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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

School OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Noncoherent Fusion Detection in Wireless Sensor Networks

by Fucheng Yang

The main motivation of this thesis is to design low-complexiigh efficiency noncoherent fusion
rules for the parallel triple-layer wireless sensor neksdiWSNs) based on frequency-hoppiht
ary frequency shift keying (FH/MFSK) techniques, which bence referred to as the FH/MFSK
WSNs. The FH/MFSK WSNs may be employed to monitor single dltipie source events (SES)
with each SE having multiple states. In the FH/MFSK WSNsalalecisions made by local sensor
nodes (LSNs) are transmitted to a fusion center (FC) witratdef FH/MFSK techniques. At the
FC, various noncoherent fusion rules may be suggested falr digtection (classification) of the

SES’ states.

Specifically, in the context of the FH/MFSK WSNs monitoringgle M-ary SE, three non-
coherent fusion rules are considered for fusion detectidnch include the benchmark equal gain
combining (EGC), and the proposed erasure-supported EGEEEC) as well as the optimum
posterior fusion rules. Our studies demonstrate that th&&S fusion rule may significantly out-
perform the EGC fusion rule, in the cases when the LSNs’ tieteés unreliable and when the
channel signal-to-noise ratio (SNR) is relative high. Faer FH/MFSK WSNs monitoring multiple
SEs, six noncoherent fusion rules are investigated, whicludle the EGC, ES-EGC, EGC assisted
N-order I[IC (EGCNIIC), ES-EGC assistedV-order IIC (ES-EGCNIIC), EGC assisteg-order
[IC (EGC—lIC) and the ES-EGC assistegdorder 11IC (ES-EGCelIC). The complexity, character-
istics as well as detection performance of these fusiors rale investigated. Our studies show that
the ES-EGC related fusion rules are highly efficient fusigles, which have similar complexity as
the corresponding EGC related fusion rules, but usualljeaelbetter detection performance than

the EGC related fusion rules. Although the ES-EGC is a singkr fusion rule, it is however capa-



ble of mitigating the multiple event interference (MEI) geated by multiple SEs. Furthermore, in
some of the considered fusion rules, the embedded parametgrbe optimized for the FH/MFSK

WSNs to achieve the best detection performance.

As soft-sensing is often more reliable than hard-sensmghis thesis, the FH/MFSK WSNs
with the LSNs using soft-sensing are investigated assatiaith the EGC and ES-EGC fusion
rules. Our studies reveal that the ES-EGC becomes highlgieffi when the sensing at LSNs
is not very reliable. Furthermore, as one of the applicatiamur FH/MFSK WSN is applied for
cognitive spectrum sensing of a primary radio (PR) systemstitoited by the interleaved frequency-
division multiple access (IFDMA) scheme, which supportdtiple uplink users. Associated with
our cognitive spectrum sensing system, three types of gragtection based sensing schemes
are addressed, and four synchronization scenarios ar@eoed to embrace the synchronization
between the received PR IFDMA signals and the sampling tipassat cognitive spectrum sensing
nodes (CRSNs). The performance of the FH/MFSK WSN assigtectsim sensing system with
EGC or ES-EGC fusion rule is investigated. Our studies statthe proposed spectrum sensing
system constitutes one highly reliable spectrum sensingnse, which is capable of exploiting the

space diversity provided by CRSNs and the frequency diygpsovided by the IFDMA systems.

Finally, the thesis summarises our discoveries and prewilikcussion on the possible future

research issues.
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Chapter

Introduction

1.1 Research Background

Wireless sensor networks (WSNs) have become increasingpriant and relevant to research
communities as well as military and civilians [1]. Briefliggre are two main reasons behind driving
the researches and applications of WSNs. The first one igttenaement of technologies, which
enables WSNs to have low-cost sensors, reliable wirelessntmications and rapid single-chip
computation capability [2, 3]. The second one is the widegeaapplications of WSNs, such as
surveillance, health-care, disaster recovery, home atiom etc., which may influence our daily

life comprehensively [2, 4].

WSNs are the result of rapid convergence of various teclgedo digital circuitry, wireless
communications, micro-electromechanical systems (MEMSJ ad hoc networks. Based on the
resemblance of the existing techniques, WSNs work withumicharacteristics as follows. Typi-
cally, the tiny local sensor nodes (LSNs), which consisterfsing, data processing and communi-
cating components, leverage the idea of WSNs [5]. UsuallgN&/are composed of a large number
of LSNs that are densely deployed either inside the phenomenvery close to it [6]. Owing to
their self-organizing capability of WSNs’ protocols anda@iithms, the positions of LSNs need not
to be predetermined [7]. The low-cost LSNs are usually prtonfailures. However, the WSNs
are robust to failures, when a big number of LSNs are densslogled. The topology of WSN's
framework may be changed without significant change on potécand fusion rules. In the most

widespread parallel WSN model, LSNs do not communicate @atth other, but communicate us-
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ing broadcast paradigm. The tiny LSNs have the limits on, gib&ver consumption, computation
capacity and memory [8, 9]. Furthermore, in large-scale \&/3/$Ns may not have their global

identification (ID) because of the large amount of overheatkgated by the large number of LSNs.

To achieve optimal performance in a WSN system, many asglotsld be carefully consid-
ered [10-16], which include the topology structure, medagoess control (MAC), sensing capac-
ity, energy efficiency, signal processing at LSNs, fusiolesuapplications, etc. In the following
sections of this chapter, some of the above mentioned aspéittbe discussed in detail. The
reminder of this chapter is organized as follows. In Secfidh we introduce some basic topol-
ogy structures used in WSNSs. In Section 1.3, some MAC prdscae reviewed. In Section 1.4,
we consider the energy-efficient communication in WSNs ds agethe definition of lifetime of
WSNs, which is followed by a summary of some applications &N¥ in Section 1.5. Finally, the

organization of this thesis is given in Section 1.7.

1.2 Topology Structures of WSNs

The topology of WSNs defines the process of data collecti@hsdgnal detection [1, 7,17, 18].
Meanwhile, the topology structure of a WSN imposes signitigainfluence on the signal pro-
cessing, life-time and detection performance of the WSNofechoosing a suitable topology of
a WSN, many constraints should be considered, includingdinemunication among LSNSs, the
link quality between LSNs and fusion center (FC), the rofess of signal processing algorithms,
etc. Typically, there are four different topology frame w&rwhich include the parallel topology
with FC, parallel topology without FC, serial topology améde topology [10]. Below we briefly

describe these four topologies, as well as their advantggslisadvantages.

1.2.1 Parallel Topology with Fusion Center

Fig 1.1 shows the WSN structure with parallel topology witR@ [10], whereL LSNs are used
to simultaneously observe the source event(s) (SE(s)k that, we assume that the quantifications
are carried out at the LSNs, as the observed SEs are alwdggaealn Fig 1.1Hy, Hy,--- , Hy—1
denote theVl hypotheses or possible states about thel3E,D,, - - - , Dy, denote the local detec-

tion rules, whileD represents the fusion rule used by the EC.r, - - - , 7, are the observations
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Figure 1.1: Basic structure of parallel WSN with fusion ent

obtained by thd. LSNs, based on which the detection outpits D5, - -- , D; are obtained with
the aid of Dy, D,,--- ,Dy. Finally, D represents the detection of the FC. In this structure, the
identical LSNs do not communicate with each other and thed«s dot feed back any information
to the LSNs. Based on their own observations, tHeSNs make their local detections indepen-
dently and then transmit their local decisions to the FCisaply. Specifically, in the case of using
hard local detection, each local decision may take corredipg value, which is dependent on the
LSN's decision about which state the observed SE is in. Ircése of using soft local decision, the
local observation space is partitioned into more nuancgidms so as to yield more accurate local
decisions. Finally, at the FC, the received signals fronth&ll. LSNs are combined based on vari-
ous fusion rules, in order to make a global decision. In yygtof WSN, when one or several LSNs
make erroneous local decisions, or some links between L8NI$& are failed, detection perfor-
mance of final decision may not degrade significantly, predithat there are a sufficient number
of LSNs left. Usually, the WSNs with FC is capable of achigvanbetter detection performance

than the WSNs without FC, but at the cost of higher complesitgt delay.

1.2.2 Parallel Topology without Fusion Center

Fig 1.2 shows a parallel topology WSN without FC [10, 19], ebhis similar as Fig 1.1 but without

a FC. In Fig 1.2, there areindividual LSNs monitoring single or multiple SEs indepently. The
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Figure 1.2: Basic structure of parallel WSN without FC.

local decisions are made by thel SNs based on their separate local observations. The LSNs do
not communicate with each other. However, their operatamascoupled, due to the fact that the
cost of decision making is coupled and that a system-widienigation is usually performed [19].

In this structure, the decisions by the LSNs are not cordettianake further decision. This kind

of topology enables WSNs to work with low-complexity and loelay. However, this type WSNs

without FC are hard to satisfy the requirement of high daagterformance.

1.2.3 Serial Topology

Source Event (s)
(Ho, Hy, ..., Hy)

Sensor1 | D1 Sensor2 |D2  Dys|Sensor (L-1)D; [ SensorL | Dy
(Dy) (Dy) (Dr-1) (D1)
Sensor (L-1)

Figure 1.3: Basic structure of serial topology WSN.

In a WSN with serial topology [10, 19], as shown in Fig 1I3L.SNs are used to observe
single or multiple SEs. As shown in Fig 1.3, one LSN makesoitall estimation based on its own
observation and the information received from the previdsll. In more detail, the first LSN does
not receive any information from the other LSNs and hencldal decision is made solely based
on its own observation. This local decision from the first LENhen transmitted to the second
LSN, which uses it in conjunction with its direct observatim make its decision, which will be

sent to the next LSN. This process is repeated at each of this kSthe serial network. Finally,
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the Lth LSN makes the final decision based on the aggregated iafamreceived directly from

the (L — 1)th LSN and its own observation received from the SE.

Compared with the WSNs with parallel topology, as shown mFEil and Fig 1.2, WSNs with
serial structure are prone to generate erroneous propagétthe previous LSNs make erroneous
local decisions. For this structure, the computation dalegumulates, because a LSN has to wait
for decisions of the previous LSNs. Furthermore, the delay lmecome unacceptable for some
LSNs in a large scale serial WSN system. Additionally, thias&pology WSN is sensitive to the

failures of one or several LSNSs.

1.2.4 Tree Topology

Source Event (s) ’

P12 TL3)/2 (- &

Sensor (L-1) Sensor L

Sensor (L+1)/2 Sensor (L+3)/2
(Diz-1) (Dr)

(Drs1y) (Dpys))2)

D11y Dp13)2

T(L-3)/2 Sensor (L-3)/2

(Dir-3)/2)

D32

Sensor 2

(D,)

Sensor 1
(D1)

Figure 1.4: Basic structure of tree topology WSN.

Thus far, we have introduced the structures for the par®8Ns and the serial WSNs. As
indicated eatrlier, the topology of WSNSs can be organizedviariety of configurations. One typical
example is the tree topology [10]. In a WSN with tree topoldgyNs form a directed acyclic graph,
where the first LSN is the root of the tree and information frhthe other LSNs flows on a unique
path toward it [19]. As shown in Fig 1.4, LSNs are applied to observe single or multiple SEs.
Among thesd. LSNs, some of them monitor the SEs directly and transmit fbeal decisions to

some other LSNs. As shown in Fig 1.4, there are some LSNs hwdocnot directly observe the
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SEs but get information from the other LSNs, in order to mélegrtdecisions.

In comparison with the previous serial topology, in thiettepology, theth (1 < i < %)
LSN makes its local decision based on its own observationvaodther LSNs’ estimations. While,
for the other LSNs, local decisions are made just based ondha observations. On the other
hand, in comparison with the WSNs with parallel topology eria topology, the WSNs with
tree topology rely more on the reliability of the whole WSNstgm. The links existing among
different LSNs make the WSN system more complex and gensrate delay. The local detection
performance of some of the LSNs are affected by by their ovaeniations as well as the other

LSNs' decisions.

1.3 Medium Access Control Protocols for WSNs

In some applications, WSNs consisting of a large number ofatirized batter-powered LSNs are
required to operate for years without human interventid®].[Hence, there has been a growing
interest on optimization of WSNs, so that the limited reseucarried by a WSN is capable of
maintaining it in efficient operation for a long time. Typligathe optimization is involved with
novel signal processing algorithms, energy-efficient MAGtpcols, self-organizing and reliable
data aggregation algorithms, etc. [13, 20]. In WSNSs, thegdesf MAC protocols glues and in-
tegrates these optimization facets, by considering thetcaints imposed by the limited energy
budget of LSNs together with the requirement of long lifetif@1l]. To satisfy the unique require-
ments of WSNs, many MAC protocols have been designed or reddifom the existing ones
for the other purposes. As some examples, the MAC protoass by WSNs include the gate-
way MAC (G-MAC) [22], self-organizing MAC for sensor netwa (SMACS) [23], traffic adap-
tive medium access (TRAMA) [24], flow-aware medium accedsAMAA) [25], energy efficient
MAC (EMAC) [26], position-enabled MAC (PMAC) [27], mobiltadaptive MAC (MMAC) [28],
multi-frequency MAC for WSNs (MMSN) [29], ect. All these MA@rotocols are modified based
on the existing canonical ones. In this section, two typinaltiple-access schemes used by the
MAC protocols are discussed, which are the time-divisioritiple-access (TDMA) and carrier

sense multiple-access (CSMA).
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1.3.1 Time Division Multiple Access

TDMA belongs to the typical category of reservation-baseotqeols [26], which requires the
knowledge of network topology to establish a schedule, ab ¢lach of the nodes is capable of
accessing the channel and communicating with the othersnadeile avoids interference from
the other nodes. Under the TDMA principles [30], time is ded into frames and each frame
is further divided into time-slots. In WSNs, operated in TBMeach LSN is assigned a unique
time-slot during which it has the priority to communicate.the TDMA protocol, the transmission

does not suffer from collisions. The scheduling delay isallglacceptable.

TDMA scheme is very efficient, when the source requiremergspaedictable and each of
the nodes always has data to send. However, it is inefficigngn traffic is light. In this case,
some time-slots might be wasted as there is no data to transimder TDMA, the throughput is
hard-limited. Hence, it cannot undertake bursty trafficdredy utilization of all the available time
slots. For this sake, it is essential for the TDMA-based s@®to have the knowledge of network
topology and time synchronization. However, the estinmatib topology and implementation of
time synchronization require a big overhead or/and expertsairdware. For this reason, TDMA

scheme becomes less attractive in large scale WSNSs.

1.3.2 Carrier Sense Multiple Access

In order to reduce the requirements of TDMA and make efficiesat of time-slots, the CSMA is
introduced, which does not need global synchronizationtapdlogy knowledge of WSNs [20].
Under the principles of CSMA, each of the LSNs first senseski@mnel before transmission. |If
the channel is found to be busy, the LSN then postpones thentiasion to avoid collision. By

contrast, when the LSN finds the channel is not being occujiititen starts transmission.

The CSMA scheme has the following characteristics. Fimgt,dperation of CSMA does not
rely on the knowledge of topology structure and is robust &Nk’ mobility. Therefore, CSMA
is a good candidate for WSNs with mobility. Second, the céipalof avoiding collision reduces
interference by preventing transmission on occupied ablangielding a better detection perfor-
mance. In comparison with the TDMA, the throughput of CSMAyrdacrease significantly, when

traffic load is heavy, in this case, a lot of resource needssbd tor channel sensing. Additionally,
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in terms of energy-efficiency, CSMA may not perform as well&MA. This shortcoming makes

the CSMA not very useful for the WSNs that require high enezfiiciency.

1.4 Energy-Efficient Communication and Law of Lifetime

Some WSNSs, such as distributed WSNs, with hundreds of LSHmiging a continuous and
maintenance-free observation of the environment [31] lsa@weral unique characteristics, includ-
ing high LSN density, low data rate and stringent energytlirBiattery-powered WSNs may be
applied indoor or outdoor without maintenance for a cougdlgears. Therefore, during the re-
search of WSNs, a significant focus has been put on high emdfigiency to extend the life-time

of WSNSs.

Design an energy-efficient protocol for WSNs demands a tiivout investigation of the in-
teractions among the sensor application, network protddd|C layer and RF communication,
etc. Some energy-efficient upper layer protocols and dlgos have been proposed, such as, the
energy-efficient MAC protocol [21], low duty cycle sleepisgheduling [32, 33], energy-aware
routing protocol [14], etc. Generally speaking, energytairnand energy management are two

major techniques used in WSNs, even though they appeariwousdiorms at different layers.

On the other hand, lifetime is a crucial factor of large-edAISNs in many applications, where
it is impossible or infeasible to replace or maintain the Isce that are deployed [15]. In liter-
atures, various methods have been proposed to maximizédtimé of WSNs [15,17,34,35]. In
WSNs, the lifetime depends on many factors, including netveochitecture, specific application,
various parameters of protocol, etc. In [34], a simple laat teflects WSNs’ lifetime for any appli-
cations under any network configurations has been provitleid.law of lifetime not only identifies
the two key physical layer parameters that affect WSNsfifife, but also plays as a guidance for
maximization of WSNs’ lifetime. Below we consider the enegfficient communication in WSNs

as well as the lifetime issues concerned by WSNSs.

1.4.1 Energy-Efficient Communication

In a little more detail, the energy consumption of commutiicasubsystem in WSNs can be di-

vided into two parts, the first part is related to the powersignal transmission, while the second
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part is the energy consumed by receiver circuit [34]. Heng@jmizing the energy-consumption
of both parts is crucial, as receiver may consume as muclye@artransceiver. In WSNs, many
LSNs may be located in the receiving ranges of some other L&Nthis case, it is beneficial to
shut down the radio receivers of the idle LSNs. However, i€ protocols utilize unique ad-
dresses to route packets to some specific destinationshwtbxpectation that these destinations
are actively listening to packets. Once some receiverstaredown, the routing among different

LSNs may become unstable.

In comparison of the energy-efficiency between multihopgmaission and direct transmission
WSNs, the result is depended on the scale of the considered. &licitly, a LSN in a WSN
always seeks the nearest LSN as a candidate for its next hingansimission. However, this will
result in multihop transmission. In a multihop WSN, due te fitopagation pathloss of wireless
signals, it becomes advantageous to increase the numbepsfitnterms of energy consumption.
In practice, there is a range of distances for which diregtgmission maybe more energy-efficient
than multi-hop transmission. In a direct communication W&t fusion center (FC), each LSN
sends data directly to the FC. When the FC is far away from 8i€d, direct communication will
consume a large amount of transmission power. This willetepihe LSNs’' power quickly and
shorten the lifetime of WSNs significantly. In this case, timap WSNs outperform direct com-
munication WSNs in term of energy-efficiency. On the otherchavhen the transmission distance
between LSNs and FC is short and/or the radio electronicgyene high, direct transmission is

more energy-efficient than multihop transmission.

1.4.2 Law of WSNs Lifetime

The power constraint of LSNs imposes many fundamentaldaiimoits, such as, lifetime on the de-
sign of WSNs. The lifetime of a WSN is referred to as the timequkthat a WSN has the ability to

collect data from entire network domain and process theisgmsformation [34]. Given a WSN,

different deployment strategies for LSNs may result inegtight life time. The most effective ap-
proach for deployment for LSNs is placing the LSNs in a cdfgbbe manner, so that the maximal
lifetime is achievable. Unfortunately, this is not tectalig feasible in large-scale WSNs. Further-
more, in some applications, the locations of LSNs may nottyesipally reachable or fixed, due to

the limitations of different perspectives.
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In designations of WSNs, there are various factors need topkienized in order to extend
the lifetime of WSNs. These factors include network arctitee and protocols, data collection
initiation, channel characteristics, energy consumptiardel, etc [34—36]. In literatures, many
research has been done in order to estimate the lifetime daVBor example, the upper bounds
of lifetime have been derived in [35—-38] for various WSNs.danally, in [15], formulas for the

lifetime of WSNs have been derived based on 2D Gaussianbdistn .

In [34], a general formula for the lifetime of WSNs is provitjevhich holds regardless of the
underlying network model. In [34], the lifetime of WSNs isfied as the time span from that
the WSN is built up until that the WSN is nonfunctional. Hetlge nonfunctional instant may be
explained in different ways, such as, when a certain numbegbls are out of power, the instant
when a desired area is impossible to monitor, the instant$dNs cannot communicate with FC,
the instant when the detection performance is unacceptatde According to [34], the average

lifetime of WSNs can be expressed as

g9 — E[Ey]
ElL] = 5 VE[E ]

(1.2)
whereE[L] is the expected average lifetime of WSNg,is the total initial energyE[E,] is the
expected energy wasteB, is the constant of continuous power consumptiois,the average LSN
reporting rate defined as the number of data collections pirtime andE[E,| is the expected
reporting energy consumed by all the LSNs in a randomly ahaksta collection. Eq (1.1) is
suitable for any WSNs under a general setting: arbitraryoet architecture, arbitrary channel and
radio models and arbitrary definition of lifetime. Accordito (1.1), when the total initial energy
eo is given, reducing the value d|[E,| or [E[E,,] will improve the lifetime of the WSN. These
two factors reflect the influence of channel condition anitced energy on the WSN's lifetime.
Therefore, in order to maximize the lifetime of WSN througlnimizing E[E,] and E[E, ], a

protocol should exploit effectively the channel state infation (CSI) and the information about

the residual energy of all the LSNs.

1.5 Applications of WSNs

Recently, achievements in micro-sensors technologyggrefficient electronics and wireless com-

munications make WSN become realities in applications32p, Proposed applications of WSNs
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include environmental monitoring, natural disaster predn and relief, homeland security, health-
care, manufacturing, transportation, home appliance®ateitainment, etc. Each of the proposed
applications can be further divided into different catégmof emphasis or measurement. Some
previous work on WSN applications on environmental moimigprhealth care, military and spec-

trum sensing in cognitive radio are detailed as follows.

1.5.1 Applications of WSNs in Environment Monitoring

With the significant development of human society, envirental issues have become highly im-
portant for manifestation of civilization and life qualitfEnvironment monitoring represents the
way of human understanding, foreseeing and utilizing thareg40, 41]. During a long history,

it is restrictive for human being to monitor inaccessibleimmments such as, ocean, desert and
mountain, etc, based on traditional methods. DistributédN&/are capable of monitoring a large-
scale range by deploying small-size LSNs, while without hamaintaining. Therefore, the emer-
gence of WSNs builds a bridge between human being and phygickl, which is able to extend

humans being’s capability to cooperate with nature.

In [40], a distributed WSN is proposed, which uses mote haréwo gather data for seven
environmental parameters, including barometric pressurdient humidity, wind direction, wind
speed, underground water level and rainfall. In this predd&/SN, the sensed data is transmitted

through multihop transmission to the FC for further degcisio

Realizing that there are deficiencies for both fixed and nedlliISNs, researchers are looking
for a more formal method of integrating these two kinds ofelys to achieve greater spatiotempo-
ral measurement coverage. In [42], one reasonable methiotidduced by combining the WSNs
and robotic systems together, in which the signals are draar®mng LSNs and robot. This kind of
robotic WSNs have certain capability of improving data g@yameasurement certainty, accurate

real-time modelling and mapping of large environmentakcpsses.

A framework of WSN has been built in [43] for aquatic envircemtal monitoring, where many
factors are carefully treated during the design of the neanmonitoring WSNSs, such as, sensing
activity, wireless transmission form LSNs to FC, signalgassing and battery power, etc. In [43],

a power-aware and adaptive TDMA protocol guarantees rdbaissmissions and adaptability to
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topology changes. To optimize energy storage and prolotigries lifetime, each unit of this WSN

is endowed with adaptive solar-energy-harvesting meshamnand tandem batteries.

1.5.2 Applications of WSNs in Healthcare

It is well known that the aged population in the world is iresiig and a considerable percentage
of them are suffering from chronic illness [44]. Novel adead technologies, such as wearable
devices and WSNs can help patients and caregivers by pngvadintinuous medical supervision,
demotic healthcare control, rapid access to medical datergency communication , etc., both
at home and at hospital [45-48]. During the past decadess tfes been an increasing demand
for intelligent devices, which are capable of detectinguiti@ factors without interfering the daily
routine of those who use them [49]. Owing to above-mentianémmation, WSNs may find a lot

of applications in healthcare by providing monitoring aedvice to the dependent patients.

Generally, there are mainly three parts of health care W8Msh include the body sensor
network, wireless communication and healthcare devic8f [ terms of body sensor network,
smart wearable devices with sensors have been designewbfadipg healthcare to the dependent
patients [51], such as blood pressure, body temperatunaidity, etc. Furthermore, with the help
of smart wearable devices, it is possible to automaticalgcete healthcare manage and improve
the assistance to patients in geriatric facilities. A beidgetween body sensor network and the
public communication network may be built, through which tlollected data is transmitted to the
central server. At the central server, diagnosis and hemkthsuggestion are made based on the

received sensed data [52-54].

Through the realization of WSN healthcare applicationsrdtare still many tasks that should
be carefully treated. First, the sensed data from humarghisimlways analogy and complex
biological signal, which is difficult to be quantified [52]e&ond, transmission and handing with a
large scale of data from body sensors consume remarkablmugnivation resource, which brings

a burden to the quick and reliable healthcare response [50].
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1.5.3 Applications of WSNs in Military

WSNs were originally developed mainly for military surlafice with the features of robustness,
self-organizing and fault-tolerance [55]. Typically, emdsonar, infra-red, etc, may be used for a
military WSN to collect the battlefield information and seih¢b the FC in order to make a more

reliable decision [10].

WSNs are widely applied for different military purposes,igthare detailed as follows [56—
63]. First, WSNs can be employed to prevent the base and hagdos from being attacked [56].
Second, instantaneous information in the battlefield camsled for planning future operations and
missions [64]. Third, thousands of low-complexity and loest LSNs can be scattered in enemy

forces areas indetectablely for sensing and collectinfuusgormation.

During the design of military WSNs, there are many challsnigesatisfy the serious require-
ments of robustness, self-organizing and reliability. skias a large amount of sensor nodes in
remote area cannot be deployed predictably, they mustifgeineir neighbours quickly and build
the network automatically. Second, military WSNs are desibof having certain capability of
resisting both human and nature influence. Third, since,dstracenarios, the distributed sensor
nodes cannot be recharged or maintained, the energy effycidgrsensor nodes should be carefully

treated.

1.5.4 Applications of WSNs in Spectrum Sensing

Supporting cognitive radio (CR) users through a collaté&v&N to spectrum sensing has recently
been proposed as a popular approach to overcome spectramgstmitations of wireless commu-
nication system [65—69]. Explicitly, there are mainly tvaasons for using spectrum sensing [70].
First, radio spectrum is an extremely scarce resource. tDegpast years, traditional approaches
to spectrum management have been challenged by new ingnghithe actual use of spectrum.
In most countries, all frequencies have been completebcatéd to specific operators and users.
For examples, the National Telecommunication and Infoionahdministration (NTIA) frequency
allocation chart indicates multiple allocations over esisdly all of the frequency bands. Thus,
within the current regulatory framework, spectrum appéarse a scarce resource. Second, ac-

tual measurements indicate low spectrum utilization, Wwhian be found in Spectrum Policy Tast
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Force report from Federal Communications Commission (FCGhventional radios are regulated
by fixed spectrum allocation policies, which are operatedariain time frames, over certain fre-
guency bands and within certain geographical regions. & b&dic spectrum assignment policies
have resulted in low-efficiency in usage of the precious spetresources. For example, the mea-
surement shows that the average spectrum occupancy frontH2advB GHz over six cities is 5.2%

and that the maximum total spectrum occupancy is 13.1% in X City.

Cognitive radio (CR) is introduced to overcome above thetmead problems, which is a
typical spectrum sensing assisted cooperative radio. Ine@Rinology, primary radio (PR) users
have higher priority or legacy rights on the usage of spattmhile, CR users have lower priority.
Hence, it is critically important for CR users to sense tlemflrency bands assigned to PR users
but not used at a particular time and geographic locatiof [6fwever, it is hard for CR users
to scan a wide range of frequency bands, due to the scaragrces@nergy, hardware limitation,
etc.). Furthermore, depending on the PR and CR networkitocand topologies, the CR users
may not sense the spectrum with sufficient accuracy. In tee,AWSNs are employed for spectrum
sensing in CR systems, which are capable of achieving aetiisf/ results in terms of efficient use

of available spectrum and reducing interference with PRsuse

In [67,68,71,72], a WSN is employed to assist the CR netwgrkroviding information on
the current spectrum occupancy in spatial or time domairci@ipally, in [68], a WSN system is
deployed to provide distributed spectrum sensing for dognoperation, in which the spectrum
sensing performance of WSN is evaluated as a function of ¢twark density. Then, the WSN
architecture is considered in [73], which is a key issue fizcrum sensing jointly in space and
time. Furthermore, [65] proposes a protocol for a WSN sujipgprCR devices, in which the
fundamental trade-off between statistics of the PR trdfiie jnterference range and transmit power
of CR user is studied. It also extends the spectrum sensotggm from the spatial dimension to

fast dynamics of primary traffic.

1.6 Novel Contribution

The main contribution of this thesis are as follows:

e A novel triple-layer wireless sensor network (WSN) assidig M-ary frequency-shift key-
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ing (MFSK) modulation and frequency-hopping (FH), refdrte as the FH/MFSK WSN is

proposed. The FH/MFSK WSN is benefit from the embedded adgastof noncoherent
MFSK and FH techniques. First, low-complexity noncohermgtiection can be employed,
which does not depend on energy-greedy channel estimatidnhance is beneficial to the
life-time of energy limited WSNs. Second, FH/MFSK techraquare capable of enhanc-
ing the detection performance of the WSN by reducing theetatipn among the signals

transmitted by different local sensor nodes (LSNSs).

e We conceive a novel erasure-supported equal gain comb{E8e¢EGC) fusion rule, which
is first employed by the FH/MFSK WSN monitoring single souggent (SE). In comparison
with the conventional equal gain combining (EGC) fusioreraur proposed novel ES-EGC
fusion rule may significantly improve the detection (cléisation) performance of FH/MFSK
WSNSs, at low-cost of computation increasement. Furthegmarclosed-form union-bound
for the average error classification probability (ECP) ef BH/MFSK WSNs using ES-EGC

is derived.

e We further extend our research to a FH/MFSK WSN monitorindtipla SEs. As in this
case, there is multiple event interference (MEI), iteeitinterference cancellation (lIC) is
introduced to suppress the MEI. Six low-complexity nonaehe fusion rules are studied
and compared. In detail, these fusion rules include thetbeadk EGC and the proposed
ES-EGC, EGC assisteN-order iterative interference cancellation (EGQIC), ES-EGC
assistedN-order [IC (ES-EGCNIIC), EGC assisteg-fraction [IC (EGCplIC) as well as
the ES-EGC assistedfraction [IC (ES-EGCglIC). The complexity of these fusion rules is
analyzed. Our studies show that the ES-EGC related fusies m general outperform the
corresponding EGC related fusion rules. The ES-EGC is aéffitiency single-user fusion
rule, which, for some cases, may achieve even better detgotirformance than some of the

noncoherent multiuser fusion rules, such as, the B@(G fusion rule.

e Inorder to improve the detection performance of the FH/MRF88Ns monitoring single SE,
we incorporate soft-sensing into LSNs, where soft inforamats used to scale the transmis-
sion power of the MFSK tones sent to the FC. In comparison hattdl local decisions, our

studies show that using soft-sensing is capable of enhgutteindetection performance of the
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FH/MFSK WSN. Furthermore, the ES-EGC fusion rule is robashe errors made by LSNs,
which may significantly outperform the EGC fusion rule, esally, when the soft-sensing

at LSNs is not very reliable.

e Finally, as one of the applications, a FH/MFSK WSN assistaghttive spectrum sensing
system is proposed specifically for spectrum sensing of arl@aved frequency-division
multiple access (IFDMA) primary radio (PR) system suppgnnultiple users. Associated
with our studies, three types of energy-based detectiod$am synchronization scenarios
are considered during the local detections at cognitiveoraensing nodes (CRSNs). Our
studies demonstrate that reliable local sensing is adblie\at the CRSNs even at very low
SNR. We furthermore demonstrate that the ES-EGC fusionisudehigh-efficiency fusion
rule, which is capable of attaining much better overall déa performance than the EGC

fusion rule.

1.7 Thesis Organization

In this thesis, parallel triple-layer wireless sensor reks (WSNSs) assisted hyl-ary frequency-
shift keying (MFSK) modulation and frequency-hopping (Fkéferred to as the FH/MFSK WSN,

are investigated for different applications. The reposdtisictured as follows.

In Chapter 2, we first provide a literature overview of thesslaal binary testing at LSNSs.
Then, both the channel-aware fusion rules and noncohadeaty fusion rules are discussed. Then,
existing approaches for local spectrum sensing are rediedtthe fusion rules and local spectrum
sensing approaches are analyzed in the context of theintyes and disadvantages, as well as

the requirements and application limits.

In Chapter 3, we investigate the detection performance dMH$K WSNs monitoring single
source event (SE) with hard local decisions, when assunongrunications over additive white
Gaussian noise (AWGN) channels or Rayleigh fading chann&se principle of our proposed
FH/MFSK WSN is first introduced, which includes the signalsdification at local sensor nodes
(LSNs), signal transmission schemes for LSNs and signakifieation at fusion center (FC). In
this chapter, three different noncoherent fusion rulesarsidered and their performance is com-

pared. Furthermore, the error classification probabiB¢P) of some fusion rules is analyzed and
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compared. Finally, some simulation results are providetiustrate the ECP performance of the

proposed FH/MFSK WSN with various fusion rules.

In Chapter 4, a parallel triple-layer FH/MFSK WSN with haatdl decisions is proposed to
monitor multiple SEs of each having multiple states. In Hi¢/MFSK WSN, multiple SEs are
observed by a number of LSNs, each of which simultaneoustemies all the SEs. The LSNs
convey their decisions about the SEs’ states to the fusintec@C) with the aid of the FH/MFSK
techniques. At the FC, the SEs’ states are detected basednmoherent fusion rules. In this
chapter, six low-complexity noncoherent fusion rules auglied. They include the conventional

benchmark of equal gain combining (EGC) and five proposedatwerent fusion rules, namely the

erasure-supported EGC (ES-EGC), EGC assistarider iterative interference cancellation (EGC
NIIC), ES-EGC assisteti-order [IC (ES-EGCNIIC), EGC assisteg-fraction [IC (EGCplIC) as
well as the ES-EGC assistgdraction [IC (ES-EGCplIC). The complexity of these fusion rules is
analyzed and the performance of the FH/MFSK WSN employiespectively, these fusion rules is
investigated and compared, when assuming that the wireessels from LSNs to FC experience
independent Rayleigh fading. Furthermore, the impact efgdwameters embedded in the various

fusion rules on the design and performance of the FH/MFSK WsSivhalyzed.

In Chapter 5, a soft-sensing and signal transmission scligmpmposed for improving the
reliability of FH/IMFSK WSNs. Associated with the scheme otlow-complexity noncoherent
fusion rules are investigated, which are the conventio@CHusion rule and the proposed ES-
EGC fusion rule. The ECP performance of FH/MFSK WSNs emplgyespectively the EGC and
ES-EGC fusion rules is investigated, when assuming thatreia from LSNs to FC experience
independent Rayleigh fading. Our studies and performagsedts show that using soft-sensing is
able to enhance the ECP performance of FH/MFSK WSNs. Fumitrer, ES-EGC fusion rule is
robust to the errors made by LSNs and is capable of achievirmhanced performance over EGC

fusion rule, especially, when the sensing of LSNs is not veligble.

In Chapter 6, as one of the applications WSNs, a FH/MFSKtesbtognitive spectrum sensing
system has been proposed for spectrum sensing, specjfa#fiipMA PR system supporting mul-
tiple users. Three types of energy-based detection, asawétlur synchronization scenarios have
been considered during the local detections at cognitigi® rsensing nodes (CRSNs). After each

of the CRSNSs obtains the on/off states of the PR users, itsséaddetected states to the FC with



1.7. Thesis Organization 18

the aid of FH/MFSK. Finally, at the FC, noncoherent deteci®carried out, which is based on
either the EGC or ES-EGC fusion rule. The performance of th&vViFSK WSN assisted spectrum
sensing system has been investigated by simulations, wdsemaéng communications over multi-
ple Rayleigh fading channels. Our studies and performagmgts show that reliable local sensing
is achievable at the CRSNs even at very low SNR. Furtherntioee:S-EGC fusion rule is a highly
efficient fusion rule, which is capable of attaining muchtéebverall detection performance than

the EGC fusion rule, especially, when the channel SNR igivelaigh.

Finally, conclusions are summarized and future work arergat the end of this report.



Chapter

Overview of Local Detection and Fusion
Rules

In the area of WSNSs, a lot of researches have been done intordéain reliable signal detection
at LSNs and FC, while requiring lowest computation comednd minimum communication

traffic between LSNs and FC [4, 6, 10, 74—-83]. Numerous fusites for the classical distributed
detection problems have been obtained during the past eec&pecifically, the optimum fusion
rule has been considered in [84] under conditional assemjati independence. Assuming limited
resource, the detection performance of distributed WSN<dbkan investigated, with the objective
to optimize the LSNs’ allocations or the number of LSNs [83]-8lone of these works, however,
tackle the impact of the loss of transmission from LSNs to FChe detection performance of

WSNs.

Many studies have attempted to overcome this impracticalrmaption [90-95]. Considering
nonideal communication channels, WSNs have been optinttaedigh the optimization at FC
level or/and LSN level. Specifically, in [96], optimal thredds are established both at the FC and
the LSNs with assumption that signals transmitted througimgle binary symmetric channel. In
this presented approach, acceptable detection perfoamarachievable, however, at the cost of
high computation complexity and serious delay, as well ag¢lquirements of channel estimation.
Considering restricted energy consumption and limitedsimgission range of LSNs [5, 31], multi-
hop technique has been widely applied for large-scale W8Nsrblong monitoring range, as well

as the lifetime. Consequently, corresponding decisioiofusules in multihop WSNs have been
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studied in [79].

The main motivation behind the development of opportunisgiectrum access technologies,
such as CR, is to increase the spectral efficiency of wiraglessmunication system, in order to
achieve high data communication. Spectrum sensing isveeliene of the most important com-
ponents to support CR systems. The main task of spectrurmgdasgo determine if a frequency

band of interest is occupied by PR users during a time sldtinvé certain geographical area [97].

In this chapter, we first briefly summarize the principles laksical binary hypothesis testing
at LSNs, following by the discussion of some existing binfusion rules for triple-layers WSNs.
Then, we focus on th&1-ary noncoherent fusion rules. Finally, some basic locatspm sensing

approaches for cognitive WSNs are addressed.

2.1 Classical Binary Local Detection

In the context of classical binary local detection at LSNs,agsume that the observed SE has two
states, corresponding to two hypothesiégsand H,. The local detection is made based on the
observatiorny at each of individual LSNs. As shown in Fig 2.1, the total oegof observatior?

is divided into two partsZy andZ;. Whenever an observatianfalls into Z,, the LSN makes a
decision ad)y, otherwise, it chooseP);. It might be expected that, based on the same received
observatiory, different decision criteria perhaps yielding differeasults. Hence, various classic

local detection approaches for different purposes areléetas follows.

|Observe d SH Observation at LSNY 7,

Dy Dy

Figure 2.1: lllustration of decision region and decisiorking.
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2.1.1 Bayesian Detection

Under the Bayesian criterion, the decision is made to aeltiee average co®t as small as possi-
ble [98-101], which is related to the value of hgriori probability and the cost of each decision.
Explicitly, for the binary case, the two hypotheses reldtetthe SE can be expressedfdsand H .
The probabilities of occurrence of hypothegls and H; are expressed d% and P, respectively,

which satisfyPy + P; = 1. LetC;;,1,j = 0,1, be the cost associated with the decision when

ijs
given that the true hypothesis i$;. Then,P(D;, H;) denotes the joint probability of decidirg;

while H; is true.

The average cost can then be expressed as

1 1
R =YY CiP(D; H))

i=0j=0

1 1
=Y ) GiP(Di|H;)P;, i=0,1;j=0,1 (2.1)
i=0j=0

where, according to [99]P(Dy|H;) denotes the miss probability, which is expressedPas
P(D1|Hpy) is the false-alarm probability expressed s while P(D;|H;) represents the detec-

tion probability, which is expressed &p. Furthermore, we have
Py=1-Pp (2.2)
and
P(Do|Ho) = 1— Pr (2.3)

Upon applying the above-defined probabilities into (2.4, &verage cost of the detection can be
expressed as

R = Coo(l — PF)PO + C01(1 — PD)Pl + Clopppo + C11PDP1 (24)

where for a given observatian (2.4) can be rewritten as [99]

R = CyoPo + C1 Py + /Z [P1(Co1 — C11)f(y|H1)] — [Po(C10 — Coo) f (v|Ho)]dy (2.5)
0
whereZ is the region for making the decision in favour of the hypsthély, as shown in Fig 2.1.

In (2.5), it is easy to find that both the first and second iteresadways positive and constant,
regardless of which decision is made. Furthermore, in Bagesased detection, it is reason-

able [102] to assume that the cost of making a wrong decisiggréater than that of making a
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correct decision, implying that

Co1 > C11, Cio0 > Coo (2.6)

Under these assumptions, in (2.5), bét{Cy — C11) f(y|H1) and Py(C1o — Coo) f(y|Hp) are
positive. Therefore, in order to minimize the cost, what veadto do is to make the result of the

integral in (2.5) as small as possible. Hence, if

Py(Co1 — C11)f(y|H1) = Po(Cro — Coo) f (v|Ho) (2.7)

the detector should choo$#, otherwise, the detector should chod$g

Alternatively, the Bayes criterion may be represented as

f(ylH1) o Py(Cro — Coo)

2.8
f(yIHo) 7, P1(Cor — C1) (2.8)
The left part of (2.8) is called the likelihood ratio and definas
H
Aly) = f(ylH:) 2.9)

f(y|Ho)

BecauseA (y) is the ratio of two PDF functions, it is a one dimensional &ale regardless of the

dimensionality of observed signal The right part of (2.8) is the threshold, which is denoted as

Py(C10 — Coo)

A= —7——+ 2.10
Py(Co1 — C11) (210)
Then, the Bayes detection can be viewed as a likelihood tediqLRT) as
Hy
Aly)s A (2.12)
Hy

Itis clear from (2.11) that the computationAfy) is not affected by either thee-priori probabilities

or cost functions. This invariance of the data processingf onsiderable practical importance,
as thea-priori probabilities and cost functions are merely to get. The Balatection enables us

to build an entire processor and leaveas a variable threshold to accommodate changes in our

estimates of the-priori probabilities and cost functions.

The Bayesian detection has widely been studied in the confe®SNs. Specifically, it has
been applied to the distributed detection problem in WSNs74, 98, 99]. In [10], the fusion de-
tection in parallel WSNs with FC has been studied by miningzhe Bayesian risk involving basic

concepts and properties of Bayesian detection. A persgoebson optimization (PBPO) approach
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has been proposed for distributed Bayesian signal deteffi4]. With the PBPO approach, the
distributed WSN is treated as two separate parts; the fiestotine FC and the second one consists
of the LSNs invoked. At first, under fixed local decision rylige fusion rule is optimized in order
to minimize the average cost. Then, under a given fusion th&individual local decision rules
of LSNs are optimized. The decision rules used by LSNs arneniggd one LSN at a time, while
keeping the transmission maps of the other LSNs fixed. Thenggattion is carried out iteratively

until convergence is achieved [74,103].

2.1.2 Maximum A-Posteriori and Maximum Likelihood Detection

In Bayesian detection, the average cost is minimized wighaild of thea-priori probabilities, as
well as the risk values [99, 101, 104]. However, in practibe, risk values or cost functions are
quite difficult to get, even through they may exist. In this&amaximuma-posteriori (MAP)
detection [104] may be employed, which needs only dhariori probabilities regardless of the
risk values. The basic principles behind MAP decision aat tihe LSN chooses the most possible
assumption based on its observation or received signal.etsidary Bayesian testing as shown

in (2.7), if we make an assumption that
C10 — Coo = Co1 — Cn1 (2.12)

Then, the Bayesian detection is reduced to the MAP dete¢@i8nr101]. In more detail, after

applying (2.12) into (2.7), we can see that the LSN chod$gsf

Pif(y[H1) = Pof (y|Ho) (2.13)
or it choosedH)), if
Pif(y|Hy) < Pof(y|Ho) (2.14)

Furthermore, when applying the relationshipRgf= 1 — P;, the LRT of MAP detection can be

expressed as

Aly)s A (2.15)

whereA(y) = L1 i the likelihood ratio (LR) and. is the threshold which equals R/ (1 — o).
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In (2.15), whenPy = P; = 0.5 or when the LSN is unable to obtain the knowledg&oand P;
and has to assume th&f = P; = 0.5, then the MAP detection is further reduced to the maximum
likelihood (ML) detection. Based on (2.15) and using theuagstion of Py = P;, we can see that

the ML detection choosed, if

f(y[H1) = f(y|Ho) (2.16)
Otherwise, it chooseHl, if f(y|H1) < f(y|Ho).

In general, the MAP detection is known to minimize the proligtof error without considering
the costs of various decisions. It works with requirementhefa-priori probabilities about,
and Hy, which, however, it is sometimes impractical and restribis applications of the MAP
detection [99]. Below we consider the Neyman-Pearson tleteavhich is not dependent on these

a-priori probabilities.

2.1.3 Neyman-Pearson Detection

From the previous two subsections, it can be seen that thediay detection requires both the
a-priori probabilities ofH; and Hy and the cost functions for all the possible decisions. By con
trast, the MAP detection does not require the cost functibns needs the knowledge about the
a-priori probabilities of each hypothesis. In some physical situesti such as, in radar applica-
tions, it is sometimes difficult to assign realistic costs #me a-priori probabilities [99, 101]. In
these cases, Neyman-Pearson (NP) detection might be thehloése, which needs neither the cost
functions nor thea-priori probabilities [105]. In these applications, we would maiefalse-alarm
probability Pr as small as possible, while make the detection probaliflifyas large as possible.
However, for most practical applications, these two prdtes (Pr and Pp) are conflicting ob-
jectives. Specifically, NP detection usually minimizgsfor a given value of’, or maximizesPp

for a given value of’r [103, 106]. Therefore, it is suitable for the cases wherectisgts or/and the

thea-priori probabilities are hard to find.

Based on the NP detection [99, 101, 106], the probabilityedéction expressed B is max-
imized, when the probability of false-alarRy is fixed. The LRT of assisted NP detection can be

expressed as

 FlylH)
AW = Fy ) 5 @10
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where, A is a preset threshold for NP detection, motivating the maxmn®p subject to the con-

straint thatPr is less than some predetermined constant.

A specific statement of NP detection is detailed as follow$vefs a false-alarm probability
Pr, NP detection may be designed to maximizg or minimize Py, under this constraint. Let us

construct a functiorf, which can be expressed as

F = Py + APr

= [ flmay +A [ flylHo)dy 218)

Clearly, minimizingF is equivalent to minimize®,;. FunctionF can also be rewritten as

F=2+ [ [F(ylH) ~ Af(ylH0)ldy 219)

The only variable quantity of (2.19) is the regiafy. Hence, the minimizing is achievable by
including in the regiorZy only the portion of the domain for which the integrand is riega In

this way, functionF is minimized for a given value aPr, which also gives the minimum d,

In [107-109], the fusion detection based on the NP prinsiples been considered for WSNs,
where local decisions are transmitted via wireless charioehe FC. In these NP-based schemes,
constraints on the probability of false-alarm are imposdti|e the miss probability of the overall
system is minimized. Furthermore, the cases of using depemdbservations have been addressed

in [110], and the problem of energy-efficient routing alonigqvthe NP detection has been studied.

Note that, the NP detection represents a special case ofayesin detection [99], which has
been considered in Subsection 2.1.1, without considetiegrisks and assuming equadpriori
probabilities. In practice, the NP detection has found napplications than the Bayesian and
MAP detections. However, the NP detection neglects the askl thea-priori probabilities, which

results in that the cost of the decision might be high for sapmications.

2.2 Optimum and Sub-Optimum Channel-Aware Fusion Rules

A classical triple-layer WSN is made up of sensor layer, l@gg channel layer and fusion cen-
ter (FC) layer [75, 76]. Each LSN prepossesses and extrafcisriation from its observation and,

then, transmits the local decisions to the FC through wisetdannels.
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In this subsection, we overview a rang of channel-awarefusiles, which make decisions by

considering the state of the channels from LSNs to FC.

Source Event
(Ho, Hy)

2l L2

Sensor Sensor

(51 (s2)

Y1
e =@

= =0 D
71 9 /7”/

Fusion Center
(D)

Figure 2.2: Triple-layer system model for the WSNs obsenbimary source events, in
the presence of channel fading and noise.

For convenience of our description, we build a parallel W8Nctured by three layers as shown
in Fig 2.2. In this proposed WSN system, an binary($f and H;) is observed by. individual
LSNs. Each LSN processes its observation and makes a |logalateabout the hypothesis of the

SE. Explicitly, thelth local decision can be expressed as

y; = —1, if hypothesis Hy is chosen

y; = +1, if hypothesis H; is chosen (2.20)
Correspondingly, the false and detection probabilitiethefth LSN can respectively be written as

Pfl = P(yl = —|—1’H())

Py = P(y; = +1|Hy) (2.21)

Then, local decisions are transmitted from each &fSNs to the FC vid. independent fading
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channels. The received signal at the FC fromithd_.SN can be expressed as
7] :ylhl+nl, 1=1,2,...,L (2.22)

wherey; is the transmitted local decision of tiith LSN, /; is the fading channel gain and is
a zero-mean Gaussian random variable with variariceNote that, when channel state informa-
tion (CSI) is available at the FC, the channel ghijnin (2.22) is always real and positive, after

assuming perfect phase compensation.

Furthermore, for a givem;, the received signal; as shown in (2.22) obeys the independent

Gaussian distribution expressed as

1 —yihy)?
f(rlw) = —o=—exp [—%] (2:23)

Final decision is made by the FC based on the received sigmaldll theL. LSNs. Therefore,
in this type of WSNs, errors may come from two aspects, thedirs is the disturbance and noise
presenting the LSNs' observations and the second one istfiertransmission channels between
LSNs and FC, which introduce noise, fading and/or interfeee Note that, in the following, we
derive the channel-aware fusion rules by incorporatingctiennel fading between LSNs and the

FC, when given fixed local detection performance.

2.2.1 Optimum Likelihood-Ratio Fusion Rule

The optimum likelihood-ratio fusion rule has been studiefi7d, 76, 79, 82, 84] for WSNSs. Let us
assume that, in a WSN system, both the instantaneous chstatelinformation (CSI) regarding
the channels from LSNs to FC and the LSNs’ detection perfam@awhich is explained by the
detection and false alarm probabilities of the LSNs, ardlahla to the FC. The received signal
r = [r1,72,...,r.]" at the FC is a vector containing the observations fiomSNs. Then, when

given the independence assumption of local observatibadikelihood-ratio (LR) evaluated at the

FC, can be expressed as [74]

£(rlHy)
A= Fomm)

L
_ r|Hy)
6 1r0)

1 T’1|H0

= ) e = -l
1 f(ri,y1 = +1{Ho) + f(r1,y1 = —1|Ho)

(2.24)
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Upon submitting (2.21) and (2.23) into (2.24), the optimuR testing can be rewritten as

L Pauf(nly = +1) + (1= Py)f(ri|ly; = —1)
=1 Praf(rlyr = +1) + (1= Pp) f(nlyr = —1)

(r;—hp)? (rp+hp)?

Alr) =

L P T T2 — 2
B e 27 +(1—Pyle "2
= 11 s — (2.25)

=1 Pfle_T + (1 — Pfl)e 202

whereP;, and Py, are, respectively, the detection probability and falsenalprobability of thelth

LSN. If we prefer the logarithmic form, the log-likelihoodtron (LLR) testing is [74]

LA(r) = logA(r)

Lo e S a—pye
1,6 20 + — Py e 20"
= 1 L L 2.26
l—zl Og (rl—h[)z (r[+h[)2 ( )

Pf]e_

202+ (]_ — Pf])e 202

According to [76], the optimum LR-based fusion rule is cdpaif achieving the best detection
performance. On the other hand, as shown in (2.25) or (2&@&)mum LR-based fusion rule
requires both the LSN's performance and complete instaotaCSl, as well as the noise variance.
The optimum LSN's detection is channel-dependent, regirée adjusted, whenever the channels
from LSNs to FC change. Furthermore, the computation caxitplef the optimum LR fusion
rule is extremely high for WSNs. Due to the stringent coristsaof WSNs, the application of the
optimum LR-based fusion rule is restricted only to the WSia high detection performance is

essential.

2.2.2 Sub-Optimum Fusion Rule: Chair-Varshney Fusion Rule

The optimum LR-based fusion rule is capable of achievingdb#mal detection performance.
However, it demands an extremely high complexity and reguinea-priori information, including

the instantaneous CSI of all the LSNs to FC channels, as weahlea detection and false-alarm
probabilities of all the LSNs. In order to relieve from thesguirements, Chair-Varshney (CV)
fusion rule has been developed [74, 76, 79], which is derhasked on the approximation of the

optimum LR-based fusion rule within high channel SNR region

It can be shown that (2.26) can be rewritten as

(2.27)

L
LA(r) = ) log
I=1

il

Pfl + (1 — Pfl)e o2

72r1hl
Pd, + (1 — Pd,)e o2 ]
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Furthermore, (2.27) can be decomposed into

2r[hl
e

2r[hl

)

e

)e 2r[hl
2rlh]

)

(2.28)

Py, + (
Py, (
Py, + (
=1, r;<0 sz +(1— Pf e

When assuming that the channel SNR is infinite yieldifg— 0, the LLR related to the CV

fusion rule can be expressed based on (2.28) as

LA(r) = i log<1;fl>+ Z 10g< P>

I=1, r;>0 =1, r;<0 Py,
L Py, L 1-P
= Yy log + )Y log a (2.29)
—1 sionr— P, o= 1-P
I=1, sign(r;=+1) fi I=1, sign(r;=—1) fi

whereP;, and P, have the same meaning as the previous explanations.

According to (2.29), CV fusion rule is separated into a twagstprocess. First, an estimation

of observed SE is made in the context of each individual LSN:

9 =sign(r), 1=1,2,...,L (2.30)
Then, the decision statistic of CV fusion rule can be derasd

L L
LA(r)= ) log<1€—j’>+ Y. log<1 ijf) (2.31)

=1, §=1 I=1, §i=-1

The LLR expression (2.28) of the CV fusion rule can be viewsda approximation of the
optimum LR-based fusion rule shown in (2.26) within highmhal SNR region. It does not require
any knowledge regarding the channel statistics but doesresthe detection probability and false
alarm probability of each of the LSNs. The decision ruleshat tSNs are optimized under the
assumption that the channels from LSNs to FC are ideal. HeheeCV fusion rule may only
be suitable for the WSNs where the communications betweédslehd FC are reliable. It has
been shown in [74] that, for high-channel SNR, the CV fusiole ris capable of achieving the
performance as good as the optimum LR-based fusion rule. eMenvin the low channel SNR

region, the CV fusion rule suffers significant detectionfpenance loss.
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2.2.3 Sub-Optimum Fusion Rule: Maximum Ratio Combining Fuson Rule

In low channel SNR region, maximum ratio combining (MRC)idusrule approximates the opti-
mum LR-based fusion rule [79,84], which is optimal in termithe maximum of output SNR [76].
For convenience of reading, here we rewrite the simplifieithmpm LLR decision statistic of (2.27)

as

L

Zlo

I=1

(2.32)

_
Pdl + (1 — Pdl)e o2 :|
Py, + (1 Pfl) a

. _2nhy . .
For low channel SNR, i.e., far> — oo, we havee” *2 — 1, which can be approximated by the
. ) L]
first term of the Taylor series expansion, i€.,2 ~1— 2%2’“ Therefore, we have

2r/}
l 1— M)
L 1eu—m>
= Zlog 2}’1
=Tl FP RO

=
L

~ Z{log{l—(l Pdl)zr’hl} 141—(1 Pfl)zr’h’” (2.33)

=1

[ Py, + — Py)

I 1

L
LA(r) = ) log
I=1 Pf

1

Py, +

Using the fact that, fox — 0
log(1+x) ~ x (2.34)

Hence, (2.34) can be further simplified to

eat) = y{[-a-r®] - [-a- o2}
=1
L
= Yoy~ By (2.35)

Given that% is a (possibly unknown) constant and, hence, can be ned|g@&5) can finally be

simplified to
L
Z Pd, Pfl rlhl (236)
I=1

Furthermore, if the LSNs are identical, i.e., all the LSNsg tise same local decision rule and
achieve the same detection probability and false-alarrhaghitity, then,LA(r) of (2.36) reduces

to a MRC statistic of

,CA(T) = irlhl (237)
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In essence, the MRC testing statistic as shown above is si@filer approximation of the optimum

LLR based fusion rule and is asymptotically accurate’ass .

From (2.37), we can see that the MRC fusion rule does not redbe knowledge of;, or
Pf,. However, it requires that all the LSNs are identical. The iS§®ssential for the MRC fusion
rule. The MRC fusion rule is optimal, which maximizes thepuitSNR under the assumption that
the observations through multiple independent channelsdantical. However, in the context of
WSNs, identical observations cannot be guaranteed as thNs B8 prone to erroneous estima-
tions. It has been illustrated that all the LSNs can use theedacal decision rule without much
performance loss, especially when the number of LSNs is. Higkhis case, the MRC fusion rule
is effective [95]. In essence, the MRC testing statisticham in (2.37) is the first-order approxi-
mation of the optimum LLR based fusion rule and it is asymipé#dlly accurate as> — co. Hence,

the MRC fusion rule is not effective in the high channel SN&aoa.

2.2.4 Sub-Optimum Fusion Rule: Equal Gain Combining Based Esion Rule

Motivated by the fact that, in some cases, there is no CSladblai In this case, the equal gain
combining (EGC) may be employed, which requires minimum amof information [74, 111—

114]. The EGC fusion rule can be expressed as

LAK) =Y 1, (2.39)
I=1

In comparison with the optimum LLR-based fusion rule, the(Ef@sion rule releases most of the
requirements. When considering the detection performahtiee three sub-optimum fusion rules
(CV, MRC and EGC), the MRC is the best at low SNR region; whilkigh SNR, CV outperforms

the other two. EGC fusion rule can be viewed as a trade-offéen the MRC and CV fusion rules.

2.3 NoncoherentM-ary Fusion Rule

In Section 2.2, a range of channel-aware fusion rules haga baviewed in the context of binary
WSNs, which are often preferred for the applications dermantligh data rate. From Subsec-
tion 2.2.1, we can know that channel estimation is esseftifalmplementation of the optimum

channel-aware fusion rules, which requires extra bandivfmttransmission of overhead for chan-

nel estimation, in addition to their relatively high conxitg of implementation. In practice, there
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are many applications for WSNs, which emphasise on low-d¢exitg over high data rate. In these
types of WSNs, noncoherent fusion rules are preferred, lwtietect signals without relying on
channel estimations. In this section, we provide a summagxigting noncoherent fusion rules

suitable for the WSNs.

In relation with our studies in the following chapters, thmmnoherent fusion detections are de-
scribed based on a framework df-ary frequency-shift keying (MFSK) WSN [115, 116]. Specif-
ically, in the MFSK-assisted WSN, number of LSNs are used to monitor single SE with
possible states. ObservationsIof. SNs are transmitted one-by-one to the FC using MFSK mod-
ulation with L time-slots. At the FC, the received signals from th&SNs are first processed in
the square-law operation [117]. Then, the detection m&¥rixf (M x L) is formed. Let the ele-
ment in the detection matri corresponding to the:th row and thdth column be expressed as
Dy,m=01,---, M—1;,1=1,2,---,L. Based orD, noncoherent fusion rules are discussed

below.

2.3.1 Equal Gain Combining Fusion Rule

Equal gain combing (EGC) fusion rule, well known as a typggliare law combining approach,
is an effective mean of combating multipath fading in norerent communications [118]. Note
that, the EGC fusion rule discussed here is specifically dmcoherent detection, which is not fully
the same as that described in Subsection 2.2.4. The EGQfudmpresents significant practical
interest, because, in most cases, it can provide reasodatsetion performance, while requires

the lowest complexity for implementation [117,118].

When the EGC fusion rule is employed, th decision variables formed by the FC can be

expressed as
L
Dy=)Y Dy, m=0,1,..., M—1 (2.39)
=1

Then the largest one dfDy, Dy, ..., Dy—1} is selected and, correspondingly, itsindex with its
value in{0,1,... M — 1} represents the estimation of the state that the monitoreid 8&rently

at.

Numerous research has dealt with the performance of noremheommunication system in

conjunction with the EGC fusion rule over AWGN or/and fadiclgannels [119]. For examples,
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Proakis has developed a generic BER expression for EGOnfusie of binary signals over AWGN
channels [120]. Then, a close-form expression for averdge Bf binary frequency-shift keying
(BFSK) over independent identically distributed (i.i.Rayleigh fading channels is given [115].
Following, general expressions for the average BER of BFgKads over Rician or Nakagami-

fading channels have been derived in [121] and [122], rdade

Considering the application in WSNs, the EGC fusion rule hesn employed at the FC of a
FH/MFSK WSN system, where akl-ary SE is observed bk individual LSNs [117]. It has been
indicated that when communicating over AWGN or Rayleighrigdchannels, the WSN systems
with EGC fusion rule capable of achieving a promising dédecperformance, when operated at
reasonable SNR. In [118], the detection performance of t&&N#/employing EGC fusion rule has

been investigated, when assuming communications ovezlated fading channels.

2.3.2 Majority Vote Fusion Rule

The majority vote (MV) fusion rule [123-125] can be descdli®y starting fromD. Let A (> 0)

be a preset threshold in MV fusion rule, a new maixcan be formed based d» by comparing
each of its elements with the threshald Specially, ifD,,; > A, the corresponding element Y

is set toD] ; = 1, otherwise,D;, = 0. Hence,D’ is a matrix with its elements taking values of
1 or 0. Based orD’, when the MV fusion rule is employed, the FC makes a decisidaviour of
the particularM-ary symbol, which has a value {9, 1, - - - , M — 1} corresponding to the specific
row having the highest number of nonzoroentriefin which provides an estimation to the state

of the SE monitored.

Explicitly, for MV fusion rule, theM decision variables are evaluated based on the new formed

matrix D’ via EGC fusion rule as

mls

L
Dy=)_ D, m=0,1,...,M—1 (2.40)
I=1

The MV fusion rule has attracted much attention in the retean noncoherent combining
schemes for its simplicity [126]. The performance of MV fusirule has been demonstrated in
various applications, such as, in WSNs. Under the assumpfigndependent LSNs, if the indi-
vidual local correct probability is larger th&xb the overall detection performance improves as the

number of LSNs increases. In some cases, for simplicity eéfrttical analysis of the MV fusion
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rule, it is usually assumed that all the LSNs have the samectlet performance. In [127], the

detection performance has been analysed under the aseurtit the local observations are inde-
pendent. A theoretical framework for combining local dexis has been built which uses distinct
pattern representations [128]. It is shown that MV fusiole man be viewed as a special case of

EGC fusion rule, as also shown (2.40).

2.3.3 Selection Combining Fusion Rule

For the selection combing (SC) fusion rule, first, the decisiariable for each possible state is

formed by selecting the largest one of the corresponding gimen by [90, 129]
Dy =max{Dy1,Dm2,..., Dy}, m=0,1,..., M—1 (2.412)

where max-} represents the maximum of the correspond entries.

Then, the largest one dfDy, Dy, ..., Dp-1} is selected and its index value in termsiof

represents the estimation of the state of the observed SE.

Among the three noncoherent fusion rules EGC, MV and SC, aanicating over multipath
fading channels, SC is the least complicated algorithmi psocesses only one of the diversity
brands [119]. The SC fusion rule chooses the branch with igfieebt SNR or the strongest sig-
nal, then assuming equal noise power of individual chanriael®rder to achieve better detection
performance, independent channel fading is desired. Hemvéhis channel fading independence
may not always be practical, because, for example, of irseiffi space in small-size WSNs and,
as a result, the diversity gain may not be guaranteed. Auxfdiliy, different wireless channels may
experience various average SNRs due to different noise rpamg transmitting distance. These

factors also constrain the application of the SC fusion.rule

2.3.4 Product Combining Fusion Rule

In the context of the product combing (PC) fusion rule [9D,1381], the decision variable for each

of the possible states of the SE are formed as

L
Dy =]]Dm m=0,1,..., M—1 (2.42)
I=1
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Then, the largest one of thedd decision variables is chosen and its index value in termm of

stands for the estimation of the state of the observed SE.

The design of the PC fusion rule is based on an assumptiorthtbakceived signals corre-
sponding to a non-signal frequency band carries relatile@lyer power in at least one of the
individual LSNs, with a high probability. Consequently, evhthe products of (2.42) are com-
puted, the undesired decision variables with just noiskl y@v values. By contrast, the desired
signal contains both signal and noise, the decision variébkmed by the product of (2.42)) has
a significantly higher value. Hence, statistically, reléaletection performance may be expected
when employing the PC fusion rule [132]. Note that, the PGofusule has first been proposed
by Viswanathan and Taghizadeh in [133]. Following, the geniance of the PC fusion rule is
analyzed under different jamming and fading conditions4]13n [135], the BER performance of
the fast frequency-hopping (FFH) binary frequency-skdffing (BFSK) system employing the PC
fusion rule is derived, when multitone jamming and AWGN adlas independent Rician fading

channels are considered.

2.3.5 Noise-Normalization Combining

The noise-normalization combing (NNC) fusion rule forms thecision variables based on the
received signals, the interference and noise power [92{letail, Ieta}nl be the interference-plus-

noise power oD,,;. Then, theM decision variables are formed as [92, 136, 137]

L
Du=Y 20 =01, M1 (2.43)

The largest one of Dy, Dy, ..., D1} is then selected and, correspondingly, thendex with

the value in{0,1,... M — 1} represents the estimation of the state that the SE is clyriamnt

In the NNC fusion rule (also referred to as adaptive gainrobiiision rule), the reciprocal of
the noise power is required to normalize the received sigefalre thel individual received signals
are combined [92]. The detection performance of the NNGfusile for a FH/BFSK system has
been analyzed in [138], when communicating over partiadb@aussian noise jamming channels.
The detection performance analysis is then extended to dlyteigh fading channels and general

Nakagamim channels in [92] and [139], respectively.
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2.3.6 Self-Normalization Combining

Under the self-normalization combing (SNC) fusion rules tlecision variable for therth state is
related to the elements of the other possible states [182144]. TheM decision variables formed

based on the SNC fusion rule are given by

D :i Dml
" & Du+Du+...+ Dy

m=0,1,... M—-1 (2.44)

Then, the largest one of thie decision variables of Dy, Dy, ..., Dy—1} is selected and its sub-

script value represents the estimation for the state of Ehbeing observed.

In the SNC fusion rule, the reciprocal of the sumMdfdifferent elements is used for normaliza-
tion before combining them to form the decision variablenét it is sensitive to channel fading,
yielding, sometimes, a significant performance degradatiben compared with its nonfaded per-
formance [141]. In references, the SNC fusion rule has brammed for channels with no fading
in [140]. The performance of the SNC fusion rule over Riciad &lakagami# fading channels

has been analyzed in [141] and [132], respectively.

2.3.7 Soft-Limiting Combining

The soft-limiting combining (SLC) fusion rule is also rafed to as the clipping combing fusion
rule [116]. Under this SLC fusion rule, the elemehntg; in the decision matribD are first clipped
by a certain value before the combining operation. Spedifidat A be the preset threshold, which
can be set, for example, as the value achieving the lowest probability for given conditions,
such as local decision probability, channel SNR, etc [98Fr, by comparing the decision element

D,,; with the threshold\, we obtain

A
Dml_

Dmlr if Dml S A

= A, if Dy > A (2.45)

ml —

form=0,1,---,M—1;,1 =1,2,---,L. After the clipping operations, the decision variables

are formed based on the EGC principles, yielding

L
D, =) D, m=0,1,...,M—1 (2.46)
I=1
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Finally, the largest one amorddy, D1, ..., D},_,} is selected and its index value farrepresents
the estimate of the state of the monitored SE. In the SLC ifusite, the preset thresholtl is
usually refereed to as a the clipping threshold, which dépem the noise power as well as the
number of active users [132], when multiuser communicatiothe case. The basic principles
behind the SLC is that, if more than one interfering user kappo choose the same frequency
band, a higher interference power is anticipated by the Rdrcorresponding branch. Hence, the
clipping operation may be effective to suppress the interfee [142, 143]. However, operation of
the SLC fusion rule requires the information of noise vareaand the number of active users, in
order to calculate the accurate threshold. Furthermocanitbe shown that the knowledge of noise
power plays a more important role than that of the number tifeasers , in order to accurately

estimate the clipping threshold [143].

2.4 Spectrum Sensing Approaches

Spectrum is now becoming a scarce resource, when licensadrsm or frequency-band is in-

tended to be only available for primary radio (PR) users. thisrsake, a new concept referred to
as cognitive radio (CR) has been introduced in order to ingpithe utilization rate of spectrum

by identifying and utilising the spectrum holes. In CRs, sipectrum hole is defined by the Fed-
eral Communications Commission (FCC) as a band of freqasrtbiat are not being used by the
licensed user of that band at a particular time in a particgéepgraphical area. Hence, the main
task of spectrum sensing is to determine whether the frexyugsnd of interest is occupied by PR
users during a time slot within a certain geographical a88& [Explicitly, the deployment of CRs

will inevitably create interference to PRs, yielding pb$gsidecrement of communication quality of
PRs. Therefore, in order to make efficient user of the spectrales of PRs but to keep the inter-
ference on PRs at an reasonable level, quick and accuratiEspesensing in the three dimensions

of frequency, time and space is essential.

In this section, some typical spectrum sensing approadgieagdewed in detail. First, we con-
sider the original problem of local spectrum sensing. Tletpmprehensive overview of existing

solutions of spectrum sensing is provided.
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2.4.1 Spectrum Sensing Model

The general problem of spectrum sensing can be describadaay hypothesis testy, means that
PR user is off or the frequency band of interest is availadtet H; denotes that PR user is active
or the frequency band of interest is busy. Hence, the redeigmal at CR users can be expressed

as:

Hy: y(t) = x(t) + n(t) (2.47)

wherey(t) is the received signal at a CR use(t) is the AWGN with zero mean and(t) rep-
resents the signal received from PR user. In the contextasftapm sensing, the detection perfor-
mance is usually measured two parameters: detection phtpély;) and false-alarm probability

(Ps). Hence,P; can be expressed as
Py 2 Pr(6 > A | Hy) (2.48)

whered denotes the test statistics ands the threshold for detection. By contragl can be

expressed as

P £ Pr(6 > A | Hy) (2.49)

There are many spectrum sensing approaches in literatetewBwe provide a brief overview
of some spectrum sensing approaches, including energgtibei¢l44—-147], matched filter (MF)

detection [148-150] and feature based detection appredtbé, 152].

2.4.2 Energy Detection

Energy detection is the simplest and common spectrum ggagiproach, which detects the spec-
trum availability by measuring the energy of received signa certain frequency band. Since it
is easy to implement, energy detection has widely beenedudr detecting PR users. However,
the performance of energy detection is highly susceptiblgoise power uncertainty. It is difficult

to set the threshold properly without the knowledge of theueate noise level. Furthermore, en-

ergy detection is incapable of differentiating betweerirdessignals, noise and interference. The
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(b) Frequency-domain energy detection

Figure 2.3: Flow chart of energy detection.

detection performance of energy detection degrades signtfiy in shadowing and fading environ-

ments [146, 147].

Energy detection can be operated in either frequency or diomeain. As shown in Fig 2.3a,
conventional time-domain energy detection consists ofvagass filter, Nyquist sampling and
A/D converter, square-law device and integrator [144]. r€gpondingly, the received signal after

sampling can be expressed as:

Ho : y(n) = n(n)

H;:y(n)=x(n)+n(n), n=0,1,--- ,N—1, (2.50)

whereN is the number of sampling, the noise samp(e ) is assumed to be white Gaussian noise

with zero mean and varianeg. The test statistics for energy detection is:

1 N-1

e=g L 1y P (2.51)

Then, the availability of the frequency band of intereshgsenergy approach can be determined

according to

H,
S A (2.52)

whereA is the threshold.

In time-domain energy detection, the bandwidth of filterdset match with that of a given
signal, which is inflexible in practical application. Anealbhative approach is to estimate the spec-
trum via squared magnitude of the output of the fast Fourggrsform (FFT) of the sampled signals,
forming the frequency-domain energy detection, as shov2r3b. Compared with the conventional
time domain energy detection, the frequency domain eneeggction, is capable of monitoring
multiple sub-bands simultaneously [145]. Furthermoreaduitrary bandwidth can be processed

by choosing a corresponding number of frequency bins.
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In frequency-domain, the detection performance can beawga through increasing either the
frequency resolution of FFT or the number of samples. Howemereasing the values of these
two parameters increases the computation complexity dsawgirocessing delay. In practice, it
is common to set a suitable FFT size to meet the desired tesolwith a moderate complexity.
Then, the trade-off between the detection performance antplexity/delay may be optimized
by the number of samples. It has been shown [144] that unéesgbumption that the number of
samples is infinite, an energy detector is capable of acigeany desired; andP; simultaneously.

According to [144], the minimum number of samples requied i
-1 -1 -1 2
u=2 [Q (P —P))y ' - Q Pd] (2.53)

whereQ ! denotes the inverse Gaussian Q-function arig the observation signal to noise ratio

(SNR).

In practice, unfortunately, there is a minimum value of SMBIow which energy detection
cannot work any more. This minimum value of SNR is called tBBIR wall’ [146, 147]. The
reasons behind the ‘SNR wall’ phenomenon are the two imiged@ssumptions for the observation
noise. First, the noise(n) in (2.50) is assumed to be the white Gaussian noise with zesnm
and variancer2. However, in practice, the observation noise is an aggmyaf thermal noise at
receiver and interference due to nearby unintended emigs@&ic. Second, the noise variance is
assumed to be known perfectly, so that the correspondieghibtd can be set accurately. However,
CR users usually cannot estimate the noise variance pigcisenoise variance could vary over

time due to temperature change, interference, etc.

2.4.3 Matched Filter Detection

Matched filter (MF) detection is a linear filter designed toxim@ze the output SNR for a given
input signal [148]. When tha-priori information of PR user is perfectly known by CR user, MF
detection is the optimum spectrum sensing approach [149,idStationary Gaussian noise. The
main advantage of the MF detection is low complexity andyelathe conditions are satisfied,
MF detection is able to implement fast sensing and meet thigedeprobability of false-alarm or

probability of detection in short time, as it requires o6l 1/SNR) samples [153].

Against the above mentioned advantages, MF detection mas smjor disadvantages. First,
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MF detection requires perfect knowledge of all the PR ugetkerwise, the detection performance
degrades significantly. Second, there is a security issu€Rauser needs to access to the com-
munication in PR. Third, since the MF is designed to sensthalfrequency bands of interest, the
implement complexity maybe largely impractical, also daghe requirement of perfect knowl-
edge of all the possible signals. Finally, MF detection i emergy efficient, as all the receiver

algorithms needs to be executed for decisions [148].

2.4.4 Feature Detection

From the above discussion, we have know that MF detectioimigeld for the practical applica-
tions requiring perfect knowledge of received signals. uadly, there is always some available
information, such as, the type of PR users, regulation ofstratted signal [148], etc., which may
be useful for spectrum sensing. In the following, we ovemws®me spectrum sensing approaches,
which exploit known features of received signals. Spedlficave focus on two types of feature

detections, namely the second order cyclostationarityatiein and the eigenvalue based detection.

2.4.4.1 Cyclostationary Detection

The initial work of spectrum sensing with the aid of the setonder stationarity analysis can be
traced back to the contribution of Dandawate and GiannakisOR4 [154]. The general princi-
ples behind the cyclostationary detection are that, most-made signals show periodic patterns
related to the corresponding symbol rate, chip rate, cHacode or cyclic prefix make the re-
ceived signals present as a cyclostationary random prft&$s152]. In a little bit more detail, the
time-varying covariance function of received sign&lgt) can be expressed by a Fourier series,
where the Fourier coefficients are known as the cyclic camae with cyclic frequencyy. By
exploiting some of these cyclic characteristics of randaotess, one can construct the detectors
to benefit from the spectral correlation. This method haslyideen used for detection of OFDM

signals [151].

y(t) Y(n) Auto— Y(n) — HO/HI
g S rer = oecison =

Figure 2.4: Flow chart of second order cyclostationaritiedgon.

A discrete-time zero-mean stochastic procgds is said to be the second-order cyclostation-
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ary, if it satisfiesy(t) = y(t + T), where the smallest value @fis called as the period. Further-

more, the corresponding autocorrelation function is aéswoglic with period ofT’, given by

Ry(7) = Ely(1)y(t +7)]

=Ely(t+Ty(t+7+7T)] (2.54)

Hence, the autocorrelation function can be expressed as

d ; 1
R0 = ¥ e, (fo= 1)

k=—o0

1T :
— —j2n fokt
by T /0 Ry(T)e dt

T

— lim = [° Ry(1)e 2kt gy (2.55)

T—o0 -1
whereT — oo. The power spectrum density (PSD)uift) can be obtained through the discrete

time Fourier transformation (DTFT) [152]:
S(f) = / Ry(T)e 274y

= Y b(f - nfo) (2.56)

n=—oo

whereb, is given in (2.55). The cyclic autocorrelation function afjigen cyclic frequency de-
termines the correlation between two spectral compondritesignal separated in frequency by

an amount ofl. Hence, if there exists am such thatf = nfo, by for somek’s are not zero and
5(f) # 0.

Under the cyclostationary detection, it is assumed thatenis a wide-sense stationary (WSS)
process with no correlation, resulting in thgt= 0 for any value ofk. By contrast, digital mod-
ulated signals are cyclostationary with spectral cori@hatiue to signal periodicities, resulting in
that the values of sontg are lager than zero. Hence, in the cyclostationary basedrspesensing,

the detection can be described by comparing the valug with a preset threshold, yielding

0 = Ho; ifforall by (k=0, £1, +1,--+), b < A

6 = Hy; ifforsomeb, (k=0, £1, £1,---), by > A (2.57)
Note that, for the Gaussian random process, the test &gttt shown in (2.57) is irrational,
as the received signal is uncorrelated, yielding that

1 /2 ‘
b= lim = [ Ry(1)e 2kdr —0; k=0, +1, +2,--- (2.58)

T—o0 —

S
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In comparison with the energy based spectrum sensing, ttlestgtionary detection is a non-
coherent spectrum sensing approach. It is less sensitive tooise uncertainty, provided that the
cyclic frequency of signals is available. Furthermores itapable of distinguishing different types
of digital modulation signals. On the other hand, when thdicyfrequency is not available at
the receiver, the sensing device requires other sourcest tihg information, which increases the
complexity of the cyclostationary detection [155]. Additally, as shown in (2.58), cyclostationary
detection may be completely fail, when the received sigh@aussian distributed, which might be

the result of many interference signals, multiple fadirtg, e

2.4.4.2 Eigenvalue-based Detection

To overcome the shortcomings of energy detection, a metkotyuhe properties of the eigen-
values of received signal's covariance matrix is introdufEs6—158]. The principles behind the
eigenvalue-based detection is that the PR signals recaivadCR user are usually correlated be-
cause of dispersive channels, utility of multiple receimgeanas or even oversampling [151]. Such

correlation can be utilized for offering highly reliableegprum sensing.

yi(t) yi(n)
Q
ya(t 2\1) | 8
JZF) o yZF ) 3 X Eigenvalue Qua Decision Ho/H)
_ g : g Decopositio Qumin
yv(t) yv(n)[©
A

Figure 2.5: Flow chart of eigenvalue based spectrum sensing

Specifically, with the aid of the eigenvalue-based detectioe vacancy of a frequency band of
interest can be determined based on the fluctuation of theriemee matrix’'s eigenvalue. Let the

covariance matrizlA{y of received signals be expressed as

. 1 V-1
Ry =3 Zoy[v]yH [0] (2.59)
=
whereV is the length of observation angdv] is a vector of lengthN, for example, which con-
tains the observation samples. The eigenvalueéyortan then be obtained via eigenvalue-based
detection. From the eigenvalues, various test statistmg Ibe formed. For examples, the ratio of

the maximum to the minimum eigenvalues [159], the ratio eftiaximum to the average eigen-
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values [157], etc. In detall, Iepz(o) > M1 > o> A > H(N-1) be theN eigenvalues of the
covariance matriRy. The test statistics of the ratio between the maximum andnmoim eigen-
values can be written as

H(o)
H(N-1)

Hy
6= S A (2.60)
Hy

Similarly, the test statistics of using the ratio between itieximum and average eigenvalues can

be described as

H,

5= Nf’fo) <A (2.61)
H
X opi

In [158], the asymptotic threshold values for the test stigg of (2.60), and (2.61) have been

studied.

From above, the eigenvalue-based detection is based orutheoarelation matrixﬁy of re-
ceived signals, which is a noncoherent detector requirinly energy information. Hence, it is
effective for implementation blindly. The eigenvalue-bdletection becomes less efficient when

signals become less correlated, as, in this case, all @gezs/have similar values.

2.5 Conclusion

In this chapter, an overview of the detection approachesntlag be employed by LSNs and FC,
as well as the spectrum sensing approaches in CRs has besmtpe Explicitly, each of the

detection approaches has its unique advantages, disadeanand requirements. Therefore, in
design of local detection at LSNs and fusion rule for FC, thction schemes should be carefully

chosen based on the objectives and communication envirsme

Specifically, the characteristics of the classical locaédon, the optimum and sub-optimum
channel-aware fusion rules, the noncoherent fusion ruldgtae spectrum sensing approaches are

summarized as follows.

1. Classical local detectionsIn this chapter, we have introduced three types of clakkinary
local detection approaches. The Bayesian detection aim@imize the average cost, which

requires both tha-priori probability and the cost of each decision. When the costtiomés
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not available, the MAP or ML detection may be employed. Thedgétction minimized,

for a given value of’; or maximizesP; for a given value of’; without requiring any further

information. The design objectives and requirements afdliecal detection approaches are

summarized in Table 2.1.

Local Detection at LSNS

Objective

Requirements

Bayesian Detection

Minimize average cost

a-priori probability and cost functior

MAP and ML Detection

Maximize the correct probability

a-priori probability

Minimize Py for a givenP;

NP Detection or maximizeP,; for a givenPs None

Table 2.1: Objectives and requirements of local detectidiBals.

2. Channel-aware fusion rules In this chapter, the channel-aware fusion rules have been d

cussed based on a classical triple-layer WSN model. Frondisaussion and comparison,
we can know that the LLR fusion rule achieves the best peioce, under the stringent
requirements including LSN’s performance and CSI. To veligom these requirements, the
Chair-Varshney (CV) and the EGC fusion rule have been inited. These sub-optimum
channel-aware fusion rules have different requiremerdsyasid sub-optimum performance.
The trade-offs between the detection performance and théreela-priori information for

optimum and sub-optimum channel-aware fusion rules areanmed in Table 2.2.

Fusion rule a-priori information Detection performance
Optimum LLR | CSl and LSNs’ detection performance Optimal
Chair-Varshney| LSNs’ detection performance Near-optimal for high SNR

MRC Csl Near-optimal for low SNR
EGC Channel phase Robust in wide SNR range

Table 2.2: Comparison among optimum and sub-optimum chawere fusion rules.

. NoncoherentM-ary fusion rules: Some existing noncoherem-ary fusion rules have been
addressed in Section 2.3, which require no channel estmatir LSNs’ detection perfor-
mance. All our discussion of the noncoherdritary fusion rules are based on a framework
of MFSK WSN system. Specifically, the noncoherévtary fusion rules have been de-

scribed based on a so-called detection mdRiformed at the FC. The decision variables for
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the introduced noncohereM-ary fusion rules are summarized in Table 2.3.

Fusion Rule Decision Variable
EGC Dy = Y1 D
MV D = Y1 D}y,
SC Dy, = max{Dy,1, D2, ..., Dur}
PC Dy =115, Dy
NNC Dn=Yk, 5’32'
SNC D = Zlel DO,+D1,E'.".I+D(M_1),
SLC D, = Yi 1D}y

Table 2.3: Decision variables of variong-ary noncoherent fusion rules.

4. Spectrum sensing approachedn Section 2.4, a range of local spectrum sensing apprsache

have been introduced. The main task of spectrum sensingleteéomine whether a particular

frequency band is free or busy during a time slot within aaiergeographical area. In this

chapter, three local spectrum sensing approaches, nathelgnergy detection, matched

filter detection and feature detection have been addre3$edadvantages and requirements

of these spectrum sensing approaches are summarized e Z4bl

Spectrum sensing

Advantages

Requirements

Energy

Easy to implement and low-complexity

Noise variance

Matched Filter

Low-complexity and low-delay

Knowledge for all possible signal

[72)

Cyclostationary

Robust to noise uncertainty

Cyclic frequency

Eigenvalue-based

All above

Correlation of signals

Table 2.4: Comparison of local spectrum sensing approaches



Chapter

Noncoherent Detection in FH/MFSK
WSN Monitoring Single Event

3.1 Introduction

Due to the great potential for many applications and also tdude advancement of emerging
technologies, WSNs have drawn intensive research in rgeams. In WSNSs, signal detection con-
stitutes one of the very important tasks, and a lot of re$eafiort has been made for design of
high-efficiency and low-complexity detection algorithmi®[74—-76,79-82,103,160]. Specifically,
for monitoring binary events, optimum and sub-optimum dibe algorithms have been derived
under various optimization criteria, as shown in ChapteA2 some examples, detection schemes
found in literature include Neyman-Pearson detection§2(),Bayes detection [10, 75, 82], maxi-
mum likelihood detection [10,74-76,79,82], maximum ratenbining and equal gain combining
assisted detection [74-76,79], Chair-Varshney dete¢fidn/5, 79], etc. In order to improve spec-
tral efficiency and reduce detection delay, in [78], a midtipccess model has been proposed for
transmission of signals from LSNs to FC and correspondisgfudetection rules have been stud-
ied. In [80], the fusion detection a¥-ary events has been investigated by merging the fusion
detection with channel decoding. Furthermore, owing tdoitscomplexity, in WSNs, noncoher-
ent detection is often preferred to coherent detectiorh@sdncoherent detection does not require

extra complexity and extra resources for channel estimgtid5].

In this chapter, a novel wireless sensor network (WSN) fraonk, namely the frequency-
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hoppingM-ary frequency shift keying (FH/MFSK) WSN, is proposed, gfhimonitors anM-ary
source event (SE) and conveys signals from each local sender(LSN) to the fusion center (FC)
with the aid of frequency-hopping (FH) aid-ary frequency-shift keying (MFSK) techniques. The
SE under observation by LSNs are assumed to Bdw&ates occurring with equal-probable. The
estimations of LSNs are transmitted to the FC using MFSK raiatun aided by FH. Channels from
LSNs to FC are modelled either as additive white Gaussiasen@dWGN) channels or Rayleigh

fading channels.

In this proposed FH/MFSK WSN, the FH/MFSK technique is idtroed for enhancing the
detection performance by reducing the correlation amoagitmals transmitted by different LSNs,
so that the FC can benefit from both the space diversity anfiidhaency diversity. Explicitly, this
frequency diversity becomes more important, when the LSN<sely distributed, making the
signals transmitted by different LSNs correlated in spat&V/SNs, coherent fusion rules are often
preferred for the applications demanding high data ratevéyer, there are a range of applications,
which weight the implementation complexity over the datke.raln these WSNs, noncoherent
fusion rules are usually preferred, which achieve the fusietection without relying on channel
estimation. In this chapter, signals are noncoherentlgatedl at the FC based on the square-law
principles aided by conventional equal gain combining (EEG®©vel erasure-supported equal gain

combining (ES-EGC) fusion rule and optimum posterior fagiole.

In this chapter, we analyze the lower-bound of error clasifin probability (ECP) perfor-
mance of the FH/MFSK WSNs with ES-EGC fusion rule over Rafidading channels. Further-
more, the detection performance of the FH/MFSK WSN is ingastd by simulation approaches.
Our studies show that the FH/MFSK constitutes one of the miogschemes for efficient informa-
tion delivery in WSNs. Reliable detection can be achievetasonable SNR levels for detection
at LSNs and at the FC. Compared with the conventional EG@rfusile, our proposed ES-EGC
fusion rule significantly improves the detection performamnf FH/MFSK WSNs at low-cost of

complexity and delay.

Note that, in our WSN systems, we choose MFSK instead of rdifttal phase-shift key-
ing (DPSK) because of the following considerations. Fiitsts well known that the MFSK is
an energy efficient modulation scheme while the multiple RRSn be counted as a bandwidth

efficient scheme but not an energy-efficient scheme. For W&Ngprefer to the energy-efficient
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schemes in order t 0 extend the lifetime. Second, in DPSkgat lone pilot symbol is required and
the detection is dependent one the one-step channel astim&@y contrast, MFSK can be fully
noncoherent detected by depending on energy detectiothdfomore, when using the DPSK, the
FH and data modulation have to be operated separately. trasbnMFSK and FH can be jointly

operated, which increases the bandwidth efficiency.

The reminder of this chapter is organized as follows. Ini8acB.2, we provide the details
of the proposed FH/MFSK WSN, where the observed SE, LSN<gwsing are considered. In
Section 3.3, signal processing at the FC with various fusibes is analyzed. The characteristics
of FH/IMFSK WSN are described in Section 3.4. Section 3.5 iples/the detection performance of
FH/MFSK WSNs with ES-EGC fusion rules over Rayleigh fadihgrnels. Then, some simulation
results and discussions are provided in Section 3.6. KjnallSection 3.7, our conclusions are

derived.

3.2 System Description

The framework of the WSN considered in this chapter is shawkig 3.1, which is a typical triple-
layer WSN model widely used for research in literature [B4/B—82,160]. As shown in Fig. 3.1,
the L number of LSNs simultaneously observe an SE wiftstates and convey their observations
to the FC using FH/MFSK. The FC finally makes a decision ablbatstate of the observed SE,
based on the signals received from theESNs. Below we describe in detail the components of the

FH/MFSK WSN considered, as well as their operations andesponding assumptions invoked.

3.2.1 Source Event

As shown in Fig. 3.1, the single Sks assumed to havi! states corresponding i hypothesises,
which are expressed Wy, Hy, . .., Hy 1. Inthis chapter, we assume for simplicity that tehy-
pothesises represeit amplitudes Ay, A4, ..., Ap_1, Obtained by quantizing a continuous event,
such as temperature, pressure, etc. Therefore, giverhh&HE is at stater, m = 0,..., M — 1,

thelth LSN’s observation can be represented as
n=An+mn, 1=1,2,...,L (31)

wheren;, is the observation noise.
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Figure 3.1: Triple-layer system model for the WSNs obsenan M-ary event, where
information is transmitted to the FC based on FH/MFSK scheme

3.2.2 Sensor Processing

When thelth, ! = 1,2,...,L, LSN obtains an observation in the form of (3.1) for the §Ht
decides the state agfbased on the principle of MASK [115]. Let the states estimhdig the L
LSNs are collected te = [s1, 52, ...,sL], wheres; = m, if the Ith LSN estimates that the SE’s
amplitude isA,,. Let us assume that the SE is linearly and uniformly quadtiZénen, the decision

error probability of each of the LSNs is given by [115]

B 1 |6log, M

where~y, represents the observation signal-to-noise ratio (SNE)eat SNs, referred to as the sen-
sor SNR for convenience. In practice, the sensor S\NR dependent on the SE’s characteristics,
the specific quantization approach used, the sensing meghadIn (3.2),Q(x) is the Gaussian
Q-function defined a@(x) = (271)~1/2 [ e~/2dt. Note that, in our simulations in Section 3.6,
we assume that an erroneous observation leads to one @ithe 1) states other than the correct

one with the same probability @f. /(M — 1).
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Following the sensing to determine a state of the SE, as shofig. 3.1, thel. LSNs transmit
their observed states to the FC with the aid of the FH/MFSKn&pes. The total transmission
time is assumed to bE, seconds, which is referred to as the symbol duration. Letssme that
the WSN system use®l orthogonal frequency bands with their center frequenaesing a set
F ={fo, f1,.--,fm-1}. TheseM frequencies are used for both FH and MFSK modulation, which
are implemented as follows. Let= [aq,4a5,...,a.] be a FH address used by the WSN, where
the integem; € {0,1,--- ,M—1}, 1 =1,2,...,L. The purpose of using the FH address is two
folds. First, transmitting the information about the SE dffecent frequency bands is capable of
providing frequency-diversity for detection at the FC. §becomes even more important, when
some LSNs are located close to each other, resulting in hle#t signals received by the FC are
correlated, in the space domain, if the signals are tratednitn the same frequency band. Second,
with the aid of the FH, signals received from thd.SNs can be noncoherently combined, which
will become explicit in our forthcoming discourse. Basedtlom FH address and the estimates

the LSNs first carry out the operation

m=[my,my, - ,m)=sda

=[s1®ay,s2®ay, - ,5.Dag (3.3)

where@® represents the addition operation in the Galois fi€l&(M)). Therefore, the value of
my, 1 =1,2,...,L, is within [0, M — 1], suitable for MFSK modulation. Following the FH op-
eration shown in (3.3), the componentsmfare respectively passed to the MFSK modulators of
the L LSNs, where they are converted to the MFSK frequenEigs= [fu,, fm,, - -, fm, |, Where

fm, € F. Finally, the MFSK modulated signals of tlieL SNs are transmitted one-by-one to the
FC in a time-division fashion using time-slots of duratiori},, whereT;, = T,;/L. Specifically,
the signal transmitted by thHéh LSN during the T, < + < (i + 1)T, can be expressed in complex

form as
5(t) =VPyr, (t —iTs — (1 - 1)Ty,)
x exp(j27rt[fe + fmlt +j1), 1=1,2,...,L (3.4)
whereP denotes the transmission power, which is assumed the sara# foe L LSNS, f. is the

main carrier frequency angi is the initial phase introduced by carrier modulation. I3y, (t)

is the pulse-shaped signalling waveform, which is definest twe interval0, T;,) and normalized
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to satisfy [ y2(t)dt = Ty,

Assuming that the signaj(t), I = 1,2,...,L, is transmitted over flat Rayleigh fading chan-

nels, at the FC, the received signal durifig < t < (i + 1)T; can be expressed as

yi(t) =h&(t) +ny(t)
=VPhypr, (t —iT, — (1 = 1)Ty) x exp(j27t[fe + fu ]t + j1) +n(t),

1=1,2,...,L (3.5)

whereh; = a;exp(jo;) denotes the channel gain with respect to ithesymbol and thdth
LSN, which is assumed constant over one symbol-duratiorthEumore, when Gaussian channels
are assumed, we hawg = 1. In (3.5),n(t) is the Gaussian noise process presenting at the FC,

which has zero mean and single-sided power-spectral gg§R<HD) of Ny per dimension.

3.3 Fusion Processing

When the FC receives the signals in the form of (3.5), the State is estimated using noncoherent

detection approach detailed as follows.

First, corresponding to each of tthd_SNs, M decision variables can be formed as

iTo+(1+1) Ty,
R =|(VOPT) ™ [ © (0, (£~ 1T~ (1= DT,)
Il h
x exp(—j2mt[fe + fult)dt|?, (3.6)

wherem = 0,1,...,M —1andl = 1,2,...,L, andQ = E[|l|?] denotes the average channel
power. Since it has been assumed thathrequency bands invoked are orthogonal to each other,
there is no interference between any two frequency bandaséfpiently, upon substituting (3.5)

into (3.6) and absorbing the carrier phgsgento h;, we obtain

2

h
Hanmy 1  m=01,..., M—1, 1=1,2,...,L (3.7)

VQ

where, by definitiony,,,, = 1, if m = m;, otherwisey,,,,, = 0. In (3.7), N, is a complex

le = + le

Gaussian noise sample collected from thth frequency band over thih time-slot, which is
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given by
L [T, '
Nyt = (VOPT,)~ / n(tygs, (t—iT, — (1 - 1)T;)
iTs+ITy,
X exp(—j27t[fc + fum]t)dt (3.8)

which has mean zero and a variancerdf= LNy/(QEs) = L/, whereE; = PTs represents
the total energy for transmitting onel-ary source symbol fronk LSNs to FC, with each LSN'’s

transmitted energy being, = E;/L, vs = QQE;/ Ny denotes the average SNR per symbol.

From (3.7), we can see that there are in tatHl decision variables, which can be used to form
a (M x L) time-frequency matrix denoted k. Based on this time-frequency mati the FC
can carry out the final detection. In this chapter, a rangetdfaion schemes are considered, which

include EGC, ES-EGC and posterior fusion rule. Let us fiesiesthe EGC fusion rule.

3.3.1 EGC Fusion Rule

In the context of the EGC fusion rule, the FC detects the abseBE’s state based on the detection

matrix D obtained from frequency de-hopping Bn More details are stated as follows.

1. Frequency De-hopping
D=RE(1®a") (3.9)

wherel denotes an all-one column vector/df-length and® denotes the Kronecker product
operation between two matrices [116]. In (3.9), the operatif A H B shifts the elements

in A based on the values provided By Specifically, after the operation in (3.9), we have
Diweayr = Ry, m=0,1,... M—1, 1=12,...,L (3.10)

whereo denotes the subtraction operation in the Galois figfd M ). The operation in (3.10)
means that the element indexedbyin R is changed to the one indexed ly = m & a; in

D.

2. EGC Detection Finally, the M decision variables for detection of the SE'’s state can be

formed in EGC principle [116] as

L
Dy=Y Dy, m=01,...,M—1 (3.11)
I=1
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Then, the largest one dfDy, D1, -+ ,Dym-1} is selected and mapped to an integer in the

range[0, M — 1], which represents the estimate to the SE'’s state.

3.3.2 ES-EGC Fusion Rule

After some close look, we can know that there are mainly tvasoas behind the erroneous detec-
tions in the SE FH/MFSK WSNs. The first one is that the LSNs ateperfect, which may make
erroneous local decisions. Secondly, the local decisi@rsinitted through wireless channels to
the FC experience channel fading and noise. When some LSKis emeoneous decisions, unde-
sired signals will be sent. Statistically, Riand D, the entries containing both signals and noise
would have relatively higher power than those containinly oiwise. Based on this observation,
before forming the decision variables, the FC can erase afesntries with the highest values
from each row ofD. In this way, the undesired elements are most probably rechand the de-
tection performance can be improved. Our ES-EGC fusionisut@ased on above observation, the

detection processing of which can be stated as follows.

1. Frequency De-hopping
D=RB(1®a") (3.12)
which is the same as that in the EGC fusion rule.

2. Erasure Operation: In each of theM rows of D, I (0 < I < L) elements having the largest

values are replaced with zeros, forming a new mafix

3. EGC Detection M decision variables are formed frain the EGC principles [116] as

L
Dyw=Y Dy, m=01,...,M—1 (3.13)
=1
Finally, the largest of Do, D1, - - -, D(m—1)} is selected and its index is mapped to an integer

in the rangg0, M — 1], which represents the estimation to the state of the SE lntiserved.

3.3.3 Optimum Fusion Rule

Above, we have considered two low-complexity fusion rulekich are not optimum. Let us now

consider the optimum rules which are in MAP and ML principléghe optimum fusion rule is
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derived based on the observations provided by the squareldaices. Let us assume that the
observed SE is at staté,;, wherem = 0,..., M — 1. For a given state valu¥ of the SE and a
FH address of, the probability density function (PDF) of the received maR can be expressed
asp(R|X, a). Then, based on the MAP principles, the SE’s state can baastil according to the

optimization problem

X = )rpe%z(p(xm a)

A
=max{P(X)p(R|X, a)} (3.14)
XeXx
whereX = {0,1,--- , M — 1} is a set containing th#1 possible states.

When all the hypotheses for the states of the SE are equiaipitity, the influence of’(X)
can be ignored in (3.14). Furthermore, using the fact thefMi. entries in the received matrR

are independenp(R|X, a) can be then rewritten as

L

M=1
p(R|X, a) = HHp R,|X, a) (3.15)
m=01=1

Upon substituting (3.15) into (3.14) and considering thaeadgprobability of the hypotheses, the

MAP-assisted optimization can be modified to

X = max{H Hp R,|X,a)} (3.16)

m=0 |=
Let the local estimations made by thel SNs be collected t6 = [sq,s5,...,s.]. Then, one
given SE’s state corresponds Ad" possible local estimation vectoss. Hence, (3.16) can be

rewritten as

ML

M-1 L
X=max{)_ P(su|X) [T [Ip(Ruls, a) (3.17)
XeX 120 m=01=1

1

when assuming that the channels from LSNs to the FC are Rayleding channels, the PDF of

R,,; can be expressed as

1 R
- 3.18

wherec? denotes the normalized noise varianég, = 1, if the [th LSN actives the(m, [)th
element in the received matriR, otherwise,K,,; = 0. Finally, when substituting (3.18) into
(3.17), the optimization problem can be described as

ML M—-1 L le
X P X _ 3.19
maxg L PelX) T = +Uz ( Km,wz) (3.19)

m=0 [=1
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From the above discussion, it can be seen that, when comatungjcover Rayleigh fading
channels with Gaussian noise, the FC needs to carryvbut ML = ML tests to find the final
decision. Therefore, the complexity of the optimum detattincreases exponentially with the
value of M, which is prohibitive for practical application. Followgna sub-optimum fusion rule is
considered, when the MAP is operated after using the EGC dosfime desirable candidates. In
brief, when the FC forms the received matRx EGC fusion rule is first employed to get several
possible estimations (candidates) of the SE'’s state. Ther-€ makes further decision among
the possible states using the MAP principles. In detaif thib-optimum fusion rule is stated as

follows.

1. Frequency De-hopping

D(m@al)l = le, m = 0,1,...,M—1, I = 1,2,...,L (320)

2. EGC Estimation: After the frequency de-hoppind/ decision variables are formed in EGC

principles [116] as

L
Dy=Y Dy, m=01,....M—1 (3.21)
I=1

3. Identification of candidates W, W =1, 2,--- , M, largest elements 4Dy, D1, -+ ,Dp—1}
are selected and their indexes represenithgossible states of the SE. The set of the possi-

ble states is defined as .

4. Detection Final decision is made according to the optimization:

1L
Rt
X = max P(sy|X) —m 3.22
{Z (60[X) UE{K T <K+>} (322

From (3.22), it can be seen that the sub-optimum fusion reeslsiV x M" tests, in order to
make the final decision, which is still exponential with respto L. Furthermore, wheitVv = M,
the sub-optimum fusion rule is the same as the optimum fusiden By contrast, in the case
of W = 1, the sub-optimum fusion rule is the same as the conventiB@C fusion rule, as

optimization of (3.22) is unnecessary.

The computation complexity can be further slightly redubgdreducing the terms involved
in the product, which we refer to as the shrink local decisiaided sub-optimum MAP (SLD-

SMAP) fusion rule. Specifically, with the SLD-SMAP, the FCsfiderives candidate sates that
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the SE may be at based on the EGC fusion rule. Then, from tleévescmatrixR the elements
possibly activated are identified with the aid of a threshelty A, forming a referred matriR. If
the value of an element iR is higher than the threshold, the corresponding elemeRtimset to
one. Otherwise, it is set to zero. In this way, the MAP detectinly needs to consider thoss,
which activate the elements all matching to the nonzero efésinR. Let the set containing such

s),s be expressed a¥’.

Then the final decision of the SLD-SMAP can be made based oopfirmization problem:
X = max{ Y P(sq|X) H%exp (—%) (3.23)
Xekw neN me(Ryy=1) 1=1 Kml +0 Kml + o
From (3.23) we can see that the complexity of the SLD-SMAReigigmined by the threshold,

which can be controlled at a reasonable level accordingetactical requirements.

3.4 Analysis of FH/MFSK WSNs Characteristics

First, the FH/MFSK WSNs are in favour of employing noncomerieision rules. All the fusion
detection schemes described in Section 3.3 are noncoldgtattion schemes, which do not re-
quire to consume extra energy for channel estimation. Tisgy-efficient and, typically, low-
complexity detection strategies are beneficial to thetiifee of battery-powered WSNs. Second,
in our proposed FH/MFSK WSNSs, the introduction of FH can iovar the achievable diversity
gain. The FH operation makes the component signals combineé@ become more uncorrelated,
in addition to the uncorrelation introduced by the spatigdagation of LSNs. It can be known that
the FH operation turns out to become more important, if LSidsl@cated close to each other in
space. In this case, signals transmitted by different LSIdg become correlated in space and
full space diversity cannot be guaranteed. Additionallyjny to the employment of noncoher-
ent MFSK and FH, the FH/MFSK assisted WSN can benefit from thbeslded advantages of

noncoherent MFSK and FH techniques [116].

In this chapter, three different fusion rules are introdljdacluding the EGC, ES-EGC and
optimum fusion rules. Among these fusion rules, EGC fusida is probably the simplest linear
combining and characterized by the property that all thewsbks are equally weighted. However,

as the LSNs are not perfect and make erroneous decisions,fE&BD rule may experience se-
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riously problems from these errors, which may significarntggrade the detection performance,
when local detections are not reliable. ES-EGC fusion raleefficiently mitigate the negative in-
fluence generated by the erroneous local decisions. ltosad®v-complexity fusion rule. The op-
timum noncoherent fusion rule considered in Section 38derived based on the MAP principle,
which is capable of attaining the optimum performance. Hmrgts complexity is exponentially
dependent the value d@f, which is prohibitive for practical application. In thisssg by reducing
the testing spaces, the sub-optimum fusion rule, espgdi# SLD-SMAP fusion rule, may have

significantly lower complexity than the optimum fusion rule

Note that, in the FH/MFSK WSNSs, the final achievable detecfierformance is jointly deter-
mined by the detection performancelof SNs and that of FC. If the detection performance of the
L LSNs is poor, the overall achievable detection performasidieprobably be poor, even when
the detection at the FC is very reliable. Similarly, the alleachievable detection performance
will become worse, if the detection at the FC becomes legshbtel Hence, when considering the
optimization in FH/MFSK WSNSs, the fusion detection and tl#&Ns’ detection need to be jointly
optimized. However, we note that the optimization issueeigomd the scope of this thesis, which,

however, constitutes one of our future research topicsdrctimtext of the FH/MFSK WSNSs.

3.5 Analysis of Detection Performance of FH/MFSK WSNs with #i-
gle SE

From the principles of FH/MFSK WSNs, as shown in the previsestions, we can see that the
overall performance of the FH/MFSK WSNs is effected by b/t LSNS’ detection reliability
and the FC'’s detection reliability. In this section, we assithat the error detection probability of
all LSNs are the same and is expresse®.as£orrespondingly, the correct detection probability of
LSNs is expressed d%;, andP; + P, = 1. Due to the unreliable observations made by LSNs, the
final detection at FC might not be reliable, even though trenokl SNR of the wireless channels
from LSNs to FC is sufficiently high. In this case, an erropflof the detection probability at
FC may be observed. In this section, we first analyse the #awr of the detection performance
of the FH/MFSK WSNs with EGC or ES-EGC fusion rule. Then, adowwound for the the error

probability of ES-EGC fusion rule over Rayleigh fading chals is investigated.
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3.5.1 Error Floor of EGC Fusion Rule

For convenience of our analysis, it is reasonable to asshateatl theL LSNs make their local
decisions independently. Since it is the error-floor thatoissidered, the transmission from LSNs
to FC is assumed to be ideal without introducing errors. Uttt EGC principles, when there are
L LSNs and if the transmission from LSNs to FC is ideal, the d@&ig at FC is correct, provided
that more than half of thé LSNs make correct local decisions. Hence, for deriving tiherdloor,
we only need to consider the cases that more than half of tiNsliBake their local decisions
incorrectly. LetPg(i) denote the erroneous fusion detection probability, whenetlarei, i =

0, 1, .., |L/2], LSNs make correct local detections, while the oftler i) LSNs make erroneous
detections. Here|L/2| denotes the integer smaller or equalltg2. Then, the average error

classification probability (ECP) at FC can be expressed as

[L/2]
Pp= ) AiPg(i) (3.24)
i=0
where A; is the probability that there areout of L LSNs make correct detections, which can be

expressed as

L\ . )
A= (l,)P;peLl (3.25)

Furthermore, among thel. — i) LSNs making erroneous detections, if there are no more than
(i — 1) LSNs choosing the same erroneous state, the fusion detastatill correct when com-

municating over ideal wireless channels. Hengsi) fori =0, 1,---,|L/2] can be expressed

P (i) = LZ‘I<M1— 1) <M1_1>k <ﬁ:i>L—i—k @26)

k=i

as

where, for simplicity, we assumed that the FC will make ammspus decision, if erroneous
LSNs choose the same state. Upon substituting (3.25) a2€)(®ito (3.24), the ECP floor can be

expressed as
[L/2)L—i /7N . ‘ 1 k=1 /ap o\ L-ivk
Pr = pipti( —— — = 3.27
=L () () () 827

Note that, in practice, if out of the(L — i) erroneous LSNs choose the same state, the FC will
make a final decision randomly, which results in an error gbiliy of 0.5. However, when the

number of LSNs is big enough, the approximates result off{daccurate.



3.5.2. Error Floor of ES-EGC Fusion Rule 60

3.5.2 Error Floor of ES-EGC Fusion Rule

Again, we assume that; of (3.25) is the probability thatout of the. CRSNs make correct local
decisions and the oth¢E. — i) CRSNs make erroneous local decision. The FC makes an eu®neo
decision, when there is at least one undesired row, whictaocenat least entries. Let us consider

the following two cases.

First, whenl < I < |L/2], i.e., when at most half of the elements are removed from each
of the L rows, the error-floor of the ES-EGC fusion rule can also baesged as (3.24). In this
case, if0 < i < I, all thei elements in the desired row, which are sent byit@RRSNs making
correct local decisions, are removed. Consequently, wesitaply approximatePg(i) = 1. By
contrast, whed < i < [L/2], denoting that, after removingelements from each of thef rows,
there are stil(i — I) entries in the desired row. In this case, an error occury, ibtiiere is at least
a undesired row, which has at ledst- I) nonzero elements, or there are at leasttries before
the erasure operation. Therefore, we can expPe¢g fori =1+1,1+2,---,|L/2] as

Px(i) :Li(M—n <M1_1>k (ﬁj)bi_k (3.28)

k=i

Consequently, when considering the above two cases, we have

re=y ()i ¥ (F)met

i=0 i=I+1 k=i
k-1 L—i—k
1 M -2
_ Ve <I< .
« (M_1> (M_1> 1<1<|L/2) (3.29)

The second case iswheh /2| < I < L, i.e., when more than half of theelements per row
are removed. Then, if< I, we can know that all thenonzero elements in the desired row will be
removed, yielding an approximate erroneous probahilityi) = 1. By contrast, ifi > I, meaning
that more tharl of the L CRSNs send the FC the correct symbol, the desired row s§l{ha I)
nonzero elements. By contrast, all the nonzero elementeinndesired rows are removed, as the
number of nonzero entries in all the undesired rows is lems th Consequently, the FC always
makes correct decision. Therefore, by considering the@abases, we have

I

Pp = ZA Pg(i Z( >PdPL L |L/2) <I<L. (3.30)

=0 =0
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3.5.3 Errors Probability of ES-EGC Over Flat Rayleigh Fading Channels

Due to the randomness of the TF-elements activated by exusriecal decisions, there are many
possible combinations required to be considered when zinglythe error performance of the
FH/MFSK WSNs. Furthermore, the erasure operations invokakie the analysis highly involved,
as the remaining decision variables after the erasure tipesdbecome correlated. For this sake, in
this section, we analyse the detection performance of ES-ft&ion rule with perfect LSNs. This

ECP ( BER) can be viewed as a lower-bound of the ECP ( BER) oFE/®FSK WSN systems.

Without loss of any generality, we assume that the obseriethedong to staten = 0. In
this case, the elemeni3,,; obey the exponential distribution with the probability digy func-

tion (PDF) expressed as [115]

1 D
ppy (Dor) =———exp < o ) , m=0

1+ 1+
1 D,

pol (Dml) == exp = 1 S m S M - 1 (331)
YL YL

forl =1,2,...,L, wherey; = %,/L and+; represents the average SNR per symbol. For con-
venience, let us combine above two equations into one bydatingy,, = 1+ 3. form = 0
and, otherwisey,, = ¥r. In this case, the cumulative distribution function (CDF)®,, can be

expressed as [115]

m

D
Pp,, (D) =1 —exp (—7—’”’> ,0<m<M-1 (3.32)

As discussed previously in Section 3.3.2, in the ES-EGfusule, I (I < L) largest TF
elements are deleted from each of therows of D. This process is equivalent to ordering the
elements of each row from the maximum to the minimum and,, theleting thel largest, forming

the decision matribD. Correspondingly, the decision variables of the ES-EGCueawritten as
— L —_
Dyw=)Y Dy, m=0,1,...,M—1 (3.33)
I=1

Furthermore, after the ordering, the elements are no lodgpendent and identically distributed

(iid). Instead, the PDF of thkth, I > I, largest in rown of D is given by

_ I _
b,y (Dmi) = WMPDW (D) ' [1 = Pp,,, (D))" pp,,, (D) (3.34)

where the PDlp, , (D,,;) and CDFPp , (D,,) are given in (3.31) and (3.32), respectively.
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In order to derive the error probability of the ES-EGC schefinst, we need to derive the PDF
of D,, form = 0,1,...,M — 1. In this section, we derive the PDFs with the aid of the moment

generating function (MGF) [129]. The MGF of the decisionighte D,, can be expressed as
Mp,,(s) = Ep,, [exp (sDp)]

= EDrnNrDrn(N+1) D [exp < Z DMZ)

whereE [-] denotes the expectation operation with respect to thelaisions of D,n, D,y (n-1)»

(3.35)

.+, Dyy(1)- However, due to the dependencel®fin, D, (n-1), - - - Dy(1), the MGF of (3.35) is
unable to be directly derived. For solving this dilemma, $wkhatme’s approach [161] is intro-

duced. Let us define the transforms

X = Dyy(1—14n) = Dty 1 =1,2,-++ , L—1—1
Xn(L—1) = D) (3.36)

whereX,,,, > 0, as the elements in each rowDfare arranged in decreasing order. Then, we have

L L—I
I=I n=1
According to [161], the random variable§,,,, n = 1,2,--- ,L — I are independent random

variables following the exponential distributions

I+n xXp(I+n
pxmn (x”) = eXp |:_¥

. ],xnzo,nzl,z,---,L—I (3.38)
Ym

m
Hence, when substituting (3.37) into (3.35), we can expitesdIGF of the decision variable,,

as

L—-1I
MDm (S) = EXml/XMZ/“va(LfI) [exp <S Z nXW”)

n=1

H / S () dty (3.39)
n=1y

Upon substituting (3.38) into the above equation, we obtain

I n xn(I+n)
H/ e fr ~ i dx,
n=1

L—I
I+n
= —_— 3.40
(H—n—n’?ms) ( )

1T ]
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From the definitions of the MGF and the Laplace transform, arereadily know that the Laplace

transform of the PDF oD, is given by

_L1< I+n >
i \ I +n+nyms
~I

_ EI ( ”%) (3.41)

I+n

Finally, with the aid of the residue theorem [162] for thedrse Laplace transform, the PDFI0f,

can be expressed in closed form as

L1
I+n < I+n >
5 (zn) = S(L,I,n)——exp| ——2z, |, m=0,1,... M—1 3.42
P, (Zm) nZ::1 ( ) H7m p P (3.42)
where, by definitionS(L, I, n) = [T:Z! Lustn % Note that, (3.42) is not suitable for the

case ofl = 0. WhenI = 0, the problem is reduced to the conventional one and thesqneling
PDF can be found from many text books, such as from [115]. R&AR), we can readily obtain

the CDF ofD,,,, which is

L I+n
Pp (zm) =Y_S(L,In) (1—exp o , m=0,1,..., M—1 (3.43)

n=1 m

When given the PDFs and CDFs of the decision variablgsfor m = 0,1,...,M — 1, the

ECP of the FH/MFSK WSNs employing the ES-EGC can be deriveah ihe formula [115]

0o o M-1
PE =1-— /pDO(ZO) |:/ le (Zl)d21] dZo
0 0

=1— /pDO(Zo) [PDl(ZO)] M=l dZO (3.44)

After substitutingpp_(z) of (3.42) withm = 0 andPp,_(zy,) of (3.43) withm = 1 into the above

equation and completing the second integration, we caresgmf the ECP as

L1
I+n I+n
P :1—/ S(L,I,n)———ex (—fz>
: ;1 ( )”(1+7L) P+ )™
-1

_ M
[Z (L, I,m) (1—exp< I+mzo>>] dz (3.45)

miyr

whereyy = 1+ 4 andy; = 4 were used.
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Additionally, upon following [115], an union-bound for tHeCP of (3.44) can be obtained,

which can be expressed as

/ zl)dzl

0

— I+n I+n
Z (L, I,n) exp <— — zl>

nyr nyL

L-1 I+m
’ LES(L' o (1-exp (‘m))] o G

Upon completing the integration and after some arrangemenarrive at

|
\

X[1_<1+nﬂnﬂ+4@7{)>_1 (3.47)

Finally, when assuming that thid possible symbols are transmitted with the same probapbility

the BER of the FH/MFSK WSNs using ES-EGCD can be evaluated ftee formula [115]

prand W= M pw

Po = im—1) BT 2(M-1)E

(3.48)

3.6 Simulation Results and Analysis

In this section, the simulation results for the error perfance of our FH/MFSK WSNs are depicted
and analysed. The ECP performance of the FH/MFSK WSNss isiigaged, when assuming that
signals observed by LSNs are only disturbed by Gaussiae hetsile the channels from LSNs to
FC are AWGN or Rayleigh fading channels. Some ECP performamaluated from the analytical
formulas is also shown and compared with the simulationltesAdditionally, some comparison

on the detection performance of the various fusion rulesriged out.

Fig. 3.2 depicts the ECP performance of the FH/MFSK WSNs eyl EGC or ES-EGC
fusion rule, when operated over AWGN (Fig. 3.2a) or Rayldmyting channels (Fig. 3.2b). The
local detection probability of each LSN is setRs= 0.95, andI = 1 erasure is used in the ES-
EGC fusion rule. The main objective of Fig. 3.2 is to inveat@gthe impact of the number of LSNs

on the achievable ECP performance of the FH/MFSK WSNs. Frign3R2, we observed that both
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Figure 3.2: ECP versus channel SNR per bit performance dfithi®FSK WSNs, when
the WSN employs various number of LSNs with = 0.95, when communicating over

AWGN or Rayleigh fading channels.
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the channel SNR and the number of LSNs have significant infien the detection performance
of the FH/MFSK WSN systems. As shown in Fig. 3.2, when commaimg over Rayleigh fading
channels, the FH/MFSK WSN system needs a higher channel SBi¥&s lto achieve a similar
overall ECP performance achieved in AWGN channels. Whemtimeber of LSNs is not enough,

as seen in Fig. 3.2, error-floor are observed.

As shown in Fig. 3.2, when the channel SNR is sufficiently hitjie ECP performance of
the FH/MFSK WSN improves, as the WSN employs more LSNs fairgitig the space diversity.
However, when the channel SNR is not relatively low, usingeanicSNs may result in degraded
ECP performance, which is due to the fact that the total gnimgtransmission by all the LSNs is
a constant and that more errors occur at the LSNs. Furthefrfrom Fig. 3.2 we can see that the
ES-EGC fusion rule outperforms the EGC fusion rule in both AWGN channels and Rayleigh
fading channels, provided that channel SNR is sufficienifihhmake the wireless channels are

reasonably reliable.

In Fig. 3.3, we illustrate the effect of the value &f on the ECP performance of the FH/MFSK
WSN supportingk = 1 SE usingL = 8 LSNs with P; = 0.95, when communicating over either
AWGN channels (Fig. 3.3a) or Rayleigh fading channels (Bigb). In the ES-EGC, the number
of the erased entry per row is set hs= 1. As shown in Fig. 3.3, increasing the value of
improves the overall detection performance of the FH/MFSEN\systems when either EGC or
ES-EGC fusion rule is employed. The ES-EGC fusion rule afipms the EGC fusion rule for
both AWGN channels and Rayleigh fading channels, provitiatithe channel SNR is reasonable
high. As shown in Fig. 3.3(b), when Rayleigh fading chanragks assumed between LSNs and
FC, the erasure operation is not effective for the improwarnéthe overall detection performance
when the channel SNR is below 10 dB per bit. In fact, if the clerSNR is too low, erasure
operation may even degrade the detection performance dfHiARIFSK WSN. This is because,
although invoking the erasure operation is capable of atitig interference, it however reduces
the diversity order and the energy for detection. As showkrign 3.3(a) and Fig. 3.3(b), when the
value of M increases, significant improvement of the detection peréorce is possible for both
AWGN channels and Rayleigh fading channels, provided tmatchannel SNR is high enough.
When comparing Fig. 3.3(a) and Fig. 3.3(b), we can see teaFHYMFSK WSN over Rayleigh

fading channels achieves much worse detection than over M\&H@&nnels.
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Figure 3.3: ECP versus channel SNR per bit performance dfithi®FSK WSNs, when
the WSN employd. = 8 LSNs with P; = 0.95 over AWGN or Rayleigh fading channels.
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Figure 3.4: ECP versus channel SNR per bit performance oFHI¢FSK WSN sup-
portingK = 1 SE withM = 16 states, when the WSN emplols= 8 LSNs with various
detection performance over AWGN or Rayleigh fading chasinel
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Fig. 3.6 shows the ECP performance of the FH/MFSK WSN empip¥i= 8 LSNs monitor-
ing K = 1 SE withM = 16 states (hypotheses). Two different fusion rules are censd which
are the EGC and ES-EGC fusion rules. From the simulationiteeshown in Fig. 3.6, we can
explicitly observe that both the LSN'’s reliability and thieaminel SNR have strong impact on the
overall achievable detection performance of the FH/MFSKNMSer either AWGN or Rayleigh
fading channels. From Fig. 3.6(a), we can see that the dwigction performance degrades, as
the correct detection probabilify; of the LSNs decreases. Furthermore, error floors can bdyclear
seen in Fig. 3.6(a) or Fig. 3.6(b), which is because of theremgenerated at the LSNs. Again, in
general, the ES-EGC fusion rule outperforms the EGC fusibe provided that the channel SNR
is sufficiently high, making the interference dominating gerformance. Note that, when the local
detection probability’; = 1, i.e., when there are no errors in the detection at the L3Ndsstasure
operation will remove some useful information, making tle¢edtion performance of the ES-EGC

fusion rule worse than that of EGC fusion rule.

. Rayleigh fading Channel: K=1, M=4, L=10, W=270.45
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Figure 3.5: ECP versus channel SNR per bit performance dfiBMFSK WSNs, when
L = 10 LSNs are employed to monitdf = 1 SE with M = 4 states, when communicat-

ing over Rayleigh fading channels.

Fig. 3.5 shows the ECP performance of the FH/MFSK WSN supmpk = 1 SE withM = 4
states (hypotheses), where three different fusion ruteduding the EGC, SLD-SMAP and the
ES-EGC are considered. In the context of the SLD-SMAP fuside, the number of possible

states based on EGC fusion rule is seffas= 2 and the threshold is set as= 0.45. For the
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ES-EGC,I = 1 entry is removed from each of the rows. From the simulati@ulte we can see

that increasing LSN's reliability or channel SNR improvias bverall detection performance of the
FH/MFSK WSN. In general, the proposed ES-EGC fusion rulédgi¢he best ECP performance
among these fusion rules. The SLD-SMAP achieves a slighitieb ECP performance than the

EGC fusion rule over the channel SNR range considered, hbheaxpense of higher complexity.

In Fig. 3.6, the ECP versus channel SNR performance of thtMFSK WSN systems is in-
vestigated with respect to various valuesMfandI. The ES-EGC fusion rule is applied at the
FC. In Fig. 3.6, the simulation results, theoretical resudis well as the theoretical upper-bound
are detailed. Note that, the theoretical results and themppunds were evaluated using (3.45)
and (3.47), respectively. As shown in Fig. 3.6, the thecattiesults match well with the simula-
tion results forM = 2, 4, 8 andl = 1, 2, 3. According to our discussion in Section 3.5, the upper
bound equals to the exact detection performance, Wdea 2. By contrast, a gap between the up-
per bound and the exact performance is observed when 4. Moreover, this gap becomes larger,
whenM is increased t8. Our simulation results also show that the proposed ES-Eh{gees the
lowest ECP, wheiri = 1. Increasing the value dfdoes not make the detection performance better,
but worse. Additionally, from Fig. 3.6, we can see that thpargound converges to the exact ECP

performance, as the channel SNR increases.

3.7 Conclusions

In this chapter, a FH/MFSK WSN framework has been proposdt¢hwmonitors anM-ary SE
whose states are conveyed to the FC with the aid of FH/MFSkKreeh The FH technique has
been introduced to enhance the diversity gain, especratlya case that the LSNs are close to each
other, resulting in that their channels to the FC are caedlaThe MFSK modulation scheme is
employed in favour of noncoherent detection for implementow-complexity detection. In this
chapter, three different noncoherent fusion rules hava beasidered for fusion detection, which
include the EGC, ES-EGC and optimum fusion rules. The eresfopmance of the FH/MFSK
WSN has been investigated, when the channels from LSNs ta&@WGN or Rayleigh fading
channels. Our studies and performance results show thaf thte LSN's detection is unreliable,

and the channel SNR is relatively high, the ES-EGC fusioa mahy significantly outperform the
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Figure 3.6: ECP versus channel SNR per bit performance ¢ftiMFSK WSN with the
ES-EGC fusion rule, when communicating over Rayleigh fadihannels.
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EGC fusion rule. Therefore, the ES-EGC fusion rule is rolbbaghe errors made by LSNs. By
contrast, when the detection at LSNs is highly reliable, imgkhe channel noise dominate the
FC’s detection performance, then, we may simply use the E©f rule. In fact, the ES-EGC
fusion rule may be regarded as an extension of the EGC fuslenthe number of erasures per row
may be determined according to the specific environment eviinier FH/MFSK WSN is deployed.
Our optimum fusion rule has been derived based on the MAR:ipites. As the optimal MAP
fusion rule has extremely high complexity, sub-optimum MBion rule and SLD-SMAP fusion
rule have been discussed in Section 3.3.3. These sub-aptiimsion rules have relatively lower

complexity than the optimum MAP fusion rule.

Our studies in this chapter show that, our proposed FH/MFSBN\Vis capable of achieving
promising detection performance for reasonable systetimgeHowever, the achievable detection
performance of the FH/MFSK WSN is jointly determined by méagtors, including, such as the
detection performance of LSNs, the number of LSNs, the numbstates of each SE, the wireless
channels between LSNs and FC, etc. Apart from the aboverfatte computation complexity and
signal processing delay should also be jointly considesdxbn optimizing the overall performance

of the FH/MFSK WSNs.



Chapter

Noncoherent Detection in FH/MFSK
WSN Monitoring Multiple Events

4.1 Introduction

In this chapter, we consider a triple-layer WSN, which usesi@ber of LSNs to simultaneously
monitor multiple SEs of each having multiple states. By castt in Chapter 3 as well as in lit-
erature [10, 74-76, 79-82, 163—-165], the WSNs monitoring simgle SE are usually addressed.
In our WSN, the frequency-hopping and-ary frequency-shift keying (FH/MFSK) techniques are
employed for transmitting signals from LSNs to FC. Here th#N#FSK is employed, in order to
support multiple SEs, to achieve noncoherent classificatid-C as well as to enhance the diversity

performance of fusion detection.

It is well-known that EGC is a typical fusion rule for noncobet detection, and it has low-
complexity and low detection delay [115,116]. Furthermdhe EGC fusion rule is optimum for
noncoherent detection over the fading channels only esipeirig Gaussian noise [115]. However,
it is a very deficient scheme for signal detection over itenfice channels. In the FH/MFSK WSN
considered in this chapter, there are possibly two typeatefference, in addition to background
Gaussian noise. First, a LSN may make erroneous classifisatibout the states of SEs. In this
case, the corresponding LSN will transmit interferencetsoHC, instead of conveying positive
information to the FC for enhancing the fusion detectioncddé, the FH/MFSK signals trans-

mitted by the LSNs for conveying the state information of tiplé SEs may interfere with each



4.1. Introduction 74

other, yielding the so-called multiple event interfereigizl), in parallel with the terminology of

multiuser interference (MUI) used, for example, in codesion multiple-access (CDMA) sys-

tems [166]. Note that, in this chapter, we choose iteratiterference cancellation (1IC) instead of
parallel interference cancellation (PIC) to suppress tii bécause of the following main reasons.
First, PIC approach cause a rather inefficient receptiofopaance as it is suceptible to errors
and the probability for inaccurate detection is quite higb7]. Second, PIC requires precious
hardware gear in order to operate in parallel. which makesgtofitable for numerous practical

implementations [168, 169].

In order to improve the fusion detection performance of tHANFFSK WSN, in this chapter, we
propose and investigate five noncoherent fusion rules, ditiad to the conventional EGC, which
is considered here as a benchmark. Specifically, we firssiigage the novel low-complexity fu-
sion rule, namely the erasure-supported equal gain conthifiiS-EGC) fusion rule proposed in
Chapter 3, in the scenario of supporting multiple SEs. Qudies show that the ES-EGC is a highly
efficient fusion rule, which has a similar complexity as thexentional EGC. However, it is capa-
ble of achieving much better error performance than theeational EGC. Furthermore, although
it is a single-user fusion ruteit employs the capability to effectively mitigate the MHlhen, by
combining and extending the conventional EGC, the ES-EG@edkas the multiuser iterative
interference cancellation (IIC) [170] schemes, four nugiir fusion rules are proposed and investi-
gated associated with the FH/MFSK WSN. Specifically, the faultiuser fusion rules are named
respectively as the EGC assistddorder [IC (EGCNIIC), ES-EGC assistedN-order IIC (ES-
EGC-NIIC), EGC assisteg-fraction [IC (EGCplIC) as well as the ES-EGC assistgdraction
[IC (ES-EGCpIIC). In this chapter, the complexity of the considered dusiules is analyzed. The
error performance of the FH/MFSK WSN associated with varifusion rules is investigated by
simulations, when assuming that the communication charfrain LSNs to FC experience inde-
pendent Rayleigh fading. Our studies and performancetseshibw that, in general, the ES-EGC
related fusion rules outperform the corresponding EGQedléusion rules. Furthermore, in some
cases, the single-user ES-EGC fusion rule may even achédter rror performance than the mul-

tiuser EGCNIIC and multiuser EGGIC fusion rules, which have much higher complexity than

1Single-user fusion rules are referred to as the fusion miésh detect one SE without making use of any information
about the other SEs. By contrast, multi-user fusion rulegtasse fusion rules which detect one SE with the aid of gartia
or full information about the other SEs.
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the ES-EGC fusion rule.

The reminder of this chapter is organized as follows. IniBaet.2, we describe the framework
of the proposed FH/MFSK WSN, where the SEs and sensor pinges® addressed. Section 4.3
details the operations of the six fusion rules. Section dnbiders the complexity of the six fusion
rules. In Section 4.5, we discuss the characteristics oFthFSK WSN, while in Section 4.6,
we provide a range of performance results obtained by stionk Finally, in Section 4.7, our

conclusions are stated.

4.2 System Description

Event 1 Event K
(Ho, Hy, ..., Hy1) JHy, . Hyl)
: . © Sensor
TLLD O Tap o : “Tap o TKL L
: [P o - : Processing
L TR T2 e TR TLL el H
([ sensor1 | ( semsor2 J. sensorL |
S1,1 S$21 | SK1 S12 S22 |SK2 S1.L SoL |-SK.L
lll.lGD az _D alx,l(+> aig C_Ddz.z (9111\’.2 +> lL1.LGD d-z.LGDaA;LGD
mia m21 mg1 my2 ma22 mg2 miL ma.L MK,L

MFSK ([ WMFsK Joooo MFSK ]

‘ Rayleigh Fading Channels

T Y

ra(t) L)

Fusion Center

Figure 4.1: Triple-layer system model for the WSNs obserknsource events witih1
states, where information is transmitted to the fusion@ebased on FH/MFSK scheme.

The framework for our triple-layer FH/MFSK WSN monitoringuitiple SEs is shown in
Fig. 4.1. In this FH/MFSK WSN, we assume that there Kr&Es, each of which may be at
one of theM possible states (hypotheses). TM&ESs are simultaneously monitored bynumber
of LSNs. We assume that every LSN is capable of simultangalsterving thekK SEs without

observation interference. In fact, we can view that each k8ihbsists ofK sub-sensors, each of
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which monitors one SE. Thegésub-sensors share one common wireless transmitter to Iseind t
decisions to the FC. Explicitly, this system arrangemestdwmme advantages, including that: (a)
the number of LSNs does not increase with the number of SEgbmonitored and, hence, the
system may not need to use a big number of LSNs, even whendhemany SESs; (b) owing to
using a relatively low number of LSNs, synchronization agtime LSNs may become relatively
easy. From Fig. 4.1, we can see that local decisions are mdlde aLSNs in the context of the
K SEs. Then, the operations of FH and MFSK are carried out t@inét the local decisions to the
FC with the aid of the unique FH addresses assigned to trerdiff LSNs for thK SEs. Finally,

at the FC, the received signals are detected noncoherardlsr different fusion rules. Below, we

provide further details about the SEs as well as the opaatiarried out at the LSNs and FC.

4.2.1 Source Event

In practice, the SEs to be monitored are usually analog ksigkar convenience of processing, they
are usually digitalized to finite states. In this section,agsume that each of the SEs dstates
corresponding td/1 hypotheses, expressedHg, H, . .., Hy;_1, as shown in Fig. 4.1. Each of the
observed SEs has various number of states with differettgitity. In this chapter, for convince
of our analyse, we assume that all the SEs hvstates and each of thil states of a SE has
the same probability to present. In Fig. 4.1, &Es are observed by a tofalnumber of LSNs
and every LSN monitors simultaneously all tKeSEs. Furthermore, we assume thatkh8Es are

independent and there is no interference among the observatf a LSN.

4.2.2 Sensor Processing

At a LSN, such as théth LSN, the observation obtained from thth SE is denoted by ;, as
seen in Fig. 4.1. Based on,, thelth LSN first makes a local decision about the state that the
kth SE is currently at, and this state is expressesassy; € {0,1,...,M —1}. We assume
that the erroneous and correct detection probabilitiek weispect to th& LSNs are the same and
are expressed a% andP; = 1 — P, respectively. Furthermore, we assume that, whenever an
erroneous decision is made, the erroneous state estimatetd ®N has the same probability to be

any of the(M — 1) erroneous states.
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Let us collect thek estimates of LSN into the vectos; = [s1,55, - - ,sK,l]T. Furthermore,

let
S=[s18 - 5] (4.1)

which collects the local decisions of té SEs made by thé LSNs. HenceS is an (K x L)
matrix. As shown in Fig. 4.1, following the detection of thEsS the LSNs convey their decisions

to the FC based on the FH/MFSK principles, which are operasgdllows.

Let the symbol duration be expressedTaswhich is divided intoL chips of durationT; =
Ts/ L. Within every symbol duration of, the L LSNs send their corresponding local decisions
of the K SEs to the FC with the aid of the FH/MFSK technique, one LSNsum®e of theL
chips to transmit theiK decisions. We assume that the FH/MFSK WSN system has in Aétal
orthogonal frequency bands, whose center frequenciestf@setr = {fo, f1,..., fm—1}. These
M frequencies are used for both the FH and MFSK modulationdrptinciples of fast frequency-
hopping (FFH) [171, 172]. Specifically, let the FH addressigased for transmission of thigh
SE'’s state be expressed@s= [a,1,ax2, - - -, ar ], Whereay; is an element in the Galois field

GF(M),i.e.,ax; € GF(M). Based omy for k = 1,2,...,K, we form a matrix
A=lajay - ag]” (4.2)
Then, the FH operations in the context of te&Es and thd. LSNs can be represented as
M=[mm, ---m)=SHA (4.3)

wherem; = [my;my; - -- mK,l]T, 1 =1,2,...,L, andS B A carries out the element-wise ad-
dition of S and A in GF(M), yielding thatm;; = S;; © A;; with @ representing the addition
operation inGF(M). Explicitly, we havem; ; € GF(M), which is suitable for MFSK modulation
by mappingm; ; to the frequency‘mi,j. Let us express the corresponding frequencies for transmis

sion of M as

fml,l fm1,2 fml,L

fm-z,1 fnfz,z ) fm_u (4.4)

me,l me,z o me,L
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where thdth column contains the frequencies to be transmitted withérith chip-duration by the
Ith LSN. Consequently, based on the principles of MFSK, theaitransmitted by thih LSN for
the kth SE during theth symbol-durationT; < t < (i + 1) T, can be expressed in complex form

as

§k,l(t) :\/ﬁlI)Th (t — iTs — [l — 1]Th) exp (]27'[[]% +fmk,l]t +]¢k,[) y

k=12,...,K1=1,...,L (4.5)

whereP denotes the transmission power, which is assumed the saimesspect to all thé. LSNs
andK SEs,f. is the main carrier frequency ang ; is the initial phase introduced by the carrier
modulation. In (4.5)yr,(t) is the pulse-shaped signaling waveform, which is defined the

interval [0, Tj,) and satisfieq; ' fOTh P2 (t)dt = 1.

We assume that th#1 frequencies used by the FH/MFSK WSN are sufficiently sepdrat-
sulting in that each of them experiences independent flaeRgyfading. Then, the signal received

by the FC from théth LSN duringiT; < t < (i + 1) T can be expressed as
K
n(t) =Y higde(t) +m(t)

k=1

K
=Y VPhypr, (t —iTs — [ = 1Ty) exp (27t fe + fm )t + jipis) + (),
k=1
I=1,...,L, (4.6)

whereh;; denotes the channel gain corresponding to the MFSK frequieaed activated for the

kth SE by thdth LSN, ;. ; obeys the complex Gaussian distribution with zero mean adiance

of 0.5 per dimension. Furthermore, in (4.G),¢) represents the Gaussian noise process presenting
at the fusion center, which has zero mean and a single-siowérpspectral density (PSD) &,

per dimension.

4.3 Signal Detection at Fusion Center

In the FH/MFSK WSN monitoring multiple SEs, as seen in Figd, 4he signals for conveying the
states of different SEs may interfere with each other, gaimgy the so-called multi-event interfer-

ence (MEI) [116]. The MEI may significantly degrade the détecperformance, if it is not treated
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properly. In this chapter, some existing and proposed lomyaexity noncoherent fusion rules are

studied and compared. Specifically, the following six ndrerent fusion rules are considered:

1. EGC[75,76,79]. Equal gain combining;
2. ES-EGC: Erasure-supported equal gain combining;
3. EGCNIIC: Equal gain combining assistdd-order iterative interference cancellation;

4. ES-EGCNIIC: Erasure-supported equal gain combining assidlearder iterative interfer-

ence cancellation;
5. EGCplIC: Equal gain combining assistgdfraction iterative interference cancellation;

6. ES-EGCplIC: Erasure-supported equal gain combining assigtédction iterative interfer-

ence cancellation.

Note that, in the above list, the conventional EGC rule isdusg a benchmark, in order to
illustrate the advantages and disadvantages of the otlegrriyposed fusion rules. The conventional
EGC fusion rule [75, 76, 79] is the simplest but experieneeeMEI. The other five fusion rules
are proposed in order to mitigate, more or less, the negatfiieence of MEI. The principles of

these noncoherent fusion rules will be detailed in the falhy subsections.

In our FH/MFSK WSN, the FC starts the detection by formingnraetifrequency matrixR
of (M x L)-dimensions based on the observations extracted from gmalsi received from the
L number of LSNs. Specifically, when the square-law noncatiadletection is considered, the

elements oR have the values

2

iTe+IT,
/i (s (E—iT, — [l = 1]Ty) exp(—27tfe + fult)dt| ,  (4.7)

1
R, =|——
! ' vV QPT, JiT+(1-1)T,

wherem =0,1,..., M—1andl =1,2,...,L, andQ) = E[|hk,z|2] denotes the channel power.
Since it has been assumed that Menumber of frequency bands invoked are orthogonal to each
other, there is no interference between two different feegy bands. Consequently, upon substi-

tuting (4.6) into (4.7) and absorbing the carrier ph@geinto 7 ;, we obtain

2

K piomihi
Y B+ Nyy| ,m=0,1,..., M—1;1=1,2,...,L (4.8)

Rt =
R =R/
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where, by definitiony ,,; = 1, if m = my;, while py ,,; = 0, if m # my ;. Let us assume that, for
a given set of transmitted symbols of tKeSEs, the number of SEs activating the, I )th element

of RisK,; (0 < K,;; < K). Then, (4.8) can also be written as
2

Kml h
R, = Z%+le ,m=01,...,. M—1,1=1,2,...,L (4.9)
k=1

In (4.8) and (4.9)N,,; represents a complex Gaussian noise sample in terms oftthEfequency

band and théth time-slot, which is given by

1 iT,+IT,,
N, :7/ Bk (t—iTs — [ —1]T, —in[f. + f,l)dt  (4.10
" VQPT, Jit -, m(t)¥, (=1 [ = 1]Ty) exp(=j27[fe + fult) (4.10)

It can be shown thal,,; has mean zero and a varianceld¥, / (QQE;) = L/%;, whereE; = PT;
represents the total energy for transmitting dieary symbol, whiley; = QE;/ Ny denotes the
average SNR per symbol. Note that,lgs= T,/ L, the transmitted energy for a SE’s state by one

LSNisEj, = Es/L.

As an example, the time-frequency matRxfor a FH/MFSK WSN usingl. = 6 LSNs to

monitorK = 2 SEs ofM = 8 states is given by

R — (4.11)

O L]

where the empty entries contain only noise, while the maskatties include both signals and
noise. For the sake of illustration, in (4.11), the elemevith ‘[ 1" are activated for conveying the
state of the first SE, while that witl{?)’ correspond to the second SE. Furthermore, for (4.11), we
assumed that the states of the two SEs vBer® and that there were no observation errors. The

corresponding FH addresses wete= [4, 3, 7, 6, 2, 5],a, = [2, 4,6, 3,1, 7] .

Note that, in the FH/MFSK WSN scheme, there exist the casgsathiven LSN activates the

same MFSK frequency for transmitting the states of two ore/®¥s. In this case, as shownin (4.5),
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there will be several terms having the same MFSK frequendytha same initial carrier phase.
Consequently, for the elemeRt,; in (4.8) corresponding to this frequency, there will be salve
my;'s, which makeyy ,,; = 1 but correspond to the same value for thgif's. This phenomenon

can also be seen in (4.11), where the element mark@s:bnveys the information of both the

first and second SEs.

Based on the time-frequency mati the FC then carries out the required processing and
makes the final detection based on one of the six proposeshfasies, which are now detailed as

follows.

4.3.1 Equal Gain Combining (EGC)

In the context of the EGC fusion rule [116], the FC detectsitheSE’s state by first carrying out

the frequency de-hopping to form a detection mabixas
D,=RB(1®al), k=12,...,K (4.12)

wherel denotes an all-one column vector/®f-length andg denotes the Kronecker product oper-
ation between two matrices [116]. In (4.12), the operatibA & B shifts the elements id based

on the values provided . Specifically, after the operation in (4.12), we have
Dk,m@ak,,,l = le, m=20,1,... M—1, = 1,.. .,L (4.13)

where & is the subtraction operation I6F(M). In other words, th€m,[)th element inR is

mapped to thém < a; , I)th element inDy, after the frequency de-hopping operations of (4.12).

Based on (4.12), the EGC fusion rule then forms Mielecision variables for detection of the
kth SE'’s state, which are given by
L
Dim =Y _ Dim, m=0,1,...,M—1 (4.14)
=1
fork=1,2,...,K. Finally, foreachok = 1,2, ..., K, the largest one of Dy, Dy 1, ..., Dk m—1}
is selected and, correspondingly, tlreindex with the value in{0,1,..., M — 1} represents the

estimate of the state that thth SE is currently at.

Fig 4.2 shows the operations of the EGC detection in corredgice to the example having

the received matriR of (4.11). After frequency de-hopping of the received maRiusing the FH
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Figure 4.2: An example showing the EGC processing, wherarsguand circles represent
the elements actived by SE 1 and 2, respectively.

addressi;, we obtain the detection matri?; for SE 1. Based o), M decision variables are
formed in the EGC principles as shown in (4.14). Then, thgdstrone of thé/I decision variables
is chosen and, correspondingly, its index represents tieetiten of the state of SE 1. When the FC
makes a correct decision, an estimatior$0&= 5 is estimated. Similarly, the state of QEan be

detected.

The EGC fusion rule is a linear noncoherent fusion rule, Wwiias very low-complexity. How-
ever, the EGC fusion rule may experience severe MEI, the atrmfuvhich is dependent on the
FH addresses employed and the number of SEs. The error parioe of the EGC fusion rule
is sensitive to the MEI and may significantly degrade as thebar of SEs increases. Below we
consider a range of fusion rules, which have certain caipatil mitigate MEI. Let us first describe
the ES-EGC fusion rule, which is a single-user noncohenasibh rule with low-complexity, but

is capable of efficiently mitigating MEI.

4.3.2 Erasure-Supported Equal Gain Combining (ES-EGC)

From 4.3.1, we can see that, when the LSNs observe the Sk=s stiéhout errors, there is a full
row with its entries containing both signal and noise. This s the desired row, corresponding
to the desired state of the being detected SE. By contragteiM — 1) interfering rows, there

are only a few of entries containing both signal and noisejenthe other entries contain only

noise. Furthermore, in the\l — 1) interfering rows, the entries containing both signal ang&o
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are distributed in a random way over th&1 — 1)L entries. Straightforwardly, if the SNR per
symbol is sufficiently high, we can believe that the entriestaining both signal and noise should
in general have relatively higher power than those comnigionly noise. Based on this observation,
in the detection matrix, such & shown in Fig 4.2, if a given number of entries having the haghe
values are removed from each of therows , the removed entries will most probably contain both
signal and noise. As the result, the rest entries of theefbsiw still contain both signal and noise,
while, in the interfering rows, the number of entries comitag both (interfering) signal and noise
may be significantly reduced, which in turn reduces the MEir BS-EGC fusion rule is based on

the principles as above discussed.

Explicitly, the ES-EGC fusion (or detection) rule is a sigiser fusion rule. However, as our
simulation results in Section 4.6 show, it is a high-efficigfusion rule, which, for some cases, may
achieve even better error performance than some of the hermat multiuser fusion rules [116].
Interestingly but unfortunately, in the long history of moherent detection, especially, for the

noncoherent multiuser systems, such a simple detectioniple has not been realized.

Note furthermore that, for the FH/MFSK WSN, the ES-EGC fagigle is capable of providing
performance improvement, even when single SE is monitaaedgvidenced by our simulations

results in Chapter 3 as well as in Section 4.6.

The ES-EGC fusion rule starts with the same operations a&®@€ fusion rule. First, for
the kth SE, the FC removes the FH imposed by th&SNs by carrying our the frequency de-
hopping operation, as shown in (4.12), yielding the detecthatrixD,. After obtainingDy, the
ES-EGC fusion rule carries out the erasure operations. ifBjadly, in each of theM rows of Dy,

I (0 < I < L) elements corresponding thidargest values are replaced by the value of zero. Let
us denote the modified detection matrix after the erasureatipe by D,. Then, based on this

modified detection matrixI decision variables formed in EGC principles can be exprease

L
Dim =) Dim, m=0,1,.... M—1;k=1,2,...,K (4.15)
=1
Finally, the largest one of th®{ decision variables of Dy o, Dy1, - - - , Dy m—1} is selected and

its index value in terms af: represents the estimate for the state ofkitheSE.

In Fig 4.3, an example showing the principles of the ES-EG&lofu rule with] = 1 is il-

lustrated based on the received maliof (4.11). After frequency de-hopping, decision matrix
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Figure 4.3: An example to illustrate the ES-EGC processivitggre squares and circles
represent the elements actived by SE 1 and 2, respectively, & 1 element per row is

erasured.

D, andD, are obtained respectively by the frequency de-hoppinggusiranda,. Then, erasure
operation is carried out to migrate interference. Assuniiagthe elements containing both signal
and noise have higher power than the entries with just nafter, removingl = 1 element with
the highest value from each row, the corresponding modifeelation matrice®; andD, are ob-
tained as shown in Fig 4.3. Explicitly, the interfering éedrin the interfering rows are all removed.

Hence, the detection will become more reliable.

In literature, the EGC principle has been invoked in somecobarent multiuser detection
schemes [75,76,79,116]. It has been argued and will alsbhdversby our performance results, the
ES-EGC scheme outperforms the conventional EGC schemeefbhe, the ES-EGC scheme may
be applied to some of the noncoherent multiuser detectibarses, in order to improve the error
performance. In this chapter, both the EGC and the ES-EGgpiseal to the noncoherent iterative
interference cancellation (IIC) scheme, forming difféaneoncoherent multiuser fusion rules, which

are detailed in our forthcoming discourses.

4.3.3 EGC AssistedV-Order Iterative Interference Cancellation (EGC-NIIC)

The EGCHNIIC fusion rule represents one of the extensions of the nosemt 1IC detection
scheme proposed in [170], which uses the majority vote adbdsec detection scheme and the

symbols of different users are detected one-by-one it@lgtuntil the last one. By contrast, in
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our proposed EGQVIIC fusion rule, the EGC-based detection forms the basieden rule, and
the IIC is only operated associated with the fiksimost reliable SEs (users), whose symbols are
detected one-by-one iteratively from the more reliablesdnehe less reliable ones. After the iter-
ative detection of the firsi most reliable SEs, the re6K — N) SEs are simultaneously detected

using the EGC fusion rule.

In order to specify the most reliable SE to be detected atgesia our EGCNIIC, a low-
complexity reliability measurement method is proposedgctvimeasures the reliability of an EGC-

based detection based on the formula

Dyo,Di1, -+, Dy
Lk _ maxXp { k0, Yk,1/ s Pik,M 1} (416)
maxi {Dyo, Di1,- -+, Dicm-1}

wheremax; {-} andmax,{-} represent, respectively, the maximum and ‘second’ maxirotine
decision variable§Dy o, Dy 1, - - - , Di m—1}, Which are the outputs of the EGC, as shown in (4.14).
According to [173-175], statistically, the demodulafddary symbols with relatively low values of
L, are more reliable than those with relatively high valued pfHence, in our EGQVIIC fusion
rule, an estimate to the state of ttth SE is rendered the most reliable one, if its correspondjng

value is lower than any of the others’.

Let us assume that the FC employs the knowledge of the FH salénA assigned to th&

SEs. Then, the EGGHIC algorithm can be stated as follows.
1. Initialization : A, N < K—1,R( =R.
2. EGC-NIIC detection: fori =1,2,..., N, the following steps are executed:

(a) Frequency de-hopping For those(K — i + 1) SEs having not been detected, the de-

tection matricengi),Dg), e ,DELH, are formed according to
DY =ROB(1®al), k=1,2,...,K—i+1 (4.17)
k k)7 rey ey .

(b) Forming decision variables For each of th¢ K — i 4 1) SEs, theM decision variables

are formed based on the EGC principles as

. L :
D) =Y DY, m=01....M-1Lk=12... K-i+1 (4.18)
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(c) Reliability Measurement: The reliabilities with respect to all theK — i + 1) SEs are

measured based on (4.16), and are expresséﬁ)aﬁg), e, Lg)_iﬂ.

(d) Detecting the most reliable SEThe most reliable SE is identified as
Ko 1) =min{L{,10,.., L} (4.19)

Correspondingly, the state of the most reliable SE, i.ehek’'th SE, is detected as the
m index value of the largest i{nD,Ef,,)O, D]S,,)l, ..., D,Ef;)Mfl}. Let the estimated state for
thek’th SE be expressed &5 .

(e) Update R() to R(*+1): R(+1) s updated fronR (") by setting the elements &ty @

ap 1) forl =1,2,...,Lto zero.

3. Finally, for the rest(K — N) SEs, they are detected simultaneously baseRn ) using

the EGC fusion rule, as stated in Section 4.3.1.
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O :SE2 6 @
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) L
1= 5,0, = [4,3,7,6,2,5] 41O
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Figure 4.4: An example showing the processing of the HAES processing, where
squares and circles represent the elements actived by S& 2 arespectively, and the
number of 1IC iterations is set d¢ = 1.

Fig 4.4 illustrates the operations of the E@QIC detection when the received matik is
given by (4.11). After the frequency de-hopping operatibie, detection matriceBgl) andDél)
are obtained. Then, for each of the two SB4,decision variables are formed under the EGC
principles. Then the reliabilities of the detection of SENH &E 2 are measured based on (4.16).
If we assume that SE 1 is more reliable than SE 2, SE 1 is themléitected based dagl). Then,
based on the detected symi$pland the FH address;, R is updated aR® by carrying out

interference cancellation (IC) [170]. Based Rf?), we then detect SE 2. Specifically, after the
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frequency de-hopping operatiomgz) is obtained, based on which can be detected in the EGC

principles.

From the above-stated EGEHC algorithm, we can see that the IC operations are only im-
plemented with the firslN most reliable SEs, while the othéK — N) SEs are detected based on
the EGC fusion rule described in Section 4.3.1. The reasdmbehis proposed EGGHIC is
that, in the FH/MFSK WSN, there are three factors affecthmgygerformance of fusion detection,
which are the detection reliabilities of LSNs, wirelessrutna and the MEI. Due to the unreliable
detection at the LSNs, even a SE measured based on (4.1@hwitiighest reliability might finally
be detected in error. In this case, applying the IC will gateenegative effect on the following
detections. Furthermore, it can be shown that this negaffeet becomes worse as the number of
SEs invoked and/or the number of LSNs increase. Note thagifen values oK, L as well as the
observation reliability of the LSNs, there usually existsogtimum value foiN, which yields the

best fusion detection performance, as illustrated by ault®in Section 4.6.

4.3.4 ES-EGC AssistedN-Order Iterative Interference Cancellation (ES-EGC-NIIC)

The operations of the ES-EGEHC is very similar as that of the EGGHIC, except that the
detection matrice$D,(f)} used by the EGQVIIC are replaced by the modified detection matrices
{D,((i)}, which are obtained based on the principles of ES-EGC, asrsimoSection 4.3.2. In detail,

in the context of the ES-EGGHIC fusion rule, the reliabilities are measured accordimg t

I, — maxa {Dyo, D1, , Dkm-1}

— _ _ _ 4.20
maxi {Dyo, Di1,- -+, Dicm-1} (4.20)

whereDyo, D1, - - -, Dy -1 denote theMl decision variables provided by the ES-EGC detection.

In summary, the ES-EGGHIC algorithm can be described as follows:
1. Initialization : A,N < K—1,0< I < L,R®M =R,
2. ES-EGC-NIIC detection: fori =1,2,..., N, the following steps are executed:

(a) Frequency de-hopping For those(K — i + 1) SEs having not been detected, the de-
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tection matricengi),Dg), . ,Dg)_iﬂ, are formed according to
(i) _ p() T _ o
D; RYB(1®a,), k=12,... K—i+1 (4.22)
(b) Erasure operation: For each of the detection matriceBgl),Dg), .. .,Dg)ﬂ“, 1(0<

I < L) number of the largest entries in each row are set to zero,jifigrthe modified
detection matricengi),Dg), o, Dg)_iﬂ.
(c) Forming decision variables For each of th¢ K — i + 1) SEs, theM decision variables
are formed based on the EGC principles as
. L.
DY) =YD, m=01..,M-1k=12..K-i+1 (4.22)
=1
(d) Reliability measurement The reliabilities with respect to all the&K — i + 1) SEs are

measured based on (4.20), and are express&ii'ag!’, ..., Egliﬂ.

(e) Detecting the most reliable SEThe most reliable SE is identified as

KoLy =min {1, 10, L, } (4.23)

Correspondingly, the state of tii&h SE is detected as the index of the largest in

{ D,((f)o D,Ef)l e D,S;)M_l}. Let the estimated state for tihth SE be expressed &g .

(f) Update R() to R(+1): R(+1) js updated fronR (") by setting the elements &ty @

ap 1) forl =1,2,...,Lto zeros.

3. Finally, for the rest(K — N) SEs, they are detected simultaneously baseR &) using

the ES-EGC fusion rule, as stated in Section 4.3.2.

Fig 4.5 considered an example of the ES-EGEC fusion detection after the FC obtains the
received matriX® in the form of (4.11). After the frequency de-hopping opertthe detection
matricengl) andDgl) are formed based on (4.21). Then, the erasure operatiorcaaied out,
where the largest entry in each row is replaced by zero, fmrﬂgl) andDél). In this example,
it is assumed that the element containing both signal argertmas higher power than the element
containing only noise. Furthermore, the element activatukaneously by both SE 1 and SE 2
is assumed to have high power than that actived by single ®Bcé] under these assumptions,

the modified detection matricad\" and D{" are shown in Fig 4.5. With the aid d!" and
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Figure 4.5: An example showing the procedure of the ES-B@GIT, where squares and
circles represent the elements actived by SE 1 and 2, résggctn this example, SE 1
is assumed to be more reliable than SE 2, Ard1 element per row is erasured.

Dgl), for each of the two SEs, the decision variables are formegdane the EGC principles
according to (4.22). Then, the reliabilities of SE 1 and SE€2mmeasured based on (4.20). As we
assumed that SE 1 is more reliable than SE 2, yielding SE Istsdfetected; = 5. Then, based
on the decisior$; and the FH address, the corresponding elementsRhare removed, yielding
an updated matriR(?). Then, after frequency de-hopping 8% and erasure operation (Déz),

we obtain the modified detection matrl_DéZ) for SE 2. Finally, based oﬁgz), the state of SE 2 is

detected, which i$, = 3.

As seen from the algorithm and the above example, in the ES-EBC, the IIC operations
fully remove nonzero elements from the time-frequency ma:. Hence, the IIC operations at
one iteration impose effect on the following iterations efattion and the effect is accumulative,
yielding error propagation. By contrast, the erasure djmera are only applied to the detection
matrices, which are independent iteration-by-iteratiblence, the effect of the erasure operations
at one iteration of detection does not (or, at least, nottirfepropagate to the following iterations

of detection.
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Note furthermore that, as in the EGCHC fusion rule, when given the values &f L andI as
well as the observation reliability of the LSNs in the ES-EGMC, there usually exists a value for

N, which yields the best fusion detection performance, astited by our results in Section 4.6.

4.3.5 EGC Assistep-Fraction Iterative Interference Cancellation (EGC-plIC)

From Sections 4.3.3 and 4.3.4 we know that, when operatest tinel EGCNIIC or ES-EGCNIIC
fusion rule, once the state of a SE is estimated,/tf@ements corresponding to this state in the
time-frequency matrixR are set to zero, resulting in full cancellation. Howeveeréhis a negative
effect associated with this full cancellation. As seen i®)4f the transmitted signal or (4.11) for
the specific example considered, there are cases wherenoadréquency element iR conveys
information for several SEs. Correspondingly, as seen.B)(this type of elements have relatively
higher values than the others, that convey information émiyone SE. Consequently, when the
EGC-NIIC or ES-EGCANIIC is used, the full cancellation may remove the informatid the SEs

not detected yet, and might degrade the achievable errfarpance.

Based on the above observations, in this chapter, we prdpaseartial cancellation fusion
rules, namely, the EGEGHC and ES-EGCplIC, which are considered in this section and Sec-
tion 4.3.6, respectively. Note that, the EGGEC and ES-EGCplIC fusion rules are similar as
the EGCANIIC and ES-EGCNIIC fusion rules. The differences include the above-memipar-
tial cancellation ank number of detection stages, when a FH/MFSK WSN monitoKn§Es is

considered. In detail, the EG@HC algorithm can be summarized as follows.
1. Initialization : A,K,0 < p <1,R(M =R.
2. EGC-plIC detection: fori =1,2,..., K, the following steps are executed:

(a) Frequency de-hopping For those(K — i + 1) SEs having not been detected, the de-

tection matricesDY),Dgi), e ,Dgliﬂ, are formed according to
DY) —ROB1®4]), k=1,2,..., K—i+1 (4.24)

(b) Forming decision variables For each of th¢ K — i 4 1) SEs, theM decision variables
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are formed based on the EGC principles as
. L .
DY) =Yy D)), m=01...,M-1k=12...K—i+t1 (4.25)
I=1
(c) Reliability Measurement: The reliabilities with respect to all theK — i + 1) SEs are

measured based on (4.16), and are expresséﬁ)aﬁg), e, Lg)_iﬂ.

(d) Detecting the most reliable SEThe most reliable SE is identified as
Kol =min{L{,10,.., L} (4.26)

Correspondingly, the state of the most reliable S&’df detected as the: index of
the largest in{D,Ef;)o, D,((f;)l,...,D,Ef;)M_l}. Let the estimated state for tiéth SE be

expressed ady .

(e) UpdateR() to R(+1): Wheni < K, R() is updated tR(*1) by changing the elements

at(ﬁak/ @ak/,l,l) forl=1,2,...,Las
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Figure 4.6: An example showing the operation of the E@IC-processing, where squares
and circles represent the elements actived by SE 1 and 2atesgy. In the example, SE
1 is assumed to be more reliable than SE 2.

Fig 4.6 shows the principles of the EGAIC fusion detection. First, after the frequency de-
hopping, the detection matricﬁgl) andDgl) are formed according to (4.24). TheM| decision
variables for each of the two SEs are formed via EGC fusioe. riihen, the reliabilities of SE 1

and SE 2 are calculated according to (4.16), respectivetySB 1 is assumed to be more reliable
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than SE 2, SE 1 is first detected via EGC fusion rule, gidng= 5. Then, after cancelling the
effect of SE 1R is updated tR?) by reducing the corresponding elements’ valp¢isnes of their

original values. Finally, based ®(?), SE 2 is detected, giving the estimateef= 3.

In contrast to the EGQVIIC fusion rule, which needs to optimize the valueMfin the EGC-
plIC fusion rule, the value gb can also be optimized for achieving the best detection pedace.
However, the optimum value gf (as well as the optimum value d¥) is depended on many
factors, including the number of SEs and LSNs, detectiofopmance of LSN, hypotheses about
SEs, wireless channels between LSNs and FC, etc. It is inrglevery hard to find the optimum
value ofp by deriving the closed-form formulas. In practice, the wptin values in the context of

various scenarios may be obtained via simulations.

4.3.6 ES-EGC Assistep-Fraction Iterative Interference Cancellation (ES-EGC-
plIC)

Straightforwardly, the ES-EG@HC is an improved version of the EGEHC by invoking the ES-

EGC techniques. The algorithm can be described as follows.

1. Initialization : A, K,0 < p <1,R(M =R.

2. ES-EGC—lIC detection: fori = 1,2, ..., K, the following steps are executed:

(a) Frequency de-hopping For those(K — i + 1) SEs having not been detected, the de-

tection matricengi),Dg), e ,DELH, are formed according to
DY) —ROB1®4]), k=1,2,..., K—i+1 (4.28)
Lo . - (i) j j
(b) Erasure operation: For each of the detection matricd3,;’ ,Dg), .. .,D}é)_i 2 10<

I < L) number of the largest entries in each row are set to zero,ifigrthe modified
detection matricesd\”, DY, .. .,Dgliﬂ.
(c) Forming decision variables For each of th§ K — i + 1) SEs,M decision variables

are formed based on the EGC principles as

1

O m=01,. , M=T k=12, K—i+1  (4.29)

O

, L
D=1
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(d) Reliability measurement The reliabilities with respect to all the&k — i + 1) SEs are

measured based on (4.20), and are expresséﬁ)aﬁg), ..., Eg)_iﬂ.

(e) Detecting the most reliable SEThe most reliable SE is identified as

Ko Lf) =min {710, , LY, } (4.30)

Correspondingly, the state of tti&h SE is detected as the index of the largest in
{D,((f?o, D,Ef)l ., DIS,-)MA}- Let the estimated state for th&h SE be expressed #s5..

(f) UpdateR() to R(+1): Wheni < K, R() is updated t®R(*1) by changing the elements

at(ﬁ’lk/ @aw,l) forl=1,2,...,Las
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Figure 4.7: An example of ES-EG@NC processing, where squares and circles represent
the elements actived by SE 1 and 2 respectively. SE 1 is asktofiie more reliable than
SE 2, andl = 1 element per row is erasured.

As shown in Fig 4.7, the operation of the ES-E@IE fusion rule is illustrated. As shown in

Fig 4.7, after the frequency de-hopping, the detection imngl) andDél) are obtained. Then,
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in each of the detection matrices, the largest entry in eashis removed, forming the modified

). Then, for each of the two SEW] decision variables are formed

detection matrice®" andD\!
based on the EGC principles. Then, the reliabilities foedgbn of SE 1 and SE 2 are measured
based on (4.20). As the reliability of SE 1 is assumed to bhdrighan that of SE 2, SE 1 is first
detected via the EGC fusion rule, yieldidg = 5. Then, based on the decision of SE 1 and its
FH address;, R is updated tR(?). Then, after the frequency de-hopping is operate® G, the
detection matri>D§2) for SE 2 is obtained. Then, the largest entry in each roﬁ)gf is removed,

yielding the modified detection matr®!”. Finally, SE 2 is detected based By” via the EGC

principles, yieldings, = 3.

4.4 Analysis of Complexity

In this section, we analyze and compare the computationalplaxity of the six fusion rules,
namely the EGC, ES-EGC, EGEHC, ES-EGCNIIC, EGCylIC and ES-EGGlIC, considered
in this chapter. Our complexity analysis starts from thepaihen the FC forms the time-frequency
matrix R, as the number of computations required before this poithhdssame for all the six
fusion rules. In our analysis, the complexity takes intooart both the addition and comparison
operations, while the complexity for frequency de-hoppsiginored. The reason for not including
the frequency de-hopping is that the results of additionsifbtraction) in Galois fiel&:F (M) can
be stored in d M x M) table. With the aid of this table, frequency de-hopping sy reading
the values fronR and writing them into the corresponding locationdip k =1,2,..., K, where

the locations are provided by the table.

EGC - First, in the context of the conventional EGC fusion rulteD,, k = 1,2,...,K,
is obtained, forming a decision variable neédls— 1) additions. The number of comparisons for
finding out the maximum one fromVl real numbers i§M — 1). Therefore, the total number of
operations for detecting SEs isK[M(L —1) + M — 1] = K(ML — 1). Hence, the complexity

of the EGC fusion rule i€ (KML) for detection of th&k SEs.

ES-EGC - For the ES-EGC fusion rule, starting froby,, k = 1,2,...,K, first, each row
needs to implement the following operations: a) identidythe I maximal entries from thd.

entries, which require$ (2L — I — 1) /2 number of comparisons when assumihe< L/2, and



4.4. Analysis of Complexity 95

b) adding together the entries of the rést— I) entries, which require§L — I — 1) additions.
Finally, for each SE, selecting the maximum from the decision variables require@V — 1)
comparisons. Hence, the total number of operations of th&GE for detectingk SEs can be
found to beK[M (LI + L — I2/2 — 31/2) — 1]. Therefore, the complexity of the ES-EGC fusion

rule isO(KMLI) for detectingK SEs.

EGC-NIIC - For the EGCNIIC fusion rule, as shown in Section 4.318,out of theK SEs are
detected based on EGC and IIChhiterations, while the retk — N) SEs are detected based on
EGC at the last iteration. Let us first consider the numberpefations required by thgh, where
i < N, iteration of detection. As seen in Section 4.3.3, afterfthquency de-hopping, thih
iteration first implements the EGC foK — i 4 1) SEs, which requires in totdK —i + 1) [M(L —

1)] operations. Then, associated with each of tke- i + 1) SEs, the reliability of detection is
measured based on (4.16), which needs to find the maximumhargetond maximum from the
decision variables{D,((f()), D,Eli ,D,Effw_l} as well as compute their ratio, which requires in
total (2M — 3) operations. Then, the most reliable SE is identified basgd.d®), which requires
(K — i) operations. Finally, the complexity of interference cdlat®n can be ignored. Hence,
the total number of operations of tfté iteration is(K —i + 1) [M(L — 1) +2M — 3] + (K —i).

WhenN iterations are considered, the number of operations carfressed as
N
Y {(K—i+1)[M(L—1)+2M—3]+ (K—1i)}
i=1

=N (K— %) [M(L —1) +2M — 2] + N[M(L — 1) +2M — 3] (4.32)

After N iterations of detection based on the EGC and IIC, the (Est N) SEs are detected
based on the EGC alone, which requifdé— N)[M(L — 1) + M — 1] number of operations.
Therefore, the total number of operations required by th€E@IC fusion rule is approximately

given by

N(K—%) [M(L —1) +2M — 2] + N[M(L — 1) +2M — 3]

F(K—N)M(L—-1)+M—1]

:N<K—¥> (ML+M—2)+ N(ML+M—-3)+ (K- N)(ML—1)  (4.33)

When considering only the dominate items in the above eguuatie can see that the complexity

of the EGCNIIC is O(KMLN).
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ES-EGC-NIIC - When comparing the ES-EGEHIC fusion rule described in Section 4.3.4
with the EGCANIIC fusion rule described in Section 4.3.3, we can see thabtily difference is
the extra erasure operations for the ES-ESIE. Hence, from the above complexity analysis for
the EGC and ES-EGC, we can readily know that the total numbeperations required by the

ES-EGCANIIC fusion rule is approximately

2
N(K—M> [M<L1+L—I——£—1>+2M—2}

2 2 2
+N{M<L1+L—§—%—1>+2M—3}

+(K—N) [M(L[JrL—%z—%—l)JrM—l]

:N<K_¥) {M(LIjLL—I;—%I%—l)—Z]
+N{M<LI+L—I;—%+1>—3] +(K—N) {M(LH—L—%Z—%) —1] (4.34)

Correspondingly, the complexity of the ES-EQ@IC is O(KMLNTI).

EGC-plIC - As our previous discussion in Section 4.3.5 shows, wherE@GEplIC fusion
rule is applied at the fusion cent¢K — 1) SEs are detect according to the E@IE fusion rule,
while the last one is detected based on the EGC fusion ruleacéjehe number of operations
required by the EG@IIC fusion rule can be viewed as a special case of the BGIC fusion
rule, whereN equals(K — 1). Therefore, when the EG@HC fusion rule is employed, the number
of operations required to detect all theSEs isK(K —1)(ML + M —2)/2+ (K —1)(ML +
M —3) + ML — 1, which yields the complexity of) (K> ML).

ES-EGC—lIC - The total number of operations required by the ES-ESHC-fusion rule can
be found from that of the ES-EGEGHIC fusion rule associated with lettinf = K — 1, which can

be expressed as

K 2 31
E(I<—1) {M<L1+L—E—?+1> —2}

2 31 2 3l
+(K—1)[M(LI+L—E—E+1>—3]+M<LI+L—E—?>—1 (4.35)

Hence, the complexity of the ES-EGEIC fusion rule isO(K>MLI).

The number of operations required by the various fusionsratnsidered in this chapter as
well as the corresponding complexity are summarized ineldbl. As shown in Table 4.1, the

conventional EGC fusion rule has the lowest complexity. Tbmplexity of the ES-EGC fusion
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4.4. Analysis of Complexity
Fusion rule Number of operations Complexity
EGC K(ML—1) O(KML)
ES-EGC KIM(LI+L—5 =3 1) O(KMLI)
EGCNIIC N(K— %) (ML+ M —2) + N(ML+ M — 3) O(KMLN)
+(K—N)(ML—1)
ES-EGCNIIC N(Kf%) M(LT+L— 5% -3 4+ 1) — 2] + N[M(LI+ L -5 — 3 +1)—3] | O(KMLNI)
+(K=N)M(LI+ L— 5 —3) —1]
EGCoplIC K(K—=1)(ML+M —2) + (K—1)(ML+M —3) + ML —1 O(K*ML)
ES-EGCplIC KK—1)M(LI+L—-5 -3 +1)—2] O(K2MLI)
FK=D)MLI+L—5 3 1) =3+ M(LI+L -5 —¥) 1

Table 4.1: Number of operations and complexity of the sixdiusules.

rule is slightly higher than that of the conventional EGQdasule, which is linearly dependent on

the number of erasures per row. As shown in Table 4.1, thedkgdt fusion rules demand relatively

higher complexity than both the conventional EGC and theE&%: fusion rules. However, from

the table we are implied that all the six fusion rules havatietly low complexity. The complexity

for detectingK SEs is generally linearly proportional to the paramefersL, N, I, or K, except

the EGCplIC and ES-EGGIIC rules. However, the complexity of these two fusion rukesot

related to the paramet@y.
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Figure 4.8: An example of Table 4.1: Number of operationsyemnumber of SEs.
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45 Characteristics of FH/MFSK WSN

Our proposed FH/MFSK WSN employs a range of characterjstitéch can be summarized as
follows. First, noncoherent detection is implemented at BC, which does not consume extra
energy for channel estimation. These energy-efficient amwdclomplexity detection strategies are
beneficial to the life-time of battery-powered WSNs. Secgadndaddition to supporting multiple
SEs, the FH/MFSK techniques employed are capable of prayiftequency diversity for the fu-
sion detection. This frequency diversity becomes esggdiaportant, when the LSNs are closely
located, which may generate correlated fading in the sgacgain. On the other hand, owing to the
frequency diversity obtained from the FH/MFSK, the LSNs rbaydistributed within a relatively
small space but still convey the FC independently fadedadégiso that the detection performance
of the FC is not degraded by the correlated fading experainmtehe space-domain. Third, the
proposed FH/MFSK WSN can simultaneously monitor multiples $f each with multiple states.
Each LSN serves all the SEs and, hence, a FH/MFSK WSN doesaketth use a big number of
LSNs. However, the side effect of using one LSN to simultaisgotransmit multiple frequency
modulation signals is the possible high peak-to-averageepoatio (PAPR), which is not power-
efficient, if not treated appropriately. Forth, in the FH/BKWSN, in addition to the fusion rules
considered in this chapter, other advanced noncohereatti®t schemes [116] may also be im-

plemented, which may further enhance the detection pedgoca

In this chapter, six different fusion rules, namely the EES-EGC, EGCNIIC, ES-EGC-
NIIC, EGCvlIC and the ES-EGQIC, are considered and compared. All of the six fusion rules
are robust fusion rules of low-complexity. They have refipely different advantages and disad-
vantages. For example, the conventional EGC fusion ruldietowest complexity and also the
lowest detection delay. However, its detection performeandhe worst, when multiple SEs inter-
fering with each other are supported. By contrast, withghsiincrease of complexity, the ES-EGC
fusion rule is capable of achieving much better detectiafopmance than the conventional EGC
fusion rule. Furthermore, as our simulation results in e section show, the single-user ES-EGC
fusion rule employs certain capability to suppress MEIhailigh the other four fusion rules invoke
the concepts of multiuser detection, they are still low-ptaxrity fusion rules designed based on

the principles of interference cancellation. Additiogaih this chapter, the reliability measurement
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scheme introduced is also a low-complexity scheme.

Finally, we note that the overall performance of the FH/MP&ISN is jointly determined by
the detection performance of tHeLSNSs, the wireless channels between the LSNs and FC, as
well as the fusion rule employed by the FC. If the detectiorfggmance of thel. LSNs is poor,
then, the overall performance will most probably be poogrewhen the wireless channels from
LSNs to FC are perfect and the fusion detection is ideal. 18ityj the overall performance of
the FH/MFSK WSN will degrade, when wireless channels beconreliable or when there exists
MEI but the fusion rule is not efficient for MEI suppressionhefefore, when considering the
optimization in the FH/MFSK WSN, the detection schemes & Itioe LSNs and FC need to be
jointly considered. In general, in the FH/MFSK WSNs, thefpenance of LSNs may be improved
by employing advanced sensing techniques, the fading elegs channels can be compensated by
making use of the frequency and space diversity, while the &y be mitigated with the aid of

various noncoherent signal processing techniques, asnsimaivis chapter and [116].

Below we provide a range of simulation results, in order tarabterize the achievable perfor-

mance of the FH/MFSK WSNs.

4.6 Performance Results

In this section, error performance of the FH/MFSK WSNSs eryiplg various fusion rules as con-
sidered is investigated, when assuming that the wireleaarngis from LSNs to FC experience
Rayleigh fading. We consider specifically the error clasatfon probability (ECP) performance
for the sake of unifying the WSN with the conventional ongrlommmunication schemes. Note
that, in the following figures, the error detection probipiof the LSNs is expressed &5, while

the correct detection probability is henBg = 1 — P,. The ‘channel SNR per bit’ is the average

SNR per bit given byy, = ¥s/b, whereb = log, M denotes the number of bits pkf-ary symbol.

In Fig. 4.9, we compare the achievable ECP performance oFthi&FSK WSN employing
respectively the six fusion rules considered in this chaptben the FH/MFSK WSN usds = 10
LSNs to monitorK = 2 SEs and the LSNs send signals to the FC ugifigSK. Furthermore,
as shown in Fig. 4.9, when the ES-EGC scheme is invoked;, 1 entry is deleted from each

of the rows of the detection matrix. In the context of the ENGC and ES-EGCNIIC, we set
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Figure 4.9: ECP versus channel SNR per bit performance ofithi&FSK WSN mon-
itoring K = 2 SEs usingl. = 10 LSNs, when communicating over Rayleigh fading
channels.

N = 1. Furthermore, for the EGEHC and ES-EGGplIC, an approximately optimum value for
o is applied, which is found via simulations. From the perfanoe results shown in Fig. 4.9, first,
we can explicitly observe that both the reliability of theNLS detection and that of the wireless
channels have a strong impact on the overall achievabletagigperformance of the FH/MFSK
WSN. For any given fusion rule, the ECP performance of theMF8K WSN degrades, as the
correct detection probability?; of the LSNs decreases froRy = 0.99 to P; = 0.97. Meanwhile,
for any givenP; and any fusion rule, the ECP performance in general impraagshe wireless

channels become more reliable, i.e., as the channel SNEaASES.

As shown in Fig. 4.9, when the channel SNR is relatively lavghsasy;, < 12 dB, the EGC-
related fusion rules, including the EGEHC and EGCplIC, outperform the ES-EGC-related fu-
sion rules, including the ES-EGEHIC and ES-EGGslIC. By contrast, when the channel SNR
is sufficiently high, such a§;, > 12 dB, then, the ES-EGQ/IIC and ES-EGCplIC fusion rules
outperform the EGQNIIC and EGCplIC fusion rules. The reason behind the above observa-
tions can be explained by remembering that EGC is an optimuengity combining scheme over
Gaussian channels, while ES-EGC has certain capabilitygpress MEI. Hence, when the chan-
nel SNR is low and the Gaussian noise is dominant, the diyegsiin from the EGC is critical

for the achievable error performance. Consequently, th€F€tated fusion rules outperform the
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ES-EGC-related fusion rules. As the channel SNR becomé®mhithe Gaussian noise becomes
less dominant. Instead, the MEI generates more impact,hadhiicninates the achievable error
performance of the FH/MFSK WSN. Therefore, when the cha®MR is sufficiently high, the

EGC-related fusion rules are outperformed by the ES-EG&eae fusion rules.

As shown in Fig. 4.9, when the channel SNR is sufficiently high can observe that, compar-
ing the detection performance from the worst to the besfpitien rules are in the order EGEES-
EGC—EGC-NIIC—EGCplIC—ES-EGCNIIC—ES-EGCplIC. Furthermore, within the chan-
nel SNR region considered, except the ES-ESIE and ES-EGCplIC, all the other four fusion
rules yield error floors, implying that the MEI and/or the elible detection at the LSNs are unable
to be fully removed by these fusion rules. By contrast, whenES-EGCNIIC or ES-EGCplIC
is employed, no error floors are present. Hence, these tvionfusles are capable of efficiently
mitigating the effect of MEI as well as that of the errors gaed by the LSNs’ detections. Ad-
ditionally, when the channel SNR is sufficiently high, the-EGC fusion rule may significantly
outperform the EGC fusion rule, even though these two fusibes have similar computational
complexity, as the analysis in Section 4.4 shows. Note thatES-EGC fusion rule is capable of
outperforming the EGC fusion rule, even when the scenarinafitoring one SE is considered, as

shown in Fig. 4.10.
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Figure 4.10: Comparison of ECP versus channel SNR per bfomeance of the
FH/MFSK WSN using the conventional EGC and ES-EGC fusioasulvhen communi-
cating over Rayleigh fading channels.
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In Fig. 4.10, the ECP performance of the conventional EGCthatlof the proposed ES-EGC
are investigated and compared, when the correct deteatatrability of LSNs isP; = 0.96, 0.98
or 1. Explicitly, when the LSNs’ detections are unrelialihle ES-EGC scheme is capable of miti-
gating their negative effect, when the channel SNR is s#fiity large. As seen in Fig. 4.10, even
for the case oK = 1, the ES-EGC rule may significantly outperform the converald&2GC in the
relatively high SNR region. By contrast, when the channeR3#low or when the LSNs’ detec-
tions are ideal, erasures imposed by the ES-EGC rule retiedaformation useful for detection,

resulting in that the conventional EGC rule outperformsHESeEGC rule.
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Figure 4.11: ECP versus channel SNR per bit performanceedftfMFSK WSN mon-
itoring K = 2 SEs usingl. = 16 LSNs, when communicating over Rayleigh fading
channels.

In Fig. 4.11, we illustrate the ECP performance of the FH/MR8SN with various fusion
rules, when communicating over Rayleigh fading channetsthB/1 = 16 and M = 32 are con-
sidered. The other parameters are shown associated witigtine. From the results of Fig. 4.11,
we can draw similar conclusions as that drawn from Fig. dat@démparison of the various fusion
rules. Furthermore, when comparing the performance quureing toM = 16 with that corre-
sponding toM = 32, we can see that the detection performance of the FH/MFSK WShy a
given fusion rule improves, as the value Mf increases. Therefore, in a FH/MFSK WSN with a
relatively high number of LSNs for providing diversity, & highly beneficial to use the MFSK mod-

ulation of high dimension. Fig. 4.11 shows that the ES-EGE lisgh-efficiency low-complexity
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fusion rule. First, it generates a big performance impraaenover the conventional EGC fusion
rule, which becomes more evident, when the valuévbis increased fromé6 to 32. Second,
the ES-EGCNIIC and ES-EGClIC fusion rules outperform all the other fusion rules. Tlzeg
capable of efficiently mitigating the MEI as well as the uiakle detections at the LSNs, and gen-
erating no error-floors. Furthermore, most promisinglyewh = 32 and when the channel SNR
is sufficiently high (about5 dB), the low-complexity single-user ES-EGC scheme is clapab
achieving better error performance than the more complicatultiuser EGQNIIC and EGCplIC
fusion rules. This observation implies that the ES-EGCduusiule employs a certain capability to

mitigate MEIL.
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Figure 4.12: ECP versus channel SNR per bit performanceedftfMFSK WSN mon-
itoring K = 2 SEs using various number of LSNs, when communicating oveteiRgn
fading channels.

Fig. 4.12 illustrates the impact of the number of LSNs on thergoerformance of the FH/MFSK
WSN monitoringK = 2 SEs, when the correct detection probability at the LSNB;is= 0.97.
Explicitly, the number of LSNs yields significant impact dmetdetection performance of the
FH/MFSK WSN. In general, the ECP performance of the FH/MFSBNNmproves, as the num-
ber of LSNs increases, which generates higher space divesgiecifically for the ES-EGC fusion

rule, givenl = 1, it becomes more efficient, as the value.ak increased from2 to 16.

Fig. 4.13 shows the ECP versus channel SNR per bit perforenahthe FH/MFSK WSN

supportingK = 2 or 3 SEs of each withvI = 32 states. As seen in the figure, whEn= 2 and
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Figure 4.13: ECP versus channel SNR per bit performanceedftfMFSK WSN mon-
itoring K = 2 or 3 SEs usingl. = 16 LSNs, when communicating over Rayleigh fading
channels.

the channel SNR is sufficiently large, both the ES-EGQOC and the ES-EGGQIIC rules attain a
similar ECP performance, which is the best among the sisrig contrast, whe = 3 and the
channel SNR is sufficiently large, the simple ES-EGC and E&kIIC rules attain the best ECP
performance among the six. As seen in Fig. 4.13, the ES-BHC-cannot obtain any gain over

the EGCNIIC, whenK = 3.

In Figs. 4.14 - 4.17, we investigate the effect of the paramgtthe fraction of cancellation,
on the error performance of the FH/MFSK WSN systems, whelowarscenarios are considered.
The details about the parameters used in the simulationsecéound in the corresponding figures.
First, as seen in these figures, for both the EGIC-and the ES-EG@IIC, there exists an optimum
value forp, which results in the lowest ECP. Second, the value®;pM andL seems do not have
significant effect on the optimum value pf although for some cases slight shifts are observed.
By contrast, as shown in Fig. 4.17, the number of SEs invol@tbiates noticeable effect on the
optimum value ofp, which becomes lower as the number of SEs monitored incseasmally,
from Figs. 4.14 - 4.17 we can observe that the optimum valye fof the EGCplIC is usually
significantly higher than that for the ES-EGQC, with the optimum value op for the ES-EGC-
plIC very close to 0.7. The reason behind the observationas flor the EGCplIC, the MEI

suppression is dependent on {#f&C alone. By contrast, for the ES-EG@IC, most of the MEI



4.6. Performance Results 105

has been removed by the ES-EGC scheme, beforgllas executed. The results in Figs. 4.14 -

4.17 again reflect that the ES-EGC scheme is efficient for Migpsession.
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Figure 4.14: ECP versysof the fraction of cancellation for the FH/MFSK WSN moni-
toring K = 2 SEs using. = 16 LSNs, when the EG@IC or ES-EGCplIC is employed.
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Figure 4.15: ECP versysof the fraction of cancellation for the FH/MFSK WSN moni-
toring K = 2 SEs using. = 16 LSNs, when the EG@IIC or ES-EGCplIC is employed.

Fig.4.18 shows the ECP performance of the FH/MFSK WSN vdpstis the channel SNR per
bit and the fraction of cancellation, when the FH/MFSK WSNpéoging EGCplIC usesL = 15
LSNs to monitorK = 2 SEs of each withM[ = 16 states. We assume that the observations at

the LSNs are perfect, yielding; = 1. From the figure, we can observe that, at a given channel
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Figure 4.16: ECP versysof the fraction of cancellation for the FH/MFSK WSN mon-
itoring K = 2 SEs usingL. = 12 or 16 LSNs, when the EG@IIC or ES-EGCplIC is

employed.
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Figure 4.17: ECP versysof the fraction of cancellation for the FH/MFSK WSN mon-
itoring K = 2 or 3 SEs usingL = 16 LSNs, when the EG@IC or ES-EGCplIC is

employed.

SNR, there is an optimum value pffor the fraction of cancellation, which yields the best ECP
performance. As the channel SNR increases, the optimune \@lp slightly increases, towards

the value of one.

In Fig. 4.19, we study the effect of the number of iteratioaspressed byN, used by the

EGC-NIIC or ES-EGCNIIC on the ECP performance of the FH/MFSK WSN. Note that, from
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Figure 4.18: ECP versus channel SNR per bit and fraction atelation for the
FH/MFSK WSN monitoringK = 2 SEs usingL = 15 LSNs with P; = 1.0, when
communicating over Rayleigh fading channels.
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Figure 4.19: ECP versus channel SNR per bit performanceedFHfMFSK WSN mon-
itoring K = 8 SEs usingl. = 40 LSNs with P; = 0.97, when various orders of IIC are
applied.

the principles of the (ES-)EGGHIC, we know thatN = 0 corresponds to the pure (ES-)EGC
fusion rule, whileN = K — 1 corresponds to the full (ES-)EGC-IIC fusion rule, whéfeSEs
are detected by involving the IIC operations. Generallglanthe same simulation parameters, the
ES-EGCANIIC fusion rule always has a better ECP performance than G€-KI1IC fusion rule.

From the curves in Fig. 4.19, we can observe that, at a givanredl SNR, there exists a value for
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N, which yields the best ECP performance for the FH/MFSK WShe dptimum value oN for

the EGCANIIC is not the same as that for the ES-EGQIC. For example, at the channel SNR of
10 dB, the EGCNIIC using N = 4 orders of IIC attains the lowest ECP. At the channel SNR of
16 dB, the EGCNIIC using N = 6 orders of IIC achieves the lowest ECP. By contrast, for the
ES-EGCANIIC, the optimum value oN is always4 for both the above cases.
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Figure 4.20: ECP versus channel SNR per bit for the FH/MFSK\W®nitoringK = 3
SEs using. = 16 LSNs, when communicating over Rayleigh fading channels.

Finally, in Fig 4.20, we show the impact of the number of dedeentries per row on the
ECP performance of the FH/MFSK WSN employing the ES-EGCofusule. From the results
of Fig. 4.20, we observe that, given a value for the channd® SNere is an optimum value for
I, which makes the ES-EGC fusion rule achieve the lowest EGiiMthe SNR range depicted,
implicitly, the optimum value off is in [0,5]. When more thard entries per row are removed,
the ECP performance degrades, resulted from the decredlse diversity order due to too many

erasures.

4.7 Conclusion

In this chapter, a FH/IMFSK WSN has been studied, which usesrdar of LSNs to monitor mul-
tiple SEs of each with multiple states. The FH/MFSK techegjare employed for transmitting

signals from LSNs to FC in order to enhance the diversity ,gairaddition to supporting com-
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munications for multiple SEs. At the FC, the SEs’ states ateaed based on low-complexity
noncoherent fusion rules. In this chapter, six noncohetesion rules have been investigated and
compared, which include the conventional EGC fusion rul¢hasbenchmark and five proposed
fusion rules, namely the ES-EGC, EGOIC, ES-EGCNIIC, EGClIC and the ES-EGQIIC
fusion rules. The complexity of these fusion rules has beatyaed, which shows that all of them
have relatively low complexity for implementation. The E@&formance of the FH/MFSK WSN
associated with various fusion rules has been investigatesimulations, when assuming that the
communication channels from LSNs to FC experience Rayl&dimg. Our studies and perfor-
mance results show that the ES-EGC is a highly efficient fusibe, which is a single-user fusion
rule as the EGC, also has similar complexity as the EGC, beasble of attaining much better
ECP performance than the EGC, especially, when multiple @&simultaneously monitored by
the FH/MFSK WSN. In general, the ES-EGC related fusion rolgperform the corresponding
EGC related fusion rules. Furthermore, in some cases, tiggesiiser ES-EGC rule may achieve
better ECP performance than the EGQIC and EGCplIC rules, which are the multiuser fusion

rules having much higher complexity than the ES-EGC rule.

Additionally, for the ES-EGC, EGQVIIC, EGCplIC, ES-EGCNIIC and the ES-EG@IIC,
our studies show that there exist the optimum valued fov andp, which result in the best ECP

performance for the FH/MFSK WSN employing a correspondirgjdn rule.



Chapter

Noncoherent Detection in FH/MFSK
WSN with Soft-Sensing

5.1 Introduction

In Chapter 3, we have proposed and studied a the FH/MFSK W3ikhwemploys a number
of LSNs to monitor one SE with multiple states. Furthermdogi-complexity fusion rules have
been investigated and they are efficient to achieve frequand spatial diversity. By contrast, in
Chapter 4, we have proposed and studied the FH/MFSK WSN halses a number of LSNs to
simultaneously monitoring multiple SEs of each with muéigtates. In Chapter 4, we have also
designed and studied a range of low-complexity single-osenulti-user noncoherent detectors.
From our studies in Chapter 3 and 4, we can know that the sirgge ES-EGC fusion rule is one of
the highly promising noncoherent fusion rules for the FH8ARWSNs. However, in both Chap-
ter 3 and Chapter 4, hard-decision based sensing is coedigdrich may loss some information

about the SE's states.

Therefore, in this chapter, our focus is on the performamngeravement of the FH/MFSK
WSN monitoring one SE with the aid of soft-sensing by a nundfdtSNs. Specifically, in the
FH/MFSK WSNs considered in this chapter, after an obsematach of the LSNs calculates the
probabilities (soft information) about all the states aichithe SE might be. This soft information
is then forwarded to the FC with the aid of the FH/MFSK teches; As noncoherent fusion rule

are employed at the FC, we propose a signalling scheme faeging information from LSNs
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to FC, which scales the transmission power of the frequemiocgs used by the FH/MFSK. At the
FC, the SE’s state is detected by a low-complexity noncattetesion rule. Owing to its high
efficiency, in this chapter, we specifically study the ES-Ef@§ion rule, in addition to the EGC
fusion rule, which acts as a benchmark. In this chapter, énfopnance of the FH/MFSK WSN
with EGC or ES-EGC fusion rule is investigated by assumiraj the channels from LSNs to FC
experience Rayleigh fading. Our studies and performansgtseshow that, in comparison with
the hard-decision based sensing, as shown in Chapter 3 apdeCH, using soft-sensing is able to
enhance the performance of the FH/MFSK WSN. FurthermoeeE®B-EGC fusion rule is robust
to the errors made by LSNs, which may significantly outpenféhe EGC fusion rule, especially,

when the sensing at LSNs is not very reliable.

The reminder of this chapter is organized as follows. Ini8ad.2, we provide the details of
the proposed FH/MFSK WSN, where the observed SE, softisgrasid processing at LSNs are
considered. In Section 5.3, signal detection at FC with EGE®-EGC fusion rule is analysed.
The characteristics of FH/MFSK WSN system with soft-segsire described in Section 5.4. Some
simulation results and discussions are given in SectionFrtally, in Section 5.6, conclusions of

this chapter are drawn.

5.2 System Description

The framework of FH/MFSK WSN considered in this chapter isvah in Fig 5.1, which is the
triple-layer WSN model [74, 76, 79, 80, 82, 117], has beersittared in Chapter 3. As shown in
Fig 5.1, theL number of LSNs simultaneously observe one SE wiffstates and then transmit
their soft-sensing observations using FH/MFSK to the FOugh wireless channels, which we
assume to experience Rayleigh fading. Finally, the FC makesstimation for the state of the SE
using noncoherent approaches, based on the soft informsiot by thel. LSNs. Details of the

components of the considered WSN framework as well as theatipes are described as follows.

5.2.1 Source Event

As considered in Chapter 3, the SE to be observed is usualiypalogue signal. For convenience

of signal processing and transmission, this analogue ls@arabe digitalized to a finite number
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Figure 5.1: Triple-layer system model for the FH/MFSK WSNnitoring one event of
M states.

states. In this chapter, we assume that the SEMiagjual-probability states correspondingitb
hypotheses, which are expressedfasHq, ..., Hy_1, as shown in Fig. 5.1. For example, thé
hypothesises may represevit amplitudes,Ag, A1, ..., Apm_1, Obtained by quantizing a continu-
ous event, such as temperature, pressure, etc. In thisgiese,at a staten, m = 0,..., M — 1,

the event observed by thith LSN can be represented as

n=Anp+n,1=12---,L (5.1

wherern; is the observation noise, which is assumed to be Gaussititbaied with zero mean and

a variancer?.

5.2.2 Soft-Sensing and Processing at LSNs

LSNs used in WSNs are usually small, power-limited and lostc However, LSNs are prone to
noise and erroneous hard decisions are likely made, edigesiaen observation noise is high. In

order to improve the reliability of local observations ahattof WSNs, soft-sensing techniques
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may be employed. In this chapter, we propose a soft-sensithau in conjunction with our

noncoherent FH/MFSK WSN.

When thelth,l =1,2,--- , L, LSN obtains an observation in the form of (5.1) for the stdte
the SE, it carries out the soft-sensing, which calculategtiobabilities (soft information) for the
M states at which the SE might be, based on the statistics attbervations. Specifically, for the

Ith LSN, the soft information corresponding to statés given by

Sml = P(Hm|rl)
_ P(Hy)p(ri|Hm)
P(r)
_ p(r1|Hm)
2%;01 P(rl|Hm),

=0,...M—1;1=12,---,L (5.2)

whereP(H,,) = 1/M is thea-priori probability of H,,, P(r;) is the probability of receiving,
while p(r;|Hy,) is the probability density function (PDF) of observingwhen given the stat#,,

of the SE, which can be expressed as

1 _ (fI*Am)z

p(ri|Hn) = T (5.3)

27102

T
Let us collect the soft-sensing information calculated B{NL into a vectos; = |soy, 11, * , S(m—1)1

Furthermore, le§ = [s1,s;,- - - ,s1] holds all the soft information sensed by thé.SNs. Explic-

itly, S is an(M x L) matrix.

In order to achieve frequency diversity, FH is introducedhsd the soft information observed
by different LSNs is mixed in the frequency domain. In detdie FH operations can be described
as follows. Let the symbol duration BB seconds, which is evenly divided info number of
time-slots of durationl;, seconds. Each of the LSNs uses one time-slot to transmit its soft
information, which is achieved by scaling the transmisgiomver of each of thél subcarriers
using the corresponding probability calculated in (5.2t the WSN hasV orthogonal frequency
bands, whose center frequencies form a%et {fo, fi,..., fm_1}- Leta = [ay,az,...,a;]" be
the FH address assigned to thie LSN, wheres; is an element of the Galois fieldF (M), i.e.,

a; € GF(M). Then, based on the matixand the FH address the FH operations in the context

of the L LSNs can be expressed as

Z=SH(1a") (5.4)
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wherel denotes an all-one column vector/®f-length andg denotes the Kronecker product oper-
ation between two matrices [116]. In (5.4), the operatiol$ Bf a yields element shifts, resulting
inz,; = S(maa)l form=0,1,--- ,M—1andl = 1,2,---, L, where® represents the addition
operation inGF (M) field. Consequently, considering all thé possible states of the SE, the signal
transmitted by théth (1 <1 < L) LSN during theith symbol-duration;T; < t < (i +1)T;, can
be expressed in complex form as
M-1

S (t) = mZO VZmpr, (8= iTs — [l = 1 Ty) exp (j27t[fe + fu]t + jPm) (5.5)
where f. is the main carrier frequency,,; is the initial phase introduced by carrier modulation,
fm is the frequency tone of theth frequency band and, finallyr, (¢) is the time-domain pulse for

g, ()t

1. Notice from (5.5) that the transmission power on the différfrequency bands is scaled by the

shaping signal’'s waveform, which is defined over the intejal}, ) and satisfieﬂ“h* T”

soft information obtained by the LSNs. The total transnoisgpower per LSN for one symbol is

normalized to one, as implied by (5.2).

We assume that th#1 frequencies used by the FH/MFSK WSN are sufficiently sepdrat
resulting in that they experience independent flat Raylé&ding. Then, the signal received by the

FC from thelth (1 <1 < L) LSN duringiTs; < t < (i + 1) T, can be expressed as
Z Pt Smi (1) + 1y (t)

Z VZmthmr, (t —iTs — [ = 1)T),) exp (27t [fe + fult + joui) +mi(t)  (5.6)

whereh,,; denotes the channel gain experienced byrtiiie frequency activated by thigh LSN,
h,,; obeys the complex Gaussian distribution with zero mean aradtiance of0.5 per dimension.
Furthermore, in (5.6)y;(t) represents the Gaussian noise process presenting at thehie@,has

zero mean and a single-sided power-spectral density (PSHN) per dimension.

5.3 Signal Detection at Fusion Center

When the FC received the signals in the form of (5.6), the S&#e is estimated using noncoher-
ent detection as follows. In our FH/MFSK WSN, the FC stares dietection by forming a time-

frequency (TF) matriR of (M x L)-dimensions, wherd/ explains theM frequencies whild.



5.3.1. EGC Fusion Rule 115

corresponds to thé time-slots used by thé number of LSNs. Assuming that the square-law
noncoherent detection is employed [116], then, it can bevshbat the elements ® have the

values

2

1 iTs+IT, . ’ ’
[ 0w (=i~ [ = UTy exp(—2nlf + fultdt],  (67)

Ry =|—
T, T+ (I-1)T;,

wherem = 0,1,..., M—1and! = 1,2,---,L. Since theM frequency bands invoked are
assumed to be orthogonal with each other, there is no inteife between any two frequency
bands. Consequently, when substituting (5.6) into (5.@) @vsorbing the carrier phagg,; into

h,,;, we obtain
Ryt = |/Zptht + Ny |?, m=0,1,...,M—=1;1=1,2,--- L (5.8)

whereN,,; is a complex Gaussian noise sample corresponding terthdrequency band and the
Ith time-slot, which can be expressed as

iTs+IT,

N = (varn,) " / n(E)g, (t — iTy — [1 - 1)Ty) exp(—j2nfe + ful )t (5.9)

To+(I-1)T,
It can be shown tha¥,,; has zero mean and varianceldfy/ Es = L /s, whereE; represents the
total energy for transmitting onkl-ary source symbol with each sensor’s transmitted eneripgbe

E;, = Es/L per symbol, whileys = E;/ Ny denotes the average SNR per symbol.

Based on the TF matriR, the FC can then carry out the required processing and maKmti

detection, which are analyzed in the following two subseti

5.3.1 EGC Fusion Rule

In the context of the EGC fusion rule, the FC detects the State Dy first carrying out the fre-

guency de-hopping operations, forming the detection matri
D=RB(1®a") (5.10)

whereA B B is defined as the element-shift operatiorGH (M), which is the reversing operation
used in (5.4). Specifically, after the operation of (5.10% kave the elemerD .,y = Ry,
whereo is the minus operation iGF(M). In other words, thém, I)th element iR is mapped to

the (m © a;,1)th element inD, after the frequency de-hopping operations of (5.10)
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Following the frequency de-hopping, tiAé decision variables for detecting the SE’s state are
formed based on the detection matixin EGC principles, which can be expressed as
L
Dy =) Dy, m=01,....M—1 (5.11)
I=1
Finally, the largest of Do, D1, ..., D)1} is selected, whose subscript index is a valugi, ..., M —

1}, which represents the estimate to the SE’s state.

5.3.2 ES-EGC Fusion Rule

As the EGC fusion rule, the ES-EGC fusion rule is low-comipexHowever, as our performance
results in Section 5.5 show, the ES-EGC fusion rule has icecapability to mitigate the effect

from the unreliable sensing made by LSNs.

When the ES-EGC fusion rule is employed, the same operatisribe EGC fusion rule are
first carried out at the FC to form the detection maldixas shown in (5.10). Then, in each of the
Mrows of D, I (0 < I < L) elements corresponding to tlidargest values are replaced by a
value of zero. Note that, whelh= 0, it means that no elements is erased from each aMhews.

In this case, the proposed ES-EGC fusion rule is reducedet&@&C fusion rule, as described in

Section 5.3.1.

Let us denote the modified detection matrix after the eragpegation ad and its elements
asD,,;. Then, based on this modified detection mafdix M decision variables formed in EGC

principles can be expressed as

L
Dy=) Dy, m=01,.... M—1 (5.12)
=1

Finally, the largest one of thi&f decision variables of Dy, D1, - - - , Da_1} is selected and its

index value in terms ofr represents the estimate to the state of the monitored SE.

5.4 Analysis of Characteristics

Our proposed FH/MFSK WSN with soft-sensing LSNs employsngeaof characteristics, which
may be summarized as follows. First, soft-sensing teckmnig@employed by the LSNs to monitor

the SE. In comparison with the hard-decision based sensatmiques, where LSNs have to make
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decisions about the SE'’s state, the LSNs using soft-sersimgey soft information about the SE’s
state to the FC. Hence, the FC detection of the FH/MFSK WSHN soft-sensing is more reliable
than that with hard-decision based sensing [117]. Secami;aherent detection is implemented
at the FC of the FH/MFSK WSN, which does not require to consextea energy for channel
estimation. This energy-efficient and low-complexity aditen strategy is beneficial to the life-time
of battery-powered WSNs. Third, the FH/MFSK techniques leygd are capable of providing
frequency diversity for the FC detection. This frequenoyediity becomes more important, when
the LSNs are distributed close to each other, which may gémeorrelated fading in the space-
domain. In our FH/MFSK WSN, owing to the FH operation, the [sSSNay be distributed within
a relatively small space but still convey sufficiently indadently faded signals to the FC, so that
frequency diversity is achieved and the detection perfogaaf the FC is not seriously affected

by the correlated fading experienced in the space-domain.

In this chapter, two types of fusion rules, namely EGC andEERs, are considered and com-
pared. Both of them are low-complexity and low detectioragidlsion rules. They have respec-
tively different advantages and disadvantages. More fpaity, the EGC fusion rule has the lowest
complexity and also the lowest detection delay among alF@ieules considered so far. Unfortu-
nately, the EGC fusion rule is sensitive to the errors madeiys. The detection performance of
the EGC fusion rule degrades significantly, as the powerebtiservation noise at LSNs increases.
By contrast, having a similar complexity and also a similetedtion delay as the EGC fusion rule,
the proposed ES-EGC fusion rule is capable of achievingebettection performance than the

EGC fusion rule, especially, when the detection at LSNs imexsoless reliable.

5.5 Performance Results

In this section, the ECP performance of the soft-sensinigtagds-H/MFSK WSN employing either
EGC or ES-EGC fusion rule is investigated. We assume thaalgbserved by the LSNs only
conflict Gaussian noise, while the wireless channels frarL®Ns to the FC experience Rayleigh
fading and each subband sent by any LSN experiences indepeRdyleigh fading. In the figures
considered below, two types of SNR are used, one is calledghsor SNR per bit, which is the

SNR per bit of the signals observed at the LSNs. The other®oreférred to as the channel SNR
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per bit, which is the average SNR per bit of the signals oleskby the FC.

Fig. 5.2 shows the ECP performance of the FH/MFSK WSN emptpyiespectivelyl. =
6, 8, 12, 16 LSNs, which monitor a SE wittM = 32 states (hypotheses). The sensor SNR
for the signals observed by all the LSNS is the same arl@d8 per bit. From the performance
results, we can explicitly observe that both the number dfi$ 8nd the channel SNR have strong
impact on the overall achievable performance of the FH/MW&BN. The ECP performance of the
FH/MFSK WSN improves, as the number of LSNs is increased ftom 6 to 8, to 12 and, finally,
to L = 16. This is because the achieved diversity gain increasebgasimber of LSNs increases.
From Fig. 5.2, we can see that, when the channel SNR is sufficieigh, the ES-EGC fusion rule
may significantly outperform the EGC fusion rule. Howevehen the channel SNR is low, such
as, lower thari2 dB, the EGC fusion rule may slightly outperform the ES-EGE6idua rule. The
explanation behind the above observation is as follow. Astioeed previously, the EGC fusion
rule is optimum in Gaussian channels but sensitive to the®made by the LSNs. By contrast,
the ES-EGC fusion rule is robust to the errors made by the |.Biisat the cost of removing some
useful information. Consequently, when channel SNR is toaking background noise dominates
the overall performance, the EGC fusion rule may slightltpetform the ES-EGC fusion rule. By
contrast, when channel SNR is high, resulting in that therermade by LSNs dominate the overall
performance, as seen in Fig. 5.2, the ES-EGC fusion ruléfisigntly outperforms the EGC fusion
rule. Furthermore, in comparison with the case of hardiegres shown in Fig 5.2b, soft sensing
is capable of enhencing the overall detection performaficeioFH/MFSK WSN for either EGC

fusion rule or ES-EGC fusion rule under the same simulatatoks as shown in Fig 5.2b.

In Fig. 5.3, we illustrate the effect of the value &f on the ECP performance of the FH/MFSK
WSN employingl. = 12 LSNs operated at a sensor SNR160B per bit. First, as observed in
Fig. 5.3, we observe that the ES-EGC fusion rule outperfairasEGC fusion rule, provided that
the channel SNR is sufficiently high. However, if the char®BNR is too sufficient, the ES-EGC
fusion rule may be outperformed by the EGC fusion rule. Thavalbbservation becomes more
explicit, as the value oM is relatively large, such ad1 = 16 or 32. In addition, the results
of Fig. 5.3 show that the ECP performance of the FH/MFSK WSrowes, as the value a¥l
increases fronM = 4 to M = 32. Compared Fig 5.3a with Fig 5.3b, it is clear that soft sempsn

able to improve the detection performance of the FH/MFSK Vé&Mificantly.
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Figure 5.2: ECP versus channel SNR per bit performance oFH/®FSK WSN with

soft-sensing or hard-sensing LSNs monitoring a SEoddtates.
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Figure 5.3: ECP versus channel SNR per bit performance &fHiMFSK WSN employ-
ing L = 12 LSNs with a sensor SNROdB per bit.
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In Fig. 5.4, the ECP performance of the FH/MFSK WSNs withpessively, the EGC and ES-
EGC fusion rules is investigated and compared, when vanaluges for the sensor SNR are con-
sidered. Explicitly, when the sensor SNR increases, theatherror performance of the FH/MFSK
WSNs improves. As shown in Fig. 5.4, when the sensor SNR isdoeh as abdB or8dB, the ES-
EGC fusion rule is capable of achieving much better detegierformance than the EGC fusion
rule, when the channel SNR is sufficiently high. By contrést, advantage of the ES-EGC over
the EGC becomes less as the sensor SNR increases, meanitigettlatection at LSNs becomes
more reliable. In comparison of Fig 5.4a and Fig 5.4b, it caséen that, given reasonable channel
SNR, soft-sensing is able to enhance the ECP performancéhef &GC or ES-EGC for all the

values of sensor’'s SNR.
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Figure 5.5: ECP versus channel SNR per bit performance &fHiMFSK WSN employ-
ing L = 16 LSNs, when various number of TF elements are deleted fromm ebihe M

rows of the detection matrix.

Finally, in Fig. 5.5, we study the effect of the number erasletnents, expressed lhyused by
the ES-EGC fusion rule on the ECP performance of the FH/MFSBNAMNote again that] = 0
corresponds to the conventional EGC fusion rule. From Fig,. We can observe that, both the
sensor SNR and channel SNR have a big impact on the deteetitorppance of FH/MFSK WSN
with soft-sensing LSNs. When the sensor SNR is low and equ&dB, the ES-EGC fusion rule
with I = 2 yields the best detection performance, while the EGC fugitba results in the worst

ECP performance. By contrast, when the sensor SNR is 15dBifpavhich makes the detection
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at the LSNs very reliable, the EGC fusion rule outperformesE$-EGC fusion rule, regardless of
I =1 orI = 2. Again, from the observations we are implied that, when #tection at LSNs is
unreliable, the erasure operation employed by the ES-E@@&yiable of mitigating the effect from
the errors made by the LSNs, yielding better detection pedioce than the EGC fusion rule. On
the other hand, when the detection at LSNs is highly relialble erasure operation will remove

useful information, resulting in that the ES-EGC fusiorerid outperformed by the EGC

5.6 Conclusions

In this chapter, we have proposed a noncoherent FH/MFSK Wiih employs a range of LSNs
monitoring one SE. The LSNs carry out soft-sensing and fatwlze FC soft information about the
SE’s state. At FC, the SE’s state is detected by the low-cexitgl EGC fusion rule or the proposed
ES-EGC fusion rule, which also has low-complexity. The diéde performance of the proposed
FH/MFSK WSN has been investigated by assuming that the @isfmom LSNs to FC experience
Rayleigh fading. Our studies and performance results shaty wwhen the sensor SNR is low, re-
sulting in unreliable detection at LSNs, and the channel $NBlatively high, the ES-EGC fusion
rule may significantly outperform the EGC fusion rule. There, the ES-EGC fusion rule is robust
to the errors made by LSNs. By contrast, when the detectiaB s is highly reliable, making the
channel noise dominate the FC's detection performanca, the may simply use the EGC fusion
rule. In fact, the ES-EGC fusion rule may be regarded as amsixin of the EGC fusion rule.
The number of erasures per row may be determined accordihg &pecific environment that the
FH/MFSK WSN is deployed. Furthermore, compared with thefsnsing scenario considered in
Chapter 3, soft-sensing is capable of enhancing the owtdttion performance of our proposed

FH/MFSK WSN with either EGC or ES-EGC fusion rule.



Chapter

Energy-Based Cooperative Spectrum
Sensing of SC-FDMA Systems

6.1 Introduction

In wireless communications, the need for high data rate@s\s increasing as a result of the tran-
sition from voice-only communications to multimedia applions [176]. Given the limit of natural
frequency spectrum, it has been recognized that the cistatit frequency allocation schemes are
unable to accommodate the increasing number of high datadeatices. Cognitive radio with
the capability to sense and exploit unoccupied channelseguéncies has therefore become a
promising candidate for mitigating the problem of spectishmrtage [156]. According to Federal
Communication Commission (FCC) [158], cognitive radio éided as a radio or system that can
sense its operational electromagnetic environment andlgaamically and autonomously adjust
its radio operating parameters to modify system operatiooh as maximize throughput, mitigate

interference, facilitate interoperability, access seleay markets.

In cognitive radio terminology, primary radios (PRs) havwghler priority or legacy rights on
the usage of specific parts of spectrum allocated to themewhbpnitive radios (CRs) can access
these spectrums in such a way that they do not cause intecfem: the PRs or degrade the perfor-
mance of the PRs. The studies with CRs show that the efficiehGR systems depends mainly
on the CRs’ capability to sense the PR users’ states (ordoff)to respond correspondingly and

quickly. Hence, itis critical that CR systems can make gaicéi reliable decisions during spectrum
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sensing [177].

Depending on the knowledge available to the CRs, a rangeeatgpn sensing methods have
been proposed and studied. As some examples, energy detkat been considered in [148,176,
178,179], matched filter detection in [148, 151], cyclastadry feature detection in [148,151,180,
181], etc. Each of these spectrum sensing techniques has wuioque advantages and disadvan-
tages, as detailed as follows. First, energy detectiomw, kidewn as radiometry or periodogram,
is the first way of spectrum sensing coming to our mind, owmis low computation and imple-
mentation complexities [176]. In principle, an energy date simply treats PR signals as noise
and decides about their presence or absence based on thg Ewveds of the observed signals.
Since it does not require arapriori knowledge of PR signals, energy detection is viewed as a
type of blind detection method. In energy detection, if tihésa power is unable to be accurately
estimated, its performance may significantly degrade. heamore, the noise-uncertainty in en-
ergy detection may lead to the so-called SNR wall phenomg#@][ Unlike the energy detector,
matched filter detector and cyclostationary feature deteely on thea-priori knowledge of PR
signals’ parameters, such as, the knowledge of waveformighws impractical for certain appli-
cations [177]. In a little more detail, matched filter deteatnakes coherent detection based on
the a-priori knowledge of modulation type and carrier frequency of thesiRfRals. By contrast,
cyclostationary feature detection belongs to a noncohegactrum sensing approach, which may
distinguish various modulation signals. However, cy@tenhary feature detector requires some
parameters of PR signals, such as, symbol rate. In compasigb the above three types of spec-
trum sensing approaches, eigenvalue detection [156-138182—-185] does not depend on the
a-priori information as well as noise power, and it has the advanthgemultaneously achieving
a high detection probability and a low false-alarm probgbiHowever, the eigenvalue detection
is highly dependent on the correlation of PR signals, it beeo less efficient when PR signals
become less correlated. In this contribution, energy detreds employed to sense- an low peak-
to-average power ratio (PAPR) and low complexity intertghfrequency-division multiple access
(IFDMA) PR system [186]. Note that, in some references IFDidAlso referred as the distributed

frequency-division multiple access (DFDMA) [187,187].

In this chapter, we propose and study a spectrum sensingnscfer CR systems, where a

number of cognitive radio sensing nodes (CRSNSs) distubiytisense a PR system with multiple
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PR users. We assume that the PR system is the interleavagefi@gdivision multiple access
(IFDMA) system for the LTE [186], which supports a number pfishronous PR users. To attain
fast and low-complexity spectrum sensing, energy detedicemployed by the CRSNs. Specif-
ically, local decisions for the presence of multiple PR asate made by the CRSNs separately
based on one of tharee types of energy detection schemmessidered, under the constraints of
one of thefour synchronization scenaricgssumed between the PR signals and the CRSNs. By
this way, every CRSN obtains a binary local decision veatdnich is sent to the FC with the aid
of frequency-hopping (FH) anfif-ary frequency-shift keying (MFSK). In this chapter, tw@é&s

of noncoherent fusion rules are employed by the FC for mattinginal decision, which include
the EGC fusion rule and ES-EGC fusion rule, as shown in pteviahapters. The performance of
the FH/MFSK assisted spectrum sensing system with EGC dEGS-fusion rule is investigated
via simulation, under the assumptions that the channets RR users to CRSNs and the channels
from CRSNSs to FC experience independent Rayleigh fading.sulies and performance results
show that, our proposed FH/MFSK assisted spectrum sengitens constitutes one highly reliable
spectrum sensing scheme, which is capable of exploitingghee diversity provided by CRSNs as
well as the frequency diversity provided by the subcarméthe IFDMA systems. Additionally, in
comparison with the conventional EGC fusion rule, the ESZHGsion rule is robust to the errors

made by CRSNs, yielding better detection performance.

The reminder of this chapter is organized as follows. Ini8acb.2, we provide the details
of the proposed FH/MFSK assisted spectrum sensing systeratiof 6.3 considers the fusion
detection with either EGC or ES-EGC fusion rule. Sectiond&rhonstrates the simulation results

for the detection performance. Finally, in Section 6.5,atasions of this chapter are derived.

6.2 System Model

The framework for our cognitive spectrum sensing systenn@sva as Fig. 6.1. In our proposed
spectrum sensing system, we assume that the primary rdd)s{Btem is a LTE/LTE-A uplink SC-
FDMA system, which support& PR users. Each of th€ PR users has two stateldj (off) and H;
(on). We assume that the SC-FDMA system emplysubcarriers. As shown in reference [116],

there are typically two strategies for allocationfsubcarriers t&K users, yielding the so-called
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PR: SC-FDMA
N - Number of subcarriers (Ho, 1) K : Number of PR users
— | L
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Figure 6.1: System model for IFDMA system’s spectrum sansiith FH/MFSK tech-

nique.

interleaved FDMA (IFDMA) and localized FDMA (LFDMA). The AR problem in LFDMA
system is significantly less severe than that in the conmeatiOFDM systems. Furthermore, in
the IFDMA system there is only one subcarrier activatedfamgmission at any time, the IFDMA
signals conflict no PAPR problem at all[116]. In this chaptex consider only the IFDMA scheme.
For convenience of our description, we assume thaiNteibcarriers are equally assigned to the
K PR users. Hence, each of tkePR users occupie®/ = N/K interleaved subcarriers. When
thekth, k = 1,2,...,K, PR user is present to communicate, it occupies allhhsubcarriers
corresponding to its assignment. As the subcarriers anegonal with each other in SC-FDMA
systems, we assume that every cognitive radio sensing @iR8N) is capable of sensing all the

N subcarriers simultaneously without interference.

In this chapter, energy sensing (detection) is employedéy. tCRSNs, as seen in Fig. 6.1, to

sense which PR user(s) is on/off or which subcarriers aridabie for the CR system. After the
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local sensing, each of the CRSNs obtains a binary vectongttek, indicating the on/off states of
theK PR users. Then, th€-length binary vector is conveyed to af-ary number and transmitted
to the fusion center (FC) in the principles of FH/MFSK. Instchapter, we assume that the number
of frequency bands, expressedMsused for FH/MFSK is equal to or larger thah. Finally, at the
FC, the on/off states of thE PR users are noncoherently classified based on the sigceised
from theL CRSNSs. In this chapter, two types of fusion classificatidmesees are considered, which
are based on the conventional equal gain combining (EG@)] [d:8d the erasure-supported equal
gain combining (ES-EGC) [189], respectively. Below, weyide the details about the operations

carried out at the CRSNs and FC.

6.2.1 Spectrum Sensing at CRSNs

For convenience, the main parameters used in this chagteuarmarized as follows.

N: number of subcarriers of SC-FDMA PR system;

K: number of uplink PR users;

W = N/K: number of subcarriers per PR user;

L: number of CRSNSs;

M: number of frequency bands used by FH/MFSK;

e U + 1: number of multipaths of communications channels.

Time-Domain : Frequency—-Domain : Time-Domain 5(t)

é{Xkow" kw1 } {anw” aXA»(;\LU} {&10, -+ Erv-n) }
{zro. oz} ((DFT Subcarrier IDFT ) ((Add ) (Tow-pas
(FFT) Mapping (IFFT) Lcp J \ | Filter
{E RN BR(V=Nu=1) "+ TR(N=1)> TR0+ * > E(N=1) }

Figure 6.2: Transmitter schematic for thth user supported by the SC-FDMA uplink.

The transmitter schematic of the SC-FDMA uplink is shown ig.B.2. Let theW symbols

transmitted by théth PR user in time-domain be expressed as

X = [0, X1 Xgwn]’, k=0,1,--+ , K—1 (6.1)
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As shown in Fig. 6.2, firsty; is transformed to the frequency-domain with the aid ofltfigooint

DFT, yielding theW-length vectoiX}, which can be expressed as
X = Fwxi = [Xpo, Xea, -+ Xgw-1)]" (6.2)

whereF 1y denotes amV-point FFT matrix [116]. More specifically, tH& entries in the vectaX
are given by
w-1

Xkl:\/LWZ_:

w=0

XkweXp (—j%) L 1=0,1,---,W—1 (6.3)

Following the DFT operation, th&/ elements inX;, are mapped tdV out of the N = WK
subcarriers, according to the principles of IFDMA [116]. téfthe subcarrier mapping, th&-

length vectoiX is extended to aiv-length vectoiX, which can be represented as
Xk = [XkO/ R, er(Nfl)]T (6.4)

In more detail, under the IFDMA strategy for mapping, thereats ofX, are given by

Xin = Xpw, if n = wK+k

Xj, = 0, otherwise (6.5)

wherew =0, 1,--- W—-1, k=0, 1,--- ,K—1. After the subcarrier mapping, as shown in
Fig. 6.2, X, is transformed to the time-domain by carrying out the IDFEmpion, yielding an

N-length vector
~ H <7
% = FuXx (6.6)

whereF y denotes the al-point FFT matrix.

According to [116], upon submitting (6.3) and (6.5) into@)g.thevth,v =0, 1,--- ,N —1,

element of¢;, can be expressed as

T :LNZ?X ox <.27wn>
v=qW+i) \/ano m€Xp { ] N

1 27(qW + i)k
ﬁexp {]T] Xici

where the values of, g =0, 1,--- ,K—1,andi,i =0, 1,--- ,W — 1, are uniquely determined

(6.7)

by the value ob. From (6.7) we can see that tié symbols ofx, of thekth PR user are repeatedly
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transmitted on thé&th subcarrier, and all the/ symbols are transmitted times within one IFDMA

symbol duration [116].

Following the N-point IDFT operation, as shown in Fig. 6.2, a cyclic prefiXP{ds added in

the front ofx, in order to eliminate intersymbol interference (ISl). Egjily, the N.-length CP for

Xy is [ik(—Nc)/ ik(—Nc—H)/ s xk(_l)] = |:3?k(N—N¢)/ J?k(N—Ng—l)/ s fk(N—l)] , which consists of
the lastN, elements of vectafy. Let us express the time-domain vector after the C®,aahich

is

~/ ~ ~ ~ ~ ~
X = {xk(ch), Xk(=Ne+1)7 " " Xk(=1)7 Xk0s Xk1, " " rxk(Nfl)]

Il
=

K(N-No)7 Xk(N—Ne—1)7 " ** Tk(N—1), Xko, F1, - /jk(N—l)} (6.8)

Based on (6.8), finally, as shown in Fig. 6.2, we can form thmmex baseband equivalent
signal transmitted by thith PR user, which is
N+4N—1
s(t) = ), V2PHy(t —oT) (6.9)
0=0
whereP is the transmission power per dimensidf), is thevth element oft;, andy(t) is a unit-
power chip-waveform impulse defined {, T,|, whereT, is the chip duration, determined by the

bandwidth used by the SC-FDMA system.

In our proposed spectrum sensing system, each of the CRShgp&ble of simultaneously
sensing all the&K PR users. In this case, when tKeuplink PR users’ signals in the form of (6.9)
are transmitted through wireless channels, the receiveblex baseband equivalent signal at the
Ith (0 < I < L) CRSN can be written as

K-1
Ri(t) = k;) sk(t) * i (t) +ny(t) (6.10)
wherehy, (t) denotes the channel impulse response (CIR) betweeftitH@RSN and théth PR

user, whilen;(t) is the Gaussian noise process presenting attth€RSN, with zero mean and

single-sided power-spectral density (PSDNgfper dimension.

Atthelth,] =1,...,L — 1, CRSN, the received sign&j () is first filtered by a filter matched
to the chip waveformp(t). Then, the filter's output signal is sampled at the chip rate/d.. After

the normalization using/+/2PT,, it can be shown that theth, (0 < v < N 4+ N. — 1), sample
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can be expressed as

, 1 (v+1)TCR T\
J) o = ——— tw(t — oT,)dt
To=amp [y RiO9(E—T)
K-1
= Z (hl,kv * 'fl/w) + 7/Nll,v
k=0
K-1 U
=) Z Lo X XN, —u) + 710 (6.11)
k=0 u=0
where we assumed that the CIR hd$+ 1) taps, i.e.hyy = [hiro,- - - ,hlrku]T. In the above

equation, the Gaussian noise samplg is expressed as

T /(U VT (H(t —oT,)dt (6.12)
fijp = n — T, .
b V2PT, :

which has zero mean and a variaeé = N,/ E. with E. = PT, representing the chip energy.

From the outputs of ,, we can form arN-length vectoty, at thelth CRSN. Furthermore, in
the cases when the CRSNs do not know the beginning of an IFDNM#el, they have to use axi-
length vector having a random starting point. In this caseM samples may span two consecutive
IFDMA symbols. In order to consider this scenario, in thigter, we use the superscript to
indicate the current IFDMA symbol, while the superscriptl® to indicate the previous IFDMA
symbol. In this chapter, four scenarios will be addressedhé first scenario, namelsynchronous
sensing we consider the case of perfect synchronisation betwesrPB users and CRSNs. In
the second and the third scenarios, we assume quasi-syigdtion between the PR users and the
CRSNs, where th&y samples used by a CRSN all come from one IFDMA symbol. However
assume that there is no inter-(IFDMA) symbol interferent¢hie second scenario, but there is in
the third scenario. Correspondingly they are referred tihaguasi-synchronous sensing without
ISl andquasi-synchronous sensing with small, I®ispectively. Finally, in the context of the fourth
scenario, we assume that thesamples used by one CRSN are contributed by two consecutive
IFDMA symbols, hence, it is an asynchronous scenario, gitlire name o&synchronous sensing

Below we detail the representations corresponding to thpseational scenarios.

6.2.1.1 Synchronous Sensing

When a CRSN perfectly synchronises with the incoming IFDMgnals, the CP added in the

transmitted signals can be removed, yielding\afength vectony;, as seen in Fig. 6.3. The value
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NI: N N(’, N
U U
CcP Data CP Data
N Samples

Figure 6.3: lllustration for the scenario of synchronoussseg.

of thenth element ofy; with its elements given by

Jin =Fininy #=0,1,--- ,N—1 (6.13)

Furthermore, it can be shown thgtcan be expressed based on matrix representation as

20
) _ ) _ | ew
~ 0 0 0
Yi0 ke hl,k(U—l) M 00
~ _ 0 0 0 0
g = g | 0 M o M Mg o 0 X (~1) (6.14)
— N ,.,0
: k=0 xk,O
~ 0 0 0
| J1,(v-1) | 0 0 My - M Mg
20
[ (v-1) ]
N,
,(Ne+1
I (Ne+1)
|71 (N+Ne-1) |
6.2.1.2 Quasi-Synchronous Sensing without ISI
N, N N, N
U LU B:
CP Data CP Data
N Samples

Figure 6.4: lllustration for the scenario of quasi-synetuas sensing without ISI, where

0<B<N.—U.
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As an example, Fig. 6.4 shows a case corresponding to tharszeh quasi-synchronous sens-
ing without ISI. In this scenario, the sampling of a CRSN tst@r chips before the first symbol
%0, wherep € (0, N, — U). From Fig. 6.4 we can see that, whgre (0, N, — U), there is no
interference from the previous IFDMA symbol on the currdfDMA symbol. Furthermore, from

Fig. 6.4, we can readily know that tgth element ofy, is given by

Yin = g;,(n+Nc—/5)/ n=0,1---,N—-1 (6.15)

When expressed in matrix form, we have

20
B i B _ xkr(fufﬁ)
Y10 Y h?,k(ufl) ol 00 :
g = | &0 M 0 M Mg o 0 B (1)
;= =
k=0 3?2,0
|1, (N-1) | 0 0 My - My h(l),ko_
=0
|k (N-1-p) ]
11,(N—B)
l _
4| MNP (6.16)
UL (N+Ne—p—1) |
6.2.1.3 Quasi-Synchronous Sensing with Small ISI
NI: N N(’, N
U : U : b
CP Data CP Data
N Samples

Figure 6.5: lllustration for the scenario of quasi-synctmas sensing with small 1S,
whereN, — U < < N..

The scenario considered is similar as the one considereddtiof 6.2.1.2, except that now
(N. —U < B < N;). In this case, the samples used for sensing are affected thytte—1th

IFDMA symbol and theédth IFDMA symbol, as seen in Fig. 6.5.
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From Fig. 6.5, we can know that theth element of, is given by

Yin = g;,(n+Nc—/5)/ n=01---,N-1 (6.17)
Furthermore, it can be shown thigtcan be expressed in matrix form as
F -
YN+N.—U-p
] -1 ~1 | -1
Yo M Mrw-ry 0 M 00 0 YN-1
N gl,l K-1 0 h;klu . hl_,kll hl_,klO Cen 0 x(lNC
Y= =
k=0
T, (n-1) | 0 0 My - hu h?,ko_ X0
onflf,B
1(Ne—p)
7l _
o (6.18)
| UL (N+Ne—p—1) |

6.2.1.4 Asynchronous Sensing

N, N N, N

U

Data

Data CP
N Samples

CP

Figure 6.6: lllustration for the scenario of asynchronoaissing, whereN, < g < N.

Finally, for the scenario of asynchronous sensing, thesdn can be seen in Fig. 6.6, where
N: < B < N. Hence, the samples used for spectrum sensing depend omhseautive IFDMA
symbols. Therth entry ofyy;, can be expressed as

Yin = g;,(n+Nﬁﬁ)r n=0,1,---,N-1 (6.19)
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which, when in matrix form, can be represented as

[ 1
INFN.—~U-B
] 1 1 1 i 4
Y10 thu M-ty Mg O o0 XN_1
_ Vi1 K—1 0 hl klu ... hl kl1 hl k10 . 0 ngC
Yy = = -
k=0
T (n-1) | |0 0 My o Wy M| o
X1 B
1, (Ne=p)
L (6.20)

| 11, (N+Ne—p-1) |

which has the same form as (6.18). However, we should notertt{6.18), N. — U < < N,,

while in (6.20)N. < 8 < N.
After obtaining theN observation samples, as shown in (6.14), (6.16), (6.18).820§, the DFT

operation is carried out to transform the time-domain olzt@nsy; to the frequency-domain

yielding anN-length vector

Y = Fny, = [Yio, Vi, /Yl,(Nfl)]r I1=12...,L (6.21)
where thevth (0 < v < N — 1) element ofY; can be expressed as
- - .27Ton
Yl,v:TnZE)ynexp< ] N >
N-1 2mon
T ; L(n+N,)&XP <—] N > (6.22)

In correspondence to the subcarrier mapping operated dtahsmitter side, at the CRSN

subcarrier de-mapping is carried out to execute the invepseation of (6.5). The corresponding

outputs for theékth PR user can be collected into Bfilength vector as
(6.23)

ok ck vk k
Yi =Y Y Yo
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in which thewth (0 < w < W — 1) element is

Yllfw = Yl,(wK-ﬁ-k) (6.24)

With the aid of (6.23), a CRSN can now detect the on/off stheePR user occupying a certain
set of subcarriers. As for the purpose of CR sensing a CRmayatdy needs to know which subcar-
riers are active or inactive, low-complexity noncoheregiedtion can be employed. In this chapter,
noncoherent energy detection is employed to detedktRR users’ states. Specifically, three types
of local detection rules are investigated, which are refieto as theaverage power assisted detec-
tion (APD), majority vote assisted detection (MVBNd themaximum selection assisted detection

(MSD). Their details are as follows.

In the context of the APD, the decision rule for detectionhafitth PR user by thé¢th CRSN is

given by
PR S (6.25)
Lk) = 75 Lwl”S Aap :
o Ww:O v H

whereA 4p is a preset threshold for the APD, which is chosen to satigiyeal false alarm proba-

bility of Py.

When the MVD is employed, we first set a threshalg, > 0. By comparing with this thresh-
old, whenever an elemeﬁfw in Y;( exceeds\,,,, the corresponding entry of a newly formed vector
Y;k is flagged by a logical one. Otherwise, it gives a logical z&ased orf//lk, the local detection
is made in the principles of MVD. Specifically, if the numbéiomes is equal to or more than,;y
of the preset threshold, the CRSN renders that the corrdsppfR user is ofiH; ). Otherwise, it

decides that the PR is ofH)). In summary, the decision rule is described as

~/ HO
Sy = Y, IVSPs Amy (6.26)

w=0 1

whereA vy is an integer threshold for the MVD.

Finally, when MSD is employed, the largest one?é{fis chosen for making the local decision.

The decision rule can be expressed as
ck 2 |1k |2 Ck 2
S = max{[Ypo[%, [Yi4]% - [Y] oyl }§ Ams (6.27)
1
whereA s is the threshold for the MSD, which is chosen for satisfyirfgced false alarm proba-

bility Py.
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After the on/off states of all th& PR users are detected, tie CRSN obtains aK-length bi-
nary vector giving the on/off states of tRePR users, which is expressedsga@ = [sl(ﬁ), sl(ﬁ), cee, 51(?1171)]'
This vector is then mapped to ad-ary number expressed sat@d), which is then transmitted in the

FH/MFSK principles, as shown in Fig. 6.1 and detailed in thetrsubsection.

6.2.2 Signal Processing and Transmission at CRSNs

Let the estimated states by theCRSNs are collected into a vecwt) = [ng),ng), e ,s(LM)],

wheresl(M) € [0, M — 1]. Following the local spectrum sensing, th&€RSNs convey their local
detected states to the FC with the aid of the FH/MFSK teclasquLet the total transmission
time of s(M) to the FC beT, seconds, which is referred to as the symbol duration. Thisbsy
duration is equally divided inté portions referred to asme-slotshaving the duratiod), = T, /L.
Each CRSN uses one time-slot to send its detected states ECthAs previously mentioned, the
FH/MFSK scheme has! orthogonal sub-frequency bands, their center frequeacegesepresented
by F = {fo, f1,--., fm-1}. TheseM frequencies are used for both FH and MFSK modulation,
which are implemented as follows. Let= [ay, a5, - - - ,a; ] be a FH address used for FH operation,
whereq; € {0,1,--- ,M —1}, 1 =1,2,..., L. With the aid the FH operation, different CRSNs
will convey their signals on different sub-frequency bantte operation enhances the diversity

capability for final signal detection at the FC, especialfien some of the CRSNs are close to

each other, resulting in correlation in the space domain.

After processing™) using the FH address we obtain

m = [ml/mZ/"' /mL] :s(M)@a

= HM) @ a1,s§M) ©az, - ,s(LM) @ aL] (6.28)

where & represents the addition operation in the Galois fieldz6fM). Therefore, the value
of my (I = 1,2,...,L) is within [0, M — 1] and is suitable for MFSK modulation. Following
the FH operation, as shown in Fig. 6.1, the components @afre mapped to the MFSK’s sub-
frequencief,, = {fu1, fmo, - .., fu }, wheref,,, € F. Finally, the MFSK signals of the CRSNs
are transmitted one-by-one to the FC in a time-divisionifaslisingL time-slots of duratiori},.

Specifically, the signal transmitted by ti CRSN duringT; < t < (i + 1)T; can be expressed
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in complex form as
si(t) :\/ﬁwTh [t —iTs — (1 = 1)Ty] exp[2rt(fe + fu )t +ju], 1=1,2,...,L (6.29)

whereP denotes the transmission power, which is assumed the saraktiee L CRSNS,f. is the
main carrier frequency anpj is the initial phase introduced by carrier modulation. 126§, (¢)
is the pulse-shaped signalling waveform, which is defineat gwe interval0, T;,) and satisfies the

normalization offOTh P2 (t)dt = T,

Assuming that the signals as shown in (6.29) are transmiftetlat Rayleigh fading channels

to the FC, the received signal durifify, < ¢ < (i + 1)T; can then be expressed as

ri(t) =hsi(t) +mny(t)
=VPhyr, [t —iTs — (I = 1)Ty) exp[i27c(fe + fu )t + jgpi] + (1),

1=1,2,...,L, (6.30)

whereh; = a; exp(jf;) denotes the channel gain with respect to/theCRSN, which is assumed
constant over one symbol-duration. In (6.29)¢) is the Gaussian noise process presenting at the

FC, which has zero mean and single-sided power-spectraltgd€RSD) of N per dimension.

6.3 Fusion Processing

When the FC receives the signg(t), ! = 1,2,--- , L, final decision is made with the aid of one
of the two noncoherent fusion rules, namely the conventi&®@C fusion rule and the ES-EGC

fusion rules, which are detailed as follows.

First, for both the fusion rulesM decision variables are formed for every of theCRSNSs,

which are
Ao+ (141) Ty, . .
R, =|(VQPT,) ™! /T - r(t) gy, [t —iTs — (1= 1)Ty] exp|—27t(fe + fu)t]dt|?,
(¥ N h
m=01... M—1,1=1,2,...,L (6.31)

whereQ) = E[|ly|?] denotes the average channel power. SinceMhsub-frequency bands used
for FH/MFSK are assumed to be orthogonal to each other, the@@interference between any two

sub-frequency bands. Consequently, upon substitutird®)@nto (6.31) and absorbing the carrier
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phasep; into h;, we obtain

2

h
Honm 11 ,m=01,..., M—1,1=12,...,L (6.32)

VQ

where, by definitiony,,,, = 1, while p,,,, = 0, if m # m;. In (6.32),N,, is a complex Gaussian

Ry = + Ny

noise sample collected from thvth sub-frequency band during th time-slot, which is given by

Ny = (VQPT;) ! /iTSJr(lH)Th n(t)yr, [t —iTs — (I = 1)Tp,] exp[—j27(fe + fum)t]dt (6.33)

iTS+lTh
It can be shown thal,,; has mean zero and a variancel®¥, / (QQE;) = L/%;, whereE; = PT;
represents the total energy with each CRSN’s transmittedggrper symbol being;, = E;/L,

while 4, = QE;/ Ny denotes the average SNR per symbol.

Using theML values shown in (6.32), we can form a time-frequency mariaf (M x L),
where each column holdgl decision variables in the form of (6.32). BasedRuhe FC carries

out the final detection in the principles of EGC or ES-EGCdugiule.

6.3.1 EGC Fusion Rule

In the context of the EGC fusion rule, the FC makes the finalkitat based on the time-frequency

matrix as follows.

1. Frequency de-hopping to form a detection matrix
D=RE(1®a") (6.34)

wherel denotes an all-one column vector/df-length and® denotes the Kronecker product
operation between two matrices [116]. In (6.34), the opamadf A H B shifts the elements
in A based on the values provided By Specifically, after the operation in (6.34), a detection

matrix D is formed as
D(m@ﬂl)l =R,;,m=01,... M—1, [ =1,2,...,L (6.35)

where© denotes the subtraction operation in the Galois fiel&Bf M). The operation in
Equation (6.35) means that the element indexed:by R is changed to the one indexed by

m' =mSa;inD.
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2. EGC detection Based on the detection mat®, M decision variables for final spectrum

sensing are formed under the EGC principles [116] as

L

Dy =) Dy, m=01,...,M—1 (6.36)

=1
Finally, the largest one of Dy, D1, -+ ,Dpy-1} is selected and its index is mapped to an
integer in the rang¢0, M — 1], which represents th&1-ary estimation of th&k PR users’
on/off states. Then, th&l-ary integer is converted to a binary vectoriéiength, whose&

elements give the on/off states of tKePR users.

6.3.2 ES-EGC Fusion Rule

In our spectrum sensing scheme, there are mainly two souesedting in that the FC makes
erroneous decisions. The first one is the incorrect detectiade by the CRSNs. In this case,
the CRSNs directly send the FC incorrect information. Sdbyorihe wireless channels between
CRSNs and FC are no-ideal, which also introduce errorsis8tatly, we can know that, when an
element in the detection matrD contains both signal and noise, its energy will be highen that

of the element containing only noise. This implies that,nfedement in the undesired rows (the
rows not matching to the states of the PR users) has highyertbam, it might be an erroneous
element introduced by what the above-mentioned. Straighk#rdly, this types of elements in the

undesired rows may significantly degrade the detectioropmednce of the FC.

Based on the above observation, in this chapter, the ES-E&6rf rule is employed. When
operated under this fusion rule, in each of Merows of the detection matrik, a given number of
entries with the highest values are removed before forntiagt decision variables based on the
EGC principles. As the result, the errors transmitted byGRSNs might be removed, especially,
when the signal-to-noise ratio (SNR) is relatively high. d\s performance results in Section 6.4

show, this error-erasing process will significantly enteatie detection performance of the FC.

In detail, the ES-EGC fusion rule is operated as follows.

1. Frequency de-hopping to form the detection matrixD, which is the same as that done by

the EGC fusion rule.

2. Erasure operation: After obtainingD, the ES-EGC fusion rule carries out the erasure oper-
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ations. In each of thaf rows of D, I (0 < I < L) elements corresponding to ttidargest

values are replaced by the value of zero, which results imennatrix D.

3. EGC detection M decision variables are formed based on the mddiin EGC princi-

ples [116] as

L
Dyw=Y Dy, m=01,...,M—1 (6.37)
I=1

Finally, the largest of Do, Dy, - - - ,D(M,l)} is selected and its index value in terms of
m represents thé/f-ary estimation of value conveyed by the CRSNs. Furthermaiter
mapping theM-ary value to the binary representation, the on/off statélsedk PR suers can

be estimated.

6.4 Spectrum Sensing Performance

In this section, both the local spectrum sensing at CRSNgtandverall detection performance
at the FC are investigated via simulation results. Spedifjcae consider the missing probabil-

ity, P,;, of the sensing at CRSNs and the missing probabililty, of the detection at the FC, for

demonstrating the impact of collision between PR users dRdi&rs. At the CRSNs, we assume
that the signals received from the PR users experiencepathitRayleigh fading. We compare the
local missing probability of different detection approastvia simulation results and show the in-
fluence of the threshold applied for detection. At the FC aberall spectrum sensing performance
of our proposed cooperative spectrum sensing system einglejther EGC or ES-EGC fusion

rule is investigated, when assuming that random FH addsem®seused for transmitting the local
decisions made by the CRSNs to the FC, and that the wirelesmels from the CRSNs to the FC

experience independent Rayleigh fading.

In our simulations, local decisions are made based on thgehased spectrum sensing. The
parameters used in our simulations for each of the figuresletaled associated with the corre-
sponding figure. In the figures, the ‘Observation SNR at eaRBIN is the average SNR per PR
user received at a CRSN. The false-alarm probability oh&ll€RSNs is assumed the same, which
is expressed aB. The ‘channel SNR per bit’ is the average received SNR at@pé¥ bit given by

Y = ¥s/b, whereb = log, M denotes the number of bits required to represemt-ary number.
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Figure 6.7: Power spectral density presenting at the CR8NsIFDMA system using

128 subcarriers to suppotb users, when communicating over multipath Rayleigh fading

channels having time-domain resolvable paths. The results were obtairad #0000

realizations.



6.4. Spectrum Sensing Performance 143

Fig. 6.7 shows the impacts of the four scenarios, as showedtidh 6.2.1, which address the
synchronization between the received signals from PR ws®ighe sensing, on the PSDs of the
received signals. As shown on the top of the figure, we congiddFDMA PR system, which
employsN = 128 subcarriers to support maximuka = 16 uplink users. Hence, each PR user
occupiesiWW = 8 subcarriers evenly distributed over the28 subcarriers, as indicated by the eight
dominant spectral lines in each of the four figures. We asghatein the PR system, only uskrs
on, while all the other PR users are idle. Signals receivedR$Ns from the PR users are assumed
to experience multipath Rayleigh fading havifig + 1) = 5 time-domain resolvable paths. As
shown in Section 6.2.1, the value of the paramgieeflects the synchronization level between
the PR signals and the local sensing. Specifically, we sevahees of asp = 0, 2, 15 and
50, respectively, for the scenarios of synchronous sensumgsiegynchronous sensing without ISI,
guasi-synchronous sensing with small ISI and asynchrogensing. From the results shown in the
figures, we can clearly see that, when the sensing becomeasasymchronous with the arrival PR
signals, inter-carrier interference increases, i.e. enpower leaks from the activated subcarriers to
their neighbouring subcarriers. However5atiB of the SNR, the activated subcarriers stand out

explicitly and have significantly higher power than the otioke subcarriers.

N=128, K=16, CP=16, U=4,R0.05
— 0<pL127

10 8 -6 -4 2 0 2 4 6 8 10 12
Observation SNR at each CRSN (dB)

Figure 6.8: Missing probability of the local CRSNs sensihg $pectrum of an IFDMA
system using 128 subcarriers to support maximdmusers, when communicating over

multipath Rayleigh fading channels havibgime-domain resolvable paths.
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In Fig. 6.8, we investigate the performance of the threedyffenergy-based detections schemes,
namely, the APD, MVD and the MSD, when the false-alarm prdhglof local CRSNs is set as
Py = 0.05. In the figure,f = 0 stands for the scenario of synchronous sensing, as shown in
Section 6.2.1. By contrash, < f < 127 means thap is a random variable taking integer values
uniformly in [0, 127], which provides the average performance achieved by thesfmchroniza-
tion scenarios considered. From Fig. 6.8, we can have thamiolg observations. First, we can
see that the MVD outperforms the APD, and that the MSD achkiéve best sensing performance
among the three local detection schemes. Second, the syrels sensing provides the best local

sensing performance, as there is no inter-carrier intemfas.

N=128, K=16, CP=16, U=4,R0.05
— 0<pL127

10 8 6 -4 2 0 2 4 6 8 10 12
Observation SNR at each CRSN (dB)

Figure 6.9: Missing probability of the local CRSNs sensihg spectrum of an IFDMA
system with 128 subcarriers to support maximuénusers, when the MVD associated
with various values fod »;y is employed.

In Fig. 6.9, we illustrate the local sensing performancehef CRSNs employing MVD, when
the thresholds aré )y = 2, 3, 4 and5. Similarly to Fig. 6.8, in Fig. 6.9 both the synchronous
sensing(f = 0) and the random asynchronous sengifig< < 127) are considered. From the
results of Fig. 6.9, again, we observe that the synchronensirsg outperforms the asynchronous
sensing. For both the cases, we see thay = 3 results in the lowest missing probability, when
the SNR is relatively high, which implies that there exisioatimal value for the threshold, which

makes the MVD-assisted local sensing attain the lowestimgiggobability.
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Figure 6.10: Missing probability of the CRSNs sensing anN#system using 128 sub-
carriers for supporting maximurb users with MSD local detection, when four sensing

scenarios are considered.

Fig. 6.10 depicts the sensing performance of the MSD lodalatien in the context of the four
scenarios considered in Section 6.2.1. As our discussi@eation 6.2.1 shows, when the CRSNs
are operated in the scenarios of synchronous sensing orsyrahronous sensing without IS,
there is no interference from a previous IFDMA symbol on tagent IFDMA symbol. As shown
in Fig. 6.10, we are unable to distinguish between the pardioice of these two scenarios. By con-
trast, when there is small or large ISI, corresponding testemarios of quasi-synchronous sensing
with small ISI and asynchronous sensing, the performandecaf CRSNs degrades explicitly, in
comparison with that of the scenarios of synchronous sgrasid quasi-synchronous sensing with-
out ISI. Furthermore, the missing probability achievedenttie scenario of asynchronous sensing

is higher than that achieved under the scenario of quasihsgnous sensing with small ISI.

Fig. 6.11 shows the overall missing probability of the cdigaispectrum sensing systems with
various numbers of CRSNs, when the local CRSNs employs the.MS&the studies, we assume
an IFDMA system which has in toté&) = 128 subcarriers and supports maximfn= 16 users.
Hence, each active user udds= 8 subcarriers for uplink communications. At the FC, both the
EGC fusion rule (Fig. 6.11a) and ES-EGC fusion rule (Fig16)lare considered. Furthermore,

when the ES-EGC fusion rule is employed, we assume that amamt number of entries per row
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(a) Local detection: MSD; Fusion detection: EGC

K=16, CRSN’s SNR=1dB, W=8,;R0.05, N=128

—— 0<p<127
,,,,,, 5=0

I=Optimum Value

;L= <> o

6 4 -2 0 2 4 6 8 10 12 14 16
Channel SNR per hit (dB)

(b) Local detection: MSD; Fusion detection: ES-EGC

Figure 6.11: Overall missing probability of the cognitiygestrum sensing systems with
different numbers of CRSNs, when the MSD local detection twedEGC or ES-EGC

assisted fusion detection are employed.
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are erased, which yields the best overall detection pedoo®. From the results of Fig. 6.11a and
Fig. 6.11b, first, we can explicitly see that the overall imggprobability decreases, as the number
of CRSNs increases frohh = 10 to L = 15 and toL. = 20, owing to the improvement of spatial
diversity. Second, similar as the detection at the CRSNsotierall detection performance of the
system with synchronous sensing correspondingfto= 0) is better than that achieved by the
systems using asynchronous sensing. Finally, when comp&ig. 6.11b with Fig. 6.11a, we can
clearly see that the ES-EGC fusion rule outperforms the E@®H rule, which becomes more

significant, when the channel SNR increases.

Finally, in Fig. 6.12, the overall missing probability penfnance of the cognitive spectrum
sensing system, when different observation SNR is assuoratid CRSNs. From Fig. 6.12, we
can have similar observations as that from Fig. 6.11. Fortbee, from Figs. 6.11 and 6.12, we can
find that the ES-EGC fusion rule outperforms the EGC fuside, mrhich becomes more explicit,

as the SNR of the channels from CRSNs to FC increases.

6.5 Conclusion

In this chapter, we have proposed a FH/MFSK assisted cegrifiectrum sensing system monitor-
ing, specifically, a IFDMA PR system supporting multiple tssd_ocal decisions for the presence
of multiple PR users are made by the CRSNSs separately basedeoof the three types of energy
detection schemes considered, under the constraints abfahe four synchronization scenarios
assumed between the PR signals and the CRSNs. After eacle @@RBNs obtains the on/off
states of all the PR users, this binary local decision vestamonveyed into arlM-ary number,
and then transmitted to the FC with the aid of FH/MFSK. At tle, Bverall decision is made
based on either the EGC fusion rule or ES-EGC fusion rule.hBa¢ local spectrum sensing at
CRSNs and the overall detection performance at the FC aestigated via simulation results. At
the CRSNs, we assume that the signals received from the RR exgeerience multiple Rayleigh
fading channels. Our simulation results show that relidddal sensing is achievable at the very
low SNR. Both the synchronization and the local detectiopreg@ch, as well as the threshold has
significant influence on the local detection performanceth&tFC, the overall spectrum sensing

performance is investigated, when assuming that randomdelreases are used for transmitting
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(a) Local detection: MSD; Fusion detection: EGC
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(b) Local detection: MSD; Fusion detection: ES-EGC

Figure 6.12: Overall missing probability of the cognitiyeestrum sensing system with
the MSD for local detection and EGC or ES-EGC assisited fusietection, when the

CRSNs have various observation SNRs.
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the local decisions through independent Rayleigh fadiramokls. From the simulation results, we
can clearly see that the ES-EGC fusion rule outperforms 8w&EC fusion rule, which becomes

more significant, when the channel SNR increase.



Chapter

Conclusions and Future Work

In this final concluding chapter, we first provide a summaryhef thesis in Section 7.1. Then a

range of issues requiring further research are provide@ai& 7.2.

7.1 Summary of Conclusions

In this thesis, we have proposed and investigated a noysétayer wireless sensor network
(WSN) framework known as the FH/MFSK WSN system. Generally, proposed FH/MFSK
WSN employs two typical characteristics as follows. Filaty-complexity honcoherent detection
is employed at the FC, which does not depend on energy-giehnel estimation. These energy-
efficient and low-complexity detection strategies are feia to the life-time of power-limited
WSNs. Second, in the proposed FH/MFSK WSN, the FH/MFSK tieglas have been introduced
for supporting single/multiple SE(s). The FH/MFSK techrég are also capable of enhancing the
detection performance of the FH/MFSK WSN system, which ea@d by reducing the corre-
lation among the signals transmitted by the different LS$tsthat the detection at the FC can
benefit from both the space diversity provided by the LSNsthrdrequency diversity yielded by
the FH/MFSK operations. As our analysis shows, the frequei@rsity becomes more important
to the WSNs, when their LSNs are closely distributed, rasyilin that the signals transmitted by

different LSNs experience correlation in the space domain.

Each of the chapters in the thesis has its own emphases.efnp Ghapter 2 gives an overview

of local detections and fusion rules. In Chapter 3, the psedoFH/MFSK WSN is employed
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for monitoring single SE with multiple states. In Chaptertile FH/MFSK WSN is proposed to
monitor multiple SEs of each having multiple states. Chaptddresses soft-sensing, which is im-
plemented to enhance the detection performance of the FEKMFSN with single SE. Finally, as
an example for the applications of the FH/MFSK WSN, in Chaftepectrum sensing in cognitive

radios is studied. More details concerning the contributbthe thesis are provided as follows.

We have commenced in Chapter 2 with a detailed review of Idetdctions and fusion rules.
According to the references, a lot of research has been ditheN&Ns in order to attain reliable
signal detection through the optimization at FC level a/ahLSN level. Specifically, the princi-
ples of the classical binary hypothesis test at LSNs anduieri rules used by FC, as well as some

local spectrum sensing approaches are summarized as $ollow

e Classical binary local detections In the context of binary local detection, a LSN makes
local decision of the observed SE based on its own observaayesian detection is made
to achieve the average cost as small as possible, whichresqtie knowledge of tha-
priori probability and the cost of all decisions. When the cost fions are unavailable,
MAP detection may be employed to choose the most possiblethgpis based on local
observations. When neither the cost functions noratipeiori probabilities are achievable,
but a false-alarm probabilitir is available, NP detection may be designed to maximize the

detection probability?, or minimize the missing probabiliti,.

e Optimum and sub-optimum channel-aware fusion rules With the channel state informa-
tion (CSI) of the channels from LSNs to FC, as well as noiséanae, optimum likelihood-
ratio (LR) fusion rule can be derived. In order to reduce tmplexity and the requirements
from channels, CV fusion rule is derived based on the appration of the optimum LR-
based fusion rule within high channel SNR region. In low ¢t&rSNR region, MRC fusion
rule approximates the optimum LR-based fusion rule. EG®fusule can be viewed as a
trade-off between the MRC fusion rule and CV fusion rule,ahlis robust in a wide channel

SNR range.

e Noncoherent M-ary fusion rules: In Section 2.3, some existing noncoherent fusion detec-
tion schemes are summarised, which require neither chastieiation nor LSN's detection

performance. All our discussion about noncoherdnary fusion rules are based on a frame-
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work of MFSK WSN, specifically, based on a so-called detectimatrix D. It can be seen
that each of these noncoherent fusion detections has geeaidvantages and disadvantages,

as well as some unique requirements.

e Spectrum sensing approachesin Section 2.4, three typical spectrum sensing approaches
have been addressed, which include the energy detectidoheusfilter (MF) detection and
the feature based detection approaches. Energy detesttbe simplest spectrum sensing
approach with wide applications. However, its performaischighly susceptible to noise
power uncertainty, as well as shadowing and fading enviemisa MF detection is the op-
timum spectrum sensing approach in stationary Gaussiae nehen the requirea-priori
information is available. By contrast, if the knowledge abthe PR users is not perfect
known, the detection performance of the MF degrades signifiz. Cyclostationary de-
tection is one of the feature detections, which make useeptriodic patterns of the PR
signals. Compared with energy detection, cyclostatiomtgction is less sensitive to the
noise uncertainty, but, at the cost of complexity incregsiiigenvalue-based detection is
another type of feature detection relying on the correfatibthe received PR signals. It is

effective for blind implementation, when the PR signalstaghly correlated.

In Chapter 3, our exploration has been focused on a novel FSHMWSN framework, which
monitors anM-ary SE and conveys observations from LSNs to FC with the ABHIMFSK
techniques through either AWGN or Rayleigh fading channélfe FH/MFSK techniques are
employed for gaining diversity, especially, when LSNs ad@sely distributed. At the FC, the
SE’s state is detected based on low-complexity noncohéusian rules. The simulation results in
Chapter 3 show that our proposed FH/MFSK WSN is a promisihgree for operating in different
environments. In comparison with the conventional EGCdiusiule, our proposed novel ES-EGC
fusion rule may significantly improve the detection perfamoe of the FH/MFSK WSN. In this
chapter, three noncoherent fusion rules have been ina¢stigand compared, which include the
EGC, ES-EGC and the optimum fusion rules. In more detail,fioalings can be summarized as

follows.

e Noncoherent fusion rules

1. EGC: EGC fusion rule has the lowest-complexity and yields ldvwkday among the
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three noncoherent fusion rules considered. However, EGRruule is sensitive to
the LSNSs’ sensing errors, yielding very poor detection grenfance, when the LSNs

are not reliable.

2. ES-EGC: ES-EGC fusion rule has similar complexity and processigigylas the EGC
fusion rule. However, our studies and simulation resultsasthat, when the detec-
tion in LSNs are unreliable and when the channel SNR is wagtihigh, ES-EGC
fusion rule may significant outperform the EGC fusion rulethe ES-EGC, the opti-
mum number of erasures per row is determined by the specifimement where the

FH/MFSK WSN is deployed.

3. Optimum fusion rule: The optimum fusion rule has been investigated based on the
MAP principles. However, the complexity of the optimum fusirule increases ex-
ponentially with the number of statéd, which is extreme for practical applications.
Hence, a sub-optimum fusion rule has been considered, ich#GC is first operated
to reduce then number of candidates. From the candidataekdénision is made using
the MAP principles. In order to further reduce the compotattomplexity, the SLD-
SMAP fusion rule has been introduced. From (3.23) we cantssdhie complexity of
the SLD-SMAP is related to the threshold which can be controlled at a reasonable

level according to the practical requirements.

e Detection performance of FH/MFSK WSNs with single SEIn the study of the detection

performance, all thé/ states are assumed to have equal probability.

1. Error floor of EGC fusion rule : When error floor is derived, the transmission from
LSNs to FC is assumed to be ideal, without noise and fadinthisncase, floor for the
average error classification probability (ECP) is given by

[L/2] L . L—i 1 k—1 M—2 L—i—k
_ ipL—i
Pr = 2 <i>PdPe Z (—M_ ) (—M_1> (7.1)
i=0 k=i
where| L/2| denotes the integer smaller or equalt®.
2. Error floor of ES-EGC fusion rule : Similar as the case of using EGC fusion rule, no

fading and noise are considered, when error floor is analfigethe ES-EGC fusion
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rule. Assuming that erasures are used in each row, the error floor is

I [L/2] L—i—I k—1 L—i—k—I
L\ . ;. L\ . ;. 1 M-2

i=0 i=I+1 k=i—1I

if 1<I<|L/2] (7.2)
L /LN . .

Pe=)" < ‘>P‘§PEL‘Z,
i—o \!

if [L/2] <I<L (7.3)

3. Error probability of ES-EGC over Rayleigh fading channels: After erasure opera-
tion in the ES-EGC, the decision variables become cormlateking the analysis of
the detection performance of the ES-EGC fusion rule highplved. For this sake, in
our analysis, the LSNs are assumed to be perfect, whichtseauh lower-bound for
the ECP of the ES-EGC fusion rule. In our analysis, the PDhefdecision variable
after erasure operation is derived with the aid of momenegaing function (MGF).
After the inverse Laplace transform, with the aid of thedasitheorem, we derived the
PDF of the decision variablB,,. Finally, we have derived the expression of ECP with

single integral. Additionally, a closed-form union-bouiwd the ECP has been derived.

In Chapter 4, the FH/MFSK WSN has been employed to monitotipielM-ary SEs, where
L number of LSNs are used to simultaneously obsdv8Es and, meanwhile, all thege SEs
are observed by each of tHeLSNs without observation interference. In this chaptereless
channels from LSNs to FC are assumed to experience indepeRdgleigh fading. We find that
in the FH/MFSK WSN, there are two types of interference, idithoh to the background Gaussian
noise, which are the MEI and the interference generated fopeous decisions at LSNs. At the
FC, six low-complex noncoherent fusion rules have beenidered, which include the EGC, ES-
EGC, EGCNIIC, ES-EGCNIIC, EGClIC and the ES-EG@IIC. The characteristics of these

six fusion rules as well as their computation complexity arsmarized as follows.

1. EGC fusion rule: In this chapter, the EGC fusion rule is considered as a buadh
which is low-complexity and low detection delay. The conxjtle of the EGC fusion rule
is O(KML), whereK is the number of SESyI is number of states of each SE ahds the

number of LSNs. However, EGC fusion rule is a very deficiehtesee for signal detection in
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interference environments, yielding significant loss itedgon performance as the number

of SEs increases.

2. ES-EGC fusion rule: Under the ES-EGC fusion rule, in each of the rows in the d&tis
matrix D, I (0 < I < L) elements corresponding to thelargest values are removed,
yielding the modified detection matri®. Then, decision variables are formed via EGC
principle based o). The complexity of the ES-EGC fusion ruled@(KMLI) for detecting
K SEs. Itis a single-user fusion rule However, it is a higheadficy fusion rule, which, for
some cases, may achieve even better detection performiaacesdme of the noncoherent

multiuser fusion rules, such as, the E®G@IC fusion rule.

3. EGC-NIIC fusion rule : When the EGCNIIC fusion rule is employed, the IIC is operated
associated with the fird most reliable SEs, whose states are detected one-by-aae ite
tively from the most reliable ones to the less reliable orfdeen, the restK — N) SEs are
simultaneously detected via EGC principle. For the ESIDE, a low-complexity reliability
measurement method has been proposed, which measurdsathidityeof the states detected
by the EGC-based detection. The complexity of the ESIGE fusion rule isO(KMLN).
We find that there is a trade-off between the number of lIGittens and the detection per-
formance, showing that, for a given set of parameters, theually exists a value foN,

which results in the best fusion detection performance.

4. ES-EGC-NIIC fusion rule: The ES-EGCNIIC fusion rule carries out the 1IC operation
based on the modified detection matri({é_B,(f)}, which are obtained after the ES-EGC op-
erations. The reliabilities are measured based on theideaiariables provided by the ES-
EGC. As the EGQNIIC, with ES-EGCANIIC, the N most reliable SEs are first detected iter-
atively and, then, the reéK — N) SEs are detected simultaneously using the ES-EGC fusion
rule. In the ES-EGQVIIC, the IIC operations at one iteration impose effect onfidiewing
iterations of detection and the effect is accumulative. Bytast, the erasure operations are
independent iteration-by-iteration, which does not dlyegropagate to the following detec-
tion. The complexity of the ES-EGGHIC is O(KMLNTI). For a FH/MFSK WSN with a
fixed set of parameters, there usually exists an optimurrevauN, which yields the best

detection performance.
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5. EGC-plIC fusion rule : When carrying out the IIC operations, full cancellationymemove
the information of the SEs having not detected yet, and ndghtade the overall detection
performance. In order to mitigate the effect of the full lI€the EGCplIC principle, partial
cancellation has been proposed. The EBIC-has the complexity o (K>ML). The value

of p can be optimized for achieving the best detection perfoo@an

6. ES-EGC—lIC fusion rule: The ES-EG(IIC has the same principle as the EGUOE,
except that the EGC associated wit the E@IG is replaced by the ES-EGC in the ES-EGC-
plIC. The complexity of the ES-EG@HC is O(K2MLI). Both I andp may be optimized

to achieve better detection performance.

The studies in Chapter 4 show that, in general, the ES-EGHecklfusion rules outperform the

EGC related fusion rule, when detection performance isidensd.

In Chapter 5, we have aimed at the performance improvemethieoFH/MFSK WSN moni-
toring single SE with the aid of soft-sensing by LSNs. Speaily, after an observation, each of
the LSNs calculates the probabilities about all the stateshich the SE might be. This soft in-
formation is then forwarded to the FC with the aid of the FH8K-techniques. In this chapter, a
signalling scheme has been proposed for transmittingrimdition from LSNs to FC, which scales
the transmission power of frequency tones used by the FHRMREthe FC, the SE’s state is de-
tected either by EGC or by ES-EGC fusion rule. Our simulatesults show that, in comparison
with the hard-decision based sensing, as shown in Chapted £hapter 4, using soft-sensing is
able to enhance the overall detection performance of théMFBK WSN. Furthermore, the ES-
EGC fusion rule is robust to the errors made by LSNs, which sigxificantly outperform the

EGC fusion rule, especially, when the soft-sensing at LSNt very reliable.

In Chapter 6, a FH/MFSK assisted cognitive spectrum sersihgme has been proposed for
spectrum sensing, specifically, a IFDMA PR system supppntitultiple users. In our studies,
three types of energy-based detection schemes have besdared, so that the CRSNs can make
quick and low-complexity local detection. In this chapfeyr synchronization scenarios have been
considered, which include the synchronous sensing, qumgiksonous sensing without ISI, quai-
synchronous sensing with small ISI and asynchronous sgnsifter each of the CRSNs obtains

the on/off states of the PR users, it sends the detected svatee FC with the aid of the FH/MFSK.
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Finally, at the FC, noncoherent detection is carried outckvis based on either the EGC or the
ES-EGC fusion rule, as done in Chapter 3, Chapter 4 and Qhapbe this chapter, both the local
spectrum sensing at CRSNs and the overall detection pesfurenat the FC are investigated via
simulation results. Our studies and performance resutts ghat, our proposed FH/MFSK assisted
spectrum sensing system constitutes one highly relialdetspm sensing scheme, which is capable
of exploiting the space diversity provided by CRSNs as wetha frequency diversity provided by
the subcarriers of the IFDMA systems. Atthe CRSNSs, we asshat¢he signals received from the
PR users experience multiple Rayleigh fading channels. shumlation results show that reliable
local sensing is achievable at the very low SNR. Both the lssorization and the local detection
approach, as well as the threshold has significant influencth® local detection performance.
At the FC, the overall spectrum sensing performance is figated, when assuming that random
FH addresses are used for transmitting the local decistmasigh independent Rayleigh fading
channels. From the simulation results, we can clearly saelle ES-EGC fusion rule outperforms

the ES-EGC fusion rule, which becomes more significant, wherchannel SNR increase.

7.2 Future Work

In this thesis, we have proposed and investigated a rangenabherent fusion rules in the content

of the FH/MFSK WSNs. Our research may be extended in diffgoeoperties.

This thesis has focused mainly on the low-complexity hifflteiency noncoherent fusion rules,
in addition to the cognitive spectrum sensing as one of tipiigtions of the proposed FH/MFSK

WSN framework. There are many related issues requirinhduaitivestigation.

First, as mentioned previously in the thesis, we generallymed that local sensing and fusion
detection are independent. In other words, the optiminatibLSNs and that at FC are carried
out independently, which implies that both the local semsind the fusion detection should be
as reliable as possible. However, in our considered ttgpler WSNs, if local sensing sensing is
unreliable, the overall performance of the WSNs might be pommatter how reliable is the fusion
detection. On the other hand, when the fusion detectionnsliable, the overall performance of
the WSNs will be poor, even the local sensing is ideal. Hemteéhe FH/MFSK WSNs, joint

optimization of local sensing and fusion detection cont#i one of the future research topics.
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With the aid of joint optimization, we may maximize the ovedetection reliability, maximize the

lifetime, or/and minimize the overall energy consumed,, @icthe FH/MFSK WSNSs.

Second, in our studies, we assumed that the SEs are indepe&veats, which can be observed
without interfering with each other, for the sake of focgsour attention mainly on the fusion rules.
This is the case for some applications, such as, the exarhple/ivonment monitoring. However,
in practice, there are the SEs which are highly correlatetithe observations of these correlated
SEs may interfere with each other. For example, in a WSN useiiéntifying battleships, fight
planes, etc., the observations may interfere each othaitirey in that it is difficult to distinguish
between different types of them. Hence, when the SEs mewitby our FH/MFSK WSNs are
correlated SEs, it is important to design high-efficiencyalosensing algorithms. Furthermore,
although our proposed fusion rules can be directly empldyyethe FH/MFSK WSNs monitoring

correlated SEs, the effectiveness of these fusion rulestislear and requires further studies.

Third, exceptin Chapter 5 where soft-sensing is considdoedimplicity, we mainly assumed
that once an erroneous observation occurs, it has the sarbehjiity to one of the othefM — 1)
erroneous states. This assumption may be too strong for applieations. In fact, in many practi-
cal applications, an erroneous state often has high priitiegio be the ones closer to the correct
state. This uneven error probabilities may be exploitediémigning novel signalling schemes for

conveying information from LSNs to FC as well as for designitovel high-efficiency fusion rules.

Fourth, in our thesis, as one of the examples to demonstratepplications of the FH/MFSK
WSNSs, cognitive spectrum sensing of LTE IFDMA systems hankavestigated. In the future
research, the FH/MFSK WSNs associated with the variousotwrent fusion rules as proposed
may be invoked in the specific application scenarios. We nigtimeed to investigate the achievable
performance of the FH/MFSK WSNS employing the proposed obeent fusion rules in the
specific application scenarios, but also to modify and imerine local sensing and fusion rules

according to the specific application environments.

Fifth, in the soft-sensing scenario considered in Chapténétransmission power on the dif-
ferent frequency bands are scaled by the probabilitieseo$thites obtained by the LSNs. However,
these probabilities do not equal the useful informationhef $tates, especially when the proba-

bilities of the states are the same or similar. Hence, theadwsga soft-forward modulation would



7.2. Future Work 159

use information rather than probability to scale the powerach frequency band. This novel

information-based forwarding may improve our WSNs’ pariance significantly.

Sixth, in our FH/MFSK spectrum sensing system, all the CR8Nsassumed to be equally
distributed from the PR users with the same received powebnut future work, more practical
scenarios may be considered to assume that the CRSNs acenigirdistributed and the received
power at the CRSNs from different PR users is different. Ia tase, an energy threshold may
be pre-set to decide whether a CRSN should forward infoomat the FC. Or a CRSN may be

played as a relay to forward informations from the other CR&Nhe FC.

Finally, in this thesis, the FH/MFSK WSNs associated with groposed fusion rules have
only been investigated with the triple-layer type of WSNs. ghown in Chapter 1, there are many
other types of WSN structures. Hence, it is highly import@ninvestigate the efficiency of the
FH/MFSK WSNs as well as that of the proposed noncoherentriugiles, when they are applied

to the other types of WSNSs.
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GF(M) Galois field

AWGN additive white Gaussian noise
BFSK binary frequency-shift-keying

CIR channel impulse response

CR cognitive radio

Csl channel state information

CSMA carrier sense multiple-access

cv Chair-Varshney

DTFT discrete time Fourier transformation
ECP error classification probability

EGC equal gain combining

EMAC energy efficient MAC

ES-EGC erasure-supported equal gain combining
FC fusion center

FCC Federal Communications Commission
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FFT
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FH/MFSK
FLAMA

G-MAC

LLR
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LRT

LSN

MAC
MEMS
MF
MFSK
MGF
ML
MMAC
MMSN
MRC

MV

NNC

NP

fast frequency-hopping
fast Fourier transform

frequency-hopping

frequency-hoppingVi-ary frequency shift keying

flow-aware medium access

gateway MAC

interference cancellation
identification

iterative interference cancellation

log-likelihood ration
likelihood-ratio
likelihood ratio test

local sensor node

medium access control
micro-electromechanical systems
matched filter

M-ary frequency-shift keying
moment generating function
maximum likelihood

mobility adaptive MAC
multi-frequency MAC for WSNs
maximum ratio combining

majority vote

noise-normalization combing

Neyman-Pearson
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NTIA National Telecommunication and Information Administati
PAPR low peak-to-average power ratio
PBPO person-by-person optimization
PC product combing
PDF probability density function
PMAC position-enabled MAC
PR primary radio
PSD power-spectral density
SC selection combing
SE source event
SLC soft-limiting combining
SLD-SMAP  shrink local decisions aided sub-optimum MAP
SMACS self-organizing MAC for sensor networks
SNC self-normalization combing
SNR signal-to-noise ratio
TDMA time-division multiple-access
TRAMA traffic adaptive medium access

WSN

wireless sensor network
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