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Abstract

In survival studies the values of some covariates may change over time. It is natural to
incorporate such time-dependent covariates into the model to be used in the survival analysis.
A standard approach is to use the semi-parametric extended Cox proportional hazard model.
An alternative is to extend a standard parametric model, such as a Weibull regression model,
to include time-dependent covariates. However, the use of such simple parametric models
may be too restrictive. Therefore in this thesis we further extend the Weibull regression
model with time-dependent covariates by using splines to give greater flexibility.

The use of Cox, simple parametric and Weibull spline models is illustrated with and
without time-dependent covariates on two large survival data sets supplied by NHS Blood
and Transplant. One data set involves times to graft failure of patients who have undergone
a corneal transplant and contains many fixed covariates and one time-dependent covariate
with at most one change point. The other data set concerns time to death of heart transplant
patients and contains many fixed covariates and a time-dependent covariate with possibly
many change points.

A simulation study is used to evaluate and compare likelihood-based methods of inference
for the competing models. In the first stage attention is focused on selection of the number of
knots in the Weibull spline model in the simple case with no covariates. Stage two examines
the results of inferences from the Weibull splines model with fixed covariates. Stage three
compares the results of inferences for parameters in the extended Cox model and two simple
parametric models with time-dependent covariates. Finally, stage four examines the Weibull
splines model with time-dependent covariates.
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Chapter 1

Introduction

Survival analysis is the class of statistical techniques for analysing survival data in the form of
time from a start point to the occurrence of an event of interest. This analysis can be applied
in different fields, such as: medicine, engineering, economics and biology. In engineering,
survival analysis methods are applied to study life times of components and equipment. In
economics, survival analysis methods are applied to, for example, duration of unemployment.
In medical applications, the start may represent the time of recruitment of a patient to a
clinical trial or the time of diagnosis of an illness. Note that the event of interest may be
death or failure or a more positive outcome, such as cure or relief from symptoms, but in
this thesis we shall use the term ”survival time” generically.

The response variable T in survival analysis is the time from an origin to a defined end
point, and is usually regarded as a non-negative continuous random variable. In practice the
observed values of T may be rounded (for example, to the nearest minute). Some rounding
may be ignored if the degree of rounding is small or may be accounted for via interval
censoring. In some applications T itself is discrete (for example, T is the number of take off
and landing cycles to failure of an aircraft system). However, in this thesis we shall always
assume that T is continuous. In survival analysis we aim to model T , often as a function of
explanatory variables, and to draw inferences about the parameters of the model.

1.1 Survival data

Standard Normal-based statistical procedures are not appropriate in survival data analysis.
The first reason for that is the skewness of survival data. Generally, survival data are pos-
itively skewed. Consequently, alternative distributional models are introduced for studying
survival data. Secondly, survival times are frequently censored, and then the standard stat-
istical approaches can not be used. Censoring results where the exact time to the event of
interest has not been observed. This may happen, for example, if a patient has been lost
to follow-up or is still alive at the end of study. In other cases, the patient may die before
the event of interest is observed or within an interval of time. The time from the start point
until occurrence one of these cases is known as the ”censoring time”.

Censoring occurs by different mechanisms so that there are three major schemes of cen-
soring (Gijbels, 2010). Type I censoring occurs when a set of subjects enter to the study at a
certain time and the study is stopped at a predetermined time. In this case, the subjects that
have not failed when the study ends, are considered as a type I censored observations. In type
II censoring, the study starts with a certain number of subjects and continues until failure
of a predetermined number of those subjects. For example, in a reliability examination of a
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group of n components, the study is stopped after a predetermined number of r units have
failed. If failure times are recorded as T1 ≤ T2 < . . . < Tr, the remaining n − r units have
a failure time, larger than Tr, and then they are considered as type II censored observations
with censoring time measured to Tr. In type I censoring, the time is fixed while the number
of observations is random. In contrast, in type II censoring, the time to failure is random
whereas the number of observations is predetermined.

In random censoring, the study starts at a certain time and continues until a prede-
termined time. Subjects enter the study and are followed up until the event of interest is
observed or loss to follow-up occurs during the study period. It is assumed that each indi-
vidual i has his own survival time Ti and censoring time Ci. There are three types of random
censoring: left, right and interval censoring. The observation is encountered as left censored
when the event occurs before the observation time. For example, assume a group of patients
are recruited for some time after an organ transplantation. One month after the surgery, the
patients are monitored to determine if the organ has failed. The patients whose organ fails
before the end of the month are considered as a left censored observations. Interval censoring
occurs when the event is experienced within an interval of time. Suppose that a patient is
examined every 6 months and the event is observed in the second follow-up time but the
event time is not known exactly. Then, the actual survival time is between 6 and 12 months,
and this patient gives an interval censored observation.

In this thesis, I will be concerned with right censoring which is the most frequent type in
survival analysis. Thus, from now on the term ”censoring” will mean ”right censoring”. To
illustrate this type of censoring, suppose a patient is recruited to study at time t0 and still
alive until time t0 + tc, the time tc may be unknown for different reasons such as

• The patient is still alive at the end of the study, and so death is not observed.

• The patient cannot be tracked so he or she has been lost to follow-up.

• The patient drops out from the study of some reason.

In such situations, the individual is known to be alive until time t0 + tc, and tc is known as
right censoring survival time. Generally, for subject i where i = 1, 2, . . . , n, assume that the
observed survival time is ti and censoring time is tci , and then the recorded survival times
and status for n subjects are

(Z1, δ1), (Z2, δ2), . . . . . . , (Zn, δn) (1.1)

where zi = min(ti, ci) and δi is an indicator variable that takes the value 1 if the event is
observed and 0 otherwise (Gijbels, 2010).

To illustrate right random censoring, assume that a group of patients were recruited at
different times while their examination was performed over a certain period until death or the
end of the study. Some of these patients may be lost to follow-up or still alive to the end of
the study (Collett, 2003). Figure 1.1 illustrates these cases, the patients who died are denoted
by ”D”, and the patients who were lost to follow-up are represented by ”L” while the letter
”A” refers to the patient who was still alive at the end of the study. The figure shows that
patients 1, 2, 5 and 7 died before the end of the study so they are uncensored observations
and their survival times are the times from recruitment to the death time. Patients 3 and
4 were lost to follow-up while patient 6 was alive at the end of the study. Consequently,
patients 3, 4 and 6 are considered as right censored observations.

In right random censorship, it is assumed that the censoring process is random and non-
informative. Firstly, randomness assumption means that the actual survival time for any
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individual is independent from the mechanism that may cause that individual to be censored.
Then an individual whose survival time is censored at a certain time must be representative
for all the other individuals with the same prognostic factors who have survived to the same
time (Collett, 2003). Secondly, assumption of non-informative censorship means that there
no individuals will be withdrawn as a result of, for example, any changes in their physical
conditions.

In survival analysis techniques, the censored observations are encountered and involved
in the analysis. Ignoring those observations may lead to bias in the inferences. Consequently,
special statistical procedures and models are adopted to treat survival data that includes
right random non-informative censored observations.

Figure 1.1: Study time for seven patients with different status

1.2 Basic functions of survival analysis

Survivor and hazard functions play a basic role in summarising survival data. To define these
functions as in Collett (2003), let T be a non-negative random variable that represents the
survival time of an individual. Let T have continuous probability density function f(t). The
distribution function of T is given by

F (t) = P (T < t) =

∫ t

0

f(u)du, (1.2)

The survivor function, S(t), is the probability that the survival time is greater than or equal
t:

S(t) = P (T ≥ t) = 1− F (t). (1.3)

The hazard function h(t) is defined by

h(t) = lim
∆t→0

{
P (t ≤ T < t+∆t|T ≥ t)

∆t

}
. (1.4)

Thus, h(t) can be regarded as the instantaneous failure rate of an individual who has survived
to time t. The conditional probability in (1.4) can be written as
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P (t ≤ T < t+∆t|T ≥ t) =
P (t ≤ T < t+∆t)

P (T ≥ t)
,

which is equivalent to

F (t+∆t)− F (t)

S(t)
,

and then the hazard function can be written as

h(t) = lim
∆t→0

{
F (t+∆t)− F (t)

∆t

}
1

S(t)

=
f(t)

S(t)
. (1.5)

The survivor function is S(t) = 1− F (t), so that the hazard function is

h(t) = − d

dt
{logS(t)} .

Hence,
S(t) = exp {−H(t)} , (1.6)

where

H(t) =

∫ t

0

h(u)du. (1.7)

The function, H(t), is known as the cumulative hazard function.

1.3 Non-parametric analysis

A basic tool in survival analysis for a homogeneous sample of possibly censored survival data
is the Kaplan-Meier estimator. Suppose that a number of r survival times t1, t2 . . . , tr in
which t1 < t2 < . . . < tr with some censoring times which lies within these observed times.
The Kaplan-Meier estimate of the survivor function is calculated at each survival time tj and
defined by (Collett, 2003)

Ŝ(tj) =
k∏

j=1

(
nj − dj
nj

)
, (1.8)

where tk ≤ t < tk+1, k = 1, . . . , r, nj is the number of observations under risk and dj is the
number of deaths at time tj. Similarly, the Kaplan-Meier estimate of the hazard function at
the survival time tj is defined by

ĥ(tj) =
dj
njτj

, (1.9)

where τj = tj − tj−1 and j = 1, 2, . . . ,m. The cumulative hazard function has an important
role in the analysis of survival data. The hazard function is the derivative of the cumulative
hazard function, and then the slope of the cumulative hazard function can be used to explore
the shape of the hazard function. From (1.6)

H(t) = − log {S(t)} .
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Then the Kaplan-Meier estimate of the cumulative hazard function at time tj is

Ĥ(tj) = −
k∑

j=1

log

(
nj − dj
nj

)
, (1.10)

where k = 1, 2, . . . , r. An important aim of the non-parametric analysis is to compare dif-
ferent treatment groups. The initial procedure is performed graphically based on comparing
plots of the estimated survivor functions for each group. This step is followed by applying
one of statistical tests that used to compare survival times for different groups. The most
frequently used methods are the log rank test and the Wilcoxon test which can be extended
for comparing more than two groups. Stratified tests may be employed when the individuals
of each group have their own covariates that must be included in the comparison of such
groups (Allison, 1995).

1.4 Semi-parametric modelling

Frequently it is of interest to relate the survival distribution to covariates. In some cases, the
distribution of the sampled population is unknown or cannot accurately be fitted by one of the
available distributions. Consequently, parametric models are not applicable and alternative
approach is the semi-parametric modelling through the model introduced by Cox (1972)
(Selvin, 2008). This model is called the Cox proportional hazards model, which is a flexible
tool for fitting the relationships between censored survival times and multiple explanatory
variables (Dietz et al., 2004). In the Cox model, the hazard function for the ith individual is

hi(t) = ψ(xi)h0(t),

where ψ(xi) is the relative hazard function and h0(t) is the baseline hazard function that
represents the hazard function when the explanatory values are equal to 0 (Collett, 2003).
Let ψ(xi) be a function that includes p explanatory variables and defined as

ψ(xi) = exp(β1x1i + β2x2i + · · ·+ βpxpi),

and then the hazard function for the ith individual is commonly used as

hi(t) = exp(β1x1i + β2x2i + · · ·+ βpxpi)h0(t), (1.11)

where i = 1, 2, . . . , n.
The β parameters may be estimated using the partial likelihood function based on the

β coefficients in the proportional hazard function without specifying the baseline hazard
function h0(t) (Allison, 1995). For k observed failure times t1 < t2 < . . . , tk, the partial
likelihood function is considered as the joint probability of these failure times according to
their order. The probability of an individual i who failed at time ti is given by

h0(ti) exp(x
T
i β)∑

ι∈R(ti)
h0(ti) exp(xTι β)

=
exp(xTi β)∑

ι∈R(ti)
exp(xTι β)

,

where R(ti) is the risk set at time ti. Thus, the partial likelihood function is defined as

L =
n∏

i=1

{
exp(xTi β)∑

ι∈R(ti)
exp(xTι β)

}δi

, (1.12)
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where δi takes the value 1 for uncensored observation and 0 otherwise. This partial like-
lihood function is valid only when there are no tied observations. In the presence of ties,
modifications to (1.12) were introduced by Cox (1972), Breslow (1974) and Efron (1977). The
Cox proportional hazards model may be more robust than the alternative parametric pro-
portional hazards model that might involve misspecification of the baseline hazard function
h0(t) (Dietz et al., 2004).

1.5 Parametric modelling

In survival data analysis, when the assumption of a specific probability distribution for the
data is tenable, parametric survival models are employed. In this case, more precise inferences
are obtained, the estimates of relative hazards, and survival time quantiles will often have
smaller standard errors (Collett, 2003). There are two main types of parametric survival
models. Firstly, when a proportional hazard assumption is valid, a parametric proportional
hazards model using an exponential, Weibull or Gompertz distribution can be used. For
example, in the Weibull proportional hazard model, the baseline hazard function is given by

h0(t) = λγtγ−1,

where λ and γ are the Weibull scale and shape parameters respectively, so that the hazard
function of individual i is

hi(t) = exp(β1x1i + β2x2i + · · ·+ βpxpi)λγt
γ−1.

Secondly, an accelerated failure time model may be more appropriate when proportional haz-
ards assumption is not tenable. In this case, a parametric model is applied based on different
distributions, such as: Weibull, log-logistic, log-normal, gamma and inverse Gaussian. In this
model, the baseline time axis is rescaled by the explanatory variables. The hazard function
in the Weibull accelerated failure time model is defined as

hi(t) = exp(−ηi)h0 [t/ exp(ηi)] ,

where h0(t) is the baseline hazard function and

ηi = β1x1i + β2x2i + · · ·+ βpxpi.

Figure 1.2 was inspired by a figure in Collett (2003). This figure illustrates the hazard
function in the proportional hazards model comparing to the accelerated failure time model.

To estimate parametric survival model, the general form of the likelihood function may
be written as

L =
n∏

i=1

{hi(ti)}δi {exp [−Hi(ti)]} , (1.13)

where hi(ti) is the hazard function, Hi(ti) is the cumulative hazard function for the desired
model and δi is the censoring indicator for the ith individual.
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Figure 1.2: The baseline hazard function for individuals in group 1, h0(t), and the hazard
function in group 2 under a proportional hazards model (black solid) and accelerated failure
time model (red dots)

1.6 Time-dependent covariates

In many survival analysis studies, patients might be observed frequently during the study
period until censoring or failure. Throughout this duration, the measurements of some pre-
dictor covariates may be taken at certain follow-up times. For example, in prostatic cancer
studies, the size of tumour and other covariates may change over time. These changes are re-
corded at regular times. When the values of these covariates are updated, the survival model
should be adapted to incorporate these updated values. The more recent values of the covari-
ate may have better predictive power than baseline values recorded at the start of the study.
Covariates that change through time are called time-varying covariates or time-dependent
covariates (Collett, 2003).

Time-dependent covariates may be internal or external covariates. An internal time-
dependent covariate relates directly to the patient. Examples of internal variables in medical
applications are measures of kidney function, red cell count, blood pressure and serum cho-
lesterol level (Collett, 2003). In contrast, external variables are not related to the body
conditions or status. Recording the values of these variables does not require the survival of
the patient. In many cases, these measurements can be known before, at the start point of the
study and at any future time. For example, the predetermined dosage of a medicine which
may be altered during the study, or prearranged changes of the type of immunosuppressant
that are used after transplant operations. Additionally, some external variables are com-
pletely independent of any patient characteristics, such as the value of atmospheric sulphur
dioxide or air temperature. For some diseases, the survival times of patients are significantly
affected by these values (Collett, 2003).

Time-dependent covariates may take various forms. For example, a time-dependent co-
variate may be binary with at most one change, depending on a certain condition during
the study time (Allison, 1995); or it may be continuous and updated regularly; or it may be
constructed as an interaction between a fixed covariate and a function of survival time. Ex-
tending a model to include a time-dependent covariate requires some difficulties in handling
this covariate to be resolved.

• The covariate may be recorded at follow-up times with units, say months, that do
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not match up the survival time units, say days, (Allison, 1995). The solution to this
problem is to change the monthly follow-up time units to be counted in days.

• The covariate will usually only be measured at a certain number of occasions. Therefore,
it may be necessary to approximate its value at intermediate points (Collett, 2003).

• Prediction in survival models with time-dependent covariates represents another diffi-
culty, because the changing nature of the covariate with time means that its value at
different future times will be unknown.

• The survival curves cannot be estimated, because of estimating the curve requests re-
cording the value of the time-dependent covariate for the subject. In this case, knowing
this value means that this subject has not been observed or still alive or in the risk set
and then survival time for this subject cannot be used to estimate the survivor function
(Fisher and Lin, 1999).

For the last problem, a non-parametric method for estimating survival curves for each
level of the categorical time-dependent covariate can be employed, this method is tenable
for the continuous covariates after they are categorized. In Schultz et al. (2002) a method
proposed by Simon and Makuch (1984), which depends on the number of the individuals who
are still alive at each death time for each time-dependent covariate level, can be applied. The
idea here is the same as in the Kaplan-Meier method, in calculating the survival probabilities
at each death time. However, this technique calculates the number of individuals at risk for
each covariate level, instead of using the same number in the risk set for all covariates. A
different simple way to estimate survival curves in the presence of a time-dependent covariate
was suggested by Collett (2003). This way is executed for any individual with a certain value
for the time-dependent covariate. For example, in a study of heart transplant survival data
with age group as a fixed covariate and creatinine level as a time-dependent covariate, the
survival curves for different age groups can be estimated using specific creatinine level values.

In the presence of time-dependent covariates, modified survival models must be adopted.
One of these models is the Cox regression model that is adjusted to involve both fixed and
time-dependent covariates. The partial likelihood function in (1.12) is extended when the
survival data contains covariates that change over time. However, parametric modelling may
be a better approach for this type of covariate when a specific distributional assumption is
appropriate for the data.

1.7 Heart and cornea transplant data

Heart failure occurs in an individual when the heart has difficulty in pumping enough blood
arround the body. This happens for many reasons, such as heart attack, hypertension,
valve problems, infections, alcohol, smoking and drug use. The usual symptoms of heart
dysfunction are breath shortness, cough, low exercise tolerance and fluid retention (Jurt et al.,
2008). When these symptoms cannot be treated by usual heart surgery or other medications,
heart transplantation may be performed. Many factors may affect the survival time after the
transplant operation. The most common factors are donor age and the following factors for
the recipient: age, sex, diabetes status, smoking, alcohol consumption, urgency of transplant
needs, and use of medications before and after the operation. These factors were treated as
fixed covariates through several studies using semi-parametric and parametric proportional
hazards models (see section 2.5). In heart transplant studies, kidney function was studied
as a predictor in the Cox proportional hazards model in Bidbins-Domingo et al. (2004) and
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Sarnak et al. (2003). In the heart transplant data set supplied by NHS Blood and Transplant,
which will be used in this thesis, kidney function can be assessed by creatinine level which
may be measured regularly after the operation. Hence, it is incorporated in the model as a
time-dependent covariate with many potential change points.

The cornea is the clear part that constitutes the anterior structure of the fibrous tunic of
the eye (Ingle, 2004). When the cornea stops performing its function, as a result of a disease
or traumatic injury, a corneal transplant becomes necessary. The grafting is performed to
develop the vision and improve the quality of the eye as a substantial clinical consequence
(Stuart et al., 1997). In the case of receiving a corneal transplant, many factors may affect
the survival time of the grafted cornea. These factors include recipient and donor age, donor
sex, storage time for the organ, number of previous transplanted organs for the recipient and
corneal vascularisation. To model these data, all the factors are included in the model as
fixed covariates. On the other hand, the effect of the second graft in one eye on the survival
time of the other eye may be significant, so that second graft effect might be measured using
time-dependent covariate with one change.

The heart and cornea transplant data sets supplied by NHS Blood and Transplant are
used as examples to illustrate the proposed models introduced in this thesis. The initial step
to study the two data sets is to use the two basic approaches, the Cox proportional hazard
model and the alternative parametric models, to study the effects of the different predictors
on the survival time after the transplantation surgery. Secondly, the extended Cox model
will be applied where some covariates are allowed to change over time. In the heart data
set, the creatinine level that is measured regularly will be incorporated in the model as a
time-dependent covariate. Similarly, the effect of the second eye graft on survival time of
the first eye graft will be studied by a binary time-dependent covariate. In this context, it is
proposed to introduce a parametric model as a possibly good alternative to the Cox model
where time-dependent covariates are included in the model. The suggested Weibull model
with time-dependent covariate may poorly fit these data sets, and then it is of interest to
extend the Weibull model by splines function achieving more flexibility. The proposed two
extensions will be examined to assess their efficiency relative to the alternative approaches
and their adequacy to fit the data sets on hand. Evaluating these approaches will initially
depend upon residual analysis given the applied data. A subsequent stage will be running
simulations to assess general performance and suitability for studying survival time after
heart and cornea transplants with the proposed methods. Hence, the aim of this study is
to extend the flexible Weibull model introduced by Royston and Parmar (2002) with time-
dependent covariates and examining the extended model in fitting survival times after heart
and cornea transplants, particularly when the data have time-dependent covariates.

1.8 Organisation of the thesis

In chapter two, semi-parametric and parametric survival models that incorporate time-
dependent covariates are reviewed. This review includes a brief discussion of spline func-
tions in the context of survival models. In addition methods for simulating survival data are
discussed. Finally, we review survival studies of heart and cornea patients.

Chapter three will include details of the likelihood functions that will be used to fit the
Weibull, log-logistic and log-normal models and the adjustments that are executed to fit these
models in the presence of time-dependent covariates. Furthermore, the mathematical func-
tions that can be used to construct the likelihood function of the Weibull spline model with
different number of knots will be described. Finally, the derivation of the likelihood function

28



of the proposed Weibull spline model with time-dependent covariates will be described.
Chapter four will contain heart transplant model. Description for the heart transplant

data and the factors particularly kidney functions that may affect the hazard after heart
transplant operations will be introduced. Then, procedures of model building will be ap-
plied through simple parametric survival models. Moreover, the results of fitting the time-
dependent models, the Cox and parametric, will be discussed. Also, the results of applying
the Weibull spline models when creatinine level is included as a fixed covariate and discuss in
the same manner the results when the same covariate is treated as time-dependent. Graph-
ical assessment will be used as a helpful tool to explain the results. Final process will be the
residual analysis that can be applied for the models in order to assess the adequacy of the
applied models as an initial step to compare the competitive approaches.

Chapter five is specified to study graft survival time after corneal transplantation. This
chapter will start with explaining the factors that may affect failure of the grafted cornea
with focus on the second eye graft that will be used as a fixed and a time-dependent covariate.
In a similar manner to chapter four, the initial analysis step will be model building, and then
applying the two modelling approaches with no time-dependent covariate. Following the
models will be applied including the second eye graft as a time-dependent covariate. Then,
the results of the Weibull spline model in the two cases will be discussed with their necessary
graphical assessments. Finally, residual analysis will be performed for all the models to
evaluate them and determine their appropriateness for the illustrated data set.

Chapter six will introduce a discussion for the methods that can be used to generate
survival times from the Weibull spline model. In this chapter difficulties in generating obser-
vations from the Weibull spline model will be considered and methods to select the number of
knots to be used in the Weibull spine model will be discussed using a simulation experiment.

In chapter seven, a simulation design for the applied models based on the two real data sets
in order to mimic the properties of the heart and cornea transplant data will be executed. The
first group of results will be for the Weibull spline model with time-fixed covariates. Secondly,
the results of simulating the Weibull standard model with time-dependent covariates. Finally,
the results of simulating the Weibull spline model with time-dependent covariates will be
introduced. The chapter will aim to perform three comparisons to evaluate

• The most efficient Weibull spline model where no time-dependent covariate is included.

• The relative efficiency of the Cox, Weibull models and log-logistic where time-dependent
covariates are included.

• The most efficient Weibull spline model where time-dependent covariates are included.

Chapter eight will contain a discussion for the performance of each proposed model, in
addition to some suggestions that may improve the adopted models as a future work.
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Chapter 2

Survival modelling with
time-dependent covariates

To use survival models, the first issue is to specify the possibility of assuming a certain prob-
ability distribution to the survival times. The first case arises when no particular distribution
is specified, and then semi-parametric modelling is adopted with no specified form for the
hazard function. This approach is easily extended to allow for one or more covariates to
change over time and such models may be fitted using standard packages. However, if a par-
ticular distribution can be specified for the survival data, parametric modelling may be the
appropriate approach. In this case, the estimates obtained from the parametric model will
be more accurate and the model will increase the relative efficiency against semi-parametric
models. Similar to the semi-parametric models, the parametric models may be extended to
accommodate time-dependent covariates but with possibly more efficient performance than
the semi-parametric models. The two approaches may be extended to achieve more flexibil-
ity by including splines functions. These functions represent the covariate effects and yield
smoother hazard functions. In order to validate any adopted approach, residual analysis may
be useful to assess model adequacy. However, more evaluations will be important to com-
pare two or more modelling approaches. These evaluations can be executed using simulation
studies to evaluate the performance of each model in different situations. In this chapter,
section 2.1 will discuss semi-parametric modelling with time-dependent covariates. Section
2.2 will discuss the alternative parametric modelling with time-dependent covariates. In sec-
tion 2.3, splines functions that are usually used in survival modelling are explained besides
the methods of adjusting survival models by splines functions. Section 2.4 will introduce
different algorithms that may be used to generate survival times following particular models,
in addition to the detailed procedures to perform simulation studies. The studies that have
been applied to survival times after heart and cornea transplantation will be briefly reviwed
in section 2.5.

2.1 Semi-parametric modelling with time-dependent co-

variates

2.1.1 Modelling time-dependent covariates in Cox model

In section 1.4 we introduced the Cox model. We now extend it to incorporate time-dependent
covariates. This model is one of the most widespread applied models in survival data mod-
elling. In this model, it is proposed that the effects of covariates on hazard are measured
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through multiplying the hazard function by a function of such covariates (Fisher and Lin,
1999). Therefore, the hazard rate, h(t), in (1.11) is the product of a parametric function of
the explanatory variables exp(βTx) and the non-parametric baseline hazard function, h0(t)
(Thiebaut and Benichov, 2004).

In many cases, one or more covariates may be collected and recorded over long time. For
example, suppose a group of patients is followed up after surgery for 10 years and during
this period blood pressure, kidney function and weight are monitored and recorded at pre-
determined time points. These covariates have values that change over time and the Cox
regression model is no longer appropriate to handle such covariates and must be extended to
include the time varying covariates (Fisher and Lin, 1999).

The form of fixed covariates must be determined before considering their changes over
time. Different functional forms for the time-varying covariate may be followed depending on
the nature of the covariate and the adopted biological hypothesis. For example, in a study of
the effect of smoking on survival, the covariate of interest may be the current smoking status.
The most common approach to model this covariate is the step function which takes the value
1 for smoking and 0 otherwise within each follow-up interval (Fisher and Lin, 1999). However,
Cavender et al. (1992) studied the effect of smoking status on death after coronary artery
bybass graft surgery as a time varying covariate that changes each 6 months. After using
the smoking status as a step function, the result was surprisingly found that no important
effect for smoking on hazard. This result was found because some patients might die while
their last status was non-smoking and then effect of smoking on hazard did not appear in
the analysis. They introduced two suggestions in order to solve this problem. Firstly, it was
proposed a time-lagged covariate at the subsequent intervals. Secondly, the percentages of
the follow-up times that have smoking status to be 1 were used. The two methods led to a
significant effect for smoking on hazard. In a different example, suppose that a continuous
variable that might be recorded at regular times (e.g. blood pressure) to measure its effect
on hazard. The time varying values for such a variable could be included in the model using
different forms. One of these forms, is to record its values at each time point as a step
function. Fisher and Lin (1999) suggested modelling this covariate as a moving weighted
average particularly over long time intervals. A third approach that might be followed is
to assume continuous increasing (e.g. linearly) over the whole study period or until death.
Furthermore, the time-dependent covariate can be formed from the interaction between a
fixed covariate and time. In this case, the model will include the original covariate as a fixed
and the interaction with time as time-dependent covariate. To illustrate this case, the hazard
function for the model that includes one covariate x is

hi(t) = exp(β1xi + β2xit)h0(t).

This method can be used to test the proportionality assumption, since if the time-dependent
covariates in the previous hazard function are significant, the Cox model is no longer a
proportional hazard model(Allison, 2004).

In our study, two time-dependent covariates are used. The first one, introduced in chapter
4, is glomerular filtration rate (GFR). This covariate is measured after heart transplant
surgery as a step function every 1 year and then introduced as a many changes time-dependent
covariate. The second, introduced in chapter 5, is the second eye graft status which is
recorded as a step function that takes the value 1 once the second eye graft has been done
and 0 otherwise.
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2.1.2 Cox model with time-dependent covariates

According to the Cox proportional hazards model described in section (1.4), the hazard
function of the ith individual can be written as

hi(t) = exp
{
βTxi

}
h0(t), (2.1)

where

βTxi = β1xi1 + . . .+ βpxip,

βT is a vector of coefficient for the fixed covariates, i = 1, 2, . . . , n and h0(t) is the baseline
hazard function.

The hazard function in (2.1) can be extended to incorporate time-dependent covariates
to become

hi(t) = exp {ζij}h0(t),

where ζij is the parameter function for p fixed covariates xi and q time-dependent covariates
yij for the individual i at time tj, where

βTxi = β1xi1 + . . .+ βpxip,

and

ηTyij = η1yij1 + . . .+ ηqyijq,

where ηT is parameters vector of the time-dependent covariates yijq for the ith individual at
time segment j. Thus, the hazard function that includes fixed and time-dependent covariates
can be written as

hij(t) = exp
{
βTxi + ηTyij

}
h0(t). (2.2)

In this hazard function, h0(ti) is the hazard of the ith individual with covariates values
0 from t = 0 and remain constant over time. On the other hand, the hazard function h(ti)
is no longer proportional to h0(ti), because the covariates yij depend on time and so the
relative hazard h(ti)/h0(ti) changes over time. The coefficient η can be interpreted as the log
hazard ratio for two individuals whose time-dependent covariate values differ by unit, given
that they have the same values for the other explanatory variables at that time (Collett,
2003). In order to estimate the extended Cox model, the partial likelihood function in (1.12)
is adapted for time-dependent covariates to become

L =
n∏

i=1

{
exp(ζij)∑

ι∈R(ti)
exp(ζlj)

}δi

, (2.3)

where ζij is the covariates function that includes the fixed covariates xi and the time-
dependent covariates yij, R(ti) is the risk set at time ti and δi is the censoring indicator.
The partial likelihood function in (2.3) can be maximised numerically using the Newton-
Raphson method. In the Newton-Raphson algorithm, the observed information matrix I(β̂)
and the vector of efficient scores U(β̂) are computed. Hence, the vector of β parameters at
the (v + 1)th cycle of the iterative procedure, β̂v+1, is given by

β̂v+1 = β̂v + I−1(β̂v) · U(β̂v) (2.4)
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In this model, the baseline survivor function S0(t) is estimated using the baseline cumu-
lative hazard function H0(t) which is defined for fixed and time-dependent covariates as

H̃0(t) = − log S̃0(t) =
k∑

m=1

dm∑
l∈R(tm) exp {βTxl + ηTylj}

, (2.5)

where the times are ordered as tk ≤ t < tk+1, k = 1, 2, . . . , r − 1, and ylj is the vector of the
values of the explanatory variables for individual l at time point j, and dm is the number of
events at the mth event time, m = 1, 2, . . . , r. Using the relationships in section (1.2), the
survivor function for the ith individual can be defined as

Si(t) = exp

{
−
∫ t

0

exp
[
βTxi + ηTyij

]
h0(u)du

}
. (2.6)

This function depends on the baseline hazard function, h0(t), the fixed covariates and the
time-dependent covariates from time 0 to t. Hence, Si(t) depends on the future values for the
time-dependent covariates which are unknown. In this case, the conditional probability of
surviving for individual i from t to t+∆ given that surviving beyond t, P (Ti ≥ t+∆|Ti ≥ t),
can be employed. Assuming that the time-dependent covariates are constant within each
interval, the approximate conditional probability becomes

Pi(t, t+∆) =
Si(t+∆)

Si(t)

=
exp

{
− exp[βTxi + ηTyij]

∫ t+∆

0
h0(u)du

}
exp

{
− exp[βTxi + ηTyij]

∫ t

0
h0(u)du

} ,

and then the estimated approximate conditional probability of surviving within the interval
(t, t+∆) is

P̃i(t, t+∆) = exp
[
−
{
H̃0(t+∆)− H̃0(t)

}
exp

(
βTxi + ηTyij

)]
, (2.7)

where H̃0(t) is the estimated baseline cumulative hazard function based on the fitted Cox
regression model that includes fixed covariate xi and time-dependent covariates yij for the
ith individual (Altman and De Stavola, 1994).

The expected number of events in the interval (t, t+∆) can be estimated by

1− P̃ (t, t+∆)

when this probability is multiplying by the total number of observations at risk. An informal
assessment of model adequacy can be evaluated by comparing the the observed number of
events with their expected number in the interval (t, t+∆) (Collett, 2003).

2.1.3 Different semi-parametric approaches to model time-
dependent covariates

Giorgi and Gouvernet (2005) extended the regressive relative survival model of Esteve et
al. (1990) to allow for time-dependent covariates. This extension was achieved by using a
counting process approach to the covariates that change over time. According to the relative
survival regression model proposed by Esteve et al. (1990), the observed hazard for total
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mortality, h, at time t for an individual with age a at diagnosis and a vector of explanatory
variables x′s can be written as

h(t, x, a) = he(t, a, xs) + hd(t, x),

where he(t, a, xs) is the expected hazard function that has been obtained from the overall
mortality in general population depending on covariates of sub-vector xTs and the published
age mortality rate, a, (Esteve et al., 1990). The second term hd(t, x) represents the hazard
function of the disease mortality which is calculated from the data under study, this function
is defined for the ith individual as

hd(ti, x) =
r∑

l=1

h0(l)Il(ti) exp(β
Txi),

where h0(l) is the baseline hazard for mortality at the lth time-segment, l = 1, . . . , r, Il is
an indicator function that takes the value 1 if tl−1 < ti < tl and 0 otherwise and βT is the
coefficients vector of xi fixed-in-time covariates. This hazard function is extended to include
time-dependent covariates to become

hd(ti, x, y) =
r∑

l=1

h0(l)Il(ti) exp(β
Txi + ηTyij), (2.8)

where ηT are the coefficients of the time-dependent covariates yij.
Based on this extension, the likelihood function for n individuals is written as

L =
n∏

i=1

{
[hd(ti, xi, yij)]

δij ×
[
exp

(
−
∫ ti(j+1)

ti(j)

h(u)du

)]}
, (2.9)

where δij is the right censoring indicator for individual i at time interval j, j = 1, . . . , ki. This
indicator function takes the value 1 for an uncensored observation and 0 otherwise. Estim-
ation through this likelihood depends on properties of the counting process approach. Each
subject consists of number of intervals based on the number of the time-dependent covariate
values for that subject. The fixed-in-time covariates remain constant through all the inter-
vals. The censoring indicator δij takes the value 0 for each interval while last interval takes
the original censoring indicator for the subject. This approach will be illustrated in detail in
section 3.2. Although this approach introduces estimates for the time-dependent covariates
in relative survival models, semi-parametric modelling with time-dependent covariates can
be achieved in different frameworks.

Another study by Gao et al. (2007) introduced a method to achieve a non-parametric es-
timation for baseline hazard function with time-dependent covariates. The proposed method
depends on approximating baseline hazards and covariate effects as step-functions. This
method complements the Cox proportional hazard model, since it is fitted to explore the
potential survival data structure instead of performing hypothesis tests. To illustrate the
method, let ti = min(Ti, Ci) be the observed time for the ith individual, where Yi and Ci are
the potential survival and censoring times respectively. In the presence of time-dependent
covariates yij, the observed data can be denoted as
{(ti, δi), yij, i = 1, 2, . . . , n, j = 1, 2, . . . , ki}, where ti is the observed survival time, δi is the
censoring indicator and yij is the time-dependent covariate value for individual i at the jth
time. In this case, the hazard function can be written as

hi(t|yij) = ψ(yij)h0(t),
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where h0(t) is the baseline hazard function and ψ(yij) is an unspecified non-negative function
that models the hazards when covariate values change over time. According to the proposed
approach, the estimates for covariate effects and baseline hazard function were developed
by the tree-type algorithm of Huang et al. (1998). In order to approximate the survival
experience of an individual, step functions for h0(t) and ψ(yij) are used. Following this
model, the survival time for individual i has a piecewise exponential distribution, and then
the density function is defined as

fi(t) =



hi1 exp {−hi1t} , 0 < t ≤ t∗i,1
hi2 exp {ti1(hi2 − hi1)− hi2t} , t∗i,1 < t ≤ t∗i,2
...

...
...

...

hi(J+1) exp

{
J∑

j=1

ti,j(hi(j+1) − hij)− hiJt

}
, t∗i,J < t <∞,

(2.10)

where hi1 and hi1t are the hazard and the cumulative hazard functions at the interval 0 < t ≤
t∗i,1, and using δi as the censoring indicator that takes the value 1 for uncensored observation
and 0 otherwise and t∗i,1, t

∗
i,2, . . . , t

∗
1,j are jumps for the piecewise exponential distribution, the

full log likelihood for the ith individual is

logL =



δi log(hi1)− hi1t, 0 < ti ≤ t∗i,1
δi log(hi2) + t∗i1(hi2 − hi1)− hi2t, t∗i,1 < ti ≤ t∗i,2
...

...
...

...

δi log(hi(J+1)) +
J∑

j=1

t∗i,j(hi(j+1) − hij)− hiJt, t∗i,J < ti <∞

(2.11)

The method was applied to model the withdrawal risk in a clinical trial to evaluate anti-
depression treatment in studying the development of clinical depression. The results showed
that the suggested algorithm produces accurate approximations for the baseline hazard and
covariate effects. On the other hand, the Cox model may produce more accurate estimates,
particularly when correct specification for the covariate structure is obtained. Consequently,
this method could be considered as a complementary step for the usual extended Cox model
that includes time-dependent covariates.

2.1.4 Model comparison and validation

Model checking procedures for models containing time-dependent covariates are similar to
the checking procedures in the models with fixed covariates. Cox-Snell residuals can be
employed to test the adequacy for the fitted model. The idea is to calculate the residuals for
each subject using the last record for this subject (Dupont, 2002). Also, martingale residuals
can be employed to check the models with time-dependent covariates. For each subject,
martingale residuals can be computed for each record separately. Then the residuals for any
subject i is the sum of the residuals at all its records (Therneau and Gambsch, 2000). What
is more, the influential observations can be examined following the same manner when no
time-dependent covariates in the model. It is done by the delta − beta technique, in order
to measure the effect of neglecting the influential observations on the parameter estimates,
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particularly the time dependent covariate estimate (Collett, 2003). In the presence of a
time-dependent covariate, there is a difficulty to assess the functional form of such covariate,
because each subject has more than one value for the covariate, so that it is not obvious which
value should be plotted with the martingale residual. However, the method of Therneau and
Gambsch (2000) can be a reasonable solution. A final issue in time-dependent covariate
models is the interpretation of the treatment effect that may be hidden (Sparling et al.,
2006). This may occur when the time-dependent covariate masks the treatment effect in
the time-dependence modelling process; see Collett (2003) and Sparling et al. (2006). Many
studies have applied the extended Cox model with time-dependent covariates. One of such
study is Grohn et al. (1998) in which the extended Cox model was applied using the effect
of disease status on culling rate of cows as a time-dependent covariate.

The Cox model is one of the most widely used in survival analysis. It enables the effects of
covariates on the hazard to be estimated without specifying the form of the baseline hazard
function h0(t) (Nelson et al., 2007).

On the other hand, Cox model may be unsuitable in some cases

• When the assumption of one of the known probability distributions such as: exponen-
tial, Weibull, log-logistic and log normal is valid, the inferences based on such distri-
butions leads to smaller standard errors for the hazard ratios and the survival time
quantities, comparing to the semi-parametric model.

• Royston and Parmar (2002) reported that the estimated baseline hazard function is
highly erratic and its estimates are high dimensional.

• Collett et al. (2006) reported the difficulty of estimating survival rates at a certain
time in addition to percentiles of survival distribution, since the survivor function is
constant between death times and extrapolation is not available.

• In maximization of the partial likelihood function, the values of each covariate must
be known at each death time which is not possible. Although, they can be estimated
using linear interpolation method, approximation the time-dependent covariate values
may cause measurement errors or intrinsic variation.

2.2 Parametric modelling for time-dependent covari-

ates

In section 2.1 it was shown that the Cox proportional hazards regression model is easily
extended to incorporate one or more covariates whose values are subject to change over time.
Moreover, this model is straightforwardly fitted in many statistical packages. On the other
hand, an alternative and potentially more efficient approach is to use simple parametric
accelerated failure time model with standard survival distributions such as the Weibull, log-
logistic and log-normal. Again these models may be extended to incorporate time-dependent
covariates. The accelerated failure time model will be introduced in this section and then
how to extend it to include time-dependent covariates. The performance of the parametric
model will be investigated in chapters 4, 5 and 7 using the NHS Blood and Transplant data
sets, with residual analysis and a simulation study.
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2.2.1 Accelerated failure time model

In parametric survival modelling, the proportional hazards model is widely applicable. How-
ever, there are few standard distributions that satisfy proportional hazards, such as the
Weibull and Gompertz distributions, and there may be a need to use different distributions.
Furthermore, the proportional hazards assumption may be invalid, and then this model be-
comes inappropriate (Collett, 2003). In such cases an alternative model with distributions
will possibly not be a monotonic is the accelerated failure time model.

The term accelerated failure time is extracted from accelerated life testing, particularly
in reliability applications. In such applications, designs depend on extrapolations (e.g., in-
creasing stress levels in step-stress models) to attain rapid failure at some conditions. The
adjusted time-scale provides the proposed link between the effects of different stress levels.
Moreover, the model is applicable in many situations in biostatistics (James, 2005).

To illustrate the model, let T1, . . . , Tn be random variables that represent survival times
for n individuals, and assume that (xi1, . . . , xip)

T is a vector of explanatory variables xi for
the ith individual. Thus, the general regression survival model is

log Ti = βTxi + ϵi,

where βT is the vector of regression coefficients, βT = (β1, . . . , βp) and the ϵi are independent,
identically distributed random variables. Then

Ti = exp(βTxi)σi,

where σi = exp ϵi. Thus
σi = Ti exp(−βTxi).

The distribution of σi is known as the baseline survival distribution, and the Ti exp(−βTxi)
are identically distributed. In this model the baseline time axis is rescaled by the explanatory
variables. For example, the individual whose covariate value is higher by a factor of 2
progresses along the baseline time axis twice as slowly as the individual with the lower value.
The previous example can be graphically explained with the survivor functions in Figure 2.1
and the hazard functions in Figure 2.2.

Figure 2.1: The survivor functions for two individuals whose values of exp(βTxi) differ by a
factor of 2
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Figure 2.2: The hazard functions for two individuals whose values of exp(βTxi) differ by a
factor of 2

For the AFT model, the general density, survivor, hazard and cumulative hazard functions
can be defined as

fi(t) = exp(−xTi β)f0(exp[−βTxi]t),

Si(t) = S0(exp[−βTxi]t),

hi(t) = exp
[
−βTxi

]
h0
(
exp[−βTxi]t

)
Hi(t) = H0

(
exp[−βTxi]t

)
,

where f0, S0, h0 and H0 are the baseline density, survivor, hazard and cumulative hazard
functions.

2.2.2 Parametric models with time-dependent covariates

Parametric models may achieve better performance than the Cox model, particularly if the
correct probability distribution is specified. In this case, the fitted parametric model often
produces more efficient parameter estimates. Furthermore, in small samples the loss of
precision from fitting parametric models is less than the Cox model (Cox and Oakes, 1984).
In the case of including one or more covariate as a time-dependent, parametric models may
be good alternatives to the semi-parametric approach.

One of the studies that depends on modelling time-dependent covariates in a parametric
framework is that of Petersen (1986). In this study a fully parametric model has been
extended to allow for time-dependent covariates. His methodology relied on the Gauss-
Newton technique for non-linear least squares estimation in order to estimate his model using
maximum likelihood. To illustrate the model, suppose that t is a non-negative continuous
random variable that refers to the survival time. This time is the number of months an
employee spends in a certain job before leaving it. Also, let x be a fixed variable that refers
to the marital status of an employee. This variable takes the value 1 for a married individual
and 0 otherwise. The second factor in the model is the labour force experience which is
defined by O(t), O(t) = O + t, where O is the value of the variable when the observation
is entered to the study. The third factor is the duration of staying at the job which can be
measured by the time t. The values of the time-dependent covariates change in the beginning
of each interval and stay constant, and then jump to the new value at beginning of the next
interval. In this empirical study, an extension of the Gompertz model was used, and then
the hazard function is
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h(t|x,O(t)) = exp [βx+ η(O + t) + πt] (2.12)

In order to define the survivor function for the model, the hazard functions at two sequential
intervals tj−1 and tj are defined as

h(tj−1|x, (O + tj−1)) = exp [βx+ η(O + tj−1) + πtj−1] ,

h(tj|x, (O + tj)) = exp [βx+ η(O + tj) + πtj] .

Consequently, the cumulative hazard function of the model for the ith individual is defined
by

H(ti|xi, O(tij), tij) = [1/(η + π)]

ki∑
j=1

{
h(ti(j))− h(ti(j−1))

}
, (2.13)

where xi is the marital status, O(tij) is the labour force experience for the ith individual at
time tij and j = 1, . . . , ki. For this model, the likelihood function with right censoring is

L =
n∏

i=1

{h(ti|xi, O(tij), tij)}δi {exp [−H(ti|xi, O(tij), tij)]} , (2.14)

where δi is the right censoring indicator. In order to apply this function, multiple records were
created for each observation based on time intervals. The model was applied to a sample of
6998 jobs, yielding 10198 records, depending on the updated changes in the time-dependent
covariates.

Methodology of fitting parametric survival models for interval-censored data with time-
dependent covariates have been introduced in the study of Sparling et al. (2006). A family of
regression models for Weibull, negative binomial and log-logistic distributions was developed
as special cases that can be derived from general form of a suggested hazard function. Follow-
ing Odell et al., (1992), the general likelihood function for right, left and interval censoring
was expressed as

L =
n∏

i=1

{
fi(ti)

δEiFi(tLi
)δLi [1− Fi(tRi

)]δRi [Fi(tRi
)− Fi(tLi

)]δIi
}

(2.15)

where

δRi
= 1 if right censored at time ti, 0 otherwise;

δLi
= 1 if left censored at time ti, 0 otherwise;

δIi= 1 if interval censored at time ti, 0 otherwise;
δEi

= 1 if uncensored at time ti, 0 otherwise.

Since δEi
= 1−(δRi

+δLi
+δIi) for any subject i = 1, . . . , n, f(t) defined the probability density

function for the event times and F (t) defined the distribution function. In the presence of
both fixed and time-dependent covariates, the likelihood function can be written as

L =
n∏

i=1

{
fi(ti|xi, yi[(ti)])δEiFi(ti|xi, yi[(ti)])δLi

[
1− Fi(ti|xi, yi[(ti)])

]δRi

[
Fi(ti|xi, yi[(ti)])

−Fi(ti|xi, yi[(ti)])
]δIi}

,

(2.16)
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where xi = (xi1,..., xip)
T is the vector of p fixed covariates and yij = (yij1, . . . , yijq)

T is the
vector of q time-dependent covariates for subject i at the jth update time. Then maximization
of the likelihood function was executed by Newton-Raphson method in order to obtain the
parameter estimates and their standard errors. From the proposed models, Weibull model was
applied on 1316 patients with 3934 records according their updated values at each follow-up
time. The time-dependent covariate, HbA1c which is the level of glucose exposure (glycemia)
over the preceding 6-8 weeks, was highly significant with small relative risk. To check the
fitted model, the deviance was computed as a fitting diagnostic value with p=0.624 that
indicated model adequacy.

The two studies introduce approaches to extend parametric survival models to allow
for time-dependent covariates. In our study, a similar approach to Sparling et al. (2006)
is adopted. However, the cumulative hazard function in this study should be modified to
calculate the function when the time exceeds the end of time intervals, more details will be
introduced in section (3.2). Furthermore, the model in our study will be extended by natural
cubic splines to gain more flexibility. Evaluations for the model before and after adding
splines will be introduced using model checking procedures and a simulation study which is
based on the NHS Blood and Transplant data sets.

2.3 Splines in survival modelling

The Cox proportional hazards model is a tool to obtain the covariate estimates and log
hazard ratios without need to estimate the baseline hazard parametrically (Nelson et al.,
2007). In the hazard function of this approach, the response variable is the failure hazard
rate which is transformed to the log hazard ratio of covariates in linear form. On the contrary,
a non-linear smooth function may achieve a better representation for the covariates effects
and then it will be more precise comparing to the linear form (Sleeper and Harrington, 1990).
Furthermore, parametric models may be good alternatives to the Cox model. However, the
restrictions of the hazard function shape may affect the model adequacy. What is more, many
distributional forms may fail to fit hazard functions particularly in observed transplantation
data. For example, in Collett et al., (2006), it was found that the hazard function in the
Weibull spline model decreases swiftly compared to the hazard in the standard Weibull model
after kidney transplantation. Both the Cox and parametric models can be re-expressed to
allow for spline interpolation functions to obtain more flexible hazard function and possibly
a more suitable model.

2.3.1 Spline interpolation

Interpolation is the creation of a curve in order to connect a set of data points. The first
interpolation approach is to use global interpolation which relies on a single polynomial
function to fit all the data points (Kruger, 2002). However, this method may lead to erratic
behaviour for the created curve when many data points are interpolated. Even though use of
a global polynomial often interpolates the data sets with higher range of points, this function
does not usually interpolate all the data points (Levine and McKinley, 2009).

On the other hand, piecewise interpolation constructs polynomial functions between each
pair of data points, so that this approach achieves smoother curves and introduces solutions
to the previous problems in the global polynomial technique. If the piecewise polynomial is
first degree, then it is called linear interpolation. When the piecewise polynomial is of higher
degree, it is called spline interpolation (e.g. quadratic splines if the polynomial is second
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Figure 2.3: Natural cubic splines curve through seven data points.

degree and cubic splines for the third degree polynomial). The idea of splines, one of the
most widely used technique in data analysis, is to interpolate between certain data points
without knowing the original function information. Increasing the polynomial order leads to
smoother curves (Kruger, 2003).

The mathematical cubic spline technique is applied by using numerical values for the
points and the cubic polynomial coefficients as weights. The line is inverted by these coef-
ficients through all the data points smoothly and continuously. The piecewise function in
cubic splines M(xi), for any data points x1, . . . , xn that are assumed to be ordered, has four
basic characteristics (McKinley and Levine, 2000):

1. The function M(xi) interpolates all the data points from x1 to xn.

2. M(xi) is continuous on the interval [x1, xn].

3. The first derivative M ′(xi) is continuous on the interval [x1, xn].

4. The second derivative M ′′(xi) is continuous on the interval [x1, xn].

There are three basic types of cubic splines:

• Parabolic spline. The second derivatives at the end points, x0 and xn, are the same
at the adjacent points, M ′′(x0) = M ′′(x1) and M ′′(xn) = M ′′(xn−1), and then the
smoothed curve is parabolic at the end points.

• Cubic run out splines. The smoothed curve is adjusted by single cubic curve over
the last two intervals, since the second derivatives at the end points are M ′′(x0) =
2M ′′(x1)−M ′′(x2) and M

′′(xn) = 2M ′′(xn−1)−M ′′(xn−2).

• Natural cubic spline. The second derivatives are equal to zero at the end points,
M ′′(x1) = M ′′(xn) = 0, so that the natural cubic splines curve becomes linear outside
the interval [x1, xn]. This property is shown in the natural cubic splines curve in Figure
2.3. This figure shows interpolation of seven data points by natural cubic spline curve
that has extended lines outside the end points.
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Natural cubic splines can be used in survival models in order to obtain a more flexible
model by smoothing the survival functions (Jimenez, 2006). The baseline cumulative hazard
function for the Weibull model, H0(t), can be approximated by the natural cubic splines
function. This approximation can be applied in the Weibull survival model that includes
both fixed and time-dependent covariates to obtain a more flexible model. More details will
be introduced in the next section and in chapter 3.

2.3.2 Cox model with cubic splines

The Cox proportional hazard model can be approximated using cubic splines in order to
smooth the hazard function. In this case, the model will retain its basic advantages such
as, the possibility to be applied through several packages and the non-determinable hazard
shape property, i.e. the non-parametric hazard function. Sleeper and Harrington (1990)
approximated the Cox model by B-splines that was described originally by De Boor (1978,
2001) to produce a more flexible model. The B-splines are applied as basis functions to fit
smoothed curve. In this technique, data points are divided into intervals with end points that
are converted to knots with smoothness conditions. Their method was based on transform-
ing the continuous covariates into the B-splines vector, and then the corresponding hazard
function of the extended model was defined by

h(t|x) = h0(t) exp

[
p∑

j=1

βjxj +

p+q∑
j=p+1

M(xj)

]
,

where h0(t) is the baseline hazard function, the first covariates group, x1, . . . , xp, include the
categorical covariates while the continuous covariates, xp+1, . . . , xp+q, are transformed into
the B-splines basis function M(xj).

Gray (1992) used a limited number of fixed knots to model a flexible Cox model with
B-splines function and then he used a penalized partial likelihood function to estimate the
parameters. In his proposed model, the hazard function for the ith subject was defined as

hi(t|xi, zi) = h0(t) exp
[
βTxi + fj(z)

]
,

where βT is the vector of unknown parameters for the explanatory variables xi and fj(z) is
the splines term that can be written as

fj(z) = γj0(z) +
m+2∑
k=1

γjkBjk(z),

where γj0, γj1, . . . , γjk are the spline parameters, m is the number of internal knots and
m+2∑
k=1

γjkBjk(z) is the sum of cubic B-spline basis functions as defined by De Boor (1978).

LeBlanc and Crowley (1999) used the multivariate adaptive regression splines of Friedman
(1991) to modify the Cox model by terms that represent the effect of covariates with splines
basis functions. The P-splines can be defined as regression splines when the coefficients of
the piecewise polynomial are penalised by controlling influence of the included knots instead
of discarding them. Eisen et al. (2004) used penalised splines with the Cox model by adding
a smooth function that represents the P-splines degree to the hazard function. Amorim et
al. (2008) estimated time-dependent coefficient rates model with B-splines function. In this
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study, the hazard function that describes the recurrent average in a certain period for the
ith individual was defined as

dµi(t) = exp
{
βTxi + η(t)yi(t)

}
dµ0(t),

where dµ0(t) is the baseline hazard function and η(t) is a time-dependent coefficient for
possibly time-dependent covariate y(t). By approximating the η(t) by its B-splines function,
the previous rate model becomes

dµi(t) = exp
{
βTxi + γT Ỹ (t)

}
dµ0(t),

where Ỹ (t) is the time-dependent term that incorporates the B-splines basis functions.
In the study of Heinzl et al. (1996), the Cox model was adapted by binary time-dependent

covariate using cubic splines function. The hazard function of the ith individual in this model
is written as

h(ti) = h0(ti) exp(ηyij),

where the binary time-dependent covariate, yij, at time τij is defined as

yij =

{
0, 0 < ti < τij

1, ti ≥ τij.

To increase the model flexibility, the hazard function was modified to become

h(ti) = h0(ti) exp (ηyijM(ti − τij)) , (2.17)

and the log hazard ratio function is

log [hi(ti)/h0(ti)] = η1yij + η2(ti − τi) +
m−2∑
j=1

γjMj(ti − τij), (2.18)

where the spline function Mj(ti − τij) = 0 for ti < τij, j = 1, . . . ,m− 2.
The restricted cubic spline function, M(ti − τij), is a development of the cubic spline

function that was introduced by Durrleman and Simon (1989) and Hess (1994). This standard
cubic spline function for m knots with 0 ≤ κ1 ≤ κ2 ≤ · · · ≤ κm can be written as

M(u) = β0 + β1u+ β2u
2 + β3u

3 +
m∑
j=1

γj(u− κj)
3
+,

where (u − κj)
3
+ = max {0, (u− κj)

3}. The function M(u) is unstable before the first knot
κ1 and after the last knot κm. To treat the instability in the tails, the condition M ′′(u) = 0
is set for u ≤ κ1 and u ≥ κm, and then the function will be linear in the tails when β1 and
β2 are set equal to zero. In this case, the function M(u) will transform from

M(u) = β0 + β1u+ u3
m∑
j=1

γj − 3u2
m∑
j=1

γjκj + 3u
m∑
j=1

γjκ
2
j −

m∑
j=1

γjk
3
j ,

to

M(u) = β0 + β1u+
m−2∑
j=1

γjMj(u).
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The number of knots was suggested by Durrleman and Simon (1989) and Hess (1994) to
be from 3 to 5, and these knots can be placed at certain quintiles of the observed follow-
up times, often not close to the extreme times or distributed uniformly. Following these
proposals, the model was applied to the kidney transplant and the Stanford heart transplant
programme data sets (Cox and Oakes, 1984). The results obtained from the two data sets
showed that the spline model with 3 knots is the best model, based on −2 log L̂ criteria.

The method achieved flexibility in the Cox model, retained the advantage of the non-
specified functional form for the hazard function and is easy to fit in standard packages.
However, this method should not be the final outcome, since it can be used as an explor-
atory procedure that may lead to use a parametric modelling as a following analysis step
when certain distribution can be assumed. Also, the achieved model flexibility increases and
more sensible results are obtained when larger samples are studied. These results will be
investigated in chapters 6 and 7.

Denis and Molinari (2010) proposed a method to use the Reversible Jump Markov Chain
Monte Carlo (RJMCMC) algorithm (Metropolis et al., 1953; Hastings, 1970; Green, 1995) to
estimate the B-spline Cox model. The aim of the study was to use the algorithm to determine
the number of knots and their locations where the effect of X covariate in the Cox model is
represented by the B-splines smooth non-linear function. The B-splines function is defined
as

M(X, γ, κ) =
d+1+m∑
j=1

γjBj(X),

where γ = (γ1, . . . , γd+1+k) are the spline coefficients for the basis functions B1, . . . , Bd+1+m

based on the internal knots κ1 < κ2 < . . . < κm. Here d = 1 for linear splines. Hence the
spline partial likelihood function can be written as

L(γ) =
n∏

i=1

{
exp[M(Xi, γ, κ)]∑

j∈R(ti)
exp[M(Xj, γ, κ)]

}
. (2.19)

The RJMCMC algorithm can be employed to simulate from a specific target distribution
based on spaces of available variable dimensions. This technique is based on Metropolis-
Hastings algorithms [Hastings (1970) and Gamerman (2002)]. In the proposed method, the
B-splines function with degree d = 1 is described as

M(X, γ, κ) =
m+2∑
i=1

γiBi(X, κ).

The RJMCMC algorithm is applied to achieve the best adjustment based on specific number
and positions for the spline knots. Changes in knot numbers and positions are determined by
calculating acceptance probabilities that select any of these changes. For example, to move
a certain knot from position v to position v́, an acceptance probability for this move step is
calculated as

α1 = min

{
1,
p[(y|(m, v́)n(v)]
p[(y|(m, v)n(v́)]

}
,

where p[(y|(m,v́)]
p[(y|(m,v)]

is the likelihood ratio for the new model, n(v)
n(v́)

is the proposal ratio for the

move from v to v́ and n(v) is number of the moveable knots.
Further change may be executed for the function dimension when the number of knots is

adjusted. In this case, an acceptance probability to increase the number of knots from m to
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m+ 1 is given by

α2 = min

{
1,
p(y|ź)
p(y|z)

× p(m+ 1)

p(m)

m+ 1

K
× dm+1(K −m)

bm(m+ 1)

}
,

where p[y|ź]
p[y|z] is the likelihood ratio for the new model ź that contains the new number of

knots, against the null model z that contain the previous number of knots, m is the number
of knots, K is the possible number of emplacements and bm = dm = 1/3 for internal knots
where bm and dm are the probabilities to add and delete an internal knot respectively.

The algorithm’s performance was compared with the two classic alternative AIC and BIC
criteria. The result showed that the AIC overestimated the number of significant covariates,
while the BIC underestimated. The RJMCMC tended to be in the middle of the two criteria.
Even though the proposed algorithm is a successful tool for selecting knots number and
locations, the basic advantage over the two criteria is the possibility to investigate the best
adjustment for the knots in the spline functions in one stage. Consequently, this method may
be more efficient, particularly compared to AIC and BIC, which are performed in two stages:
selecting prior choice for number and positions of knots followed by the stage of estimating
and evaluating the model based on this prior choice.

2.3.3 Parametric models with cubic splines

The role of the Weibull distribution in parametric survival analysis is similar to that of the
normal distribution in linear modelling (Collett, 2003). The Weibull proportional hazard
model is widely used in medical research, since it is good alternative to the Cox proportional
hazard model, particularly when the survival data indicate that the Weibull probability
distribution is tenable. On the other hand, a more flexible model may be employed in order
to achieve better performance. This flexible model was introduced by Royston (2001) for
censored survival data, depending on the direct modelling of the baseline hazard function.
The flexibility in the hazard function shape increased when a natural cubic spline function
is used compared with the standard model without splines (Nelson et al., 2007).

Royston and Parmar (2002) have introduced flexible parametric proportional hazards and
proportional odds models. To obtain a parametric alternative to the Cox proportional hazard
model, the Weibull and log-logistic models could be extended by using natural cubic splines.
The spline function increases flexibility of the log baseline cumulative hazard function in
Weibull model and the log baseline cumulative odds failure function in log-logistic model.
To illustrate the methodology of the proposed proportional hazard model, suppose that the
general proportional hazard model is

h(t) = h0(t) exp(x
Tβ) (2.20)

where h0(t) is the baseline hazard function and xT is the vector of the explanatory variables.
Then the cumulative hazard function can be written as

H(t) = H0(t) exp(x
Tβ) =

(∫ t

0

h0(u)du

)
exp(xTβ). (2.21)

When the survival time t has a Weibull distribution with parameters λ and ρ, the baseline
cumulative hazard function may be defined as

H0(t) = λtρ (2.22)
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and then the log baseline cumulative hazard function is

logH0(t) = log λ+ ρ log t = γ0 + γ1χ (2.23)

where χ = log t. In the presence of the fixed covariate vector xT , the Weibull proportional
hazards model with splines is

logH(t|x) = logH0(t) + βxT =M(χ, γ) + βxT (2.24)

where
M(χ, γ) = γ0 + γ1χ+ γ2v1(χ) + . . .+ γmvm(χ) + xTβ (2.25)

For r = 1, . . . ,m, the rth basis function is defined as

vr(χ) = (χ− kr)
3
+ − λr(χ− kmin)

3
+ − (1− λr)(χ− kmax)

3
+ (2.26)

where

λr =
kmax − kr
kmax − kmin

. (2.27)

The external knots kmin, kmax and the internal knots k1, . . . , km are specified prior to the
study at different percentiles for the uncensored log survival times distribution in order to
set approximately equal number of events in each interval (Hess, 1994). To estimate the
model, the likelihood function based on smoothing the log cumulative hazard function for an
uncensored observation is

l =
1

t

dM(χ, γ)

dχ
exp(ϱ− exp ϱ) (2.28)

and for a censored observation is
l = exp(− exp ϱ) (2.29)

where ϱ = logH(t|x), and

dM(χ, γ)

dχ
= γ1 +

m∑
j=2

γj
dvj(χ)

dχ
. (2.30)

Starting values are necessary to obtain maximum likelihood estimates of the parameters.
Royston (2001) suggested to determine these values by fitting Cox model using the uncensored
observations. The baseline survivor function is computed and evaluated at the covariate
values xp and transformed to the cumulative hazard function. Then a least squares regression
model is applied to the log cumulative hazard function with xp covariate values and the
splines basis function. In the study of Royston and Parmar (2002) the Weibull spline model
was applied to 720 patients to study node-positive primary breast cancer. Three prognostic
groups, poor, medium and good, were used in which the good outcome values formed the
reference group. Different nested models were compared via AIC, and using plots for the
hazard functions for models with different number of knots.

Collett et al. (2006) have applied a flexible Weibull survival model to estimate the hazard
of organ failure after kidney transplantation. The model was applied to a data set of 3511
adult patients who had first kidney transplants. In this study the time from the transplant-
ation to the time of graft failure or death was estimated in which six fixed covariates were
included in the model. Six Weibull models with from 0 to 5 knots were compared using the
likelihood ratios. The spline model with 5 knots was specified as the best model based on the
−2 log L̂. A graphical assessment of the baseline survivor functions was executed to evaluate
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the proposed Weibull spline model as an alternative to the Cox model. Additionally, the
baseline hazard functions for the flexible model were plotted. It was found that the hazard
function in the spline model decreased faster than in the standard model. The study con-
cluded that the Weibull model with splines introduced more flexibility and smoother hazard
curves as the number of observations increases.

Nelson et al. (2007) proposed an extension for the relative survival model to study the
mortality rate associated with heart diseases. The Royston and Parmar (2002) methodology
was adopted to extend their model. To illustrate the proposed model, let R(t) be the relative
survival, defined as the ratio between the observed survival S(t) and the expected survival
Se(t). Thus

R(t) =
S(t)

Se(t)
,

and the hazard function is
h(t) = he(t) + hd(t), (2.31)

where he(t) is the expected hazard (mortality) rate and hd(t) is the excess mortality rate for
the disease of interest.

Using (2.12), the likelihood function for that model can be written as

L =
n∏

i=1

{he(ti) + hd(ti)}δi {Se(ti)R(ti)} ,

As Se(ti) does not involve any unknown parameter, it can be cancelled from the likelihood
function to become

L =
n∏

i=1

{he(ti) + hd(ti)}δi {R(ti)} . (2.32)

The cumulative hazard function, H(t), in the model is

H(t) = He(t) +Hd(t),

where He(t) is the expected cumulative hazard and Hd(t) is the cumulative excess hazard
that can be defined for coefficient vector βT that is estimated for covariates x as

Hd(t) = tρ exp(βTx).

The log excess cumulative hazard is approximated using cubic splines function described in
(2.24) to become

logHd(t) =M(χ, γ) + βTx,

where M(χ, γ) is the spline basis function as described in (2.25). The hazard function in
(2.31) can be derived from logHd(t) to become

h(t) = he(t) +
1

t

dM(χ, γ)

dχ
exp(ϱ),

and the the survival rate can be written as

R(t) = exp[− exp(ϱ)],

where ϱ =M(χ, γ) + βTx. Thus, the likelihood function for the flexible model is
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L =
n∏

i=1

{
he(t) +

1

t

dM(χ, γ)

dχ
exp(ϱ)

}δi

{exp[− exp(ϱ)]} . (2.33)

It was found that the estimates obtained from the flexible model are smoother in comparison
to the estimates of the other standard relative survival methods (e.g. piecewise approach).
Furthermore, there was no splitting of the timescale (continuous survival time) instead of
using split-time data. The 5 knots model was chosen as the best model based on the AIC
criterion.

The study of Royston and Parmar (2002) introduced a methodology to extend both of
proportional hazards and proportional odds models by natural cubic splines functions to gain
more flexibility. In our study, the same methodology will be followed to extend the Weibull
model for the heart and cornea transplant survival data where no time-dependent covariates
is used. Also, the same methodology will be adopted to increase flexibility of the applied
Weibull model to the same data sets where some covariates are allowed to change over time.
Then simulation will be used to evaluate performance of these extensions.

2.4 Simulation in survival modelling

Simulation is the use of computer intensive procedures to test certain hypotheses and de-
termine the adequacy and accuracy of different statistical models. The results obtained from
such procedures are compared to the known truth about the population under study to assess
the model performance (Angelis et al., 1998). In survival modelling, simulation techniques
can be applied to the Cox model, parametric models and flexible survival models that are
approximated by spline functions. These models may be evaluated, for example, by graphical
assessment to assess model suitability and residual analysis is used to assess model adequacy.
However, these procedures are considered as an initial process to evaluate the model and
they are insufficient particularly if the aim is to compare alternative statistical methods and
determine the relative efficiency of such models. In this section, simulation procedures for
different survival models will be described together with the methods of generating censored
survival times based on these models.

The initial step in the simulation must be the clear determination of the aim of the study.
The clear aim helps to build up the appropriate design and then specify the procedures
and the scenarios that need to be followed. For example, when the aim is to investigate
more than one statistical methodology, more complications may be added to the dependence
level of the simulated data sets. In this case, moderately independent simulation strategy
may be adopted. Such strategy is employed by using the same simulated data sets for all the
methods at each scenario while different data sets are used for the different scenarios (Burton
et al., 2006). In other situations, where one method is evaluated and robustly examined, an
independent simulation is followed when completely independent data sets are generated for
each method and each scenario.

An essential procedures in any simulation study is random number generation. Details of
several methods that may be used to generate random numbers are given in Marsaglia (2003)
and L’Ecuyer (2004). An identical set of random numbers are reproduced by setting the same
starting values ”seeds” in the beginning of the generating process. The dependence level of
the simulation strategy specifies the method of setting the starting seeds. For instance, when
moderately independent simulation is performed, the same starting seeds are set for the same
scenario of the different methods and are changed for the new scenarios (Masuda et al., 1996).
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To simulate survival data sets, a survival distribution for the data is assumed besides
more specifications about the parameters in the simulated model. These specifications have
to be determined carefully in order to reflect reality. Using a real data set as a base is a
good approach to borrow the realistic structure of the data to generate statistically similar
samples. When a survival data set is generated, it can be verified through several methods
such as distribution summarising and Kaplan-Meier survival curves (Burton et al., 2006).

The number of the performed simulations can be determined by

B =
(z1−(α/2)σ

δ

)2
where δ is the acceptable error value in the estimate of interest which can be calculated as
a percentage, 5% at most, from this estimate value, and z1−(α/2) is the 1− (α/2) quantile of
the standard normal distribution and σ2 is the variance of the estimate (Lachin, 1998). In
the simulations of our study, this formula can be used to determine the number of simulated
data (replications) depending on estimates of the time-dependent covariates in the two data
sets on hand when δ is taken to be 1% from the estimate of these estimates and σ2 is the
estimated variance of such covariates. Now details of the methods that might be used to
generate various survival models will be discussed.

2.4.1 Generating data sets in survival models

Univariate data can be generated as a vector of random numbers from a certain distribution.
This can be achieved using a variety of statistical packages. Demirtas (2005) showed how to
use generated random numbers from uniform distribution to simulate samples from several
univariate distributions.

Multivariate data are commonly used in survival modelling to study the effects of differ-
ent prognostic factors on survival times. In reality, covariates are often correlated, so that
this correlation is employed to generate their values. Multivariate normal distribution has
basic role in generating multivariate data sets with specific means, variances and correlation
structure that are involved in their variance-covariance matrix. This approach is also applied
to generate any non-normal continuous variables by transforming it to validate normality
assumption. MacCallum et al. (2002) described the method of generating binary covariates
as a latent normal, by generating such covariates as continuous and dichotomizing them to
the original form.

Tennenbaum et al. (2006) introduced two methods, discrete and continuous, to simu-
late correlated continuous and categorical covariates using a single multivariate distribution.
The discrete method depends upon involving both categorical and continuous covariates in
separate multivariate normal distribution for each combination that derived from the cat-
egories values. For example, if the model contains two categorical variables, sex and smoking
status, in addition to age as a continuous variable, there will be four combinations (male with
smoking, male with non-smoking, female with smoking and female with non-smoking), and
hence four multivariate normal distributions are used for the combinations with the matched
age values to generate vectors for the three covariates.

Due to the limitations that arise when the discrete method is used, the continuous method
is preferable to generate both categorical and continuous covariates. In this method, the cat-
egorical covariates are treated as continuous, more details are found in Ghosh and Henderson
(2000) and Kaut et al. (2003). To apply this method, all the covariate values are generated
from multivariate log-normal distribution in order to avoid any negative outcomes. This can
be executed by defining the variance-covariance matrix in terms of logarithms of covariate
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values. Then, after generating the covariate values, they are exponentiated to obtain the
required values. As a result of considering the categorical covariates as continuous, a further
step is done to dichotomize the values of the continuous covariates according the original cat-
egories. This can be achieved by the continuous critical value (CrV) that is determined based
on the inverse of the log normal distribution using the mean, the standard deviation and the
cumulative probability for the simulated covariate (Lapin, 1983). Thus, for a categorical
covariate X with m categories, CrV is defined as

CrV (µ, σ, pi) = exp {µ+ σ.NORMINV (pi)} ,

where µ = mean[ln(x)], σ = SD[ln(x)], pi is the proportion of subjects in the empirical
distribution with categorical value Xi(i ≤ m) and NORMINV is the inverse of the standard
normal distribution. Applications of this method and more details will be described in chapter
7.

Liu and Craig (2006) described a method to generate time-dependent covariates. To
illustrate their method, suppose yi(t) is a single time-dependent covariate that is defined as

yi(t) = ηTg(t) + Ai +Wi(t),

where ηT is a vector of p unknown parameters, g(t) = (g1(t), . . . , gp(t)) is a vector of functions
of t which describes the trend component, Ai is the random subject effect, Ai ∼ N(0, σ2

A),
and Wi(t) is a stationary random effect with mean 0 and variance σ2

A. The random effect
W (t) can be approximated by AR(1) as

W (t) = ρW (t− 1

24
) + σε(t), (2.34)

where the starting value of W (t) is generated from standard normal distribution, with mean
0 and variance σ2

W and then assumed to be a step function that jumps every 1
24

year (every 15
days). Also, the values of ε(t) over time are independent standard normal random variables
and ρ is the assumed AR(1) parameter.

In survival modelling, the outcome is the time to a certain event. This time is often
censored. Hence, the simulation procedures depend upon two distributions, one for the
survival times and the other for introducing the censoring mechanism. Generating a specific
proportion of non-informative right censoring can be performed when one of the distributions
such as exponential andWeibull are assumed with no covariates. The parameter values for the
employed distribution determine the censoring ratio that is targeted through the simulation
scenarios (Miloslavsky et al., 2004). More details about these procedures are introduced via
the algorithms of generating survival times for the Cox model in the following section as well
as the algorithms that will be introduced in chapter 7 of this thesis.

2.4.2 The Cox proportional hazards model simulation

The widely used Cox model and the corresponding partial likelihood function can be ro-
bustly investigated through simulation methodology so that bias and efficiency of the model
parameter estimates are assessed (Cox, 1975). Some difficulties arise when simulation of the
Cox model is designed. In linear regression model simulation, it is sufficient to determine the
true regression coefficients. On the other hand, in the Cox model, the covariate effects are
derived from the hazard function that must be assumed. One method to solve this issue is
to assume a constant baseline hazard function and then generate exponentially distributed
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survival times (Bender et al., 2003). Alternatively, Weibull distribution may be used to sim-
ulate survival times based on the Cox model. Schemper (1992) introduced a method to use
Weibull distributed survival times to investigate different analyses with the Cox model.

In some applications, it might be necessary to assume different distribution for the sur-
vival data. An example for this application is human mortality study which is modelled
using Gompertz distribution (Lee and Go, 1997). Bender et al., (2003) proposed method to
generate survival times using exponential, Weibull and Gompertz distributions to simulate
the Cox model with known regression parameters. The method is based on developing the
relationships of cumulative hazard and survivor functions with the survival times. To clarify
this method, let the survivor function in the Cox model be

S(t|x) = exp
{
−H0(t) exp(β

Tx)
}
,

and the model distribution function is

F (t|x) = 1− exp
{
−H0(t) exp(β

Tx)
}
.

Let Y be a random variable that has a distribution function F and then function F (Y )
follows uniform distribution, U ∼ Uni[0, 1]. Also, the survivor function 1 − F (Y ) follows
U ∼ Uni[0, 1]. Consequently, the survivor function is written as

U = exp
[
−H0(T )× exp(βTx)

]
, (2.35)

where T is the survival time that can be generated using the the inversion of the equation
(2.35) as well as the baseline cumulative hazard function H0(T ) that depends upon the
assumed distribution. For example, when the Weibull distribution is assumed, the baseline
cumulative hazard is defined as

H0(t) = λtρ,

where λ and ρ are the Weibull scale and shape parameters. Thus,

U = exp
[
−λtρ × exp(βTx)

]
,

and then the survival times are generated by

T =

[
− log(U)

λ
× 1

exp(βTx)

] 1
ρ

, (2.36)

and the exponential generated survival times can be obtained from (2.36) when ρ = 1 as

T =
− log(U)

λ× exp(βTx)
. (2.37)

2.4.3 Parametric model simulation

Parametric survival models can be described in two manners: proportional hazards and ac-
celerated failure time. The simple survival distributions that can be modelled in proportional
hazards are exponential, Weibull and Gompertz. On the other side, there are many distribu-
tions that may be modelled in accelerated failure time model such as Weibull, log-logistic and
log-normal. To simulate the two modelling types, the method of Bender et al., (2003) can
be used. However, there is a difference when an accelerated failure time model is simulated.
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Leemis (1987) proposed various algorithms to generate survival times from proportional haz-
ards and accelerated failure time models. To differentiate between the generation from the
two models, he described the generated survival model based on proportional hazards as

T = H−1
0

(
− log(U)

exp(βTx)

)
,

and for accelerated failure time as

T =
H−1

0 (− log(U))

exp(βTx)
,

where U ∼ Uni[0, 1] and H−1
0 is the inverse baseline cumulative hazard function for time t.

To clarify the difference between the two formulas, let H0 = λtρ be the baseline cumulative
hazard function for the Weibull distribution, where exp(βTx) is the covariate function. Thus,
in proportional hazards model, the survival times are generated as

T =

[
− log(U)

λ× exp(βTx)

] 1
ρ

, (2.38)

and in AFT model as

T =

[
− log(U)

λ

] 1
ρ [

exp(βTx)
]
. (2.39)

Generating from other distributions such as log-logistic are described in (Leemis et al., (1990).

2.4.4 Simulation for the Cox model with time-dependent covari-
ates

The approaches that can be used to simulate this model will be more complicated than the
approach that was described in section 2.4.2. There are a variety of algorithms that are
applicable to simulate the model that contains one or more covariates that change over time.
Leffondre et al. (2003) used the permutational algorithm (PA) proposed by Abrahamowicz
et al. (1996) and validated by MacKenzie and Abrahamowicz (2002), through five steps as

1. Generate n survival times T ∗
i , (i = 1, . . . , n) from a specified marginal distribution.

2. Generate n censoring times Ci, (i = 1, . . . , n) from specified marginal distribution.

3. Determine the survival times ti as ti = min(T ∗
i , Ci) and the censoring indicator as

δi = I(T ∗
i ≤ Ci).

4. Generate vectors for both fixed and time-dependent covariates at each time ti.

5. Assign randomly each covariate vector to the corresponding survival time ti based on
the partial likelihood function in (2.3). If δi = 0 then the censored individual is selected
by simple random sampling with equal probability. Otherwise, if δi = 1 the uncensored
individual is selected by the probability that is proportional to his/her hazard ratio at
time ti.
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Sylvestre and Abrahamowicz (2008) described this probability for individual s at time ti as

Ps,ti =
exp[βTys(ti)]∑

j∈R(ti)
exp[βTyj(ti)]

, (2.40)

where ys(ti) is the covariate value for individual s at time ti.
Due to the intensive computation of the permutational algorithm and low efficiency,

particularly when the sample size is large or contains high number of uncensored subjects,
Sylvestre and Abrahamowicz (2008) suggested the modified permutational algorithm with
rejection sampling (PARS) using the following steps

1. Sample a covariate vector Ys(ti) from the risk set Ri at time ti with equal probability
1/size[R(ti)].

2. Generate U as U ∼ Uni[0, 1].

3. Calculate the hazard ratio associated with the covariate vector Ys at time ti, h(Ys(ti)) =
exp[βTys(ti)].

4. If U ≤ h(Ys(ti))/cti assign the covariate vector Ys(ti) to the event time ti. Otherwise,
go back to step 1, cti is a predefined constant that can be specified as

cti = max
{
exp[βTyj(ti)]

}
where j ∈ Ri.

Further, they introduced an algorithm based on a binomial model through the following steps

1. Calculate the conditional probability pi,t for the ith individual based on the binomial
model with parameters βj, j = 1, . . . , w as

pi,1 = logit

[
β0 +

w∑
j=1

βjyij(t)

]
, (2.41)

where the parameter β0 represents the baseline risk that can be assumed constant to
yield exponential distributed survival times. Otherwise, it could be time-dependent to
achieve increasing hazard.

2. Generate U as Ui,t ∼ Uni[0, 1].

3. If Ui,t ≤ pi,1, match an event to individual i at time t and stop follow-up for this
individual. Otherwise, increase the time t by one unit and go to step 1.

A validation for the three algorithms was done by generating survival times conditional on
time-dependent covariates. The results showed that the PARS and the binomial algorithms
are more efficient that the PA algorithm. However, the PARS has easier implementation
than the binomial algorithms that may have difficulties in the intercept parameter calibration
(Sylvestre and Abrahamowicz, 2008).

For the proposed parametric model with time-dependent covariates, a method for gen-
erating survival times condition on both of one change and many changes time-dependent
covariates will be described in chapter 7.

53



2.4.5 Evaluating the performance of different methods

In simulation designs, all the parameter estimates, for both fixed and time-dependent cov-
ariates, are stored besides their standard errors in order to calculate performance and un-

certainty measures. For each covariate, the average estimate over B simulations
¯̂
β is taken

to be a measure of the true estimate for such a covariate, and the standard deviation of the
estimate, β̂ι, over the B simulations is used as a the standard error of this estimate SE(β̂)
(Burton et al., 2006). Hence, for B simulations

¯̂
β =

B∑
ι=1

β̂ι/B

and

SE(β̂) =

√√√√[1/(B − 1)]
B∑
ι=1

(β̂ι − ¯̂
β)2

The required estimates will be stored, after the simulations are completed, and then
measures that reflect the considered criteria are calculated in order to evaluate method per-
formance (Collins et al., 2001). The measures are often used to assess the bias, accuracy,
power, type I and type II error probabilities and coverage.

2.4.5.1 Bias assessment

The bias is defined as the difference between the estimate
¯̂
β and the true value β, which

specifies the performance of the method being evaluated. The second method is to calculate
the percentage of the bias as (Burton et al., 2006)(

¯̂
β − β

β

)
× 100.

The standardized bias is (
¯̂
β − β

SE(β̂)

)
× 100

The efficiency, coverage and error rates of parameter estimate are adversely affected, when
the standardized bias exceeds 40% in any direction (Collins et al., 2001).

2.4.5.2 Accuracy assessment

The overall accuracy of the estimate can be assessed by the mean square error (MSE)

(
¯̂
β − β)2 + (SE(β̂))2

2.4.5.3 Power and type I and type II error probabilities

The empirical power can be calculated as the proportion of the simulated samples with
rejected null hypothesis at a certain significance level, when this null hypothesis is false
and then the empirical type II error probability is 1-power. The empirical type I error
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probability can be determined as the proportion of p−values that are less than the determined
significance level, usually 5% when the null hypothesis is true (Burton et al., 2006).

Finally, a comparison between the two approaches of generating survival times will be
performed to assess the accuracy and the efficiency of these two approaches. In chapter 7,
evaluations for each of the proposed models will be performed by calculating these assessment
tools, particularly the empirical power for parameters of interest.

2.5 Study of survival times after heart and cornea trans-

plantations

Many survival studies have focused on studying survival time after heart transplantation.
Most of these studies used the Cox proportional hazards model to investigate the effects of
different factors on survival after the surgery. Some studies used the extended Cox model
with one or more time-dependent covariates. For example, Aydemir et al. (1999) considered
several time-dependent covariates in the extended Cox model of the Stanford heart transplant
data. In the study of Gioargi and Gouvernet (2005), a regressive survival model was applied
to same data in which prognostic factors were accommodated in the model as time-dependent.
Jimenez (2006) applied logistic regression to model heart failure after transplant surgery using
the data of NHS Blood and Transplant. Heart transplant data was used in the study of Nardi
and Schemper (2003) to compare the Cox model and parametric models by analysing residual
methods to assess goodness of fit in each model. Further, more flexible survival models were
introduced to model this type of data. For example, Heinzl et al. (1996) used the Stanford
data by considering the Cox model with cubic spline functions where binary time-dependent
covariates are incorporated in the model. These previous studies of heart transplant survival
data have covered a wide area of modelling approaches. However, the proposed modelling
approaches may add new investigations for the heart transplant data analysis.

After cornea transplantation the graft survival time was modelled through traditional
approaches. One approach to study cornea survival time was the Cox proportional hazards
model to measure the effects of different factors on hazard of failure; see for example, Yang
et al. (1998) and Maier (2011). In a different study, Anshu et al. (2011) studied the effects
of the factors of post operative complications and operation procedures after the surgery as
time-dependent covariates in the extended Cox model. Also, in the study of Ingle (2004), the
effect of the second eye graft was considered as a time-dependent covariate with other fixed
covariates on the first eye graft survival time using the extended Cox model and illustrated
by the data of NHS Blood and Transplant.

A variety of models can be employed to study the two data sets on hand. The first type of
models is the Cox and parametric models that treat all the covariates as fixed. Secondly, the
previous group of models can be extended to allow for one or more covariates to change over
time. Thirdly, these two modelling approaches are modified in order to gain more flexibility
by including spline functions. The three approaches will be applied to the heart and cornea
transplant data sets, and then evaluation of their performance and efficiency will be discussed
through the next chapters of this thesis.
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Chapter 3

Mathematical model specification

The aim of this chapter is to describe the models that will later be applied to the two real
data sets. These models are introduced as alternative approaches to the Cox model when
the data contain one or more covariates that change over time. Section 3.1 will discuss the
general accelerated failure time model, and the method of constructing the full likelihood
function for that model when there is right censoring.

The likelihood functions for the accelerated failure time models of the Weibull and log-
logistic distributions are derived in section 3.2. In section 3.3, derivation of the cumulative
hazard functions in the presence of time-dependent covariates is explained. Then, the likeli-
hood functions for the Weibull and the log-logistic AFT models that allow for time-dependent
covariates are presented. These likelihood functions are applied to the transformed data in
counting process input style in which multiple records for each observation are set to allow
for the changes in the values of the time-dependent covariates.

The standard AFT Weibull model can be extended using natural cubic spline functions.
This extension leads to a more flexible model but one which, unlike the traditional Cox
model, retains the advantages of a parametric framework. In section 3.4, the hazard and the
cumulative hazard functions for the AFT Weibull spline model are described in cases of using
fixed and time-dependent covariates. Consequently, the likelihood function to estimate the
Weibull spline model, with different number of knots, is described.

3.1 General accelerated failure time model

The accelerated failure time (AFT) model is a general survival model which assumed the
acceleration property for the explanatory variables. According to this model, the explanat-
ory variables for any individual affect survival time multiplicatively. Generally, the hazard
function for individual i at time t is

hi(t|xi) = exp [−β′xi]h0 (exp [−β′xi] t) , (3.1)

where xi = (xi1, . . . , xip)
′ contains the explanatory variables for the ith individual, i =

1, 2, . . . , n, β = (β1, . . . , βp)
′ is a vector of regression coefficients and h0(t) is the baseline

hazard function. For the ith individual, the survivor function is

Si(t|xi) = S0 (exp [−β′xi] t) , (3.2)

where S0(t) is the baseline survivor function, and the cumulative hazard function is

Hi(t|xi) = H0 (exp [−β′xi] t) , (3.3)
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where H0(t) is the baseline cumulative hazard function.
This model is fitted using maximum likelihood. The likelihood function is constructed

for n independent observations with possibly right censored survival times t1, t2, . . . , tn as

L =
n∏

i=1

{fi(ti|xi)}δi {Si(ti|xi)}1−δi (3.4)

where fi is the probability density function and δi is the censoring indicator function that
takes the value 1 for an uncensored observation and 0 otherwise. Hence,

L =
n∏

i=1

{hi(ti|xi)Si(ti|xi)}δi {Si(ti|xi)}1−δi

=
n∏

i=1

{hi(ti|xi)}δi {Si(ti|xi)}

=
n∏

i=1

{hi(ti|xi)}δi {exp[−Hi(ti|xi)]} . (3.5)

3.2 AFT model with fixed-time covariates

3.2.1 Weibull AFT model with fixed-time covariates

In the Weibull survival model with shape parameter ρ, the probability density function is
defined as

f(t) = ρtρ−1 exp {−tρ} ,
and the survivor function is

S(t) = exp {−tρ} .

Using the the relationship in (1.5), the hazard function is therefore

h(t) =
f(t)

S(t)

= ρtρ−1.

This hazard function is the baseline hazard function when no covariate values is included
in the model. In the Weibull model that incorporates fixed covariates only, let β′ be the
coefficient vector. Then, for the ith individual

β′xi = β1xi1 + · · ·+ βpxip

Let αi be
αi = exp(θ + β′xi), (3.6)

where θ is the intercept parameter. In the Weibull AFT model, the hazard function is

hi(t) = ρ

(
1

αi

)ρ

tρ−1, (3.7)

and the cumulative hazard function is

Hi(t) =

(
1

αi

)ρ

tρ. (3.8)

Thus, the likelihood function in (3.5) is applied using the hazard and cumulative hazard
functions in (3.7) and (3.8).
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3.2.2 Log-logistic AFT model with fixed-time covariates

The probability density function for the log-logistic model with shape parameter ρ is

f(t) =
ρtρ−1

(1 + tρ)2
,

and the survivor function is defined as

S(t) = (1 + tρ)−1.

Using (1.5), the hazard function is defined by

h(t) =
ρtρ−1

(1 + tρ)
.

This hazard function is considered as the baseline hazard function of the log-logistic model
without covariates. In the log-logistic AFT model that includes p fixed covariates xi, the
hazard function is written as

hi(t) =
ρ( 1

αi
)ρtρ−1[

1 + ( 1
αi
)ρtρ
] , (3.9)

and the cumulative hazard function is

Hi(t) = log

[
1 + (

1

αi

)ρtρ
]
. (3.10)

From the hazard and the cumulative hazard functions in (3.9) and (3.10), the likelihood
function is applied using (3.5).

3.3 AFT model with time-dependent covariates

The AFT model can be extended by incorporating time-dependent covariates. Even though
the Cox model can be extended easily to model such covariates, the AFT models provide
a parametric alternative. Petersen (1986) and Sparling et al. (2006) have described the
methodology to extend parametric models to include time-dependent covariates. In this
section, derivations of the hazard and the cumulative hazard functions for the Weibull and
the log-logistic models will be presented in order to constitute the likelihood function of these
two extended models.

Suppose that additional time-dependent covariates are updated at a sequence of follow-up
times τi0, . . . , τiki , where τi0 is the first follow-up time (usually zero) (Sparling et al., 2006).
Sometimes, patients may be followed up after operations at certain times. For example,
heart transplant patients are followed up to measure their kidney function every year. Let
yij = (yij1, . . . , yijq)

′ be a vector of q time-dependent covariates that are updated at discrete
points at those times. Then the likelihood function becomes

L =
n∏

i=1

{
hi(ti|xi, yi[ti])

}δi {exp[−Hi(ti|xi, yi[ti])]
}
, (3.11)

where yi[ti] is the time-dependent covariate value for the ith individual at time ti.
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3.3.1 Weibull AFT model with time-dependent covariates

In the Weibull model that incorporates fixed and time-dependent covariates, let β′ and η′

be the coefficient vectors for the p fixed covariates xi and q time-dependent covariates yij
respectively. Then, for the ith individual

β′xi = β1xi1 + · · ·+ βpxip

and

η′yij = η1yij1 + · · ·+ ηqyijq,

where yijq is the value of the time-dependent covariate q of the ith individual at time segment
j. Let αij be

αij = exp(θ + β′xi + η′yij), (3.12)

where θ is the intercept parameter.
Assuming that τij = (τi0, . . . , τiki), j = 0, . . . , ki and ki is the number of update times

for the ith individual, since each time t is divided in counting process style into intervals
which start at τij and end at τi(j+1) (see Table 3.2). In this modelling approach, it is assumed
that time-dependent covariate values are updated at the beginning of each interval and stay
constant to the end of the interval. Then the hazard function including time-dependent
covariates becomes

hi(t|xi, yi[t]) = ρ

(
1

αij

)ρ

tρ−1, (3.13)

where hi(t|xi, yi[t]) is the hazard function that is evaluated for the ith individual at the
beginning of each interval, at t = τij, yi[t] is the time-dependent covariate and αij is the
parameter function at the same time segment τij.

The cumulative hazard function including the time-dependent covariate, yij, for the ith
individual at time t is

Hi(t|xi, yi[t]) =
ki−1∑
j=0

[
I{τi(j+1)≤t}

∫ τi(j+1)

τi(j)

ρ

(
1

αij

)ρ

uρ−1du

]
(3.14)

where the time-dependent covariate values are updated at τij and stay constant to the end
of the interval at τj+1, where j = 0, 1, . . . , ki, and I{ω} is the indicator function that takes the
value 1 if {ω} is true and 0 otherwise. This indicator function was introduced by Sparling
et al. (2006) as I{τi(j+1)=ti}. Using this function, the cumulative hazard is calculated for

ti = τi(j+1) only and ignores the intervals in which ti > τi(j+1). For that reason, it was
amended in (3.14) to I{τi(j+1)≤ti}. Using the hazard and the cumulative hazard functions,

h(ti|xi, yi[t]) and H(ti|xi, yi[t]), as in (3.13) and (3.14) for the ith individual, the likelihood
function is applied using the previous formula in (3.5).

3.3.2 Log-logistic AFT model with time-dependent covariates

When the log-logistic model is extended to accommodate time-dependent covariates, the
hazard function at time ti = τij and using the parameter function in (3.12) becomes

hi(t|xi, yi[t]) =
ρ
(

1
αij

)ρ
tρ−1

1 +
(

1
αij

)ρ
tρ

(3.15)
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As described in section (3.3.1), the hazard function in (3.15) is evaluated at the beginning
of each interval τij using the the values of the time-dependent covariates that is updated at
τij. where yi[t] is the time-dependent covariates at time τij . Then, the cumulative hazard
function at time t, for the ith individual with yij time-dependent covariate, is

Hi(t|xi, yi[t]) =
ki−1∑
j=0

I{τi(j+1)≤t}

∫ τi(j+1)

τi(j)

ρ
(

1
αij

)ρ
uρ−1

1 +
(

1
αij

)ρ
uρ
du

 . (3.16)

The same likelihood function in (3.5) can be applied where h(ti|xi, yi[t]) and H(ti|xi, yi[t])
are the hazard and the cumulative hazard functions in (3.15) and (3.16).

3.3.3 Counting process style of input

In typical survival data analysis, each subject takes one record. This record is a vector of
the sort (T, δ, ...) where T has the value of time since the origin point until event (δ = 1)
or censoring (δ = 0) (Ake and Carpenter, 2003). On the other hand, in order to compute
the functions of the survival models with time-dependent covariates, a counting process style
of input that was originated by Therneau (1994) is followed. The method represents each
subject with multiple records according the number of time-dependent covariate changes for
that subject. Each record defines one interval with (T1, T2, δ, x, y) when T1 is the time at the
beginning of the interval, T2 is the time at which the interval ends, δ is the censoring indicator
that takes 0 in each interval, where subject is still censored, while it is defined in the last
interval according to the status of the subject in the original data, x is the fixed covariate
which remains constant through all the intervals and y is the time-dependent covariate that
changes when the interval starts and remains constant to the end of the interval.

For example, suppose that the data of two patients with fixed covariate x and time-
dependent covariate y that changes every 100 days are defined as in Table 3.1.

Table 3.1: Survival data of two patients including follow-up covariate values

patient time status x y1 y2 y3 y4 y5
1 270 0 40 8 9 10 - -
2 480 1 60 11 12 15 18 22

The data of these two patients are formulated in the counting process style as shown in
Table 3.2.

3.4 Flexible Weibull AFT model

The Weibull AFT model may yield a good tool to fit survival data with time-dependent
covariates. However, this model can be developed to achieve a better performance when
flexibility is added to the original model. The flexible Weibull model is obtained when the
standard model is extended to allow for the natural cubic spline function. The log of baseline
cumulative hazard function including the splines function was described by Royston and
Parmar (2002) as

logH(t) = θ + ρt+ γ1υ1(t) + · · ·+ γmυm(t), (3.17)

where the rth basis function is defined for r = 1, . . . ,m as

υr(t) = (log t− κr)
3
+ − λr(log t− κmin)

3
+ − (1− λr)(log t− κmax)

3
+
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Table 3.2: Data formulated following counting process style

patient time T1 T2 status x y
1 270 0 100 0 40 8
1 270 100 200 0 40 9
1 270 200 270 0 40 10
1 270 270 270 0 40 10
2 480 0 100 0 60 11
2 480 100 200 0 60 12
2 480 200 300 0 60 15
2 480 300 400 0 60 18
2 480 400 480 0 60 22
2 480 480 480 1 60 22

with

λr =
κmax − κr
κmax − κmin

and

(t− a)3+ = max{0, (t− a)3}.

In order to estimate the function υr(t), Royston (2001) suggested setting external knots κmin

and κmax at the minimum and the maximum value of the uncensored survival times, and the
m internal knots κ1 < · · · < κm with κ1 > κmin and κm < κmax. Table 3.3 shows the internal
knots that are placed at the centiles of the distribution for the uncensored log survival times.

Table 3.3: Internal knot placement for spline models with different one to five knots

No. of knots Centile positions
1 50
2 33 67
3 25 50 75
4 20 40 60 80
5 17 33 50 67 83

3.4.1 Fixed covariates model

The cumulative hazard functions for the Weibull accelerated failure time model with fixed
covariates only were defined in (3.8). The log of this function is

logHi(t|xi) = ρ log(
1

αi

) + ρ log t,

where αi = exp(θ + β′xi). Hence

logHi(t|xi) = ρ(−θ − β′xi) + ρ log t, (3.18)
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and the log cumulative hazard function of the Weibull spline model becomes

logHi(t|xi) = ρ(−θ − β′xi) + ρ log t+ γ1υ1(t) + · · ·+ γmυm(t), (3.19)

and then,

Hi(t|xi) = exp {ρ(−θ − β′xi) + ρ log t+ γ1υ1(t) + · · ·+ γmυm(t)} . (3.20)

The hazard function for the model is

hi(τi(j)|xi, yij) = {ρ(−θ − β′xi) + ρ log t+ γ1υ1(t) + · · ·+ γmυm(t)} ×
{( ρ

τi(j)

)
+

m∑
r=1

3γr
τi(j)

[
(log τi(j) − κr)

2
+ − λr(log τi(j) − κmin)

2
+

− (1− λr)
(
log τi(j) − κmax

)2
+

]}
(3.21)

Then, the likelihood function in (3.5) can be applied to the Weibull spline model with
fixed covariates using (3.20) and (3.21).

3.4.2 Time-dependent covariates model

The cumulative hazard function of the Weibull accelerated failure time model with time-
dependent covariates in (3.14) is

Hi(t|xi, yi[t]) =
ki−1∑
j=0

[
I{τi(j+1)≤t}

∫ τi(j+1)

τi(j)

ρ

(
1

αij

)ρ

uρ−1du

]
.

In the Weibull spline model with time-dependent covariates, using the basis function, υr(τi(j)),
which is calculated at time τi(j) for the natural cubic spline, the functions Λτi(j) and Λτi(j+1)

are defined at times τi(j) and τi(j+1) respectively as

Λτi(j) = exp
[
ρ(−θ − β′xi − η′yij) + ρ log τi(j) + γ1υ1(τi(j)) + · · ·+ γmυm(τi(j))

]
(3.22)

Λτi(j+1)
= exp

[
ρ(−θ − β′xi − η′yi(j+1)) + ρ log τi(j+1) + γ1υ1(τi(j)) + · · ·+ γmυm(τi(j))

]
(3.23)

These functions define the cumulative hazards at τi(j) and τi(j+1) respectively. Hence,
the cumulative hazard function for the Weibull accelerated failure time with time-dependent
covariates and m knots can be written as

Hi(t|xi, yi[t]) =
ki−1∑
j=0

(
I{τi(j+1)≤t}

[
Λτi(j+1)

− Λτi(j)

])
, (3.24)

In order to fit the model, the data input style is used as described in Table 3.2. The values
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of the external knots, κmin and κmax, are the minimum and the maximum log uncensored
survival times at the beginning of each interval, τij. Similarly, the internal knots, κ1 <
. . . < κm, are calculated based on the same values. The next step is to calculate the basis
function υr(τi(j)) which is evaluated based on the values of τi(j). From the differentiation
of the function λτi(j) with respect to τi(j), the hazard function of the ith individual at time
τij = log t with m knots is defined as

hi(τi(j)|xi, yij) =
{
Λτi(j)

}
×
{( ρ

τi(j)

)
+

m∑
r=1

3γr
τi(j)

[
(log τi(j) − κr)

2
+ − λr(log τi(j) − κmin)

2
+

− (1− λr)
(
log τi(j) − κmax

)2
+

]}
(3.25)

The likelihood function for the flexible Weibull model with the time-dependent covariate
yij and m knots is obtained from the cumulative hazard and the hazard functions in (3.24)
and (3.25) respectively.

As an illustration, suppose a model with one internal knot κ1, and external knots κmin

and κmax, the Weibull AFT model with splines and time-dependent covariates is applied as
follows.

1. Insert the survival data in counting process style as described in Table 3.2.

2. Calculate the value of λ1 as

λ1 =
κmax − κ1
κmax − κmin

,

where κ1 is the median of the uncensored log survival times which is calculated from
the values of time at the beginning of each interval t1 as described in Table 3.2.

3. Calculate the first knot basis function υ1(t) as

υ1(t) = (log t− κ1)
3
+ − λ1(log t− κmin)

3
+ − (1− λ1)(log t− κmax)

3
+,

where t = t1.

4. Calculate the functions Λt1 and Λt2 as

Λt1 = exp [ρ (−θ − β′xi − η′yij) + ρ log t1 + γ1υ1(t)] ,

Λt2 = exp [ρ (−θ − β′xi − η′yij) + ρ log t2 + γ1υ1(t)] .

5. Calculate the cumulative hazard function Hi(t|xi, yi[t]) as

Hi(t|xi, yi[t]) =
ki−1∑
j=0

(
I{τi(j+1)≤t} [Λt2 − Λt1 ]

)
,

6. The hazard function is evaluated at the end of each interval and encountered at each
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event time to become

hi(t1|xi, yi[t]) = {Λt1} ×
{( ρ

t1

)
+

m∑
r=1

3γ1
t1

[
(log t1 − κ1)

2
+ − λ1(log t1 − κmin)

2
+

− (1− λ1) (log t1 − κmax)
2
+

]}

7. The likelihood function is calculated using the hazard and the cumulative hazard func-
tions in 5 and 6.

In this chapter, the standard Weibull AFT model has been extended in two ways: incor-
poration of time-dependent covariates, and adding natural cubic spline functions. These two
extensions modify the standard model to be more attractive to potential users and possibly
more appropriate to fit a variety of survival data. In the next two chapters, the models that
have been described in this chapter will be applied to the heart transplant survival data in
chapter four and for the cornea transplant survival data in chapter five. These two data sets
will be used to apply different models using fixed and time-dependent covariates.
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Chapter 4

Heart transplant model

Heart failure is physiologically the condition in which the heart fails to pump the normal rate
of the blood to achieve the requirements of metabolizing tissues (Zevitz, 2006). There are
many reasons for heart failure such as coronary artery disease (heart attack), hypertension,
heart valve problems, infections (e.g. viruses), alcohol and illicit drug use (such as cocaine)
and congenital heart disease (Jurt et al., 2002). Heart transplantation is the technique of
replacing the failing heart by another suitable donated heart. This procedure is executed for
end-stage congestive heart failure cases, for patients who urgently need the operation and
who have not responded to the stipulated medical therapy (Mancini, 2009). Transplantation
surgery has become an essential procedure for heart failure patients, particularly in the
absence of the availability of other medications. This technique has been developed by
improving three aspects: surgical procedures, immunosuppressive drugs and the network
of the transplantation centres (Janeway, 1994). NHS Blood and Transplant is the organ
donor organization which is responsible for allocating the available donated organs to the
appropriate recipients in the UK. Table 4.1 shows the number of heart transplants in the UK
from 2001 to 2010 (NHS Blood and Transplant, 2010).

Table 4.1: Heart transplants in the UK from 2001 to 2010

Year Number of heart transplants
2001 176
2002 158
2003 148
2004 165
2005 154
2006 141
2007 156
2008 128
2009 130
2010 120

Table 4.2 presents the survival estimates with confidence intervals for one, two, five and
ten years after heart transplant (NHS Blood and Transplant, 2010).
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Table 4.2: Long-term patient survival after first adult heart only transplant in the UK, 1
January 1996 - 31 December 2008

.

Year of No. at risk % Patient survival (95% confidence interval)
transplant on day 0 One year Two year Five year Ten year

1996-1998 708 81 (78-84) 79 (76-82) 72 (68-75) 57 (54-61)
1999-2001 501 80 (76-83) 77 (73-80) 69 (65-73)
2002-2004 387 80 (76-84) 78 (74-82) 70 (65-74)
2005-2008 429 83 (79-86)

Figure 4.1 shows the patient survival in days for adult (≥ 16 years) recipients after first
heart transplant from 1995 to 2006 (NHS Blood and Transplant, 2010).

Figure 4.1: Survivor function (days) for adult (≥ 16 years) recipients after first heart trans-
plant from 1995 to 2006.

4.1 Heart transplant survival data

The first survival analysis for heart transplant aimed to clarify whether the technique really
improved the life expectancy of patients (Turnbull et al., 1974). Many studies based on the
Cox model have been done to investigate the important explanatory variables and find suit-
able models that fit heart transplant survival data well (Villar et al., 2007). Also, parametric
models have been applied to study survival times after heart transplant (Jimenez, 2006 and
Nelson et al., 2007). However, the aim here is to study the same type of data using paramet-
ric models which allow for creatinine level (to measure kidney function) as a time-dependent
covariate. The data used in the analysis were supplied by NHS Blood and Transplant for
1845 patients including all deceased heart beating and orthotropic heart only transplants in
the UK for adult patients (≥ 16 years at time of transplant operation) between 1 April 1995
and 31 March 2006, excluding multi-organ and re-transplant operations. The fixed covariates
that may affect survival times for patients after heart transplant may be divided into four
groups which are related to recipient, donor, transplant and immunosuppressant variables.
In addition creatinine level is used as a time-dependent covariate.
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4.1.1 Recipient variables

Most of the previous studies have agreed that the important recipient factors are sex, age,
physical conditions (e.g. weight and height), recipient primary cardiotherapies disease, dia-
betes status and urgency status of the patient before the operation, Cimato and Jessup
(2002). Table 4.3 describes the recipient variables.

Table 4.3: Description of heart transplant recipient variables

Variable Description

RSEX Recipient sex (1=Male, 2=Female)
RBG Recipient blood group (1=O, 2=A, 3=B, 4=AB)
TX-WEIGHT Recipient weight at transplant (kg)
REG-HEIGHT Recipient height at registration (cm)
CMV Recipient cytomegalovirus infection test result (1=Negative,

2=Positive)
PCD Recipient primary cardiotherapies disease (group=1 for

code 310, group=2 for codes from 313 to 319,
group=3 for code 341 and group=4 for other codes)∗

TX-IN HOSP Recipient in hospital/ITU immediately prior
to transplant (1=No, 2=Yes)

TX-VENT Recipient ventilated at transplant (1=No, 2=Yes)
TX-NYHA Recipient activity status according to New York Health Association

classification at transplant(1=No limitation of activity, 2=Slight
limitation, 3=Marked limitation, 4=Confined to bed/chair)

VASCULAR DISEASE Peripheral vascular disease with intervention
performed or planned (1=No, 2=Yes)

DIABETES Diabetes status (1=No, 2=Yes-insulin dependent,
3=Yes-not insulin dependent)

PREV-HEART SURGERYNumber of previous open heart surgery operations
RAGE Recipient age (years)
R-ETHNIC Ethnicity (groups=1 for white, group=2 for Asian/Asian-British

or Black/Black-British and group=3 for other)
WEIGHT-DIFF Difference of the recipient weights at registration

and transplantation (kg)

∗See PCD codes in the Appendix A1.

4.1.2 Donor variables

Donor age and sex seem to be important variables (Ganesh, 2005). Also, cause of death,
particularly if the donor suffered from explosive brain death, may affect survival times after
heart transplant operation (Mehra et al., 2004). NHS Blood and Transplant (2008) reported
that donor blood group and CMV test result may influence survival times for transplanted
organ. Table 4.4 shows the description of the heart donor variables.

∗See DCOD codes in the Appendix A1.

4.1.3 Transplant variables

Three transplant variables are studied. The first is donor-recipient blood group match and
the second is the urgency status before transplantation. Ischaemic time is defined as the time
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Table 4.4: Description of heart donor variables

Variable Description
DSEX Donor sex (1=Male, 2=Female)
DAGE Donor age at donation (years)
DPAED Donor paediatric/adult indicator

(0=Adult > 14 years, 1= Paediatric ≤ 14 years)
DBG Donor blood group (1=O, 2=A, 3=B, 4=AB)
DCMV Donor CMV test result (1=Negative, 2=Positive)
DCOD Donor cause of death (groups=1 for codes 10 and 11, group=2 for

codes 12 and 13, group=3 for codes from 20 to 39 and group=4
for codes from 40 to 99)∗

DCOUNTRY Country of donor hospital(1=UK, 2=Republic of Ireland, 3=overseas)

between organ removal and surgery. It has been reported that survival time is affected by
ischaemic time (Jimenez, 2006). Table 4.5 describes the three variables.

Table 4.5: Description of heart transplant variables

Variable Description
ABOMATCH Donor - recipient blood group match (1=Identical,

2=Compatible, 3=Incompatible)
URGENT Urgency status of transplant (0=Non-urgent, 1=Urgent)
IT Total ischaemic time, warm and cold (hours)

4.1.4 Immunosuppression variables

Patients after transplantation are at risk of several complications with the possibility of
short survival. In the immediate post transplantation period, the most frequent reasons for
death are: infections and critical organ rejection (Jurt et al., 2002). In order to decrease
these risks, many kinds of immunosuppressant drugs are applied within the 30 days post
transplant. These medications help to treat cholesterol (statins), prevent infection, treat
high blood pressure and other complications which potentially occur after transplant (Jurt
et al., 2002). Table 4.6 presents a list of these drugs.

4.1.5 The time-dependent variable

Creatinine is a chemical waste product from muscle metabolism and generated from creatine.
About 2% of creatine is converted to creatinine daily and is carried through the bloodstream
to the kidneys. Most of the creatinine is filtered out by the kidneys to be disposed of in
the urine. Serum creatinine is commonly used to assess renal function in adults (Di Filippo
et al., 2007). Renal dysfunction may occur after heart transplantation and impact on long-
term prognosis. The study focuses on recipient serum creatinine level which is measured at
registration, one day after transplantation, 90 days later and at then subsequently every year.
This variable is involved as a time-dependent covariate with many changes. Also, it may be
treated either as a continuous variable or as a categorical variable (see section 4.2.2).

Creatinine level depends on body mass, which is affected by age, sex and ethnicity. So
rather than use creatinine level itself, glomerular filtration rate (GFR) is the actual variable

69



Table 4.6: Description of immunosuppression variables

Variable Description
CYCLO Cyclosporin (1=No, 2=Yes)
AZATH Azathioprine (1=No, 2=Yes)
CORTI Corticosteroids (1=No, 2=Yes)
ALG-IND ALG/ATG Induction/Prophylactic (1=No, 2=Yes)
ALG-REJ ALG/ATG for Rejection (rejection resistant) (1=No, 2=Yes)
OKT3-IND OKT3 Induction/Prophylactic (1=No, 2=Yes)
OKT3-REJ OKT3 for Rejection (rejection resistant) (1=No, 2=Yes)
FK506 FK506 (1=No, 2=Yes)
TLI TLI (1=No, 2=Yes)
METHO Methotrexate (1=No, 2=Yes)
OTHER Other drug at transplant (1=No, 2=Yes)

that features in our models. GFR may be estimated as follows. Suppose we have the
creatinine measurement c in µmol/l of a patient, then an estimate of GFR for a patient aged
a years at measurement can be calculated as (NHS Blood and Transplant, 2008).

GFR = 186
( c

88.4

)−1.154

a−0.203 (1− 0.258IF ) (1 + 0.21IB) , (4.1)

where IF = 1 if the patient is female, 0 otherwise, and IB = 1 if the patient is from the black
ethnic group, 0 otherwise. So GFR is used in place of the creatinine level as a continuous
time-dependent variable (note that the age, a, will change for a patient at each measurement
time). Finally, a discrete version of GFR, used by NHS Blood and Transplant, might be
applied where each GFR value was put into one of the following categories: > 89 (normal
kidney function), 60 − 89 (mildly reduced kidney function), 30 − 60 (moderately reduced
kidney function) and < 30 (severely reduced kidney function). Based on survival time in
days of adult (≥ 16 years) heart transplant recipients, product-limit estimate of the survivor
function of these risk groups are shown in Figure 4.2. The estimated survival for the severely
reduced kidney function group is obviously low comparing to the other three groups.

Figure 4.2: Product-limit survival estimates of heart transplant patients with normal, mildly,
moderately, severely reduced kidney function (measured at transplantation day).
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4.2 Model building

4.2.1 Model selection procedures for the fixed covariates

Model selection aims to find a parsimonious standard model. Hence a model selection strategy
described by Collett (2003) was used. This strategy started with the identification of all the
potential explanatory variables that might be related to the hazard after heart transplant
data set. As described in section 3.1, the data included 35 variables in addition to the GFR
as a time-dependent variable. Instead of using automatic variable selection procedures, a
different general method was applied.

The aim of the project is to estimate the effect of the GFR as a time-dependent covariate
on the hazard function. To achieve this aim, the first stage focused on modelling all the
significant fixed covariates in one model to test them with the GFR in the next steps. The
first step in this method was to test the significance of the variables at 10% significance level.
This step was applied for all the 35 variables by fitting single Weibull models including one
variable for each model and comparing them with the null model. The difference in the value
of the likelihood ratio test −2 log L̂ statistic between the one variable model and the null
model was determined. There were 15 variables with significant difference in −2 log L̂ at 10%
significance level, so that these variables were fitted in one model. Table 4.7 summaries the
results for the variables that gave significant difference −2 log L̂ at 10% significance level.

Table 4.7: Results of the significant variables for the Weibull model at 10% based on one
variable model

Model Change in -2logL̂ df P
DSEX 3.98 1 0.0460
DAGE 24.46 1 < 0.0001
DPAED 2.74 1 0.0979
DCMV 9.51 2 0.0087
DCOD 8.32 3 0.0398
URGENT 4.31 1 0.0379
IT 2.92 1 0.0875
RAGE 4.84 1 0.0278
PCD 14.48 3 0.0023
TX-IN HOSP 3.16 1 0.0755
CYCLO 72.02 1 < 0.0001
CORTI 3.78 1 0.0519
OKT3-REJ 8.22 1 0.0042
FK506 3.61 1 0.0578
OTHER 4.76 1 0.0291

The second step is to examine the significant variables at 10% significance level from the
first step. The 15 variables model was constructed and the variables were omitted in turn.
Those variables that did not significantly increase the value of −2 log L̂ at 5% significance
level were omitted from the model. After omitting any variable, the other variables were
examined by dropping them in the absence of this variable. To retain any variable in this
method, it must be significant in the full model and in the absence of any other variable. For
instance, this procedure started with dropping DAGE which significantly increased the value
of −2 log L̂. After dropping DAGE, all the other variables were dropping from the model
that did not contain DAGE to examine them in the absence of DAGE. The resulting model
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from this stage contained the variables that are significant in presence and the absence of the
other components. The significant variables were: DAGE, DCMV, PCD, CYCLO, FK506
and OTHER.

In the third step, all the discarded variables in the second step were added to the result
6 variables model, one at a time, to examine them in the presence of these six variables only.
There were no changes in the significance of the discarded variables. A final check was done:
all the dropped variables from the first and the second steps were added to the model with
six variables modelling in order to be sure that no significant variable was omitted from the
model. This final confirmation that there were six important variables in the heart transplant
data set. Table 4.8 summaries the results values of −2 log L̂ statistic and the p values that
result from dropping each variable in the six variables model.

Table 4.8: Results of the significant variables in the six variable Weibull model

Model Change in -2logL̂ df P
DAGE 8.05 1 0.0046
DCMV 10.81 2 0.0045
PCD 14.52 3 0.0023
CYCLO 154.01 1 < 0.0001
FK506 90.2 1 < 0.0001
OTHER 7.01 1 0.0081

In the previous model, DAGE is used as a continuous covariate. However, to test the
linearity of the effect of, DAGE, a four factor version of DAGE was added to the model
containing DCMV, PCD, CYCLO, FK506 and OTHER. The change in the value of −2 log L̂
for the two models with DAGE as a factor with 4 levels and with linear trend was 0.89 on 2
df (p=0.64) which showed that DAGE should be used as a linear covariate.

Considering the hierarchy principle, after modelling all the single significant variables,
two factor interactions between factors were examined. There were five mixed terms between
DAGE and the other five factors and ten interaction terms among the five factors. The results
showed only two significant interactions for CYCLO with FK506, INTER1, with p=0.0003
and CYCLO with OTHER, INTER2, p=0.003.

4.2.2 Model selection procedures including the time-dependent
covariate

At this stage GFR was added to the model with six fixed covariates and two interactions. In
this case, a counting process input style was used. The original survival times were divided
to intervals according to the times of the creatinine test (i.e., it is assumed that creatinine
test is done at regular times for each patient). The first interval starts with the GFR at
registration and remains constant to the end of the interval (i.e., this interval starts at day
zero and continues for one day). Thus, the second interval starts with the second GFR value,
at transplant date (i.e. at day one), up to the end of this interval and so on.

The next step was estimating all the nine variables in one model, using the second step
in the manual model selection way. Each variable was dropped from the complete model to
examine its significance in the presence of all the nine variables. The omitted variables with
significant increase in the value of −2 log L̂ were retained in the model. For example, DAGE
is retained in the model if it is significant in the complete model and in the reduced models
(with one variable is dropped in turn). All the nine variables significantly increased the
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value of −2 log L̂ when dropped from the complete model. Hence the model must contain
the seven variables DAGE, DCMV, PCD, CYCLO, FK506, OTHER, GFR and the two
interaction variables, CYCLO*FK506 (INTER1) and CYCLO*OTHER (INTER2).

4.3 Fixed covariate models

Following heart transplantation, the hazard of death tends to be high during the first days
after the operation, and then decreases gradually with time as the body accepts the trans-
planted heart. Hence the hazard function can be represented by the AFT Weibull and
log-logistic models when their shape is less than one. The AFT log-normal model may be
used but it often tends to be similar to the log-logistic model (Collett, 2003). Consequently,
it was suggested to use the Weibull and the log-logistic models only as alternatives to the
Cox model. In this section, the results of fitting the suggested models using all the covariates
as fixed including the baseline value for GFR are discussed. This stage will help to compare
the performance of the Cox, standard Weibull, log-logistic and Weibull spline models to fit
the data when no covariates are included as time-dependent.

4.3.1 Fixed covariates model using GFR as a continuous covariate

In this section the results of applying Cox, log-logistic, standard Weibull and Weibull spline
models, using GFR as a continuous covariate, will be discussed.

4.3.1.1 Cox regression model

The first approach to model heart transplant data was the Cox model. This model is straight-
forward to fit using Proc Phreg in SAS. The results of the Cox model with GFR as a fixed
continuous covariate are shown in Table 4.9.
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Table 4.9: Cox model estimates and tests including GFR as a fixed continuous covariate

Covariate MLE SE Wald Likelihood ratio
χ2 P χ2 P

DAGE(β1) 0.0112 0.0035 10.3009 0.0013 10.3200 0.0013
DCMV1(β2) 0.8148 0.5088 2.5644 0.1093 3.3450 0.0674
DCMV2(β3) 1.0440 0.5099 4.1916 0.0406 5.8930 0.0152
PCD1(β4) 0.2161 0.1049 4.2441 0.0394 4.3080 0.0379
PCD2(β5) 0.1042 0.1552 0.4509 0.5019 0.4440 0.5052
PCD3(β6) -0.1490 0.1258 1.4029 0.2362 1.4100 0.2351
CYCLO(β7) -6.8690 0.7909 75.4228 <0.0001 47.6740 <0.0001
FK506(β8) -5.8844 0.8092 52.8824 <0.0001 39.0650 <0.0001
OTHER(β9) -2.2886 0.6038 14.3653 0.0002 15.7770 0.0001
INTER1(β10) 2.7468 0.5623 23.8596 <0.0001 15.7980 0.0001
INTER2(β11) 1.1028 0.3200 11.8773 0.0006 12.7180 0.0004
GFR(β12) -0.0046 0.0023 4.1101 0.0426 4.2240 0.0399

Table 4.9 includes the MLE estimates of the parameters with their standard errors and
the relative hazard for each covariate in addition to Wald and likelihood ratio tests. It is
clear from these results that the covariates DCMV1, PCD2 and PCD3 are non-significant at
the 5% significance level. However, these covariates should be retained in the model because
the changes in −2 log L̂ when they are extracted from the model are 8.956 on 2 df and 12.117
on 3 df and the corresponding p-values are .011 and 0.007 for DCMV and PCD respectively.
The estimated relative hazard of death for GFR level for a patient is 0.995 which means
that the increase in the value of that covariate by one unit (keeping the values of the other
covariates fixed) decreases the hazard by 0.005.

4.3.1.2 Log-logistic model

After heart transplantation, the hazard of death is usually high during the first days as the
result for body updating for the transplanted heart. In the following period, the hazard starts
to decrease while the body responses for the new organ (Collett, 2003). The log-logistic AFT
model with shape less than one, described in section (3.2.2,), may be an appropriate model
for the monotonically decreasing hazard case. This model is straightforward to be estimated
using Proc Lifereg, in addition to the possibility to use Proc Nlp in SAS. Table 4.10 shows
the results of fitting the log-logistic model to the heart transplant data.

As in the Cox model results, DCMV1, PCD1, PCD2 and PCD3 are not significant at the
5% significance level, but likelihood ratio test for excluding them tells that the changes of
dropping DCMV and PCD from the model are 8.548 on 2 df and 9.857 on 3 df with p-values
0.0139 and 0.0198 respectively. GFR covariate is significant with p-value 0.0454 which is
very close to the Cox model result. In the log-logistic model, the acceleration factor for GFR
is .991 which means that decreasing GFR level by one unit accelerates the survival time by
about 1.009 when the other covariates have the same values.
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Table 4.10: Log-logistic model estimates and tests including GFR as fixed continuous cov-
ariate

Covariate MLE SE Wald Likelihood ratio
χ2 P χ2 P

Intercept(β0) -24.8569 3.4132 - - - -
DAGE(β1) -0.0217 0.0077 7.9700 0.0048 8.0100 0.0047
DCMV1(β2) -1.7687 1.2278 2.0800 0.1497 2.5150 0.1128
DCMV2(β3) -2.2407 1.2295 3.3200 0.0684 4.2260 0.0398
PCD1(β4) -0.3925 0.2298 2.9200 0.0875 2.9460 0.0861
PCD2(β5) -0.1220 0.3380 0.1300 0.7181 0.1290 0.7195
PCD3(β6) 0.3735 0.2667 1.9600 0.1614 1.9720 0.1602
CYCLO(β7) 17.3501 1.7973 93.1900 <0.0001 64.3190 <0.0001
FK506(β8) 15.1914 1.7190 78.1000 <0.0001 56.4790 <0.0001
OTHER(β9) 5.5052 1.5296 12.9500 0.0003 13.2340 0.0003
INTER1(β10) -7.0715 1.1517 37.7000 <0.0001 24.4540 <0.0001
INTER2(β11) -2.5540 0.7956 10.3100 0.0013 10.4240 0.0012
GFR(β12) 0.0094 0.0048 3.9200 0.0478 4.0050 0.0454
Shape(ρ) 0.5575 0.0682 - - - -

4.3.1.3 Standard Weibull model

The standard Weibull AFT model may be a good alternative to fit the heart transplant data.
The model was applied using Proc Lifereg and Proc Nlp in SAS. Table 4.11 shows the results
that have been obtained.

Significance of the parameters in the standard Weibull model are very close to the sig-
nificance level of the parameters in the Cox and the log-logistic models. Even though the
PCD2 and PCD3 seem to be not significant at the 5% significance level, the likelihood ratio
test for excluding the PCD suggests to retain this covariate. The GFR is significant with
(p=0.03) and the acceleration factor for this covariate is about 0.99 which is equivalent to
its acceleration factor in the log-logistic model. This may refer to approximately analogous
results for the three models when GFR is treated as a fixed and continuous covariate.

4.3.1.4 Weibull spline model

The Weibull spline model, described in section (3.4.1), was applied using Proc Nlp in SAS
with the codes given in Appendix B. The models with more than 5 knots are expected to
produce unstable curves (Royston and Parmar, 2002). Models with 0, 1, 2, 3, 4 and 5 knots
were fitted using the knot positions as defined in Table 4.12 for the log uncensored survival
times.

Based on the AIC values for the six models that are shown below, the best model is the
5 knots model. The results of fitting this model are given in Table 4.13.

The results in Table 4.13 are similar to the results that have been obtained from the other
three models. The p-values of the different covariates were very similar to the calculated p-
values in the Cox, log-logistic and the standard Weibull model. Also, it was noticed that
the shape parameter changed to about 0.6 in the Weibull model with 5 knots. The MLE
estimates and their standard errors for the different spline models are included in Table 4.14.

The Weibull spline models with 0, 1, 2, 3, 4 and 5 knots were estimated. The survival
function decrease rapidly during the first days after heart transplantation while it is slightly
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Table 4.11: Standard Weibull model estimates and tests including GFR as a fixed continuous
covariate

Covariate MLE SE Wald Likelihood ratio
χ2 P χ2 P

Intercept(β0) -17.8709 3.0001 - - - -
DAGE(β1) -0.0230 0.0075 9.4600 0.0021 9.5230 0.0020
DCMV1(β2) -1.9519 1.0984 3.1600 0.0756 4.2410 0.0395
DCMV2(β3) -2.4530 1.1019 4.9600 0.0260 7.1780 0.0074
PCD1(β4) -0.4528 0.2262 4.0000 0.0454 4.0770 0.0435
PCD2(β5) -0.2197 0.3342 0.4300 0.5109 0.4260 0.5140
PCD3(β6) 0.3293 0.2720 1.4700 0.2260 1.4790 0.2239
CYCLO(β7) 14.3076 1.7022 70.6500 <0.0001 45.6130 <0.0001
FK506(β8) 12.5966 1.7474 51.9700 <0.0001 38.8330 <0.0001
OTHER(β9) 4.6353 1.3009 12.7000 0.0004 13.9730 0.0002
INTER1(β10) -5.7770 1.2103 22.7800 <0.0001 15.2630 0.0001
INTER2(β11) -2.0957 0.6871 9.3000 0.0023 9.9030 0.0017
GFR(β12) 0.0101 0.0049 4.2500 0.0392 4.3860 0.0362
Shape(ρ) 0.4642 0.0807 - - - -

Table 4.12: Knot positions for survival times after heart transplants and the AIC values for
the six estimated models

No. of knots Centile positions Heart transplant survival times (days) AIC
0 - - 9992.12
1 50 398.5 9988.83
2 33, 67 59, 1272.5 9913.86
3 25, 50, 75 19.25, 398.5, 1734 9897.29
4 20, 40, 60, 80 9, 154, 935, 2085 9885.92
5 17, 33, 50, 67, 83 10, 59, 398.5, 1276.5, 2262.5 9864.15

flat with the larger times. Even though the 5 knots model has more knots than the lower
degree models (e.g., 4 knots or less models) to represent the function while it changes fast,
it was found that the knots that are placed at large times are necessary to improve the
model. Placing knots at suitable locations is another issue. In the case of heart transplant
data, the hazard function decreases rapidly after a time between 10 and 50 days. Thus, it
was supposed that select knot location at 10, 50, 100 and 150 days may improve the spline
models. However, it was found that the model significance did not change when different
knots model was estimated using these knot locations. Table 4.14 shows the MLE estimates
and their standard errors for the different models. The shape parameter increased from
about 0.46 in the Weibull spline model with 0 knots to 0.61 in the Weibull spline model with
5 knots. This means that the hazard shape of the model changes as the number of knots
increases as described in Figure 4.7.

As a result to the difference in scales of parameters between the Cox and the parametric
models, it is not suitable to compare parameter estimates and their estimated variances. In
this case, standardized variability, which analogous to the coefficient of variation, can be
used to compare efficiency of parameter estimates across Cox, parametric and spline models.
Nardi and Schemper (2003) defined this measure for parameter estimate β̂ as [sv = σ̂β/|β̂|].
These values were calculated for the GFR, GFR1, GFR2 and GFR3 in the fixed and the time-
dependent models (see Table 4.37). For the fixed continuous GFR case, the sv values were
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Table 4.13: Weibull spline (5 knots) estimates and Wald tests including GFR as a fixed
continuous covariate

Covariate MLE SE Wald
χ2 P

Intercept(β0) -14.2626 2.2512 - -
DAGE(β1) -0.0188 0.0057 10.9239 0.001
DCMV1(β2) -1.4046 0.8334 2.8404 0.0921
DCMV2(β3) -1.7734 0.8355 4.5056 0.0339
PCD1(β4) -0.3395 0.1716 3.9144 0.048
PCD2(β5) -0.1593 0.2539 0.3937 0.5305
PCD3(β6) 0.2603 0.2061 1.5956 0.2067
CYCLO(β7) 11.4729 1.2936 78.6592 <0.0001
FK506(β8) 9.8242 1.3237 55.0846 <0.0001
OTHER(β9) 3.8156 0.9886 14.8966 0.0001
INTER1(β10) -4.5837 0.9207 24.787 <0.0001
INTER2(β11) -1.8398 0.5238 12.3375 0.0005
GFR(β12) 0.0076 0.0037 4.2107 0.0403
First knot (γ1) 0.1106 0.019 33.7689 <0.0001
Second knot (γ2) -0.4077 0.1567 6.7688 0.0094
Third knot (γ3) 2.1091 0.614 11.7979 0.0006
Fourth knot (γ4) -7.3005 1.6646 19.2344 <0.0001
Fifth knot (γ5) 7.8828 1.8274 18.6080 <0.0001
Shape(ρ) 0.611 0.1149 - -

calculated for parameter estimates through the spline models with 0 to 5 knots. According to
this measure there was a small difference among the six models for all parameter estimates.
However, the 1 knot model appears to have the lowest sv-values for all parameter estimates
of the explanatory covariates.
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Table 4.14: MLE estimates and standard errors for the Weibull spline models from 0 to 5
knots including GFR as a fixed continuous covariate

Covariate 0 Knots 1 Knot 2 Knots 3 Knots 4 Knots 5 Knots
MLE SE MLE SE MLE SE MLE SE MLE SE MLE SE

Intercept(β0) -17.8712.997 -20.5633.393 -17.2262.748 -15.9472.525 -14.6142.313 -14.2632.252
DAGE(β1) -0.023 0.009 -0.027 0.010 -0.023 0.008 -0.021 0.007 -0.019 0.007 -0.019 0.007
DCMV1(β2) -1.952 1.099 -2.181 1.259 -1.746 1.018 -1.546 0.934 -1.425 0.855 -1.405 0.833
DCMV2(β3) -2.453 1.101 -2.756 1.262 -2.189 1.020 -1.955 0.936 -1.8 0.857 -1.773 0.835
PCD1(β4) -0.453 0.226 -0.515 0.259 -0.408 0.210 -0.373 0.193 -0.349 0.176 -0.34 0.172
PCD2(β5) -0.22 0.334 -0.241 0.383 -0.178 0.310 -0.165 0.284 -0.159 0.261 -0.159 0.254
PCD3(β6) 0.329 0.272 0.381 0.311 0.324 0.252 0.301 0.231 0.265 0.212 0.26 0.206
CYCLO(β7) 14.307 1.696 16.263 1.946 13.735 1.578 12.727 1.450 11.736 1.328 11.473 1.293
FK506(β8) 12.596 1.739 14.367 1.995 11.752 1.616 10.92 1.484 10.063 1.360 9.824 1.324
OTHER(β9) 4.635 1.300 5.106 1.489 4.58 1.208 4.216 1.108 3.89 1.015 3.816 0.989
INTER1(β10) -5.777 1.211 -6.602 1.388 -5.473 1.124 -5.098 1.031 -4.695 0.946 -4.584 0.921
INTER2(β11) -2.096 0.688 -2.332 0.788 -2.188 0.640 -2.029 0.587 -1.877 0.538 -1.84 0.524
GFR(β12) 0.01 0.004 0.012 0.005 0.009 0.004 0.008 0.004 0.008 0.003 0.008 0.003
Shape(ρ) 0.464 0.081 0.405 0.181 0.5 0.139 0.545 0.127 0.595 0.118 0.611 0.115

First knot (γ1) - - -0.006 0.003 0.280 0.036 0.187 0.029 0.093 0.015 0.111 0.157
Second knot (γ2) - - - - -0.758 0.097 -0.413 0.259 -0.128 0.190 -0.408 0.019
Third knot (γ3) - - - - - - 0.088 0.472 0.212 0.873 2.109 0.614
Fourth knot (γ4) - - - - - - - - -0.661 1.392 -7.301 1.665
Fifth knot (γ5) - - - - - - - - - - 7.883 1.827

Table 4.15: Standardized variability of parameter estimates for the Weibull spline models
from 0 to 5 knots including GFR as a fixed continuous covariate

Covariate 0 Knots 1 Knot 2 Knots 3 Knots 4 Knots 5 Knots

Intercept(β0) 0.165 0.165 0.160 0.158 0.158 0.158
DAGE(β1) 0.375 0.366 0.348 0.349 0.354 0.345
DCMV1(β2) 0.563 0.577 0.583 0.604 0.600 0.593
DCMV2(β3) 0.449 0.458 0.466 0.479 0.476 0.471
PCD1(β4) 0.500 0.503 0.515 0.517 0.506 0.505
PCD2(β5) 1.518 1.588 1.742 1.724 1.638 1.595
PCD3(β6) 0.825 0.817 0.778 0.768 0.799 0.793
CYCLO(β7) 0.119 0.120 0.115 0.114 0.113 0.113
FK506(β8) 0.138 0.139 0.138 0.136 0.135 0.135
OTHER(β9) 0.280 0.292 0.264 0.263 0.261 0.259
INTER1(β10) 0.210 0.210 0.205 0.202 0.202 0.201
INTER2(β11) 0.328 0.338 0.293 0.289 0.287 0.285
GFR(β12) 0.431 0.412 0.444 0.459 0.420 0.409
Shape(ρ) 0.175 0.447 0.278 0.233 0.198 0.188

4.3.2 Fixed covariates model using GFR as a categorical covariate

Following the categorization ofGFR that was described in section 4.2.2, the suggested models
were applied including the three covariates GFR1, GFR2 and GFR3 which correspond to
GFR levels: > 89 (normal kidney function), 60 − 89 (mildly reduced kidney function) and
30− 60 (moderately reduced kidney function) respectively.
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4.3.2.1 Cox regression model

Table 4.16 shows the results of the Cox model with GFR as a fixed categorical covariate.
The table includes the MLE estimates with their standard errors and the relative hazard for
each covariate in addition to the tests of Wald and likelihood ratio. As in the continuous
case, it is noticed that the covariates DCMV1, PCD2 and PCD3 are non-significant at 5%
level. However, these covariates should be retained in the model because the changes in
−2 log L̂ when they are extracted from the model are 9.935 on 2 df and 13.758 on 3 df and
the corresponding p-values are .007 and 0.003 for DCMV and PCD respectively. For the
kidney functions covariates GFR1, GFR2 and GFR3, the p-values are greater than 0.05
which indicate to low significance and then it is preferable to use it as a continuous. The
estimated relative hazards of death for GFR1, GFR2 and GFR3 for a patient, with the same
values for the other covariates, are 0.87, 0.76 and 0.88 respectively which reflect the hazard
of death for patients who in the three groups relative to the hazard of death for patients with
low kidney function (GFR <15).

Table 4.16: Cox model estimates and tests including GFR as a fixed categorical covariate

Covariate MLE SE Wald Likelihood ratio
χ2 P χ2 P

DAGE(β1) 0.0112 0.0035 10.3083 0.0013 10.3300 0.0013
DCMV1(β2) 0.8754 0.5122 2.9208 0.0874 3.8580 0.0495
DCMV2(β3) 1.1126 0.5136 4.6930 0.0303 6.6770 0.0098
PCD1(β4) 0.2415 0.1050 5.2901 0.0214 5.3770 0.0204
PCD2(β5) 0.0998 0.1554 0.4127 0.5206 0.4070 0.5235
PCD3(β6) -0.1461 0.1260 1.3458 0.2460 1.3530 0.2448
CYCLO(β7) -6.7398 0.7973 71.4662 <0.0001 46.1690 <0.0001
FK506(β8) -5.7411 0.8150 49.6280 <0.0001 37.4510 <0.0001
OTHER(β9) -2.3034 0.6041 14.5379 0.0001 15.9690 0.0001
INTER1(β10) 2.6555 0.5653 22.0699 <0.0001 17.5760 <0.0001
INTER2(β11) 1.1038 0.3201 11.8904 0.0006 13.2940 0.0003
GFR1(β12) -0.1367 0.2290 0.3564 0.5505 0.3530 0.5524
GFR2(β13) -0.2779 0.1912 2.1133 0.1460 1.9830 0.1591
GFR3(β14) -0.1265 0.1889 0.4481 0.5033 0.4350 0.5095

Figure 4.3 shows the estimated survival function for two patients with normal and low
kidney functions in the Cox model. The two estimated survival functions are based on the
average values for all the other covariates in order to reflect the effect of changing kidney
functions level on the survival time of the patient after the heart is transplanted. It is obvious
that the patient with normal kidney functions has higher survival than the patient with low
kidney functions.

4.3.2.2 Log-logistic model

In the same manner of the continuous case, the results of applying the log-logistic model are
described in Table 4.17. It was found that the covariates DCMV 1 (according to Wald test)
and PCD1 were not significant at the 5% significance level. However, the three covariates
GFR1, GFR2 and GFR3 were significant at the same significance level.
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Figure 4.3: Estimated survival function for normal and low kidney function patients in the
Cox model based on the average values for the other covariates.

Table 4.17: Log-logistic model estimates and tests including GFR as a fixed categorical
covariate

Covariate MLE SE Wald Likelihood ratio
χ2 P χ2 P

Intercept(β0) -25.2757 3.4458 - - - -
DAGE(β1) -0.0222 0.0077 8.3300 0.0039 8.3700 0.0038
DCMV1(β2) -1.8016 1.2350 2.1300 0.1446 2.6030 0.1067
DCMV2(β3) -2.2781 1.2368 3.3900 0.0655 4.3650 0.0367
PCD1(β4) -0.3992 0.2297 3.0200 0.0823 3.0480 0.0808
PCD2(β5) -0.0882 0.3384 0.0700 0.7945 0.0680 0.7943
PCD3(β6) 0.3873 0.2668 2.1100 0.1466 2.1200 0.1454
CYCLO(β7) 17.3337 1.8023 92.5000 <0.0001 64.1170 <0.0001
FK506(β8) 15.0442 1.7258 75.9900 <0.0001 55.5470 <0.0001
OTHER(β9) 5.7198 1.5388 13.8200 0.0002 14.1230 0.0002
INTER1(β10) -6.9368 1.1560 36.0100 <0.0001 30.6060 <0.0001
INTER2(β11) -2.6606 0.8001 11.0600 0.0009 15.0080 0.0001
GFR1(β12) 1.0655 0.5279 4.0700 0.0435 4.0370 0.0445
GFR2(β13) 1.1225 0.4488 6.2500 0.0124 6.0170 0.0142
GFR3(β14) 0.8958 0.4473 4.0100 0.0452 3.8910 0.0485
Shape(ρ) 0.5580 0.0681 - - - -

4.3.2.3 Standard Weibull model

The results of applying the standard Weibull AFT model are shown in Table 4.18. The
results of this model are very close to the results of the Cox when GFR is treated as a
fixed categorical covariate. Figure 4.4 shows the estimated log hazard functions for the two
patients with normal and low kidney functions in the standard Weibull model. Given that
they have the same average values for the other covariates, it is noticed that the hazard is
higher for the patient with lower kidney functions.
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Table 4.18: Standard Weibull model estimates and tests including GFR as a fixed categorical
covariate

Covariate MLE SE Wald Likelihood ratio
χ2 P χ2 P

Intercept(β0) -17.0870 3.0019 - - - -
DAGE(β1) -0.0232 0.0075 9.5200 0.0020 9.5710 0.0020
DCMV1(β2) -2.1050 1.1088 3.6000 0.0576 4.8970 0.0269
DCMV2(β3) -2.6251 1.1128 5.5600 0.0183 8.1410 0.0043
PCD1(β4) -0.5104 0.2268 5.0600 0.0244 5.1670 0.0230
PCD2(β5) -0.2173 0.3351 0.4200 0.5166 0.4150 0.5194
PCD3(β6) 0.3184 0.2726 1.3600 0.2427 1.3770 0.2406
CYCLO(β7) 14.1003 1.7194 67.2500 <0.0001 44.2910 <0.0001
FK506(β8) 12.3521 1.7621 49.1400 <0.0001 37.3810 <0.0001
OTHER(β9) 4.6926 1.3041 12.9500 0.0003 14.2610 0.0002
INTER1(β10) -5.6158 1.2179 21.2600 <0.0001 16.6110 <0.0001
INTER2(β11) -2.1078 0.6887 9.3700 0.0022 10.3510 0.0013
GFR1(β12) 0.2550 0.4968 0.2600 0.6077 0.2620 0.6087
GFR2(β13) 0.5165 0.4152 1.5500 0.2135 1.4750 0.2246
GFR3(β14) 0.2228 0.4097 0.3000 0.5866 0.2900 0.5902
Shape(ρ) 0.4636 0.0810 - - - -

Figure 4.4: Estimated log hazard function for normal and low kidney function patients in
the standard Weibull model based on the average values for the other covariates.

4.3.2.4 Weibull spline model

The Weibull spline model was applied to fit the same data that incudes GFR as a categorical
covariate. Six models with 0, 1, 2, 3, 4 and 5 knots were fitted using the same method of the
continuous case and the same knot positions as defined in Table 4.12.

The AIC values for the six models, that are shown in the Table 4.19, are approximately
the same when GFR was treated as a continuous. These AIC values give to the 5 knots
model as the best model. The results of this model are given in Table 4.18.

The results in Table 4.20 show that the p value of GFR3 decreased from 0.59 in the
standard Weibull model to less than 0.001 in the Weibull spline model. The other results
are similar in the two models. The MLE estimates and their standard errors for the different
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Table 4.19: The AIC values for the six estimated models

Number of knots AIC
0 knots 9993.45
1 knot 9989.98
2 knots 9914.24
3 knots 9897.75
4 knots 9886.52
5 knots 9864.88

spline models are included in Table 4.21. These results will be investigated using residuals
analysis in section 4.5. Figure 4.5 shows the difference in the estimated hazard functions
between the patients with normal and low kidney function in the Weibull spline model with
5 knots, where the other covaraites were held fixed.

Figure 4.5: Estimated log hazard function for normal and low kidney function patients in
the Weibull spline (5 knots) model where the same value for the other covariates are used.

The Weibull spline models with 0, 1, 2, 3, 4 and 5 knots were estimated. Table 4.21 shows
the MLE estimates and their standard errors for the different models when GFR was treated
as a categorical. There is no important change in the results of table 4.14.

Table 4.22 presents the sv-values of parameter estimates for the Weibull spline models
from 0 to 5 knots when GFR was treated as a fixed categorical covariate. The six models
produce similar values, with a tendency towards lower values in the 1 knot model.
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Table 4.20: Weibull spline (5 knots) model estimates and tests including GFR as fixed
categorical covariate

Covariate MLE SE Wald
χ2 P

Intercept(β0) -13.7007 2.2553 - -
DAGE(β1) -0.0190 0.0057 10.9688 0.0009
DCMV1(β2) -1.5194 0.8428 3.2501 0.0716
DCMV2(β3) -1.9034 0.8453 5.0708 0.0245
PCD1(β4) -0.3841 0.1724 4.9658 0.0260
PCD2(β5) -0.1556 0.2552 0.3717 0.5422
PCD3(β6) 0.2537 0.2070 1.5023 0.2205
CYCLO(β7) 11.3262 1.3093 74.8274 <0.0001
FK506(β8) 9.6411 1.3382 51.9082 <0.0001
OTHER(β9) 3.8697 0.9930 15.1878 0.0001
INTER1(β10) -4.4612 0.9286 23.0819 <0.0001
INTER2(β11) -1.8553 0.5260 12.4422 0.0004
GFR1(β12) 0.1955 0.3771 0.2688 0.6042
GFR2(β13) 0.4240 0.3146 1.8159 0.1780
GFR3(β14) 0.1802 0.3108 0.3361 0.5621
First knot (γ1) 0.1100 0.0190 33.5250 <0.0001
Second knot (γ2) -0.4033 0.1567 6.6283 0.0101
Third knot (γ3) 2.1074 0.6151 11.7363 0.0006
Fourth knot (γ4) -7.3195 1.6706 19.1956 <0.0001
Fifth knot (γ5) 7.9050 1.8357 18.5435 <0.0001
Shape(ρ) 0.6088 0.1157 - -

4.4 Time-dependent covariates models

To extend the suggested models to allow for a time-dependent covariate with many changes,
the regular measures of GFR were used. The extended Cox model in addition to the AFT
parametric models that were described in section 3.3 were applied to model the same data
when GFR is treated as a continuous and as a categorical covariate. The aim here is to
obtain the best model with the best form for modelling that covariate.

4.4.1 Time-dependent covariates model using GFR as a continuous
covariate

The results of fitting the extended Cox model and the parametric alternative models are
supplied in this section when GFR is treated as a continuous time-dependent covariate.

4.4.1.1 Cox regression model

This model is straightforward to be estimated using Proc Phreg in SAS when the style of
data input that was described in 3.3.4 is used. Table 4.23 shows the Cox model estimates and
tests. The DCMV 1, DCMV 2, PCD1, PCD2 and PCD3 were not significant at the 5%
significance level while the other covariates were significant at the same level. The relative
hazard for GFR is 0.993, which means that the increase in GFR level by 1 unit will decrease
the hazard of death by 0.007. When GFR was treated as a categorical time-dependent
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Table 4.21: MLE estimates and standard errors for the Weibull spline models with 0 to 5
knots including GFR as a fixed categorical covariate

Covariate 0 Knots 1 Knot 2 Knots 3 Knots 4 Knots 5 Knots
MLE SE MLE SE MLE SE MLE SE MLE SE MLE SE

Intercept(β0) -17.0872.953 -19.7143.394 -16.5662.757 -15.3252.529 -14.0352.315 -13.7012.255
DAGE(β1) -0.023 0.009 -0.027 0.010 -0.023 0.008 -0.021 0.007 -0.019 0.007 -0.019 0.007
DCMV1(β2) -2.105 1.108 -2.359 1.272 -1.882 1.030 -1.671 0.945 -1.541 0.865 -1.519 0.842
DCMV2(β3) -2.625 1.112 -2.956 1.275 -2.343 1.032 -2.096 0.947 -1.931 0.867 -1.903 0.846
PCD1(β4) -0.510 0.226 -0.582 0.260 -0.462 0.211 -0.423 0.193 -0.395 0.177 -0.384 0.172
PCD2(β5) -0.217 0.334 -0.237 0.384 -0.174 0.311 -0.161 0.285 -0.154 0.261 -0.156 0.255
PCD3(β6) 0.318 0.272 0.371 0.312 0.316 0.253 0.294 0.232 0.259 0.212 0.254 0.207
CYCLO(β7) 14.100 1.713 16.052 1.968 13.546 1.598 12.554 1.466 11.582 1.344 11.326 1.309
FK506(β8) 12.352 1.752 14.111 2.015 11.520 1.635 10.707 1.499 9.872 1.374 9.641 1.338
OTHER(β9) 4.693 1.300 5.176 1.495 4.640 1.213 4.273 1.112 3.944 1.019 3.870 0.993
INTER1(β10) -5.616 1.218 -6.427 1.399 -5.320 1.135 -4.956 1.041 -4.568 0.953 -4.461 0.928
INTER2(β11) -2.108 0.688 -2.348 0.792 -2.205 0.643 -2.045 0.589 -1.891 0.540 -1.855 0.525
GFR1(β12) 0.255 0.496 0.301 0.569 0.245 0.460 0.217 0.422 0.190 0.388 0.196 0.378
GFR2(β13) 0.517 0.414 0.614 0.475 0.533 0.384 0.485 0.352 0.432 0.324 0.424 0.315
GFR3(β14) 0.223 0.409 0.270 0.470 0.242 0.380 0.213 0.348 0.182 0.319 0.18 0.311
Shape(ρ) 0.464 0.081 0.404 0.182 0.498 0.140 0.543 0.128 0.593 0.119 0.609 0.116

First knot (γ1) - - -0.006 0.003 0.282 0.036 0.187 0.029 0.093 0.015 0.110 0.019
Second knot (γ2) - - - - -0.763 0.097 -0.407 0.259 -0.122 0.190 -0.403 0.157
Third knot (γ3) - - - - - - 0.075 0.474 0.206 0.876 2.107 0.615
Fourth knot (γ4) - - - - - - - - -0.668 1.399 -7.320 1.671
Fifth knot (γ5) - - - - - - - - - - 7.905 1.836

Table 4.22: Standardized variability of parameter estimates for the Weibull spline models
from 0 to 5 knots including GFR as a fixed categorical covariate

Covariate 0 Knots 1 Knot 2 Knots 3 Knots 4 Knots 5 Knots

Intercept(β0) 0.173 0.172 0.166 0.165 0.165 0.165
DAGE(β1) 0.375 0.367 0.349 0.351 0.355 0.346
DCMV1(β2) 0.526 0.539 0.547 0.565 0.561 0.555
DCMV2(β3) 0.424 0.431 0.441 0.452 0.449 0.444
PCD1(β4) 0.444 0.447 0.456 0.457 0.448 0.449
PCD2(β5) 1.539 1.619 1.789 1.773 1.697 1.632
PCD3(β6) 0.854 0.841 0.801 0.789 0.820 0.815
CYCLO(β7) 0.122 0.123 0.118 0.117 0.116 0.116
FK506(β8) 0.142 0.143 0.142 0.140 0.139 0.139
OTHER(β9) 0.277 0.289 0.261 0.260 0.258 0.257
INTER1(β10) 0.217 0.218 0.213 0.210 0.209 0.208
INTER2(β11) 0.326 0.337 0.291 0.288 0.285 0.283
GFR1(β12) 1.944 1.891 1.877 1.943 2.041 1.927
GFR2(β13) 0.800 0.774 0.720 0.725 0.749 0.744
GFR3(β14) 1.836 1.742 1.568 1.634 1.751 1.718
Shape(ρ) 0.175 0.450 0.281 0.236 0.201 0.190

covariate, INTER2 was non-significant with p=0.42 and then it was discarded from the
continuous and categorical time-dependent models.
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Table 4.23: Cox model estimates and tests including GFR as a time-dependent continuous
covariate

Covariate MLE SE Wald Likelihood ratio
χ2 P χ2 P

DAGE(β1) 0.0096 0.0036 7.1050 0.0077 7.1130 0.0077
DCMV1(β2) 0.5619 0.5058 1.2342 0.2666 1.4860 0.2228
DCMV2(β3) 0.7870 0.5064 2.4151 0.1202 3.1380 0.0765
PCD1(β4) 0.1715 0.1099 2.4360 0.1186 2.4680 0.1162
PCD2(β5) 0.1002 0.1592 0.3964 0.5290 0.3910 0.5318
PCD3(β6) -0.1529 0.1286 1.4142 0.2344 1.4190 0.2336
CYCLO(β7) -4.9116 0.6156 63.6587 <0.0001 34.9290 <0.0001
FK506(β8) -5.0117 0.7900 40.2420 <0.0001 31.4050 <0.0001
OTHER(β9) -0.0425 0.0188 5.0933 0.0240 9.1690 0.0025
INTER1(β10) 2.3441 0.5557 17.7953 <0.0001 12.4430 0.0004
GFR(η1) -0.0072 0.0024 8.9601 0.0028 9.4080 0.0022

4.4.1.2 Log-logistic model

The log-logistic model with time-dependent GFR was estimated using Proc Nlp in SAS using
the codes that is described in Appendix B. Table 4.24 contains the model estimates and tests.
For GFR, the p-value is <0.0001 which refers to higher significance of GFR when treated
as a continuous time-dependent in the log-logistic model comparing to the same significance
level of the same covariate in the Cox model.

Table 4.24: Log-logistic model estimates and tests including GFR as a time-dependent con-
tinuous covariate

Covariate MLE SE Wald Likelihood ratio
χ2 P χ2 P

Intercept(β0) -27.5181 2.7179 - - - -
DAGE(β1) -0.0287 0.0081 12.5790 0.0004 12.6066 0.0004
DCMV1(β2) -2.0449 1.1408 3.2133 0.0731 3.496 0.0615
DCMV2(β3) -2.7144 1.1431 5.6387 0.0176 4.37 0.0366
PCD1(β4) -0.6087 0.2451 6.1669 0.0130 6.6134 0.0101
PCD2(β5) -0.5374 0.3670 2.1440 0.1431 2.2828 0.1311
PCD3(β6) 0.4021 0.2761 2.1212 0.1453 2.272 0.1319
CYCLO(β7) 17.7089 1.4234 154.7902 <0.0001 106.4128 <0.0001
FK506(β8) 18.4915 1.7686 109.3161 <0.0001 93.636 <0.0001
OTHER(β9) 0.2174 0.0437 24.7402 <0.0001 16.4168 0.0001
INTER1(β10) -8.3485 1.1580 51.9746 <0.0001 39.88 <0.0001
GFR(η1) 0.0198 0.0048 17.1522 <0.0001 19.29 <0.0001
Shape(ρ) 0.4392 0.0627 - - - -

4.4.1.3 Standard Weibull model

The Weibull model with time-dependent covariates was fitted using Proc Nlp in SAS based
on the described codes in Appendix B. In Table 4.25, the results of parameter estimates and
tests of the model are presented. It was found that the p-value of GFR is 0.0335 which
means that the time-dependent GFR is significant at the 5% significance level in the AFT

85



Weibull model. The acceleration factor of GFR is 0.989 which means that decrease the GFR
level by one unit accelerates the survival times by a factor of about 1.01.

Table 4.25: Standard Weibull model estimates and tests including GFR as a time-dependent
continuous covariate

Covariate MLE SE Wald Likelihood ratio
χ2 P χ2 P

Intercept(β0) -10.1907 2.3453 - - - -
DAGE(β1) -0.0218 0.0076 8.2244 0.0041 8.2344 0.0041
DCMV1(β2) -1.6454 1.1162 2.1731 0.1405 2.7875 0.0950
DCMV2(β3) -2.1128 1.1179 3.5719 0.0588 4.9250 0.0265
PCD1(β4) -0.4237 0.2340 3.2799 0.0702 3.3287 0.0681
PCD2(β5) -0.0154 0.3097 0.0025 0.9601 0.0027 0.9586
PCD3(β6) 0.4080 0.2759 2.1864 0.1393 2.1974 0.1382
CYCLO(β7) 10.5081 1.3506 60.5324 <0.0001 33.5722 <0.0001
FK506(β8) 10.9715 1.7377 39.8659 <0.0001 31.1229 <0.0001
OTHER(β9) 0.1032 0.0434 5.6542 0.0174 10.8868 0.0010
INTER1(β10) -4.9304 1.2233 16.2436 0.0001 11.5453 0.0007
GFR(η1) 0.0105 0.0050 4.3630 0.0367 4.5195 0.0335
Shape(ρ) 0.4532 0.0880 - - - -

4.4.1.4 Weibull spline model

The different Weibull spline models with GFR that was treated as a continuous time-
dependent were fitted. In Appendix B, the codes of using Proc Nlp in SAS are introduced
with the method of setting the starting values to apply these codes. As described in the
spline model of the fixed GFR, it was investigated if changing the knot positions to early
times, less than 150 days, improves the model but the results suggested that same positions
as previously applied are sufficient. Consequently, the same knot positions, as described in
Table 4.12, were used to fit the six models with 0, 1, 2, 3, 4 an 5 knots based on the values
of t1 following the counting process style of the data input (see Table 3.2). The AIC values
for the six models in Table 4.26 show that the best choice is the 4 knots model. It can
be noticed that the AIC value of the 0 knots model is different from that obtained in the
fixed model as a result of the method of computing the hazard and the cumulative hazard
functions that form the likelihood function. In the time-dependent case, the hazard function
is calculated based on the last updated value for the time-dependent covariate GFR while in
the fixed case, the baseline value at transplantation day is used. Also, the cumulative hazard
function is calculated using the updated GFR values form transplantation to death or being
censored, so that contribution of the hazard and the cumulative hazard in the likelihood
function changes when GFR is treated as a time-dependent covariate.

Table 4.27 presents the results of fitting the Weibull spline model with 4 knots. It can be
noticed from the table that parameter estimates are similar to those obtained in the standard
Weibull model. The MLE estimates and their standard errors are shown in Table 4.28. For
GFR covariate, it can be seen that the MLE changed from 0.0089 in the 0 knots model to
0.0276 in the 4 knots model. Also, the shape of the model changed from 0.4626 in the 0
knots model to 0.3812 in the 4 knots model.

Table 4.29 presents the sv-values of parameter estimates for the Weibull spline models
from 0 to 5 knots when GFR was treated as a continuous time-dependent covariate. Even

86



Table 4.26: The AIC values for the six estimated spline models with GFR as a continuous
time-dependent covariate

Number of knots AIC
0 knots 11080.74
1 knot 10830.15
2 knots 10692.88
3 knots 10599.98
4 knots 10577.16
5 knots 10614.92

Table 4.27: Weibull spline (4 knots) model estimates and tests including GFR as a time-
dependent continuous covariate

Covariate MLE SE Wald
χ2 P

Intercept(β0) -13.7495 2.9480 - -
DAGE(β1) -0.0278 0.0090 9.5412 0.0020
DCMV1(β2) -2.1005 1.3460 2.4353 0.1186
DCMV2(β3) -2.5940 1.3480 3.7031 0.0543
PCD1(β4) -0.4687 0.2630 3.1760 0.0747
PCD2(β5) 0.0267 0.3980 0.0045 0.9465
PCD3(β6) 0.5790 0.3190 3.2944 0.0695
CYCLO(β7) 10.9052 1.7540 38.6552 <0.0001
FK506(β8) 11.8761 2.1990 29.1674 <0.0001
OTHER(β9) 1.0025 0.2990 11.2416 0.0008
INTER1(β10) -4.8383 1.5980 9.1671 0.0025
GFR(η1) 0.0276 0.0060 21.1600 <0.0001
First knot (γ1) -0.0014 0.0051 0.0754 0.7874
Second knot (γ2) 0.0254 0.0208 1.4912 0.2231
Third knot (γ3) 1.2565 0.1718 53.4907 <0.0001
Fourth knot (γ4) -2.6164 0.3041 74.0245 <0.0001
Shape(ρ) 0.3754 0.1548 - -

though sv-values are similar across the six models, the models with 1 and 4 knots have the
lowest sv-values comparing to those obtained by the 2, 3 and 5 knots model.

4.4.2 Time-dependent covariates model using GFR as a categorical
covariate

In this section, the results of applying the suggested models are presented when GFR is
treated as a categorical time-dependent based on the previous GFR categorization.

4.4.2.1 Cox regression model

After preparingGFR groups within the data with the counting process style of the data input,
the Cox model was fitted using Proc Phreg in SAS. Table 4.30 shows the MLE estimates and
tests. The time-dependent GFR covariates, GFR1, GFR2 and GFR3, it was found that
the three covariates are significant with p-values 0.0399, <0.0001 and <0.0001 respectively.
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Table 4.28: MLE estimates and standard errors for the Weibull spline models from 0 to 5
knots including GFR as a time-dependent continuous covariate

Covariate 0 Knots 1 Knot 2 Knots 3 Knots 4 Knots 5 Knots
MLE SE MLE SE MLE SE MLE SE MLE SE MLE SE

Intercept(β0) -10.1912.344 -9.598 2.200 -13.5462.941 -13.3352.860 -13.7502.952 -13.5282.906
DAGE(β1) -0.022 0.007 -0.024 0.006 -0.028 0.008 -0.027 0.008 -0.028 0.008 -0.027 0.008
DCMV1(β2) -1.645 1.117 -1.813 1.002 -2.169 1.343 -2.059 1.305 -2.101 1.347 -2.096 1.325
DCMV2(β3) -2.113 1.119 -2.219 1.004 -2.663 1.346 -2.540 1.307 -2.594 1.349 -2.584 1.328
PCD1(β4) -0.424 0.234 -0.405 0.196 -0.477 0.263 -0.457 0.256 -0.469 0.264 -0.465 0.260
PCD2(β5) -0.015 0.311 -0.015 0.295 0.020 0.396 0.023 0.385 0.027 0.397 0.023 0.391
PCD3(β6) 0.408 0.276 0.414 0.238 0.575 0.319 0.558 0.310 0.579 0.320 0.566 0.315
CYCLO(β7) 10.508 1.351 9.475 1.301 10.949 1.750 10.655 1.700 10.905 1.755 10.809 1.727
FK506(β8) 10.972 1.740 10.1651.632 11.907 2.194 11.594 2.132 11.876 2.203 11.762 2.165
OTHER(β9) 0.103 0.044 0.596 0.226 1.045 0.298 0.977 0.289 1.003 0.299 0.998 0.294
INTER1(β10) -4.930 1.223 -3.796 1.188 -4.847 1.596 -4.727 1.550 -4.838 1.600 -4.792 1.575

GFR(η1) 0.010 0.004 0.008 0.004 0.026 0.005 0.027 0.005 0.028 0.005 0.027 0.005
Shape(ρ) 0.453 0.088 0.505 0.094 0.376 0.142 0.387 0.149 0.375 0.155 0.381 0.152

First knot (γ1) - - -0.012 0.001 0.052 0.005 -0.010 0.005 -0.001 0.005 0.009 0.007
Second knot (γ2) - - - - -0.164 0.013 0.369 0.036 0.025 0.021 -0.050 0.020
Third knot (γ3) - - - - - - -0.881 0.077 1.256 0.172 0.514 0.064
Fourth knot (γ4) - - - - - - - - -2.616 0.304 -0.992 0.222
Fifth knot (γ5) - - - - - - - - - - 0.281 0.313

Table 4.29: Standardized variability of parameter estimates for the Weibull spline models
from 0 to 5 knots including GFR as a time-dependent continuous covariate

Covariate 0 Knots 1 Knot 2 Knots 3 Knots 4 Knots 5 Knots

Intercept(β0) 0.230 0.229 0.217 0.215 0.215 0.215
DAGE(β1) 0.301 0.248 0.285 0.287 0.286 0.292
DCMV1(β2) 0.679 0.553 0.619 0.634 0.641 0.632
DCMV2(β3) 0.530 0.452 0.505 0.515 0.520 0.514
PCD1(β4) 0.552 0.484 0.552 0.560 0.563 0.559
PCD2(β5) 20.733 19.670 19.814 16.740 14.716 17.003
PCD3(β6) 0.676 0.574 0.555 0.556 0.553 0.556
CYCLO(β7) 0.129 0.137 0.160 0.160 0.161 0.160
FK506(β8) 0.159 0.161 0.184 0.184 0.185 0.184
OTHER(β9) 0.429 0.379 0.285 0.296 0.298 0.295
INTER1(β10) 0.248 0.313 0.329 0.328 0.331 0.329

GFR(η1) 0.442 0.495 0.205 0.191 0.190 0.194
Shape(ρ) 0.194 0.186 0.378 0.385 0.413 0.399

The relative hazard for the three covariates were 0.65, 0.48 and 0.57 respectively.

4.4.2.2 Log-logistic model

The log-logistic model with GFR as a categorical time-dependent was fitted using Proc NLP
in SAS as the same method and codes of the continuous case. Table 4.31 presents the MLE
estimates and tests. As in the Cox model results, there were no differences in the results of
all the fixed covariates. On the other hand, the noticeable changes were in GFR covariates.
The p-values of the covariates, GFR1, GFR2 and GFR3 were 0.2144, 0.0001 and <0.0001
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Table 4.30: Cox model estimates and tests including GFR as a time-dependent categorical
covariate

Covariate MLE SE Wald Likelihood ratio
χ2 P χ2 P

DAGE(β1) 0.0098 0.0036 7.4674 0.0063 7.4780 0.0062
DCMV1(β2) 0.5930 0.5073 1.3663 0.2424 1.6580 0.1979
DCMV2(β3) 0.8366 0.5082 2.7105 0.0997 3.5680 0.0589
PCD1(β4) 0.1953 0.1098 3.1618 0.0754 3.2090 0.0732
PCD2(β5) 0.0964 0.1591 0.3676 0.5443 0.3630 0.5468
PCD3(β6) -0.1391 0.1287 1.1682 0.2798 1.1720 0.2790
CYCLO(β7) -4.8137 0.6166 60.9402 <0.0001 33.9400 <0.0001
FK506(β8) -4.9582 0.7907 39.3187 <0.0001 30.8670 <0.0001
OTHER(β9) -0.0406 0.0193 4.4349 0.9035 7.7820 0.0053
INTER1(β10) 2.2807 0.5561 16.8231 <0.0001 11.8990 0.0006
GFR1(η1) -0.4182 0.2080 4.0414 0.0444 4.2220 0.0399
GFR2(η2) -0.7152 0.1476 23.4751 <0.0001 22.5610 <0.0001
GFR3(η3) -0.5571 0.1227 20.6139 <0.0001 18.6610 <0.0001

respectively.

Table 4.31: Log-logistic model estimates and tests including GFR as a time-dependent cat-
egorical covariate

Covariate MLE SE Wald Likelihood ratio
χ2 P χ2 P

Intercept(β0) -16.8333 2.5418 - - - -
DAGE(β1) -0.0222 0.0079 7.8163 0.0052 7.8285 0.0051
DCMV1(β2) -1.7573 1.2528 1.9674 0.1607 2.3660 0.1240
DCMV2(β3) -2.2807 1.2547 3.3042 0.0691 4.1903 0.0407
PCD1(β4) -0.4905 0.2402 4.1698 0.0412 4.2067 0.0403
PCD2(β5) -0.2184 0.3525 0.3837 0.5356 0.3809 0.5371
PCD3(β6) 0.3085 0.2760 1.2500 0.2636 1.2569 0.2622
CYCLO(β7) 13.1211 1.3511 94.3128 <0.0001 51.7267 <0.0001
FK506(β8) 13.6967 1.7131 63.9273 <0.0001 47.9700 <0.0001
OTHER(β9) 0.1504 0.0448 11.2618 0.0008 10.2725 0.0014
INTER1(β10) -6.1563 1.1651 27.9204 <0.0001 19.2499 <0.0001
GFR1(η1) 0.5765 0.4736 1.4822 0.2235 1.5415 0.2144
GFR2(η2) 1.3415 0.3532 14.4284 0.0001 15.7173 0.0001
GFR3(η3) 1.3171 0.3079 18.2999 <0.0001 19.0994 <0.0001
Shape(ρ) 0.5448 0.0721 - - - -

4.4.2.3 Standard Weibull model

The standard Weibull model using the categorical time-dependent GFR was estimated using
proc Nlp in SAS as in the continuous case. The results of the MLE and tests are presented
in Table 4.32. As in the Cox and the log-logistic models, there were no essential differences
in the results of the fixed covariates between this model and the fixed model. However, the
p-values of GFR1, GFR2 and GFR3 decreased from 0.6087, 0.2246 and 0.5902 in the fixed
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model to 0.1518, <0.0001 and <0.0001 respectively in the time-dependent model.

Table 4.32: Standard Weibull model estimates and tests including GFR as a time-dependent
categorical covariate

Covariate MLE SE Wald Likelihood ratio
χ2 P χ2 P

Intercept(β0) -10.1939 2.3181 - - - -
DAGE(β1) -0.0225 0.0059 14.6867 0.0030 8.8497 0.0029
DCMV1(β2) -1.7207 0.9210 3.4907 0.1236 3.0681 0.0798
DCMV2(β3) -2.2225 0.9717 5.2316 0.0472 5.4981 0.0190
PCD1(β4) -0.4782 0.2156 4.9176 0.0407 4.2590 0.0390
PCD2(β5) -0.1279 9.0439 0.0002 0.7088 0.1386 0.7097
PCD3(β6) 0.3754 0.2282 2.7057 0.1732 1.8647 0.1721
CYCLO(β7) 10.2328 1.4298 51.2165 <0.0001 32.4076 <0.0001
FK506(β8) 10.7843 1.7461 38.1462 <0.0001 30.3785 <0.0001
OTHER(β9) 0.0988 0.0339 8.5058 0.0260 9.3058 0.0023
INTER1(β10) -4.7492 1.3359 12.6378 0.0001 10.8899 0.0010
GFR1(η1) 0.6219 0.4692 1.7567 0.1584 2.0540 0.1518
GFR2(η2) 1.4230 0.3419 17.3242 <0.0001 20.0632 <0.0001
GFR3(η3) 0.6043 0.1412 18.3238 <0.0001 19.2450 <0.0001
Shape(ρ) 0.4541 0.0874 - - - -

Figure 4.6: Estimated baseline survivor functions for the Cox and the standard Weibull
models.

Figure 4.6 compares the baseline survivor functions for the Weibull and the Cox models.
It can be seen that the baseline survivor function for the Weibull model is smoother than the
survivor function of the Cox model.

4.4.2.4 Weibull spline model

The six Weibull spline models with 0, 1, 2, 3, 4 and 5 knots were fitted to the data that
includes the categorical time-dependent GFR . The same knot positions that were assigned
for the value of t1, as in the continuous case in section 4.4.1. The AIC statistic gives the 4
knots model as the best choice as shown in Table 4.33.
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Table 4.33: The AIC values for the six estimated spline models with GFR as a categorical
time-dependent covariate

Number of knots AIC
0 knots 11063.32
1 knot 10811.91
2 knots 10673.76
3 knots 10581.88
4 knots 10558.97
5 knots 10605.62

Table 4.34 presents the MLE and tests for the 4 knots model. For all the fixed covari-
ates, there are slight decreases in the p-values in comparison to the other models in all the
previous cases. Moreover, the p-values of GFR1, GFR2 and GFR3 were 0.0013, <0.0001
and <0.0001 respectively. The accelerator factors of the three covariates were 0.17, 0.09 and
0.19 respectively.

Table 4.34: Weibull spline (4 knots) model estimates and tests including GFR as a time-
dependent categorical covariate

Covariate MLE SE Wald
χ2 P

Intercept(β0) -13.5765 2.9166 - -
DAGE(β1) -0.0284 0.0087 10.6928 0.0011
DCMV1(β2) -2.163 1.3429 2.5943 0.1073
DCMV2(β3) -2.6834 1.3454 3.9778 0.0461
PCD1(β4) -0.5331 0.2619 4.1447 0.0418
PCD2(β5) 0.032 0.3950 0.006 0.936
PCD3(β6) 0.548 0.3172 2.984 0.084
CYCLO(β7) 10.663 1.7466 37.273 <0.0001
FK506(β8) 11.735 2.1882 28.759 <0.0001
OTHER(β9) 1.106 0.2980 13.764 0.000
INTER1(β10) -4.681 1.5903 8.665 0.003
GFR1(η1) 1.740 0.5389 10.420 0.001
GFR2(η2) 2.326 0.3657 40.470 <0.0001
GFR3(η3) 1.629 0.3014 29.220 <0.0001
First knot (γ1) -0.001 0.005 0.035 0.852
Second knot (γ2) 0.025 0.021 1.373 0.241
Third knot (γ3) 1.259 0.172 53.446 <0.0001
Fourth knot (γ4) -2.620 0.305 73.942 <0.0001
Shape(ρ) 0.3775 0.1516 - -

Figure 4.7 compares the log baseline survivor functions for the Weibull spline model (4
knots) with the standard Weibull model. It can be seen that the function of the spline model
decreases swiftly than the standard model reflecting the difference in flexibility between the
two models.
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Figure 4.7: Estimated log baseline survivor functions for the standard Weibull and the
Weibull spline (4 knots) models.

Table 4.35 contains the MLE and their standard errors for the six Weibull spline models.
For GFR1, GFR2 and GFR3, it is noticed that the MLE are similar for the models from
1 to 5 knots, but those estimates are different from the estimates of the 0 knots (standard)
model. The shape parameter changed from 0.4541 in the 0 knots model to 0.3775 in the 4
knots model.

Table 4.35: MLE estimates and standard errors for the Weibull spline models from 0 to 5
knots including GFR as a time-dependent categorical covariate

Covariate 0 Knots 1 Knot 2 Knots 3 Knots 4 Knots 5 Knots
MLE SE MLE SE MLE SE MLE SE MLE SE MLE SE

Intercept(β0) -10.1942.317 -9.9782.186 -13.4212.910 -13.1762.830 -13.5772.913 -13.1842.838
DAGE(β1) -0.023 0.007 -0.0220.006 -0.028 0.008 -0.028 0.008 -0.028 0.008 -0.028 0.008
DCMV1(β2) -1.721 1.117 -1.7221.006 -2.230 1.341 -2.118 1.303 -2.163 1.341 -2.130 1.307
DCMV2(β3) -2.223 1.121 -2.1131.008 -2.749 1.344 -2.624 1.306 -2.683 1.344 -2.637 1.309
PCD1(β4) -0.478 0.233 -0.3940.196 -0.540 0.262 -0.520 0.254 -0.533 0.262 -0.523 0.255
PCD2(β5) -0.128 0.344 0.029 0.295 0.031 0.394 0.026 0.383 0.032 0.394 0.025 0.384
PCD3(β6) 0.375 0.275 0.414 0.238 0.546 0.317 0.528 0.308 0.548 0.317 0.528 0.309
CYCLO(β7) 10.233 1.350 8.558 1.303 10.684 1.743 10.423 1.694 10.663 1.743 10.436 1.698
FK506(β8) 10.784 1.736 9.346 1.634 11.746 2.183 11.459 2.123 11.735 2.185 11.473 2.129
OTHER(β9) 0.099 0.044 0.860 0.224 1.145 0.299 1.076 0.290 1.106 0.299 1.083 0.291
INTER1(β10) -4.749 1.222 -3.7961.188 -4.675 1.587 -4.578 1.542 -4.681 1.587 -4.581 1.546
GFR1(η1) 0.622 0.441 1.308 0.404 1.633 0.540 1.685 0.522 1.740 0.540 1.676 0.526
GFR2(η2) 1.423 0.313 1.709 0.273 2.253 0.365 2.250 0.355 2.326 0.365 2.247 0.356
GFR3(η3) 0.604 0.130 1.212 0.226 1.616 0.302 1.576 0.293 1.629 0.302 1.576 0.294
Shape(ρ) 0.454 0.087 0.505 0.094 0.378 0.139 0.389 0.146 0.378 0.152 0.388 0.146

First knot (γ1) - - -0.0120.001 0.053 0.005 -0.010 0.005 -0.001 0.005 0.010 0.007
Second knot (γ2) - - - - -0.165 0.013 0.368 0.036 0.024 0.021 -0.051 0.020
Third knot (γ3) - - - - - - -0.880 0.077 1.259 0.172 0.515 0.064
Fourth knot (γ4) - - - - - - - - -2.620 0.305 -0.993 0.223
Fifth knot (γ5) - - - - - - - - - - 0.281 0.314

Table 4.36 presents the sv-values of parameter estimates for the Weibull spline models
from 0 to 5 knots when GFR was treated as a time-dependent categorical covariate. The 0
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Table 4.36: Standardized variability of parameter estimates for the Weibull spline models
from 0 to 5 knots including GFR as a time-dependent categorical covariate

Covariate 0 Knots 1 Knot 2 Knots 3 Knots 4 Knots 5 Knots

Intercept(β0) 0.227 0.219 0.217 0.215 0.215 0.215
DAGE(β1) 0.287 0.270 0.283 0.275 0.283 0.276
DCMV1(β2) 0.649 0.584 0.601 0.615 0.620 0.613
DCMV2(β3) 0.504 0.477 0.489 0.498 0.501 0.497
PCD1(β4) 0.488 0.498 0.485 0.489 0.491 0.488
PCD2(β5) 2.684 10.174 12.715 14.732 12.318 15.361
PCD3(β6) 0.734 0.574 0.581 0.584 0.579 0.586
CYCLO(β7) 0.132 0.152 0.163 0.163 0.163 0.163
FK506(β8) 0.161 0.175 0.186 0.185 0.186 0.186
OTHER(β9) 0.445 0.260 0.261 0.270 0.270 0.269
INTER1(β10) 0.257 0.313 0.340 0.337 0.339 0.338
GFR1(η1) 0.708 0.309 0.330 0.310 0.310 0.314
GFR2(η2) 0.220 0.160 0.162 0.158 0.157 0.158
GFR3(η3) 0.215 0.186 0.187 0.186 0.185 0.186
Shape(ρ) 0.192 0.186 0.368 0.375 0.402 0.376

knots model has the lowest sv-values for parameter estimates of the PCD2, CYCLO, FK506
and the INTER1. As in the continuous time-dependent case, it is noticed that the models
with 1 and 4 knots produce the lowest sv-values comparing to those produced by the models
with 2, 3 and 5 knots.

4.5 Model evaluation

In this section a comparison of the standardized variability for the parameter of interest,
GFR, in addition to the Cox-Snell and martingale residuals will be discussed. These com-
parisons are considered as methods to evaluate each model to obtain the most adequate
model that fits the heart transplant data.

4.5.1 Model comparison

Table 4.37 contains the MLE with their sv-values for GFR covariate across the fixed and
the time-dependent models. For the fixed continuous case, the sv-values for the log-logistic
and the Weibull spline models are less than those obtained from the Cox and the Weibull
standard Weibull models. For the fixed categorical case, the log-logistic model has the lowest
sv-values for the three covaraites, GFR1, GFR2 and GFR3. According to these results, the
log-logistic and the Weibull splines have more significance for the continuous GFR, while the
log-logistic produces more efficient estimates of the categorical GFR parameters.

For the time-dependent continuous case, it was found that the sv-value of the Cox, log-
logistic, and standard Weibull models were about 0.33, 0.24 and 0.44 but the Weibull spline
model has the lowest sv-value (0.19) for that parameter estimate. For the time-dependent
categorical case, the sv-values for the GFR1, GFR2 and GFR3 in the Weibull spline model
are obviously lower those produced in the Cox , standard Weibull and the log-logistic models.
Regarding to GFR continuous and categorical covariate, these results show that the Weibull
spline model has the more efficient parameter estimates comparing to the other three com-
petitive models. These results will be examined with residual analysis in the next section
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and with simulations in chapter seven.

Table 4.37: Standardized variability (sv-values) for the fixed and time-dependent GFR cov-
ariates across the four models

Models Cox Log-logistic Weibull Spline
MLE sv MLE sv MLE sv MLE sv

Fixed GFR -0.005 0.500 0.558 0.122 0.010 0.431 0.008 0.409
GFR1 -0.137 1.675 1.066 0.495 0.255 1.944 0.196 1.927
GFR2 -0.278 0.688 1.123 0.400 0.517 0.8 0.424 0.744
GFR3 -0.127 1.493 0.896 0.499 0.223 1.836 -0.181 1.718

Time-dependent GFR -0.007 0.333 0.020 0.242 0.009 0.442 0.028 0.19
GFR1 -0.418 0.497 0.577 0.822 0.622 0.708 1.740 0.31
GFR2 -0.715 0.206 1.342 0.263 1.423 0.22 2.326 0.157
GFR3 -0.557 0.220 1.317 0.234 0.604 0.215 1.629 0.185

4.5.2 Residuals analysis

Two types of residuals were used in model checking.

1. Cox-Snell residuals: This residual is

rCi = Ĥi(ti),

where Ĥi(ti) is the estimated cumulative hazard function for the ith individual. When
the cumulative hazard function of the residuals is plotted against the residuals, a
straight line with zero intercept and unity slope indicates that the model fits the data
well and then departures from the straight line imply lack of fit. To apply these resid-
uals for observations with multiple records in time-dependent data, the residuals were
computed at the last interval for each observation.

2. Martingale residuals: These residuals are computed from the Cox-Snell residuals as

rMi = δi − rCi,

where δi is the censoring indicator function for the ith observation and rCi is the Cox-
Snell residual. To evaluate the model adequacy, these residuals are plotted against the
observations or the survival times and then studying the behavior of these residuals
helps to assess satisfaction of the fitted model. For the time-dependent covariates,
when each observation has multiple records, the martingale residuals were computed
for each record and then were summed for each observation (Therneau and Gambsch,
2000).

4.5.2.1 Fixed covariates residuals

Figure 4.8 shows the plotted cumulative hazard for the Cox-Snell residuals for the four
models with the fixed continuous GFR. The plot of the Cox model gives straight line with
zero intercept and approximately unity slope while the plot of the Weibull spline model gives
some deviations from the straight line affecting the straight line properties. The residual
plots of the log-logistic and standard Weibull models are not straight line with unity slope.
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Figure 4.9 shows the plotted martingale residuals against the survival times for the differ-
ent models. The martingale residuals plots are similar for the four models. The plots show
some large negative martingale values for the low survival times of patients with age above
45 years and relatively low GFR level.

Figure 4.10 shows the plotted cumulative hazards for the Cox-Snell residuals for the
models with GFR as a categorical fixed covariate. As in the previous case, the plots of the
Cox and the Weibull spline models. In contrary, many deviations can be noticed in the plots
of the log-logistic and the Weibull standard models which refer to less adequacy comparing
to other two models.

In Figure 4.11, the martingale residuals are plotted with survival times for the same
fixed categorical GFR models. The residuals plots are very similar for the different models
appearing some large negative martingale values with the survival times less than 1000 days.

Figure 4.8: Cox-Snell residuals for the models with fixed continuous GFR.
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Figure 4.9: Martingale residuals for the models with fixed continuous GFR.

Figure 4.10: Cox-Snell residuals for the models with fixed categorical GFR.

4.5.2.2 Time-dependent covariate residuals

Figure 4.12 presents the plotted cumulative hazard for the Cox-Snell residuals for the models
with GFR as a continuous time-dependent. The plot of the Cox model gives straight line
with zero intercept and approximately unity slope. The Weibull spline model residuals plot
shows some deviations from the straight line. The plots of the log-logistic and the Weibull
standard models do not give straight line that indicate to poor fit comparing to the other
models.
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Figure 4.11: Martingale residuals for the models with fixed categorical GFR.

Figure 4.12: Cox-Snell residuals for the models with time-dependent continuous GFR.

Figure 4.13 presents the martingale residuals for the continuous time-dependent GFR
models. As the previous cases, there are some large negative martingale values in the times
less than 1000 days. Also, it can be noticed many large negative martingale values for the
times after the first 1000 days in the standard Weibull model. This plot suggests that the
standard Weibull model may not adequately fit the data in comparison to the other three
models.
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Figure 4.13: Martingale residuals for the models with time-dependent continuous GFR.

Figure 4.14 gives the cumulative hazard plots for the Cox-Snell residuals for the models
with categorical time-dependent GFR. The straight line of the Cox model has zero intercept
and slop very close to one. However, the plots of the other three models have many deviations
affecting the adequacy of these models. Also, it can be noticed that the deviations from the
straight line in the Weibull spline plot are less than those found in the log-logistic and the
Weibull standard plots.

Figure 4.14: Cox-Snell residuals for the models with time-dependent categorical GFR.

In Figure 4.15, the martingale residuals for the models with the categorical time-dependent
GFR. For all the models, there some large negative martingales for the low survival times,
but there many large negative martingales for the times after 2000 days in the standard
Weibull model.
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Figure 4.15: Martingale residuals for the models with time-dependent categorical GFR.

4.6 Concluding remarks

The aim of this chapter was to develop an adequate model to fit the heart transplant data.
In model building procedures, based on data on hand, it has been found that DAGE, DCMV,
PCD and immunosuppressant covariates: CYCLO, FK506 and OTHER are significant. The
GFR, as a measure of the kidney functions status, has been transformed to glomerular
filtration rate GFR using (4.1). This covariate was treated in the models as a continuous
and categorical where baseline values (fixed) and follow-up values (time-dependent) were
used.

The levels of the covariates: DCMV and PCD were not significant at the 5% significance
level in the fitted models. However, these covariates were retained in the models for two
reasons:

• The criteria to retain any categorical covariate is the likelihood ratio test with degree
of freedom equals to the number of categories-1. Consequently, the two covariates were
significant at the 5% significance level according to the likelihood ratio test.

• In the time-dependent modelling, the effect of treatment difference may be masked when
the time-dependent covariate accounts for the levels of that treatment (Collett, 2003),
so that the effect of some categories of the DCMV and the PCD may be disappeared
when GFR was treated as a time-dependent covariate.

Consequently, these covariates must be retained in the model to study all the factors that
possibly affect survival time after heart transplantation.

The first stage to fit the data was executed by applying the competitive models using
GFR as a fixed continuous and categorical covariate. For the fixed continuous case, there
was no significant difference among the models based on the likelihood ratio tests for the
fixed covariates. However, in the categorical case, GFR covariates were not significant at 5%
significance level in the Cox, standard Weibull and Weibull spline models. It was found that
the effect of GFR covariates are highly significant in the log-logistic model.
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Based on the residual analysis, the Cox-Snell residuals plot suggests that the Cox model
fits data better than the other three models. For the martingale residuals, it was shown some
large negative martingale values with low survival times explaining the high hazards within
the first six months after the surgery. In conclusion, for the fixed GFR case, both of residuals
types refer to the Cox model as the most suitable model to fit such data and the Weibull
spline model that is more adequate than the log-logistic and the Weibull standard models.

Secondly, the alternative four models were fitted using GFR as a continuous and a cat-
egorical time-dependent covariate. For the continuous case, GFR was significant in all the
models except the log-logistic model. For the categorical case, GFR2 and GFR3 were signi-
ficant in all the models. However, GFR1 was significant only in the Weibull spline model at
the 5% significance level. Based on the sv-values of GFR, the four models have lower values
in the continuous case comparing to the categorical case. On the other hand, parameter
estimates of the categorical time-dependent covariates GFR2 and GFR3 have lower sv-values
than those obtained in the continuous case. The results of the sv-values suggest that the
Weibull spline model tends to have more efficient parameter estimates for the continuous and
the time-dependent GFR in the fixed and the time-dependent case.

In the residual analysis, the Cox-Snell residual plots showed that the Cox and the Weibull
spline models fit the data better than the log-logistic and the standard Weibull models. The
martingale residuals were similar for the different models, the plot of the standard Weibull
model suggest that the model does not fit the model well particularly with the high survival
times.

In conclusion, the results of continuous and categorical GFR in the fixed case show that
the log-logistic model has the lowest sv-values while the Weibull spline model has the lowest
sv-values in the time-dependent case. On the other hand, the residual analysis suggests that
the Cox model is more adequate to fit the heart data than the log-logistic, standard Weibull
and the Weibull spline models. Also, the Weibull spline model fits slightly better than the
log-logistic and the standard Weibull models. These results will be examined by simulation
study with more details in chapter seven in order to assess the relative efficiency of each
models to fit such data.
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Chapter 5

Cornea transplant survival model

The cornea is the transparent front part of the eye that reflects, with the lens, the light,
producing about 65% of the eye’s total optical power (Goldstein, 2007). The need for cornea
transplant arises for different reasons such as dystrophy, Ectasia and infections. The cornea
is damaged when corneal dystrophy occurs and then vision deteriorates. This dystrophy
causes a pain which may not be treated by the usual medications. In this case, a corneal
transplant becomes an urgent procedure. A corneal transplant is a technique for eradicating
a damaged cornea and grafting a healthy donated one, from a suitable donor. This donated
cornea is taken after checking the donor’s eye in order to verify there is no infection in the
new cornea. In the UK, 3,061 patients had corneal transplants during 2010. However, the
number of the donated corneas was 4,115 in the same year. Table 5.1 shows the number of
grafted corneas and the number of donated corneas from 1999 to 2008.

Table 5.1: The number of grafted and donated corneas in the UK from 2001 to 2010 (NHS
Blood and Transplant, 2010).

Year Number of grafted corneas
2001 2320
2002 2060
2003 2301
2004 2364
2005 2377
2006 2505
2007 2407
2008 2491
2009 2734
2010 3061

Table 5.2 shows the graft survivor estimates with confidence intervals for one, two and
five years from 1 January 2001 to 31 December 2010 (NHS Blood and Transplant, 2010).

Figure 5.1 shows the survivor function of first eye graft from 1994 to 2001 (NHS Blood
and Transplant, 2008).

5.1 Cornea transplant data

In corneal transplantation, the hazard of graft failure is low, especially within the first 10
years after the operation. On the other hand, the risk of failure may increase, particularly
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Table 5.2: Cornea graft survival in the UK, 1 January 2001 - 31 December 2010

Year No. at risk % Graft survival (95% confidence interval)
on day 0 One year Two year Five year

1999-2001 3343 93 (92-94) 87 (86-88) 77 (75-78)
2002-2004 3667 93 (92-94) 86 (85-87) 74 (72-75)
2005-2008 3757 93 (92-94)

Figure 5.1: Survivor function of first eye graft from 1994 to 2001

in the case of receiving a graft in each eye. Many studies based on the Cox regression model
have been done to estimate the survivor function after corneal transplantation and the factors
that may affect the survival times (Inoue et al., 2001). The aim of this study is to use all
the factors that were used by most of the previous cornea transplant survival studies and the
presence of a second eye graft as a binary time-dependent covariate. The analysis is based
on NHS Blood and Transplant data for 1571 patients who received corneal transplantation
in their first eye between 1 January 1994 and 6 December 2001. Of those, 257 patients had
a failure in their first eye graft before receiving the second eye graft. The covariates that
may affect the survival time for the grafted cornea were grouped to four categories which are
related to recipient, donor, donated organ and the time-dependent covariate.

5.1.1 Recipient variables

The recipient factors that might be related to the cornea survival times are age, sex and
sex matching with the donor. There are 11 reasons for needing a cornea graft such as:
corneal infection, opacification and corneal dystrophies. These reasons were grouped into 3
categories. Table 5.3 describes the recipient variables.

∗See CAUSE codes in the appendix (A2).

5.1.2 Donor variables

In cornea transplant analysis, donor age and sex may be important covariates. Also, the
covariate SOLID refers to whether the donor is an ocular donor (corneal donor only) or is a
multi-organ donor. Table 5.4 shows the description of the cornea donor variables.
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Table 5.3: Description for recipient variables

Variable Description
RSEX Recipient sex (1=Male, 2=Female)
RMATCH Donor sex- Recipient sex
RAGE Recipient age (years)
CAUSE Cause for transplantation (diagnosis) (groups=1 for diagnosis 1,

group=2 for diagnosis 2 and group=3 for diagnoses from 3 to 11)∗

Table 5.4: Description of donor variables

Variable Description
DSEX Donor sex (1=Male, 2=Female)
DAGE Donor age at donation (years)
SOLID Donor donation (1=ocular donor only, 2=multi-organ donor)

5.1.3 Description for the donated cornea variables

The properties of the donated cornea may affect the survival times. Firstly, the endothelial
cell density, the greater density refers to better quality. Secondly, the time from the death
to the removal of the donated cornea. Thirdly, the storage time of the donated cornea.
Fourthly, the eye bank, Bristol and Manchester, from which the cornea comes from. Finally,
the storage temperature of the donated cornea, and the time between the death and the
removal of the eye from the body.

Table 5.5: Description for the donated cornea variables

Variable Description

DE.HRS The time from death to the removal of the donated cornea (hours)
ENDO.ASS The quality of the donated cornea (1=excellent, 2=very good, 3=good, 4=poor)
CELSS.MMThe endothelial cell density for the donated cornea (cells)
BANK Eye banks of Bristol and Manchester (1=the donated cornea from Bristol bank,

2=the donated cornea from Manchester bank)
STORAGE The storage period of the donated cornea (days)
ST4.34 The storage temperature for the donated cornea (1=4◦C, 2=34◦C)

5.1.4 The time-dependent covariate

In some circumstances, having had an initial graft in one eye, a patient may subsequently
also require a graft in the other eye (a ”second graft”). One possibility is that having the
second operation puts pressure on the patient’s system and so reduces the survival time of
the first graft. Another possibility is that the presence of the second graft removes stress on
the first graft and hence the first graft survival is increased. Hence, the effect of the second
eye graft might be important to study the survivor function of the first eye graft. In this
study, the second eye graft (SECOND) is studied as a time-dependent covariate with at most
one change. This covariate takes the value 0 when the recipient has not had the operation
in his second eye, and 1 when the second eye operation has been done.

Figure 5.2 shows the Kaplan-Meier survival curves of the two groups: those that had a
second graft during the observation period and those who did not have a second graft during
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Figure 5.2: Survival curves based on Kaplan-Meier estimates for non-second graft and second
graft cornea.

the same period. The survivor of the group with second graft is higher than the survivor of
the other group for the data of survival times that are less than about 1600 days.

5.2 Model building

In cornea transplant data, the most appropriate model can be built by determining the lowest
number of the explanatory variables that are related to the first eye graft hazard function.
As described in section 5.1, the data set includes 13 fixed explanatory variables, and the
second eye graft as a time-dependent covariate.

Following the strategy described in section 4.2.1, all the 13 covariates were tested at the
10% significance level using single variable Weibull model. The comparison of each model
with the null model determines whether the covariate must be retained in the model. This
step was applied through the Weibull model for the 13 fixed explanatory variables. The
results are shown in Table 5.6.

Table 5.6: Results of the significant variables for the Weibull model at 10% based on one
variable model

Model Change in -2logL̂ df P
RAGE 28.36 1 <0.0001
CAUSE 75.14 2 <0.0001
DAGE 12.11 1 0.0005
SOLID 2.98 1 0.0843
STORAGE 4.56 1 <0.0327

The five significant covariates at the 10% significance level were involved in one model,
and then all the covariates were omitted in turn. The covariate that did not increase the
−2 log L̂ at 5% was discarded from the model. Furthermore, after discarding any covariate,
all the other retained covariates were examined in the absence of the discarded covariate.
This means that the final model contains the significant covariates with p ≤ 0.05 not only
in the presence of the other covariates, but also in the absence of them. For illustration, the
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covariate RAGE was dropped from the five covariates model, and it significantly increased
the −2 log L̂ with (p ≤ 0.0001). This step was followed by dropping RAGE in the absence
of the other four covariates, and it increased the value of −2 log L̂ with (p = 0.027). Hence,
RAGE was retained in the model. The covariates that are significant from this step are
RAGE, CAUSE and STORAGE.

In the third step, the three discarded covariates STORAGE, DAGE and SOLID were
added to the model that contains RAGE and CAUSE, one at a time. This procedure is
performed to check their significance in the presence of the two significant covariates only as
a final check. There were no new results from this procedure, so that the model must contain
the RAGE and CAUSE only. Table 5.7 summaries the values of −2 log L̂ statistic for the 2
variables model and their significance.

Table 5.7: Results of the significant variables in the 2 variables Weibull model

Model Change in -2logL̂ df P − value
RAGE 6.16 1 0.0131
CAUSE 14.7 2 0.0021

In this model, RAGE was modelled as a continuous covariate, so that a test of linearity
might be necessary. This procedure was performed by adding RAGE as a categorical variable
with 4 levels to the model that contains CAUSE, and comparing the result when the model
includes CAUSE and RAGE as a qualitative (with values 1, 2, 3 and 4). The change in the
value of −2 log L̂ for the two models with the two forms of RAGE was 1.23 on 2 df (p = 0.55).
Hence the effect of RAGE should be modelled with a linear term. Finally, the interaction
between the covariates RAGE and CAUSE was examined. The change in −2 log L̂ when
the interaction between RAGE and the levels of CAUSE was 4.12 on 2 df (p = 0.1275).
Consequently, there is no interaction term between the two covariates and then the model
includes the two fixed covariates RAGE and CAUSE in addition to the time-dependent
covariate second eye graft (SECOND). In order to add the SECOND as a time-dependent
covariate, a counting process input style has been used with two records for patients who
have done a second graft. The original survival time was divided to two intervals according
to the time of second eye graft. The time in the first interval starts from 0 to the time of the
second eye graft, and the second interval starts from the time of the second eye graft to the
original survival time (see Table 3.2 for more details).

5.3 Time-dependent covariates models

The SECOND covariate was treated as a binary time-dependent covariate, and then the four
models were applied to the data in this case. In this section, the results of fitting the four
models are presented to investigate the performance of each model to present such data when
it is allowed for SECOND values to change over time.

5.3.1 Cox model

The Cox model was fitted to the data that includes SECOND as a time-dependent covariate.
Table 5.8 presents the results of MLE and tests for the four covariates. All the covariates
are significant at the 5% significance level. Also, it is noticed that the relative hazard of the
SECOND is 1.667 which means that the second eye graft increases the first graft failure by
0.667 where the other covariates are held fixed. The effect of second graft on the hazard
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of the first graft failure was positive when the time-dependent values of the SECOND were
used.

Table 5.8: Cox model estimates and tests including SECOND as a time-dependent covariate

Covariate MLE SE Wald Likelihood ratio
χ2 P χ2 P

RAGE(β1) 0.0115 0.0060 3.6479 0.0561 3.8950 0.0484
CAUSE1(β2) -1.3148 0.3288 15.9935 0.0001 17.3590 <0.0001
CAUSE2(β3) -1.1961 0.2324 26.4812 <0.0001 30.5490 <0.0001
SECOND(β4) 0.5109 0.2513 4.1323 0.0421 4.2320 0.0397

Figure 5.3 shows the estimated survival function for patient with non-second graft against
who has done a second graft in the time-dependent Cox model when the average values of
the other fixed covariates were used. It can be seen that the patient with second graft has
a lower survivor function. This means that the second graft as a time-dependent covariate
may increase the hazard of failure for the first eye graft.

Figure 5.3: Estimated survival function for patients with non-second and second graft in the
Cox model based on the average values of the other fixed covariates.

5.3.2 Log-logistic model

The log-logistic AFT model with time-dependent SECOND, as described in section 3.3.2 was
fitted using Proc Nlp in SAS. The results in table 5.9 show that the RAGE is not significant
at the 5% level. Also, as in the time-dependent Cox model, the effect of SECOND on hazard
of failure for the first eye graft increased using the changing values of SECOND from 0 before
the second operation to 1 after that.

5.3.3 Standard Weibull model

The standard Weibull AFT model with the SECOND as time-dependent covariate, as de-
scribed in section 3.3.1, was applied using Proc Nlp in SAS. The results are similar to the
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Table 5.9: Log-logistic model estimates and tests including SECOND as a time-dependent
covariate

Covariate MLE SE Wald Likelihood ratio
χ2 P χ2 P

Intercept(β0) 9.9241 0.6034 - - - -
RAGE(β1) -0.0099 0.0068 2.1020 0.1472 2.6180 0.1057
CAUSE1(β2) 1.5180 0.4081 13.8345 0.0002 16.1920 0.0001
CAUSE2(β3) 1.3047 0.3043 18.3777 <0.0001 24.8340 <0.0001
SECOND(β4) -0.9024 0.3492 6.6786 0.0098 10.2640 0.0014
Shape(ρ) 0.9203 0.1239 - - - -

results of the time-dependent log-logistic model. The p-value of the RAGE is 0.1373 indicat-
ing that the recipient age is not significant in that model at the 5% level. What is more, the
effect of SECOND was found similar to that obtained in the Cox and log-logistic models.

Table 5.10: Standard Weibull model estimates and tests including SECOND as a time-
dependent covariate

Covariate MLE SE Wald Likelihood ratio
χ2 P χ2 P

Intercept 8.133 0.729 - - - -
RAGE(β1) -0.008 0.0051 2.489 0.115 2.208 0.137
CAUSE1(β2) 1.105 0.2850 15.027 0.000 18.058 <0.0001
CAUSE2(β3) 0.947 0.2022 21.934 <0.0001 26.376 <0.0001
SECOND(β4) -0.647 0.2064 9.815 0.002 11.200 0.001
Shape(ρ) 0.897 0.127 - - - -

Figure 5.4 shows estimated log hazard functions for patients with non-second and second
graft in the standard Weibull model. As in the previous two models, it can be seen that the
first graft hazard increased when the second graft was done.

Figure 5.4: Estimated log hazard functions for patients with non-second and second graft in
the standard Weibull model.
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5.3.4 Weibull spline model

The Weibull spline models with 0, 1, 2, 3, 4 and 5 knots were applied based on the knot
positions in Table 5.11. The results in table 5.11 show the AIC criterion for each spline model.
It is noticed that the best choice is the 5 knots model. Consequently, the results of the Weibull
spline with 5 knots model are presented in Table 5.12. The four covariates are significant at
the 5% level including RAGE which was non-significant through the time-dependent Cox, log-
logistic and standard Weibull models. The parameter estimate of SECOND was dramatically
increased to 17.745 with 0.001 acceleration factor which refers to substantially acceleration
for survival time of first eye graft when the second eye graft is not taken place. However, this
results need to be checked to determine the appropriateness of the spline model that includes
a binary time-dependent covariate.

Table 5.11: Knot positions of survival times and the AIC values for the six estimated spline
models including SECOND as a time-dependent covariate

No. of knots Centile positions Heart transplant survival times (days) AIC

0 - - 2423.42
1 50 766 2423.58
2 33, 67 487, 1254 2359.58
3 25, 50, 75 361, 766, 1461 2341.36
4 20, 40, 60, 80 264, 637, 1015, 1709 2294.58
5 17, 33, 50, 67, 83 224, 487, 766, 1254, 1769 2265.72

Table 5.12: Weibull spline (5 knots) estimates and Wald tests including SECOND as a
time-dependent covariate

Covariate MLE SE Wald
χ2 P

Intercept 57.447 4.4951 - -
RAGE(β1) -0.036 0.0155 5.368 0.021
CAUSE1(β2) 3.404 0.8303 16.810 <0.0001
CAUSE2(β3) 3.148 0.5996 27.558 <0.0001
SECOND(β4) 17.745 1.9224 85.201 <0.0001
First knot (γ1) 1.422 0.207 47.3468 <0.0001
Second knot (γ2) -4.6841 1.2662 13.6848 0.0002
Third knot (γ3) 4.711 2.641 3.1819 0.0745
Fourth knot (γ4) 0.0586 3.9067 0.0002 0.988
Fifth knot (γ5) -2.4379 3.0149 0.6538 0.4188
Shape(ρ) 2.6567 0.0317 - -

Table 5.13 presents the MLE and their standard errors through the six spline models.
Even though there was no important change in the parameter estimates for the RAFE,
CAUSE1 and CAUSE2 across the six models. For the SECOND, the parameter estimate
considerably changed from 0.707 in the 0 knots model to -6.6792 in the 5 knots model. The
shape parameter changed from 0.8971 in the 0 knots model to 2.6567 in the 5 knots model.
This means that increasing the knots number changes the shape of the hazard function in
the model with higher. Furthermore, treating the SECOND as a time-dependent covariate
affected the hazard shape through the different knots models.
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Figure 5.5: Estimated log baseline hazard functions for the Weibull models with 0 and 5
knots.

Figure 5.5 shows the estimated log baseline hazard functions for the Weibull models with
0 and 5 knots. Notice that the baseline hazard of the 5 knots spline model behaves strangely
at around 220 days. This is because there are seventeen patients who did not have a second
eye graft and who experienced graft failure between 180 and 280 days. This is picked up by
the first knot, which is 224 days. After this time point, the hazard in spline model increases
slightly faster than the hazard in the standard model.

The sv-values of parameter estimates across the six models are presented in Table 5.14.
The 1 knot model has the highest sv-value for the parameter estimate of SECOND. Also, it
is noticed that the 5 knots model has the lowest sv-values comparing to the other models.
This result means that the 5 knots model has more efficient parameter estimates than those
obtained from the other competitive spline models indicating to possibly better in fitting the
data that contain the time-dependent SECOND.

Table 5.13: MLE estimates and standard errors for the Weibull spline models from 0 to 5
knots including SECOND as a time-dependent covariate

Covariate 0 Knots 1 Knot 2 Knots 3 Knots 4 Knots 5 Knots
MLE SE MLE SE MLE SE MLE SE MLE SE MLE SE

Intercept 8.133 0.729 13.4131.819 19.5722.101 29.81 2.952 52.6084.418 57.4474.496
RAGE(β1) -0.0080.005 -0.012 0.007 -0.016 0.009 -0.0210.011 -0.032 0.015 -0.036 0.016
CAUSE1(β2) 1.105 0.285 1.507 0.380 1.944 0.473 2.495 0.594 3.35 0.797 3.404 0.832
CAUSE2(β3) 0.947 0.202 1.316 0.272 1.708 0.336 2.211 0.424 3.057 0.574 3.148 0.600
SECOND(β4) -0.6470.206 0.166 0.698 3.159 0.961 6.92 1.355 15.9541.922 17.7451.924
Shape(ρ) 0.897 0.127 1.2 0.144 1.486 0.087 1.874 0.061 2.539 0.036 2.657 0.032
First knot (γ1) - - 0.011 0.007 0.658 0.106 1.036 0.201 1.153 0.159 1.422 0.207
Second knot (γ2) - - - - -1.199 0.199 -1.9210.633 -3.623 0.771 -4.684 1.266
Third knot (γ3) - - - - - - 0.876 0.657 2.248 0.666 4.711 2.641
Fourth knot (γ4) - - - - - - - - 0.867 0.659 0.059 3.907
Fifth knot (γ5) - - - - - - - - - - -2.438 3.015
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Table 5.14: Standardized variability of parameter estimates for the Weibull spline models
from 0 to 5 knots SECOND as a time-dependent covariate

Covariate 0 Knots 1 Knot 2 Knots 3 Knots 4 Knots 5 Knots

Intercept 0.100 0.113 0.072 0.053 0.033 0.029
RAGE(β1) 0.750 0.500 0.375 0.286 0.188 0.167

CAUSE1(β2) 0.288 0.210 0.164 0.127 0.094 0.092
CAUSE2(β3) 0.238 0.172 0.132 0.102 0.074 0.072
SECOND(β4) 0.355 3.506 0.205 0.104 0.047 0.041

Shape(ρ) 0.142 0.120 0.059 0.033 0.014 0.012

5.4 Model evaluation

Evaluation the alternative models is initially performed by comparing the sv-values for the
parameter of interest, SECOND in the cornea model. Following this stage, analysis of the
Cox-Snell and martingale residuals for the applied models may reflect the adequacy of each
model to fit such data.

5.4.1 Model comparisons

Modelling second eye graft as a fixed covariate using the last status of SECOND leads to
a negative effect on hazard of the first graft. The reason that may cause this effect is the
survival times of the patients who have not done second eye graft, group 1, are less than
the other patients in group 2 with second eye graft, and then second graft takes the value
1 in group 2 that has higher survival times. In this case, the second eye graft leads to have
decreasing effect on hazard of failure of the first eye graft. However, this covariate is not
sensible because the second graft was not performed for all the patients at the beginning
of the study in addition to the time of the second operation has important impact on the
first graft recovery and then SECOND should be treated as a time-dependent covariate only.
In the time-dependent models, the effect of the second eye graft on hazard of the first eye
graft failure was positive in the Cox, log-logistic and standard Weibull models. When the
time-dependent values are considered, the values were 0 in the low survival times and 1 for
the higher survival times. This reflects the decrease in the survival function when second
eye operation is performed. Consequently, it is preferable to adopt the model that allow
for second eye graft to change over time. For the Weibull spline (5 knots) model with the
SECOND as time-dependent covariate, the SECOND acceleration factor was .0013 which is
different from the three standard time-dependent models. The parameter of that covariate
was overestimated in the spline model. These results must be checked with more procedures
to evaluate the time-dependent Weibull spline model to fit the cornea data.

In Table 5.15, the MLE with their sv-values for the SECOND as a time-dependent cov-
ariate are supplied across the four models. The sv-values of the time-dependent SECOND
are close in the Cox, log-logistic and Weibull models while the spline model produced con-
siderably lower sv-value comparing to these three model.

5.4.2 Residual analysis

To check adequacy of the applied models, the Cox-Snell and martingale residuals as described
in section 4.5.2. Figure 5.6 shows the Cox-Snell residuals for the models with time-dependent
SECOND. The four plots do not give straight lines with unity slope. However, the plots of
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Table 5.15: Standardized variability (sv-values) for SECOND as a time-dependent covariate
across the four models

Models Cox Log-logistic Weibull Spline
MLE sv MLE sv MLE sv MLE sv

Time-dependent-SECOND 0.511 0.492 -0.902 0.387 -0.647 0.355 17.745 0.041

the Cox and the Weibull spline models show slightly better fit than the other two models.
In Figure 5.7, martingale residuals for the four models were plotted against survival times.

There were negative martingales in all the models for the times between 1300 and 2700 days.
However, for the plots of the log-logistic and the standard Weibull models, the number of the
negative martingale values is higher than the Cox and the Weibull spline models and start
from times before 1000 days.

Figure 5.6: Cox-Snell residuals for the models with time-dependent SECOND.
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Figure 5.7: Martingale residuals for the models with time-dependent SECOND.

5.5 Concluding remarks

Selecting the best model that fits cornea transplant data was the main aim of this chapter.
Using the data set introduced by NHS Blood and Transplant of the grafted cornea between
1994 and 2001 in the UK, it was found three important covariates: RAGE, CAUSE1 and
CAUSE2. The covariate SECOND was added as a time-dependent covariate with one change
to the model that contains the three significant covariates representing the effect of the second
eye graft on the survival time of the first eye graft.

It was noticed that the effect of the second graft on the hazard of the first graft failure
was positive as a result of using the changing nature of the covariate over time while this
effect was negative in the Weibull spline model. Based on the sv-values of the covariates, the
Weibull spline model produced the most efficient SECOND parameter estimate relative to
the other three models. Also, the Cox-Snell plots of the Cox and the Weibull spline models
had slightly better fit comparing to the log-logistic and the standard Weibull models. Also,
the deviations of the martingale residuals were less in the Cox and the Weibull spline models
comparing to the other two models.

To sum up, it is recommended to adopt the model with incorporated second eye graft
as a time-dependent covariate. This procedure will help to reflect the effect of changing
the second graft status during the first graft survival times. Moreover, to evaluate the time-
dependent Weibull spline model against the time-dependent standard models based on cornea
transplantation data, simulations will be run with results that explains the relative efficiency
of each model through different scenarios that may arise in reality.
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Chapter 6

Weibull splines simulation

This chapter introduces a method to simulate observations from the Weibull spline model.
The standard Weibull AFT model can be simulated using the inversion method for the
survivor function that is defined as

Si(t) = exp

{
−
(

1

αi

)ρ

tρ
}
,

where αi = exp(θ+β′xi). Based on the inversion of this survivor function, the survival times
can be generated as

T = [− log(U)]
1
ρ [αi] , (6.1)

where U ∼ Uni[0, 1].
Now consider the Weibull spline model with m knots. For simplicity we shall initially

consider the case with no covariates. The survivor function is defined based on the cumulative
hazard function given in (3.20) but we restate it for 1-knot model here as

S(t) = exp
[
−
{
exp

(
− ρθ + ρ log t+ γ1[(log t− κ1)

3
+ − λ1(log t− κmin)

3
+

−(1− λ1)(log t− κmax)
3
+]
)}]

. (6.2)

The cubic terms in (6.2) make analytical inversion impossible. Thus other approaches are
needed to generate observations from Weibull splines models. Two methods are discussed in
section 6.2 and the results of a simulation study based on Weibull splines models with 0 and
1 knot are presented in the no covariate case in section 6.3. However, first, in section 6.1,
the parameters of the model are investigated.

6.1 The Weibull spline parameters

In the paper by Royston and Parmar (2002), it was not discussed how to determine the spline
parameters in simulation of the Weibull spline model. However, as an example, consider the
Weibull spline model with 1 knot, the cumulative hazard function for which is

H(t) =
{
exp

(
− ρθ + ρ log t+ γ1[(log t− κ1)

3
+ − λ1(log t− κmin)

3
+

−(1− λ1)(log t− κmax)
3
+]
)}
. (6.3)
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Consider the cases where (a)Weibull scale, shape and spline parameters are θ = 0.5, ρ = 0.1
and γ1 = 0.02 respectively, (b)the same Weibull parameters with spline parameter γ1 = 0.008.
Also, κ1 is the internal knot while κmin and κmax are the external knots. Then Figure 6.1
shows plots of (6.3) in these two cases. While H(t) behaves satisfactorily in case (b), case
(a) yields a cumulative hazard that is not increasing. Thus the particular combination of
parameters in case (a) cannot be used.

Figure 6.1: Cumulative hazard functions: (a)γ1=0.02, (b)γ1=0.008.

We now examine the 1-knot model in detail. If log t < κmin, the (6.3) is simply a Weibull
cumulative hazard and hence is always increasing for ρ > 0. Suppose now κmin ≤ log t ≤ κ1.
Then

H(t) = exp
{
ρ(−θ) + ρ log t+ γ1

[
−λ1(log t− κmin)

3
]}
. (6.4)

This function is monotone increasing if dH(t)
dt

≥ 0. Differentiating (6.4) we require

ρ

t
− 3γ1λ1

t
(log t− κmin)

2 ≥ 0.

That is

3γ1λ1(log t− κmin)
2 ≤ ρ.

Since t >0, ρ > 0 and λ1 > 0, we require

γ1 ≤
ρ

3λ1(log t− κmin)2
,

to hold for all κmin ≤ log t ≤ κmax. Thus, we require

γ1 ≤
ρ

3λ1(κ1 − κmin)2
. (6.5)

=
ρ(κmax − κmin)

3(κmax − κ1)(κ1 − κmin)2
.

Now suppose that κ1 ≤ log t < κmax. Then

H(t) = exp
{
ρ(−θ) + ρ log t+ γ1

[
(log t− κ1)

3 − λ1(log t− κmin)
3
]}
.

This function is monotone increasing if

γ1 ≤
ρ

3λ1(κ1 − κmin)2
. (6.6)
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Consider the term in square brackets. It is easy to show that this term is a maximum when
log t = κmax. In this case the term in square brackets becomes

(κmax − κ1)
2 − (κmax − κ1)(κmax − κmin)

2

(κmax − κmin)

= (κmax − κmin)(κmin − κ1).

Hence we require

γ1 ≤
ρ

3(κmax − κ1)(κ1 − κmin)
. (6.7)

This is stronger inequality than (6.5).
Now consider the case with log t ≥ κmax. Hence

H(t) = exp
{
ρ(−θ) + ρ log t+ γ1

[
(log t− κ1)

3 − λ1(log t− κmin)
3 − (1− λ1)(log t− κmax)

3
]}
.

By letting log t −→ ∞, we see that eventuallyH(t) will no longer be increasing. In a practical
data analysis context this is not a problem because κmax is chosen so that no data point is
greater than κmax. So provided (6.7) holds there is no difficulty. However, for simulations
we choose κmax to be large enough so that it is extremely rare that an observation will be
generated and ensure that

γ1 <
ρ

3(κmax − κ1)(κ1 − κmin)
.

The problem is more complex when number of knots exceeds 1. However for simulations
from the other Weibull splines with higher number of knots, feasible splines parameters were
specified graphically by assuming a certain parameters. These parameters were examined to
ensure that the obtained cumulative hazard functions in each case are monotone increasing.
Graphical method was sufficient to assume these splines parameters when Weibull spline
model with 2 and 3 knots were simulated.

6.2 Spline model simulation

In order to generate survival times from the Weibull spline model, two methods were investig-
ated, rejection sampling and numerical inversion. The rejection sampling with its difficulties
will be discussed and then the numerical inversion method is supplied as an alternative
method to simulate data from the model.

6.2.1 Rejection sampling algorithm

The survivor function of the Weibull splines model in (6.2) cannot be inverted analytically.
The first investigated approach to generate survival times from such model is the rejection
sampling method. This method is a theoretical probabilistic method that enables to generate
random variables from distributions in which analytical inversion is not available (Murray,
2007). To clarify the idea of this technique, suppose that generation of x values from density
function π(x) is not possible using the analytical inversion method. In this case, an auxiliary
density function q(x) is employed to generate from. This method is started by multiplying
the function q(x) by a positive constant C to make Cq(x) ≥ π(x) for all x. The next step
is to draw values of x from the function Cq(x) and u ∼ U [0, 1] and then x is accepted as a
value from π(x) if Cuq(x) ≤ π(x) (Gamerman and Lopes, 2006).
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Following this technique, generating survival times from the Weibull spline model (1 knot)
can be executed using the following algorithm:

1. Assume that the survival times between 0 and 5000 days, generate survival times (t)
from U(0, 5000) in order to mimic heart data case.

2. Assume values for the median (κ1), the minimum (κmin) and the maximum (κmax) of
the log survival times that have been generated uniformly.

3. Calculate λ1 as λ1 =
κmax−κ1

κmax−κmin

4. Calculate the terms (log t−κ1)3+, (log t−κmin)
3
+ and (log t−κmax)

3
+ where (log t−κj)3+ =

max{0, (log t− κj)
3}

5. Calculate the one knot basis function as
υ1(t) = (logt− κ1)

3
+ − λ1(logt− κmin)

3
+ − (1− λ1)(logt− κmax)

3
+

6. Calculate the values of the survivor function S(t) of the Weibull splines (1 knot) model
using the assumed splines parameter γ1 and the basis function in (5) as
S(t) = exp {− exp [−ρθ + ρ log t+ γ1υ1(t)]}.

7. Compare the density function value S(t) for each time (t) with C · U(0, 1) (C is an
assumed constant based on the maximum value of the density function), if S(t) ≥
C ·U(0, 1) then accept (t) as survival time from the Weibull splines with 1 knot model,
otherwise go to step 1.

This algorithm was applied using the basis functions of the Weibull splines models with
1, 2 and 3 knots to generate survival times from the model with 1, 2 and 3 knots. Different
scenarios were followed using multiple sample sizes 50, 100, 200, 300 and 500 observations
with no censoring, 30%, 50% and 70% censoring ratios.

The efficiency of this technique depends on the rejection rate. To decrease the rejection
rate, the distance between the envelope function, U(0, 1) in our algorithm, and the aimed
function, S(t), should be small as possible (Fishman, 2006). This condition was not achieved
because the distance between the U(0, 1) and the survivor function S(t) for the splines models
was not small enough. For this reason, the rejection rate for this algorithm was higher than
50%, and then this method was not efficient enough to be adopted. In the next section, a
suggested numerical algorithm will be discussed as an alternative approach. The results that
have been obtained from the two methods were similar, so that the results of the rejection
sampling will not be supplied.

6.2.2 Numerical inversion algorithm

The survivor function in (6.2) shows that analytic inversion for the Weibull spline models
is impossible. A simple numerical inversion using Newton-Raphson method is employed to
generate solutions for the non-linear survivor function of the Weibull spline model. The
Newton-Raphson method is a numerical technique to solve non-linear equations by using
iterative process to specify one root xn+1 depending on the assuming initial value xn for that
root. The value of xn+1 is determined by (Kaw et al., 2010)

xn+1 = xn −
f(xn)

f ′(xn)
,
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where f(xn) is a defined function over all the values of xn and f ′(xn) is the first derivative
of this function.

This numerical inversion may yield multiple solutions so that a modification for the
Newton-Raphson inversion will be applied. The idea of the suggested method depends
on selecting number of x-values, 0 < x1 < x2 < x3 < . . . < xn, and then the values
of F (y1), F (y2), F (y3), . . . , F (yn) are calculated using the function that must be inverted.
When a value of u∗ is generated from U(0, 1) with F (y1) < F (u∗) < F (y2), the value of y∗

is obtained from the inversion of F (u∗). In this case, the generated value y∗ is accepted if
y1 < y∗ < y2.

Based on this method, the following algorithm was followed to generate survival times
from the Weibull spline model with 1 knot:

1. Select the values of κmin, κ1 and κmax at assumed locations for the data that are
generated.

2. Calculate λ1 as λ1 =
κmax−κ1

κmax−κmin
.

3. Assume the Weibull scale, shape and Weibull spline (1 knot) parameters θ, ρ and γ1
respectively.

4. Calculate the log cumulative hazards for generated t values as

logH(t) = ρ(−θ) + ρ log t+ γ1

[
(log t− κ1)

3
+ − λ1(log t− κmin)

3
+

−(1− λ1)(log t− κmax)
3
+

]
, (6.8)

5. From the relationship between the cumulative hazard and survivor functions, calculate
the survival probabilities for the generated t values using (6.8) as

S(t) = exp {− exp[logH(t)]} .

6. Select the survivor probabilities S1(t), S2(t) and S3(t) at log t = κmin, log t = κ1 and
log t = κmax respectively.

7. Determine the function that can be inverted to generate the survival time t depending
on the time interval. For the first interval κmin ≤ log t < κ1, the function is defined as

logH(t) = ρ(−θ) + ρ log t+ γ1
[
−λ1(logt− κmin)

3
+

]
,

where logH(t) = log {− log S(t)} and κmin = log 1 = 0, the function becomes

log {− logS(t)} = −θρ+ ρ log t− γ1λ1(log t)
3. (6.9)

For the second interval κ1 ≤ log t < κmax, the function is defined as

logH(t) = ρ(−θ) + ρ log t+ γ1
[
(log t− κ1)

3
+ − λ1(log t− κmin)

3
+

]
,

where logH(t) = log {− log S(t)} and κmin = log 1 = 0, the function becomes

log {− logS(t)} = ρ(−θ) + ρ log t+ γ1
[
(logt− κ1)

3
+ − λ1(logt− κmin)

3
+

]
.
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Hence,

log {− logS(t)} = −ρθ+γ1(1−λ)(log t)3−3γ1κ1(log t)
2+(3γ1κ

2
1+ρ)(log t)−γ1κ31 (6.10)

For the third interval, log t ≥ κmax, the function is defined as

logH(t) = ρ(−θ) + ρ log t+ γ1

[
(logt− κ1)

3
+ − λ1(log t− κmin)

3
+

−(1− λ1)(log t− κmax)
3
+

]
,

where logH(t) = log {− log S(t)} and κmin = log 1 = 0, the function becomes

log {− log S(t)} = ρ(−θ) + ρ log t+ γ1

[
(log t− κ1)

3
+ − λ1(log t− κmin)

3
+

−(1− λ1)(log t− κmax)
3
+

]
,

and then,

log {− logS(t)} = −ρθ + 3γ1 {(1− λ1)κmax + λ1κmin − κ1} (log t)2

+
{
ρ+ γ1

[
3κ21 − 3λ1κ

2
min − 3(1− λ1)κ

2
max

]}
log t

+3γ1
{
λ1κ

3
min + (1− λ1)κ

3
max − κ31

}
(6.11)

8. Generate S∗(t) from U ∼ [0, 1]. If S1(t) ≤ S∗(t) < S2(t), generate the survival times
from the inversion of (6.9). Also, if S2(t) ≤ S∗(t) < S3(t), generate the survival times
from the inversion of (6.10). Finally, if S∗(t) ≥ S3(t), generate the survival times from
the inversion of (6.11)

9. Check each generated time to ensure that the inversion provides the right value based
on the time intervals in 7.

6.3 Simulation results

The numerical method has been used to generate survival times from different Weibull models
with 0 (standard) and 1 knot. These simulations were performed using 60 scenarios. It was
assumed four shape parameters 0.5, 1, 2 and 4 with sample sizes of 50, 100, 200, 300 and 500.
In the 1-knot spline model, spline parameter γ1 was specified using (6.7) and the assumed
values of κmin, κ1 and κmax. The different combinations of shapes and sample sizes were
applied with no censoring, 30% and 50% censoring proportions for 5000 replications. After
implementing each simulation, the Weibull spline models with 0, 1, 2, 3, 4 and 5 knots were
fitted and then the empirical power of the Likelihood test for each fitted model was calculated
to select the best model within each scenario. This power was calculated using three criteria:
-2 Log L, AIC and BIC.

Table 6.1 presents the empirical power of models based on data that are simulated from
the Weibull spline model where there is no censoring. The BIC results show that the power
of test in the fitted 0 knot model is about 95% of the number of replications. These results
were found for the different shapes, ρ=0.5, 1, 2 and 4, and sample of n=50. For the other
samples of n=100, 200, 300 and 500 observations, the power slightly increased by about 3%.

The results of the simulated 0 knots model with 30% and 50% censoring are presented in
Tables 6.2 and 6.3. In Table 6.2, it can be noticed that the power decreased by about 2% for
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the samples of n=50 when 30% censoring proportion was used. However, there was no change
in the power for the other sample sizes. Similarly, the obtained power in Table 6.3 decrease
by about 4%, compared to the no censoring case, for the samples of n=50 while there was
no noticeable change for the other sample sizes. These results mean that the robustness of
the model is slightly affected by the censoring proportions as a result to the change in the
computation of the likelihood function for the censored observations.

Figure 6.2 compares the empirical power of the fitted 0 knot model with no, 30% and 50%
censoring ratios through different samples sizes. The survival times were generated from 0
knots model with shapes ρ = 0.5, ρ = 1, ρ = 2 and ρ = 4. The estimated power in the three
censoring scenarios are shown for the shape parameters, ρ = 0.5, ρ = 1, ρ = 2 and ρ = 4, in
Figures 6.2(a), 6.2(b), 6.3(c) and 6.4 (d) respectively. The four figures show that the power
in the 50% censoring case is lower by about 3% compared to the no censoring case when
sample size is less than 100 observations.

Figure 6.2: Empirical power of the Likelihood test at α = 0.05 for the Weibull model (0-knot
model) based on generated survival times from the same model using ρ = 0.5, ρ = 1, ρ = 2
and ρ = 4 with no, 30% and 50% censoring.
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Table 6.4 presents the power of the fitted spline models based on simulation from the 1
knot model with no censoring. The parameter values of γ1 were specified as 0.007, 0.014,
0.028 and 0.056 for the shape parameters ρ = 0.5, 1, 2 and 4 respectively. For n=50, the
power was 87%, 94%, 93% and 85% for the models with shape parameters 0.5, 1, 2 and 4
respectively. This power increased to about 97% for the model with ρ = 0.5 while decreased
to about 70% for the model with ρ = 4 when n=500. There were no considerable change in
power of the models when data were simulated from the 1 knot model with ρ = 1 and ρ = 2
in the larger sample size cases. Tables 6.5 and 6.6 show the results of 30% and 50% censoring
respectively. These results are close to those obtained from the no censoring case. However,
it can be noticed a small decrease in power when censoring ratios were increased to 30% and
50%. On the other hand, the power of the model with ρ = 4 increased with the increase
of the censoring proportion for the sample of n=500. Generally, the model with ρ = 4 has
the lowest power indicating that the models with higher number of knots were selected as
the best models in some cases. This result means that the model robustness may be affected
when shape parameter is higher than 2.

The power of the 1 knot model with no, 30% and 50% censoring ratios are compared
for the model with different shape parameters and sample sizes from n=50 to n=500 in the
figure below. In Figures 6.3(a), 6.3(b) and 6.3(c), it is shown that the power decreased as the
censoring ratios increased from 0% (no censoring) to 50%. In contrast, Figure 6.3(d) shows
increase in the power when censoring proportion increases to 50%. The reason for that is
the tendency of the model to be significant as a higher number of knots are included when
ρ = 4 and no censoring is used. When the censoring proportion increases, the model with
lower number of knots tends to has higher power and then the power of the 1 knot model
increased against the 2, 3, 4 and 5 knots models in the 30% and 50% cases.
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Figure 6.3: Empirical power of the Likelihood test at α = 0.05 for the 1-knot spline model
based on generated survival times from the same model using ρ = 0.5, ρ = 1, ρ = 2 and
ρ = 4 with no, 30% and 50% censoring.

6.4 Concluding remarks

In this chapter, it was discussed how to select feasible spline parameters that ensure the
cumulative hazard function to be increasing with time when simulation is done from one of
the spline models. To simulate data from the Weibull spline models, analytical inversion is
not available and then it was suggested rejection sampling method as a first choice. However,
some difficulties were found in applying this method to generate survival times from spline
models. Consequently, a numerical method was suggested as a possibly more efficient altern-
ative. This method depends on assuming Weibull shape and scale parameters in addition
to feasible spline parameters that yield correct cumulative hazard function (i.e., monotone
increasing). Furthermore, a number of knots is assumed at ceratin positions to simulate the
desired model. However, assuming these positions may be an issue when the produced knots
positions (i.e., based on generated data) are very different from the assumed positions. This
may lead to confusing results. For example, when spline model with ρ = 4 is simulated based
on 1 knot at the median of survival times, the generated data at each replication may have
completely different median from the assumed value. In this case, the produced data may
lead to select another spline model as the best one. Hence, doubts about the robustness of
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the spline models, particularly for models with shape parameters that are greater than 2,
may be found.

Generally, it was found that simulation of the Weibull spline models may be slightly
affected by factors as censoring ratio, sample size and shape parameters. It was noticed
that increasing the censoring proportion may lead to select a lower degree model as the
best choice based on the BIC. Also, the shape parameter may be a factor in selecting the
best spline model. The suggested numerical method yielded reasonable results and had a
higher efficiency compared to the rejection sampling method. In chapter seven, the suggested
method will be used to generate survival data from the Weibull spline models with 1, 2 and
3 knots based on the two real data sets that have supplied in chapters four and five in order
to evaluate the Weibull spline model in different situations in survival data modelling.
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Chapter 7

Simulation results

The first aim of this chapter is to simulate the Weibull spline model when no time-dependent
covariates are included in the model. This simulation helps to evaluate the competitive
models when their performance measures are compared. The second aim is to simulate the
Weibull standard model to compare the Weibull model with the Cox and the log-logistic mod-
els with time-dependent covariates. Thirdly, the Weibull spline model with time-dependent
covariates is simulated to investigate the properties of estimators in the Weibull spline models
when one or more covariates change over time.

Simulation procedures in this chapter are based on the two real data sets of heart and
cornea transplantation. Then specifications of parameter values and dependence relationships
of the covariates will be employed to mimic the real data on hand. Right censoring data will
be generated following the method that was described in section 2.5. Further, survival times
will be generated from the Weibull spline models with fixed covariates using the numerical
method that was described in chapter 6. Survival times in the standard Weibull model with
time-dependent covariates will be generated using an algorithm that depends on generating
survival times conditional on the updated values of such covariates. A combination of the
numerical method and the time-dependent model algorithm will be used to generate survival
times from the Weibull spline model that allows for covariates to change over time. The
survival data sets help to specify the scenarios that are adopted to investigate the performance
of the alternative models in different situations. For example, in the heart transplant data
set the number of patients was about 1500 with 70% right censoring, so that the scenarios
that mimic theses specifications will combine between samples of n = 500, 1000 and 1500
observations with 60%, 70% and 80% censoring. Output from the fitted models includes
bias percentages, mean square error, empirical power, coverage probabilities and average
confidence interval length for likelihood-based parameter estimates.

Section 7.1 will include simulations of the Weibull spline model based on the heart trans-
plant data when all covariates are fixed and then the results that help to compare properties
of tests and estimators within the spline models are presented. In section 7.2, simulation
of the Weibull model will be performed when the time-dependent GFR in heart model and
the time-dependent SECOND in the cornea model are included. Then the results of fitting
the Cox, Weibull and the log-logistic models will help to compare such models. Finally,
section 7.3 will include simulations of the Weibull spline models with 0, 1, 2 and 3 knots
when the previous time-dependent covariates are included in the model. The results of these
simulations will be presented in the case where time-dependent covariates are present.
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7.1 Simulation of Weibull spline models with fixed co-

variates

The flexibility of the Weibull spline model depends on the number of knots in the model.
In this section, simulation of the spline models when all covariates are held fixed will be
discussed. This simulation is based on the heart and cornea transplant data.

7.1.1 Model based on the heart transplant data

In the heart transplant data, seven important covariates were found. DAGE was the only
continuous covariate while the other covariates, DCMV, PCD, CYCLO, FK506 and OTHER
were treated as categorical. The kidney function, GFR, was treated as continuous and as
categorical to investigate the optimal form to measure its effect on survival time of patients
after heart transplantation. In this data set, about 70% of the patients are right censored so
that censoring data have to be generated to mimic this specification.

7.1.1.1 Covariate generation

A multivariate log normal distribution, as described in section 2.4.1, was applied to generate
correlated covariates. Based on the real data, the explanatory covariates are divided into 3
groups: donor covariates, recipient covariates and immunosuppressant covariates.

7.1.1.1.1 Donor covariates A multivariate log normal distribution was used to generate
values of DAGE and DCMV with correlation matrix(

1 0.0868
0.0868 1

)
.

The generated values of DCMV were categorised based on the proportion of each category
in the original data and using (7.1) as

CrV (µ, σ, pi) = exp {µ+ σ.NORMINV (pi)} , (7.1)

where µ and σ are the mean and the standard deviation that have been used to generate the
covariate while NORMINV (pi) is the inverse normal probability for the proportion pi (see
2.4.1). In the original data, µ = 35.38, σ = 12.27 for DAGE and µ = 1.45, σ = 0.52 with
pi = 56%, 43% and 1% for DCMV.

7.1.1.1.2 Recipient covariates Similarly PCD and GFR were generated from a mul-
tivariate log normal distribution with correlation matrix(

1 0.0821
0.0821 1

)
.

Using (7.1), PCD is categorised to PCD1, PCD2, PCD3 and PCD4 while the categorical
form of GFR was transformed to GFR1, GFR2, GFR3 and GFR4. The measures of PCD
were µ = 2.45, σ = 1.23 with pi = 36%, 10%, 26% and 28%, while for GFR were µ = 64.18,
σ = 20.67 with pi = 9%, 45%, 43% and 3%.
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7.1.1.1.3 Immunosuppressant covariates The three immunosuppressant covariates,
CYCLO, FK506 and OTHER were generated using a multivariate log normal distribution
with correlation matrix  1 −0.4682 −0.0236

−0.4682 1 −0.0067
−0.0236 −0.0067 1

 .

The three covariates are binary so their generated values were categorised to two levels
based on the proportion in each level using (7.1). The measures of CYCLO were µ = 1.93,
σ = 0.25 with pi = 7% and 93%, for FK506 were µ = 1.05, σ = 0.21 with pi = 95% and 5%
and for OTHER were µ = 1.25, σ = 0.43 with pi = 75% and 25%.

7.1.1.1.4 Censoring data The censoring data were generated using an algorithm that
enables different censoring proportions in order to reflect different simulation scenarios as
follows

1. Generate survival times C from an exponential model that represents the censoring
mechanism.

2. Generate survival times T from a Weibull model depending on the set of covariates
that have a specific relationship with survival times.

3. If T≤C then censor=1 (event), otherwise censor=0 (censoring).

4. Different censoring proportions can be produced by changing the specified scale para-
meter of the exponential model (censoring distribution).

In heart transplant data, the censoring proportion was 70% so the simulation of this model
was performed with censoring proportions 60%, 70% and 80% to mimic the heart transplant
data characteristics.

7.1.1.2 Survival time generation

7.1.1.2.1 Weibull AFT model The heart transplant data were modelled using Weibull
and Weibull spline models. For each simulated model, 9 scenarios were adopted using sample
sizes of 500, 1000 and 1500 patients with 60%, 70% and 80% censoring proportions. The
standard Weibull model was simulated including its significant covariates. Based on this
model, survival times were generated as follows.

1. Specify the parameter function αi for the covariates that were included in the model
and using the parameters that have been obtained from the heart model.

αi = exp (θ + β′xi) .

2. generating survival times Ti for the ith subject using (6.1) as

Ti = [− log(U)]1/ρ [αi]
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7.1.1.2.2 Weibull spline models The Weibull spline models with 1, 2 and 3 knots were
simulated including the generated covariates as with the standard model. The Weibull spline
model with 1 knot was simulated using the numerical algorithm as described in section 6.2.2.

1. According to the minimum and the maximum survival times in the heart transplant
data, assume that the generated uncensored survival times between 1 day and 5000
days.

2. Select the values of κmin, κ1 and κmax at the minimum, median and the maximum of
the log uncensored survival times of the heart transplant data set.

3. Calculate λ1 as λ1 =
κmax−κ1

κmax−κmin
.

4. Assume the Weibull scale, shape and Weibull spline (1 knot) parameters θ, ρ and γ1
respectively based on the obtained estimates of these parameter from the estimated
1 knot model in chapter four. The values of these parameters were θ = 8.335, ρ =
0.405 in addition to γ1 = −0.006 which is a feasible parameter in accordance with the
specification that was explained in section 6.1.

5. Calculate the log cumulative hazard function including the covariates using the gener-
ated t values as

logH(t) = ρ(−θ − β′x) + ρ log t+ γ1

[
(log t− κ1)

3
+ − λ1(log t− κmin)

3
+

−(1− λ1)(log t− κmax)
3
+

]
, (7.2)

6. From the relationship between the cumulative hazard and the survivor functions, cal-
culate the survival probabilities for the generated t values using (6.3) as

S(t) = exp {− exp[logH(t)]} .

7. Select the survivor probabilities S1, S2 and S3 where S1 = S(eκmin), S2 = S(eκ1) and
S3 = S(eκmax).

8. Determine the function that can be inverted to generate the survival time t depending
on the time interval. For the first interval κmin ≤ log t < κ1, the function is defined as

logH(t) = ρ(−θ − β′x) + ρ log t+ γ1
[
−λ1(log t− κmin)

3
+

]
,

where logH(t) = log {− log S(t)} and κmin = log 1 = 0, the function becomes

log {− logS(t)} = ρ(−θ − β′x) + ρ log t− γ1λ1(log t)
3. (7.3)

For the second interval κ1 ≤ log t ≤ κmax, the function is defined as

logH(t) = ρ(−θ − β′x) + ρ log t+ γ1
[
(log t− κ1)

3
+ − λ1(log t− κmin)

3
+

]
, (7.4)

where logH(t) = log {− log S(t)} and κmin = log 1 = 0, the function becomes

log {− logS(t)} = ρ(−θ− β′x) + ρ log t+ γ1
[
(log t− κ1)

3
+ − λ1(log t− κmin)

3
+

]
. (7.5)
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Hence,

log {− log S(t)} = ρ(−θ−β′x)+γ1(1−λ1)(log t)3−3γ1κ1(log t)
2+(3γ1κ

2
1+ρ)(log t)−γ1κ31

(7.6)

9. Generate S∗(t) from U ∼ [0, 1]. If S1 ≤ S∗(t) < S2, generate the survival times from
the inversion of (7.3). Otherwise, if S2 ≤ S∗(t) ≤ S3, generate the survival times from
the inversion of (7.6).

10. Check each generated time to ensure that the inversion provides the right value based
on the time intervals in 8.

7.1.1.3 Heart simulation results

The heart transplant data were simulated using the covariates DAGE, DCMV1, DCMV2,
PCD1, PCD2, PCD3, CYCLO, FK506, OTHER and GFR as a continuous and a categorical
fixed covariate. These simulations have been done from the Weibull spline models with 0,
1, 2 and 3 knots where 60%, 70% and 80% censoring proportions were used with 10000
replications. For each simulation, four measures were calculated: bias percentage, mean
square error (MSE), empirical power and average confidence interval length. These measures
were calculated for each covariate at 5% significance level in each model to investigate the
properties of the obtained estimators based on the different methods. The simulation of data
from heart model was executed firstly when GFR is treated as a continuous covariate and
secondly when GFR is treated as a categorical covariate.

The empirical power of the Wald test was calculated for each covariate across the different
models. In the two cases (continuous and categorical GFR), results of the two covariates
DCMV and PCD were neglected because it is not relevant to evaluate the power of their
test. In the results of chapter four, the covariates that represent the DCMV and the PCD
categories were found non-significant at 5% significance level and then the empirical power
of their test was not considered. Hence, the results will be presented for the other covariates
focusing on empirical power, bias percentages, MSE and average confidence interval length for
these covariates, particularly in the 70% censoring case which reflects the censoring proportion
in the real data on hand.

7.1.2 Simulation results of heart model with GFR as a continuous
covariate

Table 7.1 presents the powers of covariate tests when data were generated from the Weibull
model with samples of n = 500, 1000 and 1500 observations and 70% censoring. For DAGE,
the power was 79% in the 0 knots model while it was slightly lower in the other spline models
(with 1 to 5 knots) when n = 500. The power of this covariate increased to about 97% when
n = 1000 and about 99% when n = 1500 with no noticeable difference in power among all the
models. For CYCLO, the power was about 98% when n = 500 and increased to 100% when
n = 1500. There was no difference among the six models in the power of CYCLO. FK506
has given very close results to those obtained for CYCLO. However, the power of OTHER
was slightly low compared to CYCLO and FK506 when n = 500. These results mean that
the null hypothesis of no effect for those covariates was not rejected at the 5% significance
level in about 40% and 21% of the small simulated samples (n = 500) for the two covariates
respectively while their power increased as the sample size increases to 1000 and 1500. For
the GFR, the power was about 40% in the 0 knots model when n = 500 and increased to
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about 83% when n = 1500. For the same covariate in the other knots models, the power was
slightly lower comparing to the 0 knots model. However, the powers in the models with 3, 4
and knots were close to those obtained in the 0 knots model. When the model was simulated
with 60% and 80% censoring, it was noticed that the power for each covariate decreased as
the censoring proportion increased.

Table 7.1: The empirical power at α=0.05 in the heart models based on generated survival
times from the Weibull model with 70% censoring

n = 500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 79.79 69.85 71.69 73.61 73.86 72.83
CYCLO 98.88 99.29 99.45 94.93 99.48 99.05
FK506 99.65 99.57 99.63 99.44 99.53 99.08
OTHER 60.77 49.48 49.18 54.07 53.17 50.87
GFR 40.92 35.65 34.54 36.01 36.32 36.20

n = 1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 97.67 94.42 94.87 95.58 95.80 95.34
CYCLO 99.99 100.00 100.00 98.70 100.00 99.72
FK506 100.00 100.00 100.00 100.00 100.00 99.72
OTHER 89.16 81.46 79.26 83.66 83.36 81.86
GFR 66.34 58.87 56.95 58.46 60.00 59.15

n = 1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 99.92 99.18 99.32 99.47 99.58 99.44
CYCLO 100.00 100.00 100.00 99.45 100.00 99.85
FK506 100.00 100.00 100.00 100.00 100.00 99.83
OTHER 98.15 94.15 93.35 95.65 95.35 94.75
GFR 83.23 76.69 74.68 76.15 77.86 77.04

In Tables 7.2, 7.3 and 7.4, the power of tests for the same covariates are presented based
on generated data from the 1, 2 and 3 knot models with 70% censoring. The results in these
three tables are very close to those obtained from the simulated 0 knots model. However, the
powers of the tests for CYCLO and FK506 in the fitted 3 knot model were slightly lower than
those obtained in the other spline models in the three tables when n = 500. The power of
all covariate tests was calculated when the the three spline models were simulated based on
60% and 80% censoring proportions. It was found that the power decreased as the censoring
proportion increased. In general, the powers of covariate tests were similar to the results
based on simulating from the four models, while slight changes in power were noticed when
censoring proportion changed from 70% to 60% and 80% as previously explained. The power
for some covariates was low, as DAGE, OTHER and GFR, particularly when n = 500 which
indicates to have low effect on survival times comparing to CYCLO and FK506. To compare
the six models, it was found that the power of all covariate tests in the 0 knots model were
slightly higher than those calculated in the other spline models.

Figure 7.1 shows the power for GFR in the Weibull and the 5-knot spline models when
simulations were performed from the 0, 1, 2 and the 3 knots models in Figures 7.1(a), 7.1(b),
7.1(c) and 7.1(d) respectively. Figure 7.1(a) shows that the power in the 0 knots model was
about 35% when n = 500 and increased to about 72% when n = 1500, while the power in
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Table 7.2: The empirical power at α=0.05 in the heart models based on generated survival
times from the 1-knot Weibull spline model with 70% censoring

n = 500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 77.90 65.21 64.91 64.17 65.30 65.67
CYCLO 94.96 96.73 97.36 89.53 97.77 97.69
FK506 63.87 65.07 65.37 55.07 65.27 63.87
OTHER 45.98 53.07 51.87 42.08 47.88 46.68
GFR 36.82 31.80 30.17 30.32 30.79 30.96

n = 1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 96.85 91.40 90.92 90.43 91.15 91.39
CYCLO 99.83 99.94 99.97 98.52 99.97 99.90
FK506 99.65 90.25 90.05 78.86 89.46 88.36
OTHER 71.36 80.06 70.76 72.86 74.86 74.16
GFR 59.37 53.71 50.80 51.03 52.14 52.43

n = 1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 99.62 98.28 98.06 97.66 98.12 98.18
CYCLO 99.99 99.99 100.00 98.68 100.00 99.94
FK506 99.95 98.45 97.95 92.15 98.05 97.45
OTHER 84.86 93.25 85.26 86.56 88.66 88.26
GFR 73.35 68.00 64.91 64.99 65.91 66.27

the 5 knots model was lower by about 5% when n = 500 to 1500 compared to the 0 knots
model. The results in the other three figures when the 1, 2 and the 3 knots were simulated
were very close to the results of the simulated 0 knots model in Figure 7.1(a).

In order to evaluate theWeibull spline models with 1 to 5 knots against the standard model
(0 knots), the results of bias percentages of parameter estimates are presented in Tables C.1,
C.2, C.3 and C.4 when simulations were done from the 0, 1, 2 and 3 knot models respectively
with 70% censoring. Through the four tables, it was found that the bias percentages were
lower in the spline models with 1 to 5 knots compared to the 0 knot model. The MSE of
parameter estimates are presented in tables C.5, C.6, C.7 and C.8 when simulations were
done from the 0, 1, 2 and the 3 knot models with 70% censoring respectively. In the four
tables, it was found that the MSE in the spline models with 1 to 5 knot were lower than
those calculated in the 0 knot model. These results reflect higher accuracy for parameter
estimates in the spline models comparing to the 0 knots model. The average confidence
interval length of parameter estimates were calculated from the simulated 0, 1, 2 and the
3 knot models in Tables C. 9, C.10, C.11 and C.12 with 70% censoring respectively. The
results in the four tables show very close average confidence interval lengths among the six
models for all parameters indicating that there is no difference among the average confidence
interval lengths of the fitted models based across the different simulations.

In conclusion, the empirical power of the covariate tests was slightly higher in the 0 knot
model. Using the criteria of the bias percentage and the MSE, the parameter estimates in
the fitted spline models (1 to 5 knot) are less biased and have smaller MSE compared to the
parameter estimates in the fitted 0 knot model. The AIC criterion was calculated for each
fitted model within the four simulation cases with 70% censoring over the 10000 replications.
In the simulation of the 0 knot model, the 5 knot model had the lowest AIC value in 38%,
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Table 7.3: The empirical power at α=0.05 in the heart models based on generated survival
times from the 2-knot Weibull spline model with 70% censoring

n = 500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 81.97 67.49 69.86 68.16 69.28 69.28
CYCLO 96.23 97.20 97.77 89.32 98.24 98.11
FK506 95.75 62.67 73.66 62.97 67.17 67.37
OTHER 48.48 47.58 38.38 39.48 41.68 40.58
GFR 38.36 32.46 31.54 31.09 31.81 31.98

n = 1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 98.23 92.86 93.95 92.51 93.61 93.63
CYCLO 99.92 99.93 99.96 98.72 99.97 99.90
FK506 99.95 89.46 92.85 85.86 90.35 89.86
OTHER 74.16 76.66 68.27 69.47 71.36 71.06
GFR 60.92 53.42 51.85 51.27 52.45 52.63

n = 1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 99.87 98.76 98.94 98.67 98.90 98.90
CYCLO 100.00 100.00 100.00 91.1 100.00 99.93
FK506 99.95 97.75 98.85 95.05 97.85 97.85
OTHER 89.76 91.25 84.16 85.76 87.26 86.36
GFR 77.50 69.73 67.97 67.07 68.52 68.84

76% and 91% of the replications when n = 500, 1000 and 1500 respectively. When simulation
was done from the 1 knot model, the 3 knot model had the lowest AIC value in 78%, 75%
and 67% of the replications with n = 500, 1000 and 1500 respectively. A close results to
those obtained in the simulation of the 1 knot model have been found when simulations were
done from the 2 and 3 knot models. Although, the model with lower AIC value may be
preferred, this criterion should not be used regardless of other criteria (Royston and Parmar,
2002). The models with lower number of knots are not generally nested within those with
higher knots number and then outcomes of statistical inferences should be considered in this
case. Also, it was noticed that the obtained test power from the fitted spline model when
simulation was done from the same model was slightly lower than that obtained form the
Weibull model as in Tables 7.2, 7.3 and 7.4, particularly for sample sizes of n = 500. This
may occur as a result of the mismatching that sometimes found between the assumed and
the real locations of the knots while the data are generating from one of the spline models.

7.1.3 Simulation results of heart model with GFR as a categorical
covariate

In this section data were generated from the heart model including all the previous covariates
and the covariates GFR1, GFR2 and GFR3. Table 7.5 presents the empirical powers for the
three covariate tests based on simulation from the Weibull model with 70% censoring. In
the sample of n = 500, the powers for GFR1, GFR2 and GFR3 in the 0 knots model were
16%, 29% and 18% respectively, and very close power results were obtained in the fitted
spline models at the same sample size. In the simulations with sample of n = 1000 and
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Table 7.4: The empirical power at α=0.05 in the heart models based on generated survival
times from the 3-knot Weibull spline model with 70% censoring

n = 500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 74.68 57.51 60.95 59.96 60.41 60.15
CYCLO 94.85 96.49 97.32 82.53 97.20 97.31
FK506 97.45 69.77 83.96 75.46 73.96 75.56
OTHER 51.67 46.78 37.28 38.98 41.88 39.88
GFR 35.07 28.80 28.16 27.95 28.80 28.62

n = 1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 95.55 86.15 87.91 86.99 87.86 87.45
CYCLO 99.81 99.92 99.95 92.34 99.94 99.95
FK506 99.95 93.45 98.05 95.55 94.95 95.55
OTHER 77.76 73.26 61.37 63.87 67.07 64.87
GFR 56.52 46.75 45.71 45.04 46.77 46.40

n = 1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 99.34 96.61 97.20 96.56 97.09 97.03
CYCLO 100.00 100.00 100.00 97.2 100.00 100.00
FK506 99.02 82.65 96.24 87.61 90.02 91.47
OTHER 99.95 99.05 99.75 99.55 99.25 99.35
GFR 91.55 90.35 81.56 84.06 85.56 83.66

1500, there was no noticeable increase in the power with no difference among the models
comparing to the results when n = 500. The powers for the the three covariate tests was
generally low reflecting the low effect of the three covariates when they included in the heart
model instead of using GFR as a continuous covariate. As in the previous cases, the powers
were determined when simulation was done based on 60% and 80% censoring proportions.
The power increases as the censoring proportion decreases as shown in the previous result.

To investigate the effect when data were generated from the spline models, Tables 7.6,
7.7 and 7.8 present the powers for the three covariate tests when simulations were done from
the 1, 2 and 3 knot models with 70% censoring. The powers across the fitted models were
low as in the previous case for the same reason. Also, the results in the three tables show
that the powers in the fitted Weibull model (0 knot) was slightly higher than in the fitted
spline models with 1 to 5 knots. This result means that the algorithm fails to generate from
the correct model in some simulated samples where knot locations are specified very far from
the correct places. As in the 0 knot model, simulations of the three spline models with 60%
censoring proportion conducted general increase in the powers of all covariate tests by about
10%.

Figure 7.2 compares the power for GFR1 between the fitted Weibull (0 knot) model and
the 5 knot model when simulation was done from the 0 knot model in Figure 7.2(a), 1 knot
model in Figure 7.2(b), 2 knot model in Figure 7.2(c) and 3 knot model in Figure 7.2(d). In
the four figures, the power for GFR1 in the 0 knot model was about 20% when n = 500 and
increased to about 57% when n = 1500. In Figure 7.2(a), there was no difference between
the powers in the two models. However, in Figures 7.2(b), 7.2(c) and 7.2(d), the power in
the 0 knot model was higher by about 7% across the different samples.

Figure 7.3 compares the power for GFR2 between the fitted 0 and 5 knot models when
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Figure 7.1: Power of GFR test in the fitted Weibull (0 knot) and the 5-knot models based
on simulations from the Weibull (0 knot), 1, 2 and 3 knot models with 70% censoring.

simulations were done from the 0, 1, 2 and the 3 knot models in Figures 7.3(a), 7.3(b), 7.3(c)
and 7.3(d) respectively. The powers for this covariate tests in the fitted 0 knot model started
at about 30% when n = 500 and increased to about 85% when n = 1500. There was no
difference between the power in the two models in Figure 7.3(a), while the power in the fitted
0 knot model was higher than that obtained in the fitted 5 knot model as shown in the other
three figures.

Figure 7.4 shows the powers of for GFR3 tests in the same previous cases. The results
that are shown in Figures of 7.4(a), 7.4(b), 7.4(c) and 7.4(d) were very close to those shown
in Figures of 7.2.

In the 70% censoring case, the bias percentage of parameter estimates through simulations
from the four models (0, 1, 2, and 3 knots) are presented in Tables C13, C14, C15 and C16.
The bias percentages across the fitted spline models from 1 to 5 knot were considerably less
than those calculated in the 0 knot model. The same result has been found in the four
simulated models. Tables C17, C18, C19 and C20 present the MSE for parameter estimates
that have been calculated when the model with 0, 1, 2 and 3 knot were simulated. The MSE
of all parameter estimates in the spline models with 1 to 5 models were noticeably smaller
than that obtained in the 0 knots model in the samples of n = 500, 1000 and 1500 . Also,
the lowest MSE in the spline models have been found for all the simulated models.
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Table 7.5: The empirical power at α=0.05 in the heart models based on generated survival
times from the Weibull model with 70% censoring

n = 500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 16.59 13.03 18.41 18.31 19.46 19.54
GFR2 29.54 21.74 31.21 30.50 31.69 31.97
GFR3 18.11 13.11 20.22 19.66 20.92 21.30

n = 1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 39.71 29.86 42.77 38.99 39.37 40.35
GFR2 63.71 52.80 65.11 62.65 62.63 63.63
GFR3 46.34 35.07 49.06 45.64 46.06 46.90

n = 1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 58.83 47.07 62.18 58.15 58.44 59.41
GFR2 83.96 74.90 84.59 82.96 82.93 83.83
GFR3 67.31 54.09 69.98 66.46 66.62 67.66

Table 7.6: The empirical power at α=0.05 in the heart models based on generated survival
times from the 1-knot Weibull spline model with 70% censoring

n = 500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 19.25 10.35 13.28 12.14 12.66 12.56
GFR2 31.32 17.10 20.99 19.76 20.39 20.20
GFR3 20.94 9.86 13.32 12.06 12.57 12.39

n = 1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 40.86 23.83 29.63 27.57 28.22 27.98
GFR2 63.43 42.72 49.30 47.49 47.95 47.87
GFR3 46.56 26.78 33.75 31.63 32.25 32.08

n = 1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 57.84 36.86 43.95 41.58 42.22 42.09
GFR2 81.49 63.53 69.24 67.85 68.09 68.04
GFR3 64.73 42.77 50.45 47.94 48.63 48.50

Tables C21, C22, C23 and C24 present the average confidence interval length of the
parameter estimates when simulations were performed based on models with 0,1,2 and 3 knot
and 70% censoring respectively. The results through the four tables show small differences
for the average confidence interval lengths for all parameter estimates among the six fitted
models with all the samples size. This means that this criterion is not very helpful in this
case to compare the fitted models.

In general, to compare the 0 knots model with the other spline models, it was found that
the power in the fitted 0 knot model is slightly higher than the other models. On the other
hand, the percentage bias and the MSE results refer to the possibility of the spline models
to yield less biased parameter estimates with more accuracy comparing to the 0 knot model.
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Table 7.7: The empirical power at α=0.05 in the heart models based on generated survival
times from the 2-knot Weibull spline model with 70% censoring

n = 500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 21.31 11.69 15.88 14.28 15.15 14.87
GFR2 36.85 20.78 27.22 24.76 25.99 25.72
GFR3 25.54 12.41 18.49 15.99 17.30 16.97

n = 1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 47.90 28.75 38.13 34.72 35.76 35.32
GFR2 70.96 50.61 60.18 57.22 58.23 57.90
GFR3 54.82 33.72 43.67 39.99 41.44 40.94

n = 1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 65.43 44.01 54.62 50.81 52.13 51.57
GFR2 87.21 71.00 78.73 76.48 77.12 77.04
GFR3 72.78 51.56 62.45 58.93 60.10 59.83

Table 7.8: The empirical power at α=0.05 in the heart models based on generated survival
times from the 3-knot Weibull spline model with 70% censoring

n = 500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 18.93 9.70 14.45 12.22 13.68 13.18
GFR2 30.23 15.13 22.82 19.50 20.94 20.46
GFR3 20.97 9.45 15.89 12.99 14.31 13.70

n = 1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 41.69 23.42 34.19 28.50 30.12 29.42
GFR2 62.21 39.75 52.62 47.62 49.08 48.48
GFR3 47.10 25.70 39.01 32.51 34.23 33.79

n = 1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 57.85 35.08 48.57 42.07 44.05 43.22
GFR2 79.35 59.12 71.16 66.08 67.43 66.93
GFR3 64.67 40.69 54.90 48.52 50.47 49.63

The AIC values of the fitted models from each simulation were very close to those found in
the heart model with the continuous GFR.

7.1.4 Simulation from the cornea model

In the cornea transplant data, it was found that there are two important covariates, RAGE as
a continuous and CAUSE as a categorical covariate in addition to SECOND. RAGE, CAUSE
and the second graft time (the number of days between first and second graft) were generated
using a multivariate log normal distribution with correlation matrix
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Figure 7.2: Power of GFR1 test in the fitted Weibull (0 knot) and the 5-knot models based
on simulations from the Weibull (0 knot), 1, 2 and 3 knot models with 70% censoring.

 1 0.62698 −0.07257
0.62698 1 −0.08770
−0.07257 −0.08770 1

 .

Categorisation of CAUSE was performed according the proportion of each level using
(7.1). The value of SECOND is set as 1 when the first graft survival time exceeds the
generated second graft time and 0 otherwise. Based on the cornea data set, RAGE has
µ = 48.21, σ = 1.69, CAUSE has µ = 1.8, σ = 1.57 with pi = 34.1%, 33.4% and 32.5%, and
SECOND has µ = 1.73, σ = 1.33 with pi = 79.1% and 20.9%.

Generating survival times from both of the standard and the spline models can be per-
formed following the algorithm that has been described for the heart model. However, these
specifications will be used to generate survival times from the Weibull and spline models with
SECOND as a time-dependent covariate only in section 7.2.3 and 7.3.3. Censoring propor-
tion in the cornea data was 90% for about 1200 patients so that simulation based on the real
data was performed including 9 scenarios with censoring proportions 70%, 80% and 90% and
n = 400, 800 and 1200 with 10000 replications per scenario.
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Figure 7.3: Power of GFR2 test in the fitted Weibull (0 knot) and the 5-knot models based
on simulations from the Weibull (0 knot), 1, 2 and 3 knot models with 70% censoring.
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Figure 7.4: Power of GFR3 test in the fitted Weibull (0 knot) and the 5-knot models based
on simulations from the Weibull (0 knot), 1, 2 and 3 knot models with 70% censoring.
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7.2 Simulation of Weibull model with time-dependent

covariates

In this section, the results of fitting the Cox, standard Weibull and the log-logistic models will
be discussed. The data were generated from the standard Weibull model using the algorithm
that will be described in section 7.2.1.

7.2.1 Simulation results of heart model with GFR as a continuous
time-dependent covariate

Liu and Craig (2006) introduced a method for generating vectors of time-dependent covari-
ates. Based on this method, the time-dependent values of GFR were generated using the
baseline values that have been generated in the fixed model simulations in addition to the
updated values that are available. There were only 31 subjects whose GFR values were
completed and then the information of those subjects were used to generate the time vary-
ing values of GFR. A time-dependent process for GFR values yi(t) was considered using a
combination of time trend and autoregressive models as

yi(t) = β0 + β1t+ Ωt + Ai, (7.7)

where β0 and β1 are the line trend parameters, Ai is a subject random effect where Ai ∼
N(0, σ2) and Ωt is the AR(1) autoregressive model with parameter a1 and error term εt that
defined as

Ωt = a1Ωt−1 + εt, (7.8)

In this model, trend and autoregressive parameters were calculated from the data of the
31 subjects with complete vectors of GFR values while the σ2

A was calculated based on the
baseline values of GFR.

Generating survival times from survival model including time-dependent covariates was
described by Leemis and Reynertson (1989). Following their algorithm, generating sur-
vival times from the Weibull AFT model was done where GFR was incorporated as a time-
dependent covariate. The cumulative hazard function of the Weibull AFT model with time-
dependent covariates can be defined as

Hi(t) =


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ρ
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1
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1
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)ρ
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]
, τij ≤ t < τi(j+1),

(7.9)

where αij is parameter function of fixed and time-dependent covariates for the ith individual
at time τij and ρ is the Weibull shape parameter. Thus, the survival times can be generated
using the condition hazard that changes with the updated value for the time-dependent GFR
as
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(7.10)

The fixed covariates were generated as described in section 7.1.1 in addition to the vectors
of GFR. The parameter values were specified based on the parameter values of the fitted
Weibull AFT model with continuous time-dependent GFR as presented in chapter four.
Hence, survival time from that model were generated using the following algorithm.

1. Evaluate the cumulative hazard function in each interval using (7.9), based on the
intervals in which GFR values are updated. The follow-up times in days are t =
1, 90, 360, 720, . . . , 4320 (i.e., the follow-up times after heart transplant in the real data).

2. Generate N survival times Ti, i = 1, . . . , N using (7.10) with starting by generating u
from uniform distribution U ∼ Uni[0, 1]. If 0 ≤ u < 1− e−Hi1(t) generate survival time
from Ti1. Otherwise if u = 0 then assign Ti1 = 1 and stop follow up for this subject. If
the generated Ti1 ≥ 1 generate a new value for u, if 1− e−Hi1(t) ≤ u < 1− e−Hi2(t) then
generate the second time from Ti2. If Ti2 ≤ 90 assign T12 as generated. Otherwise go
to the third interval and so on.

3. Generate N censored times Ci, i = 1, . . . , N from an exponential distribution as de-
scribed in section 7.1.1. For each subject i, if Ti ≤ Ci then the subject is uncensored
with censoring indicator δi = 1, otherwise δi = 0.

The heart model was simulated including the significant covariates as described in the pre-
vious section in two stages: continuous time-dependent GFR, and categorical time-dependent
GFR. In the heart model with GFR as a continuous time-dependent covariate, the results
that compare the three models are presented. In Table 7.9, the powers for covariate tests
with 70% censoring are presented for n = 500, 1000 and 1500. For DAGE, the power in
the Cox model increased from about 88% when n = 500 to about 99% when n = 1500.
The Weibull model has slightly higher power than in the Cox and the log-logistic models for
DAGE, OTHER and GFR, particularly when n = 500. For the other covariates, it was found
that the powers in the Weibull model were lower than those obtained in the Cox model, while
the powers in the log-logistic model were lower compared to those obtained for all covariates
in the two models.
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Table 7.9: The empirical power at α=0.05 in the heart model based on generated survival
times from the Weibull model with 70% censoring

n = 500 n = 1000 n = 1500
Parameter Cox Weibull log-logistic Cox Weibull log-logistic Cox Weibull log-logistic

DAGE 88.92 91.94 83.24 99.03 99.63 97.73 99.83 99.93 99.73
CYCLO 82.87 74.65 67.75 96.33 85.54 89.84 99.03 94.53 96.63
FK506 96.65 93.44 91.25 99.40 99.60 99.00 99.40 99.78 99.20
OTHER 83.57 87.26 73.88 98.44 99.44 95.84 99.84 99.84 99.24
GFR 92.88 93.98 87.46 98.73 98.83 98.04 98.83 98.83 98.63

The powers for covariate tests in the three models were calculated when simulations
were performed with 60% and 80% censoring. This powers across the three models in the
two censoring cases was close to those obtained when the model was simulated with 70%
censoring case, particularly for = 1500.

Figure 7.5 shows the powers for GFR in the three fitted models when simulation was
done with 70% censoring from the Weibull model. The figure shows that the power in the
Weibull model was slightly higher than that obtained in the other two models, particularly
with n < 1000 .

Figure 7.5: Power for GFR test in the fitted Cox, Weibull and log-logistic models based on
simulation from the Weibull model with 70% censoring.

To compare the three models, percentage bias, MSE and average of confidence interval
length were calculated for the parameter estimates in the three models with 70% censoring in
Tables D.1, D.2 and D.3 respectively. The percentage bias in Table D.1 shows that the bias
percentage for most of parameter estimates are higher in the Cox model than the Weibull
and the log-logistic models. Also, the Weibull model has lower bias percentages than the
log-logistic model. The MSE of parameter estimates in the three models in Table D.2 shows
that the Weibull model has smaller MSE for all the parameter estimates compared to the
other two models. The average confidence interval length of parameter estimates in Table D.3
was close to each other in the three models. However, the Weibull model has slightly smaller
averages confidence interval length for all parameters comparing to the other two models. In
conclusion, the simulation results of the heart model with a continuous time-dependent GFR
show higher power for covariate tests of the Weibull model compared to the log-logistic model
with less difference in power when it is compared with the Cox model. Also, the Weibull
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model has parameter estimates with less bias and smaller MSE compared to those obtained
in the other two models.

7.2.2 Simulation results of heart model with GFR as a categorical
time-dependent covariate

The heart survival data using the GFR as a categorical covariate were simulated from the
Weibull model. Table 7.10 presents the powers for the three GFR categorical covariate tests
in the Cox, Weibull and log-logistic models. The powers for GFR1 and GFR3 were mildly
higher in the Cox model when n = 500 compared to the other two models. However, there
was no difference in powers among the the three models when n = 1000 and 1500. When
the same simulation was done with 60% and 80%, the Weibull model had relatively higher
powers comparing to the other two models in the 60% censoring case.

Table 7.10: The empirical power at α=0.05 in the heart model based on generated survival
times from the Weibull model with 70% censoring

n = 500 n = 1000 n = 1500
Parameter Cox Weibull log-logistic Cox Weibull log-logistic Cox Weibull log-logistic

GFR1 88.76 85.46 80.46 99.35 98.95 97.25 99.95 99.95 99.65
GFR2 99.95 99.95 99.95 99.95 99.95 99.95 99.45 99.95 99.10
GFR3 92.85 89.66 85.16 99.65 99.55 98.15 98.35 99.95 98.12

Figure 7.6 compares the powers for GFR1, GFR2 and GFR3 in the three models with
70% censoring. Figure 7.7(a) shows that the power for GFR1 in the Cox model is slightly
higher than that obtained in the other two models. Figure 7.6(b) shows that the power for
GFR3 in the Weibull model is slightly higher than that obtained in the other two models for
n ≥ 1000. Figure 7.6(c) shows approximately the same results as shown in Figure 7.6(a).

Figure 7.6: Powers for GFR1, GFR2 and GFR3 tests in the fitted Cox, Weibull and log-
logistic models based on simulation from the Weibull model with 70% censoring.

Tables D.4, D.5 and D.6 present the bias percentage, MSE and average of confidence
interval length respectively when simulation was performed with 70% censoring. There was
no specific model can be selected as the model with less bais percentage. However, the
Weibull model had the smallest MSE comparing to the other two models for all the parameter
estimates except for GFR3. Further, the average of confidence interval length for the Weibull
model was noticeably less than those obtained in the other two models. These results reflect
a slight better performance for the Weibull model against the other two models.

The simulation results in the heart model with the continuous time-dependent GFR show
a lightly higher power values, particularly when compared to the log-logistic model. However,
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the powers for GFR1, GFR2 and GFR3 in the second model simulation was higher in the
cox model for n = 500 and equivalent across the three models when n = 1000 and 1500. This
result changed only when the censoring proportion decreased to 60%, since the powers for
the three covariate tests were higher in the fitted Weibull model, particularly when compared
to the log-logistic model.

7.2.3 Cornea model simulation results

The time-dependent values of SECOND were generated based on the obtained second graft
time. This time was generated with RAGE and CAUSE from a multivariate log normal
distribution (see section 7.1.4). The survival times of the first eye graft is generated using
RAGE and CAUSE only. If the second eye graft time exceeds the first graft time, it means
that the second eye graft has not been done during the life time of the first eye graft and the
value of SECOND is zero. Otherwise, the second eye graft was done and the survival time
of the first eye graft is generating depending on the value of SECOND which changes from
zero before the second graft operation and one thereafter. In this case, the algorithm that
described in section 7.2.1 was employed to generate such survival times through two intervals
only per each subject. This simulation was done based on the cornea data so that parameter
values of the Weibull model with SECOND as a time-dependent covariate as described in
chapter five were employed. Also, right censoring data were generated and assigned for the
survival times following the algorithm of the heart model simulations.

Data from the cornea model were simulated including RAGE, CAUSE1, CAUSE2 and
SECOND as a time-dependent covariate. This simulation has been done based on the Weibull
model with 70%, 80% and 90% censoring with 10000 replications per scenario. Table 7.11
presents the powers for the four covariate tests when the model was simulated with 90%
censoring. The Weibull model had a higher power for DAGE and SECOND while approx-
imately the same powers were obtained for CAUSE1 and CAUSE2 across the three fitted
models when n = 400. It was noticed that the powers tends to be the same when the sample
size increases from n = 400 to 1200. The results when the model was simulated with 70%
and 80% censoring show general increase in the power when as the censoring proportion
decreased to 70% and 80%.

Table 7.11: The empirical power at α=0.05 in the cornea model based on generated survival
times from the Weibull model with 90% censoring

n = 400 n = 800 n = 1200
Parameter Cox Weibull log-logistic Cox Weibull log-logistic Cox Weibull log-logistic

RAGE 68.85 76.46 69.64 91.74 95.22 91.91 98.13 99.29 98.15
CAUSE1 75.05 75.36 76.38 94.99 95.90 95.23 99.25 99.62 99.33
CAUSE2 70.50 71.75 71.73 93.89 93.97 94.00 99.06 99.03 99.05
SECOND 75.72 89.31 68.45 97.17 99.23 98.06 99.14 99.97 99.27

Figure 7.7 compares the power for SECOND test among the three fitted models when
simulation was done form the Weibull model with 90% censoring. The figure shows that the
power in the Weibull model was higher than the other two models when n = 400. However,
there was no obvious difference in power among the three models when n > 400.

The percentage bias, MSE and average confidence interval length of parameter estimates
are presented in Tables D.7, D.8 and D.9 when the model was simulated with 90% censoring.
The percentage of bias in Table D.7 shows that the lower bias for DAGE was in the Cox model
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Figure 7.7: Power for SECOND test in the fitted Cox, Weibull and log-logistic models based
on simulation from the Weibull model with 90% censoring.

while bias of CAUSE1, CASUE2 and SECOND was lower in the Weibull model compared
to the other two models. The MSE results in Table D.8 show that the Cox model had
the smallest MSE for RAGE and CAUSE1, while the Weibull model had the smallest MSE
for CAUSE2 and SECOND. The results of average confidence interval length were similar
to the results of the percentage bias and MSE across the three fitted models. Generally,
the comparison of performance measures among the three fitted models concludes that the
Weibull model can be considered as a reasonable alternative to the Cox model when the
cornea data include second eye graft as a time-dependent covariate.

7.3 Simulation study of Weibull spline model with time-

dependent covariates

In this section generating survival times has been performed by a combination of the nu-
merical algorithm to generate survival times from the Weibull spline models and the al-
gorithm that was described to generate survival times from the Weibull AFT model with
time-dependent covariates in section 7.2. The results of the simulations from the spline mod-
els with time-dependent covariates will be discussed. Data from the heart model were sim-
ulated with the fixed covariates and GFR as a continuous and a categorical time-dependent
covariate. Further, simulations from the cornea model were done using the fixed covari-
ates and SECOND as a binary time-dependent covariate. These simulations were run using
samples of n = 500, 1000 and 1500 observations for the heart model with 60%, 70% and 80%
censoring proportions. For the cornea model, simulations were run with a combination of n
= 400, 800 and 1200 observations with 70%, 80% and 90% censoring proportions. In the two
models, simulations from the 0, 1, 2 and 3 knot models were performed for 2000 replications.

7.3.1 Simulation results of heart model with GFR as a continuous
time-dependent covariate

Table 7.12 presents the powers for covariate tests when simulation was done from the Weibull
model including GFR as a continuous covariate for n = 500, 1000 and 1500 with 70%
censoring. For DAGE, the power was about 94% in the 0 knot model, and then decreased

150



to about 92% in the 4 knot model when n = 500. In the sample of n = 1500, the powers of
the same covariate were about 99% in the two models. There was no noticeable difference
in power of GFR in all sample sizes. However, the powers of CYCLO, FK506 and OTHER
in the 4 knot model were lower than those obtained for the same covariates in the 0 knot
model. The powers of all the covariate tests considerably increased as n increased from 500
to 1500. The results in this table are based on generating from the Weibull model as was
done in Table 7.9. Hence, power values of the fitted 0 knot model are close to those obtained
for the fitted Weibull model in Table 7.9, particularly when n = 1000 and 1500.

Table 7.12: The empirical power at α=0.05 in the heart models based on generated survival
times from the Weibull model with 70% censoring

n = 500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 93.80 91.95 92.35 92.65 92.35 91.15
CYCLO 91.30 89.20 95.45 97.95 89.70 90.95
FK506 99.85 99.80 99.75 99.80 88.80 91.00
OTHER 97.25 94.70 95.60 96.70 85.90 84.45
GFR 99.85 99.80 99.80 99.85 99.15 99.75

n = 1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 96.75 94.35 95.35 97.00 97.00 97.05
CYCLO 99.20 98.60 99.40 99.55 95.85 99.15
FK506 99.60 99.45 99.55 99.60 94.00 97.75
OTHER 99.60 99.45 99.55 99.60 94.00 96.15
GFR 99.60 99.45 99.55 99.60 99.25 99.60

n = 1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 98.95 98.30 98.55 99.00 99.50 98.95
CYCLO 99.25 99.20 99.10 99.25 98.35 99.25
FK506 99.25 99.20 99.10 99.25 97.50 98.85
OTHER 99.25 99.20 99.10 99.25 97.50 98.40
GFR 99.75 99.20 99.20 99.25 99.27 99.25

In Tables 7.13, 7.14 and 7.15, the results for power of the same covariate tests when
simulation was done from the 1, 2 and 3 knot models respectively, are presented. The powers
for all covariates are less than those obtained in the simulated 0 knot model particularly
for DAGE in the samples of n = 500. For the other covariates, the power were slightly less
than the powers for the same covariates when n= 500, while equivalent powers had been
obtained for n = 1500. The reason for the difference in power when simulation is done from
one of the spline models is the error in data generation that might have happened when
a considerable difference between the assumed knot locations and the locations that are
found in the generated data. For the time-dependent covariate GFR, it was noticed that its
power was about 99% across the different fitted models in the three simulation cases which is
considerably higher than that obtained in the same scenarios for fixed covariate mode. This
explains the increase in effect of GFR on survival times when it is treated as a time-dependent
covariate. Generally, the power of covariate tests decreased as the proportion of censoring
increased. For GFR, the power was about 99% in the results of the three simulated models
with the two censoring scenarios. Two remarks can be concluded from these results:
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1. The calculated power in the the 0 knot model simulations was slightly higher than that
obtained from simulations of the spline models.

2. GFR had the same power (>98%) through the different scenarios.

Table 7.13: The empirical power at α=0.05 in the heart models based on generated survival
times from the 1-knot Weibull spline model with 70% censoring

n = 500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 90.70 88.65 86.55 86.55 86.85 86.10
CYCLO 88.80 88.05 88.35 88.05 90.25 88.15
FK506 90.40 89.10 88.30 88.25 92.25 87.85
OTHER 99.05 99.30 99.05 99.10 99.10 96.45
GFR 98.15 99.20 99.05 98.85 99.50 98.60

n = 1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 98.55 98.45 98.10 97.95 98.85 99.10
CYCLO 91.25 90.50 91.25 91.45 91.10 87.25
FK506 92.60 91.90 91.20 91.50 93.15 89.30
OTHER 99.05 99.15 99.05 98.80 99.65 97.85
GFR 99.05 99.70 99.35 98.85 99.60 98.80

n = 1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 99.05 99.25 98.80 98.85 99.05 98.75
CYCLO 93.55 92.80 93.10 92.80 93.80 90.85
FK506 94.10 93.75 92.85 91.60 94.85 91.45
OTHER 99.55 99.55 99.50 99.55 99.85 98.10
GFR 99.50 99.70 99.45 99.50 99.80 98.80

Figure 7.8 compares the power of GFR in the fitted 0 knot and 4 knot models when
simulation was done from 0, 1, 2 and 3 knot models with 70% censoring. In the four Figures,
the power of the GFR was about 99% at all scenarios with small difference between the two
fitted models as shown in Figures 7.8(a) and 7.8(b).

To achieve complete comparisons between the Weibull model (0 knots) and the spline
models, the three criteria, bias percentage, MSE and average confidence interval length were
employed. Tables E.1, E.2, E.3 and E.4 include the bias percentage of parameter estimates
of the fitted models based on simulation of models with 0, 1, 2 and 3 knots. The results in
the four tables show that the bias percentages of CYCLO, FK506 and OTHER in the 4 knot
model were lower than those obtained in the 0 knot model. DAGE had lower bias percentage
in the 4 knot model when n = 500 and 1000. For GFR, there was no noticeable difference
between the 0 and the 4 knot model when the percentage of bias for this covariate estimate is
compared within the two fitted models. Tables E.5, E.6, E.7 and E.8 present the MSE of the
parameter estimates when the simulation was performed from 0, 1, 2 and 3 knot respectively.
The difference between the MSE in the 0 knot and the 4 knot model did not change when
the results were calculated based on different simulated models. The same MSE had been
found for DAGE and GFR. For the other parameter estimates, the 0 knot model had slightly
smaller MSE than the 4 knot model when simulation was done from 1, 2 and 3 knot models.
Tables E.9, E.10, E.11 and E.12 include the average confidence interval length for the same
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Table 7.14: The empirical power at α=0.05 in the heart models based on generated survival
times from the 2-knot Weibull spline model with 70% censoring

n = 500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 75.85 70.10 66.55 67.10 67.50 69.30
CYCLO 99.45 99.60 99.45 99.45 99.45 96.25
FK506 88.80 87.85 88.70 88.50 91.25 84.20
OTHER 89.65 87.40 84.65 84.65 85.50 82.65
GFR 98.85 98.45 98.25 98.65 99.25 98.25

n = 1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 92.65 92.10 90.45 91.25 90.85 91.45
CYCLO 98.65 98.80 98.65 98.65 98.45 97.05
FK506 89.05 87.65 89.10 89.30 90.90 87.70
OTHER 97.80 97.85 97.10 97.65 97.25 93.45
GFR 99.30 99.60 99.35 99.25 99.45 98.50

n = 1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 95.80 95.60 95.05 95.10 95.35 96.40
CYCLO 99.60 99.45 99.45 99.65 99.65 97.20
FK506 94.05 92.65 93.45 93.85 92.85 90.25
OTHER 98.60 98.80 98.50 98.45 98.10 96.45
GFR 98.55 98.85 98.60 98.55 99.25 98.20

scenarios. The results in the four tables show approximately same average confidence interval
length across the six fitted models.

To compare the performance of the 0 knot model with the 4 knot model, the power of
covariate tests in the fitted 0 knot model was slightly higher than that obtained in the fitted
4 knot model in the results of the 1, 2 and 3 knot model simulations while equivalent power
has been found for GFR. The bias percentages of parameter estimates were lower in the fitted
0 knot model for the continuous covariates, while the parameter estimates of the categorical
covariates in the 4 knot model had lower bias percentages. The MSE were generally smaller
in the 0 knot model, but in some scenarios, the MSE were equivalent. The average confidence
interval length was approximately the same in the two compared models. Finally, when the
AIC values were calculated over the 2000 replication based on simulation from the 0 knot
model, the 5 knot model had the lowest AIC values in 67%, 89% and 95% for n = 500, 1000
and 1500 respectively. However, in the simulation from the 1 knot model, the 4 knot model
had the lowest AIC values in 47%, 53% and 72% for n = 500, 1000 and 1500 respectively.
The AIC results based on simulations from the 2 and 3 knot models were close to those
obtained in the 1 knot model simulation.

7.3.2 Simulation results from the heart model with GFR as a cat-
egorical time-dependent covariate

Table 7.16 present the power of test for the time-dependent covariates GFR1, GFR2 and
GFR3 when simulation was done from the Weibull model with 70% censoring. For GFR1,
the power in the fitted 0 knot model was about 95% and then decreased to about 81% in
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Table 7.15: The empirical power at α=0.05 in the heart models based on generated survival
times from the 3-knot Weibull spline model with 70% censoring

n = 500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 88.95 88.45 82.45 83.45 82.60 81.90
CYCLO 99.95 99.35 99.35 99.90 99.75 94.90
FK506 95.35 95.15 94.25 94.95 94.45 85.95
OTHER 94.65 93.75 91.45 90.95 90.35 85.45
GFR 99.70 99.30 99.20 99.30 98.35 96.35

n = 1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 95.95 95.95 94.45 94.45 94.45 93.95
CYCLO 99.95 99.90 99.95 99.90 99.90 90.95
FK506 93.95 93.95 93.45 93.45 93.45 81.45
OTHER 99.45 98.95 98.90 98.95 98.90 88.95
GFR 99.60 99.95 99.55 99.90 99.95 96.80

n = 1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 98.15 98.70 97.90 97.10 97.15 97.95
CYCLO 99.45 99.40 99.45 99.45 99.40 90.90
FK506 95.45 95.45 95.45 95.45 95.45 83.95
OTHER 99.40 99.45 98.95 98.90 98.90 89.50
GFR 99.05 99.25 99.50 99.40 99.65 97.20

the fitted 4 knot model when n = 500. This power was about 100% in the fitted 0 knot and
about 99% in the fitted 4 knot model when n = 1500. GFR2 and GFR3 have approximately
the same results when the fitted 0 knot model is compared with the fitted 4 knot or the other
spline models.

Table 7.16: The empirical power at α=0.05 in the heart models based on generated survival
times from the Weibull model with 70% censoring

n = 500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 95.25 86.70 79.30 78.90 81.45 70.70
GFR2 96.85 89.70 82.50 82.60 84.80 73.80
GFR3 98.45 92.55 87.30 87.35 89.25 77.50

n = 1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 100.00 99.50 98.10 98.20 98.70 94.05
GFR2 100.00 99.50 98.65 98.65 98.90 94.35
GFR3 100.00 99.75 99.20 99.20 99.35 94.90

n = 1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 100.00 99.95 99.90 99.85 99.75 97.20
GFR2 100.00 99.90 99.90 99.90 99.75 97.40
GFR3 100.00 100.00 100.00 100.00 99.85 97.60
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Figure 7.8: Power of GFR test in the fitted Weibull (0 knot) and the 4-knot models based
on simulations from the Weibull (0 knot), 1, 2 and 3 knot models with 70% censoring.

In Tables 7.17, 7.18 and 7.19, the powers of covariate tests are presented when simulations
were performed from the 1, 2 and 3 knot models with 70% censoring. The power of all the
covariate tests across the results of the three tables are slightly lower than those obtained from
the simulation of the Weibull model, particularly when n = 500. This means that the data
of some samples were not generated correctly from the correct spline model for difficulties
that may arise from the inappropriate selection for the knot positions that assumed before
simulating these data sets. The results in Table 7.17 do not show clear difference in the
estimated power of the covariates in the fitted 1 knot model where simulation was done
from the same model. However, the results in Tables 7.18 and 7.19 show some differences
in estimated power in the fitted 2 and 3 knot models when simulations were done from the
same models. This implies that most of the samples in those two simulations were generated
correctly from the desired models.

Figure 7.9 shows the power for GFR1 in the 0 and 4 knots models through the four
simulations with 70% censoring. Figure 7.9(a) shows that the power of GFR1 in the fitted 0
knot model was higher than that obtained in the fitted 4 knot model when n < 1000, while
the two models had the same power value for n > 1000. Figure 7.9(b) shows that the power
in the fitted 0 knot model was about 83%, comparing to 81% in the 4 knot model. When
n = 500, the power in the fitted 0 knot model was higher by about 2% at all sample sizes.
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Table 7.17: The empirical power at α=0.05 in the heart models based on generated survival
times from the 1-knot Weibull spline model with 70% censoring

n = 500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 83.25 81.10 80.70 80.50 80.50 74.90
GFR2 90.45 88.65 88.05 87.65 87.85 82.85
GFR3 90.05 88.45 88.25 88.80 89.05 86.45

n = 1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 96.65 94.65 94.45 94.45 94.50 93.05
GFR2 98.20 97.80 97.80 97.80 97.85 96.25
GFR3 98.25 97.65 97.45 97.45 97.25 96.65

n = 1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 98.05 97.85 98.25 97.85 97.85 97.45
GFR2 99.05 99.60 99.25 99.10 99.10 98.40
GFR3 98.40 98.65 98.55 98.05 98.45 98.20

Table 7.18: The empirical power at α=0.05 in the heart models based on generated survival
times from the 2-knot Weibull spline model with 70% censoring

n = 500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 85.65 84.70 86.95 85.80 85.65 85.80
GFR2 82.85 80.90 85.10 84.50 84.30 84.70
GFR3 88.25 86.75 89.85 89.35 89.05 89.25

n = 1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 96.60 96.45 97.85 97.20 97.05 97.25
GFR2 95.65 94.85 96.85 96.45 96.45 96.65
GFR3 97.25 97.00 98.50 98.05 98.35 98.10

n = 1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 98.40 98.45 99.78 99.05 99.35 99.05
GFR2 98.05 98.25 99.70 99.00 99.45 99.10
GFR3 98.40 98.45 99.60 99.05 99.45 99.20

In Figure 7.9(c), the power in both models was approximately the same with difference by
about 1% for the fitted 4 knot model. This difference increased to about 4% for the fitted 4
knot model as shown in Figure 7.9(d).

Figures 7.10 and 7.11 compare the powers for GFR2 and GFR3 in the fitted 0 and 4 knot
models through the four simulated models with 70% censoring. As shown in Figures 7.9(a,
b, c and d), the powers for the two covariates were higher in the fitted 0 knot model when
simulation was done from the Weibull model and approximately the same for the simulation
from the 1 knot model. On the other hand, the powers for those covariates were higher in
the fitted 0 knot model when the simulation was done from the 2 and 3 knot models.

The bias percentages, MSE and the average confidence interval length were calculated
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Table 7.19: The empirical power at α=0.05 in the heart models based on generated survival
times from the 3-knot Weibull spline model with 70% censoring

n = 500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 88.80 88.35 90.45 90.90 90.10 86.90
GFR2 85.70 84.90 89.90 89.45 89.15 85.50
GFR3 90.20 90.20 92.20 92.55 92.40 88.80

n = 1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 95.90 95.70 98.25 98.65 98.60 96.35
GFR2 95.15 94.95 96.35 96.85 96.68 94.60
GFR3 96.25 96.20 97.80 97.95 97.50 95.70

n = 1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 98.35 98.85 99.20 99.75 99.65 97.65
GFR2 98.45 98.40 99.15 99.85 99.80 97.25
GFR3 98.85 98.90 99.25 99.65 99.10 97.45

from simulation of the four models in order to compare the fitted 0 knot and 4 knot models.
Tables E.13, E.14, E.15, and E.16 present the bias percentages of parameter estimates in
simulations from the 0, 1, 2 and 3 knot models with 70% censoring respectively. The bias
percentages in the fitted 4 knot model were lower than those obtained in the fitted 0 knot
model when simulation was done from the 0 knot model, while these bias percentages were
slightly close in the two compared models when simulations were done from the 1, 2 and 3
knot models. Tables E.17, E.18, E.19 and E.20 present the MSE of parameter estimates when
simulations were done from the 0, 1, 2 and 3 knot models with 70% censoring respectively.
The MSE of parameter estimates of the two fitted models were similar across the results
of the four tables. Also, through the results in the Tables E.21, E.22, E.23, and E.24 for
average confidence interval length of GFR1, GFR2 and GFR3, it was not found obvious
difference between the fitted 0 and 4 knot models. Generally, the powers in the fitted 0
knot model were slightly higher than the power in the fitted 4 knot model, particularly
when simulation was done from the Weibull model, while the fitted 4 knot model had higher
powers for the three covariates when simulations from 2 and 3 knot models are considered.
The bias percentages were lower in the fitted 4 knot model compared to the fitted 0 knot
model particularly when the simulations were done from 0 and 1 knot models. The MSE in
the 4 knot model was slightly smaller than those obtained in the fitted 0 knot model for most
of parameter estimates. Finally, the AIC were calculated for all the six fitted models over
all the replications with very close results to those found in the continuous time-dependent
GFR case.

7.3.3 Simulation results for the cornea model

Table 7.20 presents the power of covariate tests for the cornea model when simulation was
done from the Weibull model with 90% censoring. For RAGE, the power in the fitted 0 knot
model was about 52% and then increased to about 60% in the fitted 5 knot model when
n = 400. This power was about 89% in the fitted 0 knot and about 87% in the fitted 5 knot
model when n = 1200. The other three covariates had powers of about 49%, 58% and 74%
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Figure 7.9: Power of GFR1 test in the fitted Weibull (0 knot) and 4-knot models based on
simulations from the Weibull (0 knot), 1, 2 and 3 knot models with 70% censoring.

respectively in the fitted 0 knot model when n = 400, while the powers of the same covariates
were higher by about 5% in the 5 knot model. For n = 1200, the power values of the four
covariate tests were higher in the fitted 0 knot model compared to all the other fitted spline
models. There were some differences in power for RAGE, CAUSE1 and CAUSE2 between
the fitted 0 knot model and those obtained in the same fitted model when simulation was
done from the Weibull model in Table 7.11, particularly for the n = 400 and 800. These
differences may be due to the number of replications that was 10000 in the results of Table
7.11 while the simulation here was done based on 2000 replications only, in addition to the
increasing sampling error when simulations were done with smaller samples (n = 400).

In Tables 7.21, 7.22 and 7.23, the powers for covariate tests are presented when simulations
were performed from the 1, 2 and the 3 knot models with 90% censoring. The power for
all covariates in fitted 1, 2 and 3 knot models was considerably higher than those obtained
from the fitted 0, 4 and 5 knot models particularly, when n = 400 and 800. These results
were expected because the simulations were done from 1, 2 and 3 knot models. To compare
the powers for covariate tests in the fitted 0 and 5 knot models, it was found that power
values in the fitted 5 knot model were slightly higher than those obtained in the fitted 0 knot
model for RAGE and SECOND in the results of the three tables, while the two models had
close powers for the covariate of CAUSE1 and CAUSE2 when n = 1200. The powers for all
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Figure 7.10: Power of GFR2 test in the fitted Weibull (0 knot) and 4-knot models based on
simulations from the Weibull (0 knot), 1, 2 and 3 knot models with 70% censoring.

covariate tests increased as the censoring proportion decreased to 70% and 80%.
Figure 7.12 compares the power for SECOND in the fitted 0 and 5 knot models when

the 0, 1, 2 and 3 knot models were simulated with 90% censoring. In Figure 7.12(a), the
power in the 0 knot model was considerably higher than that obtained in the 5 knot model
for n > 500. In Figures 7.12(b), 7.12(c) and 7.12(d), the power for SECOND in the fitted
5 knot model was higher than that calculated in the fitted 0 knot model for the simulation
from 1, 2 and 3 knot models across all the sample sizes.

The bias percentages, MSE and the average confidence interval length were calculated
from the simulations from the four models in order to compare the. Tables E.25, E.26, E.27,
and E.28 present the bias percentages of parameter estimates in simulations of the 0, 1,
2 and 3 knot models with 90% censoring respectively. For all the fitted models, the bias
percentages were high, particularly for SECOND parameter estimate. Tables E.29, E.30,
E.31 and E.32 present the MSE of parameter estimates when simulations were done from the
0, 1, 2 and the 3 knot models with 90% censoring respectively. The MSE in the 5 knots model
were smaller than those obtained in the 0 knot model for SECOND. However, the MSE of
CAUSE1 and CAUSE2 in the 0 knot model were slightly smaller compared to the MSE in
the 5 knots model. Tables E.33, E.34, E.35 and E.36 present the average confidence interval
length for estimates in the fitted models for simulations of the 0, 1, 2 and 3 knot models
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Figure 7.11: Power of GFR3 test in the fitted Weibull (0 knot) and 4-knot models based on
simulations from the Weibull (0 knot), 1, 2 and 3 knot models with 70% censoring.

with 90% censoring respectively. Through the results of the four tables, there was no obvious
difference in the average confidence interval length of parameter estimates across the fitted
models. However, the results in all these tables show that parameter estimate of SECOND
had unexpected high values for the the three measures. The first reason for these results
is the high censoring proportion (about 90%) that may cause some difficulties in fitting of
the model in some replications. Secondly, when the Weibull spline models are fitted to the
data, the knots may be located before or after the change of SECOND as a time-dependent
covariate from zero to one. In this case SECOND may have biased parameter estimates in
the fitted spline models, particularly with the higher number of knots. The AIC values were
calculated for all the fitted models over the different scenarios. Over the 2000 replications,
the lowest AIC value was for the 5 knot model in 46% 51% 59% for n = 400, 800 and 1200
when simulation was done from the 0 knot model. In the simulation of the 1 knot model,
the 5 knot model had the lowest AIC values in 35% 42% 52% for n = 400, 800 and 1200
respectively. These AIC results did not considerably change when simulations were done
from the 2 and 3 knot models.
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Table 7.20: The empirical power at α=0.05 in the cornea models based on generated survival
times from the Weibull model with 90% censoring

n = 400
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 52.25 41.10 69.75 68.50 58.95 60.10
CAUSE1 49.40 38.70 70.40 64.90 57.80 60.80
CAUSE2 58.60 43.25 75.75 69.25 61.25 64.05
SECOND 74.90 74.50 52.95 50.95 71.30 77.90

n = 800
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 76.45 60.55 88.70 84.40 77.00 77.95
CAUSE1 76.45 59.85 90.45 84.05 74.35 77.65
CAUSE2 82.85 63.45 92.25 86.35 76.50 79.70
SECOND 98.70 75.10 55.55 55.15 76.95 81.75

n = 1200
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 89.10 75.40 94.80 90.55 86.90 87.25
CAUSE1 89.70 73.60 96.85 92.85 86.65 87.25
CAUSE2 94.60 79.35 97.90 94.65 88.35 89.65
SECOND 99.35 75.70 58.60 62.95 80.30 82.70

Table 7.21: The empirical power at α=0.05 in the cornea models based on generated survival
times from the 1-knot Weibull spline model with 90% censoring

n = 400
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 58.20 85.55 88.10 78.30 46.85 50.75
CAUSE1 54.00 85.20 87.10 77.65 45.95 49.85
CAUSE2 60.20 87.55 90.20 80.25 47.85 51.75
SECOND 54.55 90.15 93.35 91.95 95.85 96.80

n = 800
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 78.95 99.20 98.20 96.75 78.30 82.25
CAUSE1 75.10 99.30 98.40 96.90 78.55 82.45
CAUSE2 82.50 99.40 98.65 97.00 78.70 82.80
SECOND 70.05 98.25 98.95 98.55 99.10 98.95

n = 1200
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 91.65 99.95 99.55 99.05 86.75 90.75
CAUSE1 87.60 99.95 99.45 99.10 87.05 91.10
CAUSE2 92.30 100.00 99.50 98.95 86.95 90.90
SECOND 89.10 99.20 99.55 99.10 99.10 99.35

7.4 Concluding remarks

In this chapter, simulations were performed based on the real survival data of heart and
cornea transplantation. Specifications of these data sets have been employed to simulate the
Weibull and the spline models in the two cases of fixed and time-dependent covariates. In
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section 7.1, the Weibull, 1, 2 and 3 knot spline models were simulated when all covariates
were held fixed in time. When the heart model was simulated with continuous GFR, the
simulation output for parameter estimates in the fitted 0 to 5 knot models were considered.
The bias percentages and the MSE values were lower in the fitted 5 knot model compared
to the fitted 0 knot model. Moreover, the AIC values were calculated for the fitted models

Table 7.22: The empirical power at α=0.05 in the cornea models based on generated survival
times from the 2-knot Weibull spline model with 90% censoring

n = 400
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 58.05 91.90 92.25 83.10 66.85 67.50
CAUSE1 73.95 96.50 96.60 87.05 71.10 71.00
CAUSE2 80.65 97.45 97.45 87.90 71.15 71.70
SECOND 58.20 97.55 98.45 96.80 96.10 97.25

n = 800
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 79.80 99.70 99.20 98.10 91.75 91.70
CAUSE1 93.60 99.95 99.80 98.50 92.55 92.65
CAUSE2 97.10 99.95 99.90 98.50 93.15 93.15
SECOND 68.50 99.65 99.85 99.40 98.60 98.80

n = 1200
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 91.05 100.00 99.90 99.40 96.35 97.15
CAUSE1 98.50 100.00 100.00 99.65 96.75 97.40
CAUSE2 99.05 100.00 99.95 99.50 97.25 97.80
SECOND 90.30 99.80 99.80 99.75 99.55 99.55

Table 7.23: The empirical power at α=0.05 in the cornea models based on generated survival
times from the 3-knot Weibull spline model with 90% censoring

n = 400
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 50.70 90.80 89.60 80.40 65.10 65.35
CAUSE1 68.05 93.85 93.40 83.65 68.65 68.10
CAUSE2 72.70 94.00 93.70 84.45 70.40 69.80
SECOND 54.50 96.05 97.55 98.35 97.75 98.15

n = 800
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 73.50 98.40 97.85 93.40 83.30 82.90
CAUSE1 89.40 99.05 98.60 95.00 86.05 85.65
CAUSE2 92.45 99.15 98.90 95.35 86.90 86.95
SECOND 87.40 98.80 99.50 99.35 99.60 99.80

n = 1200
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 85.85 99.65 99.60 97.65 88.90 89.60
CAUSE1 96.90 99.75 99.75 98.90 92.30 93.00
CAUSE2 98.45 99.95 99.85 98.85 92.60 93.50
SECOND 97.30 99.60 99.80 99.80 99.90 99.45
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Figure 7.12: Power of SECOND test in the fitted Weibull (0 knot) and 5-knot models based
on simulations from the Weibull (0 knot), 1, 2 and 3 knot models with 90% censoring.

from all the replications across the four simulations. The fitted 5 knot model had the lowest
AIC in about 90% of the replications when simulation was done from the 0 knot model with
n = 1500, while the fitted 3 knot model had the lowest AIC in about 76% of the replications
when simulations were done from the 1, 2 and 3 knot with the same sample size. Similar
results have been found when simulations were done from the heart model including GFR
as a categorical covariate. There are some doubts about the possibility to compare different
Weibull spline models using this criterion as described in section 7.1.2.

In section 7.2, the Weibull model was simulated when GFR was treated as a time-
dependent covariate in heart model and SECOND as a time-dependent in cornea model.
The algorithm that was used to generate data with time-dependent covariates was described
in section 7.2.1. The estimated outputs were calculated to compare the Weibull model with
the Cox and the log-logistic models. Heart model with continuous time-dependent GFR
simulation produced slightly higher power compared to the log-logistic model and close to
that obtained in the fitted Cox model. Also, the bias percentages and the MSE were slightly
lower in the Weibull model compared to the other two models. When the time-dependent
GFR was treated as a categorical covariate, similar results to the continuous case have been
obtained. In the cornea model results, the power of RAGE and SECOND was higher in the
fitted Weibull model compared to the other two models, while the power of CAUSE1 and
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CAUSE2 was not different from that obtained in the Cox model.
Section 7.3 includes simulations of the Weibull and spline models with 1, 2 and 3 knots

based on the heart data when GFR is treated as a time-dependent covariate in addition to
the cornea data with SECOND as a time-dependent covariate. In these simulations, data sets
were generated by an algorithm that combines between the numerical algorithm in section
7.1.1 and the algorithm that was described in section 7.2.1. In heart model simulation, the
results of the continuous case were employed to compare the fitted 0 with 4 knot models.
The powers of covariate tests were higher and the bias percentages of parameter estimates
were slightly lower in the fitted 0 knot model compared to the 4 knot model (based on the
simulation from the 0 knot model), while the fitted 4 knot model had the lowest AIC value.
In the simulation of the categorical case, based on power of test for GFR1, GFR2 and GFR3
besides bias percentages and MSE of parameter estimates, the fitted 4 knot model had slightly
higher power compared to the fitted 0 knot model when simulations were done from the 2
and 3 knot models. Finally, the results of the cornea model simulation showed that the power
in the fitted 5 knot model was higher than that obtained in the fitted 0 knot model when
simulation was done from the 2 and 3 knot models in addition to the AIC value of the fitted
5 knot model was lower than that obtained for the other fitted model across the different
scenarios. However, the estimated bias percentages of parameter estimates were considerably
higher than those obtained in the fitted 0 knot model, particularly when simulations were
done from the 1, 2 and 3 knot models.

In simulation of survival data from different spline models, the estimated outputs should
be checked carefully to ensure that all the samples were correctly generated from the desired
spline model. Imprecise generation may be occurred as a result to the miss-specification of
the knot positions when they are assumed at unsuitable positions in which the data have
not been generated at this stage. Secondly, the high proportion censoring as, i.e. 70% in the
heart transplant data and 90% in the cornea transplant data, may cause some estimation
errors. These errors may lead to increase in the bias of some parameter estimates as for
SECOND in the fitted spline models in cornea data, particularly when simulation was done
from the 1, 2 and 3 knot models.
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Chapter 8

Discussion and future work

8.1 Discussion

The most common choice in modelling time-dependent covariates is the Cox regression model
that is easily extended to include such covariates. In this model, the baseline hazard function
is unspecified. However, when a suitable probability distribution is assumed for the survival
data, inferences based on the parametric model may be more precise in addition to obtaining
estimates with possibly smaller standard errors (Collett, 2003). Hence, an alternative choice
is to use AFT models with an underlying distribution such as: Weibull, log-logistic and
log-normal that allow for one or more covariates to change over time. In general parametric
models, the baseline hazard h0(t) is determined by small number of distributional parameters.
This approach may adequately fit the data that include such covariates if an appropriate
baseline hazard function has been specified.

The aim in this thesis was to consider parametric models that allow for time-varying
covariates as alternatives to the traditional extended Cox regression model. Further, a more
flexible parametric model, that was developed by Royston and Parmar (2002), is adopted by
extending the standard model using natural cubic splines. In chapter 3, the mathematical
functions for the Weibull and the log-logistic models were described. The cumulative hazard
functions for such models were constructed to accumulate the hazard within the different
intervals that represent the multiple records of each subject (see section 3.2). The standard
Weibull model was modified using the spline technique to increase smoothness of the hazard
function and possibly achieve better performance comparing to the standard model. This
model depends on adapting the baseline cumulative hazard in the presence of time-dependent
covariates to incorporate the spline function. The Cox model and the proposed parametric
models were fitted to two data sets supplied by NHS Blood and Transplant for heart and
cornea transplantation.

In the heart transplant data, the Cox, log-logistic and standard Weibull model were
applied using values of GFR, a modification of the creatinine level, as a fixed and a time-
dependent covariate. This covariate was modelled as a continuous and a categorical variable
with four levels. This would help to determine the best form to model GFR when it is involved
with its time varying values. The flexible Weibull model was applied with 0 (equivalent to
the standard model), 1, 2, 3, 4 and 5 knots using GFR as a fixed and as a time-dependent
covariate. Event though the fit of the 4 knot model was not better than the Cox model,
it achieved more adequacy compared to the Weibull model (0 knot). Based on the AIC
criterion to compare the spline models, the 5 knot model was the best when GFR was held
fixed, while the 4 knot model was the most satisfactory model when GFR was treated as
a time-dependent covariate. The two fixed covariates, DCMV and PCD, appeared to be
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non-significant at the 5% significance level when the models with a time-dependent covariate
were fitted. This may occur as a result of masking their effects within the time-depending
process. Consequently, their importance must be considered in the model excluding the time-
dependent covariate. In order to evaluate the competitor models, analysis of residuals was
applied. Cox-Snell and the martingale residuals of the Cox and the Weibull spline models (4
and 5 knots) reflected better performance for these models compared to the standard Weibull
(0 knot) and the log-logistic models.

A further example is the cornea transplant data, where a second eye graft is done and
its effect on the first eye graft is measured as a binary time-dependent covariate. RAGE was
not significant at 5% significance level in the log-logistic and the standard Weibull models
in the presence of the time-dependent covariate SECOND. In the time-dependent modelling
of this data set, the best spline model (5 knot) based on AIC, produced biased parameters,
particularly for SECOND. This result illustrates the unreliable model that may be obtained
when spline extension is applied to the standard Weibull model with binary time-dependent
covariate. Investigations using bias percentages and MSE of the estimated parameters from
that model were considered in chapter 7. Model checking using these data reflected a slightly
better performance for the Cox model with less adequacy for the Weibull spline model so
that simulation results can be employed to compare the likelihood-based inferences within
each model.

In order to evaluate the competitor models, the first step was to study the parameter
standard errors and standardized variability (sv-values), particularly for the parameter of
interest (e.g., GFR in the heart model and SECOND in the cornea model). It was found
that the spline models had the lowest sv-values for most of parameter estimates compared
to the Weibull standard (0 knot), log-logistic and Cox models. Cox-Snell and martingale
residuals were calculated for each fitted model. The residual analysis concluded that the Cox
and the Weibull spline models are more adequate than the standard Weibull and the log-
logistic models that include both fixed and time-dependent covariates. A clear comparison
among the alternative models via a simulation study was essential procedure.

The Weibull spline model was simulated when no covariates included in the model to de-
termine the number of knots that may be included in the spline model in different scenarios.
To achieve this aim, the Weibull spline models with 0 and 1 knot were simulated. To simulate
these models, Weibull scale, shape parameters were assumed in addition to spline paramet-
ers that have to be specified carefully in order to yield a valid cumulative hazard function
(i.e., monotone increasing function). The rejection sampling algorithm had low efficiency to
generate survival times from such models as a result to the high rejection proportion that
was found in applying this algorithm. The reason of this problem may be the inaccurate
specifying of the envelope distribution. Also, there was not much better performance for
the algorithm when the Weibull distribution was employed as an envelope distribution. A
numerical algorithm was suggested as an alternative based on producing table of survival
times and their relevant survival probabilities. Then results of the numerical inversion of the
spline survivor function were obtained and validated to ensure accurate generated survival
time at each iteration. The results of this simulation were affected by the difference between
the assumed knot positions and the actual positions of those knots for the simulated model
with shape 4. However, reasonable results were found for the other scenarios.

Simulation based on survival data after heart and cornea transplantation was performed
to study the produced estimates of each model across different scenarios. When simulation
was done from the Weibull spline models with fixed covariates, comparison between the fitted
Weibull (0 knot) and Weibull spline models showed slightly higher power in the 0 knot model
in simulation of the heart data and similar power in the cornea model simulation. However,
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the parameter estimates of the fitted spline models had less bias and slightly smaller MSE
compared to those obtained in the fitted 0 knot model. Simulation of the Weibull model with
time-dependent covariates introduced a comparison among the Weibull, log-logistic and the
Cox model. The Weibull model results were close to those obtained in the fitted Cox model
and slightly better compared to the log-logistic model based on the power of covariate tests.
Simulations from spline models including time-dependent covariates were helpful to evaluate
the performance of the Weibull spline models when the standard model is extended to more
flexible form, particularly in the presence of time-dependent covariates. The criterion of AIC
should not be used independently from the other criteria, since the models with a certain
number of knots are not always nested within those with higher number of knots.

8.2 Future work

The aim of the study was to introduce a flexible Weibull model as a parametric alternative
to the Cox model when some covariates change over time. In this case, it may be more
informative to examine more parametric models besides comparing their performance with
the Weibull and the log-logistic models. Further, one of these parametric models can be
extended with natural cubic splines, particularly when time-dependent covariates are included
in the model. The determination of the knot is an issue in the Weibull spline modelling, and
more investigations about this issue are needed. The Weibull model can be extended by
different types of splines (e.g., B-splines) and thus compared to the current Weibull spline
model.

The Weibull spline model simulation can be performed through rejection sampling al-
gorithm when a suitable envelope distribution is employed. In this case, a comparison
between this algorithm and the numerical algorithm that has been applied in this thesis
may be useful. Also, feasible spline parameter specification in the spline models with more
than one knot needs more investigation to achieve more accurate specifications about these
information prior to run the simulation. Finally, performance of the Weibull spline model
with binary time-dependent covariate needs to be checked through more simulation scenarios
to allow for more evaluations for such model against the Weibull standard model when one
or more covariates are involved as time-dependent with one change.
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Appendix A

Data codes (DCOD, PCD for heart
data and CAUSE for cornea data)

Donor cause of death (DCOD)

0 Living donor

10 Intracranial haemorrhage

11 Intracranial thrombosis

12 Brain tumour

13 Hypoxic brain damage - all causes

19 Intracranial - type unclassified (CVA)

20 Trauma - RTA - car

21 Trauma - RTA - motorbike

22 Trauma - RTA - pushbike

23 Trauma - RTA - pedestrian

29 Trauma - RTA - unknown type

30 Other trauma - suicide

31 Other trauma - accident

39 Other trauma - unknown cause

40 Cardiac arrest

41 Myocardial infarction

42 Aneurysm

43 Ischaemic heart disease

44 Congestive cardiac failure

45 Pulmonary embolism

49 Cardiovascular - type unclassified

50 Chronic pulmonary disease

51 Pneumonia

52 Asthma

53 Respiratory failure

54 Carbon monoxide poisoning

59 Respiratory - type unclassified (inc smoke inhalation)

60 Cancer, other than brain tumour

70 Meningitis

71 Septicaemia

72 Infections - type unclassified

73 Acute blood loss/hypovolaemia

74 Liver failure (not self poisoning)
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75 Renal failure

76 Multi-organ failure

77 Sudden infant death syndrome

80 Alcohol poisoning

81 Paracetamol overdose

82 Other drug overdose (please specify)

85 Self poisoning - type unclassified

88 Not reported

90 Other

99 Unknown

Primary cardiothoracic disease (PCD)

310 Coronary heart disease

311 Dilated cardiomyopathy - type unspecified

313 Valvular heart disease

314 Congenital heart disease

319 Other heart disease

320 Primary pulmonary hypertension

321 Eisenmengers syndrome - type unspecified

322 Cystic fibrosis

323 Fibrosing lung disease

324 Inhalation

325 Alpha-1-antitrypsin deficiency

326 Sarcoid

327 Emphysema

328 Bronchiectasis

330 Immediate graft failure

331 Acute rejection

332 Coronary occlusive disease

333 Hyper acute rejection

334 Chronic rejection

335 Non-specific graft failure

337 Bronchiolitis obliterans

338 Allograft vascular disease

341 Dilated cardiomyopathy - idiopathic

342 Dilated cardiomyopathy - familial

343 Dilated cardiomyopathy - myocarditis

344 Dilated cardiomyopathy - alcohol

345 Dilated cardiomyopathy - post partum

346 Dilated cardiomyopathy - adriamycin

349 Dilated cardiomyopathy - other, specify

350 Hypertrophic cardiomyopathy

351 Restrictive cardiomyopathy

361 Eisenmengers syndrome - ASD

362 Eisenmengers syndrome - VSD

363 Eisenmengers syndrome - PDA

364 Eisenmengers syndrome - other, specify

370 Other congenital heart/lung disease

398 Other
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399 Unknown

888 Not reported

Cause of corneal graft failure (CAUSE)

1 Ectasias

2 Dystrophies

3 Prev ocular surgery-pseudophakic corneal odema

4 Prev ocular surgery-aphakic corneal odema

5 Prev ocular surgery-other

6 Infection

7 Chronic inflammation

8 Injury

9 Opacification

10 Ulcerative keratitis/corneal melt

11 Other
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Appendix B

SAS codes for heart transplant models

B.1 SAS codes for heart data input in Counting pro-

cess style

data creat1;

infile cards missover;

input obs time dead dage dcmv1 dcmv2 rpcd1 rpcd2

rpcd3 cyclo fk506 other c1-c14;

array tt{14} t1-t14 (1 90 360 720 1080 1440

1800 2160 2520 2880 3240 3600 3960 4320);

datalines;

1 3290 0 33 1 0 1 0 0 2 1 1 52.24 47.33 37.43

50.27 57.65 39.52 50.07 49.88 41.89 45.66 51.463 56.64

2 92 1 52 0 1 0 0 0 2 1 1 36.54 37.79 11.78

3 2756 1 24 1 0 1 0 0 2 1 1 50.04 50.05 42.31

33.01 38.35 39.02 38.89 46.8 37.34 40.48 37.61

run;

data creat2(keep=obs time dead dage dcmv1 dcmv2 rpcd1

rpcd2 rpcd3 cyclo fk506 other T1

T2 Time2 creat status);

array pp{*} c1-c13;

array qq{*} c2-c14;

array tt{1:14} _temporary_

(1 90 360 720 1080 1440 1800 2160 2520 2880 3240 3600

3960 4320 );

set creat1(drop=t1-t14);

T1 = 0;

T2 = 0;

Status = 0;

if ( Time = tt[1] ) then do;

T2 = tt[1];

Time2 = T2-T1;

creat = c1;

Status = Dead;

end;
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else do _i_=1 to dim(pp);

if ( tt[_i_] = Time ) then do;

T2= Time;

Time2 = T2-T1;

creat = pp[_i_] ;

Status = Dead;

end;

else if (tt[_i_] < Time ) then do;

if (pp[_i_] ^= qq[_i_] ) then do;

if qq[_i_] = . then T2= Time;

else T2= tt[_i_] ;

Time2 = T2-T1;

creat= pp[_i_] ;

Status= 0;

output;

T1 = T2;

end;

end;

end;

if ( Time >= tt[1] ) then do;

T2 = Time;

Time2 = T2-T1;

if t1=0 then creat=c1 ;

else if t1=1 and t1<90 then creat = c2 ;

else if t1=90 and t1<360 then creat=c3;

else if t1=360 and t1<720 then creat=c4;

else if t1=720 and t1<1080 then creat=c5;

else if t1=1080 and t1<1440 then creat=c6;

else if t1=1440 and t1<1800 then creat=c7;

else if t1=1800 and t1<2160 then creat=c8;

else if t1=2160 and t1<2520 then creat=c9;

else if t1=2520 and t1<2880 then creat=c10;

else if t1=2880 and t1<3240 then creat=c11;

else if t1=3240 and t1<3600 then creat=c12;

else if t1=3600 and t1<3960 then creat=c13;

else if t1=3960 then creat=c14;

Status = Dead;

output;

end;

run;

proc print data=creat2

run;

data creat3;
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set creat2;

if time>T2 then delete;

if T1<time then status=0;

else if time=T2 then dead=dead;

dage=dage;

dcmv1=dcmv1;

dcmv2=dcmv2;

rpcd1=rpcd1;

rpcd2=rpcd2;

rpcd3=rpcd3;

rpcd=rpcd;

cyclo=cyclo;

fk506=fk506;

other=other;

T1=time;

T2=time;

status=dead;

gfr=creat;

if time>T1 then status=0;

if t1=0 then t1=.0000001;

if creat>89 then gfr1=1;

else gfr1=0;

if 60<creat<=89 then gfr2=1;

else gfr2=0;

if 30<creat<=59 then gfr3=1;

else gfr3=0;

inter1=cyclo*fk506;

inter2=cyclo*other;

run;

proc sort data=creat4;

by obs;

run;

data creat5;

set creat4;

if status=0 then delete;

run;

B.2 SAS codes for fitting parametric models with time-

dependent covariate

data par2b(type=est);

keep _type_ b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 alpha;

_type_=’parms’;

b0 = 1; b1 = 1; b2 = 1; b3 = 1; b4 = 1 ; b5 = 1; b6 =1 ; b7 = 1; b8 = 1;

b9 = 1 ;b10 = 1;b11 = 1; alpha = 1;
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output;

run;

proc nlp data=creat5 tech=newrap inest=par2b cov=2 vardef=n;

max loglik;

parms b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 alpha;

sig=exp(b0+b1*dage+b2*dcmv1+b3*dcmv2+b4*rpcd1+b5*rpcd2+b6*cyclo

+b7*fk506+b8*other

+b9*inter1+b10*inter2+b11*creat);

s = (time1 / sig)**(1/alpha) - (time2 / sig)**(1/alpha);

if status=1 then s + log(1/alpha) - (1/alpha)*log(sig)

+ (1/alpha-1)*log(time1);

loglik = s;

title ’Weibull model (continuous GFR) ’;

run;

data par2b(type=est);

keep _type_ b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 alpha;

_type_=’parms’;

b0 = 1; b1 = 1; b2 = 1; b3 = 1; b4 = 1 ; b5 = 1; b6 =1 ; b7 = 1;

b8 = 1;b9 = 1 ;b10 = 1;b11 = 1; alpha = 1;

output;

run;

proc nlp data=creat tech=newrap inest=par3b cov=2 vardef=n;

max loglik;

parms b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 scale;

sig=b0+b1*dage+b2*dcmv1+b3*dcmv2+b4*rpcd1+b5*rpcd2+b6*cyclo+b7*fk506

+b8*other+b9*inter1+b10*inter2+b11*creat;

gamma=1/scale;

alpha=exp(-sig/scale);

f2=alpha*gamma*time1**(gamma-1)/((1+alpha*time1**gamma)**2);

if time1=0 then s1=1;

else s1=1/(1+alpha*time1**gamma);

s2=1/(1+alpha*time2**gamma);

if status=1 then loglik = log(f2)-log(s1);

else loglik = log(s2)-log(s1);

title ’Log-logistic model (continuous GFR)’;

run;

B.3 SAS codes for generating survival times fromWeibull

standard model with time-dependent covariates based

on heart data

data g;

nsam=10000;

n=1500;

do sample=1 to nsam;

do i=1 to n;
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obs=i;

Z3=0.73877+0.58843*RANNOR(1234);

Z4=0.30754+0.35241*RANNOR(1234);

Z5=0.64560+0.17526*rannor(1234);

Z6= 0.03156+0.14455*rannor(1234);

Z7=0.17052+0.29862*rannor(1234);

y3=exp(z3);

y4=exp(z4);

y5=exp(z5);

y6=exp(z6);

y7=exp(z7);

if y3<= 1.69 then rpcd1=1;

else rpcd1=0;

if 1.69<y3<=1.97 then rpcd2=1;

else rpcd2=0;

if 1.97<y3<=2.95 then rpcd3=1;

else rpcd3=0;

if y4<= 1.43 then dcmv1=1;

else dcmv1=0;

if 1.43<y4<=2.99 then dcmv2=1;

else dcmv2=0;

if y5 <= 1.47 then cyclo=1;

else cyclo=0;

if y6 <=1.31 then fk506=1;

else fk506=0;

if y7 <=1.45 then other=1;

else other=0;

dd=3.49744+0.38541*rannor(1234);

dage=exp(dd);

in=270+85*rannor(12344);

v=33*rannor(12356);

rho = -.52;

/* first error term */

eps = rho * rannor( 47392 ) + 20*rannor( 82745 );

c1 = in+v+1 + 1.5 * 0 + eps;

c2 = in+v+1 + 1.5 * .03 + eps;

c3 = in+v+1 + 1.5 * .25 + eps;

c4 = in+v+1 + 1.5 * 1 + eps;

c5 = in+v+1 + 1.5 * 2 + eps;

c6 = in+v+1 + 1.5 * 3 + eps;

c7 = in+v+1 + 1.5 * 4 + eps;

c8 = in+v+1 + 1.5 * 5 + eps;

c9 = in+v+1 + 1.5 * 6 + eps;

c10 = in+v+1 + 1.5 * 7 + eps;

c11= in+v+1 + 1.5 * 8 + eps;

c12= in+v+1 + 1.5 * 9 + eps;

c13= in+v+1 + 1.5 * 10 + eps;
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c14= in+v+1 + 1.5 * 11 + eps;

eps=eps;

eps = rho * eps + rannor( 32815 );

b=.01;

la=.00000002;

factor=la+.015*dage+.7673*dcmv1+1.298*dcmv2+.2395*rpcd1

+.1365*rpcd2-.4571*rpcd3-2.545*cyclo-2.504*fk506-.5769*other;

f0=(exp((factor-b*c1)))**.5;

f1=(exp((factor-b*c2)))**.5;

f2=(exp((factor-b*c3)))**.5;

f3=(exp((factor-b*c4)))**.5;

f4=(exp((factor-b*c5)))**.5;

f5=(exp((factor-b*c6)))**.5;

f6=(exp((factor-b*c7)))**.5;

f7=(exp((factor-b*c8)))**.5;

f8=(exp((factor-b*c9)))**.5;

f9=(exp((factor-b*c10)))**.5;

f10=(exp((factor-b*c11)))**.5;

f11=(exp((factor-b*c12)))**.5;

f12=(exp((factor-b*c13)))**.5;

f13=(exp((factor-b*c14)))**.5;

f14=(exp((factor-b*c15)))**.5;

f15=(exp((factor-b*c16)))**.5;

H0=f0*1**.5;

H1=H0+f1*(10-1)**.5;

H2=H1+f2*(90-10)**.5;

H3=H2+f3*(360-90)**.5;

H4=H3+f4*(720-360)**.5;

H5=H4+f5*(1080-720)**.5;

H6=H5+f6*(1440-1080)**.5;

H7=H6+f7*(1800-1440)**.5;

H8=H7+f8*(2160-1800)**.5;

H9=H8+f9*(2520-2160)**.5;

H10=H9+f10*(2880-2520)**.5;

H11=H10+f11*(3240-2880)**.5;

H12=H11+f12*(3600-3240)**.5;

H13=H12+f13*(3960-3600)**.5;

H14=H13+f14*(4320-3960)**.5;
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u0=1-exp(-H0);

u1=1-exp(-H1);

u2=1-exp(-H2);

u3=1-exp(-H3);

u4=1-exp(-H4);

u5=1-exp(-H5);

u6=1-exp(-H6);

u7=1-exp(-H7);

u8=1-exp(-H8);

u9=1-exp(-H9);

u10=1-exp(-H10);

u11=1-exp(-H11);

u12=1-exp(-H12);

u13=1-exp(-H13);

u14=1-exp(-H14);

if 0<=u<u0 then time=((((-log(1-u)))/f0))**2;

else if u0<=u<u1 then time=(((((-log(1-u))-f0*1**.5)/f1)+0)**2)+1;

else if u1<=u<u2 then time=(((((-log(1-u))-f1*10**.5)/f2)+0)**2)+10;

else if u2<=u<u3 then time=(((((-log(1-u))-f2*90**.5)/f3)+0)**2)+90;

else if u3<=u<u4 then time=(((((-log(1-u))-f3*360**.5)/f4)+0)**2)+360;

else if u4<=u<u5 then time=(((((-log(1-u))-f4*720**.5)/f5)+0)**2)+720;

else if u5<=u<u6 then time=(((((-log(1-u))-f5*1080**.5)/f6)+0)**2)+1080;

else if u6<=u<u7 then time=(((((-log(1-u))-f6*1440**.5)/f7)+0)**2)+1440;

else if u7<=u<u8 then time=(((((-log(1-u))-f7*1800**.5)/f8)+0)**2)+1800;

else if u8<=u<u9 then time=(((((-log(1-u))-f8*2160**.5)/f9)+0)**2)+2160;

else if u9<=u<u10 then time=(((((-log(1-u))-f9*2520**.5)/f10)+0)**2)+2520;

else if u10<=u<u11 then time=(((((-log(1-u))-f10*2880**.5)/f11)+0)**2)+2880;

else if u11<=u<u12 then time=(((((-log(1-u))-f11*3240**.5)/f12)+0)**2)+3240;

else if u12<=u<u13 then time=(((((-log(1-u))-f12*3600**.5)/f13)+0)**2)+3600;

else if u13<=u<=u14 then time=(((((-log(1-u))-f13*3960**.5)/f14)+0)**2)+3960;

if mod(i,3) then censor=0;

else censor=1;

array tt{14} t1-t14 (1 90 360 720 1080 1440 1800 2160 2520 2880 3240 3600 3960 );

output;

end;

end;

run;
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B.4 SAS codes for simulation from the 1-knot spline

model without covariates using the numerical al-

gorithm

data a1;

do sample=1 to 100;

do i=1 to 150;

u=ranuni(0);

if .999400>=u>0.391332 then do

b=log(-log(u))-log(.037);

x0 = 5;

diff = 10e-8 ;

abdiff = 10 ;

iter = 0 ;

iterlim = 50 ;

do iter = 1 to 50 while (abdiff gt diff) ;

x1 = x0 - ((-.0019*(x0)**3+1*(x0)**1-b)

/ (-.0057*(x0)**2+1 )) ;

abdiff = abs(x1 - x0) ;

eval = -.0019*(x0)**3+1*(x0)**1-b ;

iter = iter + 0;

x0 = x1 ;

time2=exp(x1);

output;

end;

end;

if 0.288804<=u<=0.391332 then do

b=(log(-log(u)))-log(9e-6)+19.5329;

x0 = 1 ;

diff = 10e-8 ;

abdiff = 10 ;

iter = 0 ;

iterlim = 50 ;

do iter = 1 to 50 while (abdiff gt diff) ;

x1 = x0 - (.0231*(x0)**3-.6908*(x0)**2+7.3623*(x0)**1-b)

/ (0.0693*(x0)**2-1.3816*(x0)**1+7.3623) ;

abdiff = abs(x1 - x0) ;

eval =.0231*(x0)**3-.6908*(x0)**2+7.3623*(x0)**1-b ;

iter = iter + 0 ;

x0 = x1 ;

time2=exp(x1);

output;

end;end;end;end;

run;

data a2;

set a1;

if abdiff gt diff then delete;
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if mod(i,1) then censor=0;

else censor=1;

run;

data final;

set a2;

by sample;

run;

proc means data=final n min max median q1 q3 noprint;

by sample;

var time1;

run;

proc means data=final noprint;

by sample;

var u time1;

run;

proc means data=final n min max median q1 q3 noprint;

by sample;

var time1;

run;

proc means data=final min max median mean q3 q1 noprint;

by sample;

var time1 censor t;

run;

proc univariate data=final noprint;

by sample;

var time1;

output out=final1 pctlpre=P_ pctlpts= 0, 17, 20,

25, 40, 33, 60, 67, 50, 75, 80, 83, 100;

run;

data final2;

set final1;

by sample;

do i=1 to 100;

s11=P_0;s12=P_100;s13=P_17;s14=P_20;s114=P_25;s15=P_33;

s115=P_40;s16=P_50;s116=P_60;s17=P_67;s18=P_75;s19=P_80;s20=P_83;

output;end;

run;

data par3b(type=est);

keep _type_ b0 alpha;

_type_=’parms’;

b0 = .000001; alpha = 1;

output;

run;

proc nlp data=final tech=newrap inest=par3b out=q

cov=2 vardef=n noprint;

by sample;

max loglik;

parms b0 alpha;

eta2=b0+(1/alpha)*(log(time1));
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expterm2=exp(eta2);

hazard=abs(expterm2*((1/time1)*((1/alpha))));

survivor=-expterm2;

if censor=1 then survivor + log(hazard);

loglik = survivor;

title ’Weibull with 0 knots’;

run;

data final3;

set final;

set final2;

by sample;

kmin=log(s11);

kmax=log(s12);

k2=log(s16);

lambda2=(kmax-k2)/(kmax-kmin);

if (log(time1)-k2)<0 then cond1=0;

else cond1=(log(time1)-k2);

if (log(time1)-kmin)<0 then cond2=0;

else cond2=(log(time1)-kmin);

if (log(time1)-kmax)<0 then cond3=0;

else cond3=(log(time1)-kmax);

basisfunc2=(cond1**3)-(lambda2*(cond2**3))-((1-lambda2)*(cond3**3));

run;

data par3b(type=est);

keep _type_ b0 b12 alpha;

_type_=’parms’;

b0 =.001;b12=-.01;alpha =.6;

output;

run;

proc nlp data=final3 tech=newrap inest=par3b out=q1 cov=2 vardef=n noprint ;

by sample;

max loglik;

parms b0 b12 alpha;

eta2=b0+b12*basisfunc2+(1/alpha)*(log(time1));

expterm2=exp(eta2);

hazard=(expterm2*((1/time1)*((1/alpha)+((3*b12)*((cond1**2)

-(lambda2*(cond2**2))-(1-lambda2)*(cond3**2))))));

survivor=-expterm2;

if censor=1 then survivor +log( hazard);

loglik = survivor;

title ’Weibull with 1 knot’;

run;

data final3;

set final;

set final2;

by sample;

kmin=log(s11);

kmax=log(s12);

k3=log(s15);
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k2=log(s17);

lambda2=(kmax-k2)/(kmax-kmin);

if (log(time1)-k2)<0 then cond1=0;

else cond1=(log(time1)-k2);

if (log(time1)-kmin)<0 then cond2=0;

else cond2=(log(time1)-kmin);

if (log(time1)-kmax)<0 then cond3=0;

else cond3=(log(time1)-kmax);

basisfunc2=(cond1**3)-(lambda2*(cond2**3))-((1-lambda2)*(cond3**3));

lambda3=(kmax-k3)/(kmax-kmin);

if (log(time1)-k3)<0 then cond4=0;

else cond4=(log(time1)-k3);

if (log(time1)-kmin)<0 then cond5=0;

else cond5=(log(time1)-kmin);

if (log(time1)-kmax)<0 then cond6=0;

else cond6=(log(time1)-kmax);

basisfunc3=(cond4**3)-(lambda3*(cond5**3))-((1-lambda3)*(cond6**3));

run;

data par3b(type=est);

keep _type_ b0 b12 b13 alpha;

_type_=’parms’;

b0 =.001; b12=-.01;b13 =-.01;alpha =.6;

output;

run;

proc nlp data=final3 tech=newrap inest=par3b out=q2 cov=2 vardef=n noprint;

by sample;

max loglik;

parms b0 b12 b13 alpha;

eta2=b0+b12*basisfunc2+b13*basisfunc3+(1/alpha)*(log(time1));

expterm2=exp(eta2);

der1= ((cond1**2)-(lambda2*(cond2**2))-((1-lambda2)*(cond3**2))) ;

if der1<0 then der1=der1;

der2=((cond4**2)-(lambda3*(cond5**2))-((1-lambda3)*(cond6**2))) ;

if der2<0 then der2=der2;

hazard=(expterm2*((1/time1)*((1/alpha)+((3*b12)*der1)+((3*b13)*der2))));

survivor=-expterm2;

if censor=1 then survivor +log( hazard);

loglik = survivor;

title ’Weibull with 2 knots’;

run;

data final3;

set final;

set final2;

by sample;

kmin=log(s11);

kmax=log(s12);

k5=log(s19);

k4=log(s18 );

k3=log(s16);
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k2=log(s114);

lambda2=(kmax-k2)/(kmax-kmin);

if (log(time1)-k2)<0 then cond1=0;

else cond1=(log(time1)-k2);

if (log(time1)-kmin)<0 then cond2=0;

else cond2=(log(time1)-kmin);

if (log(time1)-kmax)<0 then cond3=0;

else cond3=(log(time1)-kmax);

basisfunc2=((cond1**3)-(lambda2*(cond2**3))-((1-lambda2)*(cond3**3)));

lambda3=(kmax-k3)/(kmax-kmin);

if (log(time1)-k3)<0 then cond4=0;

else cond4=(log(time1)-k3);

if (log(time1)-kmin)<0 then cond5=0;

else cond5=(log(time1)-kmin);

if (log(time1)-kmax)<0 then cond6=0;

else cond6=(log(time1)-kmax);

basisfunc3=((cond4**3)-(lambda3*(cond5**3))-((1-lambda3)*(cond6**3)));

lambda4=(kmax-k4)/(kmax-kmin);

if (log(time1)-k4)<0 then cond7=0;

else cond7=(log(time1)-k4);

if (log(time1)-kmin)<0 then cond8=0;

else cond8=(log(time1)-kmin);

if (log(time1)-kmax)<0 then cond9=0;

else cond9=(log(time1)-kmax);

basisfunc4=((cond7**3)-(lambda4*(cond8**3))-((1-lambda4)*(cond9**3)));

run;

data par3b(type=est);

keep _type_ b0 b12 b13 b14 alpha;

_type_=’parms’;

b0 = .001;b12= -.01;b13 = -.01;b14 = -.01;alpha =.6;

output;

run;

proc nlp data=final3 tech=newrap inest=par3b out=q3 cov=2 vardef=n noprint;

by sample;

max loglik;

parms b0 b12 b13 b14 alpha;

eta2=b0+b12*basisfunc2+b13*basisfunc3+b14*basisfunc4+(1/alpha)*(log(time1));

expterm2=exp(eta2);

hazard=(expterm2*((1/time1)*((1/alpha)+(

(3*b12)*((cond1**2)-(lambda2*(cond2**2))-((1-lambda2)*(cond3**2))))

+((3*b13)*((cond4**2)-(lambda3*(cond5**2))-((1-lambda3)*(cond6**2))))

+((3*b14)*((cond7**2)-(lambda4*(cond8**2))-((1-lambda4)*(cond9**2)))))));

survivor=-expterm2;

if censor=1 then survivor +log( hazard);

loglik = survivor;

title ’Weibull with 3 knots’;

run;

data final3;

set final;
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set final2;

by sample;

kmin=log(s11);

kmax=log(s12);

k5=log(s19);

k4=log(s18 );

k3=log(s16);

k2=log(s114);

lambda2=(kmax-k2)/(kmax-kmin);

if (log(time1)-k2)<0 then cond1=0;

else cond1=(log(time1)-k2);

if (log(time1)-kmin)<0 then cond2=0;

else cond2=(log(time1)-kmin);

if (log(time1)-kmax)<0 then cond3=0;

else cond3=(log(time1)-kmax);

basisfunc2=((cond1**3)-(lambda2*(cond2**3))-((1-lambda2)*(cond3**3)));

lambda3=(kmax-k3)/(kmax-kmin);

if (log(time1)-k3)<0 then cond4=0;

else cond4=(log(time1)-k3);

if (log(time1)-kmin)<0 then cond5=0;

else cond5=(log(time1)-kmin);

if (log(time1)-kmax)<0 then cond6=0;

else cond6=(log(time1)-kmax);

basisfunc3=((cond4**3)-(lambda3*(cond5**3))-((1-lambda3)*(cond6**3)));

lambda4=(kmax-k4)/(kmax-kmin);

if (log(time1)-k4)<0 then cond7=0;

else cond7=(log(time1)-k4);

if (log(time1)-kmin)<0 then cond8=0;

else cond8=(log(time1)-kmin);

if (log(time1)-kmax)<0 then cond9=0;

else cond9=(log(time1)-kmax);

basisfunc4=((cond7**3)-(lambda4*(cond8**3))-((1-lambda4)*(cond9**3)));

lambda5=(kmax-k5)/(kmax-kmin);

if (log(time1)-k5)<0 then cond10=0;

else cond10=(log(time1)-k5);

if (log(time1)-kmin)<0 then cond11=0;

else cond11=(log(time1)-kmin);

if (log(time1)-kmax)<0 then cond12=0;

else cond12=(log(time1)-kmax);

basisfunc5=((cond10**3)-(lambda5*(cond11**3))-((1-lambda5)*(cond12**3)));

run;

data par3b(type=est);

keep _type_ b0 b12 b13 b14 b15 alpha;

_type_=’parms’;

b0 = .001;b12= -.01;b13 =-.01;b14 =-.01;b15=-.01;alpha =.6;

output;

run;

proc nlp data=final3 tech=newrap inest=par3b out=q4 cov=2 vardef=n noprint;

by sample;
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max loglik;

parms b0 b12 b13 b14 b15 alpha;

eta2=b0+b12*basisfunc2+b13*basisfunc3+b14*basisfunc4+b15*basisfunc5

+(1/alpha)*(log(time1));

expterm2=exp(eta2);

hazard=(expterm2*((1/time1)*((1/alpha)+

((3*b12)*((cond1**2)-(lambda2*(cond2**2))-((1-lambda2)*(cond3**2))))

+((3*b13)*((cond4**2)-(lambda3*(cond5**2))-((1-lambda3)*(cond6**2))))

+((3*b14)*((cond7**2)-(lambda4*(cond8**2))-((1-lambda4)*(cond9**2))))

+((3*b15)*((cond10**2)-(lambda5*(cond11**2))-((1-lambda5)*(cond12**2)))))));

survivor=-expterm2;

if censor=1 then survivor +log( hazard);

loglik = survivor;

title ’Weibull with 4 knots’;

run;

data final3;

set final;

set final2;

by sample;

kmin=log(s11);

kmax=log(s12);

k6=log(s20);

k5=log(s17);

k4=log(s18 );

k3=log(s16);

k2=log(s114);

lambda2=(kmax-k2)/(kmax-kmin);

if (log(time1)-k2)<0 then cond1=0;

else cond1=(log(time1)-k2);

if (log(time1)-kmin)<0 then cond2=0;

else cond2=(log(time1)-kmin);

if (log(time1)-kmax)<0 then cond3=0;

else cond3=(log(time1)-kmax);

basisfunc2=((cond1**3)-(lambda2*(cond2**3))-((1-lambda2)*(cond3**3)));

lambda3=(kmax-k3)/(kmax-kmin);

if (log(time1)-k3)<0 then cond4=0;

else cond4=(log(time1)-k3);

if (log(time1)-kmin)<0 then cond5=0;

else cond5=(log(time1)-kmin);

if (log(time1)-kmax)<0 then cond6=0;

else cond6=(log(time1)-kmax);

basisfunc3=((cond4**3)-(lambda3*(cond5**3))-((1-lambda3)*(cond6**3)));

lambda4=(kmax-k4)/(kmax-kmin);

if (log(time1)-k4)<0 then cond7=0;

else cond7=(log(time1)-k4);

if (log(time1)-kmin)<0 then cond8=0;

else cond8=(log(time1)-kmin);

if (log(time1)-kmax)<0 then cond9=0;

else cond9=(log(time1)-kmax);
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basisfunc4=((cond7**3)-(lambda4*(cond8**3))-((1-lambda4)*(cond9**3)));

lambda5=(kmax-k5)/(kmax-kmin);

if (log(time1)-k5)<0 then cond10=0;

else cond10=(log(time1)-k5);

if (log(time1)-kmin)<0 then cond11=0;

else cond11=(log(time1)-kmin);

if (log(time1)-kmax)<0 then cond12=0;

else cond12=(log(time1)-kmax);

basisfunc5=((cond10**3)-(lambda5*(cond11**3))-((1-lambda5)*(cond12**3)));

lambda6=(kmax-k6)/(kmax-kmin);

if (log(time1)-k6)<0 then cond13=0;

else cond13=(log(time1)-k6);

if (log(time1)-kmin)<0 then cond14=0;

else cond14=(log(time1)-kmin);

if (log(time1)-kmax)<0 then cond15=0;

else cond15=(log(time1)-kmax);

basisfunc6=((cond13**3)-(lambda6*(cond14**3))-((1-lambda6)*(cond15**3)));

run;

data par3b(type=est);

keep _type_ b0 b12 b13 b14 b15 b16 alpha;

_type_=’parms’;

b0 = .01;b12= -.01;b13 =-.01;b14 =-.01;b15=-.01;b16= -.01;alpha = .6;

output;

run;

proc nlp data=final3 tech=newrap inest=par3b out=q5 cov=2 vardef=n noprint;

by sample;

max loglik;

parms b0 b12 b13 b14 b15 b16 alpha;

eta2=b0+b12*basisfunc2+b13*basisfunc3+b14*basisfunc4

+b15*basisfunc5+b16*basisfunc6+(1/alpha)*(log(time1));

expterm2=exp(eta2);

hazard=(expterm2*((1/time1)*((1/alpha)

+((3*b12)*((cond1**2)-(lambda2*(cond2**2))-((1-lambda2)*(cond3**2))))

+((3*b13)*((cond4**2)-(lambda3*(cond5**2))-((1-lambda3)*(cond6**2))))

+((3*b14)*((cond7**2)-(lambda4*(cond8**2))-((1-lambda4)*(cond9**2))))

+((3*b15)*((cond10**2)-(lambda5*(cond11**2))-((1-lambda5)*(cond12**2))))

+((3*b16)*((cond13**2)-(lambda6*(cond14**2))-((1-lambda6)*(cond15**2)))))));

survivor=-expterm2;

if censor=1 then survivor +log( hazard);

loglik = survivor;

title ’Weibull with 5 knots’;

run;
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B.5 SAS codes for fitting Weibull spline model with

time-dependent covariates (heart data)

proc univariate data=creat5 noprint;

var t1;

output out=final1 pctlpre=P_ pctlpts= 0, 17, 20, 25, 40, 33, 60, 67, 50, 75,

80, 83, 100;

run;

data final2;

set final1;

do i=1 to n;

s11=P_0; s12=P_100; s13=P_17; s14=P_20; s15=P_25; s16=P_33; s17=P_40;

s18=P_50;s19=P_60; s20=P_67; s21=P_75; s22=P_80; s23=P_83;

output;

end;

run;

data n;

set creat4;

set final2;

kmin=log(s11);

kmax=log(s12);

k6=log(s13);

k5=log(s16);

k4=log(s18);

k3=log(s20);

k2=log(s23);

lambda2=(kmax-k2)/(kmax-kmin);

if (log(t1)-k2)<0 then cond1=0;

else cond1=(log(t1)-k2);

if (log(t1)-kmin)<0 then cond2=0;

else cond2=(log(t1)-kmin);

if (log(t1)-kmax)<0 then cond3=0;

else cond3=(log(t1)-kmax);

basisfunc2=((cond1**3)-(lambda2*(cond2**3))-((1-lambda2)*(cond3**3)));

lambda3=(kmax-k3)/(kmax-kmin);

if (log(t1)-k3)<0 then cond4=0;

else cond4=(log(t1)-k3);

if (log(t1)-kmin)<0 then cond5=0;

else cond5=(log(t1)-kmin);

if (log(t1)-kmax)<0 then cond6=0;

else cond6=(log(t1)-kmax);

basisfunc3=((cond4**3)-(lambda3*(cond5**3))-((1-lambda3)*(cond6**3)));

lambda4=(kmax-k4)/(kmax-kmin);

if (log(t1)-k4)<0 then cond7=0;

else cond7=(log(t1)-k4);

if (log(t1)-kmin)<0 then cond8=0;

else cond8=(log(t1)-kmin);

if (log(t1)-kmax)<0 then cond9=0;
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else cond9=(log(t1)-kmax);

basisfunc4=((cond7**3)-(lambda4*(cond8**3))-((1-lambda4)*(cond9**3)));

lambda5=(kmax-k5)/(kmax-kmin);

if (log(t1)-k5)<0 then cond10=0;

else cond10=(log(t1)-k5);

if (log(t1)-kmin)<0 then cond11=0;

else cond11=(log(t1)-kmin);

if (log(t1)-kmax)<0 then cond12=0;

else cond12=(log(t1)-kmax);

basisfunc5=((cond10**3)-(lambda5*(cond11**3))-((1-lambda5)*(cond12**3)));

lambda6=(kmax-k6)/(kmax-kmin);

if (log(t1)-k5)<0 then cond13=0;

else cond13=(log(t1)-k6);

if (log(t1)-kmin)<0 then cond14=0;

else cond14=(log(t1)-kmin);

if (log(t1)-kmax)<0 then cond15=0;

else cond15=(log(t1)-kmax);

basisfunc6=((cond13**3)-(lambda6*(cond14**3))-((1-lambda6)*(cond15**3)));

run;

data par3b(type=est);

keep _type_ b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 alpha;

_type_=’parms’;

b0 = .0001; b1 = .09; b2 = .01; b3 = .01; b4 = .001; b5 = .01;

b6 = .01;b7 = .1; b8 = .01; b9 = .01; b10 = .001; b11= .001;

b12= .001; b13= .01;alpha = 1.1;

output;

run;

proc nlp data=n tech=newrap inest=par3b cov=2 maxiter=300 vardef=n ;

max loglik;

parms b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 alpha;

eta2=b0+b1*dage+b2*dcmv1+b3*dcmv2+b4*rpcd1+b5*rpcd2+b6*rpcd3

+b7*cyclo+b8*fk506+b9*other+b10*gfr1+b11*gfr2+b12*gfr3

+b13*inter1+(1/alpha)*(log(t2));

eta1=b0+b1*dage+b2*dcmv1+b3*dcmv2+b4*rpcd1+b5*rpcd2+b6*rpcd3

+b7*cyclo+b8*fk506+b9*other+b10*gfr1++b11*gfr2+b12*gfr3

+b13*inter1+(1/alpha)*(log(t1));

expterm2=exp(eta2);

expterm1=exp(eta1);

hazard=log(expterm1*((1/t1)*((1/alpha))));

survivor=expterm1-expterm2;

if status=1 then survivor + hazard;

loglik = survivor;

title ’Weibull with 0 knots’;

run;

data par3b(type=est);

keep _type_ b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13

b14 b15 b16 b17 b18 alpha;

_type_=’parms’;

b0 = .0001; b1 = .09; b2 = .01; b3 = .01; b4 = .001; b5 = .01;
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b6 = .01; b7 = .1; b8 = .01; b9 = .01; b10 = .001; b11= .001;

b12= .001; b13= .01; b14 = -.01; b15 = .01; b16 = .01;

b17 = .01; b18 = .01; alpha = 1.1;

output;

run;

proc nlp data=n tech=newrap inest=par3b cov=2 maxiter=300 vardef=n ;

max loglik;

parms b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

b16 b17 b18 alpha;

eta2=b0+b1*dage+b2*dcmv1+b3*dcmv2+b4*rpcd1+b5*rpcd2+b6*rpcd3

+b7*cyclo+b8*fk506+b9*other+b10*gfr1+b11*gfr2+b12*gfr3

+b13*inter1+b14*basisfunc2+b15*basisfunc3

+b16*basisfunc4+b17*basisfunc5+b18*basisfunc6

+(1/alpha)*(log(t2));

eta1=b0+b1*dage+b2*dcmv1+b3*dcmv2+b4*rpcd1+b5*rpcd2+b6*rpcd3

+b7*cyclo+b8*fk506+b9*other+b10*gfr1+b11*gfr2+b12*gfr3

+b13*inter1+b14*basisfunc2+b15*basisfunc3+b16*basisfunc4

+b17*basisfunc5+b18*basisfunc6+(1/alpha)*(log(t1));

expterm2=exp(eta2);

expterm1=exp(eta1);

hazard=log(expterm1*((1/t1)*((1/alpha)

+((-3*b13)*((cond1**2)-(lambda2*(cond2**2))-((1-lambda2)*(cond3**2))))

+((-3*b14)*((cond4**2)-(lambda3*(cond5**2))-((1-lambda3)*(cond6**2))))

+((-3*b15)*((cond7**2)-(lambda4*(cond8**2))-((1-lambda4)*(cond9**2))))

+((-3*b16)*((cond10**2)-(lambda5*(cond11**2))-((1-lambda5)*(cond12**2)))

+((-3*b17)*((cond13**2)-(lambda6*(cond14**2))-((1-lambda6)*(cond15**2))))))));

survivor=expterm1-expterm2;

if status=1 then survivor + hazard;

loglik = survivor;

title ’Weibull with 5 knots’;

run;

B.6 SAS codes for generating survival times fromWeibull

spline model (1 knot) with time-dependent covari-

ates based on heart data

data g;

do sample=1 to 2000;

do i=1 to 1800;

if mod(i, 3) then dead=0;

else dead=1;

obs=i;

Z3=0.73877+0.58843*RANNOR(1234);

Z4=0.30754+0.35241*RANNOR(1234);

Z5=0.64560+0.17526*rannor(1234);
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Z6= 0.03156+0.14455*rannor(1234);

Z7=0.17052+0.29862*rannor(1234);

y3=exp(z3);

y4=exp(z4);

y5=exp(z5);

y6=exp(z6);

y7=exp(z7);

if y3<= 1.69 then rpcd1=1;

else rpcd1=0;

if 1.69<y3<=1.97 then rpcd2=1;

else rpcd2=0;

if 1.97<y3<=2.95 then rpcd3=1;

else rpcd3=0;

if y4<= 1.43 then dcmv1=1;

else dcmv1=0;

if 1.43<y4<=2.99 then dcmv2=1;

else dcmv2=0;

if y5 <= 1.47 then cyclo=1;

else cyclo=0;

if y6 <=1.31 then fk506=1;

else fk506=0;

if y7 <=1.45 then other=1;

else other=0;

dd=3.49744+0.38541*rannor(1234);

dage=exp(dd);

in=270+85*rannor(12344);

v=33*rannor(12356);

rho = -.52;

/* first error term */

eps = rho * rannor( 47392 ) + 20*rannor( 82745 );

c1 = in+v+1 + 1.5 * 0 + eps;

c2 = in+v+1 + 1.5 * .03 + eps;

c3 = in+v+1 + 1.5 * .25 + eps;

c4 = in+v+1 + 1.5 * 1 + eps;

c5 = in+v+1 + 1.5 * 2 + eps;

c6 = in+v+1 + 1.5 * 3 + eps;

c7 = in+v+1 + 1.5 * 4 + eps;

c8 = in+v+1 + 1.5 * 5 + eps;

c9 = in+v+1 + 1.5 * 6 + eps;

c10 = in+v+1 + 1.5 * 7 + eps;

c11= in+v+1 + 1.5 * 8 + eps;

c12= in+v+1 + 1.5 * 9 + eps;

c13= in+v+1 + 1.5 * 10 + eps;

c14= in+v+1 + 1.5 * 11 + eps;

eps=eps;

eps = rho * eps + rannor( 32815 );
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output;

end;

end;

run;

data a1;

do sample=1 to 1;

do i=1 to 1;

set g;

la1=(8.63)/1;

be=.007;

u=ranuni(0);

beta1 = 2;

beta2 = -1;

lambdat = 0.002; *baseline hazard;

lambdac = 0.008; *censoring hazard;

y=2+22-1+4-2+4;

do i = 1 to 1;

x1 = normal(0);

x2 = normal(0);

linpred = exp(-beta1*x1 - beta2*x2);

t = rand("WEIBULL", 1, lambdaT * linpred);

* time of event;

c = rand("WEIBULL", 1, lambdaC);

* time of censoring;

time = min(t, c); * which came first?;

dead = (c lt t);

f0=(exp((factor-b1*c1)))**.5;

f1=(exp((factor-b1*c2)))**.5;

f2=(exp((factor-b1*c3)))**.5;

f3=(exp((factor-b1*c4)))**.5;

f4=(exp((factor-b1*c5)))**.5;

f5=(exp((factor-b1*c6)))**.5;

f6=(exp((factor-b1*c7)))**.5;

f7=(exp((factor-b1*c8)))**.5;

f8=(exp((factor-b1*c9)))**.5;

f9=(exp((factor-b1*c10)))**.5;

f10=(exp((factor-b1*c11)))**.5;

f11=(exp((factor-b1*c12)))**.5;

f12=(exp((factor-b1*c13)))**.5;

f13=(exp((factor-b1*c14)))**.5;

f14=(exp((factor-b1*c15)))**.5;

f15=(exp((factor-b1*c16)))**.5;

*****************************************************************;

H0=(.5*log(f0))+(.5*log(1))+((.01)*(-.19)*(log(1)**3));

H1=H0+(.5*log(f1))+(.5*log(10))+((.01)*(-.19)*(log(10)**3));

H2=H1+(.5*log(f2))+(.5*log(90))+((.01)*(-.19)*(log(90)**3));
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H3=H2+(.5*log(f3))+(.5*log(360))+((.01)*(-.19)*(log(360)**3));

H4=H3+(.5*log(f4))+(.5*log(720))+((.01)*(-.19)*(log(720)**3));

H5=H4+(.5*log(f5))+(.5*log(1080))+((.01)*(-.19)*(log(1080)**3));

H6=H5+(.5*log(f6))+(.5*log(1440))+((.01)*((log(1440)-6.908)**3

-.19*(log(1440))**3));

H7=H6+(.5*log(f7))+(.5*log(1800))+((.01)*((log(1800)-6.908)**3

-.19*(log(1800))**3));

H8=H7+(.5*log(f8))+(.5*log(2160))+((.01)*((log(2160)-6.908)**3

-.19*(log(2160))**3));

H9=H8+(.5*log(f9))+(.5*log(2520))+((.01)*((log(2520)-6.908)**3

-.19*(log(2520))**3));

H10=H9+(.5*log(f10))+(.5*log(2880))+((.01)*((log(2880)-6.908)**3

-.19*(log(2880))**3));

H11=H10+(.5*log(f11))+(.5*log(3240))+((.01)*((log(3240)-6.908)**3

-.19*(log(3240))**3));

H12=H11+(.5*log(f12))+(.5*log(3600))+((.01)*((log(3600)-6.908)**3

-.19*(log(3600))**3));

H13=H12+(.5*log(f13))+(.5*log(3960))+((.01)*((log(3860)-6.908)**3

-.19*(log(3960))**3));

H14=H13+(.5*log(f14))+(.5*log(4320))+((.01)*((log(4320)-6.908)**3

-.19*(log(4320))**3));

u0=1-exp(-exp(H0));

u1=1-exp(-exp(H1));

u2=1-exp(-exp(H2));

u3=1-exp(-exp(H3));

u4=1-exp(-exp(H4));

u5=1-exp(-exp(H5));

u6=1-exp(-exp(H6));

u7=1-exp(-exp(H7));

u8=1-exp(-exp(H8));

u9=1-exp(-exp(H9));

u10=1-exp(-exp(H10));

u11=1-exp(-exp(H11));

u12=1-exp(-exp(H12));

u13=1-exp(-exp(H13));

u14=1-exp(-exp(H14));

b1=.01;

if 0<=u<u0 then

b=log(-log(u))-f0;

x0 = 1;

diff = 10e-8 ;

abdiff = 10 ;

iter = 0 ;

iterlim = 50 ;
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do iter = 1 to 50 while (abdiff gt diff) ;

x1 = x0 - ((-.0019*(x0)**3+.5*(x0)**1-b) / (-.0057*(x0)**2

+.5 )) ;

abdiff = abs(x1 - x0) ;

eval = -.0019*(x0)**3+.5*(x0)**1-b ;

iter = iter + 0;

x0 = x1 ;

ttt=exp(x1);

t0=1;

if u0<=u<u1 then

t=exp(((log(-log(1-u)))-(.5*(log(f0)+log(f1)))-(.5*(log(1)))

+(-.17*b1*(log(1))**3))/.5 )+1;

if u1<=u<u2 then

t=exp(((log(-log(1-u)))-(.5*(log(f1)+log(f2)))-(.5*(log(10)))

+(-.17*b1*(log(10))**3))/.5 )+10;

if u2<=u<u3 then

t=exp(((log(-log(1-u)))-(.5*(log(f2)+log(f3)))-(.5*(log(90)))

+(-.17*b1*(log(90))**3))/.5 )+90;

if u3<=u<u4 then

t=exp(((log(-log(1-u)))-(.5*(log(f3)+log(f4)))-(.5*(log(360)))

+(-.17*b1*(log(360))**3))/.5 )+360;

if u4<=u<u5 then

t=exp(((log(-log(1-u)))-(.5*(log(f4)+log(f5)))-(.5*(log(720)))

+(-.17*b1*(log(720))**3))/.5 )+720;

if u5<=u<u6 then

t=exp(((log(-log(1-u)))-(.5*(log(f5)+log(f6)))

-(-.0025*.83*b1*(log(1080))**3)+(3*.0025*6.98*(log(1080))**2)

-(.5+3*.0025*(6.98)**2)*(log(1080))+(.0025*(6.98)**3))/.5 )+1080;

if u6<=u<u7 then

t=exp(((log(-log(1-u)))-(.5*(log(f6)+log(f7)))

-(-.0025*.83*b1*(log(1440))**3)+(3*.0025*6.98*(log(1440))**2)

-(.5+3*.0025*(6.98)**2)*(log(1440))+(.0025*(6.98)**3))/.5 )+1440;

if u7<=u<u8 then

t=exp(((log(-log(1-u)))-(.5*(log(f7)+log(f8)))

-(-.0025*.83*b1*(log(1800))**3)+(3*.0025*6.98*(log(1800))**2)

-(.5+3*.0025*(6.98)**2)*(log(1800))+(.0025*(6.98)**3))/.5 )+1800;

if u8<=u<u9 then

t=exp(((log(-log(1-u)))-(.5*(log(f8)+log(f9)))

-(-.0025*.83*b1*(log(2160))**3)+(3*.0025*6.98*(log(2160))**2)

-(.5+3*.0025*(6.98)**2)*(log(2160))+(.0025*(6.98)**3))/.5 )+2160;

if u9<=u<u10 then

t=exp(((log(-log(1-u)))-(.5*(log(f9)+log(f10)))

-(-.0025*.83*b1*(log(2520))**3)+(3*.0025*6.98*(log(2520))**2)

-(.5+3*.0025*(6.98)**2)*(log(2520))+(.0025*(6.98)**3))/.5 )+2520;
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if u10<=u<u11 then

t=exp(((log(-log(1-u)))-(.5*(log(f10)+log(f11)))

-(-.0025*.83*b1*(log(2880))**3)+(3*.0025*6.98*(log(2880))**2)

-(.5+3*.0025*(6.98)**2)*(log(2880))+(.0025*(6.98)**3))/.5 )+2880;

if u11<=u<u12 then

t=exp(((log(-log(1-u)))-(.5*(log(f11)+log(f12)))

-(-.0025*.83*b1*(log(3240))**3)+(3*.0025*6.98*(log(3240))**2)

-(.5+3*.0025*(6.98)**2)*(log(3240))+(.0025*(6.98)**3))/.5 )+3240;

if u12<=u<u13 then

t=exp(((log(-log(1-u)))-(.5*(log(f12)+log(f13)))

-(-.0025*.83*b1*(log(3600))**3)+(3*.0025*6.98*(log(3600))**2)

-(.5+3*.0025*(6.98)**2)*(log(3600))+(.0025*(6.98)**3))/.5 )+3600;

if u13<=u<u14 then

t=exp(((log(-log(1-u)))-(.5*(log(f13)+log(f14)))

-(-.0025*.83*b1*(log(3960))**3)+(3*.0025*6.98*(log(3960))**2)

-(.5+3*.0025*(6.98)**2)*(log(3960))+(.0025*(6.98)**3))/.5 )+3960;

time=t;

if mod(i,3) then censor=0;

else censor=1;

array tt{14} t1-t14 (1 90 360 720 1080 1440 1800 2160

2520 2880 3240 3600 3960 );

output;

end;

end;

end;

end;

run;

data a2;

set a1;

by sample;

if abdiff gt diff then delete;

run;

********************************

*((Email: hishastat@yahoo.com))*

********************************

196





Appendix C

Simulation results of the Weibull
spline models with fixed covariates

Table C.1: The percentage bias of parameter estimates in the heart models based on generated
survival times from the Weibull model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 30.94 16.04 19.52 22.99 22.81 21.14
CYCLO -33.28 -26.54 -21.29 -21.47 -19.99 -19.95
FK506 29.63 -4.92 53.29 62.27 26.77 30.42
OTHER 33.34 19.78 21.06 31.54 25.11 23.15
GFR 30.53 19.63 17.34 20.40 21.63 18.35

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 30.09 15.21 17.63 20.96 21.51 19.50
CYCLO -33.25 -26.52 -21.23 -21.88 -20.49 -20.19
FK506 25.72 -9.45 46.09 56.36 18.54 21.96
OTHER 32.34 18.83 18.66 29.23 23.55 21.34
GFR 28.35 17.41 14.33 16.97 19.25 16.99

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 29.64 14.63 16.65 20.06 20.81 18.70
CYCLO -33.19 -26.44 -21.12 -20.92 -20.58 -20.13
FK506 25.43 -10.03 44.18 55.89 16.53 19.89
OTHER 30.63 17.08 16.48 27.05 21.69 19.53
GFR 29.59 18.71 15.23 17.78 20.39 18.29
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Table C.2: The percentage bias of parameter estimates in the heart models based on generated
survival times from the 1-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 31.41 10.81 10.54 10.24 11.32 11.77
CYCLO -45.49 -34.42 -29.86 -28.82 -24.89 -24.94
FK506 -59.19 -76.01 -70.35 -81.48 -71.42 -71.82
OTHER 28.85 12.55 10.45 16.36 11.93 12.40
GFR 20.96 11.08 6.93 8.16 8.73 8.73

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 34.69 11.56 14.67 11.77 14.07 14.21
CYCLO -43.15 -35.98 -32.13 -26.90 -27.34 -27.42
FK506 -54.91 -73.99 -64.68 -77.05 -66.56 -67.50
OTHER 32.02 13.28 13.65 18.45 13.92 14.18
GFR 22.39 10.04 7.84 7.31 8.58 8.41

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 28.00 7.78 7.08 6.16 7.74 8.14
CYCLO -46.33 -36.98 -32.44 -31.81 -28.49 -28.58
FK506 -58.30 -76.03 -70.30 -81.46 -71.44 -71.88
OTHER 25.03 9.42 6.77 13.05 8.16 8.66
GFR 16.80 8.02 3.70 4.12 5.35 5.51

Table C.3: The percentage bias of parameter estimates in the heart models based on generated
survival times from the 2-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 37.61 14.20 17.98 15.51 17.33 17.35
CYCLO -42.86 -34.74 -30.78 -28.06 -25.51 -25.58
FK506 -55.54 -73.76 -64.61 -76.63 -66.42 -67.30
OTHER 33.50 14.34 15.44 19.91 15.53 15.67
GFR 24.70 11.80 10.01 9.61 10.61 10.37

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 34.69 11.56 14.67 11.77 14.07 14.21
CYCLO -43.15 -35.98 -32.13 -26.90 -27.34 -27.42
FK506 -54.91 -73.99 -64.68 -77.05 -66.56 -67.50
OTHER 32.02 13.28 13.65 18.45 13.92 14.18
GFR 22.39 10.04 7.84 7.31 8.58 8.41

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 33.29 10.12 12.97 9.99 12.42 12.50
CYCLO -43.24 -36.42 -32.58 -29.36 -27.98 -28.08
FK506 -54.14 -73.54 -64.25 -76.61 -66.13 -67.10
OTHER 29.57 11.24 11.28 15.79 11.59 11.86
GFR 21.83 9.82 7.43 6.74 8.19 8.25
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Table C.4: The percentage bias of parameter estimates in the heart models based on generated
survival times from the 3-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 25.52 2.39 6.87 6.08 6.16 5.90
CYCLO -46.67 -39.57 -36.15 -36.53 -36.09 -35.71
FK506 -53.65 -73.13 -61.39 -65.28 -67.18 -65.77
OTHER 22.85 3.04 4.91 9.26 5.41 4.88
GFR 16.16 1.92 0.56 0.13 1.96 1.45

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 22.67 -0.47 3.45 2.35 2.93 2.53
CYCLO -46.42 -39.90 -36.34 -36.85 -36.52 -36.12
FK506 -53.17 -73.57 -61.61 -65.86 -67.73 -66.22
OTHER 20.93 1.53 2.64 6.69 3.57 2.88
GFR 13.50 -0.46 -2.26 -3.06 -0.65 -1.25

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 22.67 -0.44 3.84 2.00 2.86 2.42
CYCLO -46.18 -39.86 -35.27 -36.99 -36.44 -36.04
FK506 -52.10 -72.94 -59.68 -64.98 -67.10 -65.57
OTHER 19.23 0.03 1.04 4.71 1.91 1.13
GFR 14.02 0.35 -1.93 -2.80 0.05 -0.62

Table C.5: The Mean square error of parameter estimates in the heart models based on
generated survival times from the Weibull model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 1.10521 0.76236 0.55189 2.91185 0.50697 0.50603
FK506 9.25855 9.47249 13.83500 27.36630 12.31355 7.85428
OTHER 0.03984 0.03750 0.03790 0.04225 0.03849 0.03791
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 1.03091 0.68408 0.46788 1.81275 0.44143 0.43117
FK506 0.67227 0.23769 2.09588 3.00995 0.59485 0.74159
OTHER 0.02095 0.01876 0.01881 0.02168 0.01947 0.01908
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 1.00477 0.65634 0.43839 3.76460 0.41901 0.40323
FK506 0.61249 0.18887 1.82837 2.82245 0.42288 0.54419
OTHER 0.01462 0.01259 0.01256 0.01485 0.01319 0.01288
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
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Table C.6: The Mean square error of parameter estimates in the heart models based on
generated survival times from the 1-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 1.94543 1.18740 0.93769 0.74130 0.70914 0.71162
FK506 4.56567 5.80217 5.63505 8.01784 5.17063 5.56587
OTHER 0.03924 0.03688 0.03688 0.03966 0.03702 0.03703
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 1.92544 1.22172 0.95583 0.96700 0.73866 0.74346
FK506 2.91943 4.82078 4.15165 5.55040 4.27359 4.32120
OTHER 0.02012 0.01809 0.01798 0.01957 0.01808 0.01810
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 1.91567 1.23879 0.96490 1.85800 0.75630 0.76115
FK506 2.82596 4.76265 4.08489 5.46609 4.21592 4.26587
OTHER 0.01366 0.01194 0.01183 0.01297 0.01190 0.01192
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Table C.7: The Mean square error of parameter estimates in the heart models based on
generated survival times from the 2-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 1.74356 1.20386 0.98127 0.96550 0.72992 0.73290
FK506 4.73015 6.32093 6.17373 9.30215 4.80450 5.79296
OTHER 0.04003 0.03699 0.03731 0.04010 0.03734 0.03732
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 1.69079 1.19946 0.97189 0.98900 0.72568 0.72987
FK506 2.55302 4.55354 3.51665 4.95006 3.71743 3.81856
OTHER 0.02093 0.01822 0.01832 0.01994 0.01835 0.01836
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 1.67465 1.20254 0.97166 0.73750 0.73028 0.73527
FK506 2.44790 4.46181 3.42957 4.84995 3.62851 3.73301
OTHER 0.01443 0.01206 0.01209 0.01324 0.01212 0.01213
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
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Table C.8: The Mean square error of parameter estimates in the heart models based on
generated survival times from the 3-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 2.24974 1.58993 1.39972 1.89500 1.29737 1.27383
FK506 4.20555 6.11927 3.70819 6.27622 5.09500 5.37680
OTHER 0.03813 0.03631 0.03659 0.03902 0.03656 0.03658
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 1.95068 1.46227 1.22642 1.04150 1.23803 1.21285
FK506 2.39637 4.49772 3.20012 3.65517 3.83781 3.67722
OTHER 0.01907 0.01764 0.01773 0.01894 0.01773 0.01773
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 1.90653 1.43414 1.13459 1.87400 1.20720 1.18189
FK506 2.27029 4.38809 2.97015 3.51683 3.73026 3.56787
OTHER 0.01283 0.01164 0.01168 0.01247 0.01168 0.01167
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Table C.9: The confidence interval length average of parameter estimates in the heart models
based on generated survival times from the Weibull model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.02 0.02 0.02 0.02 0.02 0.02
CYCLO 1.46 1.50 1.55 1.55 1.56 1.56
FK506 11.35 12.00 13.22 19.21 13.42 10.37
OTHER 0.75 0.75 0.75 0.78 0.75 0.75
GFR 0.02 0.02 0.02 0.02 0.02 0.02

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.02 0.02 0.02 0.02 0.02 0.02
CYCLO 1.01 1.04 1.07 1.63 1.07 1.08
FK506 1.44 1.59 2.38 2.57 2.20 2.32
OTHER 0.52 0.52 0.52 0.54 0.52 0.52
GFR 0.01 0.01 0.01 0.01 0.01 0.01

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.01 0.01 0.01 0.01 0.01 0.01
CYCLO 0.82 0.84 0.87 .93 0.87 0.87
FK506 1.16 1.28 1.93 2.09 1.76 1.85
OTHER 0.42 0.42 0.42 0.44 0.42 0.42
GFR 0.01 0.01 0.01 0.01 0.01 0.01
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Table C.10: The confidence interval length average of parameter estimates in the heart
models based on generated survival times from the 1-knot Weibull spline model with
70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.02 0.02 0.02 0.02 0.02 0.02
CYCLO 1.46 1.53 1.56 1.43 1.61 1.61
FK506 5.10 4.09 4.84 6.33 3.87 4.56
OTHER 0.75 0.75 0.75 0.77 0.75 0.75
GFR 0.02 0.02 0.02 0.02 0.02 0.02

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.02 0.02 0.02 0.02 0.02 0.02
CYCLO 1.00 1.04 1.05 1.47 1.08 1.08
FK506 1.24 1.25 1.29 1.33 1.29 1.28
OTHER 0.52 0.52 0.52 0.54 0.52 0.52
GFR 0.01 0.01 0.01 0.01 0.01 0.01

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.01 0.01 0.01 0.01 0.01 0.01
CYCLO 0.80 0.83 0.84 0.87 0.86 0.86
FK506 0.99 1.00 1.03 1.07 1.03 1.03
OTHER 0.42 0.42 0.42 0.44 0.42 0.42
GFR 0.01 0.01 0.01 0.01 0.01 0.01
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Table C.11: The confidence interval length average of parameter estimates in the heart
models based on generated survival times from the 2-knot Weibull spline model with
70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.02 0.02 0.02 0.02 0.02 0.02
CYCLO 1.47 1.52 1.54 127.20 1.58 1.58
FK506 5.33 5.14 6.53 8.31 4.19 5.61
OTHER 0.75 0.75 0.75 0.77 0.75 0.75
GFR 0.02 0.02 0.02 0.02 0.02 0.02

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.02 0.02 0.02 0.02 0.02 0.02
CYCLO 1.01 1.03 1.04 43.27 1.06 1.06
FK506 1.26 1.27 1.34 1.39 1.34 1.34
OTHER 0.52 0.52 0.52 0.54 0.52 0.52
GFR 0.01 0.01 0.01 0.01 0.01 0.01

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.01 0.01 0.01 0.01 0.01 0.01
CYCLO 0.81 0.83 0.83 19.25 0.85 0.85
FK506 1.01 1.02 1.08 1.12 1.08 1.07
OTHER 0.42 0.42 0.42 0.44 0.42 0.42
GFR 0.01 0.01 0.01 0.01 0.01 0.01
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Table C.12: The confidence interval length average of parameter estimates in the heart
models based on generated survival times from the 3-knot Weibull spline model with
70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.02 0.02 0.02 0.02 0.02 0.02
CYCLO 2.20 1.83 1.96 220.28 1.57 1.57
FK506 5.24 5.21 3.15 6.58 4.68 5.26
OTHER 0.75 0.75 0.75 0.77 0.75 0.75
GFR 0.02 0.02 0.02 0.02 0.02 0.02

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.02 0.02 0.02 0.02 0.02 0.02
CYCLO 1.03 1.06 1.06 93.25 1.07 1.07
FK506 1.24 1.24 1.34 1.42 1.30 1.33
OTHER 0.52 0.52 0.52 0.54 0.52 0.52
GFR 0.01 0.01 0.01 0.01 0.01 0.01

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.01 0.01 0.01 0.01 0.01 0.01
CYCLO 0.83 0.85 0.86 45.38 0.86 0.86
FK506 1.00 1.00 1.08 1.15 1.05 1.07
OTHER 0.42 0.42 0.42 0.44 0.42 0.42
GFR 0.01 0.01 0.01 0.01 0.01 0.01
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Table C.13: The percentage bias of parameters in the heart models based on generated
survival times from the Weibull model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 25.53 17.38 31.82 39.74 49.75 43.94
GFR2 19.74 16.60 34.07 30.94 39.06 34.48
GFR3 26.45 18.47 32.67 40.63 50.56 44.78

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 27.50 13.85 33.51 27.95 29.12 29.94
GFR2 27.13 14.35 31.21 26.87 27.66 28.62
GFR3 28.50 14.93 34.55 28.96 30.15 30.96

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 23.52 9.38 29.19 23.22 23.88 25.12
GFR2 23.38 10.21 27.05 22.43 22.78 24.10
GFR3 23.84 9.79 29.48 23.55 24.21 25.44

Table C.14: The percentage bias of parameters in the heart models based on generated
survival times from the 1-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 33.37 11.77 18.53 17.90 18.67 19.17
GFR2 39.79 9.34 15.01 12.66 12.89 18.68
GFR3 33.58 12.49 19.17 18.56 16.31 19.81

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 27.89 2.35 11.09 8.28 9.10 8.90
GFR2 28.71 4.75 12.12 9.93 10.56 10.41
GFR3 28.53 3.10 11.83 9.01 9.84 9.63

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 23.06 -3.25 5.49 2.58 3.32 3.13
GFR2 24.17 -0.44 6.85 4.61 5.15 5.02
GFR3 23.24 -2.97 5.71 2.83 3.56 3.37
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Table C.15: The percentage bias of parameters in the heart models based on generated
survival times from the 2-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 58.09 19.62 46.11 42.51 45.95 44.46
GFR2 46.10 18.92 43.84 40.83 43.67 42.44
GFR3 59.91 19.74 48.24 44.66 48.09 46.60

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 41.67 13.60 27.41 22.55 24.52 23.88
GFR2 41.03 14.84 26.71 22.69 24.29 23.80
GFR3 42.48 14.53 28.27 23.44 25.39 24.76

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 33.58 5.06 18.82 13.94 15.74 15.18
GFR2 34.25 7.66 19.47 15.43 16.89 16.47
GFR3 34.50 6.03 19.78 14.89 16.69 16.13

Table C.16: The percentage bias of parameters in the heart models based on generated
survival times from the 3-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 46.94 33.54 27.68 24.45 29.43 26.64
GFR2 42.53 20.46 22.86 20.02 24.14 21.85
GFR3 47.33 34.25 28.38 25.13 30.10 27.34

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 29.22 1.30 18.26 10.60 13.11 12.11
GFR2 27.12 1.23 15.83 9.34 11.42 10.61
GFR3 28.97 1.30 18.17 10.52 13.03 12.05

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 21.93 -7.01 10.35 2.01 4.81 3.73
GFR2 21.26 -5.57 9.32 2.31 4.59 3.71
GFR3 22.33 -6.52 10.77 2.46 5.24 4.17
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Table C.17: The mean square error of parameters in the heart models based on generated
survival times from the Weibull model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 15.6080 4.5990 7.5860 4.4740 2.0046 2.2160
GFR2 13.2770 4.8350 5.0100 3.1180 2.1994 2.2890
GFR3 13.1680 2.7580 4.8630 3.0160 2.1119 2.1950

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 1.8535 1.1843 2.3565 1.3553 0.7699 1.0103
GFR2 1.7850 1.1232 2.2789 1.2983 0.7306 0.9647
GFR3 1.7717 1.1180 2.2654 1.2866 0.7199 0.9523

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 0.2727 0.2589 0.2553 0.2142 0.1745 0.1772
GFR2 0.2593 0.2373 0.2427 0.2022 0.1645 0.1685
GFR3 0.2487 0.2342 0.2333 0.1937 0.1564 0.1592

Table C.18: The mean square error of parameters in the heart models based on generated
survival times from the 1-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 10.3490 4.6910 5.1395 5.4545 5.5180 5.4625
GFR2 8.2225 4.8305 5.0985 5.3490 5.5530 5.4705
GFR3 8.1000 4.7620 5.0115 5.2645 5.4710 5.3890

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 1.5746 1.7554 1.4340 1.7690 1.7217 1.8016
GFR2 1.5191 1.6772 1.3674 1.6929 1.6461 1.7251
GFR3 1.4999 1.6740 1.3618 1.6877 1.6408 1.7198

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 0.1715 0.1481 0.1498 0.1485 0.1490 0.1489
GFR2 0.1674 0.1292 0.1332 0.1312 0.1318 0.1317
GFR3 0.1531 0.1291 0.1310 0.1297 0.1301 0.1300
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Table C.19: The mean square error of parameters in the heart models based on generated
survival times from the 2-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 14.2505 6.3090 9.0035 11.6325 10.4580 9.1385
GFR2 13.1055 5.4940 8.9135 11.4575 9.5095 8.1380
GFR3 13.9550 5.4050 8.7825 11.3345 9.3910 8.0195

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 2.7042 1.7612 2.0013 3.3257 3.1628 2.9321
GFR2 2.6409 1.6875 1.9324 3.2289 3.0705 2.8426
GFR3 2.6093 1.6801 1.9184 3.2158 3.0568 2.8292

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 0.2327 0.1482 0.1995 0.1968 0.1891 0.1969
GFR2 0.2383 0.1325 0.1882 0.1830 0.1766 0.1838
GFR3 0.2148 0.1297 0.1802 0.1767 0.1697 0.1770

Table C.20: The mean square error of parameters in the heart models based on generated
survival times from the 3-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 13.6720 11.0850 9.6055 10.6480 6.9995 5.8685
GFR2 11.6220 10.1720 9.4530 10.6200 6.4090 5.1580
GFR3 11.5355 10.1255 9.3685 10.5515 6.3525 5.0975

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 1.8689 1.6027 1.3386 2.2730 1.5560 1.4719
GFR2 1.7964 1.5258 1.2714 2.1830 1.4822 1.4001
GFR3 1.7841 1.5237 1.2672 2.1792 1.4787 1.3967

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 0.1677 0.1484 0.1527 0.1474 0.1490 0.1485
GFR2 0.1572 0.1297 0.1353 0.1292 0.1310 0.1304
GFR3 0.1497 0.1291 0.1341 0.1285 0.1302 0.1296
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Table C.21: The average confidence interval length at (α=0.05) of parameter estimates in
the heart models based on generated survival times from the Weibull model with 70%
censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 14.81 8.79 11.69 6.43 5.51 5.88
GFR2 14.64 8.61 11.52 6.25 5.43 5.70
GFR3 14.63 8.61 11.52 6.24 5.32 5.69

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 5.29 4.25 5.95 4.50 3.35 3.86
GFR2 5.17 4.13 5.83 4.38 3.23 3.74
GFR3 5.16 4.13 5.83 4.38 3.23 3.74

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 1.95 1.97 1.83 1.70 1.51 1.51
GFR2 1.85 1.88 1.73 1.60 1.42 1.42
GFR3 1.85 1.87 1.73 1.60 1.41 1.41

Table C.22: The average confidence interval length at (α=0.05) of parameter estimates in the
heart models based on generated survival times from the 1-knot Weibull spline model
with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 12.80 10.90 11.87 11.85 10.94 11.15
GFR2 12.62 10.72 11.69 11.67 10.76 11.98
GFR3 12.62 10.72 11.69 11.67 10.76 11.97

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 4.81 5.12 4.60 5.14 5.12 5.17
GFR2 4.69 5.00 4.48 5.02 5.00 5.05
GFR3 4.69 4.99 4.47 5.02 4.99 5.05

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 1.51 1.51 1.51 1.51 1.51 1.51
GFR2 1.41 1.41 1.41 1.41 1.41 1.41
GFR3 1.41 1.41 1.41 1.41 1.41 1.41
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Table C.23: The average confidence interval length at (α=0.05) of parameter estimates in the
heart models based on generated survival times from the 2-knot Weibull spline model
with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 16.14 12.81 16.13 16.46 15.39 15.74
GFR2 16.96 12.64 15.96 16.28 15.21 15.56
GFR3 16.96 12.63 15.95 16.28 15.21 15.56

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 6.18 5.17 5.38 7.03 6.80 6.61
GFR2 6.06 5.05 5.26 6.91 6.68 6.49
GFR3 6.06 5.05 5.25 6.90 6.68 6.48

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 1.67 1.50 1.67 1.69 1.65 1.68
GFR2 1.57 1.41 1.58 1.59 1.55 1.59
GFR3 1.56 1.40 1.57 1.59 1.55 1.58

Table C.24: The average confidence interval length at (α=0.05) of parameter estimates in the
heart models based on generated survival times from the 3-knot Weibull spline model
with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 15.35 13.71 13.41 14.91 12.37 11.75
GFR2 15.18 13.54 13.23 14.73 12.19 11.58
GFR3 15.17 13.53 13.23 14.72 12.19 11.57

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 5.30 4.96 4.51 5.90 4.88 4.75
GFR2 5.18 4.84 4.39 5.78 4.76 4.63
GFR3 5.18 4.84 4.39 5.78 4.75 4.62

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 1.50 1.50 1.51 1.50 1.51 1.51
GFR2 1.40 1.40 1.41 1.41 1.41 1.41
GFR3 1.40 1.40 1.41 1.40 1.41 1.41
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Appendix D

Simulation results of the standard
Weibull model with time-dependent
covariates

Table D.1: The percentage bias of parameters in the heart model based on generated survival
times from the Weibull model with 70% censoring

n=500 n=1000 n=1500
Parameter Cox Weibull log-logistic Cox Weibull log-logistic Cox Weibull log-logistic

DAGE -10.79 1.55 -3.66 -12.15 0.05 -13.78 -13.75 -1.59 -10.60
CYCLO -20.84 -18.85 -22.21 -20.51 -18.71 -20.85 -19.75 -18.07 -19.79
FK506 17.31 29.34 16.66 -19.37 -7.02 -16.20 -23.01 -10.49 -19.59
OTHER -11.47 2.01 -3.16 -12.78 0.28 -4.34 -13.42 -0.43 -4.68
GFR -13.35 -2.66 -7.90 -14.13 -3.86 -8.59 -14.37 -4.23 -7.75

Table D.2: The mean square error of parameters in the heart model based on generated
survival times from the Weibull model with 70% censoring

n=500 n=1000 n=1500
Parameter Cox Weibull log-logistic Cox Weibull log-logistic Cox Weibull log-logistic

DAGE <0.0001<0.0001 0.0002 <0.0001<0.0001 0.0001 <0.0001<0.0001 0.0001
CYCLO 0.1731 0.1621 0.5536 0.1101 0.1005 0.2953 0.0871 0.0785 0.2091
FK506 1.9300 1.0997 2.7066 7.9265 0.2977 2.0100 0.5873 0.2380 1.2171
OTHER 0.0455 0.0413 0.1978 0.0253 0.0199 0.0996 0.0191 0.0131 0.0668
GFR <0.0001<0.0001 <0.0001 <0.0001<0.0001 <0.0001 <0.0001<0.0001 <0.0001
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Table D.3: The average confidence interval length at (α=0.05) of parameter estimates in
the heart model based on generated survival times from the Weibull model with 70%
censoring

n=500 n=1000 n=1500
Parameter Cox Weibull log-logistic Cox Weibull log-logistic Cox Weibull log-logistic

DAGE 0.02 0.02 0.05 0.02 0.02 0.04 0.01 0.01 0.03
CYCLO 1.33 1.33 2.74 0.91 0.91 1.91 0.73 0.73 1.55
FK506 7.09 2.93 6.24 10.87 2.02 5.33 1.98 1.61 3.87
OTHER 0.80 0.80 1.74 0.55 0.55 1.23 0.45 0.45 1.01
GFR 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00

Table D.4: The percentage bias of parameters in the heart model based on generated survival
times from the Weibull model with 70% censoring

n=500 n=1000 n=1500
Parameter Cox Weibull log-logistic Cox Weibull log-logistic Cox Weibull log-logistic

GFR1 30.03 18.51 32.46 28.28 19.53 30.95 25.37 20.21 28.24
GFR2 30.72 19.30 33.22 28.70 20.24 31.38 26.38 21.73 29.29
GFR3 30.56 18.98 33.07 28.91 20.58 31.65 25.95 21.20 28.87

Table D.5: The mean square error of parameters in the heart model based on generated
survival times from the Weibull model with 70% censoring

n=500 n=1000 n=1500
Parameter Cox Weibull log-logistic Cox Weibull log-logistic Cox Weibull log-logistic

GFR1 0.1337 0.1362 0.7260 0.0819 0.0862 0.3624 0.0675 0.0720 0.2434
GFR2 0.1258 0.1287 0.6643 0.0782 0.0826 0.3322 0.0660 0.0708 0.2238
GFR3 0.1182 0.1210 0.6184 0.0753 0.0799 0.3103 0.0635 0.0683 0.2085

Table D.6: The average confidence interval length at (α=0.05) of parameter estimates in
the heart model based on generated survival times from the Weibull model with 70%
censoring

n=500 n=1000 n=1500
Parameter Cox Weibull log-logistic Cox Weibull log-logistic Cox Weibull log-logistic

GFR1 1.30 1.29 3.31 0.90 0.89 2.31 0.73 0.72 1.88
GFR2 1.24 1.23 3.15 0.86 0.85 2.21 0.70 0.69 1.80
GFR3 1.20 1.18 3.04 0.83 0.82 2.13 0.68 0.67 1.73

Table D.7: The percentage bias of parameters in the cornea model based on generated survival
times from the Weibull model with 90% censoring

n=400 n=800 n=1200
Parameter Cox Weibull log-logistic Cox Weibull log-logistic Cox Weibull log-logistic

RAGE 2.24 3.49 1.02 2.90 2.68 -0.02 3.17 3.28 0.85
CAUSE1 2.14 3.92 1.50 3.21 3.49 0.83 3.15 3.89 1.56
CAUSE2 3.07 3.75 1.21 3.18 3.40 0.75 2.89 3.51 1.13
SECOND 63.46 46.77 34.09 -12.19 -12.58 -23.26 -22.98 -20.51 -30.77
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Table D.8: The mean square error of parameters in the cornea model based on generated
survival times from the Weibull model with 90% censoring

n=400 n=800 n=1200
Parameter Cox Weibull log-logistic Cox Weibull log-logistic Cox Weibull log-logistic

RAGE 0.0001 0.0001 0.0002 <0.0001<0.0001 0.0001 <0.0001<0.0001 0.0001
CAUSE1 0.1676 0.1659 0.3315 0.0811 0.0803 0.1535 0.0535 0.0534 0.1011
CAUSE2 0.1753 0.1721 0.3382 0.0844 0.0834 0.1569 0.0556 0.0553 0.1030
SECOND 55.8050 54.7700 83.5900 8.7002 7.3520 12.7370 1.4921 0.6271 1.7202

Table D.9: The average confidence interval length at (α=0.05) of parameter estimates in
the cornea model based on generated survival times from the Weibull model with 90%
censoring

n=400 n=800 n=1200
Parameter Cox Weibull log-logistic Cox Weibull log-logistic Cox Weibull log-logistic

RAGE 0.04 0.04 0.05 0.03 0.03 0.03 0.02 0.02 0.03
CAUSE1 1.60 1.59 2.26 1.11 1.10 1.54 0.90 0.90 1.24
CAUSE2 1.64 1.62 2.28 1.13 1.12 1.55 0.92 0.91 1.26
SECOND 76.06 69.39 85.56 15.62 6.99 17.65 4.44 2.63 3.84
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Appendix E

Simulation results of the Weibull
spline models with time-dependent
covariates

Table E.1: The percentage bias of parameter estimates in the heart models based on generated
survival times from the Weibull model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 47.20 36.23 41.61 49.35 -63.31 60.34
CYCLO -11.75 -17.42 2.91 18.45 1.41 6.77
FK506 9.18 0.92 -4.30 -0.85 -13.82 -15.54
OTHER 19.63 10.52 13.72 19.27 4.82 3.66
GFR 1.87 -5.39 2.13 8.32 -5.56 -1.92

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 44.43 33.19 38.61 46.20 -13.99 50.44
CYCLO -11.68 -17.33 2.52 17.72 6.30 11.77
FK506 8.27 -0.24 -5.02 -1.55 -9.42 -8.18
OTHER 18.38 9.03 12.28 17.78 9.11 10.33
GFR 0.91 -6.51 0.95 7.03 -2.19 1.91

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 43.69 32.52 37.52 45.10 18.88 46.90
CYCLO -11.99 -17.53 1.96 17.22 9.29 13.72
FK506 7.84 -0.65 -5.56 -2.01 -6.64 -5.08
OTHER 17.86 8.60 11.58 17.16 12.24 13.21
GFR 0.51 -6.83 0.36 6.54 1.15 3.54
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Table E.2: The percentage bias of parameter estimates in the heart models based on generated
survival times from the 1-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 11.68 4.58 0.66 -0.11 0.73 -5.59
CYCLO -15.03 -21.29 -22.38 -23.44 -22.31 -25.79
FK506 59.95 55.98 52.94 54.87 53.43 43.38
OTHER -12.20 -17.60 -20.68 -21.36 -20.63 -24.03
GFR 11.37 5.15 4.47 3.37 4.49 -0.90

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 2.99 -3.26 -6.60 -7.37 -6.54 -16.70
CYCLO -18.43 -24.09 -25.25 -26.15 -25.21 -27.70
FK506 -9.12 -12.81 -15.99 -15.90 -15.89 -18.81
OTHER -16.60 -21.60 -24.48 -25.08 -24.44 -27.10
GFR 6.05 0.50 0.02 -0.97 0.03 -3.98

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 1.89 -4.26 -7.60 -8.34 -7.53 -12.92
CYCLO -19.84 -25.14 -26.19 -27.01 -26.14 -27.72
FK506 -22.79 -26.74 -29.82 -30.12 -29.75 -30.97
OTHER -18.03 -22.94 -25.82 -26.39 -25.77 -27.11
GFR 4.91 -0.49 -0.92 -1.86 -0.91 -2.96

Table E.3: The percentage bias of parameter estimates in the heart models based on generated
survival times from the 2-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 7.63 0.62 -2.66 -4.86 -2.74 -20.59
CYCLO -11.79 -18.01 -19.46 -21.39 -19.44 -25.05
FK506 29.71 25.91 22.77 23.81 22.66 12.67
OTHER -12.76 -18.31 -21.21 -22.92 -21.29 -27.09
GFR 1.08 -4.41 -5.09 -7.04 -5.16 -12.97

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 5.75 -1.07 -4.54 -6.50 -4.62 -22.54
CYCLO -15.79 -21.49 -22.67 -24.42 -22.66 -27.32
FK506 -19.05 -23.24 -26.25 -27.16 -26.33 -31.34
OTHER -16.24 -21.65 -24.56 -26.10 -24.64 -29.27
GFR -2.32 -7.43 -7.94 -9.71 -8.02 -14.92

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 1.89 -4.55 -7.72 -9.62 -7.81 -22.97
CYCLO -15.82 -21.44 -22.70 -24.41 -22.70 -26.36
FK506 -27.46 -31.70 -34.93 -35.97 -34.98 -37.89
OTHER -17.84 -23.04 -25.98 -27.46 -26.03 -29.52
GFR -3.23 -8.22 -8.75 -10.47 -8.83 -14.08
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Table E.4: The percentage bias of parameter estimates in the heart models based on generated
survival times from the 3-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 11.03 4.36 0.47 -1.85 0.19 -16.72
CYCLO -5.54 -11.35 -13.50 -15.56 -13.79 -20.11
FK506 37.73 33.62 30.51 31.32 30.22 16.39
OTHER -10.00 -15.39 -18.55 -20.47 -18.77 -25.50
GFR 5.49 0.08 -1.89 -4.00 -2.18 -10.75

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 9.80 3.21 -0.68 -2.90 -0.91 -23.43
CYCLO -7.97 -13.38 -15.49 -17.34 -15.75 -21.30
FK506 -15.98 -20.22 -23.44 -24.62 -23.61 -29.80
OTHER -12.08 -17.37 -20.56 -22.36 -20.75 -26.75
GFR 2.06 -3.02 -4.97 -6.88 -5.22 -13.76

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 7.72 1.34 -2.34 -4.50 -2.59 -28.43
CYCLO -10.01 -15.10 -17.14 -18.87 -17.40 -22.32
FK506 -25.10 -29.28 -32.57 -33.93 -32.72 -37.07
OTHER -13.25 -18.45 -21.51 -23.26 -21.69 -26.96
GFR 0.81 -4.09 -5.85 -7.71 -6.10 -13.59

Table E.5: The mean square error of parameter estimates in the heart models based on
generated survival times from the Weibull model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.0001 <0.0001 <0.0001 0.0001 0.0001 0.0001
CYCLO 0.1241 0.1522 0.1063 0.1659 0.0933 0.1180
FK506 0.1827 0.1504 0.1559 0.1507 0.2115 0.2355
OTHER 0.0447 0.0360 0.0384 0.0445 0.0287 0.0319
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 0.0708 0.0986 0.0506 0.1040 0.0540 0.0747
FK506 0.0998 0.0721 0.0818 0.0731 0.1053 0.0968
OTHER 0.0267 0.0185 0.0206 0.0261 0.0175 0.0191
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 0.0557 0.0834 0.0332 0.0835 0.0470 0.0653
FK506 0.0724 0.0473 0.0597 0.0488 0.0645 0.0569
OTHER 0.0208 0.0129 0.0148 0.0200 0.0150 0.0161
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
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Table E.6: The mean square error of parameter estimates in the heart models based on
generated survival times from the 1-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 0.1550 0.1779 0.1827 0.1877 0.1825 0.1978
FK506 2.8230 2.5348 2.3362 2.4822 2.3747 1.9777
OTHER 0.0566 0.0616 0.0653 0.0662 0.0653 0.0692
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 0.0963 0.1211 0.1270 0.1317 0.1268 0.1393
FK506 0.4237 0.4742 0.5321 0.5317 0.5307 0.5853
OTHER 0.0337 0.0399 0.0441 0.0451 0.0441 0.0480
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 0.0804 0.1050 0.1106 0.1151 0.1104 0.1189
FK506 0.5759 0.6979 0.8067 0.8184 0.8044 0.8478
OTHER 0.0268 0.0333 0.0379 0.0388 0.0378 0.0400
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Table E.7: The mean square error of parameter estimates in the heart models based on
generated survival times from the 2-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 0.1278 0.1467 0.1523 0.1602 0.1523 0.1745
FK506 1.0932 0.9610 0.8678 1.2051 0.8662 0.6444
OTHER 0.0500 0.0555 0.0591 0.0615 0.0593 0.0666
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 0.0791 0.1011 0.1065 0.1149 0.1065 0.1290
FK506 0.5444 0.6548 0.7478 0.7784 0.7507 0.9184
OTHER 0.0302 0.0368 0.0411 0.0436 0.0413 0.0486
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 0.0607 0.0824 0.0882 0.0965 0.0882 0.1060
FK506 0.6759 0.8324 0.9668 1.0131 0.9690 1.0948
OTHER 0.0245 0.0314 0.0361 0.0387 0.0362 0.0421
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
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Table E.8: The mean square error of parameter estimates in the heart models based on
generated survival times from the 3-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DDAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 0.1127 0.1225 0.1280 0.1339 0.1288 0.1480
FK506 1.4080 1.2248 1.1010 1.2695 1.0908 0.7078
OTHER 0.0465 0.0508 0.0542 0.0566 0.0545 0.0625
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 0.0578 0.0697 0.0760 0.0822 0.0768 0.0961
FK506 0.4728 0.5689 0.6565 0.6920 0.6616 0.8514
OTHER 0.0256 0.0307 0.0346 0.0371 0.0348 0.0431
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
CYCLO 0.0437 0.0570 0.0638 0.0703 0.0648 0.0837
FK506 0.5973 0.7392 0.8665 0.9227 0.8721 1.0518
OTHER 0.0195 0.0248 0.0288 0.0313 0.0290 0.0367
GFR <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
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Table E.9: The average confidence interval length at (α=0.05) of parameter estimates in
the heart models based on generated survival times from the Weibull model with 70%
censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.02 0.02 0.02 0.02 0.02 0.02
CYCLO 1.24 1.25 1.27 1.29 1.20 1.30
FK506 1.50 1.52 1.51 1.52 1.41 1.42
OTHER 0.70 0.71 0.70 0.71 0.66 0.69
GFR 0.00 0.00 0.00 0.00 0.00 0.00

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.01 0.01 0.01 0.01 0.01 0.01
CYCLO 0.86 0.86 0.87 0.88 0.85 0.89
FK506 1.04 1.05 1.04 1.05 1.01 1.02
OTHER 0.49 0.49 0.49 0.49 0.48 0.49
GFR 0.00 0.00 0.00 0.00 0.00 0.00

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.01 0.01 0.01 0.01 0.01 0.01
CYCLO 0.70 0.70 0.71 0.72 0.71 0.72
FK506 0.84 0.85 0.84 0.85 0.84 0.84
OTHER 0.40 0.40 0.40 0.40 0.40 0.40
GFR 0.00 0.00 0.00 0.00 0.00 0.00
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Table E.10: The average confidence interval length at (α=0.05) of parameter estimates in the
heart models based on generated survival times from the 1-knot Weibull spline model
with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.03 0.03 0.03 0.03 0.03 0.03
CYCLO 1.42 1.42 1.42 1.42 1.42 1.41
FK506 2.98 2.98 3.00 3.04 3.01 3.51
OTHER 0.89 0.89 0.89 0.89 0.89 0.88
GFR 0.01 0.01 0.01 0.01 0.01 0.01

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.02 0.02 0.02 0.02 0.02 0.02
CYCLO 0.97 0.97 0.97 0.96 0.97 0.96
FK506 2.39 2.39 2.39 2.40 2.39 2.37
OTHER 0.62 0.62 0.62 0.62 0.62 0.61
GFR 0.00 0.00 0.00 0.00 0.00 0.00

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.02 0.01 0.01 0.01 0.01 0.01
CYCLO 0.78 0.78 0.78 0.78 0.78 0.77
FK506 1.96 1.96 1.96 1.97 1.96 1.95
OTHER 0.50 0.50 0.50 0.50 0.50 0.50
GFR 0.00 0.00 0.00 0.00 0.00 0.00
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Table E.11: The average confidence interval length at (α=0.05) of parameter estimates in the
heart models based on generated survival times from the 2-knot Weibull spline model
with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.02 0.02 0.02 0.02 0.02 0.02
CYCLO 1.32 1.32 1.32 1.32 1.32 1.30
FK506 2.89 2.88 2.89 3.62 2.89 2.89
OTHER 0.83 0.83 0.83 0.83 0.83 0.81
GFR 0.00 0.00 0.00 0.00 0.00 0.00

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.02 0.02 0.02 0.02 0.02 0.02
CYCLO 0.90 0.90 0.90 0.90 0.90 0.89
FK506 2.21 2.21 2.21 2.21 2.21 2.16
OTHER 0.58 0.58 0.58 0.57 0.58 0.56
GFR 0.00 0.00 0.00 0.00 0.00 0.00

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.01 0.01 0.01 0.01 0.01 0.01
CYCLO 0.73 0.73 0.73 0.73 0.73 0.72
FK506 1.77 1.77 1.77 1.77 1.77 1.74
OTHER 0.47 0.47 0.47 0.47 0.47 0.46
GFR 0.00 0.00 0.00 0.00 0.00 0.00
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Table E.12: The average confidence interval length at (α=0.05) of parameter estimates in the
heart models based on generated survival times from the 3-knot Weibull spline model
with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.02 0.02 0.02 0.02 0.02 0.02
CYCLO 1.30 1.29 1.29 1.29 1.29 1.28
FK506 2.82 2.82 2.82 3.18 2.83 2.88
OTHER 0.82 0.81 0.81 0.81 0.81 0.80
GFR 0.00 0.00 0.00 0.00 0.00 0.00

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.02 0.02 0.02 0.02 0.02 0.02
CYCLO 0.89 0.89 0.89 0.88 0.89 0.87
FK506 2.19 2.19 2.19 2.19 2.19 2.13
OTHER 0.57 0.57 0.57 0.57 0.57 0.55
GFR 0.00 0.00 0.00 0.00 0.00 0.00

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

DAGE 0.01 0.01 0.01 0.01 0.01 0.01
CYCLO 0.72 0.72 0.71 0.71 0.71 0.70
FK506 1.77 1.77 1.77 1.77 1.77 1.72
OTHER 0.46 0.46 0.46 0.46 0.46 0.45
GFR 0.00 0.00 0.00 0.00 0.00 0.00
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Table E.13: The percentage bias of parameter estimates in the heart models based on gen-
erated survival times from the Weibull model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 24.49 5.39 -4.63 -4.49 -1.01 -13.94
GFR2 23.68 4.69 -5.31 -5.21 -1.76 -14.47
GFR3 24.14 5.17 -4.80 -4.66 -1.23 -14.08

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 21.64 2.65 -7.18 -7.11 -3.71 -9.93
GFR2 21.40 2.42 -7.47 -7.44 -4.00 -10.18
GFR3 21.80 2.82 -7.05 -7.02 -3.61 -9.81

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 20.53 1.57 -8.06 -8.06 -4.77 -8.73
GFR2 20.20 1.26 -8.37 -8.37 -5.06 -9.02
GFR3 20.33 1.39 -8.23 -8.23 -4.94 -8.95

Table E.14: The percentage bias of parameter estimates in the heart models based on gen-
erated survival times from the 1-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 59.70 48.63 48.77 48.20 48.13 47.46
GFR2 51.95 41.44 37.22 36.70 36.48 35.75
GFR3 47.18 35.61 33.07 32.65 32.37 31.69

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 42.98 33.06 33.62 33.11 32.86 32.62
GFR2 42.55 33.21 29.31 28.65 28.49 28.15
GFR3 40.04 29.91 28.39 27.83 27.62 27.41

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 37.00 27.59 27.65 27.07 26.86 26.69
GFR2 38.31 29.30 25.34 24.70 24.53 24.34
GFR3 37.17 27.47 26.08 25.48 25.26 25.13
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Table E.15: The percentage bias of parameter estimates in the heart models based on gen-
erated survival times from the 2-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 50.25 44.63 56.63 56.10 55.77 50.45
GFR2 54.81 49.06 52.04 51.75 51.63 47.53
GFR3 47.28 41.32 49.69 49.32 49.08 44.99

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 38.37 33.18 44.98 44.57 44.42 42.93
GFR2 44.26 38.94 43.57 43.28 43.29 42.36
GFR3 40.37 34.91 44.38 44.06 43.97 42.75

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 36.29 31.18 42.69 42.32 42.30 41.68
GFR2 40.43 35.21 39.86 39.68 39.77 39.60
GFR3 37.86 32.54 42.03 41.75 41.75 41.30

Table E.16: The percentage bias of parameter estimates in the heart models based on gen-
erated survival times from the 2-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 36.57 35.08 54.35 47.58 46.50 25.97
GFR2 40.85 38.97 52.12 45.32 44.48 27.27
GFR3 32.45 30.70 48.69 41.62 40.61 23.42

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 28.53 26.78 45.06 38.95 38.09 22.99
GFR2 32.52 30.40 43.94 37.59 36.92 22.95
GFR3 27.81 25.87 43.32 36.96 36.12 22.02

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 21.54 20.02 40.34 34.37 33.51 20.46
GFR2 28.04 26.00 40.81 34.59 33.95 21.27
GFR3 22.74 20.99 40.16 33.99 33.17 20.50

226



Table E.17: The mean square error of parameter estimates in the heart models based on
generated survival times from the Weibull model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 0.1873 0.1310 0.1289 0.1288 0.1279 0.1333
GFR2 0.1722 0.1191 0.1184 0.1183 0.1169 0.1245
GFR3 0.1665 0.1117 0.1100 0.1099 0.1088 0.1161

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 0.1078 0.0621 0.0659 0.0657 0.0625 0.0687
GFR2 0.1015 0.0567 0.0610 0.0609 0.0574 0.0640
GFR3 0.0995 0.0532 0.0566 0.0565 0.0534 0.0596

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 0.0820 0.0404 0.0462 0.0462 0.0422 0.0470
GFR2 0.0773 0.0369 0.0433 0.0433 0.0391 0.0441
GFR3 0.0753 0.0345 0.0406 0.0405 0.0365 0.0415

Table E.18: The mean square error of parameter estimates in the heart models based on
generated survival times from 1-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 1.5719 0.4317 0.4306 1.4647 1.1283 0.9226
GFR2 1.1698 0.4029 0.3834 0.3815 0.3806 1.0207
GFR3 0.2379 0.2078 0.2014 0.2007 0.2002 0.1979

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 0.2140 0.1937 0.1940 0.1932 0.1928 0.1919
GFR2 0.2401 0.2009 0.1868 0.1848 0.1843 0.1828
GFR3 0.1256 0.1037 0.1005 0.0996 0.0993 0.0987

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 0.1422 0.1260 0.1257 0.1249 0.1246 0.1242
GFR2 0.1709 0.1373 0.1251 0.1233 0.1229 0.1222
GFR3 0.0917 0.0726 0.0700 0.0691 0.0688 0.0685
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Table E.19: The mean square error of parameter estimates in the heart models based on
generated survival times from 2-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 0.3164 0.3019 0.3328 0.3312 0.3302 0.3082
GFR2 0.3746 0.3417 0.3573 0.3556 0.3549 0.3269
GFR3 0.1848 0.1686 0.1911 0.1900 0.1893 0.1748

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 0.1530 0.1430 0.1666 0.1656 0.1653 0.1604
GFR2 0.2042 0.1799 0.2006 0.1991 0.1992 0.1936
GFR3 0.1036 0.0910 0.1135 0.1126 0.1124 0.1086

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 0.1086 0.0995 0.1214 0.1205 0.1205 0.1186
GFR2 0.1524 0.1307 0.1497 0.1489 0.1493 0.1481
GFR3 0.0786 0.0672 0.0885 0.0878 0.0877 0.0864

Table E.20: The mean square error of parameter estimates in the heart models based on
generated survival times from 3-knot Weibull spline model with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 0.2300 0.2272 0.2715 0.2530 0.2503 0.1970
GFR2 0.2550 0.2470 0.3124 0.2756 0.2714 0.1922
GFR3 0.1236 0.1203 0.1636 0.1438 0.1413 0.1027

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 0.1123 0.1098 0.1437 0.1302 0.1285 0.0966
GFR2 0.1348 0.1275 0.1826 0.1541 0.1514 0.0988
GFR3 0.0666 0.0634 0.1000 0.0844 0.0825 0.0544

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 0.0713 0.0696 0.1014 0.0897 0.0882 0.0648
GFR2 0.0932 0.0871 0.1413 0.1156 0.1132 0.0704
GFR3 0.0437 0.0414 0.0769 0.0630 0.0613 0.0385
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Table E.21: The average confidence interval length at (α=0.05) of parameter estimates in
the heart models based on generated survival times from the Weibull model with 70%
censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 1.40 1.40 1.40 1.40 1.40 1.32
GFR2 1.34 1.34 1.33 1.33 1.34 1.26
GFR3 1.29 1.29 1.29 1.29 1.29 1.22

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 0.97 0.97 0.97 0.97 0.97 0.95
GFR2 0.93 0.93 0.92 0.92 0.93 0.91
GFR3 0.89 0.90 0.89 0.89 0.89 0.88

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 0.78 0.79 0.78 0.78 0.78 0.78
GFR2 0.75 0.75 0.75 0.75 0.75 0.74
GFR3 0.72 0.73 0.72 0.72 0.72 0.72

Table E.22: The average confidence interval length at (α=0.05) of parameter estimates in the
heart models based on generated survival times from the 1-knot Weibull spline model
with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 3.41 2.39 2.38 4.65 4.05 3.64
GFR2 3.96 2.18 2.17 2.17 2.17 3.82
GFR3 1.62 1.61 1.61 1.61 1.61 1.60

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 1.60 1.59 1.59 1.59 1.59 1.59
GFR2 1.47 1.47 1.47 1.47 1.47 1.46
GFR3 1.09 1.09 1.08 1.08 1.08 1.08

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 1.28 1.28 1.28 1.28 1.28 1.27
GFR2 1.18 1.18 1.18 1.18 1.18 1.17
GFR3 0.88 0.87 0.87 0.87 0.87 0.87
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Table E.23: The average confidence interval length at (α=0.05) of parameter estimates in the
heart models based on generated survival times from the 2-knot Weibull spline model
with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 1.96 1.96 1.96 1.96 1.96 1.93
GFR2 1.80 1.80 1.79 1.79 1.79 1.77
GFR3 1.34 1.34 1.34 1.34 1.34 1.32

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 1.33 1.33 1.32 1.32 1.32 1.31
GFR2 1.22 1.22 1.22 1.22 1.22 1.21
GFR3 0.91 0.91 0.91 0.91 0.91 0.90

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 1.07 1.07 1.07 1.07 1.07 1.06
GFR2 0.98 0.98 0.98 0.98 0.98 0.98
GFR3 0.74 0.73 0.73 0.73 0.73 0.73

Table E.24: The average confidence interval length at (α=0.05) of parameter estimates in the
heart models based on generated survival times from the 3-knot Weibull spline model
with 70% censoring

n=500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 1.73 1.73 1.73 1.73 1.73 1.66
GFR2 1.59 1.59 1.59 1.58 1.58 1.53
GFR3 1.19 1.19 1.19 1.19 1.19 1.15

n=1000
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 1.18 1.18 1.18 1.18 1.18 1.13
GFR2 1.09 1.09 1.09 1.09 1.09 1.04
GFR3 0.81 0.81 0.81 0.81 0.81 0.78

n=1500
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

GFR1 0.95 0.95 0.95 0.95 0.95 0.91
GFR2 0.88 0.88 0.88 0.88 0.88 0.84
GFR3 0.66 0.66 0.66 0.66 0.66 0.63
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Table E.25: The percentage bias of parameter estimates in the heart models based on gen-
erated survival times from the Weibull model with 90% censoring

n=400
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE -1.86 -19.07 42.75 -191.99 -285.74 -59.79
CAUSE1 -18.25 -32.04 25.40 7.87 -15.19 11.46
CAUSE2 -16.39 -30.59 29.44 10.84 -11.41 14.67
SECOND 235.56 382.89 396.31 370.01 429.94 447.14

n=800
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE -7.23 -18.01 27.15 -110.89 -379.09 -78.36
CAUSE1 -19.89 -30.31 25.64 12.85 -19.46 8.72
CAUSE2 -18.75 -29.25 28.73 15.81 -15.64 11.91
SECOND 170.88 256.33 205.65 184.96 224.86 218.51

n=1200
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE -9.04 -17.80 23.47 -101.07 -373.40 -55.95
CAUSE1 -19.49 -23.94 28.70 17.66 -12.48 14.35
CAUSE2 -18.74 -23.13 32.00 20.55 -8.22 17.86
SECOND 85.11 154.96 123.56 58.92 93.95 89.63
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Table E.26: The percentage bias of parameter estimates in the heart models based on gen-
erated survival times from the 1-knot Weibull spline model with 90% censoring

n=400
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE -11.42 61.53 80.43 37.99 -42.12 -31.79
CAUSE1 -13.59 58.99 78.81 56.05 -12.17 -6.74
CAUSE2 -12.10 60.97 80.56 57.47 -10.99 -5.82
SECOND 615.61 490.87 370.40 410.40 698.53 674.21

n=800
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE -15.64 85.30 83.05 73.52 31.44 46.69
CAUSE1 -17.52 84.16 83.37 79.21 44.38 51.48
CAUSE2 -15.88 85.51 83.94 79.91 44.70 51.96
SECOND 285.97 -189.34 -262.73 -269.96 -111.01 -149.26

n=1200
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE -14.18 94.51 86.95 82.54 58.83 65.67
CAUSE1 -17.22 90.33 84.68 83.25 59.95 66.75
CAUSE2 -16.59 90.39 84.13 82.56 58.99 65.84
SECOND 201.17 -354.37 -425.98 -437.90 -337.16 -382.45

Table E.27: The percentage bias of parameter estimates in the heart models based on gen-
erated survival times from the 2-knot Weibull spline model with 90% censoring

n=400
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 17.58 166.05 200.64 143.76 92.79 97.44
CAUSE1 16.43 164.37 199.00 164.63 112.50 114.91
CAUSE2 17.95 168.24 204.26 169.39 117.20 119.84
SECOND 444.63 -57.06 -232.05 -166.43 21.45 13.42

n=800
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 11.49 180.11 176.68 168.71 139.86 148.15
CAUSE1 10.79 181.56 179.73 175.02 155.13 156.52
CAUSE2 12.06 180.50 177.78 173.17 153.16 154.65
SECOND 181.41 -579.15 -694.90 -694.63 -637.15 -645.47

n=1200
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 11.14 180.73 169.44 167.35 156.33 155.89
CAUSE1 11.78 179.69 169.85 168.38 158.42 159.32
CAUSE2 12.39 182.29 171.58 170.01 159.81 160.80
SECOND 113.88 -688.29 -791.27 -793.55 -760.55 -787.25
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Table E.28: The percentage bias of parameter estimates in the heart models based on gen-
erated survival times from the 3-knot Weibull spline model with 90% censoring

n=400
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 6.61 210.50 243.04 188.40 127.13 139.75
CAUSE1 6.63 210.90 244.15 200.75 144.68 147.76
CAUSE2 7.77 215.66 251.67 206.37 149.87 153.17
SECOND 160.53 -350.71 -478.00 -383.90 -251.32 -245.40

n=800
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 0.38 203.68 197.88 186.60 158.52 159.40
CAUSE1 1.43 203.53 199.71 189.87 164.14 163.73
CAUSE2 1.28 205.83 201.37 191.23 165.39 164.93
SECOND 46.90 -545.22 -629.72 -596.55 -508.79 -510.68

n=1200
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE -0.88 201.77 190.63 186.39 165.63 166.81
CAUSE1 0.55 199.95 190.44 187.16 166.70 167.73
CAUSE2 0.46 201.22 191.03 187.67 167.11 168.16
SECOND 27.29 -571.79 -649.33 -637.16 -560.09 -574.27

Table E.29: The mean square error of parameter estimates in the heart models based on
generated survival times from the Weibull model with 90% censoring

n=400
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE <0.0001 <0.0001 <0.0001 0.0004 0.0008 0.0001
CAUSE1 0.1760 0.2240 0.2111 0.1370 0.1600 0.1653
CAUSE2 0.1815 0.2398 0.2541 0.1500 0.1605 0.1830
SECOND 8.0800 7.3170 8.0650 9.0400 8.0100 9.9100

n=800
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE <0.0001 <0.0001 <0.0001 0.0001 0.0015 0.0001
CAUSE1 0.1040 0.1406 0.1302 0.0797 0.0976 0.0778
CAUSE2 0.1094 0.1541 0.1632 0.0943 0.0937 0.0887
SECOND 8.4700 2.0550 1.8500 8.1300 8.9000 7.0100

n=1200
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE <0.0001 <0.0001 <0.0001 0.0001 0.0014 <0.0001
CAUSE1 0.0793 0.0919 0.1185 0.0711 0.0582 0.0649
CAUSE2 0.0851 0.1006 0.1566 0.0900 0.0541 0.0820
SECOND 3.0400 7.0645 2.4860 5.8300 3.8700 5.7500
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Table E.30: The mean square error of parameter estimates in the heart models based on
generated survival times from the 1-knot Weibull spline model with 90% censoring

n=400
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 0.0001 0.0002 0.0003 0.0001 0.0001 0.0001
CAUSE1 0.1593 0.4502 0.6799 0.4180 0.1557 0.1484
CAUSE2 0.1664 0.5526 0.8396 0.5053 0.1632 0.1556
SECOND 7.2200 2.6490 1.4486 5.9410 2.7840 3.0270

n=800
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE <0.0001 0.0003 0.0003 0.0003 0.0001 0.0001
CAUSE1 0.0938 0.6541 0.6445 0.5883 0.2348 0.2912
CAUSE2 0.0980 0.8178 0.7919 0.7245 0.2798 0.3514
SECOND 7.5700 4.5547 7.9444 1.3207 3.1700 3.8761

n=1200
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE <0.0001 0.0004 0.0003 0.0003 0.0002 0.0002
CAUSE1 0.0725 0.7168 0.6370 0.6172 0.3445 0.4152
CAUSE2 0.0783 0.8768 0.7678 0.7411 0.4047 0.4911
SECOND 7.4600 3.3015 8.9433 1.8806 2.3174 2.8779

Table E.31: The mean square error of parameter estimates in the heart models based on
generated survival times from the 2-knot Weibull spline model with 90% censoring

n=400
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 0.0001 0.0007 0.0010 0.0005 0.0003 0.0003
CAUSE1 0.1691 2.3871 3.4250 2.3927 1.2052 1.2506
CAUSE2 0.1882 3.0498 4.4155 3.0886 1.5703 1.6347
SECOND 9.9400 2.1382 9.7402 2.7920 2.6150 3.9270

n=800
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE <0.0001 0.0008 0.0007 0.0007 0.0005 0.0005
CAUSE1 0.0804 2.7629 2.7113 2.5747 2.0391 2.0750
CAUSE2 0.0896 3.3574 3.2620 3.0988 2.4416 2.4884
SECOND 5.1400 3.5010 4.3581 4.9754 2.8640 2.7460

n=1200
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE <0.0001 0.0008 0.0007 0.0007 0.0006 0.0006
CAUSE1 0.0605 2.6769 2.3984 2.3581 2.0934 2.1167
CAUSE2 0.0675 3.3903 3.0114 2.9577 2.6198 2.6516
SECOND 4.6320 4.0394 4.1912 5.5092 6.4362 6.1368
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Table E.32: The mean square error of parameter estimates in the heart models based on
generated survival times from the 3-knot Weibull spline model with 90% censoring

n=400
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 0.0001 0.0011 0.0014 0.0009 0.0004 0.0005
CAUSE1 0.1460 3.8174 5.0618 3.4743 1.8834 1.9587
CAUSE2 0.1567 4.8935 6.6008 4.4958 2.4542 2.5569
SECOND 6.7800 4.6421 4.2132 3.1723 3.8993 2.3239

n=800
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE <0.0001 0.0010 0.0009 0.0008 0.0006 0.0006
CAUSE1 0.0688 3.4513 3.3289 3.0158 2.2734 2.2627
CAUSE2 0.0723 4.3420 4.1630 3.7614 2.8343 2.8195
SECOND 3.4840 6.7505 4.2175 5.8906 5.7623 5.7034

n=800
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE <0.0001 0.0009 0.0008 0.0008 0.0006 0.0007
CAUSE1 0.0479 3.3027 3.0025 2.9014 2.3129 2.3406
CAUSE2 0.0502 4.1191 3.7197 3.5918 2.8598 2.8950
SECOND 8.4538 4.1381 5.5180 4.9854 4.1586 4.8018

Table E.33: The average confidence interval length at (α=0.05) of parameter estimates in
the heart models based on generated survival times from the Weibull model with 90%
censoring

n=400
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 0.02 0.02 0.02 0.02 0.02 0.02
CAUSE1 1.51 1.47 1.56 1.42 1.47 1.54
CAUSE2 1.54 1.50 1.60 1.46 1.51 1.58
SECOND 21.79 10.64 79.47 19.07 19.43 19.78

n=800
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 0.01 0.01 0.01 0.01 0.01 0.01
CAUSE1 1.05 1.01 1.09 1.01 1.01 1.05
CAUSE2 1.07 1.03 1.11 1.03 1.03 1.07
SECOND 40.55 4.85 8.39 21.10 24.95 25.43

n=1200
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 0.01 0.01 0.01 0.01 0.01 0.01
CAUSE1 0.86 0.84 0.89 0.84 0.84 0.86
CAUSE2 0.88 0.85 0.91 0.86 0.85 0.88
SECOND 36.87 2.77 5.26 28.78 23.57 28.99
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Table E.34: The average confidence interval length at (α=0.05) of parameter estimates in the
heart models based on generated survival times from the 1-knot Weibull spline model
with 90% censoring

n=400
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 0.03 0.04 0.04 0.03 0.03 0.03
CAUSE1 1.49 1.61 1.65 1.59 1.49 1.49
CAUSE2 1.53 1.67 1.71 1.64 1.52 1.53
SECOND 16.56 4.89 5.15 18.79 13.75 15.66

n=800
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 0.02 0.02 0.02 0.02 0.02 0.02
CAUSE1 1.03 1.11 1.12 1.11 1.08 1.08
CAUSE2 1.06 1.15 1.16 1.15 1.11 1.12
SECOND 43.00 3.86 4.00 19.22 22.84 23.07

n=1200
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 0.01 0.01 0.01 0.01 0.01 0.01
CAUSE1 0.86 0.84 0.89 0.84 0.84 0.86
CAUSE2 0.88 0.85 0.91 0.86 0.85 0.88
SECOND 36.87 2.77 5.26 28.78 23.57 21.99

Table E.35: The average confidence interval length at (α=0.05) of parameter estimates in the
heart models based on generated survival times from the 2-knot Weibull spline model
with 90% censoring

n=400
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 0.03 0.04 0.04 0.04 0.03 0.03
CAUSE1 1.50 1.75 1.83 1.74 1.66 1.67
CAUSE2 1.55 1.84 1.93 1.84 1.74 1.75
SECOND 11.44 5.28 8.18 27.90 21.50 18.63

n=800
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 0.02 0.02 0.02 0.02 0.02 0.02
CAUSE1 1.04 1.19 1.21 1.20 1.18 1.18
CAUSE2 1.07 1.24 1.25 1.24 1.21 1.22
SECOND 23.50 3.84 4.05 17.85 35.34 36.16

n=1200
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 0.02 0.02 0.02 0.02 0.02 0.02
CAUSE1 0.87 0.97 0.97 0.97 0.96 0.96
CAUSE2 0.89 1.02 1.02 1.02 1.01 1.01
SECOND 14.92 3.20 4.93 6.24 13.35 10.49
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Table E.36: The average confidence interval length at (α=0.05) of parameter estimates in the
heart models based on generated survival times from the 3-knot Weibull spline model
with 90% censoring

n=400
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 0.03 0.04 0.04 0.04 0.04 0.04
CAUSE1 1.48 1.82 1.89 1.80 1.70 1.71
CAUSE2 1.52 1.93 2.03 1.91 1.79 1.80
SECOND 35.19 17.07 6.57 9.61 17.83 14.55

n=800
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 0.02 0.02 0.03 0.02 0.02 0.02
CAUSE1 1.03 1.21 1.23 1.21 1.18 1.18
CAUSE2 1.05 1.27 1.29 1.27 1.23 1.23
SECOND 7.34 3.65 3.91 5.29 4.83 3.97

n=1200
Parameter 0 knots 1 knot 2 knots 3 knots 4 knots 5 knots

RAGE 0.02 0.02 0.02 0.02 0.02 0.02
CAUSE1 0.86 0.99 1.00 0.99 0.98 0.97
CAUSE2 0.88 1.04 1.04 1.04 1.02 1.02
SECOND 11.28 2.97 3.17 3.14 2.98 3.04
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