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[1] The rise of atmospheric carbon dioxide (CO2) principally
due to the burning of fossil fuels is a key driver of
anthropogenic climate change. Mitigation strategies include
improved efficiency, using renewable energy, and capture and
long-term sequestration of CO2. Most sequestration research
considers CO2 injection into deep saline aquifers or depleted
hydrocarbon reservoirs. Unconventional suggestions include
CO2 storage in the porous volcanic lavas of uppermost
oceanic crust. Here we test the feasibility of injecting CO2

into deep-sea basalts and identify sites where CO2 should
be both physically and gravitationally trapped. We use global
databases to estimate pressure and temperature, hence density
of CO2 and seawater at the sediment-basement interface. At
previously suggested sites on the Juan de Fuca Plate and in
the eastern equatorial Pacific Ocean, CO2 is gravitationally
unstable. However, we identify five sediment-covered
regions where CO2 is denser than seawater, each sufficient
for several centuries of anthropogenic CO2 emissions.
Citation: Marieni, C., T. J. Henstock, and D. A. H. Teagle (2013),
Geological storage of CO2 within the oceanic crust by gravitational
trapping, Geophys. Res. Lett., 40, 6219–6224, doi:10.1002/
2013GL058220.

1. Introduction

[2] Human activities since the industrial revolution have
increased atmospheric concentrations of greenhouse gases,
in particular carbon dioxide (CO2), requiring the development
of mitigation strategies to minimize the effect on the global
climate and potential ocean acidification [Intergovernmental
Panel on Climate Change, 2007]. Various strategies have been
proposed to reduce CO2 emission including reducing energy
demand, increasing renewable energy, and carbon capture
and storage (CCS) underground. The effectiveness of geologi-
cal reservoirs depends on their storage capacity, reservoir
stability, risk of leakage, and the retention time [Hawkins,
2004;Rochelle et al., 2004], with deep saline sedimentary aqui-
fers [Eccles and Pratson, 2012; House et al., 2006; Levine

et al., 2007; Schrag, 2009], and depleted oil and gas reservoirs
[Bachu, 2000; Jessen et al., 2005] receiving the greatest
research attention. In addition, several mafic and ultramafic
formations are under consideration for CO2 storage including
lava flows on Iceland [Gislason et al., 2010; Oelkers et al.,
2008] and the Columbia River Basalts in the United States
[McGrail et al., 2006].
[3] This paper investigates the geological storage of CO2 in

the deep-sea basalts [Goldberg et al., 2008, 2010; Matter
et al., 2007; Slagle and Goldberg, 2011] that form the upper-
most igneous lavas of the oceanic crust and cover approxi-
mately 60% of Earth’s surface. These formations may have
advantages over other potential geological storage options:
(a) large reservoir capacities; (b) low risk of postinjection
leakage due to low permeability sediment blankets in some
regions; (c) in situ availability of water; and (d) estimated fluid
retention times greater than 500 years [Goldberg et al., 2008].
The Juan de Fuca Plate (JdFP), offshoreWashington State, has
been the focus of conceptual studies of deep-sea basalt CCS
[Goldberg et al., 2008] because it is the best studied mid-
ocean ridge flank with well-characterized regional thermal
and hydrological regimes [Fisher and Davis, 2000]. The rocks
on this plate are relatively young, having formed at the Juan de
Fuca Ridge less than 11 Myr ago. The pillow lavas that form
the upper few hundred meters of the JdFP crust have high
connected porosity (>10%) [Fisher, 1998], and the ridge flank
is blanketed by a thick (from 30 to over 700m) sequence of
hemipelagic and turbiditic sediments derived from the North
American continent.
[4] Other well-studied regions of the upper oceanic crust that

have been considered for CO2 storage [Slagle and Goldberg,
2011] are in the eastern equatorial Pacific Ocean (eePO) at
Sites 504 and 1256 located in ~7 and 15Myr old crust, respec-
tively. Numerous studies on hydrothermal circulation provide
detailed descriptions of physical properties and the porosity of
the extrusive section of the ocean crust at these sites [Alt et al.,
1993; Teagle et al., 2006; Wilson et al., 2006].
[5] Three primary trapping mechanisms for the long-term

storage of carbon dioxide in seafloor basalts have been pro-
posed: (1) Gravitational trapping under pressure and tempera-
ture conditions where CO2 is more dense than seawater [Levine
et al., 2007]. (2) Physical or permeability trapping, where the
presence of ≥200m of overlying low permeability marine sed-
iments isolate the CO2 injected into the basalts from the oceans,
so that any leakage is trapped in the sediments [Goldberg and
Slagle, 2009]. (3) Geochemical trapping, where the CO2 and
water react with the basalt host rocks to form geologically
stable carbonate minerals [Matter et al., 2007].
[6] In this study we consider the global variability of

sediment thickness, pressure (p), and temperature (T ), and
consequently, the density ( ρ) of CO2 and seawater at the
sediment-basement interface of the oceanic crust, to identify
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potential targets for combined gravitational and physical CO2

sequestration. Although this is a physically robust scoping
study, detailed programs of local data acquisition are impera-
tive before any targets could be further developed.

2. Physical Parameters

[7] We have developed global maps of the density of seawa-
ter and CO2 at the sediment-ocean crust interface. Pressure
was estimated using theNOAA-gridfive sediment thickness da-
tabase [Divins, 2003] combined with the General Bathymetric
Chart of the Oceans (GEBCO)-gridfiveworld bathymetry map
(both 6′×6′ grids) [IOC et al., 2003]. The anomalies in the to-
pography (e.g., abyssal hills and seamounts) are not always
detected by global altimetry and gravity analyses, but the
NOAA database is the currently best available. We assume a
hydrostatic load to the top of basement, using a constant sea-
water density of 1030 kg/m3 and a constant salinity of 35 psu
(practical salinity unit) [Brown et al., 1995]; this gives a lower
bound on the pressure and the CO2 density. We used the
Global Depth and Heat flow model (GDH1) [Stein and
Stein, 1992] to estimate the heat flow, and then the tempera-
ture, based on the oceanic crustal age [Müller et al., 2008]
(see supporting information “Text S1” for the equations).
We use GDH1 because it is better for predicting the heat flow
at old oceanic crustal ages than the Half Space Cooling Model
(HSCM) [Turcotte and Schubert, 2002], and because the
Global Heat Flow Database [Pollack et al., 1993] is sparse
and irregular. Nevertheless, our GDH1-based approach still
presents uncertainties due to incomplete information on sedi-
ment thicknesses, local heat flow anomalies, and the thermal
properties of sediments.
[8] From the heat flow we have calculated the geothermal

gradient [Heberling et al., 2010] and consequently estimated
the temperature at the top of the basement (in °C), with the
thermal conductivity of the sediments taken as Ks = 1W/m/K
[Pollack et al., 1993; Pribnow et al., 2000a] (see supporting
information “Figure S2”).
[9] We have validated our estimates of temperature at the

sediment-basement interface by using borehole temperature
logs from Sites 504 and 1256 [Alt et al., 1993; Teagle
et al., 2006] and the Juan de Fuca Plate [Davis et al., 1997]
(Figure 1; supporting information “Figure S1” for compari-
son with HSCM). The two areas have different trends of

basement-sediment interface temperature as a function of
age. In the eastern equatorial Pacific Ocean there is good
agreement between estimated and measured temperature.
However, on the Juan de Fuca Plate, the temperatures at
most sites are better fit using the higher measured thermal
conductivity (Ks ~2W/m/K) of the local muddy and sandy
turbiditic sediments [Pribnow et al., 2000b]. At Sites 1026
and 1027, the measured temperature is lower than predicted
because of hydrothermal circulation [Hutnak et al., 2006;
Wheat et al., 2004] linked to surrounding basement outcrops
(e.g., Baby Bare) [Fisher et al., 2003]. Although there are nu-
merous holes drilled into the oceanic crust by scientific ocean
drilling (Deep Sea Drilling Project (DSDP), Ocean Drilling
Program (ODP), and Integrated Ocean Drilling Program
(IODP)), eePO, and JdF are the only locations where the tem-
peratures close to the sediment-basement interface are well
constrained. The validation at the eePO and JdFP gives us
confidence in our calculations but emphasizes the need for
verification of local physical properties.
[10] The densities of CO2 (ρCO2) and seawater (ρseawater)

were calculated for pressures from 0 to 60MPa and tempera-
tures from 0 to 100°C. The CO2 density was determined by
interpolating the online National Institute of Standards and

0

20

40

60

80

100

120

140

0 3 6 9 12 15 18

B
as

em
en

t 
Te

m
p

er
at

u
re

 [
°C

]

Basement Age [Myr]

JdF estimations Ks=2 W/m/K
JdF estimations Ks=1 W/m/K

eePO estimations Ks=1 W/m/K

eePO sites
ODP Leg 168

Site 1256
Site 504

1023
1024

1025,1030,1031
1028

1029
1032

1026, 1027

Figure 1. Comparison between estimated temperatures in the eastern equatorial Pacific Ocean (eePO) and the Juan de Fuca
Plate (JdFP), and measured downhole temperatures at the sediment-basement interface. White squares: data from eePO
[Alt et al., 1993; Teagle et al., 2006]; orange squares: data from JdFP [Davis et al., 1997]. Circles: estimated values in the
eePO (blue), and on the JdFP (red with Ks = 1W/m/K; orange with Ks = 2W/m/K).
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Figure 2. Density difference (Δρ= ρCO2� ρseawater in kg/m3)
between CO2 and seawater density as a function of pressure
between 0 and 60MPa, and temperature between 0 and
100°C, with the phase diagram of CO2 overlaid. Positive
differences shown in blue indicate conditions for gravita-
tional trapping.
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Technology (NIST) database (Linstrom, P. J., and W. G.
Mallard (Eds.), NIST Chemistry WebBook, NIST Standard
Reference Database Number 69, National Institute of
Standards and Technology, Gaithersburg Md, 20899, retrieved
November 12, 2012, http://webbook.nist.gov), which is based
on the equation of state by Span and Wagner [1996]. Seawater
density was estimated using the SeaWater MATLAB library
[Fofonoff et al., 1983], assuming a constant salinity of 35 psu
[Brown et al., 1995]. Figure 2 shows the density difference

between CO2 and seawater as a function of temperature and
pressure together with a phase diagram of carbon dioxide.
Temperatures above 100°C are not considered because the den-
sity of CO2 is too low to allow gravitational trapping.
[11] The density difference at the sediment-basement inter-

face at each point in our 6′× 6′ global grids is calculated
using the estimated temperature and pressure. We combined
this with the sediment thickness map to identify locations
where (1) CO2 is denser than seawater at the sediment-base-
ment interface (Figure 2), and (2) the sediment thickness is
between 200m and 700m (Figure 3). We choose a minimum
thickness of 200m to ensure a continuous low permeability
blanket over minor basement topography such as fault ridges
or seamounts that might puncture the sediment cover and
allow the egress of basement fluids. To estimate the maxi-
mum sediment thickness, we have calculated the density
difference for a wide range of lithospheric ages and sediment
thicknesses using the GDH1 model for both water depth and
heat flow, and assuming a hydrostatic sediment column
(Figure 3). Based on global average conditions, GDH1 indi-
cates a restricted zone where gravitational trapping is possi-
ble, and that anywhere with more than ~600m of sediments
CO2 is likely to be gravitationally unstable due to the high
temperatures. Using the HSCM (see supporting information
“Figure S3”), the equivalent limit is ~1000m. Hence, we
settle on an upper sediment thickness limit of 700m.

3. Discussions

[12] Much of the upper oceanic crust does not provide suit-
able locations for the geological sequestration of CO2 by
gravitational and physical trapping. Gravitational trapping
(ρCO2> ρseawater) requires pressures higher than 25MPa

Figure 3. Density difference between CO2 and seawater
at the sediment-basement interface as a function of plate
age and sediment thickness using the GDH1 model to deter-
mine both water depth and thermal conditions. Sediment
thicknesses below the heavy black line show where positive
density differences required for stable gravitational trapping
are achieved.

Figure 4. An equal area map showing locations for stable geological sequestration of CO2. Shading shows the
difference in density between CO2 and seawater in areas where the sediment thickness is between 200 and 700m and
the CO2 is denser than seawater. Five potential reservoirs (insets a–e) have been identified. The red box indicates the
area required to store 100 yrs of current anthropogenic emissions of CO2, assuming a pillow lava thickness of 300m
and 10% porosity [Carlson and Herrick, 1990; Jarrard et al., 2003; Johnson and Pruis, 2003]. Yellow boxes show
regions in Figure 5.
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(~2500m of water) and temperature between 0 and 30°C
(Figure 2). The density of CO2 decreases dramatically with
decreasing pressure and increasing temperature, compared
to a near constant density for seawater. The combination
of high pressure and low temperature requires old ocean
crust with relatively thin sediments. Note that within this
p-T window liquid CO2 is the thermodynamically stable
phase, with densities between 1040 and 1125 kg/m3 com-
pared with 140 kg/m3 (at 100°C, 8MPa) to 1045 kg/m3

(at 30°C, 60MPa) for supercritical CO2.
[13] Suitable reservoirs where physical (sediment between

200 and 700m) and gravitational (ρCO2> ρseawater) trapping
can be combined are shown on the global map (Figure 4);
the global map produced using the HSCM is available in the
supporting information “Figure S4”. Selected potential reser-
voirs are in the Indian Ocean between Indonesia and Australia
(inset a); in the northwest Pacific Ocean near the east coast of
Japan and Russia (inset b), and south of the Aleutian Islands
(inset c); and in the Atlantic Ocean near Bermuda (inset d)
and close to South Africa (inset e) (Table 1).
[14] We have identified these sites based on the positive

Δρ between CO2 and seawater, the oceanic crustal age, the
sediment thickness, and the distance to major industrial CO2

sources [International Energy Agency Greenhouse Gas R&D
Programme, 2002] (Table 1). Other areas also have suitable
conditions for carbon dioxide trapping, but we have not yet
explored these options due to their smaller sizes and lower
Δρ, although some are closer to land. We have computed the
potential storage volume for each target (Table 1), assuming
300m as reasonable thickness of permeable pillow lavas for
old crust. Given an average porosity of 10% [Carlson and
Herrick, 1990; Johnson and Pruis, 2003], even for old oceanic
crust (e.g., ODP Hole 801C [Jarrard et al., 2003]), we deter-
mine the potential pore volume. The storage capacity in each
area is between ~13,800 and 127,800Gt of CO2. At the current
global annual anthropogenic flux of ~35 Gt of CO2 per year
[Le Quere et al., 2009], even the smallest identified reservoir
(inset c), could provide sufficient carbon dioxide sequestration
capacity for several centuries (Figure 4).
[15] Contrary to previous suggestions [Goldberg et al.,

2008; Slagle and Goldberg, 2011], sites on the Juan de Fuca
Plate and in the eastern equatorial Pacific Ocean are unsuitable
for gravitational trapping of carbon dioxide (Figure 5) because
thick sediment covering young oceanic crust results in high
temperatures at the sediment-basement interface, that renders
CO2 less dense than seawater.
[16] Our evaluation based on global data sets shows

that CCS using subsea basalts as the storage medium has

considerable potential. However, regional investigations are
needed to determine local sediment properties, thicknesses,
continuity, and seafloor thermal gradients. Drilling to facili-
tate detailed lithological, physical, thermal, and hydrological
characterization of the sediment overburden and target basalt
formations is essential.

Table 1. Properties of the Five Potential Reservoirsa

Code Location

Area

[× 106 km2]

Pore Volume

[× 104 km3]

ρCO2

[kg/m3]

CO2

[Gt]

Δρ
[kg/m3]

Age

[Myr]

Sed. Thickness

[m]

Distance

[km]

a Indian Ocean 1.47 4.42 1066 47,162 18 85 335 1500
b NW Pacific 3.97 11.9 1073 127,870 24 100 310 1300
c S-Aleutians 0.43 1.30 1063 13,791 15 60 275 950
d Bermuda 1.15 3.45 1066 36,780 17 80 320 1500
e SE Atlantic 2.22 6.66 1062 70,701 14 85 290 1700

aΔρ, in situ excess density of CO2 over seawater; age from [Müller et al., 2008]; sediment thickness from the NOAA database [Divins, 2003]. Distance of
the reservoir from land is taken from the nearest stationary source of CO2 according to the IEA GHG database [International Energy Agency Greenhouse Gas
R&D Programme, 2002].

Figure 5. Map of density difference Δρ between CO2 and
seawater at (a) Juan de Fuca Plate (with Ks = 2W/m/K) and
(b) at eastern equatorial Pacific Ocean (with Ks = 1W/m/K).
Sediment thicknesses are shown with black contour lines.
The dark shadows show the previously suggested regions
for deep-sea basalt CO2 sequestration [Goldberg et al.,
2008; Slagle and Goldberg, 2011].
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4. Conclusions

[17] Offshore basalt formations have been previously
suggested as sites for geological carbon dioxide sequestra-
tion. We have used global data compilations to calculate the
density of CO2 in the pressure-temperature regime at the
top of the basement throughout the world’s oceans, and iden-
tified regions where CO2 is denser than seawater. Previously
suggested young sites on the eastern flank of the JdF Ridge
and in the eastern equatorial Pacific (Sites 504, 1256) are not
suitable for storing CO2 because it is gravitationally unstable
(ΔρCO2� seawater = 0 to <�70 kg/m3). However, we identify
five large regions of old seabed where gravitational stability
of stored CO2 coincides with physical trapping by 200–700m
thickness of sediments. Using conservative assumptions about
the porosity available, the smallest of these regions can store
several centuries of anthropogenic CO2 emissions.
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