).

The factors estimated with macroeconomic and monetary variables, ML and MC, are

very low correlated with the other factors, such as FL (-0.3420 and -0.3267, respectively),

FC (-0.3305 and -0.3166, respectively), LB (-0.1365 and -0.1273, respectively) and UN

(0.0619 and 0.0584, respectively). Finally, as expected, the correlation between MC and

ML is very high (0.9965).

The results of the discrepancy statistics of the space spanned amongst the estimated

factors is displayed in Table 4.21. It is close to one (small discrepancy) when factors span

nearly the same space, and close to zero (high discrepancy) otherwise. This statistics

has been adapted from Ng and Boivin (2006), and can be given as follows:

SF̂i,F̂j
=

tr(F̂ ′jF̂i(F̂ ′i F̂i)
−1F̂ ′i F̂j)

tr(F̂ ′jF̂j)
(4.10)

where tr(A) denote the trace of matrix A; i, j = FC, FL, LB, UN, MC and ML; SF̂i,F̂j
∈

[0, 1]; and, SF̂i,F̂j
= 1 if i = j.

The discrepancy statistics amongst estimated factors corroborate with the intuition

brought by the correlations coefficients: the above three groups of factors are still valid

here. FC and FL nearly span the same space (0.9990); FC and FL with respect to LB,

have a relatively slightly higher discrepancy (0.9351 and 0.9258); for UN, both FC and

FL display even higher discrepancy (0.7677 and 0.7513). And as expected, LB and UN

display a small discrepancy (0.9119) since they are estimated with very similar blocks;

the same intuition applies for MC and ML (0.9931) when result are even stronger.

The factors MC and ML are the ones that display the highest discrepancy statistics with

respect to the others. For instance, with respect to FC (0.1002 and 0.1092, respectively),

and to FL (0.1067, 0.1170, respectively) the discrepancies are very high, even considering

the fact that a large number of variables used to estimate these factors have information

in common, but the results suggest that these factors do not span the same factor space.

Finally, MC and ML have even higher discrepancy with respect to LB and UN. This is

not a surprise since their blocks do not have information in common. Then, the statistics

are: MC and LB (0.0162), MC and UN (0.0038), ML and LB (0.0186), and, ML and

UN (0.0034).
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Robustness of Factor Model Specification As explained in Ng and Boivin (2006),

there is no correct way to organize a dataset for factor analysis. The inclusion of more

variables may lead to an increase of correlated errors whilst the common component

estimation can be affected by the decrease of its average size. In this way the inclusion

of variables (highly correlated) may not bring any benefit. In this regard, estimations

of different blocks may affect the structure of the factors, as well as the size of dataset

of different groups bringing different interpretation to the factors.

As described earlier, for our factor estimation we have separated the dataset judgmen-

tally into blocks containing less variables. The reason for this is to explore our data

dataset alternatively, to estimate different factors in the sense that they possibly un-

derly different comovements within the same dataset, and finally use these estimated

factors to improve our forecast exercise.

4.4 Conclusion

The goal of this chapter was to present the forecast of the Brazilian unemployment

rate using diffusion index. Good results are found for two-,four- and six-month-ahead

forecasts. We explored various methods of evaluation of forecast accuracy, forecast

encompassing and combination. In our forecast exercise we have considered a linear

model with constant coefficient throughout the sample (no time-varying coefficients).

This perhaps brings a limitation to be explore in a future work since it is not unlikely

that nonlinearities and/or structural breaks may occur. Moreover, our work can also

be extended exploring the literature on factor analysis (i.e., estimation in frequency

domain) or possibly newer versions of information criteria to determine the number of

factors. Nevertheless, with the techniques explored in this chapter we have achieved

satisfactory results when comparing our forecasts with the historical dataset.
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Appendix A: Dataset Description

We use 69 monthly time series ranging from January 1998 to January 2009. We first

took care of seasonality of each time series whenever it is necessary. Then we take log

of all series not in rates or negative. Next, we induce stationary by taking differences.16

In this regard we have taken first difference for all of the time series which has shown

to be enough to induce stationary. Finally we standardized our series in the sense that

they display zero mean and unit variance. These procedures are common use in a factor

models framework.

Our dataset with respect to unemployment and employment (total, open, hidden, un-

deremployment and discouraged) were obtained from the Fundação Sistema Estadual

de Análise de Dados, in which is under the responsibility of the Pesquisa de Emprego e

Desemprego (Seade/PED - “Employment and Unemployment Research”). This dataset

has information for metropolitan areas cross country, which are major cities in Brazil:

Sao Paulo (SP), Salvador (RJ), Porto Alegre (POA), Recife (RE), Belo Horizonte (BH)

and Distrito Federal (DF) in addition to the aggregate dataset for the country. The rest

of our dataset was obtained from the Instituto de Pesquisa Economica Aplicada website

(www.ipeadata.gov.br - IPEA - “Institute of Research Applied Economics”) which is an

institution led by the Brazilian government to provide economic research. All data were

freely obtained.

We have separated our dataset amongst two groups (labor market and monetary vari-

ables). They can be read as follows: a code, a brief description, (sa) to denote that

the respective series has been seasonally adjusted, (nsa) if not seasonally adjusted and

(log) for the dataset not in rates or negative values in which we applied logarithm. It is

noteworthy to remind the reader that a first difference has been taken from each time

series in order to induce stationary.

16We used the Census X12 multiplicative and additive X11 methods to verify seasonality of the series.
All series have been seasonally adjusted via additive method. We used Phillips-Perron and Augmented
Dickey-Fuller tests for stationary (verifying models for intercept, trend and intercept and no trend and
no intercept), and we found that we cannot accept stationary in any of the series. Reports of these tests
(via E-Views 6) are available upon request.
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Appendix B: Information Criteria

Table 4.3: Choice of Number of Factors via Bai and Ng (2002)

Block and IC Number of Factors Block and IC Number of Factors

FC ICp1 (k) 1 MC ICp1 (k) 1
FC ICp2 (k) 1 MC ICp2 (k) 1
FC ICp3 (k) 1 MC ICp3 (k) 1
LB ICp1 (k) 1 UN ICp1 (k) 1
LB ICp2 (k) 1 UN ICp2 (k) 1
LB ICp3 (k) 1 UN ICp3 (k) 1
FL ICp1 (k) 1 ML ICp1 (k) 1
FL ICp2 (k) 1 ML ICp2 (k) 1
FL ICp3 (k) 1 ML ICp3 (k) 1

We have also tested for zero factors.

Appendix C: Factor Analysis

Table 4.4: Covariability Explained by First Ten Factors (in % )

Blocks FL FC LB UN MC ML

1st Factor 10.10 10.99 15.02 16.81 17.63 13.78
2nd Factor 7.58 8.16 10.72 12.56 11.72 9.56
3rd Factor 7.19 7.75 8.62 9.50 10.83 8.76
4th Factor 5.63 6.13 7.07 8.06 8.01 6.82
5th Factor 4.76 5.12 6.48 7.66 7.28 6.47
6th Factor 4.16 4.43 6.05 6.46 6.78 5.96
7th Factor 4.00 4.21 5.37 5.64 5.25 4.93
8th Factor 3.84 4.09 4.66 4.99 4.70 4.69
9th Factor 3.63 3.81 4.11 3.94 4.46 4.51
10th Factor 3.07 3.31 3.29 3.65 3.90 3.98
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Table 4.5: Rank of Commonalities of the First Factor by block of dataset
(in % and variables in brackets)

Rank FL FC LB UN MC ML

1 8.00(TBR) 8.10(TBR) 9.60 (TBR) 9.32(TBR) 21.92(NIR) 21.458 (NIR)
2 5.34(PEBR) 5.30(PEBR) 5.22 (TBH) 6.44(TDF) 19.31(SM2) 18.95 (SM2)
3 5.07(OBR) 5.03(OBR) 5.21 (TSP) 5.77(HBR) 16.70(SI) 15.965 (SI)
4 4.72(TSP) 4.77(TSP) 5.07 (OSP) 5.40(UBR) 11.64(M) 12.018 (M)
5 4.50(POSP) 4.50(POSP) 5.02 (PEBR) 4.84(TBH) 9.34(X) 9.699 (X)
6 4.43(TBH) 4.46(TBH) 4.91 (HBR) 4.78(HSP) 5.92(D) 6.255 (D)
7 3.99(TPOA) 4.02(TPOA) 4.87 (TDF) 4.78(HDF) 4.67(RI) 4.555 (RI)
8 3.72(HBR) 3.83(HBR) 4.64 (TPOA) 4.69(TSP) 3.61(M4) 3.138 (M4)
9 3.40(OSP) 3.47(TDF) 4.44 (POSP) 4.51(HPOA) 1.67(M3) 1.523 (NIR1)
10 3.36(TDF) 3.38(OSP) 3.91 (UBR) 4.24(TPOA) 1.35(SM1) 1.424 (M3)
11 2.95(HWSP) 2.89(UBR) 3.60 (HPOA) 4.10(TSA) 1.23(TJLP) 1.207(SM1)
12 2.83(HPSP) 2.84(HWSP) 3.29 (OSP) 4.04(UPOA) 0.82(M1) 1.162(TJLP)
13 2.79(UBR) 2.77(HPOA) 3.11 (HBH) 3.99(DSP) 0.47(CPU) 0.498(M1)
14 2.67(HPOA) 2.75(HPSP) 3.06 (UPOA) 3.99(DDF) 0.32(ER) 0.419(CPU)
15 2.63(HBH) 2.65(HBH) 3.01 (UBH) 3.76(OBR) 0.27(M2) 0.375(NIR4)
16 2.60(M) 2.53(UBH) 2.83 (TSA) 3.27(UBH) 0.26(DS) 0.318(DS)
17 2.50(UBH) 2.52(M) 2.58 (HSP) 3.26(HBH) 0.21(CPR) 0.254(M2)
18 2.37(HWBR) 2.43(UPOA) 2.58 (HDF) 2.47(OSP) 0.18(M0) 0.220((ER)
19 2.34(UPOA) 2.28 (HWBR) 2.52 (OBH) 2.38(HSA) 0.07(M0A) 0.145(NIR3)
20 2.16(OBH) 2.17(OBH) 2.15 (DSP) 2.07(OBH) 0.04(IR) 0.140(M0)
21 1.82(TSA) 1.90(TSA) 2.15 (DDF) 1.77(USA) 0.129(CPR)
22 1.72(HWRJ) 1.67(HWRJ) 1.61 (HPSP) 1.60(USP) 0.103(NIR6)
23 1.59(X) 1.66(HSP) 1.48 (ODF) 1.60(UDF) 0.015(IR)
24 1.53 (HSP) 1.66(HDF) 1.30 (OPOA) 1.42(DPOA) 0.013(M0A)
25 1.53 (HDF) 1.54(X) 1.28 (HWSP) 1.25(ODF) 0.006 (NIR5)
26 1.39 (DSP) 1.49(DSP) 1.26 (HSA) 1.13(OSA) 0.000 (NIR2)
27 1.39 (DDF) 1.49(DDF) 1.23 (DPOA) 0.72(DBH)
28 1.38 (OPOA) 1.35(OPOA) 0.99 (OSA) 0.67(OPOA)
29 1.27 (ODF) 1.24(ODF) 0.88 (PS) 0.44(DBR)
30 1.21 (SI) 1.16(SI) 0.83 (USP) 0.42(URE)
31 1.05 (NIR) 1.01(PS) 0.83 (UDF) 0.42(DSA)
32 1.01 (PS) 0.98(NIR) 0.76 (HWBR) 0.37(HRE)
33 0.91 (M1) 0.91(DPOA) 0.75 (USA) 0.05(TRE)
34 0.88 (DPOA) 0.87(M1) 0.74 (DBH) 0.03(DRE)
35 0.78 (OSA) 0.81(OSA) 0.72 (DBR) 0.01(ORE)
36 0.68 (SM2) 0.64(SM2) 0.63 (HWRJ)
37 0.60 (DBR) 0.61(DBR) 0.41 (DSA)
38 0.59 (DBH) 0.59(DBH) 0.27 (URE)
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Table 4.5: continuation

Rank FL FC LB UN MC ML

39 0.54 (HSA) 0.58(HSA) 0.14(HRE)
40 0.52 (D) 0.48(D) 0.08(ORE)
41 0.43 (USP) 0.48(USP) 0.04(RMW)
42 0.43 (UDF) 0.48(UDF) 0.01(DRE)
43 0.37 (CPR) 0.36(M3) 0.01(TRE)
44 0.35 (M3) 0.36(CPR)
45 0.33 (USA) 0.35(USA)
46 0.32 (DS) 0.31(DS)
47 0.28 (M0A) 0.29(URE)
48 0.27 (M2) 0.28(M2)
49 0.27 (URE) 0.27(CPU)
50 0.26 (CPU) 0.26(M0A)
51 0.23 (TJLP) 0.22(TJLP)
52 0.21 (NIR4) 0.21(IR)
53 0.20 (IR) 0.21(DSA)
54 0.20 (DSA) 0.19(HRE)
55 0.19 (NIR1) 0.09(SM1)
56 0.17 (HRE) 0.08(ORE)
57 0.17 (NIR3) 0.08(ER)
58 0.16 (NIR2) 0.04(RMW)
59 0.09 (ORE) 0.03(M0)
60 0.09 (SM1) 0.02(M4)
61 0.07 (ER) 0.01(DRE)
62 0.04 (RMW) 0.01(TRE)
63 0.04 (NIR5) 0.00(RI)
64 0.03 (M0)
65 0.03 (M4)
66 0.02 (DRE)
67 0.02 (TRE)
68 0.01 (NIR6)
69 0.00 (RI)
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Appendix D: Forecasts

Table 4.6: h−month-ahead Out-of Sample Forecasting against the benchmark

h = 1 AR(4) FL FC LB UN MC ML

MSE 0.00075 0.00071 0.00071 0.00072 0.00077 0.00076 0.00076
Rel.MSE 1 0.9423 0.9417 0.9581 1.0201 1.0145 1.0142

h = 2 AR(4) FL FC LB UN MC ML
MSE 0.00082 0.00074 0.00074 0.00075 0.00082 0.00082 0.00082
Rel.MSE 1 0.9130 0.9114 0.9257 1.011 0.9999 1.0003

h = 4 AR(4) FL FC LB UN MC ML
MSE 0.00084 0.00082 0.00082 0.00081 0.00080 0.00084 0.00084
Rel.MSE 1 0.9766 0.9740 0.9604 0.9518 1.0032 1.0017

h = 6 AR(4) FL FC LB UN MC ML
MSE 0.00065 0.00059 0.00059 0.00059 0.00058 0.00065 0.00066
Rel.MSE 1 0.8964 0.8968 0.8968 0.88873 1.0022 1.0034

h = 8 AR(4) FL FC LB UN MC ML
MSE 0.00025 0.00025 0.00025 0.00025 0.00025 0.00026 0.00025
Rel.MSE 1 0.99311 0.9921 0.9895 0.9993 1.0216 1.0194

h = 12 AR(4) FL FC LB UN MC ML
MSE 0.00073 0.00074 0.00074 0.00073 0.00072 0.00074 0.00074
Rel.MSE 1 1.0123 1.0123 0.9971 0.9818 1.0081 1.0056

Relative-MSE (Rel.MSE): Rel.MSE(factor-based) = MSE(factor-based)/MSE(AR(4)).
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Table 4.7: Diebold and Mariano (2002)a factor-based forecast against the benchmark

h−month-ahead out-of sample forecasting
m1 (model one) vs m2 (model two)

yr,m1

t+h vs yr,m2

t+h ; lm1 = (yr,m1

t+h − ŷ
r,m1

t+h )2 and lm2 = (yr,m2

t+h − ŷ
r,m2

t+h )2

d = lm1 − lm2 ; dt+1 = c+ ut+1, where c is a constant
H0 : c = 0 against Hm1

1 : c < 0 or Hm2
1 : c > 0

h = 1 DM -Stats p-value Winner h = 2 DM -Stats p-value Winner

FL vs AR(4) -1.3095 0.2022 - FL vs AR(4) -1.6198 0.118 -
FC vs AR(4) -1.3287 0.1959 - FC vs AR(4) -1.6224 0.1177 -
LB vs AR(4) -0.9868 0.3331 - LB vs AR(4) -1.2078 0.2388 -
UN vs AR(4) 0.3765 0.7096 - UN vs AR(4) 0.1683 0.8677 -
MC vs AR(4) 0.4711 0.6416 - MC vs AR(4) -0.0070 0.9944 -
ML vs AR(4) 0.4678 0.6439 - ML vs AR(4) 0.0774 0.9389 -

h = 4 DM -Stats p-value Winner h = 6 DM -Stats p-value Winner
FL vs AR(4) -0.5928 0.5593 - FL vs AR(4) -2.1064 0.0479 FL
FC vs AR(4) -0.6673 0.5114 - FC vs AR(4) -2.0912 0.0494 FC
LB vs AR(4) -1.0681 0.2970 - LB vs AR(4) -2.2415 0.0364 LB
UN vs AR(4) -1.3619 0.1870 - UN vs AR(4) -2.2673 0.03460 UN
MC vs AR(4) 0.1089 0.9142 - MC vs AR(4) 0.1139 0.9104 -
ML vs AR(4) 0.0676 0.9466 - ML vs AR(4) 0.8459 0.1968 -

h = 8 DM -Stats p-value Winner h = 12 DM -Stats p-value Winner
FL vs AR(4) -1.3469 0.1946 - FL vs AR(4) 0.5710 0.5770 -
FC vs AR(4) -1.3678 0.1881 - FC vs AR(4) 0.5171 0.6131 -
LB vs AR(4) -1.6393 0.1184 - LB vs AR(4) -0.1729 0.8651 -
UN vs AR(4) -0.1509 0.8817 - UN vs AR(4) -1.6211 0.1272 -
MC vs AR(4) 0.6382 0.5313 - MC vs AR(4) 0.6139 0.5490 -
ML vs AR(4) 0.6000 0.5559 - ML vs AR(4) 0.4587 0.6534 -
aNewey and West (1987) HAC results of d = lm1 − lm2 regressed on a constant, as explained in section 2.3

If a calculated t-ratio is statistically significant and with a negative constant results in m1 defeating m2 ,
and vice-versa; if the test is not significant, nothing can be said about m1 and m2 defeating each other.
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Table 4.8: Diebold and Mariano (2002)a within factors

h−month-ahead Out-of Sample Forecasting

h = 1 Rel.MSE DM -Stats p-value Winner h = 2 Rel.MSE DM -Stats p-value Winner

FL vs FC 1.0006 0.2348 0.8162 - FL vs FC 1.0017 0.5277 0.6025 -
FL vs LB 0.9834 -0.6862 0.4988 - FL vs LB 0.9862 -0.4931 0.6264 -
FL vs UN 0.9237 -1.6178 0.1182 - FL vs UN 0.9026 -1.6690 0.1081 FL
FL vs MC 0.9368 -1.5738 0.1280 - FL vs MC 0.9131 -1.6947 0.1030 FL
FL vs ML 0.9362 -1.6026 0.1215 - FL vs ML 0.9127 -1.7042 0.1012 FL
FC vs LB 0.9828 -0.7840 0.4403 - FC vs LB 0.9845 -0.6259 0.5372 -
FC vs UN 0.9231 -1.6911 0.1032 FC FC vs UN 0.9010 -1.7542 0.0921 FC
FC vs MC 0.9362 -1.5870 0.1250 - FC vs MC 0.9114 -1.6934 0.1033 FC
FC vs ML 0.9356 -1.6148 0.1188 - FC vs ML 0.9110 -1.7020 0.1016 FC
LB vs UN 0.9392 -2.1972 0.0374 UN LB vs UN 0.9151 -2.1421 0.0425 LB
LB vs ML 0.9525 -1.1307 0.2688 - LB vs ML 0.9254 -1.2411 0.2265
LB vs MC 0.9525 -1.1307 0.2688 - LB vs MC 0.9258 -1.2362 0.2283
UN vs ML 0.9519 -1.1512 0.2605 - UN vs ML 1.0111 0.1610 0.8734
UN vs MC 1.0141 0.2553 0.8005 - UN vs MC 1.0116 0.1673 0.8684
ML vs MC 1.0006 0.6013 0.5530 ML vs MC 1.0004 1.0004 0.4280

h = 4 Rel.MSE DM -Stats p-value Winner h = 6 Rel.MSE DM -Stats p-value Winner

FL vs FC 1.0026 2.2271 0.0364 FC FL vs FC 0.9994 -0.4140 0.6832 -
FL vs LB 1.0168 0.8846 0.3859 - FL vs LB 1.0086 0.7379 0.4691 -
FL vs UN 1.0260 0.6197 0.5418 - FL vs UN 0.9637 -1.3256 0.1998 -
FL vs MC 0.9734 -0.4892 0.6295 - FL vs MC 0.8943 -1.8570 0.0780 FL
FL vs ML 0.9748 -0.4770 0.6380 - FL vs ML 0.8933 -1.9062 0.0710 FL
FC vs LB 1.0141 0.7808 0.4432 - FC vs LB 1.0091 0.8365 0.4127 -
FC vs UN 1.0233 0.5672 0.5762 - FC vs UN 0.9642 -1.3228 0.2008 -
FC vs MC 0.9708 -0.5426 0.5928 - FC vs MC 0.8948 -1.8417 0.0803 FC
FC vs ML 0.9722 -0.5320 0.6000 - FC vs ML 0.8937 -1.8914 0.0731 FC
LB vs UN 1.0090 0.3522 0.7280 - LB vs UN 0.9555 -1.9186 0.0694 LB
LB vs ML 0.9587 -0.9241 0.3654 - LB vs ML 0.8856 -2.052 0.0534 LB
LB vs MC 0.9573 -0.9327 0.3610 - LB vs MC 0.8867 -1.9990 0.0593 LB
UN vs ML 0.9501 -1.2634 0.2196 - UN vs ML 0.9269 -1.8631 0.0771 UN
UN vs MC 0.9487 -1.2739 0.2159 - UN vs MC 0.9280 -1.7680 0.0923 UN
ML vs MC 0.9985 -0.4171 0.6805 ML vs MC 1.0011 0.4840 0.6336

h = 8 Rel.MSE DM -Stats p-value Winner h = 12 Rel.MSE DM -Stats p-value Winner

FL vs FC 1.0009 1.3325 0.1992 - FL vs FC 1.0012 2.1879 0.0461 FC
FL vs LB 1.0036 1.2946 0.2117 - FL vs LB 1.0152 2.2649 0.0399 LB
FL vs UN 0.9938 -1.3248 0.2017 - FL vs UN 1.0310 1.7793 0.0968 UN
FL vs MC 0.9720 -0.7480 0.4640 - FL vs MC 1.0041 0.1340 0.8952 -
FL vs ML 0.9742 -0.7188 0.4814 - FL vs ML 1.0066 0.2173 0.8310 -
FC vs LB 1.0026 1.0797 0.2945 - FC vs LB 1.0140 2.1883 0.04609 LB
FC vs UN 0.9928 -1.4619 0.1609 - FC vs UN 1.0298 1.7370 0.1043 UN
FC vs MC 0.9711 -0.7642 0.4546 - FC vs MC 1.0029 0.0950 0.9255 -
FC vs ML 0.9732 -0.7360 0.4712 - FC vs ML 1.0054 0.1784 0.8609 -
LB vs UN 0.9902 -2.3881 0.0281 LB LB vs UN 1.0155 1.3840 0.1880 -
LB vs ML 0.9706 -0.8227 0.4214 - LB vs ML 0.9914 -0.3416 0.7377 -
LB vs MC 0.9685 -0.8492 0.4069 - LB vs MC 0.9890 -0.4330 0.6716 -
UN vs ML 0.9802 -0.5988 0.5567 - UN vs ML 0.9763 -1.3540 0.1971 -
UN vs MC 0.9780 -0.6376 0.5317 - UN vs MC 0.9738 -1.4644 0.1651 -
ML vs MC 0.9977 -1.1058 0.2833 - ML vs MC 0.9975 -1.4845 0.1598 -
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Table 4.9: h−month-ahead Out-of Sample Forecasting

using more than one factor against the benchmark

h = 1 AR(4) LB and ML LB and MC UN and ML UN and MC

MSE 0.00075 0.00072 0.00072 0.00077 0.00077
Rel.MSE 1 0.9644 0.9640 1.0247 1.0240

h = 2 AR(4) LB and ML LB and MC UN and ML UN and MC
MSE 0.00082 0.00075 0.00076 0.00083 0.00083
Rel.MSE 1 0.9260 0.9263 1.0121 1.0119

h = 4 AR(4) LB and ML LB and MC UN and ML UN and MC
MSE 0.00084 0.00081 0.00081 0.00080 0.00080
Rel.MSE 1 0.9604 0.9623 0.9530 0.9547

h = 6 AR(4) LB and ML LB and MC UN and ML UN and MC
MSE 0.00065 0.00058 0.00057 0.00061 0.00061
Rel.MSE 1 0.8813 0.8800 0.9287 0.9274

h = 8 AR(4) LB and ML LB and MC UN and ML UN and MC
MSE 0.00025 0.00025 0.00025 0.00025 0.00026
Rel.MSE 1 1.0060 1.0087 1.01972 1.0220

h = 12 AR(4) LB and ML LB and MC UN and ML UN and MC
MSE 0.00073 0.00074 0.00074 0.00072 0.00073
Rel.MSE 1 1.0046 1.0074 0.9871 0.9898

Relative-MSE (Rel.MSE): Rel.MSE(factor-based) = MSE(factor-based)/MSE(AR(4)).
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Table 4.11: Forecast Encompassing factor-based forecast against the benchmark

yrt+h = βm1 ŷ
r,m1

t+h + βm2 ŷ
r,m2

t+h + εrt+h

If (βm1 , βm2) = (1, 0) model one encompasses model two;
If (βm1 , βm2) = (0, 1) model two encompasses model one;

h = 1 β̂1 β̂2 Encompass h = 2 β̂1 β̂2 Encompass

FL vs AR(4) −0.70
(1.82)

1.69
(1.63)

- FL vs AR(4) −1.68
(2.03)

1.89
(1.70)

-

FC vs AR(4) −0.69
(1.81)

1.68
(1.63)

- FC vs AR(4) −1.66
(2.03)

1.88
(1.70)

-

LB vs AR(4) −0.66
(1.80)

1.65
(1.59)

- LB vs AR(4) −1.74
(1.91)

1.90
(1.60)

-

UN vs AR(4) −0.92
(1.71)

1.85
(1.52)

- UN vs AR(4) −1.94
(1.62)

1.96
(1.37)

-

MC vs AR(4) −1.12
(1.60)

2.21
(1.38)

- MC vs AR(4) −1.36
(1.78)

1.76
(1.33)

-

ML vs AR(4) −1.13
(1.60)

2.22
(1.38)

- ML vs AR(4) −1.36
(1.78)

1.76
(1.33)

-

h = 4 β̂1 β̂2 Encompass h = 6 β̂1 β̂2 Encompass
FL vs AR(4) −0.27

(2.41)
0.86
(1.77)

- FL vs AR(4) 1.25
(2.58)

−0.26
(2.26)

-

FC vs AR(4) −0.27
(2.40)

0.86
(1.76)

- FC vs AR(4) 2.25
(2.57)

−0.26
(1.25)

-

LB vs AR(4) −0.44
(2.37)

0.93
(1.76)

- LB vs AR(4) 1.14
(2.52)

−0.20
(2.20)

-

UN vs AR(4) −0.63
(2.23)

0.98
(1.64)

- UN vs AR(4) 0.77
(2.36)

0.11
(2.07)

-

MC vs AR(4) −0.79
(1.94)

1.17
(1.34)

- MC vs AR(4) 0.68
(2.36)

0.32
(2.06)

-

ML vs AR(4) −0.78
(1.93)

1.16
(1.34)

- ML vs AR(4) 2.06
(2.35)

0.32
(0.67)

h = 8 β̂1 β̂2 Encompass h = 12 β̂1 β̂2 Encompass
FL vs AR(4) −2.95

(1.83)
2.62
(2.00)

- FL vs AR(4) −0.63
(3.23)

0.96
(3.05)

-

FC vs AR(4) −2.94
(1.83)

2.61
(2.00)

- FC vs AR(4) −0.63
(3.24)

0.96
(3.06)

-

LB vs AR(4) −2.83
(1.84)

2.51
(2.01)

- LB vs AR(4) −0.44
(3.32)

0.80
(3.13)

-

UN vs AR(4) −2.66
(1.92)

2.33
(2.09)

- UN vs AR(4) −0.03
(3.41)

0.43
(3.21)

-

MC vs AR(4) −3.08
(1.98)

2.74
(2.15)

- MC vs AR(4) −0.23
(3.33)

0.60
(3.13)

-

ML vs AR(4) −3.05
(1.98)

2.72
(2.15)

- ML vs AR(4) −0.23
(3.34)

0.60
(3.14)

-

Standard errors in parentheses. * significant at 5% level; ** significant at 1% level.
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ŷ
r,
m

1

t+
h

)2
an

d
lm

2
=

(y
r,
m

2

t+
h
−
ŷ
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Table 4.19: Point Forecasts (in %)

generated from the winners of the forecast combination using the variance-covariance
method (Table 4.16) of Bates and Granger (1969); results are also displayed in Figures

4.1-4.3

History
two-month-ahead four-month-ahead six-month-ahead
MC ML ML UN FL FC LB UN ML MC

Jan-07 15.30 15.32 15.32
Feb 15.90 15.43 15.43
Mar 16.60 16.01 16.01 15.94 15.94
Apr 16.90 16.64 16.64 16.80 16.76
May 16.40 16.79 16.79 17.05 17.13 17.03 17.03 17.04 17.06 17.07 17.07
Jun 15.90 16.20 16.20 16.44 16.46 16.52 16.52 16.52 16.52 16.49 16.49
Jul 15.70 15.74 15.74 15.85 15.90 15.91 15.91 15.91 15.90 15.95 15.95
Aug 15.60 15.73 15.73 15.59 15.56 15.68 15.68 15.66 15.65 15.65 15.67
Sept 15.50 15.63 15.63 15.47 15.57 15.5 15.50 15.51 15.53 15.56 15.56
Oct 15.00 15.51 15.51 15.49 15.47 15.25 15.25 15.26 15.29 15.26 15.26
Nov 14.60 15.11 15.11 14.74 14.79 14.66 14.65 14.65 14.69 14.76 14.76
Dec 14.20 14.69 14.69 14.46 14.44 14.42 14.42 14.42 14.42 14.4 14.4

Jan-08 14.20 14.29 14.29 14.39 14.35 14.3 14.30 14.30 14.32 14.35 14.35
Feb 14.50 14.32 14.32 14.36 14.39 14.45 14.45 14.45 14.47 14.45 14.45
Mar 15.00 14.59 14.59 14.58 14.61 14.5 14.50 14.50 14.51 14.48 14.48
Apr 15.00 15.03 15.03 15.09 15.11 14.84 14.84 14.86 14.87 14.9 14.9
May 14.80 14.95 14.95 15.03 15.08 14.97 14.97 14.95 14.96 14.98 14.98
Jun 14.60 14.65 14.65 14.84 14.85 14.79 14.79 14.79 14.79 14.80 14.8
Jul 14.60 14.53 14.53 14.53 14.59 14.67 14.68 14.68 14.7 14.74 14.73
Aug 14.50 14.58 14.58 14.55 14.65 14.66 14.66 14.66 14.67 14.68 14.68
Sept 14.10 14.48 14.48 14.55 14.58 14.41 14.41 14.37 14.4 14.43 14.44
Oct 13.40 14.08 14.08 14.00 14.02 13.86 13.86 13.88 13.9 13.69 13.96
Nov 13.00 13.39 13.39 13.19 13.23 13.18 13.18 13.19 13.19 13.21 13.21
Dec 12.70 13.13 13.13 12.88 12.89 12.87 12.87 12.87 12.89 12.91 12.9

Jan-09 13.10 12.88 12.88 12.75 12.78 12.78 12.78 12.78 12.8 12.83 12.83

The estimation window uses data until 2006:11 and the forecasting window up to 2009:01.
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Table 4.20: Correlation Coefficient Matrix of the Estimated Factors

FC FL LB UN MC ML

FC 1
FL 0.9995 1
LB 0.9670 0.9622 1
UN -0.8762 -0.8668 -0.9550 1
MC -0.3166 -0.3267 -0.1273 0.0584 1
ML -0.3305 -0.3420 -0.1365 0.0619 0.9965 1

Table 4.21: Discrepancy Statistics (SF̂i,F̂j
) amongst

the Space Spanned of the Estimated Factors

FC FL LB UN MC ML

FC 1
FL 0.9990 1
LB 0.9351 0.9258 1
UN 0.7677 0.7513 0.9119 1
MC 0.1002 0.1067 0.0162 0.0038 1
ML 0.1092 0.1170 0.0186 0.0034 0.9931 1

Appendix E: Figures

Figures 4.1-4.3 are forecast results in level from forecast combination for two-, four-, and

six-month-ahead forecast using the variance covariance method of Bates and Granger

(1969). These are the good results we have achieved as displayed in Table 4.16. In

Figure 4.1, the forecast starts at 2007:01, in Figure 4.2 at 2007:03 and in Figure 4.3 at

2007:05. In Figures 4.4-4.9 are plots of the first estimated factor of each block, following

the information criteria, against the variable that display the highest commonality for

that specific factor; variables in Figures 4.4-4.9 are treated as described in Appendix A.
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Figure 4.1: Forecast results in level from forecast combination for two-month-ahead

Figure 4.2: Forecast results in level from forecast combination for four-month-ahead
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Figure 4.3: Forecast results in level from forecast combination for six-month-ahead

Figure 4.4: FL Estimated Factor vs Brazilian Unemployment Rate
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Figure 4.5: FC Estimated Factor vs Brazilian Unemployment Rate

Figure 4.6: LB Estimated Factor vs Brazilian Unemployment Rate
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Figure 4.7: UN Estimated Factor vs Brazilian Unemployment Rate

Figure 4.8: ML Estimated Factor vs Brazilian Nominal Interest Rate
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Figure 4.9: MC Estimated Factor vs Brazilian Nominal Interest Rate



Chapter 5

Conclusion

In this thesis we contributed to the literature on factor models by offering practitioners

some new techniques designed to improve the modelling of a large data set as a factor

model with the potential presence of structural breaks. In addition to this, we also

applied factor models for forecasting purposes in the context of the Brazilian unemploy-

ment rate. The various toolkits we propose in this thesis rely on the approximate factor

model setting recently explored in the work of Bai (2003) and Bai and Ng (2002).

In chapter two our goal was to propose an alternative approach to determine the number

of factors in large approximate factor models under nonlinear structures. The method-

ology expands on the information criteria proposed by Bai and Ng (2002) by uncovering

the time dimension of the factor structure and applying it recursively at each point in

the time dimension, rather than applying it once in the entire sample. Then, a sim-

ple method to adjust for the overestimation of the number of factors is offered. It is

a modified estimator to achieve a more parsimonious number of factors. Overall, our

approach aims to enable the detection of changes in the factor structures, likely to result

in changes in the number of factors along the same factor model. We suggested that our

method should be used in the entire sample, without the need for splitting the sample

at predetermined dates. In this manner, a practitioner could estimate the factor space

and use our approach to uncover nonlinearities of a factor model, without running the

risk of inadvertently overestimating the number of factors.

In chapter three we offered two tools to investigate nonlinearities in factor models. The

first one is a nonlinear information criterion that enables one to determine the correct

number of factors in either a linear or a nonlinear factor model. The nonlinearities

take place in the factor loadings only, without changes in the number of factors. The

second tool is understood as a decision rule to decide whether a factor model is in fact

linear or nonlinear. Perhaps our contributions can complement to the Bai and Ng (2002)

100
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information criteria, which is designed only for linear datasets, and also to Breitung and

Eickmeier (2011), Chen et al. (2012) and Han and Inoue (2012), who model tools to

detect structural breaks in factor models. In this regard, our information criterion and

decision rule can be tools that possibly complement to their contributions. A topic for

parallel research is the case that occurs when the number of factors change at some

point in the time dimension. For simplicity it has not been considered in this chapter.

The goal of the fourth and last chapter of this thesis was to present the forecast of the

Brazilian unemployment rate using diffusion index. Good results are found for two-

,four- and six-month-ahead forecasts. We explored various methods of evaluation of

forecast accuracy, forecast encompassing and combination. In our forecast exercise we

have considered a linear model with constant coefficient throughout the sample (no time-

varying coefficients). This perhaps brings a limitation to be explore in a future work

since it is not unlikely that nonlinearities and/or structural breaks may occur. Moreover,

our work can also be extended exploring the literature on factor analysis (i.e., estimation

in frequency domain) or possibly newer versions of information criteria to determine the

number of factors. Nevertheless, with the techniques explored in this chapter we have

achieved satisfactory results when comparing our forecasts with the historical dataset.



Bibliography

Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis. New

Jersey: Wiley Series in Probability and Statistics.

Andrews, D. (1993). Tests for parameter instability and structural change with unknown

change point. Econometrica 61 (4), 821–856.

Bai, J. (2003). Inferential Theory for Factor Models of Large Dimensions. Economet-

rica 71 (1), 135–171.

Bai, J. (2008). factor models. In S. N. Durlauf and L. E. Blume (Eds.), The New

Palgrave Dictionary of Economics. Basingstoke: Palgrave Macmillan.

Bai, J. and S. Ng (2002). Determining the Number of Factors in Approximate Factor

Models. Econometrica 70 (1), 191–221.

Bai, J. and S. Ng (2006). Confidence Intervals for Diffusion Index Forecasts Inference

for Factor-Augmented Regressions. Econometrica 3 (2), 89–163.

Bai, J. and S. Ng (2008a). Boosting Diffusion Indices. Journal of Applied Economet-

rics 24 (4), 607–629.

Bai, J. and S. Ng (2008b). Forecasting Economic Time Series Using Targeted Predictors.

Journal of Econometrics 146 (2), 304–317.

Bai, J. and S. Ng (2008c). Large Dimensional Factor Analysis. Foundations and Trend

in Econometrics, 89–163.

Bai, J. and S. Ng (2010). Principal Components Estimation

and Identification of the Factors. Working paper available at

http://www.columbia.edu/ sn2294/papers/rotate.pdf.

Bates, J. M. and C. W. J. Granger (1969). The Combination of Forecasts. Operations

Research 20, 451–468.

Boivin, J. and S. Ng (2005). Understanding and Comparing Factor-Based Forecasts.

International Journal of Central Banking 1 (3).

102



Bibliography 103

Breitung, J. and S. Eickmeier (2006). Dynamic Factor Models. Journal of the German

Statistical Society 90 (1), 27–40.

Breitung, J. and S. Eickmeier (2011). Testing for structural breaks in dynamic factor

models. Journal of Econometrics 163(1), 71–84.

Cagan, P. (1956). The Monetary Dynamics of Hyperinflation. In M. Friedman (Ed.),

Studies in the Quantinty Theory of Money. Chicago: University of Chicago Press.

Cattell, R. (1966). The scree test for the number of factors. Multivariate Behavioral

Research 1 (2), 245–276.

Chamberlain, G. (1983). Funds, Factors, and Diversification in Arbitrage Pricing Mod-

els. Econometrica 51 (5), 1305–23.

Chamberlain, G. and M. Rothschild (1983). Arbitrage, Factor Structure and Mean-

Variance Analysis in Large Asset Market. Econometrica 51 (5), 1281–304.

Chen, L., J. J. Dolado, and J. Gonzalo (2012). Detecting Big Structural Breaks in Large

Factor Models. UC3, working papers.

Chong, Y. Y. and D. F. Hendry (1986). General Intelligence, Objectly Determined and

Measured. The Review of Economic Studies 53 (4), 671–690.

Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions.

Econometrica 28 (3), 591605.

Diebold, F. X. and J. A. Lopez (1996). Forecast Evaluation and Combination. In

G. S. Maddala and C. R. Rao (Eds.), Handbook of Statistics, Volume 14. Amsterdam:

North-Holland.

Diebold, F. X. and R. S. Mariano (2002). Comparing Predictive Accuracy. Journal of

Business and Economic Statistics 20 (1), 134–44.

Fama, E. F. and K. R. French (1993). Common risk factors in the returns on stocks and

bonds. Journal of Financial Economics 33 (1), 3–56.

Forni, M., M. Hallin, M. Lippi, and L. Reichilin (2000). The Generalized Dynamic-Factor

Modes: Identification and Estimation. The Review of Economic and Statistics 82 (4),

540–554.

Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2004). The Generalized Factor Models:

consistency and rates. Journal of Econometrics 119 (2), 231–255.

Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2005). The generalized dynamic factor

model, one sided estimation and forecasting. Journal of the Americam Statistical

Association 100, 830–840.



Bibliography 104

Forni, M. and L. Reichlin (1998). Let’s get real: A factor analytical approach to disag-

gregated business cycle dynamics. Review of Economic Studies 65 (3), 453–73.

Geweke, J. (1977). The Dynamic Factor Analysis of Economic Time Series. In D. J.

Aigner and A. S. Goldberger (Eds.), Latent Variables in Socio-Economic Models.

Amstendan: North-Holland.

Granger, C. W. J. and R. Ramanathan (1984). Improved Methods of Forecasting.

Journal of Forecasting 3, 197–204.

Han, X. and A. Inoue (2012). Tests for Parameter instability in Dynamic Factor Models.

working paper.

Koop, G. and S. M. Potter (1999). Dynamic asymmetries in U.S. unemployment. Journal

of Business and Economic Statistics 17 (3), 298–312.

Moura, M. L. and A. de Carvalho (2010). What can Taylor rules say about monetary

policy in Latin America? Journal of Macroeconomics 32 (1), 392–404.

Newey, W. K. and K. D. West (1987). A Simple, Positive Semi-Definite, Heteroskedastic-

ity and Autocorrelation Consistent Covariance Matrix. Econometrica 55 (3), 703–08.

Ng, S. and J. Boivin (2006). Are more data always better for factor analysis? Journal

of Econometrics (132), 169–194.

Reichlin, L. (2003). Factor Models in Large Cross Section of Time Series. In S. M. Dewa-

tripoint and L. Hansen (Eds.), Advances in Economics and Econometrics: Theory and

Applications, Vol.111, 8th World Congress of the Econometric Society. Cambridge:

Cambridge University Press.

Ross, S. (1976). The Arbitrage Theory of Capital Asset Pricing. Journal of Economic

Theory (3), 341–360.

Salgado, M. J. S., M. G. P. Garcia, and M. C. Medeiros (2005). Monetary Policy

During Brazils Real Plan: Estimating the Central Banks Reaction Function. Revista

Brasileira de Economia 59 (1), 61–79.

Sharpe, W. F. (1964). Capital Asset Prices - A Theory of Market Equilibrium Under

Conditions of Risk. The Journal of Finance XIX (3), 425–442.

Sims, C. A., , and T. J. Sargent (1977). Business Cycle Modeling without Pretending

to have too uch a priori Economic Theory. In D. J. Aigner and A. S. Goldberger

(Eds.), New Methods in Business Research. Minneapolis: Federal Reserve Bank of

Minneapolis.



Bibliography 105

Spearman, C. (1904). The American Journal of Psychology. The Review of Economic

Studies 15 (2), 201–292.

Stock, J. H. (2001). Forecasting Economic Time Series. In B. Baltagi (Ed.), A Com-

panion to Theoretical Econometrics. Basil: Blackwell.

Stock, J. H. and M. W. Watson (1998). Diffusion Indexes. NBER Working Papers 6702.

Stock, J. H. and M. W. Watson (2002a). Forecasting Using Principal Components

From a Large Number of Predictors. Journal of the American Statistical Associa-

tion 97 (460), 1167–1179.

Stock, J. H. and M. W. Watson (2002b). Macroeconomic Forecasting Using Diffusion

Indexes. Journal of Business and Economic Statistics 20 (2), 147–162.

Stock, J. H. and M. W. Watson (2005). Implications of dynamic factor models for VAR

analysis. NBER Working Papers 11467.

Stock, J. H. and M. W. Watson (2006). Forecasting with Many Predictors. In G. El-

liott, C. Granger, and A. Timmermann (Eds.), Handbook of Economic Forecasting,

Volume 1. Elsevier.

Stock, J. H. and M. W. Watson (2008). Forecasting in dynamic factor models subject

to structural instability. In J. L. Castle and N. Shephard (Eds.), The Methodology

and Practice of Econometrics, A Festschrift in Honour of Professor David F. Hendry.

Oxford: Oxford University Press.

Stock, J. H. and M. W. Watson (2010). Dynamic Factor Models. In M. P. Clements

and D. F. Hendry (Eds.), Oxford Handbook of Economic Forecasting. Oxford: Oxford

University Press.

Taylor, J. B. (1993). Discretion versus policy rules in practice. Carnegie-Rochester

Conference Series on Public Policy 73, 195–214.

Timmermann, A. (2006). Forecast combinations. In A. Timmermann (Ed.), Handbook

of Economic Forecasting, Volume 1. Elsevier.


	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 Detecting Structural Breaks in Factor Models: A Recursive Model Selection Based Approach
	2.1 Introduction
	2.2 Modeling Changes in the Factor Structure
	2.3 Recursive Estimation of the Number of Factors: Recursive Implementation of Bai and Ng's Model Selection Criteria
	A modified estimator of the number of factors

	2.4 Monte Carlo Simulations for the Recursive Model Selection based Information Criteria
	2.5 Comparing with the Test Based Approaches of Breitung and Eickmeier (2011), Chen et al. (2012) and Han and Inoue (2012)
	2.5.1 Breitung and Eickmeier (2011)
	Comparison with Breitung and Eickmeier (2011)

	2.5.2 Chen et al. (2012)
	Comparison with Chen et al. (2012)

	2.5.3 Han and Inoue (2012)
	Comparing with Han and Inoue (2012)


	2.6 Empirical Application
	The entire dataset
	Oil Crises
	Great Moderation
	Using our modified estimator of the number of factors
	ICp1,
	ICp2,
	Splitting the dataset
	ICp1,
	ICp2,
	ICp1,
	ICp2,



	2.7 Conclusion

	3 Structural Changes in Large Dimensional Factor Models: Model Selection Based Inference
	3.1 Introduction
	3.2 Detecting a Break in Loadings: A Model Selection Based Approach
	3.2.1 Theoretical Properties of the Information Criterion
	Defining the criterion: the penalty term


	3.3 Detecting Structural Breaks in Factor Models: A Model Selection Approach
	Is the Factor Model Linear or Nonlinear?
	The Decision Rule


	3.4 Monte Carlo Simulations for Consistency of the Results
	DGP of Breitung and Eickmeier (2011)
	DGPs of Chen et al. (2012)
	DGPs of Han and Inoue (2012)



	3.5 Conclusion

	4 Forecasting Brazilian Unemployment Rates with Diffusion Indexes
	4.1 Introduction
	4.2 Forecasting Methodology
	DI Forecast
	The Factor Model
	Estimation of the Factor Model
	Information Criteria (IC) to Choose the Number of Factors
	Choice of benchmark model
	Out-of-Sample Loss Function and Forecast Accuracy
	Forecast Encompassing and Combination



	4.3 Empirical Work
	4.3.1 Dataset Specifications
	4.3.2 Forecasting Results
	4.3.3 Factor Analysis Results
	Choice of Factors via IC
	The Nature of the Factors (commonalities)
	Correlation and Discrepancy amongst the Estimated Factors
	Robustness of Factor Model Specification



	4.4 Conclusion

	5 Conclusion
	Bibliography

