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Abstract

At a time of increasing global demand for food, dwindling land and re-
sources, and escalating pressures from climate change, the farming industry
is undergoing financial strain, with a need to improve e�ciency and crop
yields. In order to improve e�ciencies in farming, and in fertiliser usage
in particular, understanding must be gained of the fertiliser-to-crop-yield
pathway. We model one aspect of this pathway; the transport of nutrients
within the vascular tissues of a crop plant from roots to leaves. We present
a mathematical model of the transport of nutrients within the xylem vessels
in response to the evapotranspiration of water. We determine 7 di↵erent
classes of flow, including positive unidirectional flow, which is optimal for
nutrient transport from the roots to the leaves; and root multidirectional
flow, which is similar to the hydraulic lift process observed in plants. We
also investigate the e↵ect of di↵usion on nutrient transport and find that
di↵usion can be significant at the vessel termini especially if there is an ax-
ial e✏ux of nutrient, and at night when transpiration is minimal. Models
such as these can then be coupled to whole-plant models to be used for
optimisation of nutrient delivery scenarios.
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1 Introduction

In crop plants such as wheat, fertilisers are often necessary to ensure high
crop yields, especially at a time of farming intensification. Fertilisers are
applied to soils which are then taken up by the root systems. Phosphate is
a key fertiliser for crops, but is often the most limiting due to its low mobil-
ity in soils (Bucher, 2007). Phosphate plays a vital role in plant function;
it is important for photosynthesis, respiration, energy conservation and the
metabolism of carbon (Foyer & Spencer, 1986); with the result that phos-
phate application significantly increases grain yield (Gallet et al., 2003).
However, the rising global population, together with the disruptive e↵ects
of climate change, are putting increasing pressures on the agricultural indus-
try to satisfy the growing demand for food (Cordell et al., 2009). Therefore
there is a need to improve the e�ciency of phosphate use (Bennett & Elser,
2011), which requires understanding and improvement of all the processes
in the fertiliser-to-crop-yield pathway. In this paper we consider the trans-
port of phosphate and water from the roots to the leaves within an idealised
model of the xylem vessels of a wheat plant. In the future, this model can
be coupled to whole-plant models which can be used in conjunction with ex-
perimental data to determine and optimise plant parameters and functions
such as phosphate uptake and loading. Note that this research is also appli-
cable to nutrients which possess similar transport properties to phosphate,
and hence we use the terms phosphate and nutrient interchangeably.

In angiosperms such as wheat, xylem tissue is comprised of lignified
vessel elements resulting in a continuous, low-resistance pipe-like structure,
and phosphate is transported within these vessels by advection caused by
the flow of water. Water flows upwards within the xylem vessels as a passive
consequence of evapotranspiration through the stomata in the leaves. Dur-
ing the day, the stomatal pores open, allowing the di↵usion of carbon dioxide
from the air to the mesophyll cells for photosynthesis, whilst water di↵uses
out of the leaf down the water vapour concentration gradient. This loss of
water is known as transpiration and creates a negative potential in the leaf
air-spaces that pulls water out of the xylem vessels and into the mesophyll
cell walls. This consequently creates a gradient in pressure between the top
of the xylem and the roots, pulling water upwards under tension. Water up-
take from the soil to roots is also driven by the gradient in pressure between
the xylem and the soil pore water. This transport mechanism is known as
cohesion-tension theory and was proposed by Dixon & Joly (1895). For a
review consult Tyree (1997), Steudle (2001), and Kramer & Boyer (1995).

In this paper we assume that the flow of water is driven only by the pres-
sure di↵erence between roots and leaves and consider the e↵ect that gravity
and varying leaf pressures have on the flow. For certain parameter regimes
the flow of water can become multidirectional which would inhibit nutrient
transport to the leaves. We therefore seek the conditions for unidirectional
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flow everywhere in the xylem vessel which would give rise to optimal nutrient
transport to the leaves.

Di↵usional transport of nutrients has generally been neglected in the
literature as di↵usion is small compared to convection in the main bulk flow.
However, di↵usion is significant near the vessel boundaries, especially when
the convective transport falls to zero at the xylem termini in the root tips.
In addition, di↵usional transport is important throughout the vessels when
the transpirational flow diminishes during the night. Finally, the inclusion
of di↵usion permits the modelling of an axial flux of nutrient through the
xylem termini in the root tips, which may occur in response to the nutrient
sink caused by the meristemic tissue at the growing root tip. For example
Bingham & Stevenson (1992) show that root tips of wheat consume more
glucose compared to the rest of the root, and Bowen (1970) show that root
tips of Pinus radiata uptake and retain more phosphate.

The convective and di↵usional transport of nutrients within the vessels
is balanced by the loading and unloading (which may be active and/or pas-
sive) of nutrient in response to the activity of the surrounding tissues. For
example, phosphate enters the xylem vessel in the root zone, and exits in the
stem and leaf zones. The majority of the phosphate is unloaded in the leaf
region where it is used for photosynthesis. For simplicity, we assume that
the loading is constant in the di↵erent plant zones, although the loading can
easily be modified to incorporate more complicated functions, such as those
that depend on internal concentration or axial distance.

In Section 2 we present the mathematical model which describes the
flow of water and phosphate in the xylem vessels in response to a pressure
di↵erence between the roots and leaves. In Section 3 we discuss the values
of the model parameters particular to phosphate transport in wheat and
nondimensionalise the model. In Section 4 we analytically solve for the
flow of water and determine the conditions for unidirectional flow and hence
optimal flow of phosphate. In Section 5 we present analytical and numerical
solutions of phosphate transport in the xylem vessel, and finally in Section
6 we discuss the implications of the model findings.

2 Model

We consider the transport of water and nutrients from roots to leaves in the
xylem vessels of a small plant such as wheat. We follow a similar approach
to the phloem model of Jensen et al. (2011, 2012) and separate the plant
and xylem tissue into three zones in the ẑ direction; the leaves L, the stem
S, and the roots R as shown in Figure 1. The leaf zone is represented by
0 < ẑ < ẑ1, the stem zone is ẑ1 < ẑ < ẑ2 and the root zone is ẑ2 < ẑ < ẑ3
where ẑ, ẑ1, ẑ2, and ẑ3 are measured in metres. We prescribe that the xylem
tissue consists of v̂i

j

number of semipermeable cylindrical vessels of radius
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âi
j

(m) where j is an index for the radii for the di↵erent vessels and i is an
index for plant zone. We consider the transport of phosphate only, which
we denote as n̂ (molm�3). All symbols are given in Table 1.

Leaves&(L)& Stem&(S)& Roots&(R)&

Leaf&air&space&
Soil&

Xylem&6ssue&boundary&
Plant&boundary&

ẑ = 0 ẑ = ẑ1 ẑ = ẑ2 ẑ = ẑ3

p̂ext

p̂soil

p̂ ẑ( ),
n̂(ẑ)

Figure 1: Model of the xylem within a plant. ẑ = 0 is the top of the xylem in the
leaf, ẑ1 is the leaf-stem boundary, ẑ2 is the stem-root boundary, and ẑ3

is the terminus of the xylem in the root. The pressures in the soil
(p̂soil) and leaf air-spaces (p̂ext) are constant, and the xylem pressure,

p̂, and nutrient concentration, n̂, are functions of ẑ.

2.1 Water transport in the xylem

We assume that the water flow in the xylem vessel consists of axial and
radial components. It is generally accepted that the axial flow along the
xylem is governed by Poiseuille’s law (Frensch & Steudle, 1989) such that
the dimensional axial flux (m3 s�1) is given by

q̂i
z

= �k̂
z

✓
dp̂i

dẑ
� ⇢̂ĝ

◆
, k̂

z

=
X

j

⇡v̂i
j

âi 4
j

8µ̂
, (1)

where p̂i is the internal fluid pressure (Pa) in the xylem vessels, ⇢̂ is the
density (kgm�3) of the sap, ĝ is the gravitational acceleration (m s�2), k̂

z

is
the xylem axial Poiseuille conductivity (m4 Pa�1s�1), and µ̂ is the viscosity
(Pa s). In general, âi

j

and v̂i
j

can vary with plant length, but aggregrate

properties such as k̂
z

are continuous. In Section 3 we will show that k̂
z

varies by a small amount between plant zones, and therefore choose that k̂
z

is constant across the plant. In addition, we assume that µ̂ and ⇢̂ are also
constant. By conservation of mass, the axial flux along the xylem tubes is
balanced by the radial flux into the tubes such that

�k̂
z

d2p̂i

dẑ2
=
X

j

2⇡v̂i
j

âi
j

q̂i
r

, (2)
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where q̂i
r

is the radial flux per unit area (m s�1) into the xylem vessels. In
the root zone, water flows into the xylem from the soil, whereas in the leaf
zone water flows out of the xylem into the mesophyll air-spaces which can
then evaporate out to the air. The flow of water through the plant tissues is
governed primarily by di↵erences in pressure and hence mainly follows the
passive apoplasmic pathway through the cortex tissue (Steudle & Peterson,
1998). Following the approach of Steudle & Peterson (1998), Molz (1981),
and Landsberg & Fowkes (1978) we treat the variety of tissues as a composite
membrane and describe the radial flows (m s�1) as

q̂R
r

= k̂R
r

(p̂soil � p̂R), q̂L
r

= k̂L
r

(p̂L � p̂ext), (3)

where q̂R
r

is the radial flow in the root from soil to xylem, and q̂L
r

is the radial
flow from the xylem to the leaf air-spaces. The tissue radial conductivities
(m s�1Pa�1) are k̂R

r

in the root, and k̂L
r

in the leaf, and p̂soil (Pa) is the water
pressure in the soil, and p̂ext (Pa) is the pressure external to the xylem in the
leaf air-spaces. Substituting the radial fluxes (3) into the water conservation
equation (2) we obtain

�k̂
z

d2p̂L

dẑ2
= ↵̂L

�
p̂L � p̂ext

�
, (4)

�k̂
z

d2p̂S

dẑ2
= 0, (5)

�k̂
z

d2p̂R

dẑ2
= ↵̂R

⇣
p̂soil � p̂R

⌘
, (6)

where ↵̂L =
X

j

2⇡v̂L
j

âL
j

k̂L
r

, ↵̂R =
X

j

2⇡v̂R
j

âR
j

k̂R
r

, (7)

where v̂L
j

are the number of xylem vessels in the leaves, and v̂R
j

are the
number of xylem vessels in the roots. Two boundary conditions are required
to solve the model and we follow a similar approach to that of Landsberg &
Fowkes (1978). At the tip of the xylem in the root zone we prescribe zero
flux of water as we assume that the xylem terminus in the roots is axially
impermeable to water. At the xylem tip in the leaf zone we assume that
the xylem vessel is open to the leaf air-spaces and prescribe the pressure to
be p̂0 (Pa). Since the architecture of the leaf air-spaces is inhomogeneous,
it is possible that the pressure in the air-spaces can vary, and hence we also
allow the possibility that p0 6= pext. The boundary conditions therefore are

p̂L = p̂0 at ẑ = 0,
dp̂R

dẑ
� ⇢̂ĝ = 0 at ẑ = ẑ3. (8)

In addition we prescribe continuity of pressure and pressure flux at the zone
boundaries, ẑ1 and ẑ2. Note that k̂

z

is constant across the plant, resulting
in the conditions of continuity of flux simplifying to continuity of pressure
gradient.
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Symbol Description Value Units Source

L, S, R leaf, stem, root zones – – –
i zone index – – –
j xylem vessel index – – –
v̂ number of xylem vessels Tables 4 & 5 – Percival (1921)
â xylem vessel radius Tables 4 & 5 m Percival (1921)
ẑ axial coordinate variable m –
ẑ1 position of leaf-stem boundary 0.23 m Kutschera et al. (2009)
ẑ2 position of stem-root boundary 0.33 m Kutschera et al. (2009)
ẑ3 length of plant 0.81 m Kutschera et al. (2009)
âR radius of root 2.48⇥ 10�4 m Jones et al. (1983)
âL thickness of leaf 1.38⇥ 10�4 m Araus et al. (1986)
n̂ concentration of nutrient variable molm�3 –

N̂ concentration at z = 0 0 molm�3 Section 2

Ĉ typical concentration scale variable molm�3 Section 3

D̂ di↵usivity of nutrient in water 10�9 m2s�1 Perry (1997)

F̂ radial loading/unloading of nutrient variable molm�2s�1 –

f̂ axial loading/unloading at z = z3 variable molm�2s�1 –

k̂
z

xylem axial conductivity 2⇥ 10�16 m4 Pa�1s�1 Section 3

k̂R
r

root local radial conductivity 1.2⇥ 10�13 ms�1Pa�1 Jones 1983

k̂L
r

leaf local radial conductivity 1.35⇥ 10�12 ms�1Pa�1 Section 3
↵̂L leaf e↵ective radial conductivity 3.87⇥ 10�15 m2Pa�1s�1 Section 3
↵̂R root e↵ective radial conductivity 1.11⇥ 10�16 m2Pa�1s�1 Section 3
µ̂ fluid (water) viscosity in xylem 8.9⇥ 10�4 Pa s standard
⇢̂ fluid (water) density in xylem 103 kgm�3 standard
ĝ gravitational acceleration 9.81 ms�2 standard
q̂
z

axial flux in xylem variable m3 s�1 –
q̂
r

radial flux in xylem variable ms�1 –
p̂ internal pressure in xylem variable Pa –
p̂soil soil pore water pressure �0.3⇥ 106 Pa Campbell (2008)
p̂ext leaf-air-space pressure �1⇥ 106 Pa Campbell (2008)
p̂0 xylem pressure at z = 0 �1⇥ 106 Pa Campbell (2008)

P̂ typical pressure scale 1⇥ 106 Pa Section 3

Table 1: Summary of dimensional symbols and their values.

2.2 Nutrient transport in the xylem

We assume that radial di↵usion of the nutrients is fast and hence only con-
sider their variation in the axial direction. Nutrients such as phosphate are
loaded into the xylem radially at the root and unloaded in the stem and
leaf regions. We follow the approaches of Thompson & Holbrook (2003) and
Jensen et al. (2011, 2012) and assume that the loading and unloading of nu-
trient into and out of the vessels, denoted by F̂ i (molm�2s�1), is balanced
by the flux of nutrient in the axial direction. However, unlike Thompson &
Holbrook (2003) and Jensen et al. (2011, 2012) we allow di↵usion to con-
tribute to the axial flux. Therefore conservation of n̂ is given by

d

dẑ

✓
n̂iq̂i

z

� ⇡v̂i
j

âi 2
j

D̂
dn̂i

dẑ

◆
= 2⇡v̂i

j

âi
j

F̂ i, (9)

where D̂ is the di↵usion coe�cient (m2 s�1) of phosphate in the xylem sap.
Di↵usion has previously been neglected since, in the main bulk of the fluid,
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the di↵usive flux of nutrients is negligible compared to convection, such that
the nutrient transport is mainly due to the flow of water. However, near the
ends of the xylem vessel, di↵usion can become important when fluid flow is
slow or zero, for example at the xylem terminus in the root tip (ẑ = ẑ3).
In addition, due to the zero fluid velocity at ẑ = ẑ3, in a convection-only
system, no boundary conditions can be applied to the system. For example,
in a convection-only system the nutrient transport is governed by

d

dẑ

�
n̂iq̂i

z

�
= 2⇡v̂i

j

âi
j

F̂ i, (10)

and has the solution n̂i =
R
2⇡v̂i

j

â

i

j

F̂

i

dẑ+k

q̂

i

z

where k is a constant. Since q̂i
z

= 0

at ẑ = ẑ3, the only choice of k that would keep n̂i finite everywhere is
k = �

R
2⇡v̂i

j

âi
j

F̂ idẑ|
ẑ=ẑ3 . If another value of k is chosen, the value of n̂i

would be infinite at ẑ = ẑ3, which is unphysical. Applying continuity of
n̂i between the plant zones, results in n̂i being fully determined for all ẑ
without having applied any external boundary conditions. It is unintuitive
that a reduction in the order of the system from 2 for a combined convection-
di↵usion system to 1 for a convection-only system results in the restriction
that no boundary conditions can be applied, but the reason is solely due to
the fact that q̂

z

is prescribed to be equal to zero at ẑ = ẑ3. At this point
di↵usion can no longer be neglected in comparison to convection, and we
therefore include its e↵ect and apply two boundary conditions to the system.

For generality we prescribe an axial flux of phosphate f̂ (molm�2s�1)
into the xylem vessel at ẑ = ẑ3, which is only possible if di↵usion is in-
cluded in the system. It is not known whether axial loading or unloading
of phosphate occurs, but it is possible that axial flux can occur in response
to the nutrient sink of the growing root tip. At the xylem terminus in the
leaf we prescribe the concentration of phosphate N̂ (molm�3), such that the
boundary conditions are given by

n̂L = N̂ at ẑ = 0, (11)

�⇡v̂R
j

âR 2
j

D̂
dn̂R

dẑ
+ q̂R

z

n̂R = ⇡v̂R
j

âR 2
j

f̂ at ẑ = ẑ3, (12)

where q̂R
z

= 0 at ẑ = ẑ3. In addition, we prescribe continuity of phosphate
concentration and phosphate flux at the zone boundaries ẑ1 and ẑ2. In
Section 5 we choose that N̂ = 0 to represent the low level of phosphate at
z = 0 due to its use in photosynthesis in the leaves, however for generality
we retain N̂ as a variable which is free to be chosen by the user.

3 Nondimensionalisation and parameter values

We nondimensionalise the equations by using the following scales ẑ = ẑ3z,
p̂ = P̂ p, n̂ = Ĉn, where we choose P̂ to be equal to modulus of the pressure
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in the leaf air-space, p̂ext = �106 Pa (Campbell, 2008), such that P̂ = 106 Pa.
In addition we prescribe the soil pressure to equal p̂soil = �0.3 ⇥ 106Pa
(Campbell, 2008). We leave the choice of Ĉ, which is a typical concentration
(molm�3) of phosphate in the xylem vessels, to the end of this section.
Note that only dimensional values are denoted with a hat (ˆ) symbol. The
nondimensional equations for water and nutrient transport are

d2pL

dz2
= ML

�
pext � pL

�
, (13)

d2pS

dz2
= 0, (14)

d2pR

dz2
= MR

⇣
pR � psoil

⌘
, (15)

d

dz

✓
ni

✓
dpi

dz
�G

◆
+

1

Pe

dni

dz

◆
= �F i, (16)

where the nondimensional parameters are defined in Table 2. ML is the ra-
tio of leaf radial conductivity to axial conductivity, MR is the ratio of root
radial conductivity to axial conductivity, pext is the nondimensional pressure
in the leaf air-spaces, psoil is the nondimensional soil pore pressure, G is the
gravitational term, and F i is the nondimensional loading/unloading param-
eter. The nutrient Peclet number, Pe, is the ratio of convective to di↵usive
transport and is given by Pe = k̂

z

P̂ /⇡v̂i
j

âi 2
j

D̂ which can, in general, vary

across the plant. However, similarly as for k̂
z

, we expect Pe to be continu-
ous and assume Pe is constant across the plant zones. The nondimensional
boundary conditions are given by

pL = p0 at z = 0, (17)

dpR

dz
�G = 0 at z = 1, (18)

nL = � at z = 0, (19)

1

Pe

dnR

dz
+

✓
dpR

dz
�G

◆
nR = �f at z = 1, (20)

where p0 and � are the nondimensional pressure and concentration at z = 0,
and f is the axial loading/unloading parameter through the xylem tip in
the root (see Table 2 for definitions and values). In addition we prescribe
continuity of p, flux of p, n, and flux of n at the nondimensional zone bound-
aries z1 and z2. We calculate the values of the nondimensional parameters
based on typical values for a wheat plant and phosphate. Based on values
measured for summer sowing wheat (Kutschera et al. (2009), pg 228) we
consider the leaf-stem boundary to be at ẑ1 = 0.23m, the stem-root bound-
ary to be at ẑ2 = 0.33m and the length of the plant to be ẑ3 = 0.81m. We
also assume that the xylem sap is similar in property to water such that the
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density is ⇢̂ = 103kgm�3 and the viscosity is µ̂ = 8.9 ⇥ 10�4Pa s. We use
ĝ = 9.81m s�2 for the gravitational acceleration and D̂ = 10�9m2s�1 for the
di↵usivity of phosphate in water (Perry, 1997).

Symbol Description Value

z1 =
ẑ1
ẑ3

nondimensional leaf-stem boundary 0.3

z2 =
ẑ2
ẑ3

nondimensional stem-root boundary 0.4

ML =
↵̂

L

ẑ

2
3

k̂

L

z

ratio of radial to axial conductivity in leaf 13

MR =
↵̂

R

ẑ

2
3

k̂

R

z

ratio of radial to axial conductivity in root 0.4

G = ⇢̂ĝẑ3

P̂

ratio of gravity to pressure scale 0.01

Pe = k̂

z

P̂

⇡v̂

i

j

â

i 2
j

D̂

ratio of convective to di↵usive transport 107

FL =
2⇡v̂L

j

â

L

j

ẑ

2
3 F̂

L

k̂

z

P̂ Ĉ

ratio of leaf radial loading to axial transport �1⇤

FS =
2⇡v̂S

j

â

S

j

ẑ

2
3 F̂

S

k̂

z

P̂ Ĉ

ratio of stem radial loading to axial transport �0.5⇤

FR =
2⇡v̂R

j

â

R

j

ẑ

2
3 F̂

R

k̂

z

P̂ Ĉ

ratio of root radial loading to axial transport 1⇤

f =
⇡v̂

R

j

â

R 2
j

ẑ3f̂

k̂

z

P̂ Ĉ

ratio of axial loading to axial transport 0.01⇤

p0 = p̂

0

P̂

ratio of xylem pressure at z = 0 to |p̂ext| �1

psoil = p̂

soil

P̂

ratio of soil pressure to |p̂ext| �0.3

pext = p̂

ext

P̂

ratio of leaf-air-space pressure to |p̂ext| �1

� = N̂

ˆ̂
C

ratio of phosphate concentration scales at z = 0 0⇤

Table 2: Summary of nondimensional symbols and typical values used based on
those given in Table 1. The starred symbol (*) indicates that the value

has been prescribed (see text in Section 3 for discussion).

Values for wheat root xylem radii and vessel numbers are given in Table
4 in Appendix A obtained from Percival (1921) (pg 39-40). Similarly, the
values for wheat leaves are given in Table 5 in Appendix A from Percival
(1921) (pg 57-59). Using the values in Table 4 and Table 5 we find that k̂

z

is very similar in the two regions; in the roots k̂
z

= 1.93⇥10�16m4 Pa�1s�1,
and in the leaves k̂

z

= 2.01 ⇥ 10�16m4 Pa�1s�1. Therefore we choose an
average value of k̂

z

= 2⇥ 10�16m4 Pa�1s�1. Similarly, we calculate that in
the root zone 1/Pe = 6.1⇥ 10�7, and in the leaf zone 1/Pe = 7.12⇥ 10�8,
such that Pe ⇡ 107. This indicates that di↵usion is negligible compared to
convection in the main flow regime in all plant zones.

We use a wheat root radial conductivity of k̂R
r

= 1.2⇥ 10�13ms�1Pa�1

from Jones et al. (1983) based on a wheat root radius of âR = 2.48 ⇥
10�4m and we estimate k̂L

r

by assuming that the leaf radial conductivity
is proportional to the root radial conductivity through k̂L

r

= 2⇡âRkR
r

/âL.
Using a wheat leaf thickness of âL = 1.384⇥ 10�4m (Araus et al., 1986) we
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calculate k̂L
r

= 1.35 ⇥ 10�12ms�1Pa�1. Using Equation (7), we calculate
↵̂R = 1.11 ⇥ 10�16m2s�1Pa�1 and ↵̂L = 3.87 ⇥ 10�15m2s�1Pa�1. Finally
we calculate MR = ↵̂Rẑ23/k̂z ⇡ 0.4,ML = ↵̂Lẑ23/k̂z ⇡ 13. With P̂ = 106Pa,
we calculate the gravitational term as G = ⇢̂ĝ ẑ3/P̂ = 0.008 ⇡ 0.01 and we
see that the e↵ect of gravity on water movement is small compared to the
pressure gradient driven terms.

The values of the nondimensional radial (F ) and axial (f) loading depend
on knowledge of F̂ and f̂ which are, to the authors’ knowledge, currently
unknown in the literature. Considering the root zone we see that FR ⇡
3 ⇥ 106 F̂

R

Ĉ

, f ⇡ 18 f̂

Ĉ

, F
R

f

= 1.7 ⇥ 105 F̂
R

f̂

, which indicates that if axial flux

f̂ did occur, when f̂ is comparable to F̂R, its overall e↵ect on the flow

would be smaller than that of F̂R. Since F̂ and f̂ are unknown, we do not
define a choice of Ĉ and, for this paper, assume that F and f are O(1)
and investigate the e↵ect that varying F and f has on nutrient transport.
We prescribe that FR is positive to represent loading of phosphate into
the xylem vessels, and similarly prescribe that FS and FL are negative to
represent unloading. Similarly, we prescribe that f is positive, to represent
axial flux of phosphate out of the xylem vessels in the root to be used for
root growth.

In the following sections we solve for the water transport analytically and
the nutrient transport analytically and numerically. In order to solve the
nutrient transport equations analytically we consider the limit of high Pe
and use the method of matched asymptotic expansions. We first determine
the conditions for unidirectional water transport and investigate the e↵ect
that di↵usion has on nutrient transport. We use the parameters values given
in Table 2 unless otherwise stated.

4 Results: Water transport

Solving equations (13) – (15) subject to the boundary conditions (17) – (18)
and continuity gives the following solution for the internal xylem pressure
in the leaf, stem and root regions respectively;

pL = A1 sin(
p
MLz) +A2 cos(

p
MLz) + pext, pS = A3z +A4,

pR = A5e
p
M

R

z +A6e
�
p
M

R

z + psoil, (21)

where A
i

are constants determined from the boundary conditions and are
given in the function ‘constants’ in the Maple file in the supplementary
materials. For certain parameter values the flow can become multidirec-
tional inside the xylem vessel, i.e. the velocity of the flow can change sign,
which may be detrimental to nutrient transport from roots to the leaves.
We determine the bounds on the parameter values that would give rise to
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multidirectional flow by solving qL
z

= 0, qS
z

= 0, and qR
z

= 0, which indicates
when the velocity in each zone is zero and hence may change sign.

In addition, we investigate the e↵ect that having a di↵erence between p0

(the internal xylem pressure at z = 0) and pext (the pressure external to the
xylem in the leaf air-spaces) has on the flow. We will first consider the case of
p0 = pext for G = 0 and G 6= 0 and then the case of p0 6= pext for G = 0 and
G 6= 0. In the following sections (4.1 and 4.2) we will classify the flow into
7 possible regimes depending on the parameter values; 4 are characterised
by unidirectional flow (UDF), and 3 are characterised by multidirectional
flow (MDF). These flows are summarised in Figure 11 and Table 3 in the
Discussion (Section 6).

4.1 Conditions for multidirectional flow where internal xylem

pressure at z = 0 equals leaf-air-space pressure (p0 = pext)

4.1.1 Zero gravity (G = 0)

For p0 = pext, if G = 0, the conditions that satisfy qR
z

= 0 and qS
z

= 0 are

p0 = psoil, MR = 0, ML =
1

4

⇡2

z21
, (22)

where z1 is the nondimensional leaf length. If any of the conditions in
Equation (22) are satisfied then qR

z

= qS
z

= 0 for the entire length of the root
and stem zones. The condition qL

z

= 0 is satisfied for the same conditions

except for the condition on ML where instead ML = 1
4
⇡

2

z

2 . This indicates
that the position of where qL

z

= 0 can vary and depends on ML. Since the

minimum of ML = 1
4
⇡

2

z

2 is equal to 1
4
⇡

2

z

2
1
, Equation (22) represents the critical

value of ML for the entire length of the xylem vessel and we label this value
of ML as ML

crit

; below this value the flow is unidirectional, whereas above
this value the flow is multidirectional.

For a nondimensional leaf length of z1 = 0.3 (corresponding to ẑ1 = 0.23
m) ML

crit

= 27.4, and Figure 2 shows the pressure, axial flux, and radial flow
profiles for ML values above and below ML

crit

. For values of ML < ML

crit

(the ML = 13 line in Figure 2), the flow is positive UDF such that the axial
flow is towards the leaves for all z. The radial flow in the leaf is negative,
indicating outwards flow into the leaf air-spaces, and the radial flow in the
root is positive, indicating inwards flow from the soil.

For values of ML > ML

crit

the flow is MDF, but its nature is dependent
on the value of ML. For a small increase above ML

crit

(the ML = 28 line
in Figure 2), the flow is divergent in the leaf zone. The point of divergence
(the point where q

z

crosses 0) is near z1, such that for the majority of the
leaf zone the flow is towards z = 0, and for the remainder of the leaf zone,
and the stem and root zones, the flow is towards z = 1. The radial flow in
the leaf is out of the xylem vessel as previously, but the radial flow in the
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Figure 2: Profiles of internal xylem pressure, axial flux, and radial flow against
axial distance z for ML values above and below the critical

ML = 27.4, for psoil = �0.3, p0 = pext = �1, z1 = 0.3, z2 = 0.4,
MR = 0.4, G = 0. The dashed lines represent the plant zone

boundaries between leaf and stem, and stem and root. Positive radial
flow indicates inwards flow into the xylem, whereas negative radial flow

indicates outwards flow out of the xylem.

root is negative indicating outwards flow from the xylem vessel to the soil.
For a large increase above ML

crit

(the ML = 35 line in Figure 2) the flow is
convergent in the leaf zone, with inwards radial flow in both the leaf and root
zones, such that flow is driven down from the xylem tip in the leaf as well
as up from the roots. Both the divergent and convergent leaf MDFs seem
unphysical, and therefore ML

crit

possibly represents the maximum value of
ML that a plant can have. The critical value of ML is given by

ML ⌘ ↵̂Lẑ23

k̂
z

=
1

4

⇡2

z21
, (23)

and therefore suggests a critical relationship between the ratio of radial to
axial conductivity and the ratio of leaf length to plant length. For p0 > psoil

the flow is negative (towards to the roots) UDF, with inwards radial flow
in the leaves and outwards radial flow in the roots, and hence the complete
opposite of positive UDF. For this research however, we will focus mainly
on the physical case of p0, pext < psoil and ML < ML

crit

.
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4.1.2 Non-zero gravity (G 6= 0)

For G = 0, the critical parameter values that give rise to MDF are decoupled
as shown in Equation 22. Conversely when G 6= 0, the parameters couple
together, such that the position at which zero flux occurs (and hence gives
rise to MDF) is a function of G, ML, MR, z1, z2, p0, and psoil. We rewrite
this critical function in terms of p0

crit

which represents the critical value of
p0 that would give rise to MDF for 0  z  1 and Figure 3 shows the e↵ect
of G on p0

crit

for ML = 13 (< ML

crit

). The inclusion of G causes p0
crit

to vary
with z and decrease below psoil (the G = 0 line) in all zones except in the
leaf zone. The variation of p0

crit

leads to 5 possible flow regimes:
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unidirectional flow

2. Multidirectional 
flow in root zone

3. Multidirectional 
flow in leaf zone

Negative
unidirectional flow:

4. weak −−> 5. strong

p0

Figure 3: E↵ect of gravity on the critical value of p0 that would give rise to
multidirectional flow, p0

crit

, against axial distance z for ML = 13 for
psoil = �0.3, p0 = pext, z1 = 0.3, z2 = 0.4, MR = 0.4. There are five

possible flow regimes depending on the value of p0.

1. positive UDF for p0 < p0R
crit

|
z=1,

2. divergent MDF in the root zone for p0R
crit

|
z=1 < p0 < p0S

crit

,

3. divergent MDF in the leaf zone for p0S
crit

< p0 < p0L
crit

|
z=0,

4. weak negative UDF for p0L
crit

|
z=0 < p0 < psoil � 2Ge

M

R(1+z2)p
M

R

1
,

5. strong negative UDF for p0 > psoil � 2Ge

M

R(1+z2)p
M

R

1
,

which are shown in Figure 4.
The di↵erent flow regimes occur as the di↵erence between p0 and psoil,

which is the primary cause of flow, decreases. The flow regimes (1), (5),
and (3) are equivalent to the positive UDF, negative UDF, and divergent
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leaf MDF regimes respectively, discussed in Section 4.1.1. The inclusion of
gravity therefore leads to additional flow regimes (2) and (4), radial flow
profiles of which are shown in Figure 5. MDF in the root zone is charac-
terised by outwards radial flow in the leaves, but with both inwards and
outwards radial flow in the root zone.

The remaining regime, weak negative UDF, is characterised by outwards
radial flow in both the leaf and root zones. The transition from weak to
strong negative UDF occurs when the gradient of qL

z

switches from negative
to positive, which causes the switch from outwards to inwards leaf radial
flow. However, for the parameter values of interest, this transition occurs
for p0 > psoil, and hence outside the regime of interest. Note that MDF
cannot occur in the stem because we prescribe that radial flow occurs only
in the root and leaf zones.

For the case G = 0, if p0 = psoil there would be no flow for all z. With
the inclusion of gravity, if p0 = psoil, flow occurs but its nature is dependent
on p0

crit

. For example for ML = 13, p0
crit

|
z=0 is greater than psoil, therefore

for p0 = psoil, MDF in the leaf zone will occur. However, if ML is smaller,
for example ML = 3 as in Figure 6, then negative UDF can occur. In
fact, it can be seen that if even if p0 < psoil negative UDF will occur. The
consequence of this is that even a seemingly preferential pressure di↵erence
(p0 less than psoil) for positive flow can lead to negative flow from leaves
to roots. To ensure that only positive UDF occurs, p0 should be below the
minimum p0

crit

for all regions, which is (for the parameter values of interest)
in the root region at z = 1 and is given by

p0R
crit|z=1 = psoil+

Ge�
p
M

R(z2+1)

2

0

@ 1p
MR

+ 2(z1 � z2)�
2 tan

⇣p
MLz1

⌘

p
ML

1

A , (24)

where 1 = e2
p
M

R

z2 � e2
p
M

R

and 2 = e2
p
M

R

z2 + e2
p
M

R

.

4.2 Conditions for multidirectional flow where internal xylem

pressure and leaf air-space pressure di↵er (p0 6= pext)

4.2.1 Zero gravity (G = 0)

For the case where the internal xylem pressure at z = 0 and leaf air-space
pressure di↵er (p0 6= pext), the critical values which give rise to multidirec-
tional flow of ML and p0 again couple. If G = 0, qR

z

= qS
z

= 0 if

MR = 0, p0 = cos(
p
MLz1)

⇣
psoil � pext

⌘
+ pext. (25)

At z = z1, qL
z

= 0 is satisfied by the same conditions, therefore Equation
(25) is valid only for z1  z  1 (the stem and the root zones only) and we
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Figure 4: Profiles of xylem flow velocity profiles against axial distance z for
increasing p0, for ML = 13, MR = 0.4, psoil = �0.3, p0 = pext,
z1 = 0.3, z2 = 0.4, G = 0.01. UDF stands for unidirectional flow,

MDF stands for multidirectional flow. The conditions for the di↵erent
flow regimes are given in Table 3. The dashed lines represent the plant

zone boundaries between leaf and stem, and stem and root.
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therefore label this critical value of p0 as p0,S,R
crit

. For the parameter values

of interest, increasing ML increases the magnitude of p0,S,R
crit

, and for values

of p0 < p0,S,R
crit

positive UDF occurs in the stem and root zone, whereas for

p0 > p0,S,R
crit

MDF would result.
For z  z1 (the leaf zone), the critical p0 is a function of z, and its

behaviour depends strongly on the value of ML;

p0
crit

= pext +

p
MR(pext � psoil)1 cos(

p
MLz)

f1(z) + f2(z)
, (26)

f1(z) = �
p
MR1 cos

⇣p
ML(z � z1)

⌘
,

f2(z) =
p
ML

⇣
2 +

p
MR(z1 � z2)1

⌘
sin
⇣p

ML(z � z1)
⌘
.

Note that at z = z1, Equation (26) is equivalent to Equation (25). Figure
7 shows the variation of the critical values of p0 with z in the leaf region
for increasing values of ML. Note that the solid black line represents psoil

and the dashed black line represents pext. The behaviour of p0
crit

varies
significantly for large and small ML and we can see that for large ML as in
Figure 7(a), the solution displays discontinuous behaviour such that there
is an inflection point within 0  z  z1.

Only for the range p0
crit

|
z=0 < p0 < p0

crit

|
z=z1 , does positive UDF exist.

Outside of this range, MDF occurs: to the right of the inflection point,
values of p0 above p0

crit

gives rise to divergent MDF, whereas to the left of
the inflection point values of p0 below p0

crit

gives rise to convergent MDF.
The nature of the positive UDF that occurs depends on whether p0 is

smaller or larger than pext. For values of p0
crit

|
z=0 < p0 < pext weak positive

UDF flow occurs which is characterised by some or total inwards radial flow
in the leaf zone (as opposed to total outwards leaf radial flow for positive
UDF seen in Section 4.1). This is simply because for this range there is
enough of a pressure di↵erence between p0 and pext to cause a flow between
them.

Increasing ML decreases the range of allowable p0, and for values of
ML > ML

crit

(the ML = 28 line on Figure 7(a)), the range of allowable p0

decreases below pext, in fact for ML = ML

crit

, p0
crit

|
z=1 = pext as expected

from Equation (25).
For very small values of ML the inflection point of p0

crit

does not occur,
as can be seen in Figure 7(b). For this case, positive UDF is obtained for
p0 < p0

crit

|
z=1, divergent leaf MDF for p0

crit

|
z=0 < p0 < p0

crit

|
z=z1 , and weak

negative UDF for p0 > p0
crit

|
z=0.

4.2.2 Non-zero gravity G 6= 0

The addition of G increases the complexity of the solution for the critical
parameter values, however, conversely to the case of p0 = pext, the e↵ect of
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varying G has only a small e↵ect on the magnitude of p0
crit

due to the small
value of G and large variation of p0

crit

. Similarly as for the case of p0 = pext,
the inclusion of G reduces p0

crit

below the G = 0 case in the stem and root
regions, and causes a variation of p0

crit

in the root region with z such that
p0
crit

|
z=1 is less than that at p0

crit

|
z=z1 . The profile of p0

crit

in the leaf region
displays the same discontinuous behaviour as for the case of G = 0 and the
inclusion of G also causes a very slight reduction in p0

crit

. The variation of
p0
crit

with z in the root region introduces another possible flow regime such
that there are 5 (compared to 4 for G = 0 and high ML)

1. convergent MDF in the leaf zone p0 < p0
crit

|
z=0,

2. positive weak UDF p0
crit

|
z=0 < p0 < pext,

3. positive UDF pext < p0 < p0
crit

|
z=1,

4. divergent MDF in the root zone p0
crit

|
z=1 < p0 < p0

crit

|
z=z1 ,

5. divergent MDF in the leaf zone p0 > p0
crit

|
z=z1 .

Therefore to ensure UDF, p0 should lie in the range between p0L|
z=0 and

p0R|
z=1 which are given in Appendix B.

5 Results: Nutrient Transport

We now consider the transport of phosphate in the xylem vessels. The
following model is valid for all flow regimes (multidirectional and unidirec-
tional), but we will only present results for the case of positive UDF which is
the optimal flow regime for nutrient transport from the roots to the leaves.
We assume that the flux of phosphate is due to both convection and di↵usion
and investigate the e↵ect a phosphate sink in the roots has on transport.
We solve the nutrient transport analytically in the limit of large Pe and nu-
merically for all Pe. The numerical solution was obtained using the bvp4c
solver in Matlab to solve equations (13)-(16) with the boundary conditions
(17) to (20) and continuity at the zone boundaries.

We now describe the analytical procedure. For su�ciently large Pe we
consider the limit that ✏ = 1/Pe ! 0. However, the result is a singular
equation for nutrient transport since the highest derivative is multiplied by
✏. To regularise the system, we assume that the flow in each zone can be split
into one central bulk region and two boundary regions. In the bulk region
convection dominates, but in the boundaries both convection and di↵usion
are important as the solution rapidly adjusts to the boundary conditions (for
an introduction on boundary layer methods see Hinch (1991)). Di↵usion is
especially important when convection is small as the flow velocity tends to
zero at the xylem terminus in the root (z = 1). We seek boundary layer
solutions near z = 0 and z = 1 to satisfy the boundary conditions (19) and
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(20), and also at the zone boundaries z1 and z2 to satisfy the continuity
boundary conditions. We neglect the e↵ect of gravity as its e↵ect is small,
and as an example assume that F is constant.

We find that the general solution to Equations (13) to (16) exhibit
boundary layers near z = 0 in the leaf, z = z1 in the stem and at z = z2
and z = 1 in the root. Hence, when we impose the continuity conditions
at leading order, we find that there are no rapid variations in the leaf at
z = z1 which we require to balance the rapidly varying concentration in the
stem boundary layer. The result is that the coe�cient of the boundary layer
terms in the stem is zero to leading order. Similarly, we find that the coef-
ficient of the boundary layer term at z = z2 in the root must also be zero
to leading order. Therefore, we neglect the boundary layers between the
di↵erent zones as they are, at largest, of order Pe�

1
2 and do not contribute

to the problem as significantly as those at z = 0 and z = 1.
The full analytical method is given in Appendix C, where the leading

order composite solution of n is given by

nL =
�FLz + k4

dp

L

dz

+

✓
�� k4

L̃1

◆
e�L̃1Pe z +O(Pe�

1
2 ), (27)

nS =
�FSz + k2

A3
+O(Pe�

1
2 ), (28)

nR =
FR(1� z)

dp

R

dz

+ (29)

f
p
Pe

1

2

s
2⇡

R̃11
e

1
2 R̃11Pe(1�z)2

✓
erf

✓
1

2

q
2R̃11Pe(1� z)

◆
� 1

◆
+O(Pe�

1
2 ),

where k2, k4, L̃1, and R̃11 are constants given in Equations (C.40), (C.31),
and (C.10) respectively in Appendix C. We can see in Equation (29) that
the boundary layer solution near z = 1 is entirely due to f which is the
axial flux of nutrient through the xylem tip. If f = 0, there would be no
boundary layer at the root tip and the convection-only solution would be
applicable. However, we can see that even for small f , the root tip boundary
layer solution may be important as it is multiplied by

p
Pe. Expressing the

boundary layer solution at the root tip in terms of erfc (where erfc(x) =
1� erf(x)) we find that

nBL = �f
p
Pe

1

2

s
2⇡

R̃11
e

1
2 R̃11Pe(1�z)2erfc

✓
1

2

q
2R̃11Pe(1� z)

◆
. (30)

For high Pe, the limit of Equation (30) as Pe increases is �1, which is
unphysical. We therefore surmise that if a flux f occurs, it must be, at
largest, of the order Pe�

1
2 to result in an O(1) solution at the root tip.
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Figure 8 shows the profile of the analytical and numerical solutions of
n against z for increasing Pe. We can see that as Pe increases there is
good agreement between the analytical and numerical solutions except near
the zone boundaries where we have neglected the boundary layers between
zones since they are of order Pe�

1
2 . The estimated Pe in the xylem vessels

is Pe ⇡ 107, but we can see that even for Pe = 2000 (Figure 8(b)), the
analytical and numerical solutions agree closely, and the zone boundaries
are not visible, therefore the asymptotic solution is certainly valid for Pe >
2000. Increasing Pe also changes the solution in the root region due to
the dependence of the boundary layer solution on Pe, this implies that the
significance of an axial flux f increases as Pe increases. This is unlike the
convection-only case, or for the case f = 0, where for increasing Pe, the
solution tends to a constant solution. However, note that (as discussed in
the previously), we expect that the magnitude of f should be limited to be

at largest O(Pe�
1
2 ) so as to result in only non-infinite values of n.
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Figure 8: Profiles of n against z for comparing analytical and numerical
solutions for increasing Pe, psoil = �0.3, p0 = pext = �1, G = 0,

f = 0.01, F = (0, 0, 1), � = 0, z1 = 0.3, z2 = 0.4, MR = 0.4, ML = 13.
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Figure 9: Components of nutrient flux against z, for F = (�1,�0.5, 1),
psoil = �0.3, p0 = pext = �1, G = 0.01, f = 0.01, � = 0, z1 = 0.3,

z2 = 0.4, MR = 0.4, ML = 13.
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Figure 9 displays the profiles of the di↵usive and convective flux compo-
nents (numerical solution) against z for Pe = 50 and Pe = 500. We can see
that the convective flux is the dominant component of flux except near the
ends of the xylem vessel (z = 0 and z = 1) where the convective flux falls to
zero and the di↵usive flux becomes large. The di↵usive terms are respon-
sible for adjusting the convection-only solution to the boundary conditions
at the ends of the xylem vessel. In particular, we can see that the di↵usive
flux undergoes a rapid change near z = 0, and a gradual change near z = 1.
Additional contributions of the di↵usive flux can also be seen at the zone
boundaries (z1 = 0.3 and z2 = 0.4), as the solution changes zone. Note that
the numerical solution includes flux continuity at the zone boundaries for all
orders of Pe. Figure 10 shows the profiles of n against z for decreasing values
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Figure 10: Profiles of n against z for increasing pext compared to the convection
only solution, for F = (�1,�0.5, 1), psoil = �0.3, p0 = pext,
G = 0.01, � = 0, z1 = 0.3, z2 = 0.4, MR = 0.4, ML = 13.

of pext and for increasing f compared to the convection-only solution. For
high Pe the solution for f = 0 should be very similar to the convection-only
solution. However this is only the case when the di↵erence between pext and
psoil is large, giving rise to high water flow velocities. During the night, or at
times of increased humidity, pext increases, decreasing the di↵erence between
pext and psoil and hence causing slower water flow velocities. The slower the
water flow, the greater the contribution that di↵usion makes to nutrient
transport, as can be seen in Figure 10(d) where pext = �0.35 and both the
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f = 0 and f = 0.01 solution of n largely deviates from the convection-only
solution. As pext increases (becomes less negative) the magnitude of n in-
creases within the xylem vessels indicating build up, but this is because a
constant value of F has been prescribed in each of the plant zones. The
functional form of F is generally unknown, but more-complicated functions,
such as concentration or z dependent, can be easily be input into the model.

6 Discussion

We have presented a model for the transport of water and nutrients within
the xylem vessels of a wheat plant. We assumed that the flow of water is
due to evapotranspiration which creates a negative potential at the leaves
that drives water upwards from the roots. Depending on the parameter
values, we have seen that the flow can be classified into 7 di↵erent regimes;
4 unidirectional flows (UDF) and 3 multidirectional flows (MDF), which are
shown in Figure 11. We have considered the 2 separate cases of pressure

Leaves& Stem& Roots&

Air&

Plant&boundary&Xylem&7ssue&boundary&

Soil&

(a) Positive strong UDF

Leaves& Stem& Roots&

Air&

Plant&boundary&Xylem&7ssue&boundary&

Soil&

(b) Positive weak UDF

Leaves& Stem& Roots&

Air&

Plant&boundary&Xylem&7ssue&boundary&

Soil&

(c) Negative strong UDF

Leaves& Stem& Roots&

Air&

Plant&boundary&Xylem&7ssue&boundary&

Soil&

(d) Negative weak UDF

Leaves& Stem& Roots&

Air& Soil&

Xylem&2ssue&boundary& Plant&boundary&

(e) Divergent root MDF
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Air& Soil&
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(f) Divergent leaf MDF

Leaves& Stem& Roots&

Air& Soil&

Xylem&2ssue&boundary& Plant&boundary&

(g) Convergent leaf MDF

Figure 11: Unidirectional flow (UDF) and Multidirectional flow (MDF)
classifications. The solid arrows indicate the direction of flows, and
the cross indicates either the point of flow divergence or convergence.
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in the leaves (pext) equalling or not equalling the pressure at z = 0 (p0),
with and without the e↵ect of gravity (G). The categories of regimes for the
cases are listed in Table 3. The case of pext = p0 and G = 0 is the simplest
and yields only one critical relationship of biological interest; ML

crit

, and 3
possible flow regimes, positive UDF and divergent and convergent leaf MDF.
ML

crit

provides a critical relationship between the ratio of radial to axial leaf
conductivity and the ratio of leaf to plant length, which persists for all the
cases considered.

The inclusion of gravity causes the critical ML to couple to the value
of p0 (and hence pext), and varying p0 leads to 5 possible flow regimes, for
which we have provided the bounds. The optimum flow regime for nutrient
transport to the leaves is positive strong UDF, which occurs when p0 ⌧ psoil.
For smaller magnitudes of p0 the flow can become multidirectional which at
most seems unphysical, and at least seems detrimental to nutrient transport,
and plant survival. The regime between positive strong UDF and divergent

p0 = pext

G = 0
positive strong UDF ML < ML

crit

divergent leaf MDF ML & ML

crit

convergent leaf MDF ML > ML

crit

G 6= 0

positive strong UDF p0 < p0R
crit

|
z=1

divergent root MDF p0R
crit

|
z=1 < p0 < p0S

crit

divergent leaf MDF p0S
crit

< p0 < p0L
crit

|
z=0

negative weak UDF p0L
crit

|
z=0 < p0 < psoil � 2Ge

M

R(1+z2)p
M

R

1

negative strong UDF p0 > psoil � 2Ge

M

R(1+z2)p
M

R

1

p0 6= pext

G = 0

convergent leaf MDF p0 < p0
crit

|
z=0

positive weak UDF p0
crit

|
z=0 < p0 < pext

positive strong UDF pext < p0 < p0
crit

|
z=z1

divergent leaf MDF p0 > p0
crit

|
z=z1

G 6= 0

convergent leaf MDF p0 < p0
crit

|
z=0

positive weak UDF p0
crit

|
z=0 < p0 < pext

positive strong UDF pext < p0 < p0
crit

|
z=1

divergent root MDF p0
crit

|
z=1 < p0 < p0

crit

|
z=z1

divergent leaf MDF p0 > p0
crit

|
z=z1

Table 3: Summary of the flow regimes for the cases of: xylem pressure at z = 0
equals leaf air-space pressure (p0 = pext), and for di↵ering xylem
pressure at z = 0 and leaf air-space pressure (p0 6= pext). UDF

represents unidirectional flow, MDF represents multidirectional flow.

leaf MDF is divergent root MDF. This regime seems somewhat physical as
there is evidence that similar flows occur; for example passive water e✏ux
from roots to soil of lower water potential has been observed and is known
as hydraulic lift (Caldwell et al., 1998). Water is released from roots when
transpiration is low, which is usually at night, and then reabsorbed the next
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day and transpired. This agrees with the findings in this paper; i.e. that
an increase in p0 (and pext), which occurs when transpiration is reduced,
results in MDF in the root zone and consequently water e✏ux into the soil.
The traditional case of hydraulic lift discussed by Caldwell et al. (1998)
is characterised by outwards radial flow from the roots to the soil in the
upper soil layers and inwards radial flow at the lower soil layers, which is
opposite to the profile found in this paper for root MDF. This traditional
profile explains why the process is called hydraulic lift, as water is transferred
from lower moist soil to higher dry soil. However, the opposite flow profile
(inwards radial flow at the upper soil layers and outwards radial flow in the
lower soil layers) which is called inverse hydraulic lift is also found to occur,
but usually for roots grown in dry soils (Caldwell et al., 1998).

Inverse hydraulic lift displays the same radial water profile as the root
MDF seen in this paper, although the process may be di↵erent, since inverse
hydraulic lift involves the transfer of water downwards which is not seen in
the divergent flow of the root UDF. However, this may be explained by the
fact that soils possess a gradient of water potential with depth, whereas in
this paper a constant value for soil pressure was used. Therefore including a
more physical soil potential gradient into the model may improve the results
described here and allow a closer comparison to experimental results.

The case that p0 6= pext was considered due to the inhomeogenity of the
leaf air-spaces which could lead to a profile of varying potentials. Even with-
out the e↵ects of gravity, this case resulted in 4 flow regimes; positive UDF
encompassed by MDF regimes, indicating that only a narrow deviation of
p0 from pext would allow UDF. Similarly as to the case p0 = pext, the inclu-
sion of gravity caused the addition of a flow regime (divergent root MDF),
primarily due to the change of p0

crit

equalling a constant in the root zone
to p0

crit

varying in the root zone. For all cases, we have provided the rela-
tionship between the parameter values that would give rise to unidirectional
flow and hence optimum nutrient transport.

The transport of nutrient in the xylem vessel is primarily due to ad-
vection within the transpiration stream. We however, have also included
di↵usive transport due to the fact that di↵usion can become significant near
the vessel boundaries, or at night when the transpirational flow reduces. In
addition, di↵usion allows the modelling of an axial flux of nutrient through
the xylem termini in the roots which may occur due to the nutrient sink
e↵ect of the growing root meristemic tissue. We have solved the model
analytically for large Pe and numerically for all Pe, and found very good
agreement between the analytical and numerical models for high Pe which is
applicable to the xylem vessels since Pe ⇡ 107. We model the flow at night
time by considering the e↵ect of increased pext on the flow, and see that as
p0 approaches the value of psoil, the water flow reduces, which consequently
increases the contribution of di↵usion to nutrient transport. Note that in-
creasing pext also represents the environmental condition of high humidity.
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In addition, we have seen that an axial nutrient flux f has a large e↵ect
on nutrient transport, especially in the root zone. This flux has not been
observed in the literature, and hence its physical value is unknown. How-
ever, experiments can be carried out measuring the profile of phosphate, or
other radio-labelled compounds, within the xylem vessel close to xylem tips
to see if any boundary layer e↵ects occur. This model therefore, in con-
junction with experimental data can be used to determine firstly whether f
occurs, and secondly if it is of order Pe�

1
2 . Similarly, the functional forms

of the loading/unloading parameter F can be estimated by combining with
experiments.

7 Conclusions and Future work

The aim of this work was to investigate the transport of water and nutrient
within the xylem vessels from roots to leaves. We have seen that di↵erent
water flow regimes are possible; some of which are unphysical, but some have
been observed in nature such as positive unidirectional flow, and divergent
root multidirectional flow which is similar to hydraulic lift. The positive uni-
directional flow regime represents the optimum regime for nutrient transport
and we have provided bounds for this for all cases considered. In addition,
we have solved for the transport of phosphate considering convective and dif-
fusive transport, and have seen that di↵usion can be significant. This model
only addresses one aspect of the fertilser-to-crop-yield transport pathway;
and in order for this model to help improve e�ciency of this pathway, it
should be coupled to models of root growth and water and nutrient uptake,
leaf and grain growth models, thus creating a whole plant model which can
be used for optimisation and determination of plant parameters.
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Appendix A: Xylem dimensions in roots and leaves

Type of vessel average â (µm) v̂ k̂
z

(m4 Pa�1s�1) 1/Pe
Single large pitted 25 1⇥ 1 1.72⇥ 10�16 1.14⇥ 10�8

centripetal 8.75 1⇥ 7.5 1.94⇥ 10�17 9.3⇥ 10�8

protoxylem 3.75 2⇥ 7.5 1.31⇥ 10�18 5.06⇥ 10�7
P

= 1.93⇥ 10�16 P
= 6.1⇥ 10�7

Table 4: Calculations of k̂
z

and 1/Pe in the root zone based on number and radii
of xylem vessels in wheat from Percival (1921) (pg 39-40). The number
of vessels v̂ is given by number of vessels per bundle multiplied by the

number of bundles.

Leaf position average â (µm) v̂ k̂
z

(m4 Pa�1s�1) 1/Pe
5th or uppermost 10 4⇥ 13 2.29⇥ 10�16 7.13⇥ 10�8

4th 10 4⇥ 13 2.29⇥ 10�16 7.13⇥ 10�8

3rd 10 4⇥ 13 2.29⇥ 10�16 7.13⇥ 10�8

2nd 10 4⇥ 9 1.59⇥ 10�16 7.11⇥ 10�8

1st 10 4⇥ 9 1.59⇥ 10�16 7.11⇥ 10�8

average = 2.01⇥ 10�16 average = 7.12⇥ 10�8

Table 5: Calculations of k̂
z

and 1/Pe in the leaf zone based on number and radii
of xylem vessels in the stout bundles of wheat from Percival (1921) (pg

57-59). The number of vessels v̂ is given by number of vessels per
bundle multiplied by the number of bundles.

Appendix B: Range of p0 that would give rise to

unidirectional flow for p0 6= pext, and G = 0

p0L|z=0 = pext +

p
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Appendix C: Analytical solution for nutrient trans-

port by convection and di↵usion

We seek an analytical solution for the transport of phosphate, n, due to both
convection and di↵usion, but consider that di↵usion is only important near
the boundaries z = 0, z1, z2, 1. In the main bulk, convection dominates and
we can neglect di↵usion, but near the boundaries we expect the presence of
boundary layers as the solution rapidly adjusts to the boundary conditions.
For an introduction into boundary layer methods see Hinch (1991). For
simpler analytical progress we neglect the e↵ect of gravity as its e↵ect is
small, and as an example assume that F is constant.

Root zone

We first consider the root zone and the boundary near z = 1. We let
✏ = 1/Pe, which is small, such that the nutrient transport equation and
boundary condition becomes

d

dz

✓
nR

✓
dpR

dz
�G

◆
+ ✏

dnR

dz

◆
= �FR, (C.1)

✏
dnR

dz
= �f at z = 1. (C.2)

We scale nR = ✏�1fn̄R, and integrate (C.1) to give

✏�1n̄R

✓
dpR

dz
�G

◆
+

dn̄R

dz
= �FR

f
z + k1, (C.3)

dn̄R

dz
= �1 at z = 1, (C.4)

where k1 is determined from the boundary condition (C.4) to be F

R�f

f

. We
define the boundary layer coordinate x and let 1� z = ✏↵x, such that

✏�1n̄RR̃1 � ✏�↵

dn̄R

dx
= �FR

f
(1� ✏↵x) +

FR � f

f
, (C.5)

✏�↵

dn̄R

dx
= 1 at x = 0, (C.6)
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where R̃1 is dp

R

dz

�G as a function of (1� ✏↵x) which we expand as follows
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Setting G = 0, we find that A5e
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which is negative for the parameter values considered (values of ML below
that given by Equation 22). Therefore, with G = 0, we find
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which we rewrite as R̃1 = R̃11✏
↵x+R̃13✏

3↵x3+O(✏5↵), and whose coe�cients
are positive and are given by
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which makes analytical progress more complicated. Therefore, with G = 0,
Equation (C.5) becomes
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In order for the viscous terms to balance the convective terms, we choose
↵ = 1

2 which leads to
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We expand n̄R = n̄R
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2 ) and solve Equation (C.13) at

successive orders of ✏ subject to the boundary condition (C.14). The O(✏0)
terms of Equations (C.13) and (C.14) are

n̄R

0 R̃11x� dn̄R

0

dx
= 0, (C.15)

dn̄R

0

dx
= 0 at x = 0, (C.16)

which has the solution n̄R

0 = C0e
1
2 R̃11x

2
, where C0 is a free constant found

by matching to the bulk solution. Since this solution grows as x increases,
the only choice of C0 is C0 = 0 such that n̄R

0 = 0.

The O(✏
1
2 ) terms of Equations (C.13) and (C.14) are

n̄R

1 R̃11x� dn̄R

1

dx
= �FR

f
+

FR � f

f
, (C.17)

dn̄R

1

dx
= 1 at x = 0, (C.18)

which has the solution n̄R

1 =
⇣
1
2

q
2⇡
R̃11

erf(12

p
2R̃11x) + C1

⌘
e

1
2 R̃11x

2
, where

C1 is a free constant found by matching to the bulk solution. To ensure a

non-growing solution, we choose C1 = �1
2

q
2⇡
R̃11

, such that

n̄R

1 =
1

2

s
2⇡

R̃11
e

1
2 R̃11x

2

✓
erf

✓
1

2

q
2R̃11x

◆
� 1

◆
. (C.19)

The O(✏) terms of Equations (C.13) and (C.14) are

n̄R

2 R̃11x� dn̄R

2

dx
=

FR

f
x, (C.20)

dn̄R

2

dx
= 0 at x = 0, (C.21)

which has the solution n̄R

2 = F

R

R̃11f
+ C2e

1
2 R̃11x

2
where C2 is a free constant

found by matching to the bulk solution. To ensure a non-growing solution
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we choose C2 = 0, such that n̄R

2 = F

R

R̃11f
. A summary of the boundary layer

solution near z = 1 is

nR =✏�1f
⇣
✏
1
2 n̄R

1 + ✏n̄R

2 +O(✏
3
2 )
⌘
= f

⇣
✏�

1
2 n̄R

1 + ✏0n̄R

2 +O(✏
1
2 )
⌘
. (C.22)

The boundary layer solution has to match to the bulk solution which is
governed by

nR

✓
dpR

dz

◆
+ ✏

dnR

dz
= �FRz + C4, (C.23)

where C4 is an unknown constant. We similarly let nR = ✏0nR

0 + O(✏
1
2 )

and find nR

0 = �F

R

z+C4
dp

R

dz

which is equivalent to the convection-only solution.

Matching the bulk to the boundary layer solution we find that n̄1 matches
to zero, and n̄2 matches to the bulk solution to give C4 = FR. Following a
similar procedure near the stem-root boundary, we find that the boundary
layer solution near z = z2 is

nR

0 = k1e
�R̃20Pe(z�z2) +

FR(1� z2)

R̃20
, (C.24)

where R̃20 =
p
MR

⇣
A5e

p
M

R

z2 �A6e
�
p
M

R

z2

⌘
and k1 is an unknown con-

stant. Therefore the composite solution in root is

nR =
FR(1� z)

dp

R

dz

+ k1e
�R̃20Pe(z�z2)+

f
p
Pe

1

2

s
2⇡

R̃11
e

1
2 R̃11Pe(1�z)2

✓
erf

✓
1

2

q
2R̃11Pe(1� z)

◆
� 1

◆
+O(✏

1
2 ).

(C.25)

The constant k1 will be determined by applying the continuity boundary
conditions but first the solutions in the stem and leaf regions have to be
calculated.

Stem zone

Since pS = A3z + A4, the nutrient transport in the stem zone is governed
by

nSA3 + ✏
dnS

dz
= �FSz + k2, (C.26)

where k2 is an unknown constant. We expand nS = nS

0 + O(✏
1
2 ) and seek

boundary layer solutions near z = z1 and z = z2 to match to the central
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bulk region. We find that a boundary layer exists only near z = z1 such
that the composite solution in the stem region is given by

nS =
�FSz + k2

A3
+ k3e

�A3Pe(z�z1) +O(✏
1
2 ), (C.27)

where k3 is also an unknown constant, which together with k2 will be deter-
mined from the continuity boundary conditions.

Leaf zone

The nutrient transport in the leaf zone is governed by

nL

✓
dpL

dz

◆
+ ✏

dnL

dz
= �FLz + k4, (C.28)

where k4 is an unknown constant. We expand nL = nL

0 + O(✏
1
2 ) and seek

boundary layer solutions near z = 0 and z = z1 to match to the central
bulk region. We find that a boundary layer exists only near z = 0 where
the boundary condition that n = � at z = 0 has to be satisfied. We solve
for this boundary layer by defining a boundary layer variable y and letting
z = ✏�y such that

nLL̃+ ✏1��

dnL

dy
= �FL✏�y + k4, (C.29)

where L̃ = dp

L

dz

as a function of ✏�y, which we expand as follows

L̃ =
p
ML

⇣
A1 cos(

p
ML✏�y)�A2 sin(

p
ML✏�y)

⌘
(C.30)

=
p
ML

✓
A1

✓
1� ML✏2�y2

2!
+O(✏4�)

◆
�A2

⇣p
ML✏�y +O(✏3�)

⌘◆
.

We rewrite L̃ as L̃ = L̃1 + ✏�yL̃2 + O(✏2�), whose coe�cients are positive
and are given by

L̃1 = A1

p
ML, L̃2 = �A2M

L. (C.31)

We expand nL = ✏0nL

0 +O(✏
1
2 ) and choose � = 1 such that

nL

⇣
L̃1 + ✏yL̃2 +O(✏2)

⌘
+

dnL

dy
= �FL✏y + k4, (C.32)

nL = � at y = 0. (C.33)

The leading order terms of Equations (C.32) and (C.33) are

nL

0 L̃1 +
dnL

0

dy
= k4, (C.34)

nL

0 = � at y = 0, (C.35)
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which has the solution nL

0 = k4

L̃1
+
⇣
�� k4

L̃1

⌘
e�L̃1y, and which matches to

the bulk solution near y = 0. The composite leaf solution is

nL =
�FLz + k4

dp

L

dz

+

✓
�� k4

L̃1

◆
e�L̃1Pe z +O(✏

1
2 ). (C.36)

Applying continuity boundary conditions

The solutions (C.25), (C.27), and (C.36) represent the leading order com-
posite solutions of n in the root, stem and leaf zones respectively. The
unknown constants k1, k2, k3, and k4 are determined by applying the conti-
nuity boundary conditions and retaining only the leading order terms; terms
up to but not including those at O(✏

1
2 ). At leading order, the continuity of

flux condition at z = z1 reduces to

� L̃1

✓
�� k4

L̃1

◆
e�L̃1Pe z1 = �A3k3. (C.37)

Since the terms on the left hand side are asymptotically zero, this results in
k3 = 0. Similarly, the continuity of flux condition at z = z2 at leading order
reduces to

�A3k3e
�A3Pe(z2�z1) = �R̃20k1 � f+ (C.38)
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Since k3 = 0, we find that

k1 =
f

R̃20

 p
2⇡R̃11Pe

2
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1
2 R̃11Pe(1�z2)2erfc

✓
1

2

q
2R̃11Pe(1� z2)

◆
� 1

!
,

(C.39)

using the asymptotic structure of erfc we find that k1 is also zero to leading
order with a corrections at O(1/Pe). Applying continuity of n at z = z1
and z = z2, we find that the remaining constants to leading order are

k2 = FR(1� z2) + FSz2 +A3�, k4 = z1(F
L � FS) + k2 (C.40)

where � = �f

2

q
2⇡Pe

R̃11
e

1
2 R̃11Pe(1�z2)2erfc

⇣
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p
2R̃11Pe(1� z2)

⌘
.
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