
Incentives in Ridesharing with Deficit Control

Dengji Zhao∗ Dongmo Zhang† Enrico H. Gerding‡

Yuko Sakurai∗ Makoto Yokoo∗

∗Department of Informatics, Kyushu University, Japan

{djzhao, ysakurai, yokoo}@inf.kyushu-u.ac.jp
†Intelligent Systems Lab, University of Western Sydney, Australia

dongmo@scm.uws.edu.au
‡University of Southampton, Southampton, UK

eg@ecs.soton.ac.uk

ABSTRACT

This paper proposes a novel market-based system for rideshar-
ing, where commuters are matched based on their declared
travel constraints, the number of available seats (which could
be zero), and their costs. Based on this information, the sys-
tem then designates commuters to be either drivers or rid-
ers, finds appropriate matches, and calculates rewards for
drivers and payments for riders. We show that, for this sys-
tem, the well-known Vickrey-Clarke-Groves (VCG) mecha-
nism is incentive compatible (IC), individually rational (IR)
and efficient (i.e., minimizing cost), but results in a very
high deficit, thus requiring large subsidies. We therefore
investigate alternative mechanisms. We first consider mech-
anisms with fixed prices and show that no such mechanism
can be both efficient and IC. Thus, we propose an ineffi-
cient IC mechanism but which has deficit control. We then
consider a VCG mechanism with two-sided reserve prices.
We show that this mechanism is IC and IR for a certain
range of reserve prices, and we analyse the deficit bounds
and how these can be controlled. We furthermore show that
the deficit can be controlled even further by limiting the
(costly) detours taken by the drivers when computing the
allocations, thereby trading off efficiency and deficit.
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1. INTRODUCTION
Ridesharing began in the 1940s duringWorld War II through
car clubs in North America. Since then, it has been widely
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promoted to address problems such as fuel shortages, air pol-
lution and traffic congestion [14, 5, 2]. More recently, there
has been a surge in ridesharing platforms, such as Zimride
and Avego, that leverage the power of online social network-
ing services and smart phones. It was estimated that, in July
2011, there were 638 ridematching services in North Amer-
ica alone [2]. Despite the large number of initiatives over
the years, both publicly and privately funded, there is still
a lack of participation in those programs. According to the
U.S. Census, only 10.7% of American workers commuted to
work by ridesharing/carpool in 2008. The comparable figure
is 7.7% in Canada in 2006. Reports also show that, in the
US and Europe, most cars are driven less than 1 hour per
day and carry only one person for 90% of trips.

In this paper, we use mechanism design to help address
the above problem. Specifically, we propose a novel market-
based ridematching model that incentivizes commuters to
participate in the system and to truthfully declare their
preferences and constraints, while limiting any deficit for
the system in order to be economically sustainable. In the
proposed model, each commuter is asked to declare their de-
parture and arrival locations, and a travel time window. In
addition they need to declare their costs, which corresponds
to the travel costs incurred when not using the system (e.g.,
fuel costs, taxi costs, or the costs of public transportation).
Finally, they declare the number of available seats (which
is zero if they use e.g. public transport). Based on this in-
formation, the mechanism computes allocations specifying
who is going to be a driver (i.e., selling any available seats),
a rider (i.e., purchasing an available seat) or unmatched,
a schedule for each commuter, and appropriate payments.
The main goal of a ridesharing system is to minimize the
overall costs (i.e., maximize efficiency), while incentivizing
participation and truthful reporting. However, we show that
it is not possible to satisfy these properties without the sys-
tem incurring a significant deficit. Hence, such a system
could not be economically sustainable. Thus, we propose
several mechanisms that are less efficient but can control or
even eliminate the deficit.

The problem of deficit control (also known as achieving
weak budget balance) is well known in the mechanism de-
sign literature. Myerson [10] was one of the first to study
this problem for bilateral trade. McAfee [8] proposed a
trade reduction approach to achieve weak budget balance by
sacrificing efficiency for a single-commodity exchange with
multiple buyers and sellers. Gonen et al. [4] generalized



McAfee’s trade reduction idea, where they showed that ef-
ficiency can still be bounded for a class of single-valued
domains. While these approaches also match buyers and
sellers, they assume either a homogeneous good or a single-
valued domain, which does not apply in our setting. Our
setting is more akin to a combinatorial exchange. For this
setting, Parkes et al. [15] build on the well-known Vickrey-
Clarke-Groves (VCG) mechanism and change the payments
to enforce (strict) budget balance, while sacrificing both ef-
ficiency and truthfulness. We take a different approach and
try to control the deficit, rather than eliminating it com-
pletely, while maintaining truthfulness. Furthermore, so far
there is very little literature that considers mechanism de-
sign specifically for the ridesharing problem. Exceptions are
the work by Kleiner et al. [7], who propose a simple model
based on the second-price auction, and Kamar et al. [6], who
apply the payment mechanisms proposed in [15] to an ex-
perimental ridesharing system. Both of these papers study
their models empirically in a dynamic ridesharing environ-
ment, but they contain no new theoretical contributions.

The remainder of the paper is organised as follows. Sec-
tion 2 presents the ridesharing model. Section 3 demon-
strates that efficient and truthful ridematching is only achiev-
able with a large potential deficit. Then, Section 4 investi-
gates two approaches for controlling deficit: fixed prices and
VCG with two-sided reserve prices. We conclude and discuss
future work in Section 5.

2. THE MODEL
We represent the commuters’ possible routes as a graph
G = (L,E), where L is a set of stopping points and E is
a set of edges (i.e., routes) between stopping points. There
is a weight associated with each edge eli,lj ∈ E,1 denoted
by w(eli,lj ), which indicates the time required to finish the
travel on the route. Let wmin(li, lj) be the minimum weight
of all paths between li ∈ L and lj ∈ L.

We consider discrete time periods T = {0, 1, . . . , tend} for
arriving at stopping points.2 Furthermore, let N be the set
of all commuters. Each commuter i ∈ N has a privately
observed type, θi = (ldi , l

a
i , t

d
i , t

a
i , ci, qi), where ldi , l

a
i ∈ L are

i’s departure and arrival locations, tdi , t
a
i ∈ T are i’s earli-

est departure and latest arrival time (i.e., the time window
available for travel), ci ∈ R

+ is i’s travel cost to finish the
trip, and qi ∈ N is the number of seats available for any ad-
ditional riders. Note that θi can represent commuters with
their own transport, as well as commuters who would nor-
mally use public transportation, or even a taxi. The main
difference is in terms of the parameter qi. For example, if
θi is based on public transportation, i.e. i has no seat to
share with others, then qi = 0. Otherwise, if they have
car or are willing to share a taxi, then qi ≥ 0. Here, the
cost parameter ci represents the cost of commuting without
participating in the system. For example, if the commuter
normally uses public transport, this represents the cost of
that transport. If he or she uses a car, this is the fuel cost
for the commute. We assume that the cost is independent

1If there are multiple routes between two adjacent stops, we
only need to model the shortest one.
2The number of discrete time periods depends on the specific
applications. For instance, if we consider matchings in a 24-
hour time window, and there is a time point for every 10
minutes, then tend = 24 ∗ 6 = 144.

of the the occupancy of the vehicle.3 However, as we will
explain in detail below, an additional cost is incurred if the
commuter has to make a detour to pick up other riders.

In the ridesharing system, each commuter i is required to
report her type to the system. We denote the report by θ̂i
and note that commuters could misreport their type if it is
their best interest to do so. Let θ = (θi)i∈N be the type pro-
file of all commuters, θ−i = (θ1, θ2, · · · , θi−1, θi+1, · · · , θn)
be the type profile of all commuters except i. Given com-
muter i of type θi, we refer to Θi as the set of all possible
type reports of i, and let Θ be the set of all possible type
profile reports of all commuters with type profile θ.

Given report profile θ̂ ∈ Θ, a ridesharing mechanism

will compute an allocation (i.e., matchings) π = {πi(θ̂)}i∈N

and payments x = {xi(θ̂)}i∈N . Here, πi(θ̂) = (di, si) where
di ∈ {0, 1} indicates whether or not i travels with her own
transportation: di = 1 means i uses her own transportation
(e.g., driving or public transport) and di = 0 means that i

shares a ride with other commuters, and si is a schedule for
i (defined below). Payment xi(θ̂) ∈ R and if xi(θ̂) > 0, i

pays xi(θ̂) to the mechanism, otherwise, i receives −xi(θ̂)
from the mechanism.

Definition 1. A schedule si for i is defined as a se-

quence ((l1i , t
a1

i , t
d1
i , w1

i ), (l
2
i , t

a2

i , t
d2
i , w2

i ), . . . , (l
ki
i , t

aki
i , t

dki
i , w

ki
i )),

such that i has to arrive at lki ∈ L before t
ak
i ∈ T and depart

from lki ∈ L with commuters wk
i ⊆ N , where i ∈ wk

i , no
later than t

dk
i ∈ T . ki is the number of stops/transfers of si.

Given i’s schedule si, we define i’s schedule depen-

dency with respect to j ∈ N \ {i} as:

si(j) = {(lki , t
ak
i , t

dk
i , w

k
i ) ∈ si : j ∈ w

k
i }.

Given allocation π we say that a commuter i is matched as
a driver if she is allocated riders, i.e. if πi(θ) = (1, si) and
⋃

j∈N\{i} si(j) 6= ∅; i is matched as a rider if πi(θ) = (0, si).

Otherwise, i is said to be unmatched, i.e. πi(θ) = (1, si)
but

⋃

j∈N\{i} si(j) = ∅.

Given report profile θ, allocation πi(θ) = (di, si), an es-
sential requirement is that the allocation is feasible for i.
Before defining feasibility, we define the driver of si as
d(si) = {dk(si)}

ki−1
k=1 , where dk(si) = {j ∈ wk

i : πj(θ) =
(1, sj)}. That is, dk(si) is the set of commuters who are
matched as drivers travelling with i from the k-th stop of si.

Definition 2. Given commuter i of type θi, we say allo-
cation (di, si) is feasible for i, if

1. l1i = ldi , l
ki
i = lai ,

2. tdi ≤ t
a1

i , t
aki
i ≤ tai , t

ak
i ≤ t

dk
i for all 1 ≤ k ≤ ki,

3. t
ak+1

i − t
dk
i ≥ wmin(l

k
i , l

k+1
i ) for all 1 ≤ k < ki,

4. dk(si) = {j}, |wk
i |−1 ≤ qj for all 1 ≤ k < ki, w

ki
i = ∅,

5. wk
i 6= wk+1

i for all 1 ≤ k < ki.

We say allocation π is feasible if, for all i ∈ N , all profile θ,
πi(θ) is feasible and also consistent with other commuters’
allocations4.
3In reality, the fuel cost might increase with higher occu-
pancy. At the same time, in some cities high-occupancy
vehicles have special lane which might decrease the travel
time/cost. Overall, the cost difference is not significant and
is hard to model.
4For example, if i appears in the schedule of j, then j should
appear in the schedule of i in the same way.



Constraint 1 above requires the first and the last locations to
be i’s departure and arrival locations. Constraints 2 and 3
require that the schedule to fit in i’s travel time window and
the time scheduled between stops to allow i to complete her
travel. Constraint 4 means that there is always one and only
one driver at each stop except the terminal, and the number
of riders should be no more than the number of seats the
driver has reported. The last constraint indicates that si
should not include any stop on the way without transfer,
pick-up or drop-off, i.e. all intermediate stops are necessary.

Given these constraints, the goal of the system is to max-
imize efficiency, which means (as we will show) minimizing
overall costs. As already mentioned, additional costs are in-
curred if the driver requires to make a detour in order to
pick up or drop off a rider. Now, an important feature of
the model is that we assume the system is able to compute
these costs based on the reported ci, the schedule si, and the
weights w(eli,lj ) of graph G as defined earlier. For exam-
ple, if ci represents fuel costs of the journey without detour,
the system estimates the fuel costs of the journey with a
detour. Similarly, if ci represents the costs of a taxi without
a detour, the system extrapolates to compute the costs in-
curred by picking up additional passengers. Specifically, the
detour cost, cdetour(ci, si), is calculated based on the addi-
tional driving time allocated to i proportional to the original
driving time. Formally:

cdetour(ci, si) = ciδi, where δi =
wmin(si)− wmin(l

d
i , l

a
i )

wmin(ldi , l
a
i )

.

Here, wmin(si) =
∑ki−1

k=1 wmin(l
k
i , l

k+1
i ) is the driving time

of si with any detours. Note that the numeratour of δi de-
notes the additional driving time and δi ≥ 0. Also, for large
enough detours, the detour costs can exceed the original
costs. Then, the overall costs in the system given allocation
π(θ) are given by:

c(π(θ)) =
∑

i∈N,πi(θ)=(1,si)

(ci + cdetour(ci, si)).

We say an allocation is cost-efficient if it minimizes costs
for all type profile reports.

Given these detour costs, we define the valuation v of
commuter i with type θi and allocation (di, si), as:

v(θi, (di, si)) =











−cdetour(ci, si) if di = 1 with feasible si,

ci if di = 0 with feasible si,

−∞ if si is infeasible.

Intuitively, the valuation corresponds to the savings made
by a commuter due to the allocation (without taking into
account payments), where the savings are positive for a rider
(since she no longer incurs her costs), and negative for a
driver (if there is a detour). Note that, if i is unmatched,
the commuter has no detour and her valuation is zero, which
corresponds to the first case when cdetour(ci, si) = 0.

We are now ready to define efficiency.

Definition 3. An allocation π is efficient, if for all θ,
π(θ) ∈ argmaxπ′∈Π

∑

i∈N
v(θi, π

′
i), where Π is the set of all

allocations. The sum of valuations is also referred to as the
social welfare.

It is easy to verify that minimizing the overall costs is
equivalent to maximizing the social welfare (see Example 1
below).

Proposition 1. A ridesharing allocation is cost-efficient
if and only if it is efficient.

Given commuters’ type profile θ, their reports θ̂ ∈ Θ, and
mechanism M = (π, x), we define the utility of i as

u(θi, θ̂, (π, x)) = v(θi, πi(θ̂))− xi(θ̂).

Intuitively, the utility is the overall savings made. Without
participating in the mechanism, there is no allocation, no
detour and no payment, and so the utility is zero. We say
a mechanism is individually rational if no commuter re-
ceives a negative utility by joining the system. This is also
called the participation constraint.

In addition to the commuters, we are also interested in
whether the system as a whole is profitable, or if it requires
subsidies.

Definition 4. Given report profile θ and mechanism M =
(π, x), the revenue of the market owner is

Rev(θ, (π, x)) =
∑

i∈N

xi(θ).

For all report profile θ̂, if Rev(θ̂, (π, x)) = 0 (≥ 0), we
say M is budget balanced (weakly budget balanced). If

Rev(θ̂, (π, x)) < 0, we say M runs a deficit |Rev(θ̂, (π, x))|.

Following the tradition of mechanism design, preventing
strategic manipulations of commuters is crucial to the sys-
tem, which is known as truthfulness (or dominant-strategy
incentive compatibility):

Definition 5. A mechanism M = (π, x) is truthful if

u(θi, (θi, θ̂−i), (π, x)) ≥ u(θi, θ̂, (π, x)) for all i ∈ N , all θ,

all θ̂ ∈ Θ.

That is, a mechanism is truthful if reporting the type truth-
fully is a dominant strategy. This property not only ensures
that the system will receive truthful information, which is
important to achieve efficiency, but also avoids the need for
strategic reasoning by commuters.

We assume that commuters cannot misreport their de-
parture and arrival locations, as the system can easily verify
their locations via, for example, other commuters or mo-
bile devices, and apply penalties for misreporting locations.
Moreover, misreporting locations will lead to infeasible allo-
cations which are not appealing to commuters. Therefore, a
truthful mechanism should incentivize commuters to truth-
fully report their travel time window, costs, and the number
of extra seats. Furthermore, in this paper we only consider
deterministic mechanisms, where for all reports, the alloca-
tion and the payment outcomes are deterministic.

b b

b

b

A B

C

D

θ4 = (D,B, td4, t
a
4 , 8, 0)

θ3 = (C,B, td3, t
a
3 , 7, 0)

θ2 = (A,B, td2, t
a
2 , 6, 1)

θ1 = (A,B, td1, t
a
1 , 5, 1)

1

0.4 0.8
0.8

0.3

Figure 1: Ridesharing example

We finish this section by an example to clarify the model.



Example 1. Figure 1 shows an example with 4 commuters.
The first two have one additional seat each and are travelling
from A to B. The other two have no extra seat and travel
from C to B and D to B respectively. The direct path from
A directly to B requires a time of 1, and from A to B via C
(D) is 1.1 (1.2). The efficient allocation is that 1 drives via
D to take commuter 4, and 2 drives via C to take commuter
3, if this allocation is feasible. The total cost saved is the
costs of 3 and 4 minus the detour costs of 1 and 2, which is
7 + 8− (0.2 ∗ 5 + 0.1 ∗ 6) = 13.4. The valuations for 1, 2, 3
and 4 are −0.2∗5, −0.1∗6, 7 and 8, respectively. Note that,
if the cost of commuter 1 is 15 rather than 5, the efficient
allocation will be that 2 takes 1 from A to B, and 3 and 4
are unmatched, where the total cost saved is 15. In other
words, a commuter with extra seats to share can be matched
as a driver, rider or unmatched, depending on her type and
others’ types. More precisely, a commuter with extra seats
can be both a seller and a buyer.5

3. TRUTHFUL & EFFICIENT MECHANISM
In this section we consider the problem of finding a truthful
and efficient mechanism, and the implications for the deficit
in our system. A well-known class of mechanisms that is ef-
ficient and incentivizes truthful reporting in many domains
is the set of Groves mechanisms [11, 12]. In fact, in unre-
stricted domains, the Groves mechanisms are the only mech-
anisms which are both efficient and truthful [11, Th.2.8].
The classic mechanism from this class is called the Clarke
mechanism, also referred to as the Vickrey-Clarke-Groves
(VCG) mechanism, which has some nice properties, such as
individual rationality, and also has no deficit in many do-
mains. In this mechanism, the payments are based on the
marginal contribution of an agent to the social welfare, and
are computed as follows:

Clarke pivot payment xClarke

Given reported profile θ and efficient allocation π, the
payment for commuter i is given by:

x
Clarke
i (θ) = V (θ−i, π)− V−i(θ, π)

where

• V (θ−i, π) =
∑

j∈N\{i} v(θj , πj(θ−i)), i.e. the so-
cial welfare of the efficient allocation when exclud-
ing agent i’s report from the allocation.

• V−i(θ, π) = V (θ, π) − v(θi, πi(θ)), i.e. the social
welfare of the efficient allocation excluding the val-
uation of agent i.

Note that, for riders, the first term is no smaller than the
second term, and so their payment is positive. For drivers,
the opposite is true and so they always receive payment.
Intuitively, a driver i will receive the amount of the cost
saved for other commuters because of i’s participation, while
a rider j will pay the amount of the cost increased by j’s
participation for other commuters.

5Note that, although our setting is similar to a combinatorial
exchange in many ways, different to our setting, in typical
combinatorial exchanges an agent cannot be both a seller
and a buyer of the same item or bundle.

The following theorem (Theorem 1) shows that an efficient
allocation with payment xClarke is indeed truthful and also
individually rational in our setting. To prove that, we will
use the following characterization of truthfulness, which is
directly based on Proposition 9.27 from [12] and the proof
is omitted here:

Lemma 1. A ridematching (π, x) is truthful if and only
if, for all i of type θi and all θ−i, it satisfies:

1. The payment xi(θi, θ−i) does not depend on θi, but
only on the alternative allocation π(θi, θ−i). That is,

for all θ̂i 6= θi, if π(θi, θ−i) = π(θ̂i, θ−i), we have that

xi(θi, θ−i) = xi(θ̂i, θ−i).
2. The utility of i is optimised. That is, π(θi, θ−i) and

x(θi, θ−i) maximize i’s utility among all alternatives
in the range of π(., θ−i), i.e.

θi ∈ argmaxθ̂i∈Θi
u(θi, (θ̂i, θ−i), (π, x)).

Theorem 1. Efficient allocation πeff combined with pay-
ment xClarke, i.e. VCG, is truthful and individually ratio-
nal.

Proof. First we consider truthfulness. We show that the
two conditions of Lemma 1 hold for this mechanism.

Given θ−i, for all θ̂i 6= θi, if π(θi, θ−i) = π(θ̂i, θ−i), we

get xClarke
i (θi, θ−i) = xClarke

i (θ̂i, θ−i), because V (θ−i, π
eff )

and V−i(θ, π
eff ) only depends on θ−i and the allocation.

Therefore, the first condition of Lemma 1 is satisfied.
Next, given θ−i and commuter i of type θi, we need to

show that the utility of i via reporting θi is maximized by
the mechanism, i.e. θi ∈ argmaxθ̂i∈Θi

(v(θi, π
eff
i (θ̂i, θ−i))−

xClarke
i (θ̂i, θ−i)). Let π

eff
i (θi, θ−i) = (di, si) and π

eff
i (θ̂i, θ−i) =

(d̂i, ŝi). We assume that (d̂i, ŝi) is feasible for θi, other-

wise, i’s utility for misreporting θ̂i is −∞. To simplify the
notation, we omit the mechanism in the utility. We have
u(θi, θ) = v(θi, (di, si)) − xClarke

i (θi, θ−i) = v(θi, (di, si)) −

V (θ−i, π
eff )+V−i(θ, π

eff ), and u(θi, (θ̂i, θ−i)) = v(θi, (d̂i, ŝi))−

V (θ−i, π
eff )+V−i((θ̂i, θ−i), π

eff ). We know that v(θi, (di, si))+

V−i(θ, π
eff ) ≥ v(θi, (d̂i, ŝi)) + V−i((θ̂i, θ−i), π

eff ) because

πeff is efficient, otherwise π
eff
i (θi, θ−i) 6= (di, si). Thus,

u(θi, θ)− u(θi, (θ̂i, θ−i)) ≥ 0 for all θ̂i ∈ Θi.

For individual rationality, it is evident that v(θi, π
eff
i (θ))−

xClarke
i (θ) = V (θ, πeff )− V (θ−i, π

eff ) ≥ 0 because π
eff
i is

efficient.

Furthermore, we can easily show that, in our model, if we
do not charge unmatched commuters, truthfulness implies
individual rationality, because commuters can always mis-
report so that any match becomes infeasible, and thus they
get a utility zero.

Proposition 2. Any truthful ridesharing mechanism with-
out charging unmatched commuters is also individually ra-
tional.

Despite the fact that VCG is both truthful and efficient in
our setting, we show that it can lead to severe deficit, which
limits its applicability to real-life applications.

Proposition 3. The deficit generated by the VCG ride-
matching with Clarke pivot payment can be as much as m

times of the cost saved by the mechanism, where m + 1 is
the maximum number of stops on a simple path (i.e., with
no repeated stops) in the given route map.



Proof. The proof is by example. A large deficit occurs
when every driver receives the amount of the total cost saved
by the system, and the payments for the riders are zero.
This situation occurs, for example, when each commuter is
critical for the system to achieve a positive social welfare.
Figure 2 shows an example of such an extreme situation,
where each driver travels between two adjacent stops and
there is no overlap where several drivers travel on the same
section. All sections are connected together to form a line
(type θ1 to θm), and there is one rider who needs to travel
on the entire path (type θ0). Assume that, apart from the
setting where no commuters are matched, the only other
feasible allocation is where the rider travels with all drivers
on the path. If one of the drivers is removed, there is no
sharing, so each driver receives an amount of transfer equal
to the cost of the rider (since they all contribute equally to
the social welfare). The rider pays nothing because there is
no competition with other riders, and her participation does
not reduce anyone’s valuation.

b b b b b

l1 l2 l3 lm lm+1

θm = (lm, lm+1, tm, tm+1, cm, 1)

...

θ2 = (l2, l3, t2, t3, c2, 1)

θ1 = (l1, l2, t1, t2, c1, 1)

θ0 = (l1, lm+1, t1, tm+1, c0, 0)

Figure 2: An example for the proof of Proposition 3

The above proposition shows that, not only can the deficit
be very high, but it can be many times higher than the so-
cial welfare obtained by the system. Therefore, it makes no
economic sense, even for a government, to implement such
a mechanism. Now, the problem of having a deficit is well
known in two-sided markets (with buyers and sellers) such
as ours. In fact, Myerson’s impossibility result for bilat-
eral trade also holds here (since bilateral trade is a special
case of our setting, where individual drivers are matched to
individual riders), which states that a deficit is unavoidable
when designing a truthful, efficient and individually rational
mechanism [10]:

Theorem 2. It is impossible to have a truthful, efficient
and individually rational ridesharing mechanism without out-
side subsidies.

4. TRUTHFULNESS & DEFICIT CONTROL
In the previous section, we have shown that VCG is truthful
and efficient, but it cannot avoid large deficits. Furthermore,
no efficient and truthful mechanism can be weakly budget
balanced (i.e., no deficit) in our setting. In order to de-
velop a practical and economically sustainable system, in
this section we take a different approach and relax efficiency
to obtain better deficit control, while maintaining truthful-
ness. We start, in Section 4.1, by considering fixed payment
mechanisms. Then, we introduce VCG with two-sided re-
serve prices in Section 4.2.

4.1 Fixed payments
Fixed prices are widely used due to their truthfulness, and
the ability to get revenue guarantees. Hence, we analyse
these types of payments and their implications for efficiency

and deficit control. There are many ways to define fixed pay-
ments. In this paper, we allow different payments for drivers
and riders. We also consider payments which can be a func-
tion of the schedule, e.g. the length of the detour. These
payments are fixed in the sense that they exclusively depend
on the current allocation (and not e.g. on the commuters’
valuations). Fixed payments are defined below:

Fixed payment xfixed(p0, p1)

Given predefined values p0 ≥ 0 and p1 ≤ 0,

• The payment for rider i given schedule si is:
{

p0 allocation independent.

p0 · wmin(l
d
i , l

a
i ) location dependent.

• The payment for driver j given schedule sj is:










p1 allocation independent.

p1 · δj · wmin(l
d
j , l

a
j ) detour dependent.

p1 · tsharej sharing dependent.

where tsharej is the total travel time j shared with
riders under sj counting the number of riders in
her car, i.e. if j travelled tj time units with two
riders, then tsharej = 2tj .

• The payment for any unmatched commuter is zero.

Note that xfixed(p0, p1) has two parameters: p0 for riders
and p1 for drivers, and we only consider positive payments
for riders, and negative for drivers (i.e., they receive pay-
ments). We do not consider the case where p0 < 0 or p1 > 0,
because this will lead to severe deficit and/or violate individ-
ual rationality. Note that the above payments can be used
in various combinations, and also can be added together to
build multi-part tariffs (e.g., an allocation independent com-
ponent, and a detour component).

We now analyse the efficiency of truthful mechanisms us-
ing such payments. Recall from Proposition 2 that truthful-
ness necessitates individual rationality in our setting (sub-
ject to having zero payment when unmatched, which is the
case here). Therefore, it is clear that we cannot obtain ef-
ficiency in general, since this violate individual rationality
in some instances (when the fixed payments are higher than
the savings). However, we can show that, even if we limit the
set of possible allocations to those that provide non-negative
utility for each commuter, obtaining efficiency within that
remaining set of allocations is not feasible. Formally, let
Π(p0, p1) denote the set of allocations where individual ra-
tionality is satisfied given the payment xfixed(p0, p1).

Theorem 3. Given any fixed payment xfixed(p0, p1), there
exists no truthful mechanism such that:

π(θ) ∈ argmaxπ′∈Π(p0,p1)

∑

i∈N

v(θi, π
′
i).

Proof. The proof is by example based on allocation in-
dependent payment and it can be extended for any other
fixed payments. Consider an example where there are only
two commuters i and j who travel on the same route during



the same time window and both can take one rider. Fur-
thermore, let ci < cj .

If cj < p0, then the only allocation without violating in-
dividual rationality is where both of them are unmatched.
If cj ≥ p0, then the only allocation without violating indi-
vidual rationality and minimizing cost is where i drives with
payment p1 and j rides with payment p0. The utility for i

is u1
i = 0− p1 and for j is u0

j = cj − p0.

Now let us consider the situation where cj > ci ≥ p0. The
allocation is still the same as above for cj ≥ p0. Under this
situation, if i (j) misreported a different cost ĉi > cj (ĉj <

ci), then the allocation will be that j drives with payment
p1 and i rides with payment p0. The corresponding utilities
are u0

i = ci − p0 and u1
j = 0− p1. Therefore, if u0

i > u1
i , i.e.

ci > p0 − p1, i is incentivized to misreport, and if u1
j > u0

j ,

i.e. cj < p0 − p1, j is incentivized to misreport. Thus, the
only situation where both i and j will not misreport is when
ci ≤ p0 − p1 ≤ cj . Since p0 and p1 are predefined and ci, cj
are variables, there is no way to guarantee ci ≤ p0 − p1 ≤ cj
for all possible reports of i and j. Note that, if we introduce
ci ≤ p0 − p1 ≤ cj as a constraint on the allocation, then
not only the cost will not be minimized, but also commuters
will have incentives to manipulate if their costs do not satisfy
ci ≤ p0 − p1 ≤ cj and it is beneficial for them to do so.

Note that, Theorem 3 still holds even if detours are not
allowed, or the number of seats of each commuter is known
by the system (which is achievable by requiring commuters
to register these in advance), as the manipulations shown in
the example are independent of these factors.

The consequence of Theorem 3 is that, with fixed pay-
ments, we lose the ability to minimize cost. The main rea-
son is that the allocation is not able to maximize each com-
muter’s utility (violates the second condition of Lemma 1).
Therefore, we need to reduce the outcome space and/or add
more constraints on the allocation. The following mech-
anism shows an example that does both: it first partitions
commuters into drivers and riders (not based on the reports),
and then allocates according to a predefined order.

Serial dictatorship (π(D,≻D,R,≻R), xfixed(p0, p1))

Given predefined subset of commuters D ⊆ N , where
D can be allocated as drivers but not as riders, while
R = N \ D can be allocated as riders but not drivers,
and predefined orders ≻D,≻R, do the following:

• Let Π(p0, p1) denote the set of allocations
where individual rationality is satisfied given
xfixed(p0, p1).

• Following the ordering ≻D, for each successive po-
tential driver i ∈ D:

– Allocate the set of unmatched riders R′ ⊆ R

to i that maximizes i’s utility such that: (1)
riders in R′ can complete their journey with
i alone, and (2) the allocation is in Π(p0, p1).
If there are ties, choose the set of riders with
the highest ranking order ≻R.

– Remove the set of allocated riders from R be-
fore proceeding to the next driver.

• Set the payment for each rider and driver to be
xfixed(p0, p1).

Theorem 4. (π(D,≻D,R,≻R), xfixed(p0, p1)) is truthful and
individually rational.

Proof. We will show that the two conditions in Lemma 1
are both satisfied here. The first condition clearly holds
because all fixed payments only depend on the allocation,
and not on the commuters’ report.

We will show that the utility for each commuter i ∈ D is
maximized. Since (1) i ∈ D cannot change her ranking in D,
(2) the utility of i is maximized whenever its her turn to get
riders, and (3) i cannot influence the allocations of drivers
allocated before her because their allocations only depend
on their own and riders’ constraints, therefore i’s utility is
maximized.

Finally, we show that the utility of every commuter j ∈ R

is also maximized. Firstly, note that, neither payment p0

nor p0 · wmin(l
d
j , l

a
j ) depends on j’s schedule, so her utility

is maximized if she is allocated as a rider with a feasible
schedule no matter with which driver. Secondly, j cannot
change her ranking in R and it is not worth for her to mis-
report to enable infeasible allocations (giving her negative
utility) or disable feasible allocations (reducing her chance
to win). Therefore, j’s chance to be allocated as a rider with
a positive utility is maximized via truthful reporting.

Individual rationality follows directly since only the set of
individually rational allocations Π(p0, p1) are considered.

The serial dictatorship mechanism is clearly very ineffi-
cient. In fact, it is easy to see that the mechanism can
be arbitrarily inefficient in the worst case (e.g., when riders
and drivers are wrongly partitioned). Nevertheless, there are
some interesting observations from this mechanism. First of
all, even with such a restrictive mechanism, the payments
of the riders cannot depend on the schedule. Otherwise, the
riders can misreport in order to become infeasible for some
drivers, and be allocated to a different driver instead (to pay
less). Also, relaxing some of the restrictions of the mecha-
nism is not trivial. In particular, to ensure truthfulness, we
need to ensure that a driver later in the sequence cannot in-
fluence the allocation of drivers earlier in the sequence. As
a result, we can only consider allocations where each rider
is matched with up to one driver. These observations sug-
gest that it is difficult to obtain meaningful (deterministic)
mechanisms using fixed prices, although we leave a full char-
acterisation for future work.

We now consider the deficit of this mechanism. Due to the
limit of space, we select some typical payments to analyse
the deficit.

Proposition 4. Given M = (π(D,≻D,R,≻R), xfixed(p0, p1)),
if the payment for riders is location dependent and the one
for drivers is sharing dependent, without detour, we get:

1. if p0 = −p1 (or p0 > −p1), M is budget balanced (or
weakly budget balanced).

2. if p0 < −p1, the deficit is bounded by −p1−p0

cmin Csaved,

where cmin > 0 is the minimum travel cost per time
unit and Csaved is the travel cost saved by M.

Proof. Without detour, we get
∑

i∈N,πi(θ)=(0,si)
wmin(l

d
i , l

a
i ) =

∑

i∈N,πi(θ)=(1,si)
tsharei . Thus,

the mechanism is budget balanced (or weakly budget bal-
anced) if p0 = −p1 (or p0 > −p1).

Let T share =
∑

i∈N,πi(θ)=(1,si)
tsharei . Since there is no

detour cost, the cost saved is the costs of riders, which is at



least T sharecmin, i.e. Csaved ≥ T sharecmin. Therefore, the

deficit is (−p1 − p0)T share ≤ (−p1 − p0)C
saved

cmin .

Proposition 4 reveals that, if the prices satisfy, say −p1−p0

cmin ≤
1
k
, then we can guarantee that the cost saved by the system

is at least k times the amount invested in the system. For
instance, if k = 2 and we invest $100 in the system, the
community will receive at least $300 of benefit, where $200
comes from the cost saved for riders and $100 comes from
the payment the system distributed. That is, the serial dic-
tatorship mechanism can guarantee a promising return on
investment (ROI), if the market owner, say a local govern-
ment is willing to invest some money in the system.6

4.2 VCG with two-sided reserve prices
We have seen that fixed prices can control the deficit but can
lead to large inefficiencies. We now try and combine the ben-
efits of fixed prices and VCG by introducing reserve prices.
Reserve prices are commonly used in single-sided auctions [9,
3, 1]. Here, we introduce two-sided reserve prices, i.e. dif-
ferent reserves for drivers and riders, in order to control the
deficit and the efficiency of the mechanism. The mechanism
proceeds as follows.

VCG with two-sided reserve prices MV CG(r0, r1)

Initialise D = N and R = N to be the set of possible
drivers and riders respectively. Then, given commuters’
report profile θ and predefined values r0 ≥ 0, r1 ≤ 0,
where r0 is a reserve price for the rider, and r1 for the
driver, do the following:

1. For each commuter i ∈ N : if ci > −r1, remove i

from the set of drivers D; if ci < r0, remove i from
the set of riders R. Note that it is possible for a
commuter to be removed from both sets.

2. Apply efficient allocation πeff subject to drivers
D and riders R, denoted by πeff (θ,D,R).

3. For each rider i, the payment is
max(r0, xClarke

i (θ,D,R)), where xClarke
i (θ,D,R)

is the Clarke pivot payment when the allocation
is πeff (θ,D,R).

4. For each driver j, the payment is
max(δjr

1, xClarke
j (θ,D,R)).

Theorem 5. MV CG(r0, r1) is truthful and individually
rational if and only if r0 ≥ −r1. If MV CG(r0, r1) is not
truthful, the manipulation gain for each commuter i is bounded
by max(−r1 − r0, δmax

i (−r1 − r0)), where δmax
i is the maxi-

mum detour for i.

Proof. We first show that, if r0 ≥ −r1, MV CG(r0, r1)
is truthful. Commuter i is not incentivized to change D

and R, because all the disabled allocations would have given
her non-positive utilities. It is also easy to check that any
commuter i can be either in D or R, but not both, as ci

6We note that, under the same conditions, VCG will still
generate a potential deficit as large as the cost saved. This
situation happens, for example, when there are no competi-
tors for both drivers and riders, and each driver receives all
the cost saved for her riders and the riders pay nothing.

will satisfy either ci > −r1 or ci < r0, given that r0 ≥
−r1. If i is allocated as a rider, we show that she cannot
misreport to gain a better utility. The payment for rider i

is max(r0, xClarke
i (θ,D,R)). If r0 ≤ xClarke

i (θ,D,R), then
Clarke pivot payment guarantees i’s utility is maximized.
Otherwise, i’s payment is fixed by r0 and she cannot change
it by misreporting given that i can only be allocated as a
rider or unmatched. Thus, rider i’s utility is maximized.
Similarly, we can show that the utility for each driver is
also maximized. For unmatched commuters, they cannot
misreport to gain anything because VCG is truthful.

Next, we show that, ifMV CG(r0, r1) is truthful, then r0 ≥
−r1. By contradiction, assumeMV CG(r0, r1) is truthful but
r0 < −r1. It is easy to see that there are situations where
a commuter will be in both D and R when r0 ≤ ci ≤ −r1.
Given that, we can always find the following example where
such a commuter is incentivized to misreport. Consider the
example in Figure 3 with two commuters travelling on two
different routes in a triangle route map with costs c1 < c2.
They each have one extra seat and they are both able to take
a detour to take each other with the same detour parameter
δ. Given the setting in Figure 3, the efficient allocation is
that commuter 1 drives with 2 as a rider, and the payment
for 1 is max(δr1,−c2) = δr1. However, if 1 misreports ĉ1 >

c2, she will be a rider and pay max(r0, δc2) = δc2. It is
evident that if c1 − δc2 > −δc1 − δr1, 1 is incentivized to
misreport. It is easy to check that, for any r0 < −r1, we
can always find an example such that c1− δc2 > −δc1− δr1,
which contradicts the truthfulness assumption.

As we show in the above, MV CG(r0, r1) is not truthful
when r0 < −r1, because commuters with cost r0 ≤ ci ≤ −r1

might misreport to switch between rider and driver to gain
better utility. However, the possible gain by misreporting
is limited by maxci |(ci − r0) − δmax

i (−r1 − ci)|, which is
max(−r1 − r0, δmax

i (−r1 − r0)).

b

b

b
A

B

C

θ1 = (A,C, td, ta, c1, 1)

θ2 = (B,C, td, ta, c2, 1)

bb b bbb
r0 −r1

δc2

c1

−δr1

c2

Figure 3: Example for the proof of Theorem 5

Theorem 6. MV CG(r0, r1) is weakly budget balanced if
there is no detour. Otherwise, the deficit is bounded by
−ndδ

maxr1 − nrr
0, where nd and nr are respectively the

number of drivers and riders allocated by MV CG(r0, r1), and
δmax is the maximum detour.

Proof. It is evident that the mechanism is weakly budget
balanced when there is no detour, because the payment for
drivers are zero. When considering detour in the allocation,
since δi is bounded by δmax, the payment that each driver
receives is no more than−δmaxr1 and each rider pays r0.

We can remove the deficit entirely by restricting alloca-
tions such that each rider is riding with at most one driver,7

7Limiting one rider to one driver is reasonable in real-life
applications and also more reliable as there are always un-



since we then get nd ≤ nr. Therefore, the deficit bound
−ndδ

maxr1 − nrr
0 ≤ 0 for δmax ≤ 1 and −r1 ≤ r0, i.e.

the mechanism is weakly budget balanced. Finally, we can
further reduce the deficit by limiting δmax, which can be di-
rectly controlled through the allocation computation (where
setting δmax = 0 corresponds to no detour).8

We now briefly discuss how we can control the efficiency.

Proposition 5. By fixing r0 or r1, MV CG(r0, r1) be-
comes more efficient as r0 + r1 decreases.

Proof. Assume r0 is fixed. Then, r0 + r1 decreases iff
r1 is decreasing, i.e. −r1 is increasing. When −r1 increases,
fewer commuters will satisfy ci > −r1. That is, fewer com-
muters will be removed from D, providing a larger set of
possible allocations to optimise over. The argument is anal-
ogous for r1.

Clearly, by reducing r0 and r1, the efficiency ofMV CG(r0, r1)
approaches the VCGmechanism, but the deficit is also grow-
ing. We leave finding a clear relationship between efficiency
and deficit in these mechanisms for future work.

Finally, we note that, similar to the fixed price mecha-
nism, MV CG(r0, r1) can be extended to allow reserve func-
tions which depend (to some extent) on the schedule. In
particular, we can define reserve prices to be dependent on
journey length:

r0(si) = r0 · wmin(l
d
i , l

a
i ), and r1(si) = r1 · wmin(l

d
i , l

a
i ).

It is easy to see that Theorem 5 still holds for this extension.

5. CONCLUSION
We have proposed a novel market-based model for rideshar-
ing, which requires each commuter to report their travel con-
straints and preferences, and uses this information to allo-
cate drivers and riders in order to reduce overall travel costs
and so improve social welfare. Specifically, we have focused
on mechanisms that incentivize commuters to participate in
the system and to be truthful about their information. At
the same time, we require that the system has deficit guar-
antees, so that it is economically sustainable. We showed
that it is impossible to minimize cost (i.e., maximize social
welfare) and provide incentives for commuters without gen-
erating a large deficit for the system owner. Therefore, we
proposed less efficient alternatives, but which have deficit
control, based on fixed prices and two-sided reserve prices,
without sacrificing commuters’ incentives. We analysed how
the deficit can be flexibly controlled with various price set-
tings, and proved bounds on the achieved deficit.

This is the first time that such an extensive ridesharing
model is proposed and analysed using mechanism design,
and there are many directions for future work. First, we
have focused on deficit bounds, but it would be interest-
ing to analyse bounds on the efficiency, and the trade-off
between efficiency and deficit. This can be done theoreti-
cally and through simulations based on a realistic setting.
Second, we have only briefly touched on the computational

predictable delays which will make switching drivers infea-
sible. It also reduces the computation required to find the
allocation. Moreover, the mechanism remains truthful since
it is maximal in its range [13].
8It is worth mentioning that, even without detour, the deficit
of the VCG without reserves can still be as bad as in Propo-
sition 3, since the example in the proof has no detour.

issues in this paper. The problem of finding optimal sched-
ules is computationally hard. As we have seen, we can easily
bound the possible allocations, such as allowing each rider
to be matched to at most one driver, or limiting the drivers’
detour. These limitations simplify the problem, while main-
taining truthfulness. It would be interesting to consider
other mechanisms that are computationally tractable, and
see how this affects efficiency as well as the deficit. Finally,
we have assumed that the system receives information from
all commuters before making allocation decisions. Another
approach is to use online mechanism design, and allow com-
muters to submit requests dynamically over time.
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