Templated chemically deposited semiconductor optical fiber materials
Templated chemically deposited semiconductor optical fiber materials
Chemical deposition is a powerful technology for fabrication of planar microelectronics. Optical fibers are the dominant platform for telecommunications, and devices such as fiber lasers are forming the basis for new industries. High-pressure chemical vapor deposition (HPCVD) allows for conformal layers and void-free wires of precisely doped crystalline unary and compound semiconductors inside the micro-to-nanoscale-diameter pores of microstructured optical fibers (MOFs). Drawing the fibers to serve as templates into which these semiconductor structures can be fabricated allows for geometric design flexibility that is difficult to achieve with planar fabrication. Seamless coupling of semiconductor optoelectronic and photonic devices with existing fiber infrastructure thus becomes possible, facilitating all-fiber technological approaches. The deposition techniques also allow for a wider range of semiconductor materials compositions to be exploited than is possible by means of preform drawing. Gigahertz bandwidth junction-based fiber devices can be fabricated from doped crystalline semiconductors, for example. Deposition of amorphous hydrogenated silicon, which cannot be drawn, allows for the exploitation of strong nonlinear optical function in fibers. Finally, crystalline compound semiconductor fiber cores hold promise for high-power infrared light-guiding fiber devices and subwavelength-resolution, large-area infrared imaging.
527-557
Sparks, Justin R.
68cb6a0c-29ef-4487-8940-557b05b08568
Sazio, Pier J.A.
0d6200b5-9947-469a-8e97-9147da8a7158
Gopalan, Venkatraman
c37ec093-614a-4b1c-a6ec-a5b32f398a58
Badding, John V.
dd484978-a8b8-4d1f-9b9e-b6b33bde9e7b
July 2013
Sparks, Justin R.
68cb6a0c-29ef-4487-8940-557b05b08568
Sazio, Pier J.A.
0d6200b5-9947-469a-8e97-9147da8a7158
Gopalan, Venkatraman
c37ec093-614a-4b1c-a6ec-a5b32f398a58
Badding, John V.
dd484978-a8b8-4d1f-9b9e-b6b33bde9e7b
Sparks, Justin R., Sazio, Pier J.A., Gopalan, Venkatraman and Badding, John V.
(2013)
Templated chemically deposited semiconductor optical fiber materials.
Annual Review of Materials Research, 43 (1), .
(doi:10.1146/annurev-matsci-073012-125958).
Abstract
Chemical deposition is a powerful technology for fabrication of planar microelectronics. Optical fibers are the dominant platform for telecommunications, and devices such as fiber lasers are forming the basis for new industries. High-pressure chemical vapor deposition (HPCVD) allows for conformal layers and void-free wires of precisely doped crystalline unary and compound semiconductors inside the micro-to-nanoscale-diameter pores of microstructured optical fibers (MOFs). Drawing the fibers to serve as templates into which these semiconductor structures can be fabricated allows for geometric design flexibility that is difficult to achieve with planar fabrication. Seamless coupling of semiconductor optoelectronic and photonic devices with existing fiber infrastructure thus becomes possible, facilitating all-fiber technological approaches. The deposition techniques also allow for a wider range of semiconductor materials compositions to be exploited than is possible by means of preform drawing. Gigahertz bandwidth junction-based fiber devices can be fabricated from doped crystalline semiconductors, for example. Deposition of amorphous hydrogenated silicon, which cannot be drawn, allows for the exploitation of strong nonlinear optical function in fibers. Finally, crystalline compound semiconductor fiber cores hold promise for high-power infrared light-guiding fiber devices and subwavelength-resolution, large-area infrared imaging.
This record has no associated files available for download.
More information
Published date: July 2013
Additional Information:
(Invited paper)
Organisations:
Optoelectronics Research Centre
Identifiers
Local EPrints ID: 360917
URI: http://eprints.soton.ac.uk/id/eprint/360917
ISSN: 1531-7331
PURE UUID: f3d1b081-0290-4506-aac2-a91c0ef4abdf
Catalogue record
Date deposited: 08 Jan 2014 14:19
Last modified: 15 Mar 2024 03:13
Export record
Altmetrics
Contributors
Author:
Justin R. Sparks
Author:
Venkatraman Gopalan
Author:
John V. Badding
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics