The University of Southampton
University of Southampton Institutional Repository

Tin(ii) fluoride vs. tin(ii) chloride – a comparison of their coordination chemistry with neutral ligands

Tin(ii) fluoride vs. tin(ii) chloride – a comparison of their coordination chemistry with neutral ligands
Tin(ii) fluoride vs. tin(ii) chloride – a comparison of their coordination chemistry with neutral ligands
Reaction of SnF2 in MeOH with the appropriate neutral N- or O-donor ligands produces [SnF(2,2?-bipy)]2SnF6, [SnF(1,10-phen)]2SnF4 and [SnF2(L)] L = Me3PO, dmso or pyNO). The X-ray structures of [SnF(2,2?-bipy)]2SnF6, [SnF(1,10-phen)]2SnF4 and [SnF2(dmso)], reveal trigonal pyramidal Sn(II) cores with longer fluorine bridges completing distorted 5- or 6-coordination. Attempts to prepare SnF2 adducts with various phosphine or diphosphine ligands in MeCN failed, whilst in CH2Cl2 solution complex reactions involving the solvent occurred. The NHC, 1,3-(2,6-di-isopropylphenyl)imidazol-2-ylidene (IDiPP) and SnF2 produced the imidazolium salt, [IDiPPH]SnF3, the crystal structure of which revealed the first example of a discrete trifluorostannate(II) ion. In contrast, diphosphine complexes of tin(II) chloride formed readily, including [SnCl2{Me2P(CH2)2PMe2}], [SnCl2{o-C6H4(PMe2)2}], [SnCl2{o-C6H4(PPh2)2}] and [(SnCl2)2(?-Ph2P(CH2)2PPh2)], which were characterised by X-ray crystallography. The structures of [SnCl2{Me2P(CH2)2PMe2}] and [SnCl2{o-C6H4(PMe2)2}] reveal chloride-bridged dimers, but [SnCl2{o-C6H4(PPh2)2}], although also dimeric, has very asymmetric diphosphine coordination best described as ?1. The structures of [(SnCl2)2(?-Ph2P(CH2)2PPh2)] and of [SnCl{o-C6H4(AsMe2)2}]SnCl3 reveal trigonal pyramidal cores, but with longer SnCl bridges affording polymeric structures. The synthesis of [SnCl2(R3EO)2] (R = Ph, E = P or As; and R = Me, E = P) are also reported, along with the structure of [SnCl2(Me3PO)2], which contains distorted tetragonal pyramidal Sn(II) coordination. X-ray structures are also reported for [(PMe3)2CH2][SnCl3]2 and [Ph2P(H)(CH2)2P(H)Ph2][SnCl3]2, obtained as by-products from the attempts to synthesise phosphine complexes, as well as [(o-C6H4(PMe2)2CH2]I2. All complexes were characterised by microanalysis, IR and multinuclear NMR spectroscopy (1H, 19F{1H}, 31P{1H } and, where solubility allowed, 119Sn). Comparisons are drawn with corresponding Sn(IV) and Ge(II) complexes
0300-9246
8364-8374
Gurnani, Chitra
18063024-d052-4fe3-8a79-fdecd227bc2c
Hector, Andrew L.
f19a8f31-b37f-4474-b32a-b7cf05b9f0e5
Jager, E.
a1d3594d-6c7b-4b1d-9575-130fc7406670
Levason, William
e7f6d7c7-643c-49f5-8b57-0ebbe1bb52cd
Pugh, David
9ec61267-ae4d-40d8-bebf-0d603e2588d3
Reid, Gillian
37d35b11-40ce-48c5-a68e-f6ce04cd4037
Gurnani, Chitra
18063024-d052-4fe3-8a79-fdecd227bc2c
Hector, Andrew L.
f19a8f31-b37f-4474-b32a-b7cf05b9f0e5
Jager, E.
a1d3594d-6c7b-4b1d-9575-130fc7406670
Levason, William
e7f6d7c7-643c-49f5-8b57-0ebbe1bb52cd
Pugh, David
9ec61267-ae4d-40d8-bebf-0d603e2588d3
Reid, Gillian
37d35b11-40ce-48c5-a68e-f6ce04cd4037

Gurnani, Chitra, Hector, Andrew L., Jager, E., Levason, William, Pugh, David and Reid, Gillian (2013) Tin(ii) fluoride vs. tin(ii) chloride – a comparison of their coordination chemistry with neutral ligands. Dalton Transactions, 42 (23), 8364-8374. (doi:10.1039/c3dt50743b). (PMID:23615730)

Record type: Article

Abstract

Reaction of SnF2 in MeOH with the appropriate neutral N- or O-donor ligands produces [SnF(2,2?-bipy)]2SnF6, [SnF(1,10-phen)]2SnF4 and [SnF2(L)] L = Me3PO, dmso or pyNO). The X-ray structures of [SnF(2,2?-bipy)]2SnF6, [SnF(1,10-phen)]2SnF4 and [SnF2(dmso)], reveal trigonal pyramidal Sn(II) cores with longer fluorine bridges completing distorted 5- or 6-coordination. Attempts to prepare SnF2 adducts with various phosphine or diphosphine ligands in MeCN failed, whilst in CH2Cl2 solution complex reactions involving the solvent occurred. The NHC, 1,3-(2,6-di-isopropylphenyl)imidazol-2-ylidene (IDiPP) and SnF2 produced the imidazolium salt, [IDiPPH]SnF3, the crystal structure of which revealed the first example of a discrete trifluorostannate(II) ion. In contrast, diphosphine complexes of tin(II) chloride formed readily, including [SnCl2{Me2P(CH2)2PMe2}], [SnCl2{o-C6H4(PMe2)2}], [SnCl2{o-C6H4(PPh2)2}] and [(SnCl2)2(?-Ph2P(CH2)2PPh2)], which were characterised by X-ray crystallography. The structures of [SnCl2{Me2P(CH2)2PMe2}] and [SnCl2{o-C6H4(PMe2)2}] reveal chloride-bridged dimers, but [SnCl2{o-C6H4(PPh2)2}], although also dimeric, has very asymmetric diphosphine coordination best described as ?1. The structures of [(SnCl2)2(?-Ph2P(CH2)2PPh2)] and of [SnCl{o-C6H4(AsMe2)2}]SnCl3 reveal trigonal pyramidal cores, but with longer SnCl bridges affording polymeric structures. The synthesis of [SnCl2(R3EO)2] (R = Ph, E = P or As; and R = Me, E = P) are also reported, along with the structure of [SnCl2(Me3PO)2], which contains distorted tetragonal pyramidal Sn(II) coordination. X-ray structures are also reported for [(PMe3)2CH2][SnCl3]2 and [Ph2P(H)(CH2)2P(H)Ph2][SnCl3]2, obtained as by-products from the attempts to synthesise phosphine complexes, as well as [(o-C6H4(PMe2)2CH2]I2. All complexes were characterised by microanalysis, IR and multinuclear NMR spectroscopy (1H, 19F{1H}, 31P{1H } and, where solubility allowed, 119Sn). Comparisons are drawn with corresponding Sn(IV) and Ge(II) complexes

This record has no associated files available for download.

More information

Published date: 2013
Organisations: Organic Chemistry: Synthesis, Catalysis and Flow

Identifiers

Local EPrints ID: 360947
URI: http://eprints.soton.ac.uk/id/eprint/360947
ISSN: 0300-9246
PURE UUID: be1764d2-cbac-4134-be99-63ad341fd88c
ORCID for Andrew L. Hector: ORCID iD orcid.org/0000-0002-9964-2163
ORCID for William Levason: ORCID iD orcid.org/0000-0003-3540-0971
ORCID for Gillian Reid: ORCID iD orcid.org/0000-0001-5349-3468

Catalogue record

Date deposited: 09 Jan 2014 12:49
Last modified: 15 Mar 2024 02:52

Export record

Altmetrics

Contributors

Author: Chitra Gurnani
Author: E. Jager
Author: William Levason ORCID iD
Author: David Pugh
Author: Gillian Reid ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×