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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

School OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Noncoherent Fusion Detection in Wireless Sensor Networks

by Fucheng Yang

The main motivation of this thesis is to design low-complexity high efficiency noncoherent fusion

rules for the parallel triple-layer wireless sensor networks (WSNs) based on frequency-hoppingM-

ary frequency shift keying (FH/MFSK) techniques, which arehence referred to as the FH/MFSK

WSNs. The FH/MFSK WSNs may be employed to monitor single or multiple source events (SEs)

with each SE having multiple states. In the FH/MFSK WSNs, local decisions made by local sensor

nodes (LSNs) are transmitted to a fusion center (FC) with theaid of FH/MFSK techniques. At the

FC, various noncoherent fusion rules may be suggested for final detection (classification) of the

SEs’ states.

Specifically, in the context of the FH/MFSK WSNs monitoring single M-ary SE, three non-

coherent fusion rules are considered for fusion detection,which include the benchmark equal gain

combining (EGC), and the proposed erasure-supported EGC (ES-EGC) as well as the optimum

posterior fusion rules. Our studies demonstrate that the ES-EGC fusion rule may significantly out-

perform the EGC fusion rule, in the cases when the LSNs’ detection is unreliable and when the

channel signal-to-noise ratio (SNR) is relative high. For the FH/MFSK WSNs monitoring multiple

SEs, six noncoherent fusion rules are investigated, which include the EGC, ES-EGC, EGC assisted

N-order IIC (EGC-NIIC), ES-EGC assistedN-order IIC (ES-EGC-NIIC), EGC assistedρ-order

IIC (EGC-ρIIC) and the ES-EGC assistedρ-order IIC (ES-EGC-ρIIC). The complexity, character-

istics as well as detection performance of these fusion rules are investigated. Our studies show that

the ES-EGC related fusion rules are highly efficient fusion rules, which have similar complexity as

the corresponding EGC related fusion rules, but usually achieve better detection performance than

the EGC related fusion rules. Although the ES-EGC is a single-user fusion rule, it is however capa-



ble of mitigating the multiple event interference (MEI) generated by multiple SEs. Furthermore, in

some of the considered fusion rules, the embedded parameters may be optimized for the FH/MFSK

WSNs to achieve the best detection performance.

As soft-sensing is often more reliable than hard-sensing, in this thesis, the FH/MFSK WSNs

with the LSNs using soft-sensing are investigated associated with the EGC and ES-EGC fusion

rules. Our studies reveal that the ES-EGC becomes highly efficient, when the sensing at LSNs

is not very reliable. Furthermore, as one of the applications, our FH/MFSK WSN is applied for

cognitive spectrum sensing of a primary radio (PR) system constituted by the interleaved frequency-

division multiple access (IFDMA) scheme, which supports multiple uplink users. Associated with

our cognitive spectrum sensing system, three types of energy detection based sensing schemes

are addressed, and four synchronization scenarios are considered to embrace the synchronization

between the received PR IFDMA signals and the sampling operations at cognitive spectrum sensing

nodes (CRSNs). The performance of the FH/MFSK WSN assisted spectrum sensing system with

EGC or ES-EGC fusion rule is investigated. Our studies show that the proposed spectrum sensing

system constitutes one highly reliable spectrum sensing scheme, which is capable of exploiting the

space diversity provided by CRSNs and the frequency diversity provided by the IFDMA systems.

Finally, the thesis summarises our discoveries and provides discussion on the possible future

research issues.
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Chapter 1
Introduction

1.1 Research Background

Wireless sensor networks (WSNs) have become increasingly important and relevant to research

communities as well as military and civilians [1]. Briefly, there are two main reasons behind driving

the researches and applications of WSNs. The first one is the advancement of technologies, which

enables WSNs to have low-cost sensors, reliable wireless communications and rapid single-chip

computation capability [2, 3]. The second one is the wide-range applications of WSNs, such as

surveillance, health-care, disaster recovery, home automation, etc., which may influence our daily

life comprehensively [2,4].

WSNs are the result of rapid convergence of various technologies: digital circuitry, wireless

communications, micro-electromechanical systems (MEMS), and ad hoc networks. Based on the

resemblance of the existing techniques, WSNs work with unique characteristics as follows. Typi-

cally, the tiny local sensor nodes (LSNs), which consist of sensing, data processing and communi-

cating components, leverage the idea of WSNs [5]. Usually, WSNs are composed of a large number

of LSNs that are densely deployed either inside the phenomenon or very close to it [6]. Owing to

their self-organizing capability of WSNs’ protocols and algorithms, the positions of LSNs need not

to be predetermined [7]. The low-cost LSNs are usually proneto failures. However, the WSNs

are robust to failures, when a big number of LSNs are densely deployed. The topology of WSN’s

framework may be changed without significant change on protocols and fusion rules. In the most

widespread parallel WSN model, LSNs do not communicate witheach other, but communicate us-
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ing broadcast paradigm. The tiny LSNs have the limits on size, power consumption, computation

capacity and memory [8, 9]. Furthermore, in large-scale WSNs, LSNs may not have their global

identification (ID) because of the large amount of overhead generated by the large number of LSNs.

To achieve optimal performance in a WSN system, many aspectsshould be carefully consid-

ered [10–16], which include the topology structure, mediumaccess control (MAC), sensing capac-

ity, energy efficiency, signal processing at LSNs, fusion rules, applications, etc. In the following

sections of this chapter, some of the above mentioned aspects will be discussed in detail. The

reminder of this chapter is organized as follows. In Section1.2, we introduce some basic topol-

ogy structures used in WSNs. In Section 1.3, some MAC protocols are reviewed. In Section 1.4,

we consider the energy-efficient communication in WSNs as well as the definition of lifetime of

WSNs, which is followed by a summary of some applications of WSNs in Section 1.5. Finally, the

organization of this thesis is given in Section 1.7.

1.2 Topology Structures of WSNs

The topology of WSNs defines the process of data collection and signal detection [1, 7, 17, 18].

Meanwhile, the topology structure of a WSN imposes significantly influence on the signal pro-

cessing, life-time and detection performance of the WSN. Before choosing a suitable topology of

a WSN, many constraints should be considered, including thecommunication among LSNs, the

link quality between LSNs and fusion center (FC), the robustness of signal processing algorithms,

etc. Typically, there are four different topology frame works, which include the parallel topology

with FC, parallel topology without FC, serial topology and tree topology [10]. Below we briefly

describe these four topologies, as well as their advantagesand disadvantages.

1.2.1 Parallel Topology with Fusion Center

Fig 1.1 shows the WSN structure with parallel topology with aFC [10], whereL LSNs are used

to simultaneously observe the source event(s) (SE(s)). Note that, we assume that the quantifications

are carried out at the LSNs, as the observed SEs are always analogue. In Fig 1.1,H0, H1, · · · , HM−1

denote theM hypotheses or possible states about the SE,D1, D2, · · · ,DL denote the local detec-

tion rules, whileD represents the fusion rule used by the FC.r1, r2, · · · , rL are the observations
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Fusion Center

.........Sensor 2 Sensor LSensor 1

Source Event (s)

(D)

(D1) (D2) (DL)

r1 r2 rL

D1 D2

D

DL

(H0, H1, . . . , HM−1)

Figure 1.1: Basic structure of parallel WSN with fusion center.

obtained by theL LSNs, based on which the detection outputsD1, D2, · · · , DL are obtained with

the aid ofD1, D2, · · · ,DL. Finally, D represents the detection of the FC. In this structure, the

identical LSNs do not communicate with each other and the FC does not feed back any information

to the LSNs. Based on their own observations, theL LSNs make their local detections indepen-

dently and then transmit their local decisions to the FC separately. Specifically, in the case of using

hard local detection, each local decision may take corresponding value, which is dependent on the

LSN’s decision about which state the observed SE is in. In thecase of using soft local decision, the

local observation space is partitioned into more nuanced regions so as to yield more accurate local

decisions. Finally, at the FC, the received signals from alltheL LSNs are combined based on vari-

ous fusion rules, in order to make a global decision. In this type of WSN, when one or several LSNs

make erroneous local decisions, or some links between LSNs and FC are failed, detection perfor-

mance of final decision may not degrade significantly, provided that there are a sufficient number

of LSNs left. Usually, the WSNs with FC is capable of achieving a better detection performance

than the WSNs without FC, but at the cost of higher complexityand delay.

1.2.2 Parallel Topology without Fusion Center

Fig 1.2 shows a parallel topology WSN without FC [10,19], which is similar as Fig 1.1 but without

a FC. In Fig 1.2, there areL individual LSNs monitoring single or multiple SEs independently. The
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r1 r2 rL

D1 D2 DL

(H0, H1, . . . , HM−1)

Figure 1.2: Basic structure of parallel WSN without FC.

local decisions are made by theL LSNs based on their separate local observations. The LSNs do

not communicate with each other. However, their operationsare coupled, due to the fact that the

cost of decision making is coupled and that a system-wide optimization is usually performed [19].

In this structure, the decisions by the LSNs are not corrected to make further decision. This kind

of topology enables WSNs to work with low-complexity and low-delay. However, this type WSNs

without FC are hard to satisfy the requirement of high detection performance.

1.2.3 Serial Topology

Sensor 1 Sensor 2 Sensor (L−1) Sensor L

Source Event (s)

Sensor (L−1)

(D1) (D2) (DL−1) (DL)

rLrL−1r2r1

(H0, H1, . . . , HM−1)

D1 DL−2D2 DL−1 DL

Figure 1.3: Basic structure of serial topology WSN.

In a WSN with serial topology [10, 19], as shown in Fig 1.3,L LSNs are used to observe

single or multiple SEs. As shown in Fig 1.3, one LSN makes its local estimation based on its own

observation and the information received from the previousLSN. In more detail, the first LSN does

not receive any information from the other LSNs and hence itslocal decision is made solely based

on its own observation. This local decision from the first LSNis then transmitted to the second

LSN, which uses it in conjunction with its direct observation to make its decision, which will be

sent to the next LSN. This process is repeated at each of the LSNs in the serial network. Finally,
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the Lth LSN makes the final decision based on the aggregated information received directly from

the(L − 1)th LSN and its own observation received from the SE.

Compared with the WSNs with parallel topology, as shown in Fig 1.1 and Fig 1.2, WSNs with

serial structure are prone to generate erroneous propagation, if the previous LSNs make erroneous

local decisions. For this structure, the computation delayaccumulates, because a LSN has to wait

for decisions of the previous LSNs. Furthermore, the delay may become unacceptable for some

LSNs in a large scale serial WSN system. Additionally, the serial topology WSN is sensitive to the

failures of one or several LSNs.

1.2.4 Tree Topology

Source Event (s)

Sensor 2

(D2)

r(L+1)/2 r(L+3)/2 r(L−1) rL

(D(L+1)/2) (D(L+3)/2)

Sensor (L-3)/2

Sensor 1

(D1)

(D(L−3)/2)

Sensor (L+3)/2 Sensor (L-1)

(D(L−1))
Sensor L

(DL)

D(L+1)/2 D(L+3)/2

D(L−3)/2 D(L−1)

D2 DL

D1

r(L−3)/2

r2

r1

Sensor (L+1)/2

(H0, H1, . . . , HM−1)

Figure 1.4: Basic structure of tree topology WSN.

Thus far, we have introduced the structures for the parallelWSNs and the serial WSNs. As

indicated earlier, the topology of WSNs can be organized in avariety of configurations. One typical

example is the tree topology [10]. In a WSN with tree topology, LSNs form a directed acyclic graph,

where the first LSN is the root of the tree and information fromall the other LSNs flows on a unique

path toward it [19]. As shown in Fig 1.4,L LSNs are applied to observe single or multiple SEs.

Among theseL LSNs, some of them monitor the SEs directly and transmit their local decisions to

some other LSNs. As shown in Fig 1.4, there are some LSNs, which do not directly observe the
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SEs but get information from the other LSNs, in order to make their decisions.

In comparison with the previous serial topology, in this tree topology, theith (1 ≤ i ≤ L−3
2 )

LSN makes its local decision based on its own observation andtwo other LSNs’ estimations. While,

for the other LSNs, local decisions are made just based on their own observations. On the other

hand, in comparison with the WSNs with parallel topology or serial topology, the WSNs with

tree topology rely more on the reliability of the whole WSN system. The links existing among

different LSNs make the WSN system more complex and generatemore delay. The local detection

performance of some of the LSNs are affected by by their own observations as well as the other

LSNs’ decisions.

1.3 Medium Access Control Protocols for WSNs

In some applications, WSNs consisting of a large number of miniaturized batter-powered LSNs are

required to operate for years without human intervention [12]. Hence, there has been a growing

interest on optimization of WSNs, so that the limited resource carried by a WSN is capable of

maintaining it in efficient operation for a long time. Typically, the optimization is involved with

novel signal processing algorithms, energy-efficient MAC protocols, self-organizing and reliable

data aggregation algorithms, etc. [13, 20]. In WSNs, the design of MAC protocols glues and in-

tegrates these optimization facets, by considering the constraints imposed by the limited energy

budget of LSNs together with the requirement of long lifetime [21]. To satisfy the unique require-

ments of WSNs, many MAC protocols have been designed or modified from the existing ones

for the other purposes. As some examples, the MAC protocols used by WSNs include the gate-

way MAC (G-MAC) [22], self-organizing MAC for sensor networks (SMACS) [23], traffic adap-

tive medium access (TRAMA) [24], flow-aware medium access (FLAMA) [25], energy efficient

MAC (EMAC) [26], position-enabled MAC (PMAC) [27], mobility adaptive MAC (MMAC) [28],

multi-frequency MAC for WSNs (MMSN) [29], ect. All these MACprotocols are modified based

on the existing canonical ones. In this section, two typicalmultiple-access schemes used by the

MAC protocols are discussed, which are the time-division multiple-access (TDMA) and carrier

sense multiple-access (CSMA).



1.3.1. Time Division Multiple Access 7

1.3.1 Time Division Multiple Access

TDMA belongs to the typical category of reservation-based protocols [26], which requires the

knowledge of network topology to establish a schedule, so that each of the nodes is capable of

accessing the channel and communicating with the other nodes, while avoids interference from

the other nodes. Under the TDMA principles [30], time is divided into frames and each frame

is further divided into time-slots. In WSNs, operated in TDMA, each LSN is assigned a unique

time-slot during which it has the priority to communicate. In the TDMA protocol, the transmission

does not suffer from collisions. The scheduling delay is usually acceptable.

TDMA scheme is very efficient, when the source requirements are predictable and each of

the nodes always has data to send. However, it is inefficient,when traffic is light. In this case,

some time-slots might be wasted as there is no data to transmit. Under TDMA, the throughput is

hard-limited. Hence, it cannot undertake bursty traffic beyond utilization of all the available time

slots. For this sake, it is essential for the TDMA-based schemes to have the knowledge of network

topology and time synchronization. However, the estimation of topology and implementation of

time synchronization require a big overhead or/and expensive hardware. For this reason, TDMA

scheme becomes less attractive in large scale WSNs.

1.3.2 Carrier Sense Multiple Access

In order to reduce the requirements of TDMA and make efficientuse of time-slots, the CSMA is

introduced, which does not need global synchronization andtopology knowledge of WSNs [20].

Under the principles of CSMA, each of the LSNs first senses thechannel before transmission. If

the channel is found to be busy, the LSN then postpones the transmission to avoid collision. By

contrast, when the LSN finds the channel is not being occupied, it then starts transmission.

The CSMA scheme has the following characteristics. First, the operation of CSMA does not

rely on the knowledge of topology structure and is robust to LSNs’ mobility. Therefore, CSMA

is a good candidate for WSNs with mobility. Second, the capability of avoiding collision reduces

interference by preventing transmission on occupied channels, yielding a better detection perfor-

mance. In comparison with the TDMA, the throughput of CSMA may decrease significantly, when

traffic load is heavy, in this case, a lot of resource needs be used for channel sensing. Additionally,
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in terms of energy-efficiency, CSMA may not perform as well asTDMA. This shortcoming makes

the CSMA not very useful for the WSNs that require high energy-efficiency.

1.4 Energy-Efficient Communication and Law of Lifetime

Some WSNs, such as distributed WSNs, with hundreds of LSNs promising a continuous and

maintenance-free observation of the environment [31] haveseveral unique characteristics, includ-

ing high LSN density, low data rate and stringent energy limit. Battery-powered WSNs may be

applied indoor or outdoor without maintenance for a couple of years. Therefore, during the re-

search of WSNs, a significant focus has been put on high energy-efficiency to extend the life-time

of WSNs.

Design an energy-efficient protocol for WSNs demands a throughout investigation of the in-

teractions among the sensor application, network protocol, MAC layer and RF communication,

etc. Some energy-efficient upper layer protocols and algorithms have been proposed, such as, the

energy-efficient MAC protocol [21], low duty cycle sleepingscheduling [32, 33], energy-aware

routing protocol [14], etc. Generally speaking, energy control and energy management are two

major techniques used in WSNs, even though they appear in various forms at different layers.

On the other hand, lifetime is a crucial factor of large-scale WSNs in many applications, where

it is impossible or infeasible to replace or maintain the LSNs once that are deployed [15]. In liter-

atures, various methods have been proposed to maximize the lifetime of WSNs [15, 17, 34, 35]. In

WSNs, the lifetime depends on many factors, including network architecture, specific application,

various parameters of protocol, etc. In [34], a simple law that reflects WSNs’ lifetime for any appli-

cations under any network configurations has been provided.This law of lifetime not only identifies

the two key physical layer parameters that affect WSNs’ lifetime, but also plays as a guidance for

maximization of WSNs’ lifetime. Below we consider the energy-efficient communication in WSNs

as well as the lifetime issues concerned by WSNs.

1.4.1 Energy-Efficient Communication

In a little more detail, the energy consumption of communication subsystem in WSNs can be di-

vided into two parts, the first part is related to the power forsignal transmission, while the second
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part is the energy consumed by receiver circuit [34]. Hence,minimizing the energy-consumption

of both parts is crucial, as receiver may consume as much energy as transceiver. In WSNs, many

LSNs may be located in the receiving ranges of some other LSNs. In this case, it is beneficial to

shut down the radio receivers of the idle LSNs. However, mostMAC protocols utilize unique ad-

dresses to route packets to some specific destinations, withthe expectation that these destinations

are actively listening to packets. Once some receivers are shut down, the routing among different

LSNs may become unstable.

In comparison of the energy-efficiency between multihop transmission and direct transmission

WSNs, the result is depended on the scale of the considered WSN. Explicitly, a LSN in a WSN

always seeks the nearest LSN as a candidate for its next hop oftransmission. However, this will

result in multihop transmission. In a multihop WSN, due to the propagation pathloss of wireless

signals, it becomes advantageous to increase the number of hops in terms of energy consumption.

In practice, there is a range of distances for which direct transmission maybe more energy-efficient

than multi-hop transmission. In a direct communication WSNwith fusion center (FC), each LSN

sends data directly to the FC. When the FC is far away from the LSNs, direct communication will

consume a large amount of transmission power. This will deplete the LSNs’ power quickly and

shorten the lifetime of WSNs significantly. In this case, multihop WSNs outperform direct com-

munication WSNs in term of energy-efficiency. On the other hand, when the transmission distance

between LSNs and FC is short and/or the radio electronics energy is high, direct transmission is

more energy-efficient than multihop transmission.

1.4.2 Law of WSNs Lifetime

The power constraint of LSNs imposes many fundamental limitations, such as, lifetime on the de-

sign of WSNs. The lifetime of a WSN is referred to as the time period that a WSN has the ability to

collect data from entire network domain and process the sensing information [34]. Given a WSN,

different deployment strategies for LSNs may result in different life time. The most effective ap-

proach for deployment for LSNs is placing the LSNs in a controllable manner, so that the maximal

lifetime is achievable. Unfortunately, this is not technically feasible in large-scale WSNs. Further-

more, in some applications, the locations of LSNs may not be physically reachable or fixed, due to

the limitations of different perspectives.
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In designations of WSNs, there are various factors need to beoptimized in order to extend

the lifetime of WSNs. These factors include network architecture and protocols, data collection

initiation, channel characteristics, energy consumptionmodel, etc [34–36]. In literatures, many

research has been done in order to estimate the lifetime of WSNs. For example, the upper bounds

of lifetime have been derived in [35–38] for various WSNs. Additionally, in [15], formulas for the

lifetime of WSNs have been derived based on 2D Gaussian distribution .

In [34], a general formula for the lifetime of WSNs is provided, which holds regardless of the

underlying network model. In [34], the lifetime of WSNs is defined as the time span from that

the WSN is built up until that the WSN is nonfunctional. Here,the nonfunctional instant may be

explained in different ways, such as, when a certain number of LSNs are out of power, the instant

when a desired area is impossible to monitor, the instant when LSNs cannot communicate with FC,

the instant when the detection performance is unacceptable, etc. According to [34], the average

lifetime of WSNs can be expressed as

E[L] = ε0 − E[Eω]

Pc + νE[Er ]
(1.1)

whereE[L] is the expected average lifetime of WSNs,ε0 is the total initial energy,E[Eω] is the

expected energy wasted,Pc is the constant of continuous power consumption,ν is the average LSN

reporting rate defined as the number of data collections per unit time andE[Er ] is the expected

reporting energy consumed by all the LSNs in a randomly chosen data collection. Eq (1.1) is

suitable for any WSNs under a general setting: arbitrary network architecture, arbitrary channel and

radio models and arbitrary definition of lifetime. According to (1.1), when the total initial energy

ε0 is given, reducing the value ofE[Er] or E[Eω ] will improve the lifetime of the WSN. These

two factors reflect the influence of channel condition and residual energy on the WSN’s lifetime.

Therefore, in order to maximize the lifetime of WSN through minimizing E[Er ] and E[Eω ], a

protocol should exploit effectively the channel state information (CSI) and the information about

the residual energy of all the LSNs.

1.5 Applications of WSNs

Recently, achievements in micro-sensors technology, energy-efficient electronics and wireless com-

munications make WSN become realities in applications [16,39]. Proposed applications of WSNs
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include environmental monitoring, natural disaster prediction and relief, homeland security, health-

care, manufacturing, transportation, home appliances andentertainment, etc. Each of the proposed

applications can be further divided into different categorise of emphasis or measurement. Some

previous work on WSN applications on environmental monitoring, health care, military and spec-

trum sensing in cognitive radio are detailed as follows.

1.5.1 Applications of WSNs in Environment Monitoring

With the significant development of human society, environmental issues have become highly im-

portant for manifestation of civilization and life quality. Environment monitoring represents the

way of human understanding, foreseeing and utilizing the nature [40, 41]. During a long history,

it is restrictive for human being to monitor inaccessible environments such as, ocean, desert and

mountain, etc, based on traditional methods. Distributed WSNs are capable of monitoring a large-

scale range by deploying small-size LSNs, while without human maintaining. Therefore, the emer-

gence of WSNs builds a bridge between human being and physical world, which is able to extend

humans being’s capability to cooperate with nature.

In [40], a distributed WSN is proposed, which uses mote hardware to gather data for seven

environmental parameters, including barometric pressure, ambient humidity, wind direction, wind

speed, underground water level and rainfall. In this proposed WSN, the sensed data is transmitted

through multihop transmission to the FC for further decision.

Realizing that there are deficiencies for both fixed and mobile WSNs, researchers are looking

for a more formal method of integrating these two kinds of systems to achieve greater spatiotempo-

ral measurement coverage. In [42], one reasonable method isintroduced by combining the WSNs

and robotic systems together, in which the signals are shared among LSNs and robot. This kind of

robotic WSNs have certain capability of improving data quality, measurement certainty, accurate

real-time modelling and mapping of large environmental processes.

A framework of WSN has been built in [43] for aquatic environmental monitoring, where many

factors are carefully treated during the design of the marine monitoring WSNs, such as, sensing

activity, wireless transmission form LSNs to FC, signal processing and battery power, etc. In [43],

a power-aware and adaptive TDMA protocol guarantees robusttransmissions and adaptability to
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topology changes. To optimize energy storage and prolong batteries lifetime, each unit of this WSN

is endowed with adaptive solar-energy-harvesting mechanisms and tandem batteries.

1.5.2 Applications of WSNs in Healthcare

It is well known that the aged population in the world is increasing and a considerable percentage

of them are suffering from chronic illness [44]. Novel advanced technologies, such as wearable

devices and WSNs can help patients and caregivers by providing continuous medical supervision,

demotic healthcare control, rapid access to medical data, emergency communication , etc., both

at home and at hospital [45–48]. During the past decades, there has been an increasing demand

for intelligent devices, which are capable of detecting thevital factors without interfering the daily

routine of those who use them [49]. Owing to above-mentionedinformation, WSNs may find a lot

of applications in healthcare by providing monitoring and service to the dependent patients.

Generally, there are mainly three parts of health care WSNs,which include the body sensor

network, wireless communication and healthcare devices [50]. In terms of body sensor network,

smart wearable devices with sensors have been designed for providing healthcare to the dependent

patients [51], such as blood pressure, body temperature, humidity, etc. Furthermore, with the help

of smart wearable devices, it is possible to automatically execute healthcare manage and improve

the assistance to patients in geriatric facilities. A bridge between body sensor network and the

public communication network may be built, through which the collected data is transmitted to the

central server. At the central server, diagnosis and healthcare suggestion are made based on the

received sensed data [52–54].

Through the realization of WSN healthcare applications, there are still many tasks that should

be carefully treated. First, the sensed data from human being is always analogy and complex

biological signal, which is difficult to be quantified [52]. Second, transmission and handing with a

large scale of data from body sensors consume remarkable communication resource, which brings

a burden to the quick and reliable healthcare response [50].
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1.5.3 Applications of WSNs in Military

WSNs were originally developed mainly for military surveillance with the features of robustness,

self-organizing and fault-tolerance [55]. Typically, radar, sonar, infra-red, etc, may be used for a

military WSN to collect the battlefield information and sendit to the FC in order to make a more

reliable decision [10].

WSNs are widely applied for different military purposes, which are detailed as follows [56–

63]. First, WSNs can be employed to prevent the base and headquarters from being attacked [56].

Second, instantaneous information in the battlefield can beused for planning future operations and

missions [64]. Third, thousands of low-complexity and low-cost LSNs can be scattered in enemy

forces areas indetectablely for sensing and collecting useful information.

During the design of military WSNs, there are many challenges to satisfy the serious require-

ments of robustness, self-organizing and reliability. First, as a large amount of sensor nodes in

remote area cannot be deployed predictably, they must identify their neighbours quickly and build

the network automatically. Second, military WSNs are designed of having certain capability of

resisting both human and nature influence. Third, since, in most scenarios, the distributed sensor

nodes cannot be recharged or maintained, the energy efficiency of sensor nodes should be carefully

treated.

1.5.4 Applications of WSNs in Spectrum Sensing

Supporting cognitive radio (CR) users through a collateralWSN to spectrum sensing has recently

been proposed as a popular approach to overcome spectrum sensing limitations of wireless commu-

nication system [65–69]. Explicitly, there are mainly two reasons for using spectrum sensing [70].

First, radio spectrum is an extremely scarce resource. Overthe past years, traditional approaches

to spectrum management have been challenged by new insightsinto the actual use of spectrum.

In most countries, all frequencies have been completely allocated to specific operators and users.

For examples, the National Telecommunication and Information Administration (NTIA) frequency

allocation chart indicates multiple allocations over essentially all of the frequency bands. Thus,

within the current regulatory framework, spectrum appearsto be a scarce resource. Second, ac-

tual measurements indicate low spectrum utilization, which can be found in Spectrum Policy Tast
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Force report from Federal Communications Commission (FCC). Conventional radios are regulated

by fixed spectrum allocation policies, which are operated incertain time frames, over certain fre-

quency bands and within certain geographical regions. These static spectrum assignment policies

have resulted in low-efficiency in usage of the precious spectrum resources. For example, the mea-

surement shows that the average spectrum occupancy from 30 MHz to 3 GHz over six cities is 5.2%

and that the maximum total spectrum occupancy is 13.1% in NewYork City.

Cognitive radio (CR) is introduced to overcome above the mentioned problems, which is a

typical spectrum sensing assisted cooperative radio. In CRterminology, primary radio (PR) users

have higher priority or legacy rights on the usage of spectrum, while, CR users have lower priority.

Hence, it is critically important for CR users to sense the frequency bands assigned to PR users

but not used at a particular time and geographic location [65]. However, it is hard for CR users

to scan a wide range of frequency bands, due to the scarce resource (energy, hardware limitation,

etc.). Furthermore, depending on the PR and CR network location and topologies, the CR users

may not sense the spectrum with sufficient accuracy. In this case, WSNs are employed for spectrum

sensing in CR systems, which are capable of achieving satisfactory results in terms of efficient use

of available spectrum and reducing interference with PR users.

In [67, 68, 71, 72], a WSN is employed to assist the CR network by providing information on

the current spectrum occupancy in spatial or time domain. Specifically, in [68], a WSN system is

deployed to provide distributed spectrum sensing for cognitive operation, in which the spectrum

sensing performance of WSN is evaluated as a function of the network density. Then, the WSN

architecture is considered in [73], which is a key issue for spectrum sensing jointly in space and

time. Furthermore, [65] proposes a protocol for a WSN supporting CR devices, in which the

fundamental trade-off between statistics of the PR traffic,the interference range and transmit power

of CR user is studied. It also extends the spectrum sensing problem from the spatial dimension to

fast dynamics of primary traffic.

1.6 Novel Contribution

The main contribution of this thesis are as follows:

• A novel triple-layer wireless sensor network (WSN) assisted by M-ary frequency-shift key-
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ing (MFSK) modulation and frequency-hopping (FH), referred to as the FH/MFSK WSN is

proposed. The FH/MFSK WSN is benefit from the embedded advantages of noncoherent

MFSK and FH techniques. First, low-complexity noncoherentdetection can be employed,

which does not depend on energy-greedy channel estimation and, hence is beneficial to the

life-time of energy limited WSNs. Second, FH/MFSK techniques are capable of enhanc-

ing the detection performance of the WSN by reducing the correlation among the signals

transmitted by different local sensor nodes (LSNs).

• We conceive a novel erasure-supported equal gain combining(ES-EGC) fusion rule, which

is first employed by the FH/MFSK WSN monitoring single sourceevent (SE). In comparison

with the conventional equal gain combining (EGC) fusion rule, our proposed novel ES-EGC

fusion rule may significantly improve the detection (classification) performance of FH/MFSK

WSNs, at low-cost of computation increasement. Furthermore, a closed-form union-bound

for the average error classification probability (ECP) of the FH/MFSK WSNs using ES-EGC

is derived.

• We further extend our research to a FH/MFSK WSN monitoring multiple SEs. As in this

case, there is multiple event interference (MEI), iterative interference cancellation (IIC) is

introduced to suppress the MEI. Six low-complexity noncoherent fusion rules are studied

and compared. In detail, these fusion rules include the benchmark EGC and the proposed

ES-EGC, EGC assistedN-order iterative interference cancellation (EGC-NIIC), ES-EGC

assistedN-order IIC (ES-EGC-NIIC), EGC assistedρ-fraction IIC (EGC-ρIIC) as well as

the ES-EGC assistedρ-fraction IIC (ES-EGC-ρIIC). The complexity of these fusion rules is

analyzed. Our studies show that the ES-EGC related fusion rules in general outperform the

corresponding EGC related fusion rules. The ES-EGC is a high-efficiency single-user fusion

rule, which, for some cases, may achieve even better detection performance than some of the

noncoherent multiuser fusion rules, such as, the EGC-NIIC fusion rule.

• In order to improve the detection performance of the FH/MFSKWSNs monitoring single SE,

we incorporate soft-sensing into LSNs, where soft information is used to scale the transmis-

sion power of the MFSK tones sent to the FC. In comparison withhard local decisions, our

studies show that using soft-sensing is capable of enhancing the detection performance of the
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FH/MFSK WSN. Furthermore, the ES-EGC fusion rule is robust to the errors made by LSNs,

which may significantly outperform the EGC fusion rule, especially, when the soft-sensing

at LSNs is not very reliable.

• Finally, as one of the applications, a FH/MFSK WSN assisted cognitive spectrum sensing

system is proposed specifically for spectrum sensing of an interleaved frequency-division

multiple access (IFDMA) primary radio (PR) system supporing multiple users. Associated

with our studies, three types of energy-based detections and four synchronization scenarios

are considered during the local detections at cognitive radio sensing nodes (CRSNs). Our

studies demonstrate that reliable local sensing is achievable at the CRSNs even at very low

SNR. We furthermore demonstrate that the ES-EGC fusion ruleis a high-efficiency fusion

rule, which is capable of attaining much better overall detection performance than the EGC

fusion rule.

1.7 Thesis Organization

In this thesis, parallel triple-layer wireless sensor networks (WSNs) assisted byM-ary frequency-

shift keying (MFSK) modulation and frequency-hopping (FH), referred to as the FH/MFSK WSN,

are investigated for different applications. The report isstructured as follows.

In Chapter 2, we first provide a literature overview of the classical binary testing at LSNs.

Then, both the channel-aware fusion rules and noncoherentM-ary fusion rules are discussed. Then,

existing approaches for local spectrum sensing are reviewed. All the fusion rules and local spectrum

sensing approaches are analyzed in the context of their advantages and disadvantages, as well as

the requirements and application limits.

In Chapter 3, we investigate the detection performance of FH/MFSK WSNs monitoring single

source event (SE) with hard local decisions, when assuming communications over additive white

Gaussian noise (AWGN) channels or Rayleigh fading channels. The principle of our proposed

FH/MFSK WSN is first introduced, which includes the signal classification at local sensor nodes

(LSNs), signal transmission schemes for LSNs and signal classification at fusion center (FC). In

this chapter, three different noncoherent fusion rules areconsidered and their performance is com-

pared. Furthermore, the error classification probability (ECP) of some fusion rules is analyzed and
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compared. Finally, some simulation results are provided toillustrate the ECP performance of the

proposed FH/MFSK WSN with various fusion rules.

In Chapter 4, a parallel triple-layer FH/MFSK WSN with hard local decisions is proposed to

monitor multiple SEs of each having multiple states. In thisFH/MFSK WSN, multiple SEs are

observed by a number of LSNs, each of which simultaneously observes all the SEs. The LSNs

convey their decisions about the SEs’ states to the fusion center (FC) with the aid of the FH/MFSK

techniques. At the FC, the SEs’ states are detected based on noncoherent fusion rules. In this

chapter, six low-complexity noncoherent fusion rules are studied. They include the conventional

benchmark of equal gain combining (EGC) and five proposed noncoherent fusion rules, namely the

erasure-supported EGC (ES-EGC), EGC assistedN-order iterative interference cancellation (EGC-

NIIC), ES-EGC assistedN-order IIC (ES-EGC-NIIC), EGC assistedρ-fraction IIC (EGC-ρIIC) as

well as the ES-EGC assistedρ-fraction IIC (ES-EGC-ρIIC). The complexity of these fusion rules is

analyzed and the performance of the FH/MFSK WSN employing, respectively, these fusion rules is

investigated and compared, when assuming that the wirelesschannels from LSNs to FC experience

independent Rayleigh fading. Furthermore, the impact of the parameters embedded in the various

fusion rules on the design and performance of the FH/MFSK WSNis analyzed.

In Chapter 5, a soft-sensing and signal transmission schemeis proposed for improving the

reliability of FH/MFSK WSNs. Associated with the scheme, two low-complexity noncoherent

fusion rules are investigated, which are the conventional EGC fusion rule and the proposed ES-

EGC fusion rule. The ECP performance of FH/MFSK WSNs employing respectively the EGC and

ES-EGC fusion rules is investigated, when assuming that channels from LSNs to FC experience

independent Rayleigh fading. Our studies and performance results show that using soft-sensing is

able to enhance the ECP performance of FH/MFSK WSNs. Furthermore, ES-EGC fusion rule is

robust to the errors made by LSNs and is capable of achieving an enhanced performance over EGC

fusion rule, especially, when the sensing of LSNs is not veryreliable.

In Chapter 6, as one of the applications WSNs, a FH/MFSK assisted cognitive spectrum sensing

system has been proposed for spectrum sensing, specifically, a IFDMA PR system supporting mul-

tiple users. Three types of energy-based detection, as wellas four synchronization scenarios have

been considered during the local detections at cognitive radio sensing nodes (CRSNs). After each

of the CRSNs obtains the on/off states of the PR users, it sends the detected states to the FC with
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the aid of FH/MFSK. Finally, at the FC, noncoherent detection is carried out, which is based on

either the EGC or ES-EGC fusion rule. The performance of the FH/MFSK WSN assisted spectrum

sensing system has been investigated by simulations, when assuming communications over multi-

ple Rayleigh fading channels. Our studies and performance results show that reliable local sensing

is achievable at the CRSNs even at very low SNR. Furthermore,the ES-EGC fusion rule is a highly

efficient fusion rule, which is capable of attaining much better overall detection performance than

the EGC fusion rule, especially, when the channel SNR is relative high.

Finally, conclusions are summarized and future work are given at the end of this report.



Chapter 2
Overview of Local Detection and Fusion

Rules

In the area of WSNs, a lot of researches have been done in orderto attain reliable signal detection

at LSNs and FC, while requiring lowest computation complexity and minimum communication

traffic between LSNs and FC [4, 6, 10, 74–83]. Numerous fusionrules for the classical distributed

detection problems have been obtained during the past decades. Specifically, the optimum fusion

rule has been considered in [84] under conditional assumption of independence. Assuming limited

resource, the detection performance of distributed WSNs has been investigated, with the objective

to optimize the LSNs’ allocations or the number of LSNs [85–89]. None of these works, however,

tackle the impact of the loss of transmission from LSNs to FC on the detection performance of

WSNs.

Many studies have attempted to overcome this impractical assumption [90–95]. Considering

nonideal communication channels, WSNs have been optimizedthrough the optimization at FC

level or/and LSN level. Specifically, in [96], optimal thresholds are established both at the FC and

the LSNs with assumption that signals transmitted through asimple binary symmetric channel. In

this presented approach, acceptable detection performance is achievable, however, at the cost of

high computation complexity and serious delay, as well as the requirements of channel estimation.

Considering restricted energy consumption and limited transmission range of LSNs [5, 31], multi-

hop technique has been widely applied for large-scale WSNs for prolong monitoring range, as well

as the lifetime. Consequently, corresponding decision fusion rules in multihop WSNs have been
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studied in [79].

The main motivation behind the development of opportunistic spectrum access technologies,

such as CR, is to increase the spectral efficiency of wirelesscommunication system, in order to

achieve high data communication. Spectrum sensing is believed one of the most important com-

ponents to support CR systems. The main task of spectrum sensing is to determine if a frequency

band of interest is occupied by PR users during a time slot within a certain geographical area [97].

In this chapter, we first briefly summarize the principles of classical binary hypothesis testing

at LSNs, following by the discussion of some existing binaryfusion rules for triple-layers WSNs.

Then, we focus on theM-ary noncoherent fusion rules. Finally, some basic local spectrum sensing

approaches for cognitive WSNs are addressed.

2.1 Classical Binary Local Detection

In the context of classical binary local detection at LSNs, we assume that the observed SE has two

states, corresponding to two hypothesisesH0 and H1. The local detection is made based on the

observationy at each of individual LSNs. As shown in Fig 2.1, the total region of observationZ

is divided into two parts,Z0 andZ1. Whenever an observationy falls into Z0, the LSN makes a

decision asD0, otherwise, it choosesD1. It might be expected that, based on the same received

observationy, different decision criteria perhaps yielding different results. Hence, various classic

local detection approaches for different purposes are detailed as follows.

Observed SE
Observation at LSNsZ0

Z1

D0 D1

Figure 2.1: Illustration of decision region and decision making.
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2.1.1 Bayesian Detection

Under the Bayesian criterion, the decision is made to achieve the average costR as small as possi-

ble [98–101], which is related to the value of thea-priori probability and the cost of each decision.

Explicitly, for the binary case, the two hypotheses relatedto the SE can be expressed asH0 andH1.

The probabilities of occurrence of hypothesisH0 andH1 are expressed asP0 andP1, respectively,

which satisfyP0 + P1 = 1. Let Cij, i, j = 0, 1, be the cost associated with the decisionDi, when

given that the true hypothesis isHj. Then,P(Di, Hj) denotes the joint probability of decidingDi

while Hj is true.

The average cost can then be expressed as

R =
1

∑
i=0

1

∑
j=0

CijP(Di, Hj)

=
1

∑
i=0

1

∑
j=0

CijP(Di|Hj)Pj, i = 0, 1; j = 0, 1 (2.1)

where, according to [99],P(D0|H1) denotes the miss probability, which is expressed asPM,

P(D1|H0) is the false-alarm probability expressed asPF, while P(D1|H1) represents the detec-

tion probability, which is expressed asPD. Furthermore, we have

PM = 1 − PD (2.2)

and

P(D0|H0) = 1 − PF (2.3)

Upon applying the above-defined probabilities into (2.1), the average cost of the detection can be

expressed as

R = C00(1 − PF)P0 + C01(1 − PD)P1 + C10PFP0 + C11PDP1 (2.4)

where for a given observationy, (2.4) can be rewritten as [99]

R = C10P0 + C11P1 +
∫

Z0

[P1(C01 − C11) f (y|H1)]− [P0(C10 − C00) f (y|H0)]dy (2.5)

whereZ0 is the region for making the decision in favour of the hypothesis H0, as shown in Fig 2.1.

In (2.5), it is easy to find that both the first and second items are always positive and constant,

regardless of which decision is made. Furthermore, in Bayesian based detection, it is reason-

able [102] to assume that the cost of making a wrong decision is greater than that of making a
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correct decision, implying that

C01 > C11, C10 > C00 (2.6)

Under these assumptions, in (2.5), bothP1(C01 − C11) f (y|H1) and P0(C10 − C00) f (y|H0) are

positive. Therefore, in order to minimize the cost, what we need to do is to make the result of the

integral in (2.5) as small as possible. Hence, if

P1(C01 − C11) f (y|H1) > P0(C10 − C00) f (y|H0) (2.7)

the detector should chooseH1, otherwise, the detector should chooseH0.

Alternatively, the Bayes criterion may be represented as

f (y|H1)

f (y|H0)

H0

≶
H1

P0(C10 − C00)

P1(C01 − C11)
(2.8)

The left part of (2.8) is called the likelihood ratio and defined as

Λ(y) =
f (y|H1)

f (y|H0)
(2.9)

BecauseΛ(y) is the ratio of two PDF functions, it is a one dimensional variable regardless of the

dimensionality of observed signaly. The right part of (2.8) is the threshold, which is denoted asλ

λ =
P0(C10 − C00)

P1(C01 − C11)
(2.10)

Then, the Bayes detection can be viewed as a likelihood ratiotest (LRT) as

Λ(y)
H0

≶
H1

λ (2.11)

It is clear from (2.11) that the computation ofΛ(y) is not affected by either thea-priori probabilities

or cost functions. This invariance of the data processing isof considerable practical importance,

as thea-priori probabilities and cost functions are merely to get. The Bayes detection enables us

to build an entire processor and leaveλ as a variable threshold to accommodate changes in our

estimates of thea-priori probabilities and cost functions.

The Bayesian detection has widely been studied in the context of WSNs. Specifically, it has

been applied to the distributed detection problem in WSNs [10, 74, 98, 99]. In [10], the fusion de-

tection in parallel WSNs with FC has been studied by minimizing the Bayesian risk involving basic

concepts and properties of Bayesian detection. A person-by-person optimization (PBPO) approach
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has been proposed for distributed Bayesian signal detection [74]. With the PBPO approach, the

distributed WSN is treated as two separate parts; the first one is the FC and the second one consists

of the LSNs invoked. At first, under fixed local decision rules, the fusion rule is optimized in order

to minimize the average cost. Then, under a given fusion rule, the individual local decision rules

of LSNs are optimized. The decision rules used by LSNs are optimized one LSN at a time, while

keeping the transmission maps of the other LSNs fixed. The optimization is carried out iteratively

until convergence is achieved [74,103].

2.1.2 Maximum A-Posteriori and Maximum Likelihood Detection

In Bayesian detection, the average cost is minimized with the aid of thea-priori probabilities, as

well as the risk values [99, 101, 104]. However, in practice,the risk values or cost functions are

quite difficult to get, even through they may exist. In this case, maximuma-posteriori (MAP)

detection [104] may be employed, which needs only thea-priori probabilities regardless of the

risk values. The basic principles behind MAP decision are that the LSN chooses the most possible

assumption based on its observation or received signal. Under binary Bayesian testing as shown

in (2.7), if we make an assumption that

C10 − C00 = C01 − C11 (2.12)

Then, the Bayesian detection is reduced to the MAP detection[99–101]. In more detail, after

applying (2.12) into (2.7), we can see that the LSN choosesH1, if

P1 f (y|H1) > P0 f (y|H0) (2.13)

or it choosesH0, if

P1 f (y|H1) < P0 f (y|H0) (2.14)

Furthermore, when applying the relationship ofP0 = 1 − P1, the LRT of MAP detection can be

expressed as

Λ(y)
H0

≶
H1

λ (2.15)

whereΛ(y) = f (y|H1)
f (y|H0)

is the likelihood ratio (LR) andλ is the threshold which equals toP0/(1 − P0).
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In (2.15), whenP0 = P1 = 0.5 or when the LSN is unable to obtain the knowledge ofP0 andP1

and has to assume thatP0 = P1 = 0.5, then the MAP detection is further reduced to the maximum

likelihood (ML) detection. Based on (2.15) and using the assumption ofP0 = P1, we can see that

the ML detection choosesH1, if

f (y|H1) > f (y|H0) (2.16)

Otherwise, it choosesH0, if f (y|H1) < f (y|H0).

In general, the MAP detection is known to minimize the probability of error without considering

the costs of various decisions. It works with requirement ofthe a-priori probabilities aboutH0

and H1, which, however, it is sometimes impractical and restrictsthe applications of the MAP

detection [99]. Below we consider the Neyman-Pearson detection, which is not dependent on these

a-priori probabilities.

2.1.3 Neyman-Pearson Detection

From the previous two subsections, it can be seen that the Bayesian detection requires both the

a-priori probabilities ofH1 andH0 and the cost functions for all the possible decisions. By con-

trast, the MAP detection does not require the cost functions, but needs the knowledge about the

a-priori probabilities of each hypothesis. In some physical situations, such as, in radar applica-

tions, it is sometimes difficult to assign realistic costs and thea-priori probabilities [99, 101]. In

these cases, Neyman-Pearson (NP) detection might be the best choice, which needs neither the cost

functions nor thea-priori probabilities [105]. In these applications, we would make the false-alarm

probability PF as small as possible, while make the detection probabilityPD as large as possible.

However, for most practical applications, these two probabilities (PF and PD) are conflicting ob-

jectives. Specifically, NP detection usually minimizesPF for a given value ofPD or maximizesPD

for a given value ofPF [103,106]. Therefore, it is suitable for the cases where thecosts or/and the

thea-priori probabilities are hard to find.

Based on the NP detection [99,101,106], the probability of detection expressed byPD is max-

imized, when the probability of false-alarmPF is fixed. The LRT of assisted NP detection can be

expressed as

Λ(y) =
f (y|H1)

f (y|H0)

H0

≶
H1

λ (2.17)
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where,λ is a preset threshold for NP detection, motivating the maximum PD subject to the con-

straint thatPF is less than some predetermined constant.

A specific statement of NP detection is detailed as follows. Given a false-alarm probability

PF, NP detection may be designed to maximizePD or minimizePM under this constraint. Let us

construct a functionF, which can be expressed as

F = PM + λPF

=
∫

Z0

f (y|H1)dy + λ

∫

Z1

f (y|H0)dy (2.18)

Clearly, minimizingF is equivalent to minimizePM. FunctionF can also be rewritten as

F = λ +
∫

Z0

[ f (y|H1)− λ f (y|H0)]dy (2.19)

The only variable quantity of (2.19) is the regionZ0. Hence, the minimizing is achievable by

including in the regionZ0 only the portion of the domain for which the integrand is negative. In

this way, functionF is minimized for a given value ofPF, which also gives the minimum ofPM

In [107–109], the fusion detection based on the NP principles has been considered for WSNs,

where local decisions are transmitted via wireless channels to the FC. In these NP-based schemes,

constraints on the probability of false-alarm are imposed,while the miss probability of the overall

system is minimized. Furthermore, the cases of using dependent observations have been addressed

in [110], and the problem of energy-efficient routing along with the NP detection has been studied.

Note that, the NP detection represents a special case of the Bayesian detection [99], which has

been considered in Subsection 2.1.1, without considering the risks and assuming equala-priori

probabilities. In practice, the NP detection has found moreapplications than the Bayesian and

MAP detections. However, the NP detection neglects the risks and thea-priori probabilities, which

results in that the cost of the decision might be high for someapplications.

2.2 Optimum and Sub-Optimum Channel-Aware Fusion Rules

A classical triple-layer WSN is made up of sensor layer, wireless channel layer and fusion cen-

ter (FC) layer [75, 76]. Each LSN prepossesses and extracts information from its observation and,

then, transmits the local decisions to the FC through wireless channels.
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In this subsection, we overview a rang of channel-aware fusion rules, which make decisions by

considering the state of the channels from LSNs to FC.

Fusion Center

.........Sensor 2 Sensor LSensor 1

Source Event

h2 ×h1 ×

n1

r1

+ n2

(D)

r2 rL

×hL

nL ++

(s1) (s2) (sL)

(H0, H1)

xLx2x1

yLy1 y2

Figure 2.2: Triple-layer system model for the WSNs observing binary source events, in

the presence of channel fading and noise.

For convenience of our description, we build a parallel WSN structured by three layers as shown

in Fig 2.2. In this proposed WSN system, an binary SE(H0 and H1) is observed byL individual

LSNs. Each LSN processes its observation and makes a local decision about the hypothesis of the

SE. Explicitly, thelth local decision can be expressed as

yl = −1, if hypothesis H0 is chosen

yl = +1, if hypothesis H1 is chosen (2.20)

Correspondingly, the false and detection probabilities ofthe lth LSN can respectively be written as

Pf l = P(yl = +1|H0)

Pdl = P(yl = +1|H1) (2.21)

Then, local decisions are transmitted from each ofL LSNs to the FC viaL independent fading
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channels. The received signal at the FC from thelth LSN can be expressed as

rl = ylhl + nl, l = 1, 2, . . . , L (2.22)

whereyl is the transmitted local decision of thelth LSN, hl is the fading channel gain andnl is

a zero-mean Gaussian random variable with varianceσ2. Note that, when channel state informa-

tion (CSI) is available at the FC, the channel gainhl in (2.22) is always real and positive, after

assuming perfect phase compensation.

Furthermore, for a givenyl, the received signalrl as shown in (2.22) obeys the independent

Gaussian distribution expressed as

f (rl |yl) =
1√
2πσ

exp

[
− (rl − ylhl)

2

2σ2

]
(2.23)

Final decision is made by the FC based on the received signal from all theL LSNs. Therefore,

in this type of WSNs, errors may come from two aspects, the first one is the disturbance and noise

presenting the LSNs’ observations and the second one is fromthe transmission channels between

LSNs and FC, which introduce noise, fading and/or interference. Note that, in the following, we

derive the channel-aware fusion rules by incorporating thechannel fading between LSNs and the

FC, when given fixed local detection performance.

2.2.1 Optimum Likelihood-Ratio Fusion Rule

The optimum likelihood-ratio fusion rule has been studied in [74, 76, 79, 82, 84] for WSNs. Let us

assume that, in a WSN system, both the instantaneous channelstate information (CSI) regarding

the channels from LSNs to FC and the LSNs’ detection performance, which is explained by the

detection and false alarm probabilities of the LSNs, are available to the FC. The received signal

rrr = [r1, r2, ..., rL]
T at the FC is a vector containing the observations fromL LSNs. Then, when

given the independence assumption of local observations, the likelihood-ratio (LR) evaluated at the

FC, can be expressed as [74]

Λ(rrr) =
f (rrr|H1)

f (rrr|H0)

=
L

∏
l=1

f (rl |H1)

f (rl |H0)

=
L

∏
l=1

f (rl , yl = +1|H1) + f (rl , yl = −1|H1)

f (rl , yl = +1|H0) + f (rl , yl = −1|H0)
(2.24)
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Upon submitting (2.21) and (2.23) into (2.24), the optimum LR testing can be rewritten as

Λ(rrr) =
L

∏
l=1

Pdl f (rl |yl = +1) + (1 − Pdl
) f (rl |yl = −1)

Pf l f (rl |yl = +1) + (1 − Pfl
) f (rl |yl = −1)

=
L

∏
l=1




Pdl
e
− (rl−hl )

2

2σ2 + (1 − Pdl
)e−

(rl+hl )
2

2σ2

Pfl
e
− (rl−hl )

2

2σ2 + (1 − Pfl
)e−

(rl+hl )
2

2σ2


 (2.25)

wherePdl
andPfl

are, respectively, the detection probability and false alarm probability of thelth

LSN. If we prefer the logarithmic form, the log-likelihood ration (LLR) testing is [74]

LΛ(rrr) = log Λ(rrr)

=
L

∑
l=1

log




Pdl
e
− (rl−hl)

2

2σ2 + (1 − Pdl
)e−

(rl+hl )
2

2σ2

Pfl
e
− (rl−hl)

2

2σ2 + (1 − Pfl
)e−

(rl+hl )
2

2σ2


 (2.26)

According to [76], the optimum LR-based fusion rule is capable of achieving the best detection

performance. On the other hand, as shown in (2.25) or (2.26),optimum LR-based fusion rule

requires both the LSN’s performance and complete instantaneous CSI, as well as the noise variance.

The optimum LSN’s detection is channel-dependent, requires to be adjusted, whenever the channels

from LSNs to FC change. Furthermore, the computation complexity of the optimum LR fusion

rule is extremely high for WSNs. Due to the stringent constraints of WSNs, the application of the

optimum LR-based fusion rule is restricted only to the WSNs that high detection performance is

essential.

2.2.2 Sub-Optimum Fusion Rule: Chair-Varshney Fusion Rule

The optimum LR-based fusion rule is capable of achieving theoptimal detection performance.

However, it demands an extremely high complexity and requires thea-priori information, including

the instantaneous CSI of all the LSNs to FC channels, as well as the detection and false-alarm

probabilities of all the LSNs. In order to relieve from theserequirements, Chair-Varshney (CV)

fusion rule has been developed [74, 76, 79], which is derivedbased on the approximation of the

optimum LR-based fusion rule within high channel SNR region.

It can be shown that (2.26) can be rewritten as

LΛ(rrr) =
L

∑
l=1

log


Pdl

+ (1 − Pdl
)e−

2rlhl
σ2

Pfl
+ (1 − Pfl

)e−
2rlhl

σ2


 (2.27)
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Furthermore, (2.27) can be decomposed into

LΛ(rrr) =
L

∑
l=1, rl>0

log


Pdl

+ (1 − Pdl
)e−

2rlhl
σ2

Pfl
+ (1 − Pfl

)e−
2rlhl

σ2




+
L

∑
l=1, rl<0

log


Pdl

+ (1 − Pdl
)e−

2rlhl
σ2

Pfl
+ (1 − Pfl

)e−
2rlhl

σ2


 (2.28)

When assuming that the channel SNR is infinite yieldingσ2 → 0, the LLR related to the CV

fusion rule can be expressed based on (2.28) as

LΛ(rrr) =
L

∑
l=1, rl>0

log

(
Pdl

Pfl

)
+

L

∑
l=1, rl<0

log

(
1 − Pdl

1 − Pfl

)

=
L

∑
l=1, sign(rl=+1)

log

(
Pdl

Pfl

)
+

L

∑
l=1, sign(rl=−1)

log

(
1 − Pdl

1 − Pfl

)
(2.29)

wherePdl
andPfl

have the same meaning as the previous explanations.

According to (2.29), CV fusion rule is separated into a two stage process. First, an estimation

of observed SE is made in the context of each individual LSN:

ŷl = sign(rl), l = 1, 2, . . . , L (2.30)

Then, the decision statistic of CV fusion rule can be derivedas

LΛ(rrr) =
L

∑
l=1, ŷl=1

log

(
Pdl

Pfl

)
+

L

∑
l=1, ŷl=−1

log

(
1 − Pdl

1 − Pfl

)
(2.31)

The LLR expression (2.28) of the CV fusion rule can be viewed as an approximation of the

optimum LR-based fusion rule shown in (2.26) within high channel SNR region. It does not require

any knowledge regarding the channel statistics but does require the detection probability and false

alarm probability of each of the LSNs. The decision rules at the LSNs are optimized under the

assumption that the channels from LSNs to FC are ideal. Hence, the CV fusion rule may only

be suitable for the WSNs where the communications between LSNs and FC are reliable. It has

been shown in [74] that, for high-channel SNR, the CV fusion rule is capable of achieving the

performance as good as the optimum LR-based fusion rule. However, in the low channel SNR

region, the CV fusion rule suffers significant detection performance loss.
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2.2.3 Sub-Optimum Fusion Rule: Maximum Ratio Combining Fusion Rule

In low channel SNR region, maximum ratio combining (MRC) fusion rule approximates the opti-

mum LR-based fusion rule [79,84], which is optimal in terms of the maximum of output SNR [76].

For convenience of reading, here we rewrite the simplified optimum LLR decision statistic of (2.27)

as

LΛ(rrr) =
L

∑
l=1

log


Pdl

+ (1 − Pdl
)e−

2rlhl
σ2

Pfl
+ (1 − Pfl

)e−
2rlhl

σ2


 (2.32)

For low channel SNR, i.e., forσ2 → ∞, we havee
− 2rlhl

σ2 → 1, which can be approximated by the

first term of the Taylor series expansion, i.e.,e
− 2rlhl

σ2 ≈ 1 − 2rlhl

σ2 . Therefore, we have

LΛ(rrr) =
L

∑
l=1

log




Pdl
+ (1 − Pdl

)
(

1 − 2rlhl

σ2

)

Pfl
+ (1 − Pfl

)
(

1 − 2rlhl

σ2

)




=
L

∑
l=1

log

[
1 − (1 − Pdl

) 2rlhl

σ2

1 − (1 − Pfl
) 2rlhl

σ2

]

≈
L

∑
l=1

{
log

[
1 − (1 − Pdl

)
2rlhl

σ2

]
− log

[
1 − (1 − Pfl

)
2rlhl

σ2

]}
(2.33)

Using the fact that, forx → 0

log(1 + x) ≈ x (2.34)

Hence, (2.34) can be further simplified to

LΛ(rrr) ≈
L

∑
l=1

{[
−(1 − Pdl

)
2rlhl

σ2

]
−
[
−(1 − Pfl

)
2rlhl

σ2

]}

=
L

∑
l=1

(Pdl
− Pfl

)
2rlhl

σ2
(2.35)

Given that 2
σ2 is a (possibly unknown) constant and, hence, can be neglected, (2.35) can finally be

simplified to

LΛ(rrr) ≈
L

∑
l=1

(Pdl
− Pfl

)rlhl (2.36)

Furthermore, if the LSNs are identical, i.e., all the LSNs use the same local decision rule and

achieve the same detection probability and false-alarm probability, then,LΛ(rrr) of (2.36) reduces

to a MRC statistic of

LΛ(rrr) =
L

∑
l=1

rlhl (2.37)
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In essence, the MRC testing statistic as shown above is the first-order approximation of the optimum

LLR based fusion rule and is asymptotically accurate asσ2 → ∞.

From (2.37), we can see that the MRC fusion rule does not require the knowledge ofPdl
or

Pfl
. However, it requires that all the LSNs are identical. The CSI is essential for the MRC fusion

rule. The MRC fusion rule is optimal, which maximizes the output SNR under the assumption that

the observations through multiple independent channels are identical. However, in the context of

WSNs, identical observations cannot be guaranteed as the LSNs are prone to erroneous estima-

tions. It has been illustrated that all the LSNs can use the same local decision rule without much

performance loss, especially when the number of LSNs is high. In this case, the MRC fusion rule

is effective [95]. In essence, the MRC testing statistic as shown in (2.37) is the first-order approxi-

mation of the optimum LLR based fusion rule and it is asymptotically accurate asσ2 → ∞. Hence,

the MRC fusion rule is not effective in the high channel SNR region.

2.2.4 Sub-Optimum Fusion Rule: Equal Gain Combining Based Fusion Rule

Motivated by the fact that, in some cases, there is no CSI available. In this case, the equal gain

combining (EGC) may be employed, which requires minimum amount of information [74, 111–

114]. The EGC fusion rule can be expressed as

LΛ(rrr) =
L

∑
l=1

rl (2.38)

In comparison with the optimum LLR-based fusion rule, the EGC fusion rule releases most of the

requirements. When considering the detection performanceof the three sub-optimum fusion rules

(CV, MRC and EGC), the MRC is the best at low SNR region; while at high SNR, CV outperforms

the other two. EGC fusion rule can be viewed as a trade-off between the MRC and CV fusion rules.

2.3 NoncoherentM-ary Fusion Rule

In Section 2.2, a range of channel-aware fusion rules have been reviewed in the context of binary

WSNs, which are often preferred for the applications demanding high data rate. From Subsec-

tion 2.2.1, we can know that channel estimation is essentialfor implementation of the optimum

channel-aware fusion rules, which requires extra bandwidth for transmission of overhead for chan-

nel estimation, in addition to their relatively high complexity of implementation. In practice, there
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are many applications for WSNs, which emphasise on low-complexity over high data rate. In these

types of WSNs, noncoherent fusion rules are preferred, which detect signals without relying on

channel estimations. In this section, we provide a summary of existing noncoherent fusion rules

suitable for the WSNs.

In relation with our studies in the following chapters, the noncoherent fusion detections are de-

scribed based on a framework ofM-ary frequency-shift keying (MFSK) WSN [115, 116]. Specif-

ically, in the MFSK-assisted WSN,L number of LSNs are used to monitor single SE withM

possible states. Observations ofL LSNs are transmitted one-by-one to the FC using MFSK mod-

ulation with L time-slots. At the FC, the received signals from theL LSNs are first processed in

the square-law operation [117]. Then, the detection matrixDDD of (M × L) is formed. Let the ele-

ment in the detection matrixDDD corresponding to themth row and thelth column be expressed as

Dml, m = 0, 1, · · · , M − 1; l = 1, 2, · · · , L. Based onDDD, noncoherent fusion rules are discussed

below.

2.3.1 Equal Gain Combining Fusion Rule

Equal gain combing (EGC) fusion rule, well known as a typicalsquare law combining approach,

is an effective mean of combating multipath fading in noncoherent communications [118]. Note

that, the EGC fusion rule discussed here is specifically for noncoherent detection, which is not fully

the same as that described in Subsection 2.2.4. The EGC fusion rule presents significant practical

interest, because, in most cases, it can provide reasonabledetection performance, while requires

the lowest complexity for implementation [117,118].

When the EGC fusion rule is employed, theM decision variables formed by the FC can be

expressed as

Dm =
L

∑
l=1

Dml, m = 0, 1, . . . , M − 1 (2.39)

Then the largest one of{D0, D1, . . . , DM−1} is selected and, correspondingly, itsm index with its

value in{0, 1, . . . M − 1} represents the estimation of the state that the monitored SEis currently

at.

Numerous research has dealt with the performance of noncoherent communication system in

conjunction with the EGC fusion rule over AWGN or/and fadingchannels [119]. For examples,
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Proakis has developed a generic BER expression for EGC fusion rule of binary signals over AWGN

channels [120]. Then, a close-form expression for average BER of binary frequency-shift keying

(BFSK) over independent identically distributed (i.i.d.)Rayleigh fading channels is given [115].

Following, general expressions for the average BER of BFSK signals over Rician or Nakagami-m

fading channels have been derived in [121] and [122], respectively.

Considering the application in WSNs, the EGC fusion rule hasbeen employed at the FC of a

FH/MFSK WSN system, where anM-ary SE is observed byL individual LSNs [117]. It has been

indicated that when communicating over AWGN or Rayleigh fading channels, the WSN systems

with EGC fusion rule capable of achieving a promising detection performance, when operated at

reasonable SNR. In [118], the detection performance of the WSNs employing EGC fusion rule has

been investigated, when assuming communications over correlated fading channels.

2.3.2 Majority Vote Fusion Rule

The majority vote (MV) fusion rule [123–125] can be described by starting fromDDD. Let λ (> 0)

be a preset threshold in MV fusion rule, a new matrixDDD′ can be formed based onDDD by comparing

each of its elements with the thresholdλ. Specially, ifDml > λ, the corresponding element inDDD′

is set toD′
ml = 1, otherwise,D′

ml = 0. Hence,DDD′ is a matrix with its elements taking values of

1 or 0. Based onDDD′, when the MV fusion rule is employed, the FC makes a decision in favour of

the particularM-ary symbol, which has a value in{0, 1, · · · , M − 1} corresponding to the specific

row having the highest number of nonzoroentries inDDD′, which provides an estimation to the state

of the SE monitored.

Explicitly, for MV fusion rule, theM decision variables are evaluated based on the new formed

matrix DDD′ via EGC fusion rule as

Dm =
L

∑
l=1

D′
ml, m = 0, 1, . . . , M − 1 (2.40)

The MV fusion rule has attracted much attention in the research on noncoherent combining

schemes for its simplicity [126]. The performance of MV fusion rule has been demonstrated in

various applications, such as, in WSNs. Under the assumption of independent LSNs, if the indi-

vidual local correct probability is larger than0.5 the overall detection performance improves as the

number of LSNs increases. In some cases, for simplicity of theoretical analysis of the MV fusion
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rule, it is usually assumed that all the LSNs have the same detection performance. In [127], the

detection performance has been analysed under the assumption that the local observations are inde-

pendent. A theoretical framework for combining local decisions has been built which uses distinct

pattern representations [128]. It is shown that MV fusion rule can be viewed as a special case of

EGC fusion rule, as also shown (2.40).

2.3.3 Selection Combining Fusion Rule

For the selection combing (SC) fusion rule, first, the decision variable for each possible state is

formed by selecting the largest one of the corresponding row, given by [90,129]

Dm = max{Dm1, Dm2, . . . , DmL}, m = 0, 1, . . . , M − 1 (2.41)

where max{·} represents the maximum of the correspond entries.

Then, the largest one of{D0, D1, . . . , DM−1} is selected and its index value in terms ofm

represents the estimation of the state of the observed SE.

Among the three noncoherent fusion rules EGC, MV and SC, communicating over multipath

fading channels, SC is the least complicated algorithm, as it processes only one of the diversity

brands [119]. The SC fusion rule chooses the branch with the highest SNR or the strongest sig-

nal, then assuming equal noise power of individual channels. In order to achieve better detection

performance, independent channel fading is desired. However, this channel fading independence

may not always be practical, because, for example, of insufficient space in small-size WSNs and,

as a result, the diversity gain may not be guaranteed. Additionally, different wireless channels may

experience various average SNRs due to different noise power and transmitting distance. These

factors also constrain the application of the SC fusion rule.

2.3.4 Product Combining Fusion Rule

In the context of the product combing (PC) fusion rule [91,130,131], the decision variable for each

of the possible states of the SE are formed as

Dm =
L

∏
l=1

Dml, m = 0, 1, . . . , M − 1 (2.42)
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Then, the largest one of theseM decision variables is chosen and its index value in terms ofm

stands for the estimation of the state of the observed SE.

The design of the PC fusion rule is based on an assumption thatthe received signals corre-

sponding to a non-signal frequency band carries relativelylower power in at least one of theL

individual LSNs, with a high probability. Consequently, when the products of (2.42) are com-

puted, the undesired decision variables with just noise yield low values. By contrast, the desired

signal contains both signal and noise, the decision variable (formed by the product of (2.42)) has

a significantly higher value. Hence, statistically, reliable detection performance may be expected

when employing the PC fusion rule [132]. Note that, the PC fusion rule has first been proposed

by Viswanathan and Taghizadeh in [133]. Following, the performance of the PC fusion rule is

analyzed under different jamming and fading conditions [134]. In [135], the BER performance of

the fast frequency-hopping (FFH) binary frequency-shift-keying (BFSK) system employing the PC

fusion rule is derived, when multitone jamming and AWGN as well as independent Rician fading

channels are considered.

2.3.5 Noise-Normalization Combining

The noise-normalization combing (NNC) fusion rule forms the decision variables based on the

received signals, the interference and noise power [92]. Indetail, letσ2
ml be the interference-plus-

noise power ofDml. Then, theM decision variables are formed as [92,136,137]

Dm =
L

∑
l=1

Dml

σ2
ml

, m = 0, 1, . . . , M − 1 (2.43)

The largest one of{D0, D1, . . . , DM−1} is then selected and, correspondingly, them index with

the value in{0, 1, . . . M − 1} represents the estimation of the state that the SE is currently at.

In the NNC fusion rule (also referred to as adaptive gain control fusion rule), the reciprocal of

the noise power is required to normalize the received signalbefore theL individual received signals

are combined [92]. The detection performance of the NNC fusion rule for a FH/BFSK system has

been analyzed in [138], when communicating over partial-band Gaussian noise jamming channels.

The detection performance analysis is then extended to the Rayleigh fading channels and general

Nakagami-m channels in [92] and [139], respectively.
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2.3.6 Self-Normalization Combining

Under the self-normalization combing (SNC) fusion rule, the decision variable for themth state is

related to the elements of the other possible states [132,140,141]. TheM decision variables formed

based on the SNC fusion rule are given by

Dm =
L

∑
l=1

Dml

D0l + D1l + . . . + D(M−1)l
, m = 0, 1, . . . , M − 1 (2.44)

Then, the largest one of theM decision variables of{D0, D1, . . . , DM−1} is selected and its sub-

script value represents the estimation for the state of the SE being observed.

In the SNC fusion rule, the reciprocal of the sum ofM different elements is used for normaliza-

tion before combining them to form the decision variable. Hence, it is sensitive to channel fading,

yielding, sometimes, a significant performance degradation when compared with its nonfaded per-

formance [141]. In references, the SNC fusion rule has been examined for channels with no fading

in [140]. The performance of the SNC fusion rule over Rician and Nakagami-m fading channels

has been analyzed in [141] and [132], respectively.

2.3.7 Soft-Limiting Combining

The soft-limiting combining (SLC) fusion rule is also referred to as the clipping combing fusion

rule [116]. Under this SLC fusion rule, the elementsDml in the decision matrixDDD are first clipped

by a certain value before the combining operation. Specifically, let λ be the preset threshold, which

can be set, for example, as the value achieving the lowest error probability for given conditions,

such as local decision probability, channel SNR, etc [93]. Then, by comparing the decision element

Dml with the thresholdλ, we obtain

D′
ml = Dml, if Dml ≤ λ

D′
ml = λ, if Dml > λ (2.45)

for m = 0, 1, · · · , M − 1; l = 1, 2, · · · , L. After the clipping operations, the decision variables

are formed based on the EGC principles, yielding

D′
m =

L

∑
l=1

D′
ml, m = 0, 1, . . . , M − 1 (2.46)
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Finally, the largest one among{D′
0, D′

1, . . . , D′
M−1} is selected and its index value form represents

the estimate of the state of the monitored SE. In the SLC fusion rule, the preset thresholdλ is

usually refereed to as a the clipping threshold, which depends on the noise power as well as the

number of active users [132], when multiuser communicationis the case. The basic principles

behind the SLC is that, if more than one interfering user happens to choose the same frequency

band, a higher interference power is anticipated by the FC inthe corresponding branch. Hence, the

clipping operation may be effective to suppress the interference [142, 143]. However, operation of

the SLC fusion rule requires the information of noise variance and the number of active users, in

order to calculate the accurate threshold. Furthermore, itcan be shown that the knowledge of noise

power plays a more important role than that of the number of active users , in order to accurately

estimate the clipping threshold [143].

2.4 Spectrum Sensing Approaches

Spectrum is now becoming a scarce resource, when licensed spectrum or frequency-band is in-

tended to be only available for primary radio (PR) users. Forthis sake, a new concept referred to

as cognitive radio (CR) has been introduced in order to improve the utilization rate of spectrum

by identifying and utilising the spectrum holes. In CRs, thespectrum hole is defined by the Fed-

eral Communications Commission (FCC) as a band of frequencies that are not being used by the

licensed user of that band at a particular time in a particular geographical area. Hence, the main

task of spectrum sensing is to determine whether the frequency band of interest is occupied by PR

users during a time slot within a certain geographical area [97]. Explicitly, the deployment of CRs

will inevitably create interference to PRs, yielding possibly decrement of communication quality of

PRs. Therefore, in order to make efficient user of the spectrum holes of PRs but to keep the inter-

ference on PRs at an reasonable level, quick and accurate spectrum sensing in the three dimensions

of frequency, time and space is essential.

In this section, some typical spectrum sensing approaches are reviewed in detail. First, we con-

sider the original problem of local spectrum sensing. Then,a comprehensive overview of existing

solutions of spectrum sensing is provided.
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2.4.1 Spectrum Sensing Model

The general problem of spectrum sensing can be described as binary hypothesis test:H0 means that

PR user is off or the frequency band of interest is available;andH1 denotes that PR user is active

or the frequency band of interest is busy. Hence, the received signal at CR users can be expressed

as:

H0 : y(t) = n(t),

H1 : y(t) = x(t) + n(t) (2.47)

wherey(t) is the received signal at a CR user,n(t) is the AWGN with zero mean andx(t) rep-

resents the signal received from PR user. In the context of spectrum sensing, the detection perfor-

mance is usually measured two parameters: detection probability ( Pd) and false-alarm probability

(Pf ). Hence,Pd can be expressed as

Pd , Pr(δ > λ | H1) (2.48)

whereδ denotes the test statistics andλ is the threshold for detection. By contrast,Pf can be

expressed as

Pf , Pr(δ > λ | H0) (2.49)

There are many spectrum sensing approaches in literature. Below, we provide a brief overview

of some spectrum sensing approaches, including energy detection [144–147], matched filter (MF)

detection [148–150] and feature based detection approaches [151,152].

2.4.2 Energy Detection

Energy detection is the simplest and common spectrum sensing approach, which detects the spec-

trum availability by measuring the energy of received signal in a certain frequency band. Since it

is easy to implement, energy detection has widely been studied for detecting PR users. However,

the performance of energy detection is highly susceptible to noise power uncertainty. It is difficult

to set the threshold properly without the knowledge of the accurate noise level. Furthermore, en-

ergy detection is incapable of differentiating between desired signals, noise and interference. The
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Figure 2.3: Flow chart of energy detection.

detection performance of energy detection degrades significantly in shadowing and fading environ-

ments [146,147].

Energy detection can be operated in either frequency or timedomain. As shown in Fig 2.3a,

conventional time-domain energy detection consists of a low-pass filter, Nyquist sampling and

A/D converter, square-law device and integrator [144]. Correspondingly, the received signal after

sampling can be expressed as:

H0 : y(n) = n(n)

H1 : y(n) = x(n) + n(n), n = 0, 1, · · · , N − 1; (2.50)

whereN is the number of sampling, the noise samplen(n) is assumed to be white Gaussian noise

with zero mean and varianceσ2
n. The test statistics for energy detection is:

δE =
1

N

N−1

∑
n=0

| y(n) |2 (2.51)

Then, the availability of the frequency band of interest using energy approach can be determined

according to

δE

H0

≶
H1

λ (2.52)

whereλ is the threshold.

In time-domain energy detection, the bandwidth of filter needs to match with that of a given

signal, which is inflexible in practical application. An alternative approach is to estimate the spec-

trum via squared magnitude of the output of the fast Fourier transform (FFT) of the sampled signals,

forming the frequency-domain energy detection, as shown in2.3b. Compared with the conventional

time domain energy detection, the frequency domain energy detection, is capable of monitoring

multiple sub-bands simultaneously [145]. Furthermore, anarbitrary bandwidth can be processed

by choosing a corresponding number of frequency bins.
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In frequency-domain, the detection performance can be improved through increasing either the

frequency resolution of FFT or the number of samples. However, increasing the values of these

two parameters increases the computation complexity as well as processing delay. In practice, it

is common to set a suitable FFT size to meet the desired resolution with a moderate complexity.

Then, the trade-off between the detection performance and complexity/delay may be optimized

by the number of samples. It has been shown [144] that under the assumption that the number of

samples is infinite, an energy detector is capable of achieving any desiredPd andPf simultaneously.

According to [144], the minimum number of samples required is:

U = 2
[

Q−1
(
Pf − Pd

)
γ−1 − Q−1Pd

]2
(2.53)

whereQ−1 denotes the inverse Gaussian Q-function andγ is the observation signal to noise ratio

(SNR).

In practice, unfortunately, there is a minimum value of SNR,below which energy detection

cannot work any more. This minimum value of SNR is called the ‘SNR wall’ [146, 147]. The

reasons behind the ‘SNR wall’ phenomenon are the two impractical assumptions for the observation

noise. First, the noisen(n) in (2.50) is assumed to be the white Gaussian noise with zero mean

and varianceσ2
n. However, in practice, the observation noise is an aggregation of thermal noise at

receiver and interference due to nearby unintended emissions, etc. Second, the noise variance is

assumed to be known perfectly, so that the corresponding threshold can be set accurately. However,

CR users usually cannot estimate the noise variance precisely, as noise variance could vary over

time due to temperature change, interference, etc.

2.4.3 Matched Filter Detection

Matched filter (MF) detection is a linear filter designed to maximize the output SNR for a given

input signal [148]. When thea-priori information of PR user is perfectly known by CR user, MF

detection is the optimum spectrum sensing approach [149, 150] in stationary Gaussian noise. The

main advantage of the MF detection is low complexity and delay. If the conditions are satisfied,

MF detection is able to implement fast sensing and meet the desired probability of false-alarm or

probability of detection in short time, as it requires onlyO (1/SNR) samples [153].

Against the above mentioned advantages, MF detection has some major disadvantages. First,



2.4.4. Feature Detection 41

MF detection requires perfect knowledge of all the PR users.Otherwise, the detection performance

degrades significantly. Second, there is a security issue, as CR user needs to access to the com-

munication in PR. Third, since the MF is designed to sense allthe frequency bands of interest, the

implement complexity maybe largely impractical, also due to the requirement of perfect knowl-

edge of all the possible signals. Finally, MF detection is not energy efficient, as all the receiver

algorithms needs to be executed for decisions [148].

2.4.4 Feature Detection

From the above discussion, we have know that MF detection is limited for the practical applica-

tions requiring perfect knowledge of received signals. Actually, there is always some available

information, such as, the type of PR users, regulation of transmitted signal [148], etc., which may

be useful for spectrum sensing. In the following, we overview some spectrum sensing approaches,

which exploit known features of received signals. Specifically, we focus on two types of feature

detections, namely the second order cyclostationarity detection and the eigenvalue based detection.

2.4.4.1 Cyclostationary Detection

The initial work of spectrum sensing with the aid of the second order stationarity analysis can be

traced back to the contribution of Dandawate and Giannakis in 1994 [154]. The general princi-

ples behind the cyclostationary detection are that, most man-made signals show periodic patterns

related to the corresponding symbol rate, chip rate, channel code or cyclic prefix make the re-

ceived signals present as a cyclostationary random process[151,152]. In a little bit more detail, the

time-varying covariance function of received signalsRy(τ) can be expressed by a Fourier series,

where the Fourier coefficients are known as the cyclic covariance with cyclic frequencyf0. By

exploiting some of these cyclic characteristics of random process, one can construct the detectors

to benefit from the spectral correlation. This method has widely been used for detection of OFDM

signals [151].

A/D Correlation
Auto−

FFT Decision
y(t) y(n) H0/H1

Y(n)

Figure 2.4: Flow chart of second order cyclostationarity detection.

A discrete-time zero-mean stochastic processy(t) is said to be the second-order cyclostation-
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ary, if it satisfiesy(t) = y(t + T), where the smallest value ofT is called as the period. Further-

more, the corresponding autocorrelation function is also periodic with period ofT, given by

Ry(τ) = E[y(τ)y(t + τ)]

= E[y(τ + T)y(t + τ + T)] (2.54)

Hence, the autocorrelation function can be expressed as

Ry(τ) =
∞

∑
k=−∞

bkej2π f0kτ ,

(
f0 =

1

T

)

bk =
1

T

∫ T

0
Ry(τ)e

−j2π f0kτdτ

= lim
T̄→∞

1

T̄

∫ T̄
2

− T̄
2

Ry(τ)e
−j2π f0kτdτ (2.55)

whereT̄ → ∞. The power spectrum density (PSD) ofy(t) can be obtained through the discrete

time Fourier transformation (DTFT) [152]:

S( f ) =
∫ ∞

−∞
Ry(τ)e

−j2π f τdτ

=
∞

∑
n=−∞

bnδ( f − n f0) (2.56)

wherebn is given in (2.55). The cyclic autocorrelation function at agiven cyclic frequency de-

termines the correlation between two spectral components of the signal separated in frequency by

an amount of1T . Hence, if there exists ann such thatf = n f0, bk for somek′s are not zero and

S( f ) 6= 0.

Under the cyclostationary detection, it is assumed that noise is a wide-sense stationary (WSS)

process with no correlation, resulting in thatbk = 0 for any value ofk. By contrast, digital mod-

ulated signals are cyclostationary with spectral correlation due to signal periodicities, resulting in

that the values of somebk are lager than zero. Hence, in the cyclostationary based spectrum sensing,

the detection can be described by comparing the value ofbk with a preset thresholdλ, yielding

θ = H0; if for all bk (k = 0, ± 1, ± 1, · · · ), bk < λ

θ = H1; if for somebk (k = 0, ± 1, ± 1, · · · ), bk > λ (2.57)

Note that, for the Gaussian random process, the test statistics as shown in (2.57) is irrational,

as the received signal is uncorrelated, yielding that

bk = lim
T̄→∞

1

T̄

∫ T̄
2

− T̄
2

Ry(τ)e
−j2π f0kτdτ = 0; k = 0, ± 1, ± 2, · · · (2.58)
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In comparison with the energy based spectrum sensing, the cyclostationary detection is a non-

coherent spectrum sensing approach. It is less sensitive tothe noise uncertainty, provided that the

cyclic frequency of signals is available. Furthermore, it is capable of distinguishing different types

of digital modulation signals. On the other hand, when the cyclic frequency is not available at

the receiver, the sensing device requires other sources to get the information, which increases the

complexity of the cyclostationary detection [155]. Additionally, as shown in (2.58), cyclostationary

detection may be completely fail, when the received signal is Gaussian distributed, which might be

the result of many interference signals, multiple fading, etc.

2.4.4.2 Eigenvalue-based Detection

To overcome the shortcomings of energy detection, a method using the properties of the eigen-

values of received signal’s covariance matrix is introduced [156–158]. The principles behind the

eigenvalue-based detection is that the PR signals receivedat a CR user are usually correlated be-

cause of dispersive channels, utility of multiple receive antennas or even oversampling [151]. Such

correlation can be utilized for offering highly reliable spectrum sensing.
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Figure 2.5: Flow chart of eigenvalue based spectrum sensing.

Specifically, with the aid of the eigenvalue-based detection, the vacancy of a frequency band of

interest can be determined based on the fluctuation of the covariance matrix’s eigenvalue. Let the

covariance matrix̂RRRy of received signals be expressed as

R̂RRy =
1

V

V−1

∑
v=0

yyy[v]yyyH[v] (2.59)

whereV is the length of observation andyyy[v] is a vector of lengthN, for example, which con-

tains the observation samples. The eigenvalues ofR̂RRy can then be obtained via eigenvalue-based

detection. From the eigenvalues, various test statistics may be formed. For examples, the ratio of

the maximum to the minimum eigenvalues [159], the ratio of the maximum to the average eigen-
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values [157], etc. In detail, letµ(0) ≥ µ(1) ≥ · · · ≥ λ ≥ µ(N−1) be theN eigenvalues of the

covariance matrix̂RRRy. The test statistics of the ratio between the maximum and minimum eigen-

values can be written as

δ =
µ(0)

µ(N−1)

H0

≶
H1

λ (2.60)

Similarly, the test statistics of using the ratio between the maximum and average eigenvalues can

be described as

δ =
µ(0)

N−1

∑
i=0

µ(i)

H0

≶
H1

λ (2.61)

In [158], the asymptotic threshold values for the test statistics of (2.60), and (2.61) have been

studied.

From above, the eigenvalue-based detection is based on the autocorrelation matrixR̂RRy of re-

ceived signals, which is a noncoherent detector requiring only energy information. Hence, it is

effective for implementation blindly. The eigenvalue-based detection becomes less efficient when

signals become less correlated, as, in this case, all eigenvalues have similar values.

2.5 Conclusion

In this chapter, an overview of the detection approaches that may be employed by LSNs and FC,

as well as the spectrum sensing approaches in CRs has been presented. Explicitly, each of the

detection approaches has its unique advantages, disadvantages and requirements. Therefore, in

design of local detection at LSNs and fusion rule for FC, the detection schemes should be carefully

chosen based on the objectives and communication environments.

Specifically, the characteristics of the classical local detection, the optimum and sub-optimum

channel-aware fusion rules, the noncoherent fusion rules and the spectrum sensing approaches are

summarized as follows.

1. Classical local detections: In this chapter, we have introduced three types of classical binary

local detection approaches. The Bayesian detection aims tominimize the average cost, which

requires both thea-priori probability and the cost of each decision. When the cost function is
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not available, the MAP or ML detection may be employed. The NPdetection minimizesPf

for a given value ofPd or maximizesPd for a given value ofPf without requiring any further

information. The design objectives and requirements of these local detection approaches are

summarized in Table 2.1.

Local Detection at LSNs Objective Requirements

Bayesian Detection Minimize average cost a-priori probability and cost function

MAP and ML Detection Maximize the correct probability a-priori probability

Minimize Pf for a givenPd

NP Detection or maximizePd for a givenPf None

Table 2.1: Objectives and requirements of local detection at LSNs.

2. Channel-aware fusion rules: In this chapter, the channel-aware fusion rules have been dis-

cussed based on a classical triple-layer WSN model. From ourdiscussion and comparison,

we can know that the LLR fusion rule achieves the best performance, under the stringent

requirements including LSN’s performance and CSI. To relieve from these requirements, the

Chair-Varshney (CV) and the EGC fusion rule have been introduced. These sub-optimum

channel-aware fusion rules have different requirements and yield sub-optimum performance.

The trade-offs between the detection performance and the requireda-priori information for

optimum and sub-optimum channel-aware fusion rules are summarized in Table 2.2.

Fusion rule a-priori information Detection performance

Optimum LLR CSI and LSNs’ detection performance Optimal

Chair-Varshney LSNs’ detection performance Near-optimal for high SNR

MRC CSI Near-optimal for low SNR

EGC Channel phase Robust in wide SNR range

Table 2.2: Comparison among optimum and sub-optimum channel-aware fusion rules.

3. NoncoherentM-ary fusion rules: Some existing noncoherentM-ary fusion rules have been

addressed in Section 2.3, which require no channel estimation nor LSNs’ detection perfor-

mance. All our discussion of the noncoherentM-ary fusion rules are based on a framework

of MFSK WSN system. Specifically, the noncoherentM-ary fusion rules have been de-

scribed based on a so-called detection matrixDDD formed at the FC. The decision variables for
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the introduced noncoherentM-ary fusion rules are summarized in Table 2.3.

Fusion Rule Decision Variable

EGC Dm = ∑
L
l=1 Dml

MV Dm = ∑
L
l=1 D′

ml

SC Dm = max{Dm1, Dm2, . . . , DmL}
PC Dm = ∏

L
l=1 Dml

NNC Dm = ∑
L
l=1

Dml

σ2
ml

SNC Dm = ∑
L
l=1

Dml
D0l+D1l+...+D(M−1)l

SLC D′
m = ∑

L
l=1 D′

ml

Table 2.3: Decision variables of variousM-ary noncoherent fusion rules.

4. Spectrum sensing approaches: In Section 2.4, a range of local spectrum sensing approaches

have been introduced. The main task of spectrum sensing is todetermine whether a particular

frequency band is free or busy during a time slot within a certain geographical area. In this

chapter, three local spectrum sensing approaches, namely,the energy detection, matched

filter detection and feature detection have been addressed.The advantages and requirements

of these spectrum sensing approaches are summarized in Table 2.4.

Spectrum sensing Advantages Requirements

Energy Easy to implement and low-complexity Noise variance

Matched Filter Low-complexity and low-delay Knowledge for all possible signals

Cyclostationary Robust to noise uncertainty Cyclic frequency

Eigenvalue-based All above Correlation of signals

Table 2.4: Comparison of local spectrum sensing approaches.



Chapter 3
Noncoherent Detection in FH/MFSK

WSN Monitoring Single Event

3.1 Introduction

Due to the great potential for many applications and also dueto the advancement of emerging

technologies, WSNs have drawn intensive research in recentyears. In WSNs, signal detection con-

stitutes one of the very important tasks, and a lot of research effort has been made for design of

high-efficiency and low-complexity detection algorithms [10,74–76,79–82,103,160]. Specifically,

for monitoring binary events, optimum and sub-optimum detection algorithms have been derived

under various optimization criteria, as shown in Chapter 2.As some examples, detection schemes

found in literature include Neyman-Pearson detection [10,82], Bayes detection [10, 75, 82], maxi-

mum likelihood detection [10,74–76,79,82], maximum ratiocombining and equal gain combining

assisted detection [74–76,79], Chair-Varshney detection[74,75,79], etc. In order to improve spec-

tral efficiency and reduce detection delay, in [78], a multiple-access model has been proposed for

transmission of signals from LSNs to FC and corresponding fusion detection rules have been stud-

ied. In [80], the fusion detection ofM-ary events has been investigated by merging the fusion

detection with channel decoding. Furthermore, owing to itslow-complexity, in WSNs, noncoher-

ent detection is often preferred to coherent detection, as the noncoherent detection does not require

extra complexity and extra resources for channel estimation [115].

In this chapter, a novel wireless sensor network (WSN) framework, namely the frequency-
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hoppingM-ary frequency shift keying (FH/MFSK) WSN, is proposed, which monitors anM-ary

source event (SE) and conveys signals from each local sensornode (LSN) to the fusion center (FC)

with the aid of frequency-hopping (FH) andM-ary frequency-shift keying (MFSK) techniques. The

SE under observation by LSNs are assumed to haveM states occurring with equal-probable. The

estimations of LSNs are transmitted to the FC using MFSK modulation aided by FH. Channels from

LSNs to FC are modelled either as additive white Gaussian noise (AWGN) channels or Rayleigh

fading channels.

In this proposed FH/MFSK WSN, the FH/MFSK technique is introduced for enhancing the

detection performance by reducing the correlation among the signals transmitted by different LSNs,

so that the FC can benefit from both the space diversity and thefrequency diversity. Explicitly, this

frequency diversity becomes more important, when the LSNs are closely distributed, making the

signals transmitted by different LSNs correlated in space.In WSNs, coherent fusion rules are often

preferred for the applications demanding high data rate. However, there are a range of applications,

which weight the implementation complexity over the data rate. In these WSNs, noncoherent

fusion rules are usually preferred, which achieve the fusion detection without relying on channel

estimation. In this chapter, signals are noncoherently detected at the FC based on the square-law

principles aided by conventional equal gain combining (EGC), novel erasure-supported equal gain

combining (ES-EGC) fusion rule and optimum posterior fusion rule.

In this chapter, we analyze the lower-bound of error classification probability (ECP) perfor-

mance of the FH/MFSK WSNs with ES-EGC fusion rule over Rayleigh fading channels. Further-

more, the detection performance of the FH/MFSK WSN is investigated by simulation approaches.

Our studies show that the FH/MFSK constitutes one of the promising schemes for efficient informa-

tion delivery in WSNs. Reliable detection can be achieved atreasonable SNR levels for detection

at LSNs and at the FC. Compared with the conventional EGC fusion rule, our proposed ES-EGC

fusion rule significantly improves the detection performance of FH/MFSK WSNs at low-cost of

complexity and delay.

Note that, in our WSN systems, we choose MFSK instead of differential phase-shift key-

ing (DPSK) because of the following considerations. First,it is well known that the MFSK is

an energy efficient modulation scheme while the multiple DPSK can be counted as a bandwidth

efficient scheme but not an energy-efficient scheme. For WSNs, we prefer to the energy-efficient
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schemes in order t o extend the lifetime. Second, in DPSK, at least one pilot symbol is required and

the detection is dependent one the one-step channel estimation. By contrast, MFSK can be fully

noncoherent detected by depending on energy detection. Furthermore, when using the DPSK, the

FH and data modulation have to be operated separately. In contrast, MFSK and FH can be jointly

operated, which increases the bandwidth efficiency.

The reminder of this chapter is organized as follows. In Section 3.2, we provide the details

of the proposed FH/MFSK WSN, where the observed SE, LSNs’ processing are considered. In

Section 3.3, signal processing at the FC with various fusionrules is analyzed. The characteristics

of FH/MFSK WSN are described in Section 3.4. Section 3.5 provides the detection performance of

FH/MFSK WSNs with ES-EGC fusion rules over Rayleigh fading channels. Then, some simulation

results and discussions are provided in Section 3.6. Finally, in Section 3.7, our conclusions are

derived.

3.2 System Description

The framework of the WSN considered in this chapter is shown in Fig 3.1, which is a typical triple-

layer WSN model widely used for research in literature [74,75,79–82,160]. As shown in Fig. 3.1,

the L number of LSNs simultaneously observe an SE withM states and convey their observations

to the FC using FH/MFSK. The FC finally makes a decision about the state of the observed SE,

based on the signals received from theL LSNs. Below we describe in detail the components of the

FH/MFSK WSN considered, as well as their operations and corresponding assumptions invoked.

3.2.1 Source Event

As shown in Fig. 3.1, the single SEs is assumed to haveM states corresponding toM hypothesises,

which are expressed byH0, H1, . . . , HM−1. In this chapter, we assume for simplicity that theM hy-

pothesises representM amplitudes,A0, A1, . . . , AM−1, obtained by quantizing a continuous event,

such as temperature, pressure, etc. Therefore, given that the SE is at statem, m = 0, . . . , M − 1,

the lth LSN’s observation can be represented as

rl = Am + nl, l = 1, 2, . . . , L (3.1)

wherenl is the observation noise.
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Figure 3.1: Triple-layer system model for the WSNs observing an M-ary event, where

information is transmitted to the FC based on FH/MFSK scheme.

3.2.2 Sensor Processing

When thelth, l = 1, 2, . . . , L, LSN obtains an observation in the form of (3.1) for the SEs, it

decides the state ofs based on the principle of MASK [115]. Let the states estimated by theL

LSNs are collected tosss = [s1, s2, . . . , sL], wheresl = m, if the lth LSN estimates that the SE’s

amplitude isAm. Let us assume that the SE is linearly and uniformly quantized. Then, the decision

error probability of each of the LSNs is given by [115]

Pe = 2

(
1 − 1

M

)
Q



√

6 log2 M

M2 − 1
γs


 (3.2)

whereγs represents the observation signal-to-noise ratio (SNR) atthe LSNs, referred to as the sen-

sor SNR for convenience. In practice, the sensor SNRγs is dependent on the SE’s characteristics,

the specific quantization approach used, the sensing method, etc. In (3.2),Q(x) is the Gaussian

Q-function defined asQ(x) = (2π)−1/2
∫ ∞

x e−t2/2dt. Note that, in our simulations in Section 3.6,

we assume that an erroneous observation leads to one of the(M − 1) states other than the correct

one with the same probability ofPe/(M − 1).
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Following the sensing to determine a state of the SE, as shownin Fig. 3.1, theL LSNs transmit

their observed states to the FC with the aid of the FH/MFSK techniques. The total transmission

time is assumed to beTs seconds, which is referred to as the symbol duration. Let us assume that

the WSN system usesM orthogonal frequency bands with their center frequencies forming a set

FFF = { f0, f1, . . . , fM−1}. TheseM frequencies are used for both FH and MFSK modulation, which

are implemented as follows. Letaaa = [a1, a2, . . . , aL] be a FH address used by the WSN, where

the integeral ∈ {0, 1, · · · , M − 1}, l = 1, 2, . . . , L. The purpose of using the FH address is two

folds. First, transmitting the information about the SE on different frequency bands is capable of

providing frequency-diversity for detection at the FC. This becomes even more important, when

some LSNs are located close to each other, resulting in that their signals received by the FC are

correlated, in the space domain, if the signals are transmitted on the same frequency band. Second,

with the aid of the FH, signals received from theL LSNs can be noncoherently combined, which

will become explicit in our forthcoming discourse. Based onthe FH addressaaa and the estimatessss,

the LSNs first carry out the operation

mmm = [m1, m2, · · · , mL] = sss ⊕ aaa

= [s1 ⊕ a1, s2 ⊕ a2, · · · , sL ⊕ aL] (3.3)

where⊕ represents the addition operation in the Galois field (GF(M)). Therefore, the value of

ml , l = 1, 2, . . . , L, is within [0, M − 1], suitable for MFSK modulation. Following the FH op-

eration shown in (3.3), the components ofmmm are respectively passed to the MFSK modulators of

the L LSNs, where they are converted to the MFSK frequenciesFFFm = [ fm1
, fm2 , . . . , fmL ], where

fml
∈ FFF. Finally, the MFSK modulated signals of theL LSNs are transmitted one-by-one to the

FC in a time-division fashion usingL time-slots of durationTh, whereTh = Ts/L. Specifically,

the signal transmitted by thelth LSN during theiTs < t ≤ (i + 1)Ts can be expressed in complex

form as

s̃l(t) =
√

PψTh
(t − iTs − (l − 1)Th)

× exp(j2π[ fc + fml
]t + jφl), l = 1, 2, . . . , L (3.4)

whereP denotes the transmission power, which is assumed the same for all the L LSNs, fc is the

main carrier frequency andφl is the initial phase introduced by carrier modulation. In (3.4), ψTh
(t)

is the pulse-shaped signalling waveform, which is defined over the interval[0, Th) and normalized
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to satisfy
∫ Th

0 ψ2(t)dt = Th.

Assuming that the signal̃sl(t), l = 1, 2, . . . , L, is transmitted over flat Rayleigh fading chan-

nels, at the FC, the received signal duringiTs < t ≤ (i + 1)Ts can be expressed as

yl(t) =hl s̃l(t) + nl(t)

=
√

PhlψTh
(t − iTs − (l − 1)Th)× exp(j2π[ fc + fml

]t + jφl) + n(t),

l =1, 2, . . . , L (3.5)

wherehl = αl exp(jθl) denotes the channel gain with respect to theith symbol and thelth

LSN, which is assumed constant over one symbol-duration. Furthermore, when Gaussian channels

are assumed, we haveαl = 1. In (3.5), n(t) is the Gaussian noise process presenting at the FC,

which has zero mean and single-sided power-spectral density (PSD) ofN0 per dimension.

3.3 Fusion Processing

When the FC receives the signals in the form of (3.5), the SE’sstate is estimated using noncoherent

detection approach detailed as follows.

First, corresponding to each of theL LSNs,M decision variables can be formed as

Rml =|(
√

ΩPTh)
−1
∫ iTs+(l+1)Th

iTs+lTh

yl(t)ψ
∗
Th
(t − iTs − (l − 1)Th)

× exp(−j2π[ fc + fm]t)dt|2 , (3.6)

wherem = 0, 1, . . . , M − 1 and l = 1, 2, . . . , L, andΩ = E[|hl |2] denotes the average channel

power. Since it has been assumed that theM frequency bands invoked are orthogonal to each other,

there is no interference between any two frequency bands. Consequently, upon substituting (3.5)

into (3.6) and absorbing the carrier phaseφl into hl, we obtain

Rml =

∣∣∣∣
µmml

hl√
Ω

+ Nml

∣∣∣∣
2

, m = 0, 1, . . . , M − 1; l = 1, 2, . . . , L (3.7)

where, by definition,µmm = 1, if m = ml, otherwiseµmml
= 0. In (3.7), Nml is a complex

Gaussian noise sample collected from themth frequency band over thelth time-slot, which is
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given by

Nml = (
√

ΩPTh)
−1
∫ iTs+(l+1)Th

iTs+lTh

n(t)ψ∗
Th
(t − iTs − (l − 1)Th)

× exp(−j2π[ fc + fm]t)dt (3.8)

which has mean zero and a variance ofσ2 = LN0/(ΩEs) = L/γ̄s, whereEs = PTs represents

the total energy for transmitting oneM-ary source symbol fromL LSNs to FC, with each LSN’s

transmitted energy beingEh = Es/L, γ̄s = ΩEs/N0 denotes the average SNR per symbol.

From (3.7), we can see that there are in totalML decision variables, which can be used to form

a (M × L) time-frequency matrix denoted byR. Based on this time-frequency matrixRRR, the FC

can carry out the final detection. In this chapter, a range of detection schemes are considered, which

include EGC, ES-EGC and posterior fusion rule. Let us first state the EGC fusion rule.

3.3.1 EGC Fusion Rule

In the context of the EGC fusion rule, the FC detects the observed SE’s state based on the detection

matrix DDD obtained from frequency de-hopping onRRR. More details are stated as follows.

1. Frequency De-hopping:

DDD = RRR ⊟ (111 ⊗ aaaT) (3.9)

where111 denotes an all-one column vector ofM-length and⊗ denotes the Kronecker product

operation between two matrices [116]. In (3.9), the operation of AAA ⊟ BBB shifts the elements

in AAA based on the values provided byBBB. Specifically, after the operation in (3.9), we have

D(m⊖al)l = Rml, m = 0, 1, . . . , M − 1, l = 1, 2, . . . , L (3.10)

where⊖ denotes the subtraction operation in the Galois fieldGF(M). The operation in (3.10)

means that the element indexed bym in RRR is changed to the one indexed bym′ = m ⊖ al in

DDD.

2. EGC Detection: Finally, the M decision variables for detection of the SE’s state can be

formed in EGC principle [116] as

Dm =
L

∑
l=1

Dml, m = 0, 1, . . . , M − 1 (3.11)
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Then, the largest one of{D0, D1, · · · , DM−1} is selected and mapped to an integer in the

range[0, M − 1], which represents the estimate to the SE’s state.

3.3.2 ES-EGC Fusion Rule

After some close look, we can know that there are mainly two reasons behind the erroneous detec-

tions in the SE FH/MFSK WSNs. The first one is that the LSNs are not perfect, which may make

erroneous local decisions. Secondly, the local decisions transmitted through wireless channels to

the FC experience channel fading and noise. When some LSNs make erroneous decisions, unde-

sired signals will be sent. Statistically, inRRR andDDD, the entries containing both signals and noise

would have relatively higher power than those containing only noise. Based on this observation,

before forming the decision variables, the FC can erase a fewof entries with the highest values

from each row ofDDD. In this way, the undesired elements are most probably removed and the de-

tection performance can be improved. Our ES-EGC fusion ruleis based on above observation, the

detection processing of which can be stated as follows.

1. Frequency De-hopping:

DDD = RRR ⊟ (111 ⊗ aaaT) (3.12)

which is the same as that in the EGC fusion rule.

2. Erasure Operation: In each of theM rows ofDDD, I (0 < I < L) elements having the largest

values are replaced with zeros, forming a new matrixD̄DD.

3. EGC Detection: M decision variables are formed from̄DDD in the EGC principles [116] as

D̄m =
L

∑
l=1

D̄ml, m = 0, 1, . . . , M − 1 (3.13)

Finally, the largest of{D̄0, D̄1, · · · , D̄(M−1)} is selected and its index is mapped to an integer

in the range[0, M − 1], which represents the estimation to the state of the SE beingobserved.

3.3.3 Optimum Fusion Rule

Above, we have considered two low-complexity fusion rules,which are not optimum. Let us now

consider the optimum rules which are in MAP and ML principles. The optimum fusion rule is
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derived based on the observations provided by the square-law devices. Let us assume that the

observed SE is at stateHm, wherem = 0, . . . , M − 1. For a given state valueX of the SE and a

FH address ofaaa, the probability density function (PDF) of the received matrix RRR can be expressed

asp(RRR|X, aaa). Then, based on the MAP principles, the SE’s state can be estimated according to the

optimization problem

X̂ = max
X∈X

p(X|RRR, aaa)

△
= max

X∈X
{P(X)p(RRR|X, aaa)} (3.14)

whereX = {0, 1, · · · , M − 1} is a set containing theM possible states.

When all the hypotheses for the states of the SE are equal-probability, the influence ofP(X)

can be ignored in (3.14). Furthermore, using the fact that the ML entries in the received matrixRRR

are independent,p(RRR|X, aaa) can be then rewritten as

p(RRR|X, aaa) =
M−1

∏
m=0

L

∏
l=1

p(Rml|X, aaa) (3.15)

Upon substituting (3.15) into (3.14) and considering the equal-probability of the hypotheses, the

MAP-assisted optimization can be modified to

X̂ = max
X∈X

{
M−1

∏
m=0

L

∏
l=1

p(Rml|X, aaa)} (3.16)

Let the local estimations made by theL LSNs be collected tosss = [s1, s2, . . . , sL]. Then, one

given SE’s state corresponds toML possible local estimation vectorssssn. Hence, (3.16) can be

rewritten as

X̂ = max
X∈X

{
ML

∑
n=0

P(sssn|X)
M−1

∏
m=0

L

∏
l=1

p(Rml|sss, aaa)} (3.17)

when assuming that the channels from LSNs to the FC are Rayleigh fading channels, the PDF of

Rml can be expressed as

p(Rml |sss, aaa) =
1

Kml + σ2
exp

(
− Rml

Kml + σ2

)
(3.18)

whereσ2 denotes the normalized noise variance,Kml = 1, if the lth LSN actives the(m, l)th

element in the received matrixRRR, otherwise,Kml = 0. Finally, when substituting (3.18) into

(3.17), the optimization problem can be described as

X̂ = max
X∈X

{
ML

∑
n=0

P(sssn|X)
M−1

∏
m=0

L

∏
l=1

1

Kml + σ2
exp

(
− Rml

Kml + σ2

)}
(3.19)
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From the above discussion, it can be seen that, when communicating over Rayleigh fading

channels with Gaussian noise, the FC needs to carry outM × ML = ML+1 tests to find the final

decision. Therefore, the complexity of the optimum detection increases exponentially with the

value ofM, which is prohibitive for practical application. Following, a sub-optimum fusion rule is

considered, when the MAP is operated after using the EGC to find some desirable candidates. In

brief, when the FC forms the received matrixRRR, EGC fusion rule is first employed to get several

possible estimations (candidates) of the SE’s state. Then the FC makes further decision among

the possible states using the MAP principles. In detail, this sub-optimum fusion rule is stated as

follows.

1. Frequency De-hopping:

D(m⊖al)l = Rml, m = 0, 1, . . . , M − 1, l = 1, 2, . . . , L (3.20)

2. EGC Estimation: After the frequency de-hopping,M decision variables are formed in EGC

principles [116] as

Dm =
L

∑
l=1

Dml, m = 0, 1, . . . , M − 1 (3.21)

3. Identification of candidates: W, W = 1, 2, · · · , M, largest elements of{D0, D1, · · · , DM−1}

are selected and their indexes represent theW possible states of the SE. The set of the possi-

ble states is defined asXW .

4. Detection: Final decision is made according to the optimization:

X̂ = max
X∈XW

{
ML

∑
n=0

P(sssn|X)
M−1

∏
m=0

L

∏
l=1

1

Kml + σ2
exp

(
− Rml

Kml + σ2

)}
(3.22)

From (3.22), it can be seen that the sub-optimum fusion rule needsW × ML tests, in order to

make the final decision, which is still exponential with respect toL. Furthermore, whenW = M,

the sub-optimum fusion rule is the same as the optimum fusionrule. By contrast, in the case

of W = 1, the sub-optimum fusion rule is the same as the conventionalEGC fusion rule, as

optimization of (3.22) is unnecessary.

The computation complexity can be further slightly reducedby reducing the terms involved

in the product, which we refer to as the shrink local decisions aided sub-optimum MAP (SLD-

SMAP) fusion rule. Specifically, with the SLD-SMAP, the FC first derives candidate sates that
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the SE may be at based on the EGC fusion rule. Then, from the received matrixRRR the elements

possibly activated are identified with the aid of a threshold, sayλ, forming a referred matrix̃RRR. If

the value of an element inRRR is higher than the threshold, the corresponding element inR̃RR is set to

one. Otherwise, it is set to zero. In this way, the MAP detection only needs to consider thosesss′ns,

which activate the elements all matching to the nonzero elements inR̃RR. Let the set containing such

sss′ns be expressed asN .

Then the final decision of the SLD-SMAP can be made based on theoptimization problem:

X̂ = max
X∈XW



 ∑

n∈N
P(sssn|X)

M−1

∏
m∈(R̃ml=1)

L

∏
l=1

1

Kml + σ2
exp

(
− Rml

Kml + σ2

)
 (3.23)

From (3.23) we can see that the complexity of the SLD-SMAP is determined by the thresholdλ,

which can be controlled at a reasonable level according to the practical requirements.

3.4 Analysis of FH/MFSK WSNs Characteristics

First, the FH/MFSK WSNs are in favour of employing noncoherent fusion rules. All the fusion

detection schemes described in Section 3.3 are noncoherentdetection schemes, which do not re-

quire to consume extra energy for channel estimation. This energy-efficient and, typically, low-

complexity detection strategies are beneficial to the life-time of battery-powered WSNs. Second,

in our proposed FH/MFSK WSNs, the introduction of FH can improve the achievable diversity

gain. The FH operation makes the component signals combinedat FC become more uncorrelated,

in addition to the uncorrelation introduced by the spatial separation of LSNs. It can be known that

the FH operation turns out to become more important, if LSNs are located close to each other in

space. In this case, signals transmitted by different LSNs may become correlated in space and

full space diversity cannot be guaranteed. Additionally, owing to the employment of noncoher-

ent MFSK and FH, the FH/MFSK assisted WSN can benefit from the embedded advantages of

noncoherent MFSK and FH techniques [116].

In this chapter, three different fusion rules are introduced, including the EGC, ES-EGC and

optimum fusion rules. Among these fusion rules, EGC fusion rule is probably the simplest linear

combining and characterized by the property that all the channels are equally weighted. However,

as the LSNs are not perfect and make erroneous decisions, EGCfusion rule may experience se-
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riously problems from these errors, which may significantlydegrade the detection performance,

when local detections are not reliable. ES-EGC fusion rule can efficiently mitigate the negative in-

fluence generated by the erroneous local decisions. It is also a low-complexity fusion rule. The op-

timum noncoherent fusion rule considered in Section 3.3.3 is derived based on the MAP principle,

which is capable of attaining the optimum performance. However, its complexity is exponentially

dependent the value ofL, which is prohibitive for practical application. In this case, by reducing

the testing spaces, the sub-optimum fusion rule, especially, the SLD-SMAP fusion rule, may have

significantly lower complexity than the optimum fusion rule.

Note that, in the FH/MFSK WSNs, the final achievable detection performance is jointly deter-

mined by the detection performance ofL LSNs and that of FC. If the detection performance of the

L LSNs is poor, the overall achievable detection performancewill probably be poor, even when

the detection at the FC is very reliable. Similarly, the overall achievable detection performance

will become worse, if the detection at the FC becomes less reliable. Hence, when considering the

optimization in FH/MFSK WSNs, the fusion detection and the LSNs’ detection need to be jointly

optimized. However, we note that the optimization issue is beyond the scope of this thesis, which,

however, constitutes one of our future research topics in the context of the FH/MFSK WSNs.

3.5 Analysis of Detection Performance of FH/MFSK WSNs with Sin-

gle SE

From the principles of FH/MFSK WSNs, as shown in the previoussections, we can see that the

overall performance of the FH/MFSK WSNs is effected by both the L LSNs’ detection reliability

and the FC’s detection reliability. In this section, we assume that the error detection probability of

all LSNs are the same and is expressed asPe. Correspondingly, the correct detection probability of

LSNs is expressed asPd, andPd + Pe = 1. Due to the unreliable observations made by LSNs, the

final detection at FC might not be reliable, even though the channel SNR of the wireless channels

from LSNs to FC is sufficiently high. In this case, an error-floor of the detection probability at

FC may be observed. In this section, we first analyse the errorfloor of the detection performance

of the FH/MFSK WSNs with EGC or ES-EGC fusion rule. Then, a lower-bound for the the error

probability of ES-EGC fusion rule over Rayleigh fading channels is investigated.
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3.5.1 Error Floor of EGC Fusion Rule

For convenience of our analysis, it is reasonable to assume that all theL LSNs make their local

decisions independently. Since it is the error-floor that isconsidered, the transmission from LSNs

to FC is assumed to be ideal without introducing errors. Under the EGC principles, when there are

L LSNs and if the transmission from LSNs to FC is ideal, the detection at FC is correct, provided

that more than half of theL LSNs make correct local decisions. Hence, for deriving the error-floor,

we only need to consider the cases that more than half of the LSNs make their local decisions

incorrectly. LetPE(i) denote the erroneous fusion detection probability, when there arei, i =

0, 1, ..., ⌊L/2⌋, LSNs make correct local detections, while the other(L− i) LSNs make erroneous

detections. Here,⌊L/2⌋ denotes the integer smaller or equal toL/2. Then, the average error

classification probability (ECP) at FC can be expressed as

PE =
⌊L/2⌋
∑
i=0

AiPE(i) (3.24)

whereAi is the probability that there arei out of L LSNs make correct detections, which can be

expressed as

Ai =

(
L

i

)
Pi

dPL−i
e (3.25)

Furthermore, among the(L − i) LSNs making erroneous detections, if there are no more than

(i − 1) LSNs choosing the same erroneous state, the fusion detection is still correct when com-

municating over ideal wireless channels. Hence,PE(i) for i = 0, 1, · · · , ⌊L/2⌋ can be expressed

as

PE(i) =
L−i

∑
k=i

(
M − 1

1

)(
1

M − 1

)k (M − 2

M − 1

)L−i−k

(3.26)

where, for simplicity, we assumed that the FC will make an erroneous decision, ifi erroneous

LSNs choose the same state. Upon substituting (3.25) and (3.26) into (3.24), the ECP floor can be

expressed as

PE =
⌊L/2⌋
∑
i=0

L−i

∑
k=i

(
L

i

)
Pi

dPL−i
e

(
1

M − 1

)k−1 (M − 2

M − 1

)L−i−k

(3.27)

Note that, in practice, ifi out of the(L − i) erroneous LSNs choose the same state, the FC will

make a final decision randomly, which results in an error probability of 0.5. However, when the

number of LSNs is big enough, the approximates result of (3.27) is accurate.
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3.5.2 Error Floor of ES-EGC Fusion Rule

Again, we assume thatAi of (3.25) is the probability thati out of theL CRSNs make correct local

decisions and the other(L− i) CRSNs make erroneous local decision. The FC makes an erroneous

decision, when there is at least one undesired row, which contains at leasti entries. Let us consider

the following two cases.

First, when1 ≤ I ≤ ⌊L/2⌋, i.e., when at most half of theL elements are removed from each

of the L rows, the error-floor of the ES-EGC fusion rule can also be expressed as (3.24). In this

case, if0 ≤ i ≤ I, all the i elements in the desired row, which are sent by thei CRSNs making

correct local decisions, are removed. Consequently, we cansimply approximatePE(i) = 1. By

contrast, whenI < i ≤ ⌊L/2⌋, denoting that, after removingI elements from each of theM rows,

there are still(i − I) entries in the desired row. In this case, an error occurs, only if there is at least

a undesired row, which has at least(i − I) nonzero elements, or there are at leasti entries before

the erasure operation. Therefore, we can expressPE(i) for i = I + 1, I + 2, · · · , ⌊L/2⌋ as

PE(i) =
L−i

∑
k=i

(M − 1)

(
1

M − 1

)k (M − 2

M − 1

)L−i−k

(3.28)

Consequently, when considering the above two cases, we have

PE =
I

∑
i=0

(
L

i

)
Pi

dPL−i
e +

⌊L/2⌋
∑

i=I+1

L−i

∑
k=i

(
L

i

)
Pi

dPL−i
e

×
(

1

M − 1

)k−1(M − 2

M − 1

)L−i−k

, 1 ≤ I ≤ ⌊L/2⌋ (3.29)

The second case is when⌊L/2⌋ < I < L, i.e., when more than half of theL elements per row

are removed. Then, ifi ≤ I, we can know that all thei nonzero elements in the desired row will be

removed, yielding an approximate erroneous probabilityPE(i) = 1. By contrast, ifi > I, meaning

that more thanI of the L CRSNs send the FC the correct symbol, the desired row still has (i − I)

nonzero elements. By contrast, all the nonzero elements in the undesired rows are removed, as the

number of nonzero entries in all the undesired rows is less than I. Consequently, the FC always

makes correct decision. Therefore, by considering the above cases, we have

PE =
I

∑
i=0

AiPE(i) =
I

∑
i=0

(
L

i

)
Pi

dPL−i
e , ⌊L/2⌋ < I < L. (3.30)
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3.5.3 Errors Probability of ES-EGC Over Flat Rayleigh Fading Channels

Due to the randomness of the TF-elements activated by erroneous local decisions, there are many

possible combinations required to be considered when analyzing the error performance of the

FH/MFSK WSNs. Furthermore, the erasure operations invokedmake the analysis highly involved,

as the remaining decision variables after the erasure operations become correlated. For this sake, in

this section, we analyse the detection performance of ES-EGC fusion rule with perfect LSNs. This

ECP ( BER) can be viewed as a lower-bound of the ECP ( BER) of theFH/MFSK WSN systems.

Without loss of any generality, we assume that the observed SE belong to statem = 0. In

this case, the elementsDml obey the exponential distribution with the probability density func-

tion (PDF) expressed as [115]

pD0l
(D0l) =

1

1 + γ̄L
exp

(
− D0l

1 + γ̄L

)
, m = 0

pDml
(Dml) =

1

γ̄L
exp

(
−Dml

γ̄L

)
, 1 ≤ m ≤ M − 1 (3.31)

for l = 1, 2, . . . , L, whereγ̄L = γ̄s/L and γ̄s represents the average SNR per symbol. For con-

venience, let us combine above two equations into one by introducingγ̄m = 1 + γ̄L for m = 0

and, otherwise,̄γm = γ̄L. In this case, the cumulative distribution function (CDF) of Dml can be

expressed as [115]

PDml
(Dml) =1 − exp

(
−Dml

γ̄m

)
, 0 ≤ m ≤ M − 1 (3.32)

As discussed previously in Section 3.3.2, in the ES-EGC fusion rule, I (I < L) largest TF

elements are deleted from each of theM rows of DDD. This process is equivalent to ordering the

elements of each row from the maximum to the minimum and, then, deleting theI largest, forming

the decision matrix̄D̄D̄D. Correspondingly, the decision variables of the ES-EGC canbe written as

D̄m =
L

∑
l=I

D̄ml, m = 0, 1, . . . , M − 1 (3.33)

Furthermore, after the ordering, the elements are no long independent and identically distributed

(iid). Instead, the PDF of thelth, l ≥ I, largest in rowm of D̄̄D̄D is given by

pD̄ml
(D̄ml) =

l!

(l − 1)!(L − l)!
PDml

(Dml)
L−l [1 − PDml

(Dml)]
l−1pDml

(Dml) (3.34)

where the PDFpDml
(Dml) and CDFPDml

(Dml) are given in (3.31) and (3.32), respectively.
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In order to derive the error probability of the ES-EGC scheme, first, we need to derive the PDF

of D̄m for m = 0, 1, . . . , M − 1. In this section, we derive the PDFs with the aid of the moment

generating function (MGF) [129]. The MGF of the decision variable D̄m can be expressed as

MD̄m
(s) = ED̄m

[exp (sD̄m)]

= ED̄mN,D̄m(N+1),...,D̄m(L)

[
exp

(
s

L

∑
l=N

D̄ml

)]
(3.35)

whereE [·] denotes the expectation operation with respect to the distributions of D̄mN, D̄m(N+1),

. . . , D̄m(L). However, due to the dependence ofD̄mN, D̄m(N+1), . . . , D̄m(L), the MGF of (3.35) is

unable to be directly derived. For solving this dilemma, theSukhatme’s approach [161] is intro-

duced. Let us define the transforms

Xmn , D̄m(I−1+n) − D̄m(I+n), n = 1, 2, · · · , L − I − 1

Xm(L−I) , D̄m(L) (3.36)

whereXmn ≥ 0, as the elements in each row ofD̄̄D̄D are arranged in decreasing order. Then, we have

D̄m =
L

∑
l=I

D̄ml =
L−I

∑
n=1

nXmn (3.37)

According to [161], the random variablesXmn, n = 1, 2, · · · , L − I are independent random

variables following the exponential distributions

pXmn(xn) =
I + n

γ̄m
exp

[
− xn(I + n)

γ̄m

]
, xn ≥ 0, n = 1, 2, · · · , L − I (3.38)

Hence, when substituting (3.37) into (3.35), we can expressthe MGF of the decision variablēDm

as

MD̄m
(s) = EXm1,Xm2,...,Xm(L−I)

[
exp

(
s

L−I

∑
n=1

nXmn

)]

=
L−I

∏
n=1

∞∫

0

esnxn pXmn (xn) dxn (3.39)

Upon substituting (3.38) into the above equation, we obtain

MD̄m
(s) =

L−I

∏
n=1

∞∫

0

esnxn
I + n

γ̄m
e−

xn(I+n)
γ̄m dxn

=
L−I

∏
n=1

(
I + n

I + n − nγ̄ms

)
(3.40)
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From the definitions of the MGF and the Laplace transform, we can readily know that the Laplace

transform of the PDF of̄Dm is given by

LD̄m
(s) = MD̄m

(−s)

=
L−I

∏
n=1

(
I + n

I + n + nγ̄ms

)

=
L−I

∏
n=1

(
1

1 + nγ̄m

I+n s

)
(3.41)

Finally, with the aid of the residue theorem [162] for the inverse Laplace transform, the PDF ofD̄m

can be expressed in closed form as

pD̄m
(zm) =

L−I

∑
n=1

S(L, I, n)
I + n

nγ̄m
exp

(
− I + n

nγ̄m
zm

)
, m = 0, 1, . . . , M − 1 (3.42)

where, by definition,S(L, I, n) = ∏
L−I
u=1,u 6=n

n(I+u)
n(I+u)−u(I+n)

. Note that, (3.42) is not suitable for the

case ofI = 0. WhenI = 0, the problem is reduced to the conventional one and the corresponding

PDF can be found from many text books, such as from [115]. From(3.42), we can readily obtain

the CDF ofD̄m, which is

PD̄m
(zm) =

L−I

∑
n=1

S(L, I, n)

(
1 − exp

(
− I + n

nγ̄m
zm

))
, m = 0, 1, . . . , M − 1 (3.43)

When given the PDFs and CDFs of the decision variablesD̄m for m = 0, 1, . . . , M − 1, the

ECP of the FH/MFSK WSNs employing the ES-EGC can be derived from the formula [115]

PE =1 −
∞∫

0

pD̄0
(z0)




z0∫

0

pD̄1
(z1)dz1




M−1

dz0

=1 −
∞∫

0

pD̄0
(z0)

[
PD̄1

(z0)
]M−1

dz0 (3.44)

After substitutingpD̄m
(zm) of (3.42) withm = 0 andPD̄m

(zm) of (3.43) withm = 1 into the above

equation and completing the second integration, we can express of the ECP as

PE = 1−
∞∫

0

L−I

∑
n=1

S(L, I, n)
I + n

n(1+ γ̄L)
exp

(
− I + n

n(1 + γ̄L)
z0

)

×
[

L−I

∑
m=1

S(L, I, m)

(
1 − exp

(
− I + m

mγ̄L
z0

))]M−1

dz0 (3.45)

whereγ̄0 = 1 + γ̄L andγ̄1 = γ̄L were used.
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Additionally, upon following [115], an union-bound for theECP of (3.44) can be obtained,

which can be expressed as

P
(U)
E = (M − 1) P (D̄1 > D̄0)

= (M − 1)

∞∫

0

pD̄1
(z1)PD̄0

(z1)dz1

= (M − 1)

∞∫

0

L−I

∑
n=1

S(L, I, n)
I + n

nγ̄L
exp

(
− I + n

nγ̄L
z1

)

×
[

L−I

∑
m=1

S(L, I, m)

(
1 − exp

(
− I + m

m(1 + γ̄L)
z1

))]
dz1 (3.46)

Upon completing the integration and after some arrangement, we arrive at

P
(U)
E = (M − 1)

L−I

∑
n=1

L−I

∑
m=1

S(L, I, n)S(L, I, m)

×
[

1 −
(

1 +
n(I + m)γ̄L

m(I + n)(1 + γ̄L)

)−1
]

(3.47)

Finally, when assuming that theM possible symbols are transmitted with the same probability,

the BER of the FH/MFSK WSNs using ES-EGCD can be evaluated from the formula [115]

PB =
M

2 (M − 1)
PE and P

(U)
B =

M

2 (M − 1)
P
(U)
E (3.48)

3.6 Simulation Results and Analysis

In this section, the simulation results for the error performance of our FH/MFSK WSNs are depicted

and analysed. The ECP performance of the FH/MFSK WSNs is investigated, when assuming that

signals observed by LSNs are only disturbed by Gaussian noise, while the channels from LSNs to

FC are AWGN or Rayleigh fading channels. Some ECP performance evaluated from the analytical

formulas is also shown and compared with the simulation results. Additionally, some comparison

on the detection performance of the various fusion rules is carried out.

Fig. 3.2 depicts the ECP performance of the FH/MFSK WSNs employing EGC or ES-EGC

fusion rule, when operated over AWGN (Fig. 3.2a) or Rayleighfading channels (Fig. 3.2b). The

local detection probability of each LSN is set asPd = 0.95, and I = 1 erasure is used in the ES-

EGC fusion rule. The main objective of Fig. 3.2 is to investigate the impact of the number of LSNs

on the achievable ECP performance of the FH/MFSK WSNs. From Fig. 3.2, we observed that both
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Figure 3.2: ECP versus channel SNR per bit performance of theFH/MFSK WSNs, when

the WSN employs various number of LSNs withPd = 0.95, when communicating over

AWGN or Rayleigh fading channels.
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the channel SNR and the number of LSNs have significant influence on the detection performance

of the FH/MFSK WSN systems. As shown in Fig. 3.2, when communicating over Rayleigh fading

channels, the FH/MFSK WSN system needs a higher channel SNR LSNs to achieve a similar

overall ECP performance achieved in AWGN channels. When thenumber of LSNs is not enough,

as seen in Fig. 3.2, error-floor are observed.

As shown in Fig. 3.2, when the channel SNR is sufficiently high, the ECP performance of

the FH/MFSK WSN improves, as the WSN employs more LSNs for attaining the space diversity.

However, when the channel SNR is not relatively low, using more LSNs may result in degraded

ECP performance, which is due to the fact that the total energy for transmission by all the LSNs is

a constant and that more errors occur at the LSNs. Furthermore, from Fig. 3.2 we can see that the

ES-EGC fusion rule outperforms the EGC fusion rule in both the AWGN channels and Rayleigh

fading channels, provided that channel SNR is sufficiently high, make the wireless channels are

reasonably reliable.

In Fig. 3.3, we illustrate the effect of the value ofM on the ECP performance of the FH/MFSK

WSN supportingK = 1 SE usingL = 8 LSNs with Pd = 0.95, when communicating over either

AWGN channels (Fig. 3.3a) or Rayleigh fading channels (Fig.3.3b). In the ES-EGC, the number

of the erased entry per row is set asI = 1. As shown in Fig. 3.3, increasing the value ofM

improves the overall detection performance of the FH/MFSK WSN systems when either EGC or

ES-EGC fusion rule is employed. The ES-EGC fusion rule outperforms the EGC fusion rule for

both AWGN channels and Rayleigh fading channels, provided that the channel SNR is reasonable

high. As shown in Fig. 3.3(b), when Rayleigh fading channelsare assumed between LSNs and

FC, the erasure operation is not effective for the improvement of the overall detection performance

when the channel SNR is below 10 dB per bit. In fact, if the channel SNR is too low, erasure

operation may even degrade the detection performance of theFH/MFSK WSN. This is because,

although invoking the erasure operation is capable of mitigating interference, it however reduces

the diversity order and the energy for detection. As shown inFig. 3.3(a) and Fig. 3.3(b), when the

value of M increases, significant improvement of the detection performance is possible for both

AWGN channels and Rayleigh fading channels, provided that the channel SNR is high enough.

When comparing Fig. 3.3(a) and Fig. 3.3(b), we can see that the FH/MFSK WSN over Rayleigh

fading channels achieves much worse detection than over AWGN channels.
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Figure 3.3: ECP versus channel SNR per bit performance of theFH/MFSK WSNs, when

the WSN employsL = 8 LSNs withPd = 0.95 over AWGN or Rayleigh fading channels.
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Figure 3.4: ECP versus channel SNR per bit performance of theFH/MFSK WSN sup-

portingK = 1 SE withM = 16 states, when the WSN employsL = 8 LSNs with various

detection performance over AWGN or Rayleigh fading channels.
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Fig. 3.6 shows the ECP performance of the FH/MFSK WSN employing L = 8 LSNs monitor-

ing K = 1 SE with M = 16 states (hypotheses). Two different fusion rules are considered, which

are the EGC and ES-EGC fusion rules. From the simulation results shown in Fig. 3.6, we can

explicitly observe that both the LSN’s reliability and the channel SNR have strong impact on the

overall achievable detection performance of the FH/MFSK WSN over either AWGN or Rayleigh

fading channels. From Fig. 3.6(a), we can see that the overall detection performance degrades, as

the correct detection probabilityPd of the LSNs decreases. Furthermore, error floors can be clearly

seen in Fig. 3.6(a) or Fig. 3.6(b), which is because of the errors generated at the LSNs. Again, in

general, the ES-EGC fusion rule outperforms the EGC fusion rule, provided that the channel SNR

is sufficiently high, making the interference dominating the performance. Note that, when the local

detection probabilityPd = 1, i.e., when there are no errors in the detection at the LSNs, the erasure

operation will remove some useful information, making the detection performance of the ES-EGC

fusion rule worse than that of EGC fusion rule.
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Figure 3.5: ECP versus channel SNR per bit performance of theFH/MFSK WSNs, when

L = 10 LSNs are employed to monitorK = 1 SE with M = 4 states, when communicat-

ing over Rayleigh fading channels.

Fig. 3.5 shows the ECP performance of the FH/MFSK WSN supporting K = 1 SE withM = 4

states (hypotheses), where three different fusion rules, including the EGC, SLD-SMAP and the

ES-EGC are considered. In the context of the SLD-SMAP fusionrule, the number of possible

states based on EGC fusion rule is set asW = 2 and the threshold is set asλ = 0.45. For the
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ES-EGC,I = 1 entry is removed from each of the rows. From the simulation results we can see

that increasing LSN’s reliability or channel SNR improves the overall detection performance of the

FH/MFSK WSN. In general, the proposed ES-EGC fusion rule yields the best ECP performance

among these fusion rules. The SLD-SMAP achieves a slightly better ECP performance than the

EGC fusion rule over the channel SNR range considered, but atthe expense of higher complexity.

In Fig. 3.6, the ECP versus channel SNR performance of the FH/MFSK WSN systems is in-

vestigated with respect to various values ofM and I. The ES-EGC fusion rule is applied at the

FC. In Fig. 3.6, the simulation results, theoretical results, as well as the theoretical upper-bound

are detailed. Note that, the theoretical results and the upper-bounds were evaluated using (3.45)

and (3.47), respectively. As shown in Fig. 3.6, the theoretical results match well with the simula-

tion results forM = 2, 4, 8 andI = 1, 2, 3. According to our discussion in Section 3.5, the upper

bound equals to the exact detection performance, whenM = 2. By contrast, a gap between the up-

per bound and the exact performance is observed whenM = 4. Moreover, this gap becomes larger,

whenM is increased to8. Our simulation results also show that the proposed ES-EGC achieves the

lowest ECP, whenI = 1. Increasing the value ofI does not make the detection performance better,

but worse. Additionally, from Fig. 3.6, we can see that the upper bound converges to the exact ECP

performance, as the channel SNR increases.

3.7 Conclusions

In this chapter, a FH/MFSK WSN framework has been proposed, which monitors anM-ary SE

whose states are conveyed to the FC with the aid of FH/MFSK scheme. The FH technique has

been introduced to enhance the diversity gain, especially in the case that the LSNs are close to each

other, resulting in that their channels to the FC are correlated. The MFSK modulation scheme is

employed in favour of noncoherent detection for implementing low-complexity detection. In this

chapter, three different noncoherent fusion rules have been considered for fusion detection, which

include the EGC, ES-EGC and optimum fusion rules. The error performance of the FH/MFSK

WSN has been investigated, when the channels from LSNs to FC are AWGN or Rayleigh fading

channels. Our studies and performance results show that, when the LSN’s detection is unreliable,

and the channel SNR is relatively high, the ES-EGC fusion rule may significantly outperform the
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Figure 3.6: ECP versus channel SNR per bit performance of theFH/MFSK WSN with the

ES-EGC fusion rule, when communicating over Rayleigh fading channels.



3.7. Conclusions 72

EGC fusion rule. Therefore, the ES-EGC fusion rule is robustto the errors made by LSNs. By

contrast, when the detection at LSNs is highly reliable, making the channel noise dominate the

FC’s detection performance, then, we may simply use the EGC fusion rule. In fact, the ES-EGC

fusion rule may be regarded as an extension of the EGC fusion rule, the number of erasures per row

may be determined according to the specific environment where the FH/MFSK WSN is deployed.

Our optimum fusion rule has been derived based on the MAP principles. As the optimal MAP

fusion rule has extremely high complexity, sub-optimum MAPfusion rule and SLD-SMAP fusion

rule have been discussed in Section 3.3.3. These sub-optimum fusion rules have relatively lower

complexity than the optimum MAP fusion rule.

Our studies in this chapter show that, our proposed FH/MFSK WSN is capable of achieving

promising detection performance for reasonable system setting. However, the achievable detection

performance of the FH/MFSK WSN is jointly determined by manyfactors, including, such as the

detection performance of LSNs, the number of LSNs, the number of states of each SE, the wireless

channels between LSNs and FC, etc. Apart from the above factors, the computation complexity and

signal processing delay should also be jointly considered,when optimizing the overall performance

of the FH/MFSK WSNs.



Chapter 4
Noncoherent Detection in FH/MFSK

WSN Monitoring Multiple Events

4.1 Introduction

In this chapter, we consider a triple-layer WSN, which uses anumber of LSNs to simultaneously

monitor multiple SEs of each having multiple states. By contrast, in Chapter 3 as well as in lit-

erature [10, 74–76, 79–82, 163–165], the WSNs monitoring only single SE are usually addressed.

In our WSN, the frequency-hopping andM-ary frequency-shift keying (FH/MFSK) techniques are

employed for transmitting signals from LSNs to FC. Here the FH/MFSK is employed, in order to

support multiple SEs, to achieve noncoherent classification at FC as well as to enhance the diversity

performance of fusion detection.

It is well-known that EGC is a typical fusion rule for noncoherent detection, and it has low-

complexity and low detection delay [115, 116]. Furthermore, the EGC fusion rule is optimum for

noncoherent detection over the fading channels only experiencing Gaussian noise [115]. However,

it is a very deficient scheme for signal detection over interference channels. In the FH/MFSK WSN

considered in this chapter, there are possibly two types of interference, in addition to background

Gaussian noise. First, a LSN may make erroneous classifications about the states of SEs. In this

case, the corresponding LSN will transmit interference to its FC, instead of conveying positive

information to the FC for enhancing the fusion detection. Second, the FH/MFSK signals trans-

mitted by the LSNs for conveying the state information of multiple SEs may interfere with each
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other, yielding the so-called multiple event interference(MEI), in parallel with the terminology of

multiuser interference (MUI) used, for example, in code-division multiple-access (CDMA) sys-

tems [166]. Note that, in this chapter, we choose iterative interference cancellation (IIC) instead of

parallel interference cancellation (PIC) to suppress the MEI because of the following main reasons.

First, PIC approach cause a rather inefficient reception performance as it is suceptible to errors

and the probability for inaccurate detection is quite high [167]. Second, PIC requires precious

hardware gear in order to operate in parallel. which makes itunprofitable for numerous practical

implementations [168,169].

In order to improve the fusion detection performance of the FH/MFSK WSN, in this chapter, we

propose and investigate five noncoherent fusion rules, in addition to the conventional EGC, which

is considered here as a benchmark. Specifically, we first investigate the novel low-complexity fu-

sion rule, namely the erasure-supported equal gain combining (ES-EGC) fusion rule proposed in

Chapter 3, in the scenario of supporting multiple SEs. Our studies show that the ES-EGC is a highly

efficient fusion rule, which has a similar complexity as the conventional EGC. However, it is capa-

ble of achieving much better error performance than the conventional EGC. Furthermore, although

it is a single-user fusion rule1, it employs the capability to effectively mitigate the MEI.Then, by

combining and extending the conventional EGC, the ES-EGC aswell as the multiuser iterative

interference cancellation (IIC) [170] schemes, four multiuser fusion rules are proposed and investi-

gated associated with the FH/MFSK WSN. Specifically, the four multiuser fusion rules are named

respectively as the EGC assistedN-order IIC (EGC-NIIC), ES-EGC assistedN-order IIC (ES-

EGC-NIIC), EGC assistedρ-fraction IIC (EGC-ρIIC) as well as the ES-EGC assistedρ-fraction

IIC (ES-EGC-ρIIC). In this chapter, the complexity of the considered fusion rules is analyzed. The

error performance of the FH/MFSK WSN associated with various fusion rules is investigated by

simulations, when assuming that the communication channels from LSNs to FC experience inde-

pendent Rayleigh fading. Our studies and performance results show that, in general, the ES-EGC

related fusion rules outperform the corresponding EGC related fusion rules. Furthermore, in some

cases, the single-user ES-EGC fusion rule may even achieve better error performance than the mul-

tiuser EGC-NIIC and multiuser EGC-ρIIC fusion rules, which have much higher complexity than

1Single-user fusion rules are referred to as the fusion ruleswhich detect one SE without making use of any information

about the other SEs. By contrast, multi-user fusion rules are those fusion rules which detect one SE with the aid of partial

or full information about the other SEs.
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the ES-EGC fusion rule.

The reminder of this chapter is organized as follows. In Section 4.2, we describe the framework

of the proposed FH/MFSK WSN, where the SEs and sensor processing are addressed. Section 4.3

details the operations of the six fusion rules. Section 4.4 considers the complexity of the six fusion

rules. In Section 4.5, we discuss the characteristics of theFH/MFSK WSN, while in Section 4.6,

we provide a range of performance results obtained by simulations. Finally, in Section 4.7, our

conclusions are stated.

4.2 System Description
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Figure 4.1: Triple-layer system model for the WSNs observing K source events withM

states, where information is transmitted to the fusion center based on FH/MFSK scheme.

The framework for our triple-layer FH/MFSK WSN monitoring multiple SEs is shown in

Fig. 4.1. In this FH/MFSK WSN, we assume that there areK SEs, each of which may be at

one of theM possible states (hypotheses). TheK SEs are simultaneously monitored byL number

of LSNs. We assume that every LSN is capable of simultaneously observing theK SEs without

observation interference. In fact, we can view that each LSNconsists ofK sub-sensors, each of
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which monitors one SE. TheseK sub-sensors share one common wireless transmitter to send their

decisions to the FC. Explicitly, this system arrangement has some advantages, including that: (a)

the number of LSNs does not increase with the number of SEs being monitored and, hence, the

system may not need to use a big number of LSNs, even when thereare many SEs; (b) owing to

using a relatively low number of LSNs, synchronization among the LSNs may become relatively

easy. From Fig. 4.1, we can see that local decisions are made at the L LSNs in the context of the

K SEs. Then, the operations of FH and MFSK are carried out to transmit the local decisions to the

FC with the aid of the unique FH addresses assigned to the different LSNs for theK SEs. Finally,

at the FC, the received signals are detected noncoherently under different fusion rules. Below, we

provide further details about the SEs as well as the operations carried out at the LSNs and FC.

4.2.1 Source Event

In practice, the SEs to be monitored are usually analog signals. For convenience of processing, they

are usually digitalized to finite states. In this section, weassume that each of the SEs hasM states

corresponding toM hypotheses, expressed asH0, H1, . . . , HM−1, as shown in Fig. 4.1. Each of the

observed SEs has various number of states with different probability. In this chapter, for convince

of our analyse, we assume that all the SEs haveM states and each of theM states of a SE has

the same probability to present. In Fig. 4.1, theK SEs are observed by a totalL number of LSNs

and every LSN monitors simultaneously all theK SEs. Furthermore, we assume that theK SEs are

independent and there is no interference among the observations of a LSN.

4.2.2 Sensor Processing

At a LSN, such as thelth LSN, the observation obtained from thekth SE is denoted byrk,l, as

seen in Fig. 4.1. Based onrk,l, the lth LSN first makes a local decision about the state that the

kth SE is currently at, and this state is expressed assk,l , sk,l ∈ {0, 1, . . . , M − 1}. We assume

that the erroneous and correct detection probabilities with respect to theK LSNs are the same and

are expressed asPe and Pd = 1 − Pe, respectively. Furthermore, we assume that, whenever an

erroneous decision is made, the erroneous state estimated by a LSN has the same probability to be

any of the(M − 1) erroneous states.
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Let us collect theK estimates of LSNl into the vectorsssl = [s1,l , s2,l, · · · , sK,l ]
T. Furthermore,

let

SSS = [sss1 sss2 · · · sssL] (4.1)

which collects the local decisions of theK SEs made by theL LSNs. Hence,SSS is an (K × L)

matrix. As shown in Fig. 4.1, following the detection of the SEs, the LSNs convey their decisions

to the FC based on the FH/MFSK principles, which are operatedas follows.

Let the symbol duration be expressed asTs, which is divided intoL chips of durationTh =

Ts/L. Within every symbol duration ofTs, the L LSNs send their corresponding local decisions

of the K SEs to the FC with the aid of the FH/MFSK technique, one LSN uses one of theL

chips to transmit theirK decisions. We assume that the FH/MFSK WSN system has in totalM

orthogonal frequency bands, whose center frequencies formthe setF = { f0, f1, . . . , fM−1}. These

M frequencies are used for both the FH and MFSK modulation in the principles of fast frequency-

hopping (FFH) [171, 172]. Specifically, let the FH address assigned for transmission of thekth

SE’s state be expressed asaaak = [ak,1, ak,2, . . . , ak,L]
T, whereak,l is an element in the Galois field

GF(M), i.e.,ak,l ∈ GF(M). Based onaaak for k = 1, 2, . . . , K, we form a matrix

AAA = [aaa1 aaa2 · · · aaaK]
T (4.2)

Then, the FH operations in the context of theK SEs and theL LSNs can be represented as

MMM = [mmm1 mmm2 · · · mmmL] = SSS ⊞ AAA (4.3)

wheremmml = [m1,l m2,l · · · mK,l]
T , l = 1, 2, . . . , L, andSSS ⊞ AAA carries out the element-wise ad-

dition of SSS and AAA in GF(M), yielding thatmi,j = Si,j ⊕ Ai,j with ⊕ representing the addition

operation inGF(M). Explicitly, we havemi,j ∈ GF(M), which is suitable for MFSK modulation

by mappingmi,j to the frequencyfmi,j
. Let us express the corresponding frequencies for transmis-

sion ofMMM as

FFF(MMM) =




fm1,1
fm1,2

· · · fm1,L

fm2,1
fm2,2 · · · fm2,L

...
...

. . .
...

fmK,1
fmK,2

· · · fmK,L




(4.4)
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where thelth column contains the frequencies to be transmitted withinthe lth chip-duration by the

lth LSN. Consequently, based on the principles of MFSK, the signal transmitted by thelth LSN for

thekth SE during theith symbol-durationiTs < t ≤ (i + 1)Ts can be expressed in complex form

as

s̃k,l(t) =
√

PψTh
(t − iTs − [l − 1]Th) exp

(
j2π[ fc + fmk,l

]t + jφk,l

)
,

k = 1, 2, . . . , K; l = 1, . . . , L (4.5)

whereP denotes the transmission power, which is assumed the same with respect to all theL LSNs

andK SEs, fc is the main carrier frequency andφk,l is the initial phase introduced by the carrier

modulation. In (4.5),ψTh
(t) is the pulse-shaped signaling waveform, which is defined over the

interval [0, Th) and satisfiesT−1
h

∫ Th

0 ψ2(t)dt = 1.

We assume that theM frequencies used by the FH/MFSK WSN are sufficiently separated, re-

sulting in that each of them experiences independent flat Rayleigh fading. Then, the signal received

by the FC from thelth LSN duringiTs < t ≤ (i + 1)Ts can be expressed as

rl(t) =
K

∑
k=1

hk,l s̃k,l(t) + nl(t)

=
K

∑
k=1

√
Phk,lψTh

(t − iTs − [l − 1]Th) exp(j2π[ fc + fmk,l
]t + jφk,l) + nl(t),

l = 1, . . . , L, (4.6)

wherehk,l denotes the channel gain corresponding to the MFSK frequency band activated for the

kth SE by thelth LSN,hk,l obeys the complex Gaussian distribution with zero mean and avariance

of 0.5 per dimension. Furthermore, in (4.6),nl(t) represents the Gaussian noise process presenting

at the fusion center, which has zero mean and a single-sided power-spectral density (PSD) ofN0

per dimension.

4.3 Signal Detection at Fusion Center

In the FH/MFSK WSN monitoring multiple SEs, as seen in Fig. 4.1, the signals for conveying the

states of different SEs may interfere with each other, generating the so-called multi-event interfer-

ence (MEI) [116]. The MEI may significantly degrade the detection performance, if it is not treated
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properly. In this chapter, some existing and proposed low-complexity noncoherent fusion rules are

studied and compared. Specifically, the following six noncoherent fusion rules are considered:

1. EGC [75,76,79]: Equal gain combining;

2. ES-EGC: Erasure-supported equal gain combining;

3. EGC-NIIC: Equal gain combining assistedN-order iterative interference cancellation;

4. ES-EGC-NIIC: Erasure-supported equal gain combining assistedN-order iterative interfer-

ence cancellation;

5. EGC-ρIIC: Equal gain combining assistedρ-fraction iterative interference cancellation;

6. ES-EGC-ρIIC: Erasure-supported equal gain combining assistedρ-fraction iterative interfer-

ence cancellation.

Note that, in the above list, the conventional EGC rule is used as a benchmark, in order to

illustrate the advantages and disadvantages of the other five proposed fusion rules. The conventional

EGC fusion rule [75, 76, 79] is the simplest but experience severe MEI. The other five fusion rules

are proposed in order to mitigate, more or less, the negativeinfluence of MEI. The principles of

these noncoherent fusion rules will be detailed in the following subsections.

In our FH/MFSK WSN, the FC starts the detection by forming a time-frequency matrixRRR

of (M × L)-dimensions based on the observations extracted from the signals received from the

L number of LSNs. Specifically, when the square-law noncoherent detection is considered, the

elements ofRRR have the values

Rml =

∣∣∣∣
1√

ΩPTh

∫ iTs+lTh

iTs+(l−1)Th

rl(t)ψ
∗
Th
(t − iTs − [l − 1]Th) exp(−j2π[ fc + fm]t)dt

∣∣∣∣
2

, (4.7)

wherem = 0, 1, . . . , M − 1 and l = 1, 2, . . . , L, andΩ = E[|hk,l |2] denotes the channel power.

Since it has been assumed that theM number of frequency bands invoked are orthogonal to each

other, there is no interference between two different frequency bands. Consequently, upon substi-

tuting (4.6) into (4.7) and absorbing the carrier phaseφk,l into hk,l, we obtain

Rml =

∣∣∣∣∣
K

∑
k=1

µk,mlhk,l√
Ω

+ Nml

∣∣∣∣∣

2

, m = 0, 1, . . . , M − 1; l = 1, 2, . . . , L (4.8)
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where, by definition,µk,ml = 1, if m = mk,l, while µk,ml = 0, if m 6= mk,l. Let us assume that, for

a given set of transmitted symbols of theK SEs, the number of SEs activating the(m, l)th element

of RRR is Kml (0 ≤ Kml ≤ K). Then, (4.8) can also be written as

Rml =

∣∣∣∣∣
Kml

∑
k=1

hk,l√
Ω

+ Nml

∣∣∣∣∣

2

, m = 0, 1, . . . , M − 1; l = 1, 2, . . . , L (4.9)

In (4.8) and (4.9),Nml represents a complex Gaussian noise sample in terms of themth frequency

band and thelth time-slot, which is given by

Nml =
1√

ΩPTh

∫ iTs+lTh

iTs+(l−1)Th

nl(t)ψ
∗
Th
(t − iTs − [l − 1]Th) exp(−j2π[ fc + fm]t)dt (4.10)

It can be shown thatNml has mean zero and a variance ofLN0/(ΩEs) = L/γ̄s, whereEs = PTs

represents the total energy for transmitting oneM-ary symbol, whileγ̄s = ΩEs/N0 denotes the

average SNR per symbol. Note that, asTh = Ts/L, the transmitted energy for a SE’s state by one

LSN is Eh = Es/L.

As an example, the time-frequency matrixRRR for a FH/MFSK WSN usingL = 6 LSNs to

monitorK = 2 SEs ofM = 8 states is given by

RRR =




© �

�

©

©

�

� ©

�

© �




(4.11)

where the empty entries contain only noise, while the markedentries include both signals and

noise. For the sake of illustration, in (4.11), the elementswith ‘�’ are activated for conveying the

state of the first SE, while that with ‘©’ correspond to the second SE. Furthermore, for (4.11), we

assumed that the states of the two SEs were5, 3 and that there were no observation errors. The

corresponding FH addresses wereaaa1 = [4, 3, 7, 6, 2, 5], aaa2 = [2, 4, 6, 3, 1, 7] .

Note that, in the FH/MFSK WSN scheme, there exist the cases that a given LSN activates the

same MFSK frequency for transmitting the states of two or more SEs. In this case, as shown in (4.5),
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there will be several terms having the same MFSK frequency and the same initial carrier phase.

Consequently, for the elementRml in (4.8) corresponding to this frequency, there will be several

mk,l ’s, which makeµk,ml = 1 but correspond to the same value for theirhk,l ’s. This phenomenon

can also be seen in (4.11), where the element marked as ‘� ’ conveys the information of both the

first and second SEs.

Based on the time-frequency matrixRRR, the FC then carries out the required processing and

makes the final detection based on one of the six proposed fusion rules, which are now detailed as

follows.

4.3.1 Equal Gain Combining (EGC)

In the context of the EGC fusion rule [116], the FC detects thekth SE’s state by first carrying out

the frequency de-hopping to form a detection matrixDDDk as

DDDk = RRR ⊟ (111 ⊗ aaaT
k ), k = 1, 2, . . . , K (4.12)

where111 denotes an all-one column vector ofM-length and⊗ denotes the Kronecker product oper-

ation between two matrices [116]. In (4.12), the operation of AAA ⊟BBB shifts the elements inAAA based

on the values provided byBBB. Specifically, after the operation in (4.12), we have

Dk,m⊖ak,l,l = Rml, m = 0, 1, . . . , M − 1; l = 1, . . . , L (4.13)

where⊖ is the subtraction operation inGF(M). In other words, the(m, l)th element inRRR is

mapped to the(m ⊖ ak,l , l)th element inDDDk, after the frequency de-hopping operations of (4.12).

Based on (4.12), the EGC fusion rule then forms theM decision variables for detection of the

kth SE’s state, which are given by

Dk,m =
L

∑
l=1

Dk,ml, m = 0, 1, . . . , M − 1 (4.14)

for k = 1, 2, . . . , K. Finally, for each ofk = 1, 2, . . . , K, the largest one of{Dk,0, Dk,1, . . . , Dk,M−1}

is selected and, correspondingly, them index with the value in{0, 1, . . . , M − 1} represents the

estimate of the state that thekth SE is currently at.

Fig 4.2 shows the operations of the EGC detection in correspondence to the example having

the received matrixRRR of (4.11). After frequency de-hopping of the received matrix RRR using the FH
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Figure 4.2: An example showing the EGC processing, where squares and circles represent

the elements actived by SE 1 and 2, respectively.

addressaaa1, we obtain the detection matrixDDD1 for SE 1. Based onDDD1, M decision variables are

formed in the EGC principles as shown in (4.14). Then, the largest one of theM decision variables

is chosen and, correspondingly, its index represents the detection of the state of SE 1. When the FC

makes a correct decision, an estimation ofŝ1 = 5 is estimated. Similarly, the state of SE2 can be

detected.

The EGC fusion rule is a linear noncoherent fusion rule, which has very low-complexity. How-

ever, the EGC fusion rule may experience severe MEI, the amount of which is dependent on the

FH addresses employed and the number of SEs. The error performance of the EGC fusion rule

is sensitive to the MEI and may significantly degrade as the number of SEs increases. Below we

consider a range of fusion rules, which have certain capability to mitigate MEI. Let us first describe

the ES-EGC fusion rule, which is a single-user noncoherent fusion rule with low-complexity, but

is capable of efficiently mitigating MEI.

4.3.2 Erasure-Supported Equal Gain Combining (ES-EGC)

From 4.3.1, we can see that, when the LSNs observe the SEs’ states without errors, there is a full

row with its entries containing both signal and noise. This row is the desired row, corresponding

to the desired state of the being detected SE. By contrast, inthe (M − 1) interfering rows, there

are only a few of entries containing both signal and noise, while the other entries contain only

noise. Furthermore, in the(M − 1) interfering rows, the entries containing both signal and noise



4.3.2. Erasure-Supported Equal Gain Combining (ES-EGC) 83

are distributed in a random way over the(M − 1)L entries. Straightforwardly, if the SNR per

symbol is sufficiently high, we can believe that the entries containing both signal and noise should

in general have relatively higher power than those containing only noise. Based on this observation,

in the detection matrix, such asDDD1 shown in Fig 4.2, if a given number of entries having the highest

values are removed from each of theM rows , the removed entries will most probably contain both

signal and noise. As the result, the rest entries of the desired row still contain both signal and noise,

while, in the interfering rows, the number of entries containing both (interfering) signal and noise

may be significantly reduced, which in turn reduces the MEI. Our ES-EGC fusion rule is based on

the principles as above discussed.

Explicitly, the ES-EGC fusion (or detection) rule is a single-user fusion rule. However, as our

simulation results in Section 4.6 show, it is a high-efficiency fusion rule, which, for some cases, may

achieve even better error performance than some of the noncoherent multiuser fusion rules [116].

Interestingly but unfortunately, in the long history of noncoherent detection, especially, for the

noncoherent multiuser systems, such a simple detection principle has not been realized.

Note furthermore that, for the FH/MFSK WSN, the ES-EGC fusion rule is capable of providing

performance improvement, even when single SE is monitored,as evidenced by our simulations

results in Chapter 3 as well as in Section 4.6.

The ES-EGC fusion rule starts with the same operations as theEGC fusion rule. First, for

the kth SE, the FC removes the FH imposed by theL LSNs by carrying our the frequency de-

hopping operation, as shown in (4.12), yielding the detection matrixDDDk. After obtainingDDDk, the

ES-EGC fusion rule carries out the erasure operations. Specifically, in each of theM rows ofDDDk,

I (0 ≤ I < L) elements corresponding theI largest values are replaced by the value of zero. Let

us denote the modified detection matrix after the erasure operation by D̄DDk. Then, based on this

modified detection matrix,M decision variables formed in EGC principles can be expressed as

D̄k,m =
L

∑
l=1

D̄k,ml, m = 0, 1, . . . , M − 1; k = 1, 2, . . . , K (4.15)

Finally, the largest one of theM decision variables of{D̄k,0, D̄k,1, · · · , D̄k,M−1} is selected and

its index value in terms ofm represents the estimate for the state of thekth SE.

In Fig 4.3, an example showing the principles of the ES-EGC fusion rule with I = 1 is il-

lustrated based on the received matrixRRR of (4.11). After frequency de-hopping, decision matrix
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Figure 4.3: An example to illustrate the ES-EGC processing,where squares and circles

represent the elements actived by SE 1 and 2, respectively, and I = 1 element per row is

erasured.

DDD1 andDDD2 are obtained respectively by the frequency de-hopping using aaa1 andaaa2. Then, erasure

operation is carried out to migrate interference. Assumingthat the elements containing both signal

and noise have higher power than the entries with just noise,after removingI = 1 element with

the highest value from each row, the corresponding modified detection matrices̄DDD1 andD̄DD2 are ob-

tained as shown in Fig 4.3. Explicitly, the interfering entries in the interfering rows are all removed.

Hence, the detection will become more reliable.

In literature, the EGC principle has been invoked in some noncoherent multiuser detection

schemes [75,76,79,116]. It has been argued and will also be shown by our performance results, the

ES-EGC scheme outperforms the conventional EGC scheme. Therefore, the ES-EGC scheme may

be applied to some of the noncoherent multiuser detection schemes, in order to improve the error

performance. In this chapter, both the EGC and the ES-EGC is applied to the noncoherent iterative

interference cancellation (IIC) scheme, forming different noncoherent multiuser fusion rules, which

are detailed in our forthcoming discourses.

4.3.3 EGC AssistedN-Order Iterative Interference Cancellation (EGC-NIIC)

The EGC-NIIC fusion rule represents one of the extensions of the noncoherent IIC detection

scheme proposed in [170], which uses the majority vote as thebasic detection scheme and the

symbols of different users are detected one-by-one iteratively until the last one. By contrast, in
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our proposed EGC-NIIC fusion rule, the EGC-based detection forms the basic detection rule, and

the IIC is only operated associated with the firstN most reliable SEs (users), whose symbols are

detected one-by-one iteratively from the more reliable ones to the less reliable ones. After the iter-

ative detection of the firstN most reliable SEs, the rest(K − N) SEs are simultaneously detected

using the EGC fusion rule.

In order to specify the most reliable SE to be detected at a stage, in our EGC-NIIC, a low-

complexity reliability measurement method is proposed, which measures the reliability of an EGC-

based detection based on the formula

Lk =
max2 {Dk,0, Dk,1, · · · , Dk,M−1}
max1 {Dk,0, Dk,1, · · · , Dk,M−1}

(4.16)

wheremax1{·} andmax2{·} represent, respectively, the maximum and ‘second’ maximumof the

decision variables{Dk,0, Dk,1, · · · , Dk,M−1}, which are the outputs of the EGC, as shown in (4.14).

According to [173–175], statistically, the demodulatedM-ary symbols with relatively low values of

Lk are more reliable than those with relatively high values ofLk. Hence, in our EGC-NIIC fusion

rule, an estimate to the state of thekth SE is rendered the most reliable one, if its correspondingLk

value is lower than any of the others’.

Let us assume that the FC employs the knowledge of the FH addresses inAAA assigned to theK

SEs. Then, the EGC-NIIC algorithm can be stated as follows.

1. Initialization : AAA, N ≤ K − 1, RRR(1) = RRR.

2. EGC-NIIC detection: for i = 1, 2, . . . , N, the following steps are executed:

(a) Frequency de-hopping: For those(K − i + 1) SEs having not been detected, the de-

tection matrices,DDD(i)
1 , DDD

(i)
2 , . . . , DDD

(i)
K−i+1, are formed according to

DDD
(i)
k = RRR(i) ⊟ (111 ⊗ aaaT

k ), k = 1, 2, . . . , K − i + 1 (4.17)

(b) Forming decision variables: For each of the(K− i+ 1) SEs, theM decision variables

are formed based on the EGC principles as

D
(i)
k,m =

L

∑
l=1

D
(i)
k,ml, m = 0, 1, . . . , M − 1; k = 1, 2, . . . , K − i + 1 (4.18)
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(c) Reliability Measurement: The reliabilities with respect to all the(K − i + 1) SEs are

measured based on (4.16), and are expressed asL
(i)
1 , L

(i)
2 , . . . , L

(i)
K−i+1.

(d) Detecting the most reliable SE: The most reliable SE is identified as

k′ ↔ L
(i)
k′ = min

{
L
(i)
1 , L

(i)
2 , . . . , L

(i)
K−i+1

}
(4.19)

Correspondingly, the state of the most reliable SE, i.e., ofthek′th SE, is detected as the

m index value of the largest in{D
(i)
k′;0, D

(i)
k′;1, . . . , D

(i)
k′;M−1}. Let the estimated state for

thek′th SE be expressed aŝmk′ .

(e) Update RRR(i) to RRR(i+1): RRR(i+1) is updated fromRRR(i) by setting the elements at(m̂k′ ⊕

ak′ ,l, l) for l = 1, 2, . . . , L to zero.

3. Finally , for the rest(K − N) SEs, they are detected simultaneously based onRRR(N+1) using

the EGC fusion rule, as stated in Section 4.3.1.
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Figure 4.4: An example showing the processing of the EGC-NIIC processing, where

squares and circles represent the elements actived by SE 1 and 2 , respectively, and the

number of IIC iterations is set asN = 1.

Fig 4.4 illustrates the operations of the EGC-NIIC detection when the received matrixRRR is

given by (4.11). After the frequency de-hopping operation,the detection matricesDDD(1)
1 andDDD

(1)
2

are obtained. Then, for each of the two SEs,M decision variables are formed under the EGC

principles. Then the reliabilities of the detection of SE 1 and SE 2 are measured based on (4.16).

If we assume that SE 1 is more reliable than SE 2, SE 1 is then first detected based onDDD(1)
1 . Then,

based on the detected symbolŝ1 and the FH addressaaa1, RRR(1) is updated asRRR(2) by carrying out

interference cancellation (IC) [170]. Based onRRR(2), we then detect SE 2. Specifically, after the
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frequency de-hopping operation,DDD
(2)
2 is obtained, based on which can be detected in the EGC

principles.

From the above-stated EGC-NIIC algorithm, we can see that the IC operations are only im-

plemented with the firstN most reliable SEs, while the other(K − N) SEs are detected based on

the EGC fusion rule described in Section 4.3.1. The reason behind this proposed EGC-NIIC is

that, in the FH/MFSK WSN, there are three factors affecting the performance of fusion detection,

which are the detection reliabilities of LSNs, wireless channel and the MEI. Due to the unreliable

detection at the LSNs, even a SE measured based on (4.16) withthe highest reliability might finally

be detected in error. In this case, applying the IC will generate negative effect on the following

detections. Furthermore, it can be shown that this negativeeffect becomes worse as the number of

SEs invoked and/or the number of LSNs increase. Note that, for given values ofK, L as well as the

observation reliability of the LSNs, there usually exists an optimum value forN, which yields the

best fusion detection performance, as illustrated by our results in Section 4.6.

4.3.4 ES-EGC AssistedN-Order Iterative Interference Cancellation (ES-EGC-NIIC)

The operations of the ES-EGC-NIIC is very similar as that of the EGC-NIIC, except that the

detection matrices{DDD
(i)
k } used by the EGC-NIIC are replaced by the modified detection matrices

{D̄DD
(i)
k }, which are obtained based on the principles of ES-EGC, as shown in Section 4.3.2. In detail,

in the context of the ES-EGC-NIIC fusion rule, the reliabilities are measured according to

L̄k =
max2 {D̄k,0, D̄k,1, · · · , D̄k,M−1}
max1 {D̄k,0, D̄k,1, · · · , D̄k,M−1}

(4.20)

whereD̄k,0, D̄k,1, · · · , D̄k,M−1 denote theM decision variables provided by the ES-EGC detection.

In summary, the ES-EGC-NIIC algorithm can be described as follows:

1. Initialization : AAA, N ≤ K − 1, 0 ≤ I < L, RRR(1) = RRR.

2. ES-EGC-NIIC detection: for i = 1, 2, . . . , N, the following steps are executed:

(a) Frequency de-hopping: For those(K − i + 1) SEs having not been detected, the de-
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tection matrices,DDD(i)
1 , DDD

(i)
2 , . . . , DDD

(i)
K−i+1, are formed according to

DDD
(i)
k = RRR(i) ⊟ (111 ⊗ aaaT

k ), k = 1, 2, . . . , K − i + 1 (4.21)

(b) Erasure operation: For each of the detection matrices,DDD
(i)
1 , DDD

(i)
2 , . . . , DDD

(i)
K−i+1, I (0 ≤

I < L) number of the largest entries in each row are set to zero, forming the modified

detection matrices,̄DDD
(i)
1 , D̄DD

(i)
2 , . . . , D̄DD

(i)
K−i+1.

(c) Forming decision variables: For each of the(K− i+ 1) SEs, theM decision variables

are formed based on the EGC principles as

D̄
(i)
k,m =

L

∑
l=1

D̄
(i)
k,ml, m = 0, 1, . . . , M − 1; k = 1, 2, . . . , K − i + 1 (4.22)

(d) Reliability measurement: The reliabilities with respect to all the(K − i + 1) SEs are

measured based on (4.20), and are expressed asL̄
(i)
1 , L̄

(i)
2 , . . . , L̄

(i)
K−i+1.

(e) Detecting the most reliable SE: The most reliable SE is identified as

k′ ↔ L̄
(i)
k′ = min

{
L̄
(i)
1 , L̄

(i)
2 , . . . , L̄

(i)
K−i+1

}
(4.23)

Correspondingly, the state of thek′th SE is detected as them index of the largest in

{D̄
(i)
k′;0, D̄

(i)
k′;1, . . . , D̄

(i)
k′;M−1}. Let the estimated state for thek′th SE be expressed asm̂k′ .

(f) Update RRR(i) to RRR(i+1): RRR(i+1) is updated fromRRR(i) by setting the elements at(m̂k′ ⊕

ak′ ,l, l) for l = 1, 2, . . . , L to zeros.

3. Finally , for the rest(K − N) SEs, they are detected simultaneously based onRRR(N+1) using

the ES-EGC fusion rule, as stated in Section 4.3.2.

Fig 4.5 considered an example of the ES-EGC-NIIC fusion detection after the FC obtains the

received matrixRRR in the form of (4.11). After the frequency de-hopping operation, the detection

matricesDDD
(1)
1 andDDD

(1)
2 are formed based on (4.21). Then, the erasure operations arecarried out,

where the largest entry in each row is replaced by zero, forming D̄DD
(1)
1 andD̄DD

(1)
2 . In this example,

it is assumed that the element containing both signal and noise has higher power than the element

containing only noise. Furthermore, the element actived simultaneously by both SE 1 and SE 2

is assumed to have high power than that actived by single SE. Hence, under these assumptions,

the modified detection matrices̄DDD
(1)
1 and D̄DD

(1)
2 are shown in Fig 4.5. With the aid of̄DDD

(1)
1 and
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Figure 4.5: An example showing the procedure of the ES-EGC-NIIC, where squares and

circles represent the elements actived by SE 1 and 2, respectively. In this example, SE 1

is assumed to be more reliable than SE 2, andI = 1 element per row is erasured.

D̄DD
(1)
2 , for each of the two SEs, the decision variables are formed based one the EGC principles

according to (4.22). Then, the reliabilities of SE 1 and SE 2 are measured based on (4.20). As we

assumed that SE 1 is more reliable than SE 2, yielding SE 1 is first detected̂s1 = 5. Then, based

on the decision̂s1 and the FH addressaaa1, the corresponding elements inRRR are removed, yielding

an updated matrixRRR(2). Then, after frequency de-hopping onRRR(2) and erasure operation onDDD
(2)
2 ,

we obtain the modified detection matrix̄DDD
(2)
2 for SE 2. Finally, based on̄DDD

(2)
2 , the state of SE 2 is

detected, which iŝs2 = 3.

As seen from the algorithm and the above example, in the ES-EGC-NIIC, the IIC operations

fully remove nonzero elements from the time-frequency matrix RRR. Hence, the IIC operations at

one iteration impose effect on the following iterations of detection and the effect is accumulative,

yielding error propagation. By contrast, the erasure operations are only applied to the detection

matrices, which are independent iteration-by-iteration.Hence, the effect of the erasure operations

at one iteration of detection does not (or, at least, not directly) propagate to the following iterations

of detection.
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Note furthermore that, as in the EGC-NIIC fusion rule, when given the values ofK, L andI as

well as the observation reliability of the LSNs in the ES-EGC-NIIC, there usually exists a value for

N, which yields the best fusion detection performance, as illustrated by our results in Section 4.6.

4.3.5 EGC Assistedρ-Fraction Iterative Interference Cancellation (EGC-ρIIC)

From Sections 4.3.3 and 4.3.4 we know that, when operated under the EGC-NIIC or ES-EGC-NIIC

fusion rule, once the state of a SE is estimated, theL elements corresponding to this state in the

time-frequency matrixRRR are set to zero, resulting in full cancellation. However, there is a negative

effect associated with this full cancellation. As seen in (4.9) of the transmitted signal or (4.11) for

the specific example considered, there are cases where one time-frequency element inRRR conveys

information for several SEs. Correspondingly, as seen in (4.9), this type of elements have relatively

higher values than the others, that convey information onlyfor one SE. Consequently, when the

EGC-NIIC or ES-EGC-NIIC is used, the full cancellation may remove the information of the SEs

not detected yet, and might degrade the achievable error performance.

Based on the above observations, in this chapter, we proposetwo partial cancellation fusion

rules, namely, the EGC-ρIIC and ES-EGC-ρIIC, which are considered in this section and Sec-

tion 4.3.6, respectively. Note that, the EGC-ρIIC and ES-EGC-ρIIC fusion rules are similar as

the EGC-NIIC and ES-EGC-NIIC fusion rules. The differences include the above-mentioned par-

tial cancellation andK number of detection stages, when a FH/MFSK WSN monitoringK SEs is

considered. In detail, the EGC-ρIIC algorithm can be summarized as follows.

1. Initialization : AAA, K, 0 < ρ ≤ 1, RRR(1) = RRR.

2. EGC-ρIIC detection: for i = 1, 2, . . . , K, the following steps are executed:

(a) Frequency de-hopping: For those(K − i + 1) SEs having not been detected, the de-

tection matrices,DDD(i)
1 , DDD

(i)
2 , . . . , DDD

(i)
K−i+1, are formed according to

DDD
(i)
k = RRR(i) ⊟ (111 ⊗ aaaT

k ), k = 1, 2, . . . , K − i + 1 (4.24)

(b) Forming decision variables: For each of the(K− i+ 1) SEs, theM decision variables
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are formed based on the EGC principles as

D
(i)
k,m =

L

∑
l=1

D
(i)
k,ml, m = 0, 1, . . . , M − 1; k = 1, 2, . . . , K − i + 1 (4.25)

(c) Reliability Measurement: The reliabilities with respect to all the(K − i + 1) SEs are

measured based on (4.16), and are expressed asL
(i)
1 , L

(i)
2 , . . . , L

(i)
K−i+1.

(d) Detecting the most reliable SE: The most reliable SE is identified as

k′ ↔ L
(i)
k′ = min

{
L
(i)
1 , L

(i)
2 , . . . , L

(i)
K−i+1

}
(4.26)

Correspondingly, the state of the most reliable SE ofk′ is detected as them index of

the largest in{D
(i)
k′;0, D

(i)
k′;1, . . . , D

(i)
k′;M−1}. Let the estimated state for thek′th SE be

expressed aŝmk′ .

(e) UpdateRRR(i) to RRR(i+1): Wheni < K, RRR(i) is updated toRRR(i+1) by changing the elements

at (m̂k′ ⊕ ak′ ,l, l) for l = 1, 2, . . . , L as

R
(i+1)
m̂k′⊕ak′,l ,l

= R
(i)
m̂k′⊕ak′,l ,l

− ρ × R
(i)
m̂k′⊕ak′,l ,l

(4.27)
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Figure 4.6: An example showing the operation of the EGC-ρIIC processing, where squares

and circles represent the elements actived by SE 1 and 2, respectively. In the example, SE

1 is assumed to be more reliable than SE 2.

Fig 4.6 shows the principles of the EGC-ρIIC fusion detection. First, after the frequency de-

hopping, the detection matricesDDD
(1)
1 andDDD

(1)
2 are formed according to (4.24). Then,M decision

variables for each of the two SEs are formed via EGC fusion rule. Then, the reliabilities of SE 1

and SE 2 are calculated according to (4.16), respectively. As SE 1 is assumed to be more reliable
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than SE 2, SE 1 is first detected via EGC fusion rule, givingŝ1 = 5. Then, after cancelling the

effect of SE 1,RRR is updated toRRR(2) by reducing the corresponding elements’ valuesρ times of their

original values. Finally, based onRRR(2), SE 2 is detected, giving the estimate ofŝ2 = 3.

In contrast to the EGC-NIIC fusion rule, which needs to optimize the value ofN, in the EGC-

ρIIC fusion rule, the value ofρ can also be optimized for achieving the best detection performance.

However, the optimum value ofρ (as well as the optimum value ofN) is depended on many

factors, including the number of SEs and LSNs, detection performance of LSN, hypotheses about

SEs, wireless channels between LSNs and FC, etc. It is in general very hard to find the optimum

value ofρ by deriving the closed-form formulas. In practice, the optimum values in the context of

various scenarios may be obtained via simulations.

4.3.6 ES-EGC Assistedρ-Fraction Iterative Interference Cancellation (ES-EGC-

ρIIC)

Straightforwardly, the ES-EGC-ρIIC is an improved version of the EGC-ρIIC by invoking the ES-

EGC techniques. The algorithm can be described as follows.

1. Initialization : AAA, K, 0 < ρ < 1, RRR(1) = RRR.

2. ES-EGC-ρIIC detection: for i = 1, 2, . . . , K, the following steps are executed:

(a) Frequency de-hopping: For those(K − i + 1) SEs having not been detected, the de-

tection matrices,DDD(i)
1 , DDD

(i)
2 , . . . , DDD

(i)
K−i+1, are formed according to

DDD
(i)
k = RRR(i) ⊟ (111 ⊗ aaaT

k ), k = 1, 2, . . . , K − i + 1 (4.28)

(b) Erasure operation: For each of the detection matrices,DDD
(i)
1 , DDD

(i)
2 , . . . , DDD

(i)
K−i+1, I (0 ≤

I < L) number of the largest entries in each row are set to zero, forming the modified

detection matrices,̄DDD
(i)
1 , D̄DD

(i)
2 , . . . , D̄DD

(i)
K−i+1.

(c) Forming decision variables: For each of the(K − i + 1) SEs,M decision variables

are formed based on the EGC principles as

D̄
(i)
k,m =

L

∑
l=1

D̄
(i)
k,ml, m = 0, 1, . . . , M − 1; k = 1, 2, . . . , K − i + 1 (4.29)
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(d) Reliability measurement: The reliabilities with respect to all the(K − i + 1) SEs are

measured based on (4.20), and are expressed asL̄
(i)
1 , L̄

(i)
2 , . . . , L̄

(i)
K−i+1.

(e) Detecting the most reliable SE: The most reliable SE is identified as

k′ ↔ L̄
(i)
k′ = min

{
L̄
(i)
1 , L̄

(i)
2 , . . . , L̄

(i)
K−i+1

}
(4.30)

Correspondingly, the state of thek′th SE is detected as them index of the largest in

{D̄
(i)
k′;0, D̄

(i)
k′;1, . . . , D̄

(i)
k′;M−1}. Let the estimated state for thek′th SE be expressed asm̂k′ .

(f) UpdateRRR(i) to RRR(i+1): Wheni < K, RRR(i) is updated toRRR(i+1) by changing the elements

at (m̂k′ ⊕ ak′ ,l, l) for l = 1, 2, . . . , L as

R
(i+1)
m̂k′⊕ak′,l ,l

= R
(i)
m̂k′⊕ak′,l ,l

− ρ × R
(i)
m̂k′⊕ak′,l ,l

(4.31)
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Figure 4.7: An example of ES-EGC-ρIIC processing, where squares and circles represent

the elements actived by SE 1 and 2 respectively. SE 1 is assumed to be more reliable than

SE 2, andI = 1 element per row is erasured.

As shown in Fig 4.7, the operation of the ES-EGC-ρIIC fusion rule is illustrated. As shown in

Fig 4.7, after the frequency de-hopping, the detection matricesDDD
(1)
1 andDDD

(1)
2 are obtained. Then,
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in each of the detection matrices, the largest entry in each row is removed, forming the modified

detection matrices̄DDD
(1)
1 andD̄DD

(1)
2 . Then, for each of the two SEs,M decision variables are formed

based on the EGC principles. Then, the reliabilities for detection of SE 1 and SE 2 are measured

based on (4.20). As the reliability of SE 1 is assumed to be higher than that of SE 2, SE 1 is first

detected via the EGC fusion rule, yieldingŝ1 = 5. Then, based on the decision of SE 1 and its

FH addressaaa1, RRR is updated toRRR(2). Then, after the frequency de-hopping is operated onRRR(2), the

detection matrixDDD(2)
2 for SE 2 is obtained. Then, the largest entry in each row ofDDD

(2)
2 is removed,

yielding the modified detection matrix̄DDD(2)
2 . Finally, SE 2 is detected based onD̄DD

(2)
2 via the EGC

principles, yieldingŝ2 = 3.

4.4 Analysis of Complexity

In this section, we analyze and compare the computational complexity of the six fusion rules,

namely the EGC, ES-EGC, EGC-NIIC, ES-EGC-NIIC, EGC-ρIIC and ES-EGC-ρIIC, considered

in this chapter. Our complexity analysis starts from the point when the FC forms the time-frequency

matrix RRR, as the number of computations required before this point isthe same for all the six

fusion rules. In our analysis, the complexity takes into account both the addition and comparison

operations, while the complexity for frequency de-hoppingis ignored. The reason for not including

the frequency de-hopping is that the results of additions (or subtraction) in Galois fieldGF(M) can

be stored in a(M × M) table. With the aid of this table, frequency de-hopping is simply reading

the values fromRRR and writing them into the corresponding locations inDDDk, k = 1, 2, . . . , K, where

the locations are provided by the table.

EGC - First, in the context of the conventional EGC fusion rule, after DDDk, k = 1, 2, . . . , K,

is obtained, forming a decision variable needs(L − 1) additions. The number of comparisons for

finding out the maximum one fromM real numbers is(M − 1). Therefore, the total number of

operations for detectingK SEs isK[M(L − 1) + M − 1] = K(ML − 1). Hence, the complexity

of the EGC fusion rule isO(KML) for detection of theK SEs.

ES-EGC - For the ES-EGC fusion rule, starting fromDDDk, k = 1, 2, . . . , K, first, each row

needs to implement the following operations: a) identifying the I maximal entries from theL

entries, which requiresI (2L − I − 1)/2 number of comparisons when assumingI ≤ L/2, and
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b) adding together the entries of the rest(L − I) entries, which requires(L − I − 1) additions.

Finally, for each SE, selecting the maximum from theM decision variables requires(M − 1)

comparisons. Hence, the total number of operations of the ES-EGC for detectingK SEs can be

found to beK[M(LI + L − I2/2 − 3I/2)− 1]. Therefore, the complexity of the ES-EGC fusion

rule isO(KMLI) for detectingK SEs.

EGC-NIIC - For the EGC-NIIC fusion rule, as shown in Section 4.3.3,N out of theK SEs are

detected based on EGC and IIC inN iterations, while the rest(K − N) SEs are detected based on

EGC at the last iteration. Let us first consider the number of operations required by theith, where

i ≤ N, iteration of detection. As seen in Section 4.3.3, after thefrequency de-hopping, theith

iteration first implements the EGC for(K − i + 1) SEs, which requires in total(K − i + 1)[M(L−

1)] operations. Then, associated with each of the(K − i + 1) SEs, the reliability of detection is

measured based on (4.16), which needs to find the maximum and the second maximum from the

decision variables
{

D
(i)
k,0, D

(i)
k,1, · · · , D

(i)
k,M−1

}
as well as compute their ratio, which requires in

total (2M − 3) operations. Then, the most reliable SE is identified based on(4.19), which requires

(K − i) operations. Finally, the complexity of interference cancellation can be ignored. Hence,

the total number of operations of theith iteration is(K − i + 1)[M(L − 1) + 2M − 3] + (K − i).

WhenN iterations are considered, the number of operations can be expressed as

N

∑
i=1

{(K − i + 1)[M(L − 1) + 2M − 3] + (K − i)}

= N

(
K − N + 1

2

)
[M(L − 1) + 2M − 2] + N[M(L − 1) + 2M − 3] (4.32)

After N iterations of detection based on the EGC and IIC, the rest(K − N) SEs are detected

based on the EGC alone, which requires(K − N)[M(L − 1) + M − 1] number of operations.

Therefore, the total number of operations required by the EGC-NIIC fusion rule is approximately

given by

N

(
K − N + 1

2

)
[M(L − 1) + 2M − 2] + N[M(L − 1) + 2M − 3]

+ (K − N)[M(L − 1) + M − 1]

= N

(
K − N + 1

2

)
(ML + M − 2) + N(ML + M − 3) + (K − N)(ML − 1) (4.33)

When considering only the dominate items in the above equation, we can see that the complexity

of the EGC-NIIC is O(KMLN).
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ES-EGC-NIIC - When comparing the ES-EGC-NIIC fusion rule described in Section 4.3.4

with the EGC-NIIC fusion rule described in Section 4.3.3, we can see that the only difference is

the extra erasure operations for the ES-EGC-NIIC. Hence, from the above complexity analysis for

the EGC and ES-EGC, we can readily know that the total number of operations required by the

ES-EGC-NIIC fusion rule is approximately

N

(
K − N + 1

2

)[
M

(
LI + L − I2

2
− 3I

2
− 1

)
+ 2M − 2

]

+ N

[
M

(
LI + L − I2

2
− 3I

2
− 1

)
+ 2M − 3

]

+ (K − N)

[
M

(
LI + L − I2

2
− 3I

2
− 1

)
+ M − 1

]

= N

(
K − N + 1

2

) [
M

(
LI + L − I2

2
− 3I

2
+ 1

)
− 2

]

+ N

[
M

(
LI + L − I2

2
− 3I

2
+ 1

)
− 3

]
+ (K − N)

[
M

(
LI + L − I2

2
− 3I

2

)
− 1

]
(4.34)

Correspondingly, the complexity of the ES-EGC-NIIC is O(KMLNI).

EGC-ρIIC - As our previous discussion in Section 4.3.5 shows, when theEGC-ρIIC fusion

rule is applied at the fusion center,(K − 1) SEs are detect according to the EGC-ρIIC fusion rule,

while the last one is detected based on the EGC fusion rule. Hence, the number of operations

required by the EGC-ρIIC fusion rule can be viewed as a special case of the EGC-NIIC fusion

rule, whereN equals(K − 1). Therefore, when the EGC-ρIIC fusion rule is employed, the number

of operations required to detect all theK SEs isK(K − 1)(ML + M − 2)/2 + (K − 1)(ML +

M − 3) + ML − 1, which yields the complexity ofO(K2ML).

ES-EGC-ρIIC - The total number of operations required by the ES-EGC-ρIIC fusion rule can

be found from that of the ES-EGC-NIIC fusion rule associated with lettingN = K − 1, which can

be expressed as

K

2
(K − 1)

[
M

(
LI + L − I2

2
− 3I

2
+ 1

)
− 2

]

+ (K − 1)

[
M

(
LI + L − I2

2
− 3I

2
+ 1

)
− 3

]
+ M

(
LI + L − I2

2
− 3I

2

)
− 1 (4.35)

Hence, the complexity of the ES-EGC-ρIIC fusion rule isO(K2MLI).

The number of operations required by the various fusion rules considered in this chapter as

well as the corresponding complexity are summarized in Table 4.1. As shown in Table 4.1, the

conventional EGC fusion rule has the lowest complexity. Thecomplexity of the ES-EGC fusion
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Fusion rule Number of operations Complexity

EGC K(ML − 1) O(KML)

ES-EGC K[M(LI + L − I2

2 − 3I
2 )− 1] O(KMLI)

EGC-NIIC N
(

K − N+1
2

)
(ML + M − 2) + N(ML + M − 3) O(KMLN)

+(K − N)(ML − 1)

ES-EGC-NIIC N
(

K − N+1
2

)
[M(LI + L − I2

2 − 3I
2 + 1)− 2] + N[M(LI + L − I2

2 − 3I
2 + 1)− 3] O(KMLNI)

+(K − N)[M(LI + L − I2

2 − 3I
2 )− 1]

EGC-ρIIC K
2 (K − 1)(ML + M − 2) + (K − 1)(ML + M − 3) + ML − 1 O(K2 ML)

ES-EGC-ρIIC K
2 (K − 1)[M(LI + L − I2

2 − 3I
2 + 1)− 2] O(K2 MLI)

+(K − 1)[M(LI + L − I2

2 − 3I
2 + 1)− 3] + M(LI + L − I2

2 − 3I
2 )− 1

Table 4.1: Number of operations and complexity of the six fusion rules.

rule is slightly higher than that of the conventional EGC fusion rule, which is linearly dependent on

the number of erasures per row. As shown in Table 4.1, the IIC based fusion rules demand relatively

higher complexity than both the conventional EGC and the ES-EGC fusion rules. However, from

the table we are implied that all the six fusion rules have relatively low complexity. The complexity

for detectingK SEs is generally linearly proportional to the parametersM, L, N, I, or K, except

the EGC-ρIIC and ES-EGC-ρIIC rules. However, the complexity of these two fusion rulesis not

related to the parameterN.
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Figure 4.8: An example of Table 4.1: Number of operations versus number of SEs.
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4.5 Characteristics of FH/MFSK WSN

Our proposed FH/MFSK WSN employs a range of characteristics, which can be summarized as

follows. First, noncoherent detection is implemented at the FC, which does not consume extra

energy for channel estimation. These energy-efficient and low-complexity detection strategies are

beneficial to the life-time of battery-powered WSNs. Second, in addition to supporting multiple

SEs, the FH/MFSK techniques employed are capable of providing frequency diversity for the fu-

sion detection. This frequency diversity becomes especially important, when the LSNs are closely

located, which may generate correlated fading in the space-domain. On the other hand, owing to the

frequency diversity obtained from the FH/MFSK, the LSNs maybe distributed within a relatively

small space but still convey the FC independently faded signals, so that the detection performance

of the FC is not degraded by the correlated fading experienced in the space-domain. Third, the

proposed FH/MFSK WSN can simultaneously monitor multiple SEs of each with multiple states.

Each LSN serves all the SEs and, hence, a FH/MFSK WSN does not have to use a big number of

LSNs. However, the side effect of using one LSN to simultaneously transmit multiple frequency

modulation signals is the possible high peak-to-average power ratio (PAPR), which is not power-

efficient, if not treated appropriately. Forth, in the FH/MFSK WSN, in addition to the fusion rules

considered in this chapter, other advanced noncoherent detection schemes [116] may also be im-

plemented, which may further enhance the detection performance.

In this chapter, six different fusion rules, namely the EGC,ES-EGC, EGC-NIIC, ES-EGC-

NIIC, EGC-ρIIC and the ES-EGC-ρIIC, are considered and compared. All of the six fusion rules

are robust fusion rules of low-complexity. They have respectively different advantages and disad-

vantages. For example, the conventional EGC fusion rule hasthe lowest complexity and also the

lowest detection delay. However, its detection performance is the worst, when multiple SEs inter-

fering with each other are supported. By contrast, with a slight increase of complexity, the ES-EGC

fusion rule is capable of achieving much better detection performance than the conventional EGC

fusion rule. Furthermore, as our simulation results in the next section show, the single-user ES-EGC

fusion rule employs certain capability to suppress MEI. Although the other four fusion rules invoke

the concepts of multiuser detection, they are still low-complexity fusion rules designed based on

the principles of interference cancellation. Additionally, in this chapter, the reliability measurement
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scheme introduced is also a low-complexity scheme.

Finally, we note that the overall performance of the FH/MFSKWSN is jointly determined by

the detection performance of theL LSNs, the wireless channels between the LSNs and FC, as

well as the fusion rule employed by the FC. If the detection performance of theL LSNs is poor,

then, the overall performance will most probably be poor, even when the wireless channels from

LSNs to FC are perfect and the fusion detection is ideal. Similarly, the overall performance of

the FH/MFSK WSN will degrade, when wireless channels becomeunreliable or when there exists

MEI but the fusion rule is not efficient for MEI suppression. Therefore, when considering the

optimization in the FH/MFSK WSN, the detection schemes at both the LSNs and FC need to be

jointly considered. In general, in the FH/MFSK WSNs, the performance of LSNs may be improved

by employing advanced sensing techniques, the fading of wireless channels can be compensated by

making use of the frequency and space diversity, while the MEI may be mitigated with the aid of

various noncoherent signal processing techniques, as shown in this chapter and [116].

Below we provide a range of simulation results, in order to characterize the achievable perfor-

mance of the FH/MFSK WSNs.

4.6 Performance Results

In this section, error performance of the FH/MFSK WSNs employing various fusion rules as con-

sidered is investigated, when assuming that the wireless channels from LSNs to FC experience

Rayleigh fading. We consider specifically the error classification probability (ECP) performance

for the sake of unifying the WSN with the conventional one-hop communication schemes. Note

that, in the following figures, the error detection probability of the LSNs is expressed asPe, while

the correct detection probability is hencePd = 1 − Pe. The ‘channel SNR per bit’ is the average

SNR per bit given bȳγb = γ̄s/b, whereb = log2 M denotes the number of bits perM-ary symbol.

In Fig. 4.9, we compare the achievable ECP performance of theFH/MFSK WSN employing

respectively the six fusion rules considered in this chapter, when the FH/MFSK WSN usesL = 10

LSNs to monitorK = 2 SEs and the LSNs send signals to the FC using16FSK. Furthermore,

as shown in Fig. 4.9, when the ES-EGC scheme is invoked,I = 1 entry is deleted from each

of the rows of the detection matrix. In the context of the EGC-NIIC and ES-EGC-NIIC, we set
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Figure 4.9: ECP versus channel SNR per bit performance of theFH/MFSK WSN mon-

itoring K = 2 SEs usingL = 10 LSNs, when communicating over Rayleigh fading

channels.

N = 1. Furthermore, for the EGC-ρIIC and ES-EGC-ρIIC, an approximately optimum value for

ρ is applied, which is found via simulations. From the performance results shown in Fig. 4.9, first,

we can explicitly observe that both the reliability of the LSNs’ detection and that of the wireless

channels have a strong impact on the overall achievable detection performance of the FH/MFSK

WSN. For any given fusion rule, the ECP performance of the FH/MFSK WSN degrades, as the

correct detection probabilityPd of the LSNs decreases fromPd = 0.99 to Pd = 0.97. Meanwhile,

for any givenPd and any fusion rule, the ECP performance in general improves, as the wireless

channels become more reliable, i.e., as the channel SNR increases.

As shown in Fig. 4.9, when the channel SNR is relatively low, such asγ̄b < 12 dB, the EGC-

related fusion rules, including the EGC-NIIC and EGC-ρIIC, outperform the ES-EGC-related fu-

sion rules, including the ES-EGC-NIIC and ES-EGC-ρIIC. By contrast, when the channel SNR

is sufficiently high, such as̄γb > 12 dB, then, the ES-EGC-NIIC and ES-EGC-ρIIC fusion rules

outperform the EGC-NIIC and EGC-ρIIC fusion rules. The reason behind the above observa-

tions can be explained by remembering that EGC is an optimum diversity combining scheme over

Gaussian channels, while ES-EGC has certain capability to suppress MEI. Hence, when the chan-

nel SNR is low and the Gaussian noise is dominant, the diversity gain from the EGC is critical

for the achievable error performance. Consequently, the EGC-related fusion rules outperform the
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ES-EGC-related fusion rules. As the channel SNR becomes higher, the Gaussian noise becomes

less dominant. Instead, the MEI generates more impact, which dominates the achievable error

performance of the FH/MFSK WSN. Therefore, when the channelSNR is sufficiently high, the

EGC-related fusion rules are outperformed by the ES-EGC-related fusion rules.

As shown in Fig. 4.9, when the channel SNR is sufficiently high, we can observe that, compar-

ing the detection performance from the worst to the best, thefusion rules are in the order EGC→ES-

EGC→EGC-NIIC→EGC-ρIIC→ES-EGC-NIIC→ES-EGC-ρIIC. Furthermore, within the chan-

nel SNR region considered, except the ES-EGC-NIIC and ES-EGC-ρIIC, all the other four fusion

rules yield error floors, implying that the MEI and/or the unreliable detection at the LSNs are unable

to be fully removed by these fusion rules. By contrast, when the ES-EGC-NIIC or ES-EGC-ρIIC

is employed, no error floors are present. Hence, these two fusion rules are capable of efficiently

mitigating the effect of MEI as well as that of the errors generated by the LSNs’ detections. Ad-

ditionally, when the channel SNR is sufficiently high, the ES-EGC fusion rule may significantly

outperform the EGC fusion rule, even though these two fusionrules have similar computational

complexity, as the analysis in Section 4.4 shows. Note that,the ES-EGC fusion rule is capable of

outperforming the EGC fusion rule, even when the scenario ofmonitoring one SE is considered, as

shown in Fig. 4.10.
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Figure 4.10: Comparison of ECP versus channel SNR per bit performance of the

FH/MFSK WSN using the conventional EGC and ES-EGC fusion rules, when communi-

cating over Rayleigh fading channels.
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In Fig. 4.10, the ECP performance of the conventional EGC andthat of the proposed ES-EGC

are investigated and compared, when the correct detection probability of LSNs isPd = 0.96, 0.98

or 1. Explicitly, when the LSNs’ detections are unreliable,the ES-EGC scheme is capable of miti-

gating their negative effect, when the channel SNR is sufficiently large. As seen in Fig. 4.10, even

for the case ofK = 1, the ES-EGC rule may significantly outperform the conventional EGC in the

relatively high SNR region. By contrast, when the channel SNR is low or when the LSNs’ detec-

tions are ideal, erasures imposed by the ES-EGC rule reduce the information useful for detection,

resulting in that the conventional EGC rule outperforms theES-EGC rule.
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Figure 4.11: ECP versus channel SNR per bit performance of the FH/MFSK WSN mon-

itoring K = 2 SEs usingL = 16 LSNs, when communicating over Rayleigh fading

channels.

In Fig. 4.11, we illustrate the ECP performance of the FH/MFSK WSN with various fusion

rules, when communicating over Rayleigh fading channels. Both M = 16 and M = 32 are con-

sidered. The other parameters are shown associated with thefigure. From the results of Fig. 4.11,

we can draw similar conclusions as that drawn from Fig. 4.10 for comparison of the various fusion

rules. Furthermore, when comparing the performance corresponding toM = 16 with that corre-

sponding toM = 32, we can see that the detection performance of the FH/MFSK WSNusing a

given fusion rule improves, as the value ofM increases. Therefore, in a FH/MFSK WSN with a

relatively high number of LSNs for providing diversity, it is highly beneficial to use the MFSK mod-

ulation of high dimension. Fig. 4.11 shows that the ES-EGC isa high-efficiency low-complexity
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fusion rule. First, it generates a big performance improvement over the conventional EGC fusion

rule, which becomes more evident, when the value ofM is increased from16 to 32. Second,

the ES-EGC-NIIC and ES-EGC-ρIIC fusion rules outperform all the other fusion rules. Theyare

capable of efficiently mitigating the MEI as well as the unreliable detections at the LSNs, and gen-

erating no error-floors. Furthermore, most promisingly, when M = 32 and when the channel SNR

is sufficiently high (about15 dB), the low-complexity single-user ES-EGC scheme is capable of

achieving better error performance than the more complicated multiuser EGC-NIIC and EGC-ρIIC

fusion rules. This observation implies that the ES-EGC fusion rule employs a certain capability to

mitigate MEI.
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Figure 4.12: ECP versus channel SNR per bit performance of the FH/MFSK WSN mon-

itoring K = 2 SEs using various number of LSNs, when communicating over Rayleigh

fading channels.

Fig. 4.12 illustrates the impact of the number of LSNs on the error performance of the FH/MFSK

WSN monitoringK = 2 SEs, when the correct detection probability at the LSNs isPd = 0.97.

Explicitly, the number of LSNs yields significant impact on the detection performance of the

FH/MFSK WSN. In general, the ECP performance of the FH/MFSK WSN improves, as the num-

ber of LSNs increases, which generates higher space diversity. Specifically for the ES-EGC fusion

rule, givenI = 1, it becomes more efficient, as the value ofL is increased from12 to 16.

Fig. 4.13 shows the ECP versus channel SNR per bit performance of the FH/MFSK WSN

supportingK = 2 or 3 SEs of each withM = 32 states. As seen in the figure, whenK = 2 and
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Figure 4.13: ECP versus channel SNR per bit performance of the FH/MFSK WSN mon-

itoring K = 2 or 3 SEs usingL = 16 LSNs, when communicating over Rayleigh fading

channels.

the channel SNR is sufficiently large, both the ES-EGC-NIIC and the ES-EGC-ρIIC rules attain a

similar ECP performance, which is the best among the six rules. By contrast, whenK = 3 and the

channel SNR is sufficiently large, the simple ES-EGC and ES-EGC-ρIIC rules attain the best ECP

performance among the six. As seen in Fig. 4.13, the ES-EGC-NIIC cannot obtain any gain over

the EGC-NIIC, whenK = 3.

In Figs. 4.14 - 4.17, we investigate the effect of the parameter ρ, the fraction of cancellation,

on the error performance of the FH/MFSK WSN systems, when various scenarios are considered.

The details about the parameters used in the simulations canbe found in the corresponding figures.

First, as seen in these figures, for both the EGC-ρIIC and the ES-EGC-ρIIC, there exists an optimum

value forρ, which results in the lowest ECP. Second, the values ofPd, M andL seems do not have

significant effect on the optimum value ofρ, although for some cases slight shifts are observed.

By contrast, as shown in Fig. 4.17, the number of SEs invoked generates noticeable effect on the

optimum value ofρ, which becomes lower as the number of SEs monitored increases. Finally,

from Figs. 4.14 - 4.17 we can observe that the optimum value ofρ for the EGC-ρIIC is usually

significantly higher than that for the ES-EGC-ρIIC, with the optimum value ofρ for the ES-EGC-

ρIIC very close to 0.7. The reason behind the observation is that, for the EGC-ρIIC, the MEI

suppression is dependent on theρIIC alone. By contrast, for the ES-EGC-ρIIC, most of the MEI
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has been removed by the ES-EGC scheme, before theρIIC is executed. The results in Figs. 4.14 -

4.17 again reflect that the ES-EGC scheme is efficient for MEI suppression.
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Figure 4.14: ECP versusρ of the fraction of cancellation for the FH/MFSK WSN moni-

toringK = 2 SEs usingL = 16 LSNs, when the EGC-ρIIC or ES-EGC-ρIIC is employed.
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Figure 4.15: ECP versusρ of the fraction of cancellation for the FH/MFSK WSN moni-

toringK = 2 SEs usingL = 16 LSNs, when the EGC-ρIIC or ES-EGC-ρIIC is employed.

Fig.4.18 shows the ECP performance of the FH/MFSK WSN versusboth the channel SNR per

bit and the fraction of cancellation, when the FH/MFSK WSN employing EGC-ρIIC usesL = 15

LSNs to monitorK = 2 SEs of each withM = 16 states. We assume that the observations at

the LSNs are perfect, yieldingPd = 1. From the figure, we can observe that, at a given channel
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Figure 4.16: ECP versusρ of the fraction of cancellation for the FH/MFSK WSN mon-

itoring K = 2 SEs usingL = 12 or 16 LSNs, when the EGC-ρIIC or ES-EGC-ρIIC is

employed.
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Figure 4.17: ECP versusρ of the fraction of cancellation for the FH/MFSK WSN mon-

itoring K = 2 or 3 SEs usingL = 16 LSNs, when the EGC-ρIIC or ES-EGC-ρIIC is

employed.

SNR, there is an optimum value ofρ for the fraction of cancellation, which yields the best ECP

performance. As the channel SNR increases, the optimum value of ρ slightly increases, towards

the value of one.

In Fig. 4.19, we study the effect of the number of iterations,expressed byN, used by the

EGC-NIIC or ES-EGC-NIIC on the ECP performance of the FH/MFSK WSN. Note that, from
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Figure 4.18: ECP versus channel SNR per bit and fraction of cancellation for the

FH/MFSK WSN monitoringK = 2 SEs usingL = 15 LSNs with Pd = 1.0, when

communicating over Rayleigh fading channels.
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Figure 4.19: ECP versus channel SNR per bit performance of the FH/MFSK WSN mon-

itoring K = 8 SEs usingL = 40 LSNs with Pd = 0.97, when various orders of IIC are

applied.

the principles of the (ES-)EGC-NIIC, we know thatN = 0 corresponds to the pure (ES-)EGC

fusion rule, whileN = K − 1 corresponds to the full (ES-)EGC-IIC fusion rule, whereK SEs

are detected by involving the IIC operations. Generally, under the same simulation parameters, the

ES-EGC-NIIC fusion rule always has a better ECP performance than the EGC-NIIC fusion rule.

From the curves in Fig. 4.19, we can observe that, at a given channel SNR, there exists a value for
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N, which yields the best ECP performance for the FH/MFSK WSN. The optimum value ofN for

the EGC-NIIC is not the same as that for the ES-EGC-NIIC. For example, at the channel SNR of

10 dB, the EGC-NIIC using N = 4 orders of IIC attains the lowest ECP. At the channel SNR of

16 dB, the EGC-NIIC using N = 6 orders of IIC achieves the lowest ECP. By contrast, for the

ES-EGC-NIIC, the optimum value ofN is always4 for both the above cases.
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Figure 4.20: ECP versus channel SNR per bit for the FH/MFSK WSN monitoringK = 3

SEs usingL = 16 LSNs, when communicating over Rayleigh fading channels.

Finally, in Fig 4.20, we show the impact of the number of deleted entries per row on the

ECP performance of the FH/MFSK WSN employing the ES-EGC fusion rule. From the results

of Fig. 4.20, we observe that, given a value for the channel SNR, there is an optimum value for

I, which makes the ES-EGC fusion rule achieve the lowest ECP. Within the SNR range depicted,

implicitly, the optimum value ofI is in [0, 5]. When more than5 entries per row are removed,

the ECP performance degrades, resulted from the decrease ofthe diversity order due to too many

erasures.

4.7 Conclusion

In this chapter, a FH/MFSK WSN has been studied, which uses a number of LSNs to monitor mul-

tiple SEs of each with multiple states. The FH/MFSK techniques are employed for transmitting

signals from LSNs to FC in order to enhance the diversity gain, in addition to supporting com-
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munications for multiple SEs. At the FC, the SEs’ states are detected based on low-complexity

noncoherent fusion rules. In this chapter, six noncoherentfusion rules have been investigated and

compared, which include the conventional EGC fusion rule asthe benchmark and five proposed

fusion rules, namely the ES-EGC, EGC-NIIC, ES-EGC-NIIC, EGC-ρIIC and the ES-EGC-ρIIC

fusion rules. The complexity of these fusion rules has been analyzed, which shows that all of them

have relatively low complexity for implementation. The ECPperformance of the FH/MFSK WSN

associated with various fusion rules has been investigatedby simulations, when assuming that the

communication channels from LSNs to FC experience Rayleighfading. Our studies and perfor-

mance results show that the ES-EGC is a highly efficient fusion rule, which is a single-user fusion

rule as the EGC, also has similar complexity as the EGC, but iscapable of attaining much better

ECP performance than the EGC, especially, when multiple SEsare simultaneously monitored by

the FH/MFSK WSN. In general, the ES-EGC related fusion rulesoutperform the corresponding

EGC related fusion rules. Furthermore, in some cases, the single-user ES-EGC rule may achieve

better ECP performance than the EGC-NIIC and EGC-ρIIC rules, which are the multiuser fusion

rules having much higher complexity than the ES-EGC rule.

Additionally, for the ES-EGC, EGC-NIIC, EGC-ρIIC, ES-EGC-NIIC and the ES-EGC-ρIIC,

our studies show that there exist the optimum values forI, N andρ, which result in the best ECP

performance for the FH/MFSK WSN employing a corresponding fusion rule.



Chapter 5
Noncoherent Detection in FH/MFSK

WSN with Soft-Sensing

5.1 Introduction

In Chapter 3, we have proposed and studied a the FH/MFSK WSN, which employs a number

of LSNs to monitor one SE with multiple states. Furthermore,low-complexity fusion rules have

been investigated and they are efficient to achieve frequency and spatial diversity. By contrast, in

Chapter 4, we have proposed and studied the FH/MFSK WSN, which uses a number of LSNs to

simultaneously monitoring multiple SEs of each with multiple states. In Chapter 4, we have also

designed and studied a range of low-complexity single-useror multi-user noncoherent detectors.

From our studies in Chapter 3 and 4, we can know that the single-user ES-EGC fusion rule is one of

the highly promising noncoherent fusion rules for the FH/MFSK WSNs. However, in both Chap-

ter 3 and Chapter 4, hard-decision based sensing is considered which may loss some information

about the SE’s states.

Therefore, in this chapter, our focus is on the performance improvement of the FH/MFSK

WSN monitoring one SE with the aid of soft-sensing by a numberof LSNs. Specifically, in the

FH/MFSK WSNs considered in this chapter, after an observation, each of the LSNs calculates the

probabilities (soft information) about all the states at which the SE might be. This soft information

is then forwarded to the FC with the aid of the FH/MFSK techniques. As noncoherent fusion rule

are employed at the FC, we propose a signalling scheme for conveying information from LSNs
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to FC, which scales the transmission power of the frequency tones used by the FH/MFSK. At the

FC, the SE’s state is detected by a low-complexity noncoherent fusion rule. Owing to its high

efficiency, in this chapter, we specifically study the ES-EGCfusion rule, in addition to the EGC

fusion rule, which acts as a benchmark. In this chapter, the performance of the FH/MFSK WSN

with EGC or ES-EGC fusion rule is investigated by assuming that the channels from LSNs to FC

experience Rayleigh fading. Our studies and performance results show that, in comparison with

the hard-decision based sensing, as shown in Chapter 3 and Chapter 4, using soft-sensing is able to

enhance the performance of the FH/MFSK WSN. Furthermore, the ES-EGC fusion rule is robust

to the errors made by LSNs, which may significantly outperform the EGC fusion rule, especially,

when the sensing at LSNs is not very reliable.

The reminder of this chapter is organized as follows. In Section 5.2, we provide the details of

the proposed FH/MFSK WSN, where the observed SE, soft-sensing and processing at LSNs are

considered. In Section 5.3, signal detection at FC with EGC or ES-EGC fusion rule is analysed.

The characteristics of FH/MFSK WSN system with soft-sensing are described in Section 5.4. Some

simulation results and discussions are given in Section 5.5. Finally, in Section 5.6, conclusions of

this chapter are drawn.

5.2 System Description

The framework of FH/MFSK WSN considered in this chapter is shown in Fig 5.1, which is the

triple-layer WSN model [74, 76, 79, 80, 82, 117], has been considered in Chapter 3. As shown in

Fig 5.1, theL number of LSNs simultaneously observe one SE withM states and then transmit

their soft-sensing observations using FH/MFSK to the FC through wireless channels, which we

assume to experience Rayleigh fading. Finally, the FC makesan estimation for the state of the SE

using noncoherent approaches, based on the soft information sent by theL LSNs. Details of the

components of the considered WSN framework as well as the operations are described as follows.

5.2.1 Source Event

As considered in Chapter 3, the SE to be observed is usually ananalogue signal. For convenience

of signal processing and transmission, this analogue signal can be digitalized to a finite number
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Figure 5.1: Triple-layer system model for the FH/MFSK WSN monitoring one event of

M states.

states. In this chapter, we assume that the SE hasM equal-probability states corresponding toM

hypotheses, which are expressed asH0, H1, . . . , HM−1, as shown in Fig. 5.1. For example, theM

hypothesises may representM amplitudes,A0, A1, . . . , AM−1, obtained by quantizing a continu-

ous event, such as temperature, pressure, etc. In this case,given at a statem, m = 0, . . . , M − 1,

the event observed by thelth LSN can be represented as

rl = Am + nl, l = 1, 2, · · · , L (5.1)

wherenl is the observation noise, which is assumed to be Gaussian distributed with zero mean and

a varianceσ2.

5.2.2 Soft-Sensing and Processing at LSNs

LSNs used in WSNs are usually small, power-limited and low-cost. However, LSNs are prone to

noise and erroneous hard decisions are likely made, especially, when observation noise is high. In

order to improve the reliability of local observations and that of WSNs, soft-sensing techniques
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may be employed. In this chapter, we propose a soft-sensing method in conjunction with our

noncoherent FH/MFSK WSN.

When thelth, l = 1, 2, · · · , L, LSN obtains an observation in the form of (5.1) for the stateof

the SE, it carries out the soft-sensing, which calculates the probabilities (soft information) for the

M states at which the SE might be, based on the statistics of theobservations. Specifically, for the

lth LSN, the soft information corresponding to statem is given by

sml = P(Hm|rl)

=
P(Hm)p(rl |Hm)

P(rl)

=
p(rl |Hm)

∑
M−1
m=0 p(rl |Hm)

, m = 0, . . . , M − 1; l = 1, 2, · · · , L (5.2)

whereP(Hm) = 1/M is thea-priori probability of Hm, P(rl) is the probability of receivingrl,

while p(rl |Hm) is the probability density function (PDF) of observingrl, when given the stateHm

of the SE, which can be expressed as

p(rl |Hm) =
1√

2πσ2
e
− (rl−Am)2

2σ2 (5.3)

Let us collect the soft-sensing information calculated by LSNl into a vectorsssl =
[

s0l , s1l , · · · , s(M−1)l

]T
.

Furthermore, letSSS = [sss1, sss2, · · · , sssL] holds all the soft information sensed by theL LSNs. Explic-

itly, SSS is an(M × L) matrix.

In order to achieve frequency diversity, FH is introduced sothat the soft information observed

by different LSNs is mixed in the frequency domain. In detail, the FH operations can be described

as follows. Let the symbol duration beTs seconds, which is evenly divided intoL number of

time-slots of durationTh seconds. Each of theL LSNs uses one time-slot to transmit its soft

information, which is achieved by scaling the transmissionpower of each of theM subcarriers

using the corresponding probability calculated in (5.2). Let the WSN hasM orthogonal frequency

bands, whose center frequencies form a setF = { f0, f1, . . . , fM−1}. Let aaa = [a1, a2, . . . , aL]
T be

the FH address assigned to thelth LSN, whereal is an element of the Galois fieldGF(M), i.e.,

al ∈ GF(M). Then, based on the matrixSSS and the FH addressaaa, the FH operations in the context

of the L LSNs can be expressed as

ZZZ = SSS ⊞ (111 ⊗ aaaT) (5.4)
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where111 denotes an all-one column vector ofM-length and⊗ denotes the Kronecker product oper-

ation between two matrices [116]. In (5.4), the operation ofSSS ⊞ aaa yields element shifts, resulting

in zml = s(m⊕al)l for m = 0, 1, · · · , M − 1 andl = 1, 2, · · · , L, where⊕ represents the addition

operation inGF(M) field. Consequently, considering all theM possible states of the SE, the signal

transmitted by thelth (1 ≤ l ≤ L) LSN during theith symbol-duration,iTs < t ≤ (i + 1)Ts, can

be expressed in complex form as

s̃ml(t) =
M−1

∑
m=0

√
zmlψTh

(t − iTs − [l − 1]Th) exp (j2π[ fc + fm]t + jφml) (5.5)

where fc is the main carrier frequency,φml is the initial phase introduced by carrier modulation,

fm is the frequency tone of themth frequency band and, finally,ψTh
(t) is the time-domain pulse for

shaping signal’s waveform, which is defined over the interval [0, Th) and satisfiesT−1
h

∫ Th

0 ψ2
Th
(t)dt =

1. Notice from (5.5) that the transmission power on the different frequency bands is scaled by the

soft information obtained by the LSNs. The total transmission power per LSN for one symbol is

normalized to one, as implied by (5.2).

We assume that theM frequencies used by the FH/MFSK WSN are sufficiently separated,

resulting in that they experience independent flat Rayleighfading. Then, the signal received by the

FC from thelth (1 ≤ l ≤ L) LSN duringiTs < t ≤ (i + 1)Ts can be expressed as

rl(t) =
M−1

∑
m=0

hml s̃ml(t) + nl(t)

=
M−1

∑
m=0

√
zmlhmlψTh

(t − iTs − [l − 1]Th) exp(j2π[ fc + fm]t + jφml) + nl(t) (5.6)

wherehml denotes the channel gain experienced by themth frequency activated by thelth LSN,

hml obeys the complex Gaussian distribution with zero mean and avariance of0.5 per dimension.

Furthermore, in (5.6),nl(t) represents the Gaussian noise process presenting at the FC,which has

zero mean and a single-sided power-spectral density (PSD) of N0 per dimension.

5.3 Signal Detection at Fusion Center

When the FC received the signals in the form of (5.6), the SE’sstate is estimated using noncoher-

ent detection as follows. In our FH/MFSK WSN, the FC starts the detection by forming a time-

frequency (TF) matrixRRR of (M × L)-dimensions, whereM explains theM frequencies whileL
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corresponds to theL time-slots used by theL number of LSNs. Assuming that the square-law

noncoherent detection is employed [116], then, it can be shown that the elements ofRRR have the

values

Rml =

∣∣∣∣
1

Th

∫ iTs+lTh

iTs+(l−1)Th

rl(t)ψ
∗
Th
(t − iTs − [l − 1]Th) exp(−j2π[ fc + fm]t)dt

∣∣∣∣
2

, (5.7)

where m = 0, 1, . . . , M − 1 and l = 1, 2, · · · , L. Since theM frequency bands invoked are

assumed to be orthogonal with each other, there is no interference between any two frequency

bands. Consequently, when substituting (5.6) into (5.7) and absorbing the carrier phaseφml into

hml, we obtain

Rml = |√zmlhml + Nml|2 , m = 0, 1, . . . , M − 1; l = 1, 2, · · · , L (5.8)

whereNml is a complex Gaussian noise sample corresponding to themth frequency band and the

lth time-slot, which can be expressed as

Nml =
(√

ΩTh

)−1
∫ iTs+lTh

iTs+(l−1)Th

n(t)ψ∗
Th
(t − iTs − [l − 1]Th) exp(−j2π[ fc + fm]t)dt (5.9)

It can be shown thatNml has zero mean and variance ofLN0/Es = L/γ̄s, whereEs represents the

total energy for transmitting oneM-ary source symbol with each sensor’s transmitted energy being

Eh = Es/L per symbol, whileγ̄s = Es/N0 denotes the average SNR per symbol.

Based on the TF matrixRRR, the FC can then carry out the required processing and make the final

detection, which are analyzed in the following two subsections.

5.3.1 EGC Fusion Rule

In the context of the EGC fusion rule, the FC detects the SE’s state by first carrying out the fre-

quency de-hopping operations, forming the detection matrix

DDD = RRR ⊟ (111 ⊗ aaaT) (5.10)

whereAAA ⊟BBB is defined as the element-shift operation inGF(M), which is the reversing operation

used in (5.4). Specifically, after the operation of (5.10), we have the elementD(m⊖al)l = Rml,

where⊖ is the minus operation inGF(M). In other words, the(m, l)th element inRRR is mapped to

the(m ⊖ al , l)th element inDDD, after the frequency de-hopping operations of (5.10)
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Following the frequency de-hopping, theM decision variables for detecting the SE’s state are

formed based on the detection matrixDDD in EGC principles, which can be expressed as

Dm =
L

∑
l=1

Dml, m = 0, 1, . . . , M − 1 (5.11)

Finally, the largest of{D0, D1, . . . , DM−1} is selected, whose subscript index is a value in{0, 1, . . . , M−

1}, which represents the estimate to the SE’s state.

5.3.2 ES-EGC Fusion Rule

As the EGC fusion rule, the ES-EGC fusion rule is low-complexity. However, as our performance

results in Section 5.5 show, the ES-EGC fusion rule has certain capability to mitigate the effect

from the unreliable sensing made by LSNs.

When the ES-EGC fusion rule is employed, the same operationsas the EGC fusion rule are

first carried out at the FC to form the detection matrixDDD as shown in (5.10). Then, in each of the

M rows of DDD, I (0 ≤ I < L) elements corresponding to theI largest values are replaced by a

value of zero. Note that, whenI = 0, it means that no elements is erased from each of theM rows.

In this case, the proposed ES-EGC fusion rule is reduced to the EGC fusion rule, as described in

Section 5.3.1.

Let us denote the modified detection matrix after the erasureoperation asD̄DD and its elements

asD̄DDml. Then, based on this modified detection matrixD̄DD, M decision variables formed in EGC

principles can be expressed as

D̄m =
L

∑
l=1

D̄ml, m = 0, 1, . . . , M − 1 (5.12)

Finally, the largest one of theM decision variables of{D̄0, D̄1, · · · , D̄M−1} is selected and its

index value in terms ofm represents the estimate to the state of the monitored SE.

5.4 Analysis of Characteristics

Our proposed FH/MFSK WSN with soft-sensing LSNs employs a range of characteristics, which

may be summarized as follows. First, soft-sensing technique is employed by the LSNs to monitor

the SE. In comparison with the hard-decision based sensing techniques, where LSNs have to make
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decisions about the SE’s state, the LSNs using soft-sensingconvey soft information about the SE’s

state to the FC. Hence, the FC detection of the FH/MFSK WSN with soft-sensing is more reliable

than that with hard-decision based sensing [117]. Second, noncoherent detection is implemented

at the FC of the FH/MFSK WSN, which does not require to consumeextra energy for channel

estimation. This energy-efficient and low-complexity detection strategy is beneficial to the life-time

of battery-powered WSNs. Third, the FH/MFSK techniques employed are capable of providing

frequency diversity for the FC detection. This frequency diversity becomes more important, when

the LSNs are distributed close to each other, which may generate correlated fading in the space-

domain. In our FH/MFSK WSN, owing to the FH operation, the LSNs may be distributed within

a relatively small space but still convey sufficiently independently faded signals to the FC, so that

frequency diversity is achieved and the detection performance of the FC is not seriously affected

by the correlated fading experienced in the space-domain.

In this chapter, two types of fusion rules, namely EGC and ES-EGC, are considered and com-

pared. Both of them are low-complexity and low detection delay fusion rules. They have respec-

tively different advantages and disadvantages. More specifically, the EGC fusion rule has the lowest

complexity and also the lowest detection delay among all theFC rules considered so far. Unfortu-

nately, the EGC fusion rule is sensitive to the errors made byLSNs. The detection performance of

the EGC fusion rule degrades significantly, as the power of the observation noise at LSNs increases.

By contrast, having a similar complexity and also a similar detection delay as the EGC fusion rule,

the proposed ES-EGC fusion rule is capable of achieving better detection performance than the

EGC fusion rule, especially, when the detection at LSNs becomes less reliable.

5.5 Performance Results

In this section, the ECP performance of the soft-sensing assisted FH/MFSK WSN employing either

EGC or ES-EGC fusion rule is investigated. We assume that signals observed by the LSNs only

conflict Gaussian noise, while the wireless channels from the LSNs to the FC experience Rayleigh

fading and each subband sent by any LSN experiences independent Rayleigh fading. In the figures

considered below, two types of SNR are used, one is called thesensor SNR per bit, which is the

SNR per bit of the signals observed at the LSNs. The other one is referred to as the channel SNR
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per bit, which is the average SNR per bit of the signals observed by the FC.

Fig. 5.2 shows the ECP performance of the FH/MFSK WSN employing, respectively,L =

6, 8, 12, 16 LSNs, which monitor a SE withM = 32 states (hypotheses). The sensor SNR

for the signals observed by all the LSNS is the same and is10dB per bit. From the performance

results, we can explicitly observe that both the number of LSNs and the channel SNR have strong

impact on the overall achievable performance of the FH/MFSKWSN. The ECP performance of the

FH/MFSK WSN improves, as the number of LSNs is increased fromL = 6 to 8, to 12 and, finally,

to L = 16. This is because the achieved diversity gain increases, as the number of LSNs increases.

From Fig. 5.2, we can see that, when the channel SNR is sufficiently high, the ES-EGC fusion rule

may significantly outperform the EGC fusion rule. However, when the channel SNR is low, such

as, lower than12 dB, the EGC fusion rule may slightly outperform the ES-EGC fusion rule. The

explanation behind the above observation is as follow. As mentioned previously, the EGC fusion

rule is optimum in Gaussian channels but sensitive to the errors made by the LSNs. By contrast,

the ES-EGC fusion rule is robust to the errors made by the LSNs, but at the cost of removing some

useful information. Consequently, when channel SNR is low,making background noise dominates

the overall performance, the EGC fusion rule may slightly outperform the ES-EGC fusion rule. By

contrast, when channel SNR is high, resulting in that the errors made by LSNs dominate the overall

performance, as seen in Fig. 5.2, the ES-EGC fusion rule significantly outperforms the EGC fusion

rule. Furthermore, in comparison with the case of hard-sensing as shown in Fig 5.2b, soft sensing

is capable of enhencing the overall detection performance of our FH/MFSK WSN for either EGC

fusion rule or ES-EGC fusion rule under the same simulation factors as shown in Fig 5.2b.

In Fig. 5.3, we illustrate the effect of the value ofM on the ECP performance of the FH/MFSK

WSN employingL = 12 LSNs operated at a sensor SNR of10dB per bit. First, as observed in

Fig. 5.3, we observe that the ES-EGC fusion rule outperformsthe EGC fusion rule, provided that

the channel SNR is sufficiently high. However, if the channelSNR is too sufficient, the ES-EGC

fusion rule may be outperformed by the EGC fusion rule. The above observation becomes more

explicit, as the value ofM is relatively large, such asM = 16 or 32. In addition, the results

of Fig. 5.3 show that the ECP performance of the FH/MFSK WSN improves, as the value ofM

increases fromM = 4 to M = 32. Compared Fig 5.3a with Fig 5.3b, it is clear that soft sensing is

able to improve the detection performance of the FH/MFSK WSNsignificantly.
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Figure 5.2: ECP versus channel SNR per bit performance of theFH/MFSK WSN with

soft-sensing or hard-sensing LSNs monitoring a SE of16 states.
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Figure 5.3: ECP versus channel SNR per bit performance of theFH/MFSK WSN employ-

ing L = 12 LSNs with a sensor SNR10dB per bit.
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Figure 5.4: ECP versus channel SNR per bit performance of theFH/MFSK WSN employ-

ing L = 12 LSNs with respect to various sensor SNR values.
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In Fig. 5.4, the ECP performance of the FH/MFSK WSNs with, respectively, the EGC and ES-

EGC fusion rules is investigated and compared, when variousvalues for the sensor SNR are con-

sidered. Explicitly, when the sensor SNR increases, the overall error performance of the FH/MFSK

WSNs improves. As shown in Fig. 5.4, when the sensor SNR is low, such as at6dB or8dB, the ES-

EGC fusion rule is capable of achieving much better detection performance than the EGC fusion

rule, when the channel SNR is sufficiently high. By contrast,the advantage of the ES-EGC over

the EGC becomes less as the sensor SNR increases, meaning that the detection at LSNs becomes

more reliable. In comparison of Fig 5.4a and Fig 5.4b, it can be seen that, given reasonable channel

SNR, soft-sensing is able to enhance the ECP performance of either EGC or ES-EGC for all the

values of sensor’s SNR.
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Figure 5.5: ECP versus channel SNR per bit performance of theFH/MFSK WSN employ-

ing L = 16 LSNs, when various number of TF elements are deleted from each of theM

rows of the detection matrix.

Finally, in Fig. 5.5, we study the effect of the number erasedelements, expressed byI, used by

the ES-EGC fusion rule on the ECP performance of the FH/MFSK WSN. Note again that,I = 0

corresponds to the conventional EGC fusion rule. From Fig. 5.5, we can observe that, both the

sensor SNR and channel SNR have a big impact on the detection performance of FH/MFSK WSN

with soft-sensing LSNs. When the sensor SNR is low and equal to 8dB, the ES-EGC fusion rule

with I = 2 yields the best detection performance, while the EGC fusionrule results in the worst

ECP performance. By contrast, when the sensor SNR is 15dB perbit, which makes the detection
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at the LSNs very reliable, the EGC fusion rule outperforms the ES-EGC fusion rule, regardless of

I = 1 or I = 2. Again, from the observations we are implied that, when the detection at LSNs is

unreliable, the erasure operation employed by the ES-EGC iscapable of mitigating the effect from

the errors made by the LSNs, yielding better detection performance than the EGC fusion rule. On

the other hand, when the detection at LSNs is highly reliable, the erasure operation will remove

useful information, resulting in that the ES-EGC fusion rule is outperformed by the EGC

5.6 Conclusions

In this chapter, we have proposed a noncoherent FH/MFSK WSN,which employs a range of LSNs

monitoring one SE. The LSNs carry out soft-sensing and forward the FC soft information about the

SE’s state. At FC, the SE’s state is detected by the low-complexity EGC fusion rule or the proposed

ES-EGC fusion rule, which also has low-complexity. The detection performance of the proposed

FH/MFSK WSN has been investigated by assuming that the channels from LSNs to FC experience

Rayleigh fading. Our studies and performance results show that, when the sensor SNR is low, re-

sulting in unreliable detection at LSNs, and the channel SNRis relatively high, the ES-EGC fusion

rule may significantly outperform the EGC fusion rule. Therefore, the ES-EGC fusion rule is robust

to the errors made by LSNs. By contrast, when the detection atLSNs is highly reliable, making the

channel noise dominate the FC’s detection performance, then, we may simply use the EGC fusion

rule. In fact, the ES-EGC fusion rule may be regarded as an extension of the EGC fusion rule.

The number of erasures per row may be determined according tothe specific environment that the

FH/MFSK WSN is deployed. Furthermore, compared with the hard-sensing scenario considered in

Chapter 3, soft-sensing is capable of enhancing the overalldetection performance of our proposed

FH/MFSK WSN with either EGC or ES-EGC fusion rule.



Chapter 6
Energy-Based Cooperative Spectrum

Sensing of SC-FDMA Systems

6.1 Introduction

In wireless communications, the need for high data rate services is increasing as a result of the tran-

sition from voice-only communications to multimedia applications [176]. Given the limit of natural

frequency spectrum, it has been recognized that the currentstatic frequency allocation schemes are

unable to accommodate the increasing number of high data rate devices. Cognitive radio with

the capability to sense and exploit unoccupied channels or frequencies has therefore become a

promising candidate for mitigating the problem of spectrumshortage [156]. According to Federal

Communication Commission (FCC) [158], cognitive radio is defined as a radio or system that can

sense its operational electromagnetic environment and candynamically and autonomously adjust

its radio operating parameters to modify system operation,such as maximize throughput, mitigate

interference, facilitate interoperability, access secondary markets.

In cognitive radio terminology, primary radios (PRs) have higher priority or legacy rights on

the usage of specific parts of spectrum allocated to them, while cognitive radios (CRs) can access

these spectrums in such a way that they do not cause interference on the PRs or degrade the perfor-

mance of the PRs. The studies with CRs show that the efficiencyof CR systems depends mainly

on the CRs’ capability to sense the PR users’ states (on/off)and to respond correspondingly and

quickly. Hence, it is critical that CR systems can make quickand reliable decisions during spectrum
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sensing [177].

Depending on the knowledge available to the CRs, a range of spectrum sensing methods have

been proposed and studied. As some examples, energy detection has been considered in [148,176,

178,179], matched filter detection in [148,151], cyclostationary feature detection in [148,151,180,

181], etc. Each of these spectrum sensing techniques has some unique advantages and disadvan-

tages, as detailed as follows. First, energy detection, also known as radiometry or periodogram,

is the first way of spectrum sensing coming to our mind, owing to its low computation and imple-

mentation complexities [176]. In principle, an energy detector simply treats PR signals as noise

and decides about their presence or absence based on the energy levels of the observed signals.

Since it does not require anya-priori knowledge of PR signals, energy detection is viewed as a

type of blind detection method. In energy detection, if the noise power is unable to be accurately

estimated, its performance may significantly degrade. Furthermore, the noise-uncertainty in en-

ergy detection may lead to the so-called SNR wall phenomena [146]. Unlike the energy detector,

matched filter detector and cyclostationary feature detector rely on thea-priori knowledge of PR

signals’ parameters, such as, the knowledge of waveforms, which is impractical for certain appli-

cations [177]. In a little more detail, matched filter detector makes coherent detection based on

the a-priori knowledge of modulation type and carrier frequency of the PRsignals. By contrast,

cyclostationary feature detection belongs to a noncoherent spectrum sensing approach, which may

distinguish various modulation signals. However, cyclostationary feature detector requires some

parameters of PR signals, such as, symbol rate. In comparison with the above three types of spec-

trum sensing approaches, eigenvalue detection [156–158, 177, 182–185] does not depend on the

a-priori information as well as noise power, and it has the advantage of simultaneously achieving

a high detection probability and a low false-alarm probability. However, the eigenvalue detection

is highly dependent on the correlation of PR signals, it becomes less efficient when PR signals

become less correlated. In this contribution, energy detection is employed to sense- an low peak-

to-average power ratio (PAPR) and low complexity interleaved frequency-division multiple access

(IFDMA) PR system [186]. Note that, in some references IFDMAis also referred as the distributed

frequency-division multiple access (DFDMA) [187,187].

In this chapter, we propose and study a spectrum sensing scheme for CR systems, where a

number of cognitive radio sensing nodes (CRSNs) distributively sense a PR system with multiple
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PR users. We assume that the PR system is the interleaved frequency-division multiple access

(IFDMA) system for the LTE [186], which supports a number of synchronous PR users. To attain

fast and low-complexity spectrum sensing, energy detection is employed by the CRSNs. Specif-

ically, local decisions for the presence of multiple PR users are made by the CRSNs separately

based on one of thethree types of energy detection schemesconsidered, under the constraints of

one of thefour synchronization scenariosassumed between the PR signals and the CRSNs. By

this way, every CRSN obtains a binary local decision vector,which is sent to the FC with the aid

of frequency-hopping (FH) andM-ary frequency-shift keying (MFSK). In this chapter, two types

of noncoherent fusion rules are employed by the FC for makingthe final decision, which include

the EGC fusion rule and ES-EGC fusion rule, as shown in previous chapters. The performance of

the FH/MFSK assisted spectrum sensing system with EGC or ES-EGC fusion rule is investigated

via simulation, under the assumptions that the channels from PR users to CRSNs and the channels

from CRSNs to FC experience independent Rayleigh fading. Our studies and performance results

show that, our proposed FH/MFSK assisted spectrum sensing system constitutes one highly reliable

spectrum sensing scheme, which is capable of exploiting thespace diversity provided by CRSNs as

well as the frequency diversity provided by the subcarriersof the IFDMA systems. Additionally, in

comparison with the conventional EGC fusion rule, the ES-EGC fusion rule is robust to the errors

made by CRSNs, yielding better detection performance.

The reminder of this chapter is organized as follows. In Section 6.2, we provide the details

of the proposed FH/MFSK assisted spectrum sensing system. Section 6.3 considers the fusion

detection with either EGC or ES-EGC fusion rule. Section 6.4demonstrates the simulation results

for the detection performance. Finally, in Section 6.5, conclusions of this chapter are derived.

6.2 System Model

The framework for our cognitive spectrum sensing system is shown as Fig. 6.1. In our proposed

spectrum sensing system, we assume that the primary radio (PR) system is a LTE/LTE-A uplink SC-

FDMA system, which supportsK PR users. Each of theK PR users has two states:H0 (off) andH1

(on). We assume that the SC-FDMA system employsN subcarriers. As shown in reference [116],

there are typically two strategies for allocation ofN subcarriers toK users, yielding the so-called
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Figure 6.1: System model for IFDMA system’s spectrum sensing with FH/MFSK tech-

nique.

interleaved FDMA (IFDMA) and localized FDMA (LFDMA). The PAPR problem in LFDMA

system is significantly less severe than that in the conventional OFDM systems. Furthermore, in

the IFDMA system there is only one subcarrier activated for transmission at any time, the IFDMA

signals conflict no PAPR problem at all [116]. In this chapter, we consider only the IFDMA scheme.

For convenience of our description, we assume that theN subcarriers are equally assigned to the

K PR users. Hence, each of theK PR users occupiesW = N/K interleaved subcarriers. When

the kth, k = 1, 2, . . . , K, PR user is present to communicate, it occupies all theW subcarriers

corresponding to its assignment. As the subcarriers are orthogonal with each other in SC-FDMA

systems, we assume that every cognitive radio sensing node (CRSN) is capable of sensing all the

N subcarriers simultaneously without interference.

In this chapter, energy sensing (detection) is employed by the L CRSNs, as seen in Fig. 6.1, to

sense which PR user(s) is on/off or which subcarriers are available for the CR system. After the
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local sensing, each of the CRSNs obtains a binary vector of lengthK, indicating the on/off states of

theK PR users. Then, theK-length binary vector is conveyed to anM-ary number and transmitted

to the fusion center (FC) in the principles of FH/MFSK. In this chapter, we assume that the number

of frequency bands, expressed asM, used for FH/MFSK is equal to or larger than2K. Finally, at the

FC, the on/off states of theK PR users are noncoherently classified based on the signals received

from theL CRSNs. In this chapter, two types of fusion classification schemes are considered, which

are based on the conventional equal gain combining (EGC) [188] and the erasure-supported equal

gain combining (ES-EGC) [189], respectively. Below, we provide the details about the operations

carried out at the CRSNs and FC.

6.2.1 Spectrum Sensing at CRSNs

For convenience, the main parameters used in this chapter are summarized as follows.

• N: number of subcarriers of SC-FDMA PR system;

• K: number of uplink PR users;

• W = N/K: number of subcarriers per PR user;

• L: number of CRSNs;

• M: number of frequency bands used by FH/MFSK;

• U + 1: number of multipaths of communications channels.
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Figure 6.2: Transmitter schematic for thekth user supported by the SC-FDMA uplink.

The transmitter schematic of the SC-FDMA uplink is shown in Fig. 6.2. Let theW symbols

transmitted by thekth PR user in time-domain be expressed as

xxxk = [xk0, xk1, · · · , xk(W−1)]
T, k = 0, 1, · · · , K − 1 (6.1)
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As shown in Fig. 6.2, first,xxxk is transformed to the frequency-domain with the aid of theW-point

DFT, yielding theW-length vectorXXXk, which can be expressed as

XXXk = FFFWxxxk = [Xk0, Xk1, · · · , Xk(W−1)]
T (6.2)

whereFFFW denotes anW-point FFT matrix [116]. More specifically, theW entries in the vectorXXXk

are given by

Xkl =
1√
W

W−1

∑
w=0

xkwexp

(
−j

2πlw

W

)
, l = 0, 1, · · · , W − 1 (6.3)

Following the DFT operation, theW elements inXXXk are mapped toW out of the N = WK

subcarriers, according to the principles of IFDMA [116]. After the subcarrier mapping, theW-

length vectorXXXk is extended to anN-length vectorX̃XXk, which can be represented as

X̃XXk = [X̃k0, X̃k1, · · · , X̃k(N−1)]
T (6.4)

In more detail, under the IFDMA strategy for mapping, the elements ofX̃XXk are given by

X̃kn = Xkw, if n = wK + k

X̃kv = 0, otherwise (6.5)

wherew = 0, 1, · · · , W − 1; k = 0, 1, · · · , K − 1. After the subcarrier mapping, as shown in

Fig. 6.2,X̃XXk is transformed to the time-domain by carrying out the IDFT operation, yielding an

N-length vector

x̃xxk = FFFH
NX̃XXk (6.6)

whereFFFN denotes the anN-point FFT matrix.

According to [116], upon submitting (6.3) and (6.5) into (6.6), thevth, v = 0, 1, · · · , N − 1,

element ofx̃xxk can be expressed as

x̃k(v=qW+i) =
1√
N

N−1

∑
n=0

X̃knexp

(
j
2πvn

N

)

=
1√
K

exp

[
j
2π(qW + i)k

N

]
xki (6.7)

where the values ofq, q = 0, 1, · · · , K − 1, andi, i = 0, 1, · · · , W − 1, are uniquely determined

by the value ofv. From (6.7) we can see that theW symbols ofxxxk of thekth PR user are repeatedly
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transmitted on thekth subcarrier, and all theW symbols are transmittedK times within one IFDMA

symbol duration [116].

Following theN-point IDFT operation, as shown in Fig. 6.2, a cyclic prefix (CP) is added in

the front ofx̃xxk in order to eliminate intersymbol interference (ISI). Explicitly, the Nc-length CP for

x̃xxk is
[

x̃k(−Nc), x̃k(−Nc+1), · · · x̃k(−1)

]
=
[

x̃k(N−Nc), x̃k(N−Nc−1), · · · x̃k(N−1)

]
, which consists of

the lastNc elements of vector̃xxxk. Let us express the time-domain vector after the CP asx̃xx′k, which

is

x̃xx′k =
[

x̃k(−Nc), x̃k(−Nc+1), · · · x̃k(−1), x̃k0, x̃k1, · · · , x̃k(N−1)

]

=
[

x̃k(N−Nc), x̃k(N−Nc−1), · · · x̃k(N−1), x̃k0, x̃k1, · · · , x̃k(N−1)

]
(6.8)

Based on (6.8), finally, as shown in Fig. 6.2, we can form the complex baseband equivalent

signal transmitted by thekth PR user, which is

sk(t) =
N+Nc−1

∑
v=0

√
2Px̃′kvψ(t − vTc) (6.9)

whereP is the transmission power per dimension,x̃′kv is thevth element of̃xxx′k andψ(t) is a unit-

power chip-waveform impulse defined in(0, Tc], whereTc is the chip duration, determined by the

bandwidth used by the SC-FDMA system.

In our proposed spectrum sensing system, each of the CRSNs iscapable of simultaneously

sensing all theK PR users. In this case, when theK uplink PR users’ signals in the form of (6.9)

are transmitted through wireless channels, the received complex baseband equivalent signal at the

lth (0 < l ≤ L) CRSN can be written as

Rl(t) =
K−1

∑
k=0

sk(t) ∗ hkl(t) + nl(t) (6.10)

wherehkl(t) denotes the channel impulse response (CIR) between thelth CRSN and thekth PR

user, whilenl(t) is the Gaussian noise process presenting at thelth CRSN, with zero mean and

single-sided power-spectral density (PSD) ofN0 per dimension.

At the lth, l = 1, . . . , L − 1, CRSN, the received signalRl(t) is first filtered by a filter matched

to the chip waveformψ(t). Then, the filter’s output signal is sampled at the chip rate of 1/Tc. After

the normalization using1/
√

2PTc, it can be shown that thevth, (0 ≤ v ≤ N + Nc − 1), sample
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can be expressed as

ỹ′l,v =
1√

2PTc

∫ (v+1)Tc

vTc

Rl(t)ψ(t − vTc)dt

=
K−1

∑
k=0

(hl,kv ∗ x̃′kv) + ñl,v

=
K−1

∑
k=0

U

∑
u=0

hl,ku × x̃′k(v−Nc−u) + ñl,v (6.11)

where we assumed that the CIR has(U + 1) taps, i.e.,hhhkl = [hl,k0, · · · , hl,kU ]
T. In the above

equation, the Gaussian noise sampleñl,v is expressed as

ñl,v =
1√

2PTc

∫ (v+1)Tc

vTc

nl(t)ψ(t − vTc)dt (6.12)

which has zero mean and a variance2σ2 = N0/Ec with Ec = PTc representing the chip energy.

From the outputs of̃y′l,v, we can form anN-length vector̃yyyl at thelth CRSN. Furthermore, in

the cases when the CRSNs do not know the beginning of an IFDMA symbol, they have to use anN-

length vector having a random starting point. In this case, theN samples may span two consecutive

IFDMA symbols. In order to consider this scenario, in this chapter, we use the superscript ‘0’ to

indicate the current IFDMA symbol, while the superscript ‘−1’ to indicate the previous IFDMA

symbol. In this chapter, four scenarios will be addressed. In the first scenario, namely,synchronous

sensing, we consider the case of perfect synchronisation between the PR users and CRSNs. In

the second and the third scenarios, we assume quasi-synchronisation between the PR users and the

CRSNs, where theN samples used by a CRSN all come from one IFDMA symbol. However, we

assume that there is no inter-(IFDMA) symbol interference in the second scenario, but there is in

the third scenario. Correspondingly they are referred to asthequasi-synchronous sensing without

ISI andquasi-synchronous sensing with small ISI, respectively. Finally, in the context of the fourth

scenario, we assume that theN samples used by one CRSN are contributed by two consecutive

IFDMA symbols, hence, it is an asynchronous scenario, giving the name ofasynchronous sensing.

Below we detail the representations corresponding to theseoperational scenarios.

6.2.1.1 Synchronous Sensing

When a CRSN perfectly synchronises with the incoming IFDMA signals, the CP added in the

transmitted signals can be removed, yielding anN-length vector̃yyyl, as seen in Fig. 6.3. The value
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Figure 6.3: Illustration for the scenario of synchronous sensing.

of thenth element of̃yyyl with its elements given by

ỹl,n = ỹ′l,(n+Nc)
, n = 0, 1, · · · , N − 1 (6.13)

Furthermore, it can be shown thatỹyyl can be expressed based on matrix representation as

ỹyyl =




ỹl,0

ỹl,1

...

ỹl,(N−1)




=
K−1

∑
k=0




h0
l,kU h0

l,k(U−1)
· · · h0

l,k0 0 · · · 0

0 h0
l,kU · · · h0

l,k1 h0
l,k0 · · · 0

...
...

. . . . . . .. . . . .
...

0 · · · 0 h0
l,kU · · · h0
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l,k0


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
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x̃0
k,(−U)
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x̃0
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x̃0
k,0
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x̃0
k,(N−1)




(6.14)

+




ñl,Nc

ñl,(Nc+1)

...

ñl,(N+Nc−1)




6.2.1.2 Quasi-Synchronous Sensing without ISI
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Figure 6.4: Illustration for the scenario of quasi-synchronous sensing without ISI, where

0 ≤ β ≤ Nc − U.
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As an example, Fig. 6.4 shows a case corresponding to the scenario of quasi-synchronous sens-

ing without ISI. In this scenario, the sampling of a CRSN starts β chips before the first symbol

x̃0
k0, whereβ ∈ (0, Nc − U). From Fig. 6.4 we can see that, whenβ ∈ (0, Nc − U), there is no

interference from the previous IFDMA symbol on the current IFDMA symbol. Furthermore, from

Fig. 6.4, we can readily know that thenth element of̃yyyl is given by

ỹl,n = ỹ′l,(n+Nc−β), n = 0, 1, · · · , N − 1 (6.15)

When expressed in matrix form, we have

ỹyyl =


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6.2.1.3 Quasi-Synchronous Sensing with Small ISI
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Figure 6.5: Illustration for the scenario of quasi-synchronous sensing with small ISI,

whereNc − U ≤ β ≤ Nc.

The scenario considered is similar as the one considered in Section 6.2.1.2, except that now

(Nc − U ≤ β ≤ Nc). In this case, the samples used for sensing are affected by both the−1th

IFDMA symbol and the0th IFDMA symbol, as seen in Fig. 6.5.
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From Fig. 6.5, we can know that thenth element of̃yyyl is given by

ỹl,n = ỹ′l,(n+Nc−β), n = 0, 1, · · · , N − 1 (6.17)

Furthermore, it can be shown thatỹyyl can be expressed in matrix form as

ỹyyl =




ỹl,0

ỹl,1

...

ỹl,(N−1)




=
K−1

∑
k=0




h−1
l,kU h−1

l,k(U−1)
· · · h−1

l,k0 0 · · · 0

0 h−1
l,kU · · · h−1

l,k1 h−1
l,k0 · · · 0

...
...

. . . . . . . . . . . .
...

0 · · · 0 h0
l,kU · · · h0

l,k1 h0
l,k0







x−1
N+Nc−U−β

...

x−1
N−1

x0
−Nc

...

x0
0

...

x0
N−1−β




+




ñl,(Nc−β)

ñl,(Nc+1−β)

...

ñl,(N+Nc−β−1)




(6.18)

6.2.1.4 Asynchronous Sensing
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Figure 6.6: Illustration for the scenario of asynchronous sensing, whereNc ≤ β < N.

Finally, for the scenario of asynchronous sensing, the situation can be seen in Fig. 6.6, where

Nc ≤ β < N. Hence, the samples used for spectrum sensing depend on two consecutive IFDMA

symbols. Thenth entry ofỹyyl can be expressed as

ỹl,n = ỹ′l,(n+Nc−β), n = 0, 1, · · · , N − 1 (6.19)
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which, when in matrix form, can be represented as

ỹyyl =




ỹl,0

ỹl,1

...

ỹl,(N−1)




=
K−1

∑
k=0




h−1
l,kU h−1

l,k(U−1)
· · · h−1

l,k0 0 · · · 0

0 h−1
l,kU · · · h−1

l,k1 h−1
l,k0 · · · 0

...
...

. . . . . . . . . . . .
...

0 · · · 0 h0
l,kU · · · h0

l,k1 h0
l,k0







x−1
N+Nc−U−β

...

x−1
N−1

x0
−Nc

...

x0
0

...

x0
N−1−β




+




ñl,(Nc−β)

ñl,(Nc+1−β)

...

ñl,(N+Nc−β−1)




(6.20)

which has the same form as (6.18). However, we should note that in (6.18),Nc − U ≤ β ≤ Nc,

while in (6.20)Nc ≤ β < N.

After obtaining theN observation samples, as shown in (6.14), (6.16), (6.18) or (6.20), the DFT

operation is carried out to transform the time-domain observations ỹyyl to the frequency-domain,

yielding anN-length vector

ỸYYl = FFFNỹyyl = [Ỹl,0, Ỹl,1, · · · , Ỹl,(N−1)], l = 1, 2, . . . , L (6.21)

where thevth (0 ≤ v ≤ N − 1) element ofỸYYl can be expressed as

Ỹl,v =
1√
N

N−1

∑
n=0

ỹl,nexp

(
−j

2πvn

N

)

=
1√
N

N−1

∑
n=0

ỹ′l,(n+Nc)
exp

(
−j

2πvn

N

)
(6.22)

In correspondence to the subcarrier mapping operated at thetransmitter side, at the CRSN,

subcarrier de-mapping is carried out to execute the inverseoperation of (6.5). The corresponding

outputs for thekth PR user can be collected into anW-length vector as

ỸYY
k
l = [Ỹk

l,0, Ỹk
l,1, · · · , Ỹk

l,(W−1)] (6.23)
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in which thewth (0 ≤ w ≤ W − 1) element is

Ỹk
l,w = Ỹl,(wK+k) (6.24)

With the aid of (6.23), a CRSN can now detect the on/off state of a PR user occupying a certain

set of subcarriers. As for the purpose of CR sensing a CR system only needs to know which subcar-

riers are active or inactive, low-complexity noncoherent detection can be employed. In this chapter,

noncoherent energy detection is employed to detect theK PR users’ states. Specifically, three types

of local detection rules are investigated, which are referred to as theaverage power assisted detec-

tion (APD), majority vote assisted detection (MVD)and themaximum selection assisted detection

(MSD). Their details are as follows.

In the context of the APD, the decision rule for detection of thekth PR user by thelth CRSN is

given by

δ(l,k) =
1

W

W−1

∑
w=0

|Ỹk
l,w|2

H0

≶
H1

λAP (6.25)

whereλAP is a preset threshold for the APD, which is chosen to satisfy afixed false alarm proba-

bility of Pf .

When the MVD is employed, we first set a thresholdλmv > 0. By comparing with this thresh-

old, whenever an elementỸk
l,w in ỸYY

k
l exceedsλmv, the corresponding entry of a newly formed vector

ỸYY
′k
l is flagged by a logical one. Otherwise, it gives a logical zero. Based oñYYY

′k
l , the local detection

is made in the principles of MVD. Specifically, if the number of ones is equal to or more thanλMV

of the preset threshold, the CRSN renders that the corresponding PR user is on(H1). Otherwise, it

decides that the PR is off(H0). In summary, the decision rule is described as

δ(l,k) =
W−1

∑
w=0

|Ỹ ′k
l,w|2

H0

≶
H1

λMV (6.26)

whereλMV is an integer threshold for the MVD.

Finally, when MSD is employed, the largest one ofỸYY
k
l is chosen for making the local decision.

The decision rule can be expressed as

δ(l,k) = max{|Ỹk
l,0|2, |Ỹk

l,1|2, · · · , |Ỹk
l,(W−1)|2}

H0

≶
H1

λMS (6.27)

whereλMS is the threshold for the MSD, which is chosen for satisfying afixed false alarm proba-

bility Pf .
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After the on/off states of all theK PR users are detected, thelth CRSN obtains anK-length bi-

nary vector giving the on/off states of theK PR users, which is expressed assss
(B)
l = [s

(B)
l,0 , s

(B)
l,1 , · · · , s

(B)
l,(K−1)

].

This vector is then mapped to anM-ary number expressed ass
(M)
l , which is then transmitted in the

FH/MFSK principles, as shown in Fig. 6.1 and detailed in the next subsection.

6.2.2 Signal Processing and Transmission at CRSNs

Let the estimated states by theL CRSNs are collected into a vectorsss(M) = [s
(M)
1 , s

(M)
2 , · · · , s

(M)
L ],

wheres
(M)
l ∈ [0, M − 1]. Following the local spectrum sensing, theL CRSNs convey their local

detected states to the FC with the aid of the FH/MFSK techniques. Let the total transmission

time of sss(M) to the FC beTs seconds, which is referred to as the symbol duration. This symbol

duration is equally divided intoL portions referred to astime-slotshaving the durationTh = Ts/L.

Each CRSN uses one time-slot to send its detected states to the FC. As previously mentioned, the

FH/MFSK scheme hasM orthogonal sub-frequency bands, their center frequenciesare represented

by FFF = { f0, f1, . . . , fM−1}. TheseM frequencies are used for both FH and MFSK modulation,

which are implemented as follows. Letaaa = [a1, a2, · · · , aL] be a FH address used for FH operation,

whereal ∈ {0, 1, · · · , M − 1}, l = 1, 2, . . . , L. With the aid the FH operation, different CRSNs

will convey their signals on different sub-frequency bands. The operation enhances the diversity

capability for final signal detection at the FC, especially,when some of the CRSNs are close to

each other, resulting in correlation in the space domain.

After processingsss(M) using the FH addressaaa, we obtain

mmm = [m1, m2, · · · , mL] = sss(M) ⊕ aaa

=
[
s
(M)
1 ⊕ a1, s

(M)
2 ⊕ a2, · · · , s

(M)
L ⊕ aL

]
(6.28)

where⊕ represents the addition operation in the Galois field ofGF(M). Therefore, the value

of ml (l = 1, 2, . . . , L) is within [0, M − 1] and is suitable for MFSK modulation. Following

the FH operation, as shown in Fig. 6.1, the components ofmmm are mapped to the MFSK’s sub-

frequenciesFFFm = { fm1, fm2, . . . , fml}, wherefml
∈ FFF. Finally, the MFSK signals of theL CRSNs

are transmitted one-by-one to the FC in a time-division fashion usingL time-slots of durationTh.

Specifically, the signal transmitted by thelth CRSN duringiTs < t ≤ (i + 1)Ts can be expressed



6.3. Fusion Processing 138

in complex form as

sl(t) =
√

PψTh
[t − iTs − (l − 1)Th] exp[j2π( fc + fml

)t + jφl], l = 1, 2, . . . , L (6.29)

whereP denotes the transmission power, which is assumed the same for all the L CRSNs,fc is the

main carrier frequency andφl is the initial phase introduced by carrier modulation. In (6.29),ψTh
(t)

is the pulse-shaped signalling waveform, which is defined over the interval[0, Th) and satisfies the

normalization of
∫ Th

0 ψ2(t)dt = Th.

Assuming that the signals as shown in (6.29) are transmittedvia flat Rayleigh fading channels

to the FC, the received signal duringiTs < t ≤ (i + 1)Ts can then be expressed as

rl(t) =hlsl(t) + nl(t)

=
√

PhlψTh
[t − iTs − (l − 1)Th] exp[j2π( fc + fml

)t + jφl] + n(t),

l = 1, 2, . . . , L, (6.30)

wherehl = αl exp(jθl) denotes the channel gain with respect to thelth CRSN, which is assumed

constant over one symbol-duration. In (6.29),n(t) is the Gaussian noise process presenting at the

FC, which has zero mean and single-sided power-spectral density (PSD) ofN0 per dimension.

6.3 Fusion Processing

When the FC receives the signalrl(t), l = 1, 2, · · · , L, final decision is made with the aid of one

of the two noncoherent fusion rules, namely the conventional EGC fusion rule and the ES-EGC

fusion rules, which are detailed as follows.

First, for both the fusion rules,M decision variables are formed for every of theL CRSNs,

which are

Rml =|(
√

ΩPTh)
−1
∫ iTs+(l+1)Th

iTs+lTh

rl(t)ψ
∗
Th
[t − iTs − (l − 1)Th] exp[−j2π( fc + fm)t]dt|2,

m = 0, 1, . . . , M − 1; l = 1, 2, . . . , L (6.31)

whereΩ = E[|hl |2] denotes the average channel power. Since theM sub-frequency bands used

for FH/MFSK are assumed to be orthogonal to each other, thereis no interference between any two

sub-frequency bands. Consequently, upon substituting (6.30) into (6.31) and absorbing the carrier
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phaseφl into hl, we obtain

Rml =

∣∣∣∣
µmml

hl√
Ω

+ Nml

∣∣∣∣
2

, m = 0, 1, . . . , M − 1; l = 1, 2, . . . , L (6.32)

where, by definition,µmm = 1, while µmml
= 0, if m 6= ml. In (6.32),Nml is a complex Gaussian

noise sample collected from themth sub-frequency band during thelth time-slot, which is given by

Nml = (
√

ΩPTh)
−1
∫ iTs+(l+1)Th

iTs+lTh

n(t)ψ∗
Th
[t − iTs − (l − 1)Th] exp[−j2π( fc + fm)t]dt (6.33)

It can be shown thatNml has mean zero and a variance ofLN0/(ΩEs) = L/γ̄s, whereEs = PTs

represents the total energy with each CRSN’s transmitted energy per symbol beingEh = Es/L,

while γ̄s = ΩEs/N0 denotes the average SNR per symbol.

Using theML values shown in (6.32), we can form a time-frequency matrixRRR of (M × L),

where each column holdsM decision variables in the form of (6.32). Based onRRR the FC carries

out the final detection in the principles of EGC or ES-EGC fusion rule.

6.3.1 EGC Fusion Rule

In the context of the EGC fusion rule, the FC makes the final decision based on the time-frequency

matrix as follows.

1. Frequency de-hopping to form a detection matrix:

DDD = RRR ⊟ (111 ⊗ aaaT) (6.34)

where111 denotes an all-one column vector ofM-length and⊗ denotes the Kronecker product

operation between two matrices [116]. In (6.34), the operation of AAA ⊟ BBB shifts the elements

in AAA based on the values provided byBBB. Specifically, after the operation in (6.34), a detection

matrix DDD is formed as

D(m⊖al)l = Rml, m = 0, 1, . . . , M − 1, l = 1, 2, . . . , L (6.35)

where⊖ denotes the subtraction operation in the Galois field ofGF(M). The operation in

Equation (6.35) means that the element indexed bym in RRR is changed to the one indexed by

m′ = m ⊖ al in DDD.
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2. EGC detection: Based on the detection matrixDDD, M decision variables for final spectrum

sensing are formed under the EGC principles [116] as

Dm =
L

∑
l=1

Dml, m = 0, 1, . . . , M − 1 (6.36)

Finally, the largest one of{D0, D1, · · · , DM−1} is selected and its index is mapped to an

integer in the range[0, M − 1], which represents theM-ary estimation of theK PR users’

on/off states. Then, theM-ary integer is converted to a binary vector ofK-length, whoseK

elements give the on/off states of theK PR users.

6.3.2 ES-EGC Fusion Rule

In our spectrum sensing scheme, there are mainly two sourcesresulting in that the FC makes

erroneous decisions. The first one is the incorrect detection made by the CRSNs. In this case,

the CRSNs directly send the FC incorrect information. Secondly, the wireless channels between

CRSNs and FC are no-ideal, which also introduce errors. Statistically, we can know that, when an

element in the detection matrixDDD contains both signal and noise, its energy will be higher than that

of the element containing only noise. This implies that, if an element in the undesired rows (the

rows not matching to the states of the PR users) has high energy, then, it might be an erroneous

element introduced by what the above-mentioned. Straightforwardly, this types of elements in the

undesired rows may significantly degrade the detection performance of the FC.

Based on the above observation, in this chapter, the ES-EGC fusion rule is employed. When

operated under this fusion rule, in each of theM rows of the detection matrixDDD, a given number of

entries with the highest values are removed before forming the M decision variables based on the

EGC principles. As the result, the errors transmitted by theCRSNs might be removed, especially,

when the signal-to-noise ratio (SNR) is relatively high. Asour performance results in Section 6.4

show, this error-erasing process will significantly enhance the detection performance of the FC.

In detail, the ES-EGC fusion rule is operated as follows.

1. Frequency de-hopping to form the detection matrixDDD, which is the same as that done by

the EGC fusion rule.

2. Erasure operation: After obtainingDDD, the ES-EGC fusion rule carries out the erasure oper-
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ations. In each of theM rows ofDDD, I (0 ≤ I < L) elements corresponding to theI largest

values are replaced by the value of zero, which results in a new matrix D̄DD.

3. EGC detection: M decision variables are formed based on the matrixD̄DD in EGC princi-

ples [116] as

D̄m =
L

∑
l=1

D̄ml, m = 0, 1, . . . , M − 1 (6.37)

Finally, the largest of{D̄0, D̄1, · · · , D̄(M−1)} is selected and its index value in terms of

m represents theM-ary estimation of value conveyed by the CRSNs. Furthermore, after

mapping theM-ary value to the binary representation, the on/off states of theK PR suers can

be estimated.

6.4 Spectrum Sensing Performance

In this section, both the local spectrum sensing at CRSNs andthe overall detection performance

at the FC are investigated via simulation results. Specifically, we consider the missing probabil-

ity, Pm, of the sensing at CRSNs and the missing probability,PM, of the detection at the FC, for

demonstrating the impact of collision between PR users and CR users. At the CRSNs, we assume

that the signals received from the PR users experience multipath Rayleigh fading. We compare the

local missing probability of different detection approaches via simulation results and show the in-

fluence of the threshold applied for detection. At the FC, theoverall spectrum sensing performance

of our proposed cooperative spectrum sensing system employing either EGC or ES-EGC fusion

rule is investigated, when assuming that random FH addresses are used for transmitting the local

decisions made by the CRSNs to the FC, and that the wireless channels from the CRSNs to the FC

experience independent Rayleigh fading.

In our simulations, local decisions are made based on the energy-based spectrum sensing. The

parameters used in our simulations for each of the figures aredetailed associated with the corre-

sponding figure. In the figures, the ‘Observation SNR at each CRSN’ is the average SNR per PR

user received at a CRSN. The false-alarm probability of all the CRSNs is assumed the same, which

is expressed asPf . The ‘channel SNR per bit’ is the average received SNR at the FC per bit given by

γ̄b = γ̄s/b, whereb = log2 M denotes the number of bits required to represent aM-ary number.
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(a) Case 1: Synchronous sensing.
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(b) Case 2: Quasi-synchronous sensing without
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(c) Case 3: Quasi-synchronous sensing with small

ISI.
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(d) Case 4: Asynchronous sensing.

Figure 6.7: Power spectral density presenting at the CRSNs in a IFDMA system using

128 subcarriers to support16 users, when communicating over multipath Rayleigh fading

channels having5 time-domain resolvable paths. The results were obtained from 10000

realizations.
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Fig. 6.7 shows the impacts of the four scenarios, as shown in Section 6.2.1, which address the

synchronization between the received signals from PR usersand the sensing, on the PSDs of the

received signals. As shown on the top of the figure, we consider an IFDMA PR system, which

employsN = 128 subcarriers to support maximumK = 16 uplink users. Hence, each PR user

occupiesW = 8 subcarriers evenly distributed over the128 subcarriers, as indicated by the eight

dominant spectral lines in each of the four figures. We assumethat, in the PR system, only user1 is

on, while all the other PR users are idle. Signals received byCRSNs from the PR users are assumed

to experience multipath Rayleigh fading having(U + 1) = 5 time-domain resolvable paths. As

shown in Section 6.2.1, the value of the parameterβ reflects the synchronization level between

the PR signals and the local sensing. Specifically, we set thevalues ofβ as β = 0, 2, 15 and

50, respectively, for the scenarios of synchronous sensing, quasi-synchronous sensing without ISI,

quasi-synchronous sensing with small ISI and asynchronoussensing. From the results shown in the

figures, we can clearly see that, when the sensing becomes more asynchronous with the arrival PR

signals, inter-carrier interference increases, i.e., more power leaks from the activated subcarriers to

their neighbouring subcarriers. However, at5 dB of the SNR, the activated subcarriers stand out

explicitly and have significantly higher power than the other idle subcarriers.
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Figure 6.8: Missing probability of the local CRSNs sensing the spectrum of an IFDMA

system using 128 subcarriers to support maximum16 users, when communicating over

multipath Rayleigh fading channels having5 time-domain resolvable paths.
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In Fig. 6.8, we investigate the performance of the three types of energy-based detections schemes,

namely, the APD, MVD and the MSD, when the false-alarm probability of local CRSNs is set as

Pf = 0.05. In the figure,β = 0 stands for the scenario of synchronous sensing, as shown in

Section 6.2.1. By contrast,0 ≤ β ≤ 127 means thatβ is a random variable taking integer values

uniformly in [0, 127], which provides the average performance achieved by the four synchroniza-

tion scenarios considered. From Fig. 6.8, we can have the following observations. First, we can

see that the MVD outperforms the APD, and that the MSD achieves the best sensing performance

among the three local detection schemes. Second, the synchronous sensing provides the best local

sensing performance, as there is no inter-carrier interference.
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Figure 6.9: Missing probability of the local CRSNs sensing the spectrum of an IFDMA

system with 128 subcarriers to support maximum16 users, when the MVD associated

with various values forλMV is employed.

In Fig. 6.9, we illustrate the local sensing performance of the CRSNs employing MVD, when

the thresholds areλMV = 2, 3, 4 and5. Similarly to Fig. 6.8, in Fig. 6.9 both the synchronous

sensing(β = 0) and the random asynchronous sensing(0 ≤ β ≤ 127) are considered. From the

results of Fig. 6.9, again, we observe that the synchronous sensing outperforms the asynchronous

sensing. For both the cases, we see thatλMV = 3 results in the lowest missing probability, when

the SNR is relatively high, which implies that there exists an optimal value for the threshold, which

makes the MVD-assisted local sensing attain the lowest missing probability.



6.4. Spectrum Sensing Performance 145

10
-4

10
-3

10
-2

10
-1

1

P m

-10 -8 -6 -4 -2 0 2 4 6 8 10 12

Observation SNR at each CRSN (dB)

N=128, K=16, CP=16, U=4, Pf=0.05
Synchronous sensing
Quai-synchronous
sensing without ISI
Quai-synchronous
sensing with small ISI
Asynchronous sensing

Figure 6.10: Missing probability of the CRSNs sensing an IFDMA system using 128 sub-

carriers for supporting maximum16 users with MSD local detection, when four sensing

scenarios are considered.

Fig. 6.10 depicts the sensing performance of the MSD local detection in the context of the four

scenarios considered in Section 6.2.1. As our discussion inSection 6.2.1 shows, when the CRSNs

are operated in the scenarios of synchronous sensing or quasi-synchronous sensing without ISI,

there is no interference from a previous IFDMA symbol on the current IFDMA symbol. As shown

in Fig. 6.10, we are unable to distinguish between the performance of these two scenarios. By con-

trast, when there is small or large ISI, corresponding to thescenarios of quasi-synchronous sensing

with small ISI and asynchronous sensing, the performance oflocal CRSNs degrades explicitly, in

comparison with that of the scenarios of synchronous sensing and quasi-synchronous sensing with-

out ISI. Furthermore, the missing probability achieved under the scenario of asynchronous sensing

is higher than that achieved under the scenario of quasi-synchronous sensing with small ISI.

Fig. 6.11 shows the overall missing probability of the cognitive spectrum sensing systems with

various numbers of CRSNs, when the local CRSNs employs the MSD. In the studies, we assume

an IFDMA system which has in totalN = 128 subcarriers and supports maximumK = 16 users.

Hence, each active user usesW = 8 subcarriers for uplink communications. At the FC, both the

EGC fusion rule (Fig. 6.11a) and ES-EGC fusion rule (Fig. 6.11b) are considered. Furthermore,

when the ES-EGC fusion rule is employed, we assume that an optimum number of entries per row
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Figure 6.11: Overall missing probability of the cognitive spectrum sensing systems with

different numbers of CRSNs, when the MSD local detection andthe EGC or ES-EGC

assisted fusion detection are employed.
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are erased, which yields the best overall detection performance. From the results of Fig. 6.11a and

Fig. 6.11b, first, we can explicitly see that the overall missing probability decreases, as the number

of CRSNs increases fromL = 10 to L = 15 and toL = 20, owing to the improvement of spatial

diversity. Second, similar as the detection at the CRSNs, the overall detection performance of the

system with synchronous sensing corresponding to(β = 0) is better than that achieved by the

systems using asynchronous sensing. Finally, when comparing Fig. 6.11b with Fig. 6.11a, we can

clearly see that the ES-EGC fusion rule outperforms the EGC fusion rule, which becomes more

significant, when the channel SNR increases.

Finally, in Fig. 6.12, the overall missing probability performance of the cognitive spectrum

sensing system, when different observation SNR is assumed for the CRSNs. From Fig. 6.12, we

can have similar observations as that from Fig. 6.11. Furthermore, from Figs. 6.11 and 6.12, we can

find that the ES-EGC fusion rule outperforms the EGC fusion rule, which becomes more explicit,

as the SNR of the channels from CRSNs to FC increases.

6.5 Conclusion

In this chapter, we have proposed a FH/MFSK assisted cognitive spectrum sensing system monitor-

ing, specifically, a IFDMA PR system supporting multiple users. Local decisions for the presence

of multiple PR users are made by the CRSNs separately based onone of the three types of energy

detection schemes considered, under the constraints of oneof the four synchronization scenarios

assumed between the PR signals and the CRSNs. After each of the CRSNs obtains the on/off

states of all the PR users, this binary local decision vectoris conveyed into anM-ary number,

and then transmitted to the FC with the aid of FH/MFSK. At the FC, overall decision is made

based on either the EGC fusion rule or ES-EGC fusion rule. Both the local spectrum sensing at

CRSNs and the overall detection performance at the FC are investigated via simulation results. At

the CRSNs, we assume that the signals received from the PR users experience multiple Rayleigh

fading channels. Our simulation results show that reliablelocal sensing is achievable at the very

low SNR. Both the synchronization and the local detection approach, as well as the threshold has

significant influence on the local detection performance. Atthe FC, the overall spectrum sensing

performance is investigated, when assuming that random FH addresses are used for transmitting
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Figure 6.12: Overall missing probability of the cognitive spectrum sensing system with

the MSD for local detection and EGC or ES-EGC assisited fusion detection, when the

CRSNs have various observation SNRs.
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the local decisions through independent Rayleigh fading channels. From the simulation results, we

can clearly see that the ES-EGC fusion rule outperforms the ES-EGC fusion rule, which becomes

more significant, when the channel SNR increase.



Chapter 7
Conclusions and Future Work

In this final concluding chapter, we first provide a summary ofthe thesis in Section 7.1. Then a

range of issues requiring further research are provided in Section 7.2.

7.1 Summary of Conclusions

In this thesis, we have proposed and investigated a novel triple-layer wireless sensor network

(WSN) framework known as the FH/MFSK WSN system. Generally,our proposed FH/MFSK

WSN employs two typical characteristics as follows. First,low-complexity noncoherent detection

is employed at the FC, which does not depend on energy-greedychannel estimation. These energy-

efficient and low-complexity detection strategies are beneficial to the life-time of power-limited

WSNs. Second, in the proposed FH/MFSK WSN, the FH/MFSK techniques have been introduced

for supporting single/multiple SE(s). The FH/MFSK techniques are also capable of enhancing the

detection performance of the FH/MFSK WSN system, which is achieved by reducing the corre-

lation among the signals transmitted by the different LSNs,so that the detection at the FC can

benefit from both the space diversity provided by the LSNs andthe frequency diversity yielded by

the FH/MFSK operations. As our analysis shows, the frequency diversity becomes more important

to the WSNs, when their LSNs are closely distributed, resulting in that the signals transmitted by

different LSNs experience correlation in the space domain.

Each of the chapters in the thesis has its own emphases. In brief, Chapter 2 gives an overview

of local detections and fusion rules. In Chapter 3, the proposed FH/MFSK WSN is employed
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for monitoring single SE with multiple states. In Chapter 4,the FH/MFSK WSN is proposed to

monitor multiple SEs of each having multiple states. Chapter 5 addresses soft-sensing, which is im-

plemented to enhance the detection performance of the FH/MFSK WSN with single SE. Finally, as

an example for the applications of the FH/MFSK WSN, in Chapter 6, spectrum sensing in cognitive

radios is studied. More details concerning the contribution of the thesis are provided as follows.

We have commenced in Chapter 2 with a detailed review of localdetections and fusion rules.

According to the references, a lot of research has been done with WSNs in order to attain reliable

signal detection through the optimization at FC level or/and at LSN level. Specifically, the princi-

ples of the classical binary hypothesis test at LSNs and the fusion rules used by FC, as well as some

local spectrum sensing approaches are summarized as follows.

• Classical binary local detections: In the context of binary local detection, a LSN makes

local decision of the observed SE based on its own observation. Bayesian detection is made

to achieve the average cost as small as possible, which requires the knowledge of thea-

priori probability and the cost of all decisions. When the cost functions are unavailable,

MAP detection may be employed to choose the most possible hypothesis based on local

observations. When neither the cost functions nor thea-priori probabilities are achievable,

but a false-alarm probabilityPF is available, NP detection may be designed to maximize the

detection probabilityPD or minimize the missing probabilityPM.

• Optimum and sub-optimum channel-aware fusion rules: With the channel state informa-

tion (CSI) of the channels from LSNs to FC, as well as noise variance, optimum likelihood-

ratio (LR) fusion rule can be derived. In order to reduce the complexity and the requirements

from channels, CV fusion rule is derived based on the approximation of the optimum LR-

based fusion rule within high channel SNR region. In low channel SNR region, MRC fusion

rule approximates the optimum LR-based fusion rule. EGC fusion rule can be viewed as a

trade-off between the MRC fusion rule and CV fusion rule, which is robust in a wide channel

SNR range.

• NoncoherentM-ary fusion rules: In Section 2.3, some existing noncoherent fusion detec-

tion schemes are summarised, which require neither channelestimation nor LSN’s detection

performance. All our discussion about noncoherentM-ary fusion rules are based on a frame-
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work of MFSK WSN, specifically, based on a so-called detection matrixDDD. It can be seen

that each of these noncoherent fusion detections has its unique advantages and disadvantages,

as well as some unique requirements.

• Spectrum sensing approaches: In Section 2.4, three typical spectrum sensing approaches

have been addressed, which include the energy detection, matched filter (MF) detection and

the feature based detection approaches. Energy detection is the simplest spectrum sensing

approach with wide applications. However, its performanceis highly susceptible to noise

power uncertainty, as well as shadowing and fading environments. MF detection is the op-

timum spectrum sensing approach in stationary Gaussian noise, when the requireda-priori

information is available. By contrast, if the knowledge about the PR users is not perfect

known, the detection performance of the MF degrades significantly. Cyclostationary de-

tection is one of the feature detections, which make use of the periodic patterns of the PR

signals. Compared with energy detection, cyclostationarydetection is less sensitive to the

noise uncertainty, but, at the cost of complexity increasing. Eigenvalue-based detection is

another type of feature detection relying on the correlation of the received PR signals. It is

effective for blind implementation, when the PR signals arehighly correlated.

In Chapter 3, our exploration has been focused on a novel FH/MFSK WSN framework, which

monitors anM-ary SE and conveys observations from LSNs to FC with the aid of FH/MFSK

techniques through either AWGN or Rayleigh fading channels. The FH/MFSK techniques are

employed for gaining diversity, especially, when LSNs are closely distributed. At the FC, the

SE’s state is detected based on low-complexity noncoherentfusion rules. The simulation results in

Chapter 3 show that our proposed FH/MFSK WSN is a promising scheme for operating in different

environments. In comparison with the conventional EGC fusion rule, our proposed novel ES-EGC

fusion rule may significantly improve the detection performance of the FH/MFSK WSN. In this

chapter, three noncoherent fusion rules have been investigated and compared, which include the

EGC, ES-EGC and the optimum fusion rules. In more detail, ourfindings can be summarized as

follows.

• Noncoherent fusion rules:

1. EGC: EGC fusion rule has the lowest-complexity and yields lowest-delay among the
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three noncoherent fusion rules considered. However, EGC fusion rule is sensitive to

the LSNs’ sensing errors, yielding very poor detection performance, when the LSNs

are not reliable.

2. ES-EGC: ES-EGC fusion rule has similar complexity and processing delay as the EGC

fusion rule. However, our studies and simulation results show that, when the detec-

tion in LSNs are unreliable and when the channel SNR is relatively high, ES-EGC

fusion rule may significant outperform the EGC fusion rule. In the ES-EGC, the opti-

mum number of erasures per row is determined by the specific environment where the

FH/MFSK WSN is deployed.

3. Optimum fusion rule : The optimum fusion rule has been investigated based on the

MAP principles. However, the complexity of the optimum fusion rule increases ex-

ponentially with the number of statesM, which is extreme for practical applications.

Hence, a sub-optimum fusion rule has been considered, in which EGC is first operated

to reduce then number of candidates. From the candidates, final decision is made using

the MAP principles. In order to further reduce the computation complexity, the SLD-

SMAP fusion rule has been introduced. From (3.23) we can see that the complexity of

the SLD-SMAP is related to the thresholdλ, which can be controlled at a reasonable

level according to the practical requirements.

• Detection performance of FH/MFSK WSNs with single SE: In the study of the detection

performance, all theM states are assumed to have equal probability.

1. Error floor of EGC fusion rule : When error floor is derived, the transmission from

LSNs to FC is assumed to be ideal, without noise and fading. Inthis case, floor for the

average error classification probability (ECP) is given by

PE =
⌊L/2⌋
∑
i=0

(
L

i

)
Pi

dPL−i
e

L−i

∑
k=i

(
1

M − 1

)k−1 (M − 2

M − 1

)L−i−k

(7.1)

where⌊L/2⌋ denotes the integer smaller or equal toL/2.

2. Error floor of ES-EGC fusion rule : Similar as the case of using EGC fusion rule, no

fading and noise are considered, when error floor is analysedfor the ES-EGC fusion
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rule. Assuming thatI erasures are used in each row, the error floor is

PE =
I

∑
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if 1 ≤ I ≤ ⌊L/2⌋ (7.2)

PE =
I

∑
i=0

(
L

i

)
Pi

dPL−i
e ,

if ⌊L/2⌋ < I < L (7.3)

3. Error probability of ES-EGC over Rayleigh fading channels: After erasure opera-

tion in the ES-EGC, the decision variables become correlated, making the analysis of

the detection performance of the ES-EGC fusion rule highly involved. For this sake, in

our analysis, the LSNs are assumed to be perfect, which results in a lower-bound for

the ECP of the ES-EGC fusion rule. In our analysis, the PDF of the decision variable

after erasure operation is derived with the aid of moment generating function (MGF).

After the inverse Laplace transform, with the aid of the residue theorem, we derived the

PDF of the decision variablēDm. Finally, we have derived the expression of ECP with

single integral. Additionally, a closed-form union-boundfor the ECP has been derived.

In Chapter 4, the FH/MFSK WSN has been employed to monitor multiple M-ary SEs, where

L number of LSNs are used to simultaneously observeK SEs and, meanwhile, all theseK SEs

are observed by each of theL LSNs without observation interference. In this chapter, wireless

channels from LSNs to FC are assumed to experience independent Rayleigh fading. We find that

in the FH/MFSK WSN, there are two types of interference, in addition to the background Gaussian

noise, which are the MEI and the interference generated by erroneous decisions at LSNs. At the

FC, six low-complex noncoherent fusion rules have been considered, which include the EGC, ES-

EGC, EGC-NIIC, ES-EGC-NIIC, EGC-ρIIC and the ES-EGC-ρIIC. The characteristics of these

six fusion rules as well as their computation complexity aresummarized as follows.

1. EGC fusion rule: In this chapter, the EGC fusion rule is considered as a benchmark,

which is low-complexity and low detection delay. The complexity of the EGC fusion rule

is O(KML), whereK is the number of SEs,M is number of states of each SE andL is the

number of LSNs. However, EGC fusion rule is a very deficient scheme for signal detection in
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interference environments, yielding significant loss in detection performance as the number

of SEs increases.

2. ES-EGC fusion rule: Under the ES-EGC fusion rule, in each of the rows in the decision

matrix DDD, I (0 ≤ I < L) elements corresponding to theI largest values are removed,

yielding the modified detection matrix̄DDD. Then, decision variables are formed via EGC

principle based on̄DDD. The complexity of the ES-EGC fusion rule isO(KMLI) for detecting

K SEs. It is a single-user fusion rule However, it is a high-efficiency fusion rule, which, for

some cases, may achieve even better detection performance than some of the noncoherent

multiuser fusion rules, such as, the EGC-NIIC fusion rule.

3. EGC-NIIC fusion rule : When the EGC-NIIC fusion rule is employed, the IIC is operated

associated with the firstN most reliable SEs, whose states are detected one-by-one itera-

tively from the most reliable ones to the less reliable ones.Then, the rest(K − N) SEs are

simultaneously detected via EGC principle. For the EGC-NIIC, a low-complexity reliability

measurement method has been proposed, which measures the reliability of the states detected

by the EGC-based detection. The complexity of the EGC-NIIC fusion rule isO(KMLN).

We find that there is a trade-off between the number of IIC iterations and the detection per-

formance, showing that, for a given set of parameters, thereusually exists a value forN,

which results in the best fusion detection performance.

4. ES-EGC-NIIC fusion rule : The ES-EGC-NIIC fusion rule carries out the IIC operation

based on the modified detection matrices{D̄DD
(i)
k }, which are obtained after the ES-EGC op-

erations. The reliabilities are measured based on the decision variables provided by the ES-

EGC. As the EGC-NIIC, with ES-EGC-NIIC, theN most reliable SEs are first detected iter-

atively and, then, the rest(K − N) SEs are detected simultaneously using the ES-EGC fusion

rule. In the ES-EGC-NIIC, the IIC operations at one iteration impose effect on thefollowing

iterations of detection and the effect is accumulative. By contrast, the erasure operations are

independent iteration-by-iteration, which does not directly propagate to the following detec-

tion. The complexity of the ES-EGC-NIIC is O(KMLNI). For a FH/MFSK WSN with a

fixed set of parameters, there usually exists an optimum value for N, which yields the best

detection performance.
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5. EGC-ρIIC fusion rule : When carrying out the IIC operations, full cancellation may remove

the information of the SEs having not detected yet, and mightdegrade the overall detection

performance. In order to mitigate the effect of the full IIC,in the EGC-ρIIC principle, partial

cancellation has been proposed. The EGC-ρIIC has the complexity ofO(K2ML). The value

of ρ can be optimized for achieving the best detection performance.

6. ES-EGC-ρIIC fusion rule : The ES-EGC-ρIIC has the same principle as the EGC-ρIIC,

except that the EGC associated wit the EGC-ρIIC is replaced by the ES-EGC in the ES-EGC-

ρIIC. The complexity of the ES-EGC-ρIIC is O(K2MLI). Both I andρ may be optimized

to achieve better detection performance.

The studies in Chapter 4 show that, in general, the ES-EGC related fusion rules outperform the

EGC related fusion rule, when detection performance is considered.

In Chapter 5, we have aimed at the performance improvement ofthe FH/MFSK WSN moni-

toring single SE with the aid of soft-sensing by LSNs. Specifically, after an observation, each of

the LSNs calculates the probabilities about all the states at which the SE might be. This soft in-

formation is then forwarded to the FC with the aid of the FH/MFSK techniques. In this chapter, a

signalling scheme has been proposed for transmitting information from LSNs to FC, which scales

the transmission power of frequency tones used by the FH/MFSK. At the FC, the SE’s state is de-

tected either by EGC or by ES-EGC fusion rule. Our simulationresults show that, in comparison

with the hard-decision based sensing, as shown in Chapter 3 and Chapter 4, using soft-sensing is

able to enhance the overall detection performance of the FH/MFSK WSN. Furthermore, the ES-

EGC fusion rule is robust to the errors made by LSNs, which maysignificantly outperform the

EGC fusion rule, especially, when the soft-sensing at LSNs is not very reliable.

In Chapter 6, a FH/MFSK assisted cognitive spectrum sensingscheme has been proposed for

spectrum sensing, specifically, a IFDMA PR system supporting multiple users. In our studies,

three types of energy-based detection schemes have been considered, so that the CRSNs can make

quick and low-complexity local detection. In this chapter,four synchronization scenarios have been

considered, which include the synchronous sensing, quai-synchronous sensing without ISI, quai-

synchronous sensing with small ISI and asynchronous sensing. After each of the CRSNs obtains

the on/off states of the PR users, it sends the detected states to the FC with the aid of the FH/MFSK.
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Finally, at the FC, noncoherent detection is carried out, which is based on either the EGC or the

ES-EGC fusion rule, as done in Chapter 3, Chapter 4 and Chapter 5. In this chapter, both the local

spectrum sensing at CRSNs and the overall detection performance at the FC are investigated via

simulation results. Our studies and performance results show that, our proposed FH/MFSK assisted

spectrum sensing system constitutes one highly reliable spectrum sensing scheme, which is capable

of exploiting the space diversity provided by CRSNs as well as the frequency diversity provided by

the subcarriers of the IFDMA systems. At the CRSNs, we assumethat the signals received from the

PR users experience multiple Rayleigh fading channels. Oursimulation results show that reliable

local sensing is achievable at the very low SNR. Both the synchronization and the local detection

approach, as well as the threshold has significant influence on the local detection performance.

At the FC, the overall spectrum sensing performance is investigated, when assuming that random

FH addresses are used for transmitting the local decisions through independent Rayleigh fading

channels. From the simulation results, we can clearly see that the ES-EGC fusion rule outperforms

the ES-EGC fusion rule, which becomes more significant, whenthe channel SNR increase.

7.2 Future Work

In this thesis, we have proposed and investigated a range of noncoherent fusion rules in the content

of the FH/MFSK WSNs. Our research may be extended in different properties.

This thesis has focused mainly on the low-complexity high-efficiency noncoherent fusion rules,

in addition to the cognitive spectrum sensing as one of the applications of the proposed FH/MFSK

WSN framework. There are many related issues requiring further investigation.

First, as mentioned previously in the thesis, we generally assumed that local sensing and fusion

detection are independent. In other words, the optimization at LSNs and that at FC are carried

out independently, which implies that both the local sensing and the fusion detection should be

as reliable as possible. However, in our considered triple-layer WSNs, if local sensing sensing is

unreliable, the overall performance of the WSNs might be poor, no matter how reliable is the fusion

detection. On the other hand, when the fusion detection is unreliable, the overall performance of

the WSNs will be poor, even the local sensing is ideal. Hence,in the FH/MFSK WSNs, joint

optimization of local sensing and fusion detection constitutes one of the future research topics.
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With the aid of joint optimization, we may maximize the overall detection reliability, maximize the

lifetime, or/and minimize the overall energy consumed, etc., of the FH/MFSK WSNs.

Second, in our studies, we assumed that the SEs are independent events, which can be observed

without interfering with each other, for the sake of focusing our attention mainly on the fusion rules.

This is the case for some applications, such as, the example of environment monitoring. However,

in practice, there are the SEs which are highly correlated and the observations of these correlated

SEs may interfere with each other. For example, in a WSN used for identifying battleships, fight

planes, etc., the observations may interfere each other, resulting in that it is difficult to distinguish

between different types of them. Hence, when the SEs monitored by our FH/MFSK WSNs are

correlated SEs, it is important to design high-efficiency local sensing algorithms. Furthermore,

although our proposed fusion rules can be directly employedby the FH/MFSK WSNs monitoring

correlated SEs, the effectiveness of these fusion rules is not clear and requires further studies.

Third, except in Chapter 5 where soft-sensing is considered, for simplicity, we mainly assumed

that once an erroneous observation occurs, it has the same probability to one of the other(M − 1)

erroneous states. This assumption may be too strong for someapplications. In fact, in many practi-

cal applications, an erroneous state often has high probabilities to be the ones closer to the correct

state. This uneven error probabilities may be exploited fordesigning novel signalling schemes for

conveying information from LSNs to FC as well as for designing novel high-efficiency fusion rules.

Fourth, in our thesis, as one of the examples to demonstrate the applications of the FH/MFSK

WSNs, cognitive spectrum sensing of LTE IFDMA systems has been investigated. In the future

research, the FH/MFSK WSNs associated with the various noncoherent fusion rules as proposed

may be invoked in the specific application scenarios. We not only need to investigate the achievable

performance of the FH/MFSK WSNS employing the proposed noncoherent fusion rules in the

specific application scenarios, but also to modify and improve the local sensing and fusion rules

according to the specific application environments.

Fifth, in the soft-sensing scenario considered in Chapter 5, the transmission power on the dif-

ferent frequency bands are scaled by the probabilities of the states obtained by the LSNs. However,

these probabilities do not equal the useful information of the states, especially when the proba-

bilities of the states are the same or similar. Hence, the improved soft-forward modulation would
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use information rather than probability to scale the power on each frequency band. This novel

information-based forwarding may improve our WSNs’ performance significantly.

Sixth, in our FH/MFSK spectrum sensing system, all the CRSNsare assumed to be equally

distributed from the PR users with the same received power. In our future work, more practical

scenarios may be considered to assume that the CRSNs are randomly distributed and the received

power at the CRSNs from different PR users is different. In this case, an energy threshold may

be pre-set to decide whether a CRSN should forward information to the FC. Or a CRSN may be

played as a relay to forward informations from the other CRSNs to the FC.

Finally, in this thesis, the FH/MFSK WSNs associated with the proposed fusion rules have

only been investigated with the triple-layer type of WSNs. As shown in Chapter 1, there are many

other types of WSN structures. Hence, it is highly importantto investigate the efficiency of the

FH/MFSK WSNs as well as that of the proposed noncoherent fusion rules, when they are applied

to the other types of WSNs.
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GF(M) Galois field

AWGN additive white Gaussian noise

BFSK binary frequency-shift-keying

CIR channel impulse response

CR cognitive radio

CSI channel state information

CSMA carrier sense multiple-access

CV Chair-Varshney

DTFT discrete time Fourier transformation

ECP error classification probability

EGC equal gain combining

EMAC energy efficient MAC

ES-EGC erasure-supported equal gain combining

FC fusion center

FCC Federal Communications Commission
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FFH fast frequency-hopping

FFT fast Fourier transform

FH frequency-hopping

FH/MFSK frequency-hoppingM-ary frequency shift keying

FLAMA flow-aware medium access

G-MAC gateway MAC

IC interference cancellation

ID identification

IIC iterative interference cancellation

LLR log-likelihood ration

LR likelihood-ratio

LRT likelihood ratio test

LSN local sensor node

MAC medium access control

MEMS micro-electromechanical systems

MF matched filter

MFSK M-ary frequency-shift keying

MGF moment generating function

ML maximum likelihood

MMAC mobility adaptive MAC

MMSN multi-frequency MAC for WSNs

MRC maximum ratio combining

MV majority vote

NNC noise-normalization combing

NP Neyman-Pearson
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NTIA National Telecommunication and Information Administration

PAPR low peak-to-average power ratio

PBPO person-by-person optimization

PC product combing

PDF probability density function

PMAC position-enabled MAC

PR primary radio

PSD power-spectral density

SC selection combing

SE source event

SLC soft-limiting combining

SLD-SMAP shrink local decisions aided sub-optimum MAP

SMACS self-organizing MAC for sensor networks

SNC self-normalization combing

SNR signal-to-noise ratio

TDMA time-division multiple-access

TRAMA traffic adaptive medium access

WSN wireless sensor network
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