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Abstract

At a time of increasing global demand for food, dwindling land and re-
sources, and escalating pressures from climate change, the farming industry
is undergoing financial strain, with a need to improve efficiency and crop
yields. In order to improve efficiencies in farming, and in fertiliser usage
in particular, understanding must be gained of the fertiliser-to-crop-yield
pathway. We model one aspect of this pathway; the transport of nutrients
within the vascular tissues of a crop plant from roots to leaves. We present
a mathematical model of the transport of nutrients within the xylem vessels
in response to the evapotranspiration of water. We determine 7 different
classes of flow, including positive unidirectional flow, which is optimal for
nutrient transport from the roots to the leaves; and root multidirectional
flow, which is similar to the hydraulic lift process observed in plants. We
also investigate the effect of diffusion on nutrient transport and find that
diffusion can be significant at the vessel termini especially if there is an ax-
ial efflux of nutrient, and at night when transpiration is minimal. Models
such as these can then be coupled to whole-plant models to be used for
optimisation of nutrient delivery scenarios.



1 Introduction

In crop plants such as wheat, fertilisers are often necessary to ensure high
crop yields, especially at a time of farming intensification. Fertilisers are
applied to soils which are then taken up by the root systems. Phosphate is
a key fertiliser for crops, but is often the most limiting due to its low mobil-
ity in soils (Bucher, 2007). Phosphate plays a vital role in plant function;
it is important for photosynthesis, respiration, energy conservation and the
metabolism of carbon (Foyer & Spencer, 1986); with the result that phos-
phate application significantly increases grain yield (Gallet et al., 2003).
However, the rising global population, together with the disruptive effects
of climate change, are putting increasing pressures on the agricultural indus-
try to satisfy the growing demand for food (Cordell et al., 2009). Therefore
there is a need to improve the efficiency of phosphate use (Bennett & Elser,
2011), which requires understanding and improvement of all the processes
in the fertiliser-to-crop-yield pathway. In this paper we consider the trans-
port of phosphate and water from the roots to the leaves within an idealised
model of the xylem vessels of a wheat plant. In the future, this model can
be coupled to whole-plant models which can be used in conjunction with ex-
perimental data to determine and optimise plant parameters and functions
such as phosphate uptake and loading. Note that this research is also appli-
cable to nutrients which possess similar transport properties to phosphate,
and hence we use the terms phosphate and nutrient interchangeably.

In angiosperms such as wheat, xylem tissue is comprised of lignified
vessel elements resulting in a continuous, low-resistance pipe-like structure,
and phosphate is transported within these vessels by advection caused by
the flow of water. Water flows upwards within the xylem vessels as a passive
consequence of evapotranspiration through the stomata in the leaves. Dur-
ing the day, the stomatal pores open, allowing the diffusion of carbon dioxide
from the air to the mesophyll cells for photosynthesis, whilst water diffuses
out of the leaf down the water vapour concentration gradient. This loss of
water is known as transpiration and creates a negative potential in the leaf
air-spaces that pulls water out of the xylem vessels and into the mesophyll
cell walls. This consequently creates a gradient in pressure between the top
of the xylem and the roots, pulling water upwards under tension. Water up-
take from the soil to roots is also driven by the gradient in pressure between
the xylem and the soil pore water. This transport mechanism is known as
cohesion-tension theory and was proposed by Dixon & Joly (1895). For a
review consult Tyree (1997), Steudle (2001), and Kramer & Boyer (1995).

In this paper we assume that the flow of water is driven only by the pres-
sure difference between roots and leaves and consider the effect that gravity
and varying leaf pressures have on the flow. For certain parameter regimes
the flow of water can become multidirectional which would inhibit nutrient
transport to the leaves. We therefore seek the conditions for unidirectional



flow everywhere in the xylem vessel which would give rise to optimal nutrient
transport to the leaves.

Diffusional transport of nutrients has generally been neglected in the
literature as diffusion is small compared to convection in the main bulk flow.
However, diffusion is significant near the vessel boundaries, especially when
the convective transport falls to zero at the xylem termini in the root tips.
In addition, diffusional transport is important throughout the vessels when
the transpirational flow diminishes during the night. Finally, the inclusion
of diffusion permits the modelling of an axial flux of nutrient through the
xylem termini in the root tips, which may occur in response to the nutrient
sink caused by the meristemic tissue at the growing root tip. For example
Bingham & Stevenson (1992) show that root tips of wheat consume more
glucose compared to the rest of the root, and Bowen (1970) show that root
tips of Pinus radiata uptake and retain more phosphate.

The convective and diffusional transport of nutrients within the vessels
is balanced by the loading and unloading (which may be active and/or pas-
sive) of nutrient in response to the activity of the surrounding tissues. For
example, phosphate enters the xylem vessel in the root zone, and exits in the
stem and leaf zones. The majority of the phosphate is unloaded in the leaf
region where it is used for photosynthesis. For simplicity, we assume that
the loading is constant in the different plant zones, although the loading can
easily be modified to incorporate more complicated functions, such as those
that depend on internal concentration or axial distance.

In Section 2 we present the mathematical model which describes the
flow of water and phosphate in the xylem vessels in response to a pressure
difference between the roots and leaves. In Section 3 we discuss the values
of the model parameters particular to phosphate transport in wheat and
nondimensionalise the model. In Section 4 we analytically solve for the
flow of water and determine the conditions for unidirectional flow and hence
optimal flow of phosphate. In Section 5 we present analytical and numerical
solutions of phosphate transport in the xylem vessel, and finally in Section
6 we discuss the implications of the model findings.

2 Model

We consider the transport of water and nutrients from roots to leaves in the
xylem vessels of a small plant such as wheat. We follow a similar approach
to the phloem model of Jensen et al. (2011, 2012) and separate the plant
and xylem tissue into three zones in the Z direction; the leaves L, the stem
S, and the roots R as shown in Figure 1. The leaf zone is represented by
0 < %2 < %1, the stem zone is 21 < Z < Z9 and the root zone is 29 < 2 < Z3
where 2, 21, 72, and 73 are measured in metres. We prescribe that the xylem
tissue consists of @; number of semipermeable cylindrical vessels of radius



dé- (m) where j is an index for the radii for the different vessels and i is an
index for plant zone. We consider the transport of phosphate only, which
we denote as 7 (molm™3). All symbols are given in Table 1.
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Figure 1: Model of the zylem within a plant. Z = 0 is the top of the xylem in the
leaf, Z1 1s the leaf-stem boundary, Zs is the stem-root boundary, and Z3

is the terminus of the xylem in the root. The pressures in the soil

(p*°") and leaf air-spaces (p°*t) are constant, and the wylem pressure,

D, and nutrient concentration, n, are functions of Z.

2.1 Water transport in the xylem

We assume that the water flow in the xylem vessel consists of axial and
radial components. It is generally accepted that the axial flow along the
xylem is governed by Poiseuille’s law (Frensch & Steudle, 1989) such that
the dimensional axial flux (m®s~!) is given by
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where p’ is the internal fluid pressure (Pa) in the xylem vessels, p is the
density (kgm™3) of the sap, § is the gravitational acceleration (ms~2), k, is
the xylem axial Poiseuille conductivity (m?Pa~'s™!), and /i is the viscosity
(Pas). In general, &é and ﬁ;- can vary with plant length, but aggregrate

properties such as k. are continuous. In Section 3 we will show that k.
varies by a small amount between plant zones, and therefore choose that l;:Z
is constant across the plant. In addition, we assume that i and p are also
constant. By conservation of mass, the axial flux along the xylem tubes is
balanced by the radial flux into the tubes such that

- d2p S
kg = > omdiaidl, (2)
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where ¢ is the radial flux per unit area (ms~!) into the xylem vessels. In
the root zone, water flows into the xylem from the soil, whereas in the leaf
zone water flows out of the xylem into the mesophyll air-spaces which can
then evaporate out to the air. The flow of water through the plant tissues is
governed primarily by differences in pressure and hence mainly follows the
passive apoplasmic pathway through the cortex tissue (Steudle & Peterson,
1998). Following the approach of Steudle & Peterson (1998), Molz (1981),
and Landsberg & Fowkes (1978) we treat the variety of tissues as a composite
membrane and describe the radial flows (ms™—!) as

G =kEE -, G =k - ), (3)

where (jﬁ is the radial flow in the root from soil to xylem, and cjf is the radial
flow from the xylem to the leaf air-spaces. The tissue radial conductivities
(ms~'Pa~1) are k% in the root, and kZ in the leaf, and p**" (Pa) is the water
pressure in the soil, and p°** (Pa) is the pressure external to the xylem in the
leaf air-spaces. Substituting the radial fluxes (3) into the water conservation
equation (2) we obtain
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where f)jL are the number of xylem vessels in the leaves, and @JR are the

number of xylem vessels in the roots. Two boundary conditions are required
to solve the model and we follow a similar approach to that of Landsberg &
Fowkes (1978). At the tip of the xylem in the root zone we prescribe zero
flux of water as we assume that the xylem terminus in the roots is axially
impermeable to water. At the xylem tip in the leaf zone we assume that
the xylem vessel is open to the leaf air-spaces and prescribe the pressure to
be p¥ (Pa). Since the architecture of the leaf air-spaces is inhomogeneous,
it is possible that the pressure in the air-spaces can vary, and hence we also
allow the possibility that p® # p®®*. The boundary conditions therefore are

dp™
dz
In addition we prescribe continuity of pressure and pressure flux at the zone
boundaries, 21 and Z5. Note that l;:Z is constant across the plant, resulting
in the conditions of continuity of flux simplifying to continuity of pressure
gradient.

pl=p"at 2=0,

— pg=0at 2 = 3. (8)



‘ Symbol ‘ Description Value Units ‘ Source
L, S, R | leaf, stem, root zones
i zone index - - -
j xylem vessel index - - -
0 number of xylem vessels Tables 4 & 5 | - Percival (1921)
a xylem vessel radius Tables 4 & 5 | m Percival (1921)
z axial coordinate variable m -
z1 position of leaf-stem boundary 0.23 m Kutschera et al. (2009)
2 position of stem-root boundary 0.33 m Kutschera et al. (2009)
Z3 length of plant 0.81 m Kutschera et al. (2009)
a™ radius of root 248 x107% |m Jones et al. (1983)
ar thickness of leaf 1.38x 1077 [ m Araus et al. (1986)
n concentration of nutrient variable molm ™3 -
N concentration at z = 0 0 molm™? Section 2
C typical concentration scale variable molm—3 Section 3
D diffusivity of nutrient in water 107 m?2s~! Perry (1997)
F radial loading/unloading of nutrient | variable molm~2s~1
f axial loading/unloading at z = z3 variable molm 21 | -
k. xylem axial conductivity 2 x 10716 m?Pa~ls~! | Section 3
kR root local radial conductivity 1.2x1071% | ms'Pa~! | Jones 1983
I%f leaf local radial conductivity 1.35 x 1072 | ms~'Pa~! | Section 3
AL leaf effective radial conductivity 3.87 x 107 | m?Pa~Ts~1 | Section 3
Al root effective radial conductivity 1.11 x 10716 | m?Pa~Ts~T | Section 3
i fluid (water) viscosity in xylem 8.9 x 1072 Pas standard
p fluid (water) density in xylem 103 kgm=? standard
g gravitational acceleration 9.81 ms2 standard
q: axial flux in xylem variable m3s1 -
Gr radial flux in xylem variable ms~! -
p internal pressure in xylem variable Pa
ool soil pore water pressure —0.3 x 108 Pa Campbell (2008)
pert leaf-air-space pressure —1x 108 Pa Campbell (2008)
0 xylem pressure at z =0 —1x 108 Pa Campbell (2008)
P typical pressure scale 1 x 108 Pa Section 3

Table 1: Summary of dimensional symbols and their values.

2.2 Nutrient transport in the xylem

We assume that radial diffusion of the nutrients is fast and hence only con-
sider their variation in the axial direction. Nutrients such as phosphate are
loaded into the xylem radially at the root and unloaded in the stem and
leaf regions. We follow the approaches of Thompson & Holbrook (2003) and
Jensen et al. (2011, 2012) and assume that the loading and unloading of nu-
trient into and out of the vessels, denoted by F (molm™2s™1), is balanced
by the flux of nutrient in the axial direction. However, unlike Thompson &
Holbrook (2003) and Jensen et al. (2011, 2012) we allow diffusion to con-
tribute to the axial flux. Therefore conservation of 7 is given by

d . N /X
(i) o

P (9)

where D is the diffusion coefficient (m?s~1) of phosphate in the xylem sap.
Diffusion has previously been neglected since, in the main bulk of the fluid,



the diffusive flux of nutrients is negligible compared to convection, such that
the nutrient transport is mainly due to the flow of water. However, near the
ends of the xylem vessel, diffusion can become important when fluid flow is
slow or zero, for example at the xylem terminus in the root tip (2 = Z23).
In addition, due to the zero fluid velocity at Z = Z3, in a convection-only
system, no boundary conditions can be applied to the system. For example,
in a convection-only system the nutrient transport is governed by

= (A'qL) = 2mokal FY, (10)

) 2rdial Fids+k )
and has the solution n* = fm’aq’—qﬂ where k is a constant. Since ¢ =0
at 2 = %3, the only choice of k that would keep 7' finite everywhere is
k=—1 2W6§&§F ‘d2|3=z,. If another value of k is chosen, the value of 7!

would be infinite at Z = Z3, which is unphysical. Applying continuity of
A’ between the plant zones, results in 7' being fully determined for all 2
without having applied any external boundary conditions. It is unintuitive
that a reduction in the order of the system from 2 for a combined convection-
diffusion system to 1 for a convection-only system results in the restriction
that no boundary conditions can be applied, but the reason is solely due to
the fact that ¢, is prescribed to be equal to zero at Z = 23. At this point
diffusion can no longer be neglected in comparison to convection, and we
therefore include its effect and apply two boundary conditions to the system.

For generality we prescribe an axial flux of phosphate f (mol m_QS_l)
into the xylem vessel at Z = 23, which is only possible if diffusion is in-
cluded in the system. It is not known whether axial loading or unloading
of phosphate occurs, but it is possible that axial flux can occur in response
to the nutrient sink of the growing root tip. At the xylem terminus in the
leaf we prescribe the concentration of phosphate N (mol m~3), such that the
boundary conditions are given by

At =N at 2 =0, (11)
- ARARQﬁdﬁR +GRaR = moRaR2f at 5 = 2 (12)
7T’Uj aj dé qz n - 7T’Uj aj atl 2 = ZS,

where ¢f* = 0 at 2 = 23. In addition, we prescribe continuity of phosphate
concentration and phosphate flux at the zone boundaries Z; and 25. In
Section 5 we choose that N = 0 to represent the low level of phosphate at
z = 0 due to its use in photosynthesis in the leaves, however for generality
we retain N as a variable which is free to be chosen by the user.

3 Nondimensionalisation and parameter values

We nondimensionalise the equations by using the following scales z = Z3z,
p = Pp, n = Cn, where we choose P to be equal to modulus of the pressure



in the leaf air-space, p°* = —106 Pa (Campbell, 2008), such that P = 106 Pa.
In addition we prescribe the soil pressure to equal p*° = —0.3 x 10Pa
(Campbell, 2008). We leave the choice of C, which is a typical concentration
(mol m73) of phosphate in the xylem vessels, to the end of this section.
Note that only dimensional values are denoted with a hat (") symbol. The
nondimensional equations for water and nutrient transport are

ddezL — ML (pezt _ pL) , (13)

CZ;S =0, (14)

d;f: — MR <pR _psoil> 7 (15)

d% (n’ (Cfg - G) + ;;ﬁg) _— (16)

where the nondimensional parameters are defined in Table 2. MF is the ra-
tio of leaf radial conductivity to axial conductivity, M is the ratio of root
radial conductivity to axial conductivity, p®** is the nondimensional pressure
in the leaf air-spaces, p**" is the nondimensional soil pore pressure, G is the
gravitational term, and F* is the nondimensional loading/unloading param-
eter. The nutrient Peclet number, Pe, is the ratio of convective to diffusive
transport and is given by Pe = k P/ﬂﬁla”D which can, in general, vary
across the plant. However, similarly as for kz, we expect Pe to be continu-

ous and assume Pe is constant across the plant zones. The nondimensional
boundary conditions are given by

pf =p at z =0, (17)
R
dd%— —0atz=1, (18)
L—¢gatz=0, (19)
1 dn® dp't R
P(ECZ,Z“+<dZ’_ )Tl ——fatz—l, (20)

where p? and ¢ are the nondimensional pressure and concentration at z = 0,
and f is the axial loading/unloading parameter through the xylem tip in
the root (see Table 2 for definitions and values). In addition we prescribe
continuity of p, flux of p, n, and flux of n at the nondimensional zone bound-
aries z1 and zo. We calculate the values of the nondimensional parameters
based on typical values for a wheat plant and phosphate. Based on values
measured for summer sowing wheat (Kutschera et al. (2009), pg 228) we
consider the leaf-stem boundary to be at 2; = 0.23 m, the stem-root bound-
ary to be at 2o = 0.33m and the length of the plant to be 23 = 0.81m. We
also assume that the xylem sap is similar in property to water such that the



density is p = 103kgm™ and the viscosity is ji = 8.9 x 10~%Pa s. We use
G = 9.81ms~2 for the gravitational acceleration and D = 10~m?s~ ! for the
diffusivity of phosphate in water (Perry, 1997).

‘ Symbol ‘ Description ‘ Value ‘
z=4 nondimensional leaf-stem boundary 0.3
Z9 = j—i nondimensional stem-root boundary 0.4

AL 22
ME = O‘I; i ratio of radial to axial conductivity in leaf 13
AR 22
ME = a];? ratio of radial to axial conductivity in root 0.4
G= pi’f ratio of gravity to pressure scale 0.01
Pe = ﬂﬁlfgi 5 ratio of convective to diffusive transport 107
1%
onolals2FL
FL = ij a} Zf ratio of leaf radial loading to axial transport —1*
g _ 2miFa?s2FS . . . . *
F° = ;c 133 e ratio of stem radial loading to axial transport —-0.5
aroBaRs2 R
FR ks I;a},zf’ ratio of root radial loading to axial transport 1*
RgR3z, f
f= nvfka;sézdf ratio of axial loading to axial transport 0.01*
~0
P’ = % ratio of xylem pressure at z = 0 to |p*!| -1
. ~soil
psoit = P = ratio of soil pressure to [p¢*t| -0.3
pet = ﬁ;:t ratio of leaf-air-space pressure to |p*| -1
o= % ratio of phosphate concentration scales at z =0 | 0*

Table 2: Summary of nondimensional symbols and typical values used based on
those given in Table 1. The starred symbol (*) indicates that the value
has been prescribed (see text in Section 3 for discussion).

Values for wheat root xylem radii and vessel numbers are given in Table
4 in Appendix A obtained from Percival (1921) (pg 39-40). Similarly, the
values for wheat leaves are given in Table 5 in Appendix A from Percival
(1921) (pg 57-59). Using the values in Table 4 and Table 5 we find that k.
is very similar in the two regions; in the roots k. =1.93x10"16m*Pa~ts!,
and in the leaves l%z = 2.01 x 107 m*Pa~ts~1. Therefore we choose an
average value of k. =2x 10" m*Pats L. Similarly, we calculate that in
the root zone 1/Pe = 6.1 x 1077, and in the leaf zone 1/Pe = 7.12 x 1078,
such that Pe ~ 107. This indicates that diffusion is negligible compared to
convection in the main flow regime in all plant zones.

We use a wheat root radial conductivity of I%ﬁ =12x 10" Bms Pa?
from Jones et al. (1983) based on a wheat root radius of af* = 2.48 x
10~*m and we estimate 12;{4 by assuming that the leaf radial conductivity
is proportional to the root radial conductivity through /%TL = QWdef/dL .
Using a wheat leaf thickness of X = 1.384 x 10~%m (Araus et al., 1986) we



calculate IE:TL = 1.35 x 1072 ms~'Pa~!. Using Equation (7), we calculate
af =111 x 107 m2s 'Pa! and &% = 3.87 x 10~ m?s~'Pa~!. Finally
we calculate M = 4732 /k, ~ 0.4, ML = 4133 /k, ~ 13. With P = 10°Pa,
we calculate the gravitational term as G = pg 733/13 = 0.008 =~ 0.01 and we
see that the effect of gravity on water movement is small compared to the
pressure gradient driven terms.

The values of the nondimensional radial (F') and axial (f) loading depend
on knowledge of F' and f which are, to the authors’ knowledge, currently
unknown in the literature. Considering the root zone we see that FE ~

3x 10950 f ~ 181 I = 1.7 x 10° £, which indicates that if axial flux

f did occur, when f is comparable to FAR, its overall effect on the flow

would be smaller than that of FR. Since F and f are unknown, we do not
define a choice of C and, for this paper, assume that F' and f are O(1)
and investigate the effect that varying F' and f has on nutrient transport.
We prescribe that F® is positive to represent loading of phosphate into
the xylem vessels, and similarly prescribe that F° and FL are negative to
represent unloading. Similarly, we prescribe that f is positive, to represent
axial flux of phosphate out of the xylem vessels in the root to be used for
root growth.

In the following sections we solve for the water transport analytically and
the nutrient transport analytically and numerically. In order to solve the
nutrient transport equations analytically we consider the limit of high Pe
and use the method of matched asymptotic expansions. We first determine
the conditions for unidirectional water transport and investigate the effect
that diffusion has on nutrient transport. We use the parameters values given
in Table 2 unless otherwise stated.

4 Results: Water transport

Solving equations (13) — (15) subject to the boundary conditions (17) — (18)
and continuity gives the following solution for the internal xylem pressure
in the leaf, stem and root regions respectively;

pt = Ay sin(VMLz) 4+ Ay cos(VMLz) + poot, p¥ = Asz + Ay,
pR _ A5€\/MRZ + AﬁevaRz _’_psoil7 (21)

where A; are constants determined from the boundary conditions and are
given in the function ‘constants’ in the Maple file in the supplementary
materials. For certain parameter values the flow can become multidirec-
tional inside the xylem vessel, i.e. the velocity of the flow can change sign,
which may be detrimental to nutrient transport from roots to the leaves.
We determine the bounds on the parameter values that would give rise to

10



multidirectional flow by solving ¢* = 0, qf =0, and ¢f* = 0, which indicates
when the velocity in each zone is zero and hence may change sign.

In addition, we investigate the effect that having a difference between p°
(the internal xylem pressure at z = 0) and p®* (the pressure external to the
xylem in the leaf air-spaces) has on the flow. We will first consider the case of
p? = p® for G = 0 and G # 0 and then the case of p? # p*** for G = 0 and
G # 0. In the following sections (4.1 and 4.2) we will classify the flow into
7 possible regimes depending on the parameter values; 4 are characterised
by unidirectional flow (UDF), and 3 are characterised by multidirectional
flow (MDF). These flows are summarised in Figure 11 and Table 3 in the
Discussion (Section 6).

4.1 Conditions for multidirectional flow where internal xylem
pressure at z = 0 equals leaf-air-space pressure (p° = p')

4.1.1 Zero gravity (G =0)
For p® = p®!, if G = 0, the conditions that satisfy ¢® = 0 and ¢J = 0 are

, 17?2

pO — psozl’ MR =0, ML _ 172’ (22)
1

where z; is the nondimensional leaf length. If any of the conditions in

Equation (22) are satisfied then ¢f = ¢2 = 0 for the entire length of the root

and stem zones. The condition ¢ = 0 is satisfied for the same conditions

except for the condition on M’ where instead M% = ig—; This indicates

that the position of W]erere ¢t =0 Cag vary and depends on M’. Since the
value of M’ for the entire length of the xylem vessel and we label this value
of ML as Mch‘t3 below this value the flow is unidirectional, whereas above
this value the flow is multidirectional.

For a nondimensional leaf length of z; = 0.3 (corresponding to 2; = 0.23
m) M, éit = 27.4, and Figure 2 shows the pressure, axial flux, and radial flow
profiles for M’ values above and below M({;it. For values of MY < M cl;it
(the M’ = 13 line in Figure 2), the flow is positive UDF such that the axial
flow is towards the leaves for all z. The radial flow in the leaf is negative,
indicating outwards flow into the leaf air-spaces, and the radial flow in the
root is positive, indicating inwards flow from the soil.

For values of M¥ > M ch't the flow is MDF, but its nature is dependent
on the value of M. For a small increase above ML, (the M’ = 28 line
in Figure 2), the flow is divergent in the leaf zone. The point of divergence
(the point where ¢, crosses 0) is near z1, such that for the majority of the
leaf zone the flow is towards z = 0, and for the remainder of the leaf zone,
and the stem and root zones, the flow is towards z = 1. The radial flow in

the leaf is out of the xylem vessel as previously, but the radial flow in the

minimum of M = is equal to Equation (22) represents the critical

11
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Figure 2: Profiles of internal zylem pressure, axial flux, and radial flow against
azial distance z for MY values above and below the critical
MY =274, for p>o = —0.3, p° = p°™* = —1, 2, = 0.3, 2 = 0.4,
MR =04, G=0. The dashed lines represent the plant zone
boundaries between leaf and stem, and stem and root. Positive radial
flow indicates inwards flow into the xylem, whereas negative radial flow
indicates outwards flow out of the xylem.

root is negative indicating outwards flow from the xylem vessel to the soil.
For a large increase above MZ.. (the M = 35 line in Figure 2) the flow is
convergent in the leaf zone, with inwards radial flow in both the leaf and root
zones, such that flow is driven down from the xylem tip in the leaf as well
as up from the roots. Both the divergent and convergent leaf MDFs seem
unphysical, and therefore M ch't possibly represents the maximum value of
MY that a plant can have. The critical value of M’ is given by

AL 22 2
1
M= T (23)
k. 4 21

and therefore suggests a critical relationship between the ratio of radial to
axial conductivity and the ratio of leaf length to plant length. For p® > p*°
the flow is negative (towards to the roots) UDF, with inwards radial flow
in the leaves and outwards radial flow in the roots, and hence the complete
opposite of positive UDF. For this research however, we will focus mainly
on the physical case of p°, p°®* < p*° and ML < ML

crit*
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4.1.2 Non-zero gravity (G # 0)

For G = 0, the critical parameter values that give rise to MDF are decoupled
as shown in Equation 22. Conversely when G # 0, the parameters couple
together, such that the position at which zero flux occurs (and hence gives
rise to MDF) is a function of G, M¥*, M, 2, 2, p°, and p***. We rewrite
this critical function in terms of p(c)m-t which represents the critical value of
p° that would give rise to MDF for 0 < z < 1 and Figure 3 shows the effect
of G on p? ., for ML =13 (< MZ%,,). The inclusion of G causes p0 , to vary
with z and decrease below p**? (the G' = 0 line) in all zones except in the
leaf zone. The variation of p , leads to 5 possible flow regimes:
Leaf Stem Root Negative

unidirectional flow:
-0.28 T T T T T 4. weak ——> 5. strong
' .

-0.2851

-0.29r

3. Multidirectional
flow in leaf zone

-0.295-

crit

-0.3

P,

-0.3051

_031k 2 Midltidirectional
flow in root zone
-0.3151- 3 3 g 1. Positive
—G=0 , , unidirectional flow
03 — G=0.01 ' ‘ ‘
e 0.2 0.4 0.6 08 1

z

Figure 3: Effect of gravity on the critical value of p° that would give rise to
multidirectional flow, p°.,,, against azial distance z for M =13 for
p*ot = —0.3, p® = p, 21 = 0.3, 20 = 0.4, M® = 0.4. There are five

possible flow regimes depending on the value of p°.

1. positive UDF for p° < p2% | _1,

crit

0S
crit’

2. divergent MDF in the root zone for p°%,|._; < p° < p

3. divergent MDF in the leaf zone for p%, < p® < pO% |, _,

soil 2GeMR(1+Z2>

4. weak negative UDF for p?Z |._o < p° < p e
1

soil 2G6MR(1+22)

5. strong negative UDF for p° > p oYL ,
K1

which are shown in Figure 4.

The different flow regimes occur as the difference between p® and p
which is the primary cause of flow, decreases. The flow regimes (1), (5),
and (3) are equivalent to the positive UDF, negative UDF, and divergent

soil
)
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leaf MDF regimes respectively, discussed in Section 4.1.1. The inclusion of
gravity therefore leads to additional flow regimes (2) and (4), radial flow
profiles of which are shown in Figure 5. MDF in the root zone is charac-
terised by outwards radial flow in the leaves, but with both inwards and
outwards radial flow in the root zone.

The remaining regime, weak negative UDF, is characterised by outwards
radial flow in both the leaf and root zones. The transition from weak to
strong negative UDF occurs when the gradient of ¢* switches from negative
to positive, which causes the switch from outwards to inwards leaf radial
flow. However, for the parameter values of interest, this transition occurs
for p° > p*°. and hence outside the regime of interest. Note that MDF
cannot occur in the stem because we prescribe that radial flow occurs only
in the root and leaf zones.

For the case G = 0, if p® = p** there would be no flow for all z. With
the inclusion of gravity, if p° = p*°*, flow occurs but its nature is dependent
on pgm-t. For example for M* = 13, pgrit| .—o is greater than p*° therefore
for p¥ = p*°, MDF in the leaf zone will occur. However, if M’ is smaller,
for example M* = 3 as in Figure 6, then negative UDF can occur. In
fact, it can be seen that if even if p? < p** negative UDF will occur. The
consequence of this is that even a seemingly preferential pressure difference
(p° less than p*°!) for positive flow can lead to negative flow from leaves
to roots. To ensure that only positive UDF occurs, p® should be below the
minimum pQ , for all regions, which is (for the parameter values of interest)
in the root region at z = 1 and is given by

OR il
pcrit\z:l = psm +
Ko tan (\/ MLzl)
VML ’

2\/MR22 + eZ\/MR

Ge—VMR(ZQ+1) K1
2 VMR

+ /<&2(2:1 — 22) —

2VMBzy eZ\/MR

where k1 = e and kg = €

4.2 Conditions for multidirectional flow where internal xylem
pressure and leaf air-space pressure differ (p° # p®)
4.2.1 Zero gravity (G =0)

For the case where the internal xylem pressure at z = 0 and leaf air-space
pressure differ (p® # p®?), the critical values which give rise to multidirec-
tional flow of M* and p° again couple. If G =0, ¢ = qf =0if

ME = 0, pO _ cos(\/ﬁzl) (psoil _ pext) _i_pext' (25)

At z = 21, ¢¢ = 0 is satisfied by the same conditions, therefore Equation
(25) is valid only for z; < z <1 (the stem and the root zones only) and we
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Figure 4: Profiles of zylem flow velocity profiles against azial distance z for
increasing p°, for M* =13, M® = 0.4, p*°? = —0.3, p° = p**?,
21 =0.3, 20 =0.4, G =0.01. UDF stands for unidirectional flow,
MDEF stands for multidirectional flow. The conditions for the different
flow regimes are given in Table 3. The dashed lines represent the plant
zone boundaries between leaf and stem, and stem and root.
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Figure 5: Radial flow profiles in leaf and roots for the cases of MDF in root
(p° = —0.31), and weak negative UDF (p° = —0.28) for M’ = 13,
ME =04, pt = -0.3, p° =p°, 2, = 0.3, 2 = 0.4, G = 0.01.
Positive radial flow indicates inwards flow into the xylem, whereas
negative radial flow indicates outwards radial flow.
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Figure 6: Effect of gravity on the critical value of p° that would give rise to
multidirectional flow, p°,;,, against avial distance z for varying M,
p*eil = —0.3, p¥ = p°*t, 21 = 0.3, 20 = 0.4, M® = 0.4. The dashed
lines represent the plant zone boundaries between leaf and stem, and
stem and root.

0.5 05
—M-=5
—M-=13
O\ —pt-28 0
S8 0.5 S8 -0.5
L —M=0.1
-1 < MN—mto0al :
—M=0.6
15 0.1 0.2 0.3 15 0.1 0.2 0.3
z 4
L L
(a) large M (b) small M

Figure 7: Variation of critical p° in the leaf region against axial distance z for
increasing MY for p*° = —0.3, p¢® = —1, 2z, = 0.3, 20 = 0.4,
ME =04, G=0. The solid black line represents p*°* and the dashed
black line represents p®*t.
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0,5,R
crit

of interest, increasing M’ increases the magnitude of p
of p¥ < pg;i;R positive UDF occurs in the stem and root zone, whereas for

p° > pg;ft’R MDF would result.
For z < z; (the leaf zone), the critical p° is a function of z, and its

behaviour depends strongly on the value of M’;

VME(pert — psoil) ) cos(vVMEz)
0 _ ext
pcmt p + f]_ (Z) + f2(Z) ) (26)

fi(z) = =V MPEk; cos (\/W(z - zl)> ,
fa(z) = VML (/@2 + \/m(zl — zg)/ﬁ) sin (\/W(z — 21)) .

. For the parameter values
0,5,R
crit )

therefore label this critical value of p° as p
and for values

Note that at z = 21, Equation (26) is equivalent to Equation (25). Figure
7 shows the variation of the critical values of p® with z in the leaf region
for increasing values of M¥. Note that the solid black line represents p>°%
and the dashed black line represents p®*t. The behaviour of pgrit varies
significantly for large and small M’ and we can see that for large M as in
Figure 7(a), the solution displays discontinuous behaviour such that there
is an inflection point within 0 < z < 2.

Only for the range p2..,|.—0 < p° < pY.;|2=z,, does positive UDF exist.
Outside of this range, MDF occurs: to the right of the inflection point,
values of p? above p? ., gives rise to divergent MDF, whereas to the left of
the inflection point values of p° below p(c)rit gives rise to convergent MDF.

The nature of the positive UDF that occurs depends on whether p° is
smaller or larger than p**. For values of pgm| 2—0 < p° < p weak positive
UDF flow occurs which is characterised by some or total inwards radial flow
in the leaf zone (as opposed to total outwards leaf radial flow for positive
UDF seen in Section 4.1). This is simply because for this range there is
enough of a pressure difference between p? and p®! to cause a flow between
them.

Increasing M’ decreases the range of allowable p°, and for values of
ML > MZL. (the ML = 28 line on Figure 7(a)), the range of allowable p°
decreases below p®®t, in fact for ML = ML, p . |.—1 = p as expected
from Equation (25).

For very small values of M’ the inflection point of pY ., does not occur,
as can be seen in Figure 7(b). For this case, positive UDF is obtained for
p° < p2.il.=1, divergent leaf MDF for pQ.,|.—0 < p° < p2.;;|:=2,, and weak
negative UDF for p® > pQ . |.—o.

4.2.2 Non-zero gravity G # 0

The addition of G increases the complexity of the solution for the critical
parameter values, however, conversely to the case of p? = p*t, the effect of
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varying G has only a small effect on the magnitude of p¥ .. due to the small
value of G and large variation of pgm-t. Similarly as for the case of p? = p&*t,
the inclusion of G reduces pgm-t below the G = 0 case in the stem and root
regions, and causes a variation of p , in the root region with z such that
PO itlz=1 is less than that at pQ ..|.—.,. The profile of p2 , in the leaf region
displays the same discontinuous behaviour as for the case of G = 0 and the
inclusion of G also causes a very slight reduction in p(c)m. The variation of
pY ., with z in the root region introduces another possible flow regime such

that there are 5 (compared to 4 for G = 0 and high M¥)
1. convergent MDF in the leaf zone p® < p2..,|.—o,
2. positive weak UDF pQ ., |.—o < p° < p®*,
3. positive UDF p®® < p¥ < pO .|, 1,
4. divergent MDF in the root zone p? .,|.—1 < p° < pO .|.—s,
5. divergent MDF in the leaf zone p° > p? ..|.—.,.

Therefore to ensure UDF, p® should lie in the range between p°~ |.=0 and
pF|.—1 which are given in Appendix B.

5 Results: Nutrient Transport

We now consider the transport of phosphate in the xylem vessels. The
following model is valid for all flow regimes (multidirectional and unidirec-
tional), but we will only present results for the case of positive UDF which is
the optimal flow regime for nutrient transport from the roots to the leaves.
We assume that the flux of phosphate is due to both convection and diffusion
and investigate the effect a phosphate sink in the roots has on transport.
We solve the nutrient transport analytically in the limit of large Pe and nu-
merically for all Pe. The numerical solution was obtained using the bvp4c
solver in Matlab to solve equations (13)-(16) with the boundary conditions
(17) to (20) and continuity at the zone boundaries.

We now describe the analytical procedure. For sufficiently large Pe we
consider the limit that ¢ = 1/Pe — 0. However, the result is a singular
equation for nutrient transport since the highest derivative is multiplied by
€. To regularise the system, we assume that the flow in each zone can be split
into one central bulk region and two boundary regions. In the bulk region
convection dominates, but in the boundaries both convection and diffusion
are important as the solution rapidly adjusts to the boundary conditions (for
an introduction on boundary layer methods see Hinch (1991)). Diffusion is
especially important when convection is small as the flow velocity tends to
zero at the xylem terminus in the root (z = 1). We seek boundary layer
solutions near z = 0 and z = 1 to satisfy the boundary conditions (19) and
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(20), and also at the zone boundaries z; and zy to satisfy the continuity
boundary conditions. We neglect the effect of gravity as its effect is small,
and as an example assume that F' is constant.

We find that the general solution to Equations (13) to (16) exhibit
boundary layers near z = 0 in the leaf, z = 2; in the stem and at z = 2z
and z = 1 in the root. Hence, when we impose the continuity conditions
at leading order, we find that there are no rapid variations in the leaf at
z = z1 which we require to balance the rapidly varying concentration in the
stem boundary layer. The result is that the coefficient of the boundary layer
terms in the stem is zero to leading order. Similarly, we find that the coef-
ficient of the boundary layer term at z = z5 in the root must also be zero
to leading order. Therefore, we neglect the bounqary layers between the
different zones as they are, at largest, of order Pe™ 2 and do not contribute
to the problem as significantly as those at z =0 and z = 1.

The full analytical method is given in Appendix C, where the leading
order composite solution of n is given by

—FLz4k k .
R (¢ - ~4) ez o(PeTh), (27)
dp Iy
dz
S *FSZ + kQ
=
R _ FR(l - 2)
- dp®?

dz
f\/Pe% /;eééllpe(l_z)Q (erf (;\/ 2R, Pe(1 — z)) - 1> + O(Pe_%),

where kg, k4, L1, and Ry; are constants given in Equations (C.40), (C.31),
and (C.10) respectively in Appendix C. We can see in Equation (29) that
the boundary layer solution near z = 1 is entirely due to f which is the
axial flux of nutrient through the xylem tip. If f = 0, there would be no
boundary layer at the root tip and the convection-only solution would be
applicable. However, we can see that even for small f, the root tip boundary
layer solution may be important as it is multiplied by v/Pe. Expressing the
boundary layer solution at the root tip in terms of erfc (where erfc(x) =
1 —erf(x)) we find that

1 [21 1; 1 [ =
nBL — _f\/P 5 ?e%Rllf’e(l*Z)zerfc (2\/2R11Pe(1 - z)> . (30)

11

n + O(Peié), (28)

n (29)

For high Pe, the limit of Equation (30) as Pe increases is —oo, which is
unphysical. We therefor? surmise that if a flux f occurs, it must be, at
largest, of the order Pe™2 to result in an O(1) solution at the root tip.
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Figure 8 shows the profile of the analytical and numerical solutions of
n against z for increasing Pe. We can see that as Pe increases there is
good agreement between the analytical and numerical solutions except near
the zone boundaries where we ha\{e neglected the boundary layers between
zones since they are of order Pe™ 2. The estimated Pe in the xylem vessels
is Pe ~ 107, but we can see that even for Pe = 2000 (Figure 8(b)), the
analytical and numerical solutions agree closely, and the zone boundaries
are not visible, therefore the asymptotic solution is certainly valid for Pe >
2000. Increasing Pe also changes the solution in the root region due to
the dependence of the boundary layer solution on Pe, this implies that the
significance of an axial flux f increases as Pe increases. This is unlike the
convection-only case, or for the case f = 0, where for increasing Pe, the
solution tends to a constant solution. However, note that (as discussed in
the previously), we expect that the magnitude of f should be limited to be

at largest O(Pe_%) so as to result in only non-infinite values of n.

4 / g 4 /’——_j
Y 3
/ <
2
—numerical —numerical
- --analyticall - --analyticall

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
z z

(a) Pe =200 (b) Pe = 2000

Figure 8: Profiles of n against z for comparing analytical and numerical
solutions for increasing Pe, p*° = —0.3, p° = p*®* = -1, G =0,
f=001, F=(0,0,1), ¢ =0, 20 = 0.3, 20 = 0.4, M® = 0.4, ML = 13.
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(a) Pe=50 (b) Pe =500
Figure 9: Components of nutrient flux against z, for F = (—1,—-0.5,1),

p*ot = 0.3, p* =p°*t = —1, G =0.01, f =0.01, ¢ =0, z; = 0.3,
20 =04, ME =04, ML =13.
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Figure 9 displays the profiles of the diffusive and convective flux compo-
nents (numerical solution) against z for Pe = 50 and Pe = 500. We can see
that the convective flux is the dominant component of flux except near the
ends of the xylem vessel (z = 0 and z = 1) where the convective flux falls to
zero and the diffusive flux becomes large. The diffusive terms are respon-
sible for adjusting the convection-only solution to the boundary conditions
at the ends of the xylem vessel. In particular, we can see that the diffusive
flux undergoes a rapid change near z = 0, and a gradual change near z = 1.
Additional contributions of the diffusive flux can also be seen at the zone
boundaries (z; = 0.3 and z3 = 0.4), as the solution changes zone. Note that
the numerical solution includes flux continuity at the zone boundaries for all
orders of Pe. Figure 10 shows the profiles of n against z for decreasing values

5
15 =
4
3 10
< <
2
5 B
1 — =0 —f=0
—f=0.01 y —f=0.01
0 ---convection only o ---convection only
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
z z
(a) p*t = —1 (b) p** = —0.5
40 100
30 - 8O e
i 60
= 20 : IS
' 40
0 —f=0 —f=0
—£=0.01 20 —f=0.01
0 ---convection only o ---convection only
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
z z
(c) p*' = —0.4 (d) p*** = —0.35

Figure 10: Profiles of n against z for increasing p®*t compared to the convection

only solution, for F = (—1,-0.5,1), p** = 0.3, p° = p**t,
G=001,¢=0,2 =03, 20=04, ME=0.4, M* =13.

of p®* and for increasing f compared to the convection-only solution. For
high Pe the solution for f = 0 should be very similar to the convection-only
solution. However this is only the case when the difference between p®** and

p*° is large, giving rise to high water flow velocities. During the night, or at

times of increased humidity, p®** increases, decreasing the difference between
pe®* and p*** and hence causing slower water flow velocities. The slower the
water flow, the greater the contribution that diffusion makes to nutrient

transport, as can be seen in Figure 10(d) where p®** = —0.35 and both the
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f =0 and f = 0.01 solution of n largely deviates from the convection-only
solution. As p® increases (becomes less negative) the magnitude of n in-
creases within the xylem vessels indicating build up, but this is because a
constant value of F' has been prescribed in each of the plant zones. The
functional form of F' is generally unknown, but more-complicated functions,
such as concentration or z dependent, can be easily be input into the model.

6 Discussion

We have presented a model for the transport of water and nutrients within
the xylem vessels of a wheat plant. We assumed that the flow of water is
due to evapotranspiration which creates a negative potential at the leaves
that drives water upwards from the roots. Depending on the parameter
values, we have seen that the flow can be classified into 7 different regimes;
4 unidirectional flows (UDF) and 3 multidirectional flows (MDF'), which are
shown in Figure 11. We have considered the 2 separate cases of pressure
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Figure 11: Unidirectional flow (UDF) and Multidirectional flow (MDF)
classifications. The solid arrows indicate the direction of flows, and
the cross indicates either the point of flow divergence or convergence.
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in the leaves (p®!) equalling or not equalling the pressure at z = 0 (p°),

with and without the effect of gravity (G). The categories of regimes for the
cases are listed in Table 3. The case of p®** = p? and G = 0 is the simplest
and yields only one critical relationship of biological interest; M ch'tv and 3
possible flow regimes, positive UDF and divergent and convergent leaf MDF'.
M ch't provides a critical relationship between the ratio of radial to axial leaf
conductivity and the ratio of leaf to plant length, which persists for all the
cases considered.

The inclusion of gravity causes the critical ML to couple to the value
of p° (and hence p¢“!), and varying p” leads to 5 possible flow regimes, for
which we have provided the bounds. The optimum flow regime for nutrient
transport to the leaves is positive strong UDF, which occurs when p? < p*°¥.
For smaller magnitudes of p° the flow can become multidirectional which at
most seems unphysical, and at least seems detrimental to nutrient transport,

and plant survival. The regime between positive strong UDF and divergent

p() — pezt
positive strong UDF | MT < ML,
G =0 | divergent leaf MDF | M* > ML
convergent leaf MDF | M% > ML,
positive strong UDF | p¥ < p0% |._;
divergent root MDF | pO%,|._; < p® < p23,
G # 0 | divergent leaf MDF | p%5, < p® < pL.|._g .
negative weak UDF | pPL |, < p° < p*oil — %
: 0 soil __ 2G8MR(1+22)
negative strong UDF | p° > p N
pO 7& peact
convergent leaf MDF | p® < p0 .,|.—o
G0 positive weak UDF | p? ..|.—o < p° < peet
positive strong UDF | p®®t < p0 < p¥ .|._.,
divergent leaf MDF | p° > p0 . |.—.,
convergent leaf MDF pg < pY .l =0
positive weak UDF POl am0 < p¥ < pt
G # 0 | positive strong UDF | p®®t < p® < p% .|,
divergent root MDF | p? ..|.—1 < p° < pQ.;|:=2,
divergent leaf MDF | p° > pQ . |.—.,

Table 3: Summary of the flow regimes for the cases of: xylem pressure at z =0
equals leaf air-space pressure (p = p°*t), and for differing zylem
pressure at z = 0 and leaf air-space pressure (p° # p*). UDF

represents unidirectional flow, MDF represents multidirectional flow.

leaf MDF is divergent root MDF'. This regime seems somewhat physical as
there is evidence that similar flows occur; for example passive water efflux
from roots to soil of lower water potential has been observed and is known
as hydraulic lift (Caldwell et al., 1998). Water is released from roots when
transpiration is low, which is usually at night, and then reabsorbed the next
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day and transpired. This agrees with the findings in this paper; i.e. that
an increase in p® (and p®®?), which occurs when transpiration is reduced,
results in MDF in the root zone and consequently water efflux into the soil.
The traditional case of hydraulic lift discussed by Caldwell et al. (1998)
is characterised by outwards radial flow from the roots to the soil in the
upper soil layers and inwards radial flow at the lower soil layers, which is
opposite to the profile found in this paper for root MDF. This traditional
profile explains why the process is called hydraulic lift, as water is transferred
from lower moist soil to higher dry soil. However, the opposite flow profile
(inwards radial flow at the upper soil layers and outwards radial flow in the
lower soil layers) which is called inverse hydraulic lift is also found to occur,
but usually for roots grown in dry soils (Caldwell et al., 1998).

Inverse hydraulic lift displays the same radial water profile as the root
MDF seen in this paper, although the process may be different, since inverse
hydraulic lift involves the transfer of water downwards which is not seen in
the divergent flow of the root UDF. However, this may be explained by the
fact that soils possess a gradient of water potential with depth, whereas in
this paper a constant value for soil pressure was used. Therefore including a
more physical soil potential gradient into the model may improve the results
described here and allow a closer comparison to experimental results.

The case that p° # p®* was considered due to the inhomeogenity of the
leaf air-spaces which could lead to a profile of varying potentials. Even with-
out the effects of gravity, this case resulted in 4 flow regimes; positive UDF
encompassed by MDF regimes, indicating that only a narrow deviation of
p° from p°*! would allow UDF. Similarly as to the case p® = p®*!, the inclu-
sion of gravity caused the addition of a flow regime (divergent root MDF),
primarily due to the change of pgrit equalling a constant in the root zone
to p? ., varying in the root zone. For all cases, we have provided the rela-
tionship between the parameter values that would give rise to unidirectional
flow and hence optimum nutrient transport.

The transport of nutrient in the xylem vessel is primarily due to ad-
vection within the transpiration stream. We however, have also included
diffusive transport due to the fact that diffusion can become significant near
the vessel boundaries, or at night when the transpirational flow reduces. In
addition, diffusion allows the modelling of an axial flux of nutrient through
the xylem termini in the roots which may occur due to the nutrient sink
effect of the growing root meristemic tissue. We have solved the model
analytically for large Pe and numerically for all Pe, and found very good
agreement between the analytical and numerical models for high Pe which is
applicable to the xylem vessels since Pe =~ 107. We model the flow at night
time by considering the effect of increased p®*! on the flow, and see that as
p° approaches the value of p**?, the water flow reduces, which consequently
increases the contribution of diffusion to nutrient transport. Note that in-
creasing p®! also represents the environmental condition of high humidity.
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In addition, we have seen that an axial nutrient flux f has a large effect
on nutrient transport, especially in the root zone. This flux has not been
observed in the literature, and hence its physical value is unknown. How-
ever, experiments can be carried out measuring the profile of phosphate, or
other radio-labelled compounds, within the xylem vessel close to xylem tips
to see if any boundary layer effects occur. This model therefore, in con-
junction with experimental data can be usied to determine firstly whether f
occurs, and secondly if it is of order Pe™ 2. Similarly, the functional forms
of the loading/unloading parameter F' can be estimated by combining with
experiments.

7 Conclusions and Future work

The aim of this work was to investigate the transport of water and nutrient
within the xylem vessels from roots to leaves. We have seen that different
water flow regimes are possible; some of which are unphysical, but some have
been observed in nature such as positive unidirectional flow, and divergent
root multidirectional flow which is similar to hydraulic lift. The positive uni-
directional flow regime represents the optimum regime for nutrient transport
and we have provided bounds for this for all cases considered. In addition,
we have solved for the transport of phosphate considering convective and dif-
fusive transport, and have seen that diffusion can be significant. This model
only addresses one aspect of the fertilser-to-crop-yield transport pathway;
and in order for this model to help improve efficiency of this pathway, it
should be coupled to models of root growth and water and nutrient uptake,
leaf and grain growth models, thus creating a whole plant model which can
be used for optimisation and determination of plant parameters.

8 Acknowledgements

We thank Helena Unwin for conducting a literature review on xylem vessel
sizes in wheat. This work was sponsored by Defra, BBSRC (BB/J000868/1),
Scottish Government, AHDB, and other industry partners through Sustain-
able Arable LINK Project LK09136 and the BBSRC (BB/1024283/1). Tiina
Roose is funded by The Royal Society University Research Fellowship.

References

J. L. Araus, L. Alegre, L. Tapia, and R. Calafell, (1986), Relationship be-
tween leaf structure and gas exchange in wheat leaves at different insertion
levels, J. Ezp. Bot. 37(9), 1323-1333.

25



E. Bennett, and J. Elser, (2011), A broken biogeochemical cycle, Nature
478.

I. J. Bingham, and E. A. Stevenson, (1993), Control of root growth: effects
of carbohydrates on the extension, branching and rate of respiration of
different fractions of wheat roots, Physiologia Plantarum 88(1), 149-158.

G. D. Bowen, (1970), Effects of soil temperature on root growth and on
phosphate uptake along Pinus radiata roots, Soil Research 8(1), 31-42.

M. Bucher, (2007), Functional biology of plant phosphate uptake at root
and mycorrhiza interfaces, New Phytologist 173 (1), 11-26.

M. M. Caldwell, T. E. Dawson, and J. H. Richards, (1998), Hydraulic lift:
consequences of water efflux from the roots of plants, Oecologia 113(2),
151-161.

N. A. Campbell (2008) in Campbell (9th Edition) Biology, Pear-
son/Benjamin Cummings, San Francisco; London, Chapter 36 Resource
acquisition and transport in vascular plants, 764-784.

D. Cordell, J. O. Drangert, and S. White, (2009), The story of phosphorus:
Global food security and food for thought, Global Environmental Change
19(2), 292-305.

H. H. Dixon, and J. Joly, (1895), On the ascent of sap, Philos Trans R Soc
Lond Ser B. 186, 563-576.

C. Foyer, and C. Spencer, (1986), The relationship between phosphate status
and photosynthesis in leaves. Planta 167(3), 369-375.

J. Frensch, and E. Steudle, (1989), Axial and radial hydraulic resistance to
roots of maize (Zea mays L.), Plant Physiol. 91(2), 719-726.

A. Gallet, R. Flisch, J. P. Ryser, E. Frossard, and S. Sinaj, (2003), Effect of
phosphate fertilization on crop yield and soil phosphorus status. Journal
of Plant Nutrition and Soil Science 166(5), 568-578.

E. J. Hinch, (1991), Perturbation methods Vol(6), Cambridge University
Press, Cambridge.

K. H. Jensen, K. Berg-Srensen, S. M. Friis, and T. Bohr, (2012), Analytic so-
lutions and universal properties of sugar loading models in Miinch phloem
flow, J. Theor. Biol, 304, 286-296.

K. H. Jensen, J. Lee, T. Bohr, H. Bruus, N. M. Holbrook, and M. A, Zwie-
niecki, (2011), Optimality of the Miinch mechanism for translocation of
sugars in plants, J. R. Soc. Interface 8(61), 1155-1165.

26



H. Jones, A. D. Tomos, R. A. Leigh, and R. G. W Jones, (1983), Water-
relation parameters of epidermal and cortical cells in the primary root of
Triticum aestivum L., Planta 158(3), 230-236.

P. J. Kramer and J. S. Boyer, (1995), Water relations of plants and soils,
Academic Press, San Diego, Chapter 7, 201-256.

L. Kutschera, E. Lichtenegger, and M. Sobotik, (2009), Wurzelatlas der
Kulturpflanzen gemigter Gebiete mit Arten des Feldgemsebaues DLG -
Verlag, Frankfurt.

J. J. Landsberg, and N. D. Fowkes, (1978), Water movement through plant
roots, Ann Bot. 42(3), 493-508.

F. J. Molz, (1981), Models of water transport in the soil-plant system: A
review, Water Resources Research 17(5), 1245-1260.

J. Percival, (1921), The wheat plant, Duckworth and Co, London.

R. H. Perry, and D. W. Green, (1997), Perry’s chemical engineers’ handbook
7th Ed., McGraw Hill, New York.

E. Steudle, (2001), The cohesion-tension mechanism and the acquisition of
water by plant roots, Annu. Rev. Plant Physiol Plant Mol Biol. 52(1),
847-875.

E. Steudle, and C.A. Peterson, (1998), How does water get through roots?,
J. Ezp. Bot. 49(322), 775-788.

M. V. Thompson, and N. M. Holbrook, (2003), Application of a single-solute
non-steady-state phloem model to the study of long-distance assimilate
transport, J. Theor. Biol, 220(4), 419-455.

M. T. Tyree, (1997), The Cohesion-Tension theory of sap ascent: current
controversies, J. Fxp. Bot. 48(10), 1753-1765.

27



Appendix A: Xylem dimensions in roots and leaves

Type of vessel average @ (pum) 0 k., (m*Pa~ts™h) 1/Pe
Single large pitted 25 1x1 1.72 x 10716 1.14 x 1078
centripetal 8.75 1x7.5 1.94 x 10°17 9.3 x 1078
protoxylem 3.75 2x75 1.31 x 10718 5.06 x 1077
Y=193x10"1% [ > =6.1x10""7

Table 4: Calculations of k. and 1/Pe in the root zone based on number and radii
of xylem vessels in wheat from Percival (1921) (pg 39-40). The number
of vessels ¥ is given by number of vessels per bundle multiplied by the
number of bundles.

Leaf position average G (pm) 0] k. (m*Pa~ls71) 1/Pe
5th or uppermost 10 4 %13 2.29 x 10716 7.13x 1078
4th 10 4x13 2.29 x 10716 713 x 1078
3rd 10 4 %13 2.29 x 10716 713 x 1078
2nd 10 4x9 1.59 x 10~16 7.11 x 1078
Ist 10 4%9 1.59 x 10716 7.11 x 1078
average = 2.01 x 10716 | average = 7.12 x 1078

Table 5: Calculations of k. and 1/Pe in the leaf zone based on number and radii
of zylem vessels in the stout bundles of wheat from Percival (1921) (pg
57-59). The number of vessels ¥ is given by number of vessels per
bundle multiplied by the number of bundles.

Appendix B: Range of p' that would give rise to
unidirectional flow for p° # p®!, and G = 0

/AR (ns0il __ ,ext
p?zL:o — pot 4 M*"(p P )KL + G _ 9pVME(1422) (B.1)
f(Zl,ZQ) f(21722)
VMZEgysin (VMLz
+ (/fz + VME(z — zz)m) cos (v ML21> — \/M7<L >>,
pggt\z:l — pemt + COS(‘ /MLzl) (psoil _ pext> + (B.Q)
GG_W(ZTH) s K1 Ko Sin (V MLZI)
————— | cos(VMEz)) | —= + Ka(z1 — 22) | —
2 vV MR /ML
where f(z1,22) = VM%x; cos (\/ ML21> (B.3)

+ VML (/{2 + \/m(zl — 22)/-@1) sin (\/ﬁzl) .
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Appendix C: Analytical solution for nutrient trans-
port by convection and diffusion

We seek an analytical solution for the transport of phosphate, n, due to both
convection and diffusion, but consider that diffusion is only important near
the boundaries z = 0, z1, z2, 1. In the main bulk, convection dominates and
we can neglect diffusion, but near the boundaries we expect the presence of
boundary layers as the solution rapidly adjusts to the boundary conditions.
For an introduction into boundary layer methods see Hinch (1991). For
simpler analytical progress we neglect the effect of gravity as its effect is
small, and as an example assume that F' is constant.

Root zone

We first consider the root zone and the boundary near z = 1. We let
e = 1/Pe, which is small, such that the nutrient transport equation and
boundary condition becomes

d dp® dn?
R

eddL =—f at z = 1. (C.2)
z

We scale nft = ¢! faf!, and integrate (C.1) to give

_p [dpt dan® FE
1-R [ Y ot -
€N ( P G> + P 7 z+ky, (C.3)
dn®
_— —1 — 1 .
7 at z =1, (C4)

where k; is determined from the boundary condition (C.4) to be FRf_f . We
define the boundary layer coordinate x and let 1 — z = €%z, such that

- dn' FER FE_ ¢
—1-R a5 e
€ n''Ry —¢ o 7 (1 —€%x) + 7 (C.5)
d*R
e—a;—x —latz=0, (C.6)
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where Ry is % — G as a function of (1 — €*z) which we expand as follows

Ry = VMR (A5e¥M7 = ggemMT) -

R 20,.2
:\/MR((A56'MR—A66_'MR) <1+M — +O(e4a)>

~G. (C.7)

Setting G = 0, we find that Ase" MR _ Age™V M® — () and
Ase ME + Age™ ME _
24 /ML€VMR(Z2+1) (pe:vt _ pO + COS(\/WZl)(pSOH _ pe:pt)>

VMZEk, sin(\/ﬁzl) — VML (\/W(zl — 29)k1 + ﬁg) cos(\/m,zl)
(C.8)

)

which is negative for the parameter values considered (values of M* below
that given by Equation 22). Therefore, with G = 0, we find

- = —= M 3
R, =—-VMRE (A5e ME + Age” MR) (vMReo‘a:—i— R +O(65°‘)) ,

(C.9)

which we rewrite as Ry = R116a$+R1363a$3+O(65a), and whose coefficients
are positive and are given by

Ry = —MR (A56VMR + Aﬁe*VMR) , (C.10)
~ MPE?
| <A5eVMR + AGe_VMR> . (C.11)

Note that if G # 0 then Ag,eVMR + Aﬁe*VMR = G/VMZE and hence the
series would be become Ry = Rjije“z + GMRS?%Q + Ryzedexd + O(e*?)
which makes analytical progress more complicated. Therefore, with G = 0,

Equation (C.5) becomes

~ _ d*R FR FR o
e talt (Rneam + Ryze®a® + O(e5a)) . —— 1 —€"z)+ 7 f.

dr f
(C.12)
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In order for the viscous terms to balance the convective terms, we choose
o= % which leads to

~ ~ d—R FR 1 FR_ .
o (R + s+ 0) = G =Tk~ ()
(C.13)

dn®
;—x =2 at x = 0. (C.14)
We expand nf* = nl’ + E%ﬁ{z + endt + 0(6%) and solve Equation (C.13) at
successive orders of € subject to the boundary condition (C.14). The O(¢°)
terms of Equations (C.13) and (C.14) are

d*R
%:Oatx: , (C.16)

which has the solution ﬁé% = C’oe%R“”’Q, where C is a free constant found
by matching to the bulk solution. Since this solution grows as x increases,
the only choice of Cy is Cp = 0 such that ﬁé% =0.

The O(e%) terms of Equations (C.13) and (C.14) are

dnft  FR FR_f

"R _any

n'Riix - 7 + o (C.17)
d*R

% —latz=0, (C.18)

which has the solution nft = (%1 / f?zﬂ erf(%\/ 2]:311%) + C1> e%R11x2, where

11
(1 is a free constant found by matching to the bulk solution. To ensure a

non-growing solution, we choose C = —%, / I%’T , such that
11

1 /2 ; 1 /=
ﬁ{{ — 5 RZTI 6%R11x2 <erf <2 2R11{1}> — ]_> . (019)

The O(e) terms of Equations (C.13) and (C.14) are

S

dndt

—= =0 tax =0, C.21

I at @ (C.21)
which has the solution ﬁg' = RIZ ff + CQG%RWCZ where Cy is a free constant

found by matching to the bulk solution. To ensure a non-growing solution
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FR
Ruf’

we choose Co = 0, such that nf = A summary of the boundary layer

solution near z = 1 is
nf =e1f (e%ﬁ? + end + 0(6%)) =f (6_%77{% + alt + O(é)) . (C.22)

The boundary layer solution has to match to the bulk solution which is
governed by

dp"t dn®

R R

nt|{ —— e— =—F"2+4+C C.23
< dz ) T + e (C.23)
where Cy is an unknown constant. We similarly let n® = e'nlt + O(e%)
and find né% = % which is equivalent to the convection-only solution.

Matching the bulkdfco the boundary layer solution we find that n; matches
to zero, and 72 matches to the bulk solution to give Cy = F¥. Following a
similar procedure near the stem-root boundary, we find that the boundary
layer solution near z = z3 is

FR(l — 2’2)

R kle—RgoPe(z—zg) + -
Ry

n():

, (C.24)

where Rog = VMR (A5ev MRz _ pgeV MRZ?) and k7 is an unknown con-

stant. Therefore the composite solution in root is

R -
nR — F Ei]p;R_ Z) k167R20P6(2722)+
Tdz
1 2 5 1 -
f /P 3 RizeéRuPe(l—z)Q <erf <2 V 2R11P€(1 — Z)) — 1> + 0(6%)

(C.25)

The constant k; will be determined by applying the continuity boundary
conditions but first the solutions in the stem and leaf regions have to be
calculated.

Stem zone

Since p® = Aszz + A4, the nutrient transport in the stem zone is governed
by
S

d
nSAg—i-e% = —F9% + ko, (C.26)

where ks is an unknown constant. We expand n® = ng + O(E%) and seek
boundary layer solutions near z = z; and z = z9 to match to the central
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bulk region. We find that a boundary layer exists only near z = z; such
that the composite solution in the stem region is given by
S —FSZ + k;2

nd = = ke P 1 O(e2), (C.27)
3

where k3 is also an unknown constant, which together with ko will be deter-
mined from the continuity boundary conditions.

Leaf zone

The nutrient transport in the leaf zone is governed by

;[ dp* dn* I
= 20—
n < . > +e€ . F%z + ky, (C.28)

where k4 is an unknown constant. We expand n’ = n} + O(e%) and seek
boundary layer solutions near z = 0 and z = z; to match to the central
bulk region. We find that a boundary layer exists only near z = 0 where
the boundary condition that n = ¢ at z = 0 has to be satisfied. We solve
for this boundary layer by defining a boundary layer variable y and letting
z = Py such that

L7 1—5d”L LA
n-L+e Ty:_Fey+k4’ (C.29)

where L = % as a function of €’y, which we expand as follows

L=vVML <A1 cos(VMLePy) — Ay sin(\/We’By)> (C.30)

= VME <A1 <1 MR 0(€4ﬂ)> — Ay (\/ﬂﬁeﬂy + 0(6”))) :

2

We rewrite L as L = L1 + €’yLy + O(¢2#), whose coefficients are positive
and are given by

Ly = A\WME, Ly =—A;ML. (C.31)

We expand n’ = e'nl + O(e%) and choose = 1 such that

L7 7 2 dn* L
n (L1 +eyLa + O(e )) + oy —F"ey + ka, (C.32)
nf=¢ aty=0. (C.33)
The leading order terms of Equations (C.32) and (C.33) are
~ dn¥
L 0
Lh+—=k .34
ng L1 + dy 4, (C.34)
ny = ¢ at y =0, (C.35)
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which has the solution nf = %4 + ((;5 - %) e"ily, and which matches to
1 1

the bulk solution near y = 0. The composite leaf solution is

—Flz+k k i
= (¢> - ~4) e Pz o). (C.36)
E Ly

Applying continuity boundary conditions

The solutions (C.25), (C.27), and (C.36) represent the leading order com-
posite solutions of n in the root, stem and leaf zones respectively. The
unknown constants k1, k2, k3, and k4 are determined by applying the conti-
nuity boundary conditions and retaining only the leading order terms; terms
up to but not including those at O(e%). At leading order, the continuity of
flux condition at z = 21 reduces to

— I <¢ — i‘*) e~LiPez — _ Aoka. (C.37)
1

Since the terms on the left hand side are asymptotically zero, this results in
ks = 0. Similarly, the continuity of flux condition at z = z5 at leading order
reduces to

— Agkge_A3Pe(Zz_Zl) = —Rzok‘l - f+ (C.38)
1 ~ 5 1 -
if 27TR11P€(1 — ZQ)B%RHPe(l*Z?)QerfC <2\/ 2R11P6(1 — Zg)) .

Since k3 = 0, we find that

27TR Pe 1R e(l1—z 1 »
b d (VT@_@)@;RHP (1= erfe (2@@_@))—1),

Ry 2
(C.39)

using the asymptotic structure of erfc we find that k; is also zero to leading
order with a corrections at O(1/Pe). Applying continuity of n at z = z;
and z = zo, we find that the remaining constants to leading order are

ky=FB(1 —2) + Fo2 4+ Asx,  ks=2(FF—F% +ky  (C.40)

where X = —% /%ﬁeeééupe(l—zgﬂerfc <% /2R11P6(1 . 22)>
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