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Abstract— Given a sufficiently numerous set of vector-
exponential trajectories of a conservative port-Hamiltonian
system and the supply rate, we compute a corresponding set
of state trajectories by factorizing a constant Pick-like matrix.
State equations are then obtained by solving a system of linear
equations involving the system trajectories and the computed
state ones. If a factorization of only a principal submatrix of the
Pick matrix is performed, our procedure yields a lower-order
conservative port-Hamiltonian model obtained by projection
of the full-order one. We also describe a similar approach
to identification and model-order reduction for self-adjoint
Hamiltonian systems.

Index Terms— conservative port-Hamiltonian systems; self-
adjoint Hamiltonian systems; behaviors; quadratic differential
forms; rank-revealing factorization.

I. INTRODUCTION

Denote by exp(λ) the exponential function whose value
at t ∈ R is eλt; given N (input, output) vector-exponential
trajectories{[

ui
yi

]
exp(λi) | ui, yi ∈ C∞(R,Rm)

}
i=1,...,N

(1)

originating from a conservative linear port-Hamiltonian sys-
tem (see for the precise definition later on), we want to
identify a state-space model

d

dt
x = Ax+Bu

y = Cx+Du , (2)

compatible with the data. In this paper we show that in order
to do this, we can first compute vectors xi ∈ Cn such that for
i = 1, . . . , N, xi exp(λi), ui exp(λi), yi exp(λi) satisfy (2).
These are obtained by factorizing in a rank-revealing way the
Pick matrix, i.e. the Hermitian matrix whose (i, j)-th entry
is

Pi,j :=

[
u∗i y∗i

] [0m×m Im
Im 0m×m

] [
ui
yi

]
λ∗i + λj

, (3)

i.e. P =
[
x1 . . . xN

]∗
Q
[
x1 . . . xN

]
. To determine

the matrices A, B, C, D, we then solve the system of N+m
equations[

x1λ1 . . . xNλN
y1 . . . yN

]
=

[
A B
C D

] [
x1 . . . xN
u1 . . . uN

]
. (4)

P. Rapisarda is with the CSPC group, School of Electronics
and Computer Science, University of Southampton, Great Britain,
e-mail: pr3@ecs.soton.ac.uk, Tel: +(44)2380593367, Fax:
+(44)2380594498; Arjan van der Schaft is with the Johann Bernoulli
Institute for Mathematics and Computer Science, University of
Groningen, PO Box 407, 9700 AK, the Netherlands, e-mail:
a.j.van.der.schaft@rug.nl

Among the solutions A, B, C, D of (4) there are matrices
corresponding to a state-space realisation of a conservative
port-Hamiltonian system associated with the data ui, yi,
i = 1, . . . , N . Consequently if N < n, our procedure
yields a reduced-order conservative port-Hamiltonian model
of McMillan degree N , whose matrices A′, B′, C ′, D′ are
obtained by projecting the state matrices A, B, C, D of a
full-order state representation.

Compared with standard identification algorithms (e.g.
the family of subspace identification algorithms, see [9])
and with recent work on structure-preserving model-order
reduction based on interpolation techniques (see [1], [11]),
the approach presented in this paper is novel in two aspects.
From the identification point of view, we compute state
trajectories exploiting the existence of a bilinear form on
the external (i.e. input-output) variables of the system; such
bilinear form is structurally connected to a bilinear form on
the internal (i.e. state) variables. Contrast this approach with
standard subspace identification algorithms, whose founda-
tion is essentially the time-invariant nature of the system.

From the model reduction point of view, our starting point
is not a given (state- or otherwise) representation of the
system, but rather data gathered in controlled experiments
on the unknown system.

In this paper we will use the behavioral framework,
see [10], [13]; the calculus of quadratic differential forms
(QDFs), see [18]; and the framework of port-Hamiltonian
systems and Dirac structures, see [15], [14], [11]. A summary
of the relevant notions is given in Section II and Appendix
VIII. In Section III we investigate some properties of the Pick
matrix (3); in Sections IV and V we illustrate our approach to
the identification and model-order reduction of conservative
port-Hamiltonian systems. Finally, we extend the framework
to self-adjoint Hamiltonian systems in Section VI.

Notation

The space of real vectors with n components is denoted
by Rn, and the space of n ×m real matrices by Rm×n. If
A1, . . . , An are matrices with the same number of columns,
we denote by col(A1, . . . , An) the matrix obtained by stack-
ing Ai, i = 1 . . . , n on top of each other. The ring of
polynomials with real coefficients in the indeterminate ξ is
denoted by R[ξ]; the ring of two-variable polynomials with
real coefficients in the indeterminates ζ and η is denoted by
R[ζ, η]. Rn×m[ξ] is the space of n×m polynomial matrices
in ξ, and the space of n×m polynomial matrices in ζ and η
is denoted by Rn×m[ζ, η]. The set of infinitely-differentiable
functions from R to Rw is denoted by C∞(R,Rw).
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II. BACKGROUND

A. Behaviors

We consider systems represented in image representation,

i.e. there exists M ∈ R2m×m[ξ] such that w =

[
u
y

]
∈

C∞(R,Rm+m) belongs to the system if and only if there
exists ` ∈ C∞(R,Rm) such that

w = M

(
d

dt

)
` . (5)

We assume that the polynomial matrix M(λ) ∈ C2m×m has
full column rank m for all λ ∈ C. We also assume that u is
an input-, and y an output variable; then we can write

M =

[
D
N

]
(6)

with D ∈ Rm×m[ξ] nonsingular.
For any X ∈ Rn×m[ξ] the differential operator X

(
d
dt

)
:

C∞(R,Rm)→ C∞(R,Rn) given by x = X
(
d
dt

)
` is a state

map for the set of trajectories described by (5) if for all
[
ui
yi

]
with associated latent variable trajectories `i satisfying (5),
i = 1, 2 and corresponding xi = X

(
d
dt

)
`i, i = 1, 2, the

state property holds [13], [16]. In this case x := X
(
d
dt

)
` is

called a state variable. If n is minimal among all the state
dimensions, then X

(
d
dt

)
is a minimal state map, and the

number of its rows is the McMillan degree of the system.

B. Quadratic differential forms

Let Φ ∈ Rw×w[ζ, η] be a two-variable polynomial matrix,
i.e. Φ(ζ, η) =

∑
k,`=0 Φk,`ζ

kη`, where Φk,` ∈ Rw×w,
k, ` ∈ N, and the sum extends over a finite set of indices.
The quadratic differential form (QDF) QΦ : C∞(R,Rw) →
associated with Φ(ζ, η) is defined by

w 7→ QΦ(w) =
∑
k,`

(
dk

dtk
w)>Φk,`(

d`

dt`
w) .

In the following without loss of generality we assume that
Φ(ζ, η) = Φ(η, ζ)>, i.e. that Φ(ζ, η) is symmetric. The
derivative d

dtQΦ =: Q•
Φ

of a QDF QΦ is also a QDF, and the
associated two-variable polynomial matrix is (ζ+η)Φ(ζ, η).

C. Conservative port-Hamiltonian systems

Consider the non-degenerate bilinear form Qe on R2m

Qe =

[
0m Im
Im 0m

]
. (7)

induced, see Appendix VIII, by the Euclidean inner product
on Rm. This gives rise to a non-degenerate bilinear form on
the set C(R,R2m) of piecewise right-continuous functions
w : R→ R2m with compact support:

〈〈w1, w2〉〉 :=

∫ ∞
−∞

wT1 (t)Qew2(t)dt . (8)

Recall from Appendix VIII the definition of a Dirac structure;
the definition of a linear conservative linear port-Hamiltonian
system is the following (see [16]).

Definition 1: Consider the image representation (5);
im M

(
d
dt

)
is a conservative port-Hamiltonian system if it

is a Dirac structure with respect to the bilinear form 〈〈·, ·〉〉
on the linear space C(R,R2m).

Thus if im M
(
d
dt

)
is conservative port-Hamiltonian then[

u(t)> y(t)>
]
Qe

[
u(t)
y(t)

]
dt (9)

=

∫ ∞
−∞

(
M

(
d

dt

)
`1(t)

)>
QeM

(
d

dt

)
`2(t) = 0

for all `1, `2 with compact support, and furthermore the
system is maximal with regard to this property. The following
theorem is a reformulation of the results presented in [16],
more suitable to the purposes of this paper.

Theorem 1: Let X ∈ Rn×m[ξ] be a minimal state map
for the system represented by (5). Assume that im M

(
d
dt

)
is conservative port-Hamiltonian. Then there exists an in-
vertible Q = Q> ∈ Rn×n such that M(ζ)>JM(η) =
(ζ + η)X(ζ)>QX(η).

Theorem 1 implies that for every col(ui, yi) = M
(
d
dt

)
`i

with state trajectories xi := X
(
d
dt

)
`i, i = 1, 2

d

dt
xT1 Qx2 = col(u1, y1)>Qe col(u2, y2) . (10)

The quadratic form 1
2x

TQx defines the energy of the system,
1
2 col(u, y)>Qecol(u, y) defines the standard passivity supply
rate, while (10) amounts to the energy balance

d

dt

1

2
x>Qx =

1

2

(
u>y + y>u

)
= uT y, (11)

A minimal input-state-output representation of a conservative
port-Hamiltonian system takes the form [15], [14], [6], [16]

d

dt
x = JQx+Bu

y = B>Qx+Mu , (12)

where J = −J> ∈ Rn×n and M = −M> ∈ Rm×m.

III. THE PICK MATRIX AND ITS PROPERTIES

We are given N pairs (λi, vi), i = 1, . . . , N , where vi ∈
Cm, λi ∈ C with the property that λi does not lie on the
imaginary axis, λi 6= λj for i 6= j, and λj = λ∗i ⇒ vj = vi.
Given the observable image representation (5) partitioned as
in (6), our data-set is defined by{[

ui
yi

]
exp(λi) := M(λi)vi exp(λi)

}
i=1,...,N

. (13)

For every M it is known [3] that the Pick matrix satisfies a
Lyapunov matrix equation; we give a direct proof based on
the calculus of QDFs.

Proposition 1: Consider M partitioned as in (6), and
define

Λ := diag(λi)i=1,...,N

U :=
[
D(λi)vi

]
i=1,...,N

Y :=
[
N(λi)vi

]
i=1,...,N

; (14)
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then P satisfies the equation

PΛ + Λ∗P = U∗Y + Y ∗U . (15)
Proof:

D(ζ)>N(η) +N(ζ)>D(η)

= ζ
D(ζ)>N(η) +N(ζ)>D(η)

ζ + η

+ η
D(ζ)>N(η) +N(ζ)>D(η)

ζ + η
.

Substituting ζ with λi
∗, η with λj , and multiplying on the

left by v∗i and on the right by vj we obtain the claim.
In case M defines a conservative port-Hamiltonian system
the Pick matrix (3) enjoys the following important property.

Proposition 2: Let X
(
d
dt

)
be a minimal state map for the

system, and let Q be the invertible energy matrix defined by
(11). Define

Z :=
[
X(λ1)v1 . . . X(λN )vN

]
∈ Cn×N ; (16)

then
P = Z∗QZ . (17)

Consequently, if N ≤ n then P is nonsingular. The maximal
possible rank of P is n.

Proof: Use Th. 1 and (11) to conclude that for all
1 ≤ i, j ≤ N it holds that (M(λi)vi)

∗
QeM(λj)vj = (λi

∗+
λj) (X(λi)vi)

∗
QX(λj)vj . From this (17) follows.

We prove that Z has full rank; the rest of the claims
easily follows. Let N ≤ n, and assume by contradiction that
rank(Z) < N ; then there exist αi ∈ C, i = 1, . . . , N , not all
zero, such that Zcol(αi)i=1,...,N = 0. Consider the trajectory
ˆ̀ :=

∑N
i=1 αivi exp(λi). Let F ∈ Rm×m[ξ] be such that

ker
(
F
(
d
dt

))
equals the subspace of C∞(R,Rm) spanned

by vi expλi, i = 1, . . . , N ; such F always exists (see section
XV of [17]). Now consider the following equations:

w = M

(
d

dt

)
`, x = X

(
d

dt

)
`, 0 = F

(
d

dt

)
` (18)

The external behavior B′ described by these equations is
autonomous (see [10]), of dimension N . Moreover X

(
d
dt

)
is a state map for B′, since it is a state map for im M

(
d
dt

)
⊃

B′. Choose ` = ˆ̀ in (18); then the value of x̂ := X
(
d
dt

)
ˆ̀

at t = 0 is zero. Since B′ is autonomous, it follows that
ŵ := M

(
d
dt

)
ˆ̀ is also zero. From full rank of M it follows

that ˆ̀ = 0, which is in contradiction with the assumption
that not all αi’s are equal to zero. Thus Z has rank N .

IV. IDENTIFICATION OF CONSERVATIVE
PORT-HAMILTONIAN SYSTEMS

The result of Proposition 2 suggests that when the number
of data N in (13) is larger than or equal to the minimal
dimension of the state space n, a set of state trajectories
xi exp(λi) can be computed as follows. Let P = Z∗QZ
be a rank-revealing factorization of P , i.e. Z ∈ Cn×N and
Q ∈ Rn×n have full row rank, equal to n = rank P ; then
the i-th column of Z is the required vector xi ∈ Cn.

Now assume that N = n; we show that the subspace of
C2n+2m defined by

D := span




u
Qxi
yi
−λixi

 =


D(λi)vi
QX(λi)vi
N(λi)vi
−λiX(λi)vi



i=1,··· ,N

(19)

can be “completed” to a Dirac structure.
Proposition 3: Define D by (19). Then there exists a m-

dimensional subspace V ⊂ C2n such that D ⊕ V is a
(complex) Dirac structure.

Proof: The system associated with the data ui, yi
and the corresponding state vectors xi is of the form (12).
Consequently, D is contained in the graph of the skew-
symmetric map defined by

L : Cn+m → Cn+m[
z1

z2

]
7→

[
−J −B
B> M

] [
z1

z2

]
.

It follows (see section 1.1 of [4]) that a suitable V can be
found so that D ⊕ V is a Dirac structure.

The following result gives a parametrization of all skew-
symmetric maps whose graph contains D. For simplicity of
exposition we will assume that Q > 0 (corresponding to a
lossless port-Hamiltonian system). This means that a rank-
revealing factorization of P can be taken to be P = Z∗Z.

Proposition 4: Assume that N = n, and let P = Z∗Z be
a rank-revealing factorization of P . Define U , Y as in (14).
The following statements are equivalent:
1) The matrices A′ ∈ Rn×n, B′ ∈ Rn×m, M ′ ∈ Rm×m
satisfy [

−ZΛ
Y

]
=

[
A′ B′

C ′ M ′

] [
Z
U

]
, (20)

and moreover
[
A′ B′

C ′ M ′

]
is skew-symmetric;

2) There exist X = −X> ∈ Rm×m such that[
A′ B′

]
=
[
−ZΛZ−1 0N×m

]
+K

[
UZ−1 −Im

][
C ′ D′

]
=
[
Y Z−1 0m×m

]
+X

[
UZ−1 −Im

]
(21)

where K := −Z−∗Y > − Z−∗U>X>.
Proof: It is a matter of straightforward verification

to check that A′ ∈ Rn×n, B′ ∈ Rn×m, M ′ ∈ Rm×m
satisfy (20) if and only if they are of the form (21) for some
choice of arbitrary matrices X and K. The skew-symmetry
in (20) occurs if and only if X is skew-symmetric, and
K = −Z−∗Y > − Z−∗U>X>.

Remark 1: Using the terminology of ([17]), we say
that the set consisting of quadruples (A′, B′, C ′,M ′)
parametrized as in statement 2) of Proposition 4 is the set

of unfalsified models of the data xi exp(λi),
[
ui
yi

]
exp(λi),

i = 1, . . . , N , in the model class of conservative, input-state-
output port-Hamiltonian systems.
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Remark 2: Note that the unfalsified models are
parametrized by the feedthrough term X , and that among
the unfalsified models there exists precisely one such that
M ′ = M , the feedthrough term in (12).

Remark 3: The need for rank-revealing factorisations
arises in may areas, and the symmetric case is especially
relevant in signal processing and optimization theory. Nu-
merically speaking, the singular-value decomposition (SVD)
is the most accurate way of performing such factorisation;
however, alternative faster algorithms are available although
not as informative or as accurate as the SVD. The standard
reference on the SVD is the book [7]; the papers [2], [5], [8]
illustrate alternative rank-revealing factorization algorithms.
The application of these numerical procedures in our ap-
proach is a matter of ongoing investigation.

V. DATA-DRIVEN REDUCED-ORDER MODELING OF
CONSERVATIVE PORT-HAMILTONIAN SYSTEMS

In the previous section we assumed that the number N
of trajectories of the system was equal to n, the minimal
dimension of the state space. In this section we consider the
case N < n, i.e. we consider a subset of N ′ < n data points.
We partition the matrices U and Y and Z as

U =
[
Ua Ub

]
, Y =

[
Ya Yb

]
, Z =

[
Za Zb ,

]
(22)

where Ua, Ya ∈ Cm×N ′ , Za ∈ Cn×N ′ . We also partition P
and Λ accordingly, i.e.

P =

[
Paa Pab
Pba Pbb

]
,Λ = diag(Λa,Λb) .

Straightforward verification shows that the ‘reduced’ Pick
matrix Paa ∈ CN ′×N ′ satisfies the Lyapunov equation

PaaΛa + Λ∗aPaa = U∗aYa + Y ∗a Ua . (23)

Evidently, Paa = Z∗aZa; now consider a rank-revealing
factorization of Paa as

Paa = Z ′∗Z ′ , (24)

where rank P = rank Z ′ =: N ′ ≤ n, and denote the columns
of Z ′ ∈ CN ′×N ′ with zi, i = 1, . . . , N ′.

We now show that the subspace of C2N ′+2m defined by

D′ := span




u
z′i
yi
−λiz′i



i=1,··· ,N ′

, (25)

is contained in the graph of a skew-symmetric map, and
consequently can be completed to a Dirac structure. In
proving this statement, we also show that among the skew-
symmetric maps whose graph contains D′ there exists one
which is obtained by projecting the matrices J , B, and M
of the data-generating representation (12).

Proposition 5: Define D′ by (25); there exists a skew-
symmetric matrix L ∈ R(N ′+m)×(N ′+m) such that D′ is
contained in the graph of L. Moreover, one such L is

L =

[
−Z ′−∗Z∗aJZaZ ′−1 −Z ′−∗Z∗aB
−B>ZaZ ′−1 M

]
(26)

where Za is defined by (22), Z ′ is any matrix arising from
a rank-revealing factorisation (24) of Paa, and J , B and M
are as in (12).

Proof: Since Paa = Z∗aZa = Z ′∗Z ′, and since Z ′ is
nonsingular, we write

Z ′ = Z ′−∗Z∗aZa ; . (27)

From this equation it follows that

−Z ′Λ = −Z ′−∗Z∗aZaΛ = Z ′−∗Z∗a · (−JZa −BU)

= −Z ′−∗Z∗aJZa − Z ′−∗Z∗aBU
= −Z ′−∗Z∗aJZaZ ′−1︸ ︷︷ ︸

=:J′

Z ′ − Z ′−∗Z∗aB︸ ︷︷ ︸
=:B′

U .

Observe that J ′ is skew-symmetric.
Since Y = CZa +MU where C = −B>, it follows that

Y = −B>ZaZ ′−1︸ ︷︷ ︸
=B′>

Z ′ +DU = B′>Z ′ +MU .

Consequently, D′ is contained in the graph of the skew-
symmetric map defined by (26).

It follows from the considerations gathered in Remark 1
and Remark 2 that the reduced-order representation asso-
ciated with the skew-symmetric matrix L defined in (26)
is precisely that associated with the choice of X = −M ,
where X is the parameter defined in Prop. 4, and M is
the feedthrough term of the data-producing system equations
(12). The following result is a straightforward consequence
of these considerations.

Corollary 1: Define D′ by (25). A skew-symmetric matrix
L ∈ R(N ′+m)×(N ′+m) whose graph contains D′ is L =:[
L11 L12

−L>12 L22

]
, where

L11 := −Z ′ΛZ ′−1 − Z ′−>Y > − Z ′−>U>MUZ ′−1

L12 := −Z ′−>Y > − Z ′−>U>M
L22 := M . (28)

VI. THE SELF-ADJOINT HAMILTONIAN CASE

In this section we will sketch how the theory developed
in the previous sections can be extended to self-adjoint
Hamiltonian systems. This entails the introduction of a skew-
symmetric version of the Pick matrix, and the replacement
of Dirac structures by Lagrangian subspaces, see Appendix
VIII.

A. Self-adjoint Hamiltonian systems

Consider on the space of outputs and inputs the standard
symplectic form defined by

Ωe =

[
0m Im
−Im 0m

]
. (29)

Then a system given in image representation (5) is called a
self-adjoint Hamiltonian system if∫ +∞

−∞

[
u(t)> y(t)>

]
Ωe

[
u(t)
y(t)

]
dt = 0

148



for all compact-support trajectories col(u, y). It can be
shown [16] that this holds if and only if there exists Ψ ∈
Rm×m[ζ, η] such that

M(ζ)TΩeM(η) = D(ζ)TN(η)−N(ζ)TD(η)

= (ζ + η)Ψ(ζ, η)
(30)

We obtain the following statement paralleling Theorem 1.
Theorem 2: Let X( ddt ) be a minimal state map for the

system represented by (5). Assume that the system is self-
adjoint Hamiltonian, and let QΨ be its storage function.
There exists an invertible Ω = −Ω> ∈ Rn×n such that for all
(col(u, y), `) satisfying (5) and corresponding x := X

(
d
dt

)
`,

it holds that QΨ(w) =
(
X( ddt )`

)>
Ω
(
X( ddt )`

)
.

It can be shown [16] that the state space representation of
a self-adjoint Hamiltonian system is given as

Ω
d

dt
x = −Qx− CTu

y = C>x+Mu , (31)

where J = −J> ∈ Rn×n, Q = Q> ∈ Rn×n, and
M = M> ∈ Rm×m. Here 1

2x
TQx represents the internal

Hamiltonian of the system. It follows that

d

dt
x>1 Ωx2 = u>1 y2 − y>1 u2 , (32)

showing that instead of an energy balance as in (11) the
fundamental property of any self-adjoint Hamiltonian system
is the relation between the internal symplectic form Ω
with the external symplectic form Ωe. Note in this respect
that, since Ω has full rank, there always exist state space
coordinates (called canonical coordinates) in which Ω takes
the form

Ω =

[
0n In
−In 0n

]
. (33)

B. The skew-symmetric Pick matrix

The above system class motivates to introduce the fol-
lowing skew-symmetric version of the Pick matrix. Consider
as before N pairs (λi, vi), i = 1, . . . , N , where vi ∈ Cm,
λi ∈ C with the property that λi does not lie on the
imaginary axis, λi 6= λj for i 6= j, and λj = λ∗i ⇒ vj = vi,
with data-set defined by (13).

Define instead of the standard Pick matrix the skew-
symmetric Pick matrix as the skew-Hermitian matrix whose
(i, j)-th entry is

Si,j :=

[
u∗i y∗i

] [0m×m Im
−Im 0m×m

] [
ui
yi

]
λ∗i + λj

. (34)

Also the skew-symmetric Pick matrix S defined from this
data set satisfies a Lyapunov matrix equation. In fact for any
(not necessarily self-adjoint Hamiltonian) system we have

Proposition 6: Consider M partitioned as in (6), and
define Λ, U, Y as in (14) Then the skew-symmetric Pick
matrix S defined by (34) satisfies

SΛ + Λ∗S = U∗Y − Y ∗U . (35)

Proof:

D(ζ)>N(η)−N(ζ)>D(η)

= ζ
D(ζ)>N(η)−N(ζ)>D(η)

ζ + η

+ η
D(ζ)>N(η)−N(ζ)>D(η)

ζ + η
.

Substituting ζ with λi
∗, η with λj , and multiplying on the

left by v∗i and on the right by vj we obtain the claim.

For a self-adjoint Hamiltonian system the skew-symmetric
Pick matrix (34) enjoys the following property paralleling
Proposition 2.

Proposition 7: Let X
(
d
dt

)
be a minimal state map for the

system, and let Ω be the symplectic matrix defined by (32).
Define

Z :=
[
X(λ1)v1 . . . X(λN )vN

]
∈ Cn×N ; (36)

then
P = Z∗ΩZ . (37)

Consequently, if N ≤ n then P is nonsingular. The maximal
possible rank of P is n.

C. Identification of self-adjoint Hamiltonian systems

The identification theory for self-adjoint Hamiltonian sys-
tems parallels the one for conservative port-Hamiltonian
systems. Let S = Z∗ΩZ be a rank-revealing factorization of
S, i.e. Z ∈ Cn×N and Λ ∈ Cn×n have full row rank, equal
to n = rank S; then the i-th column of Z is the required
vector xi ∈ Cn. It follows that (35) can be written in the
following form

Z∗(ΩZ)Λ− Λ∗(ΩZ)∗Z = U∗Y − Y ∗U (38)

This means that the Dirac structure formulation as given
before for conservative port-Hamiltonian systems is replaced
by a Lagrangian subspace formulation. (See the Appendix
VIII for the definition of a complex Lagrangian subspace.)

Indeed, assume as before that N = n; then we show that
the subspace of C2n+2m defined by

L := span




ui
xi
yi

−λiΩxi

 =


D(λi)vi
X(λi)vi
N(λi)vi

−λiΩX(λi)vi



i=1,··· ,N

(39)
can be “completed” to a Lagrangian subspace.

Proposition 8: Define L by (39). Then there exists a m-
dimensional subspace V ⊂ C2n such that L ⊕ V is a
Lagrangian subspace.

Proof: The system associated with the data ui, yi
and the corresponding state vectors xi is of the form (31).
Consequently, L is contained in the graph of the symmetric
map defined by [

z1

z2

]
7→
[
Q B
B> M

] [
z1

z2

]
.
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It follows that a suitable V can be found so that L⊕ V is a
Lagrangian subspace.

A parametrisation of all symmetric maps whose graph con-
tains L can be given along the same lines as the parametri-
sation given for the conservative port-Hamiltonian case in
Proposition 4. Also the data-driven reduced-order modelling
of self-adjoint Hamiltonian systems can be performed in a
similar way. Because of space limitations, we will not enter
into such details.

VII. CONCLUSIONS

Our approach to system identification and model order
reduction is based on exploiting the connection between the
external structure of the system, associated with a bilinear
form on the inputs and outputs, and its internal structure,
associated with a bilinear form on the state variables. If the
external structure is known, state trajectories corresponding
to the given data can be computed factorising certain constant
matrices computed from the data.

Several issues are a matter of ongoing investigation. We
need to clarify the relation of the approach presented here
to other ones based on interpolation (see [1]), or specif-
ically used for port-Hamiltonian systems (see [11]). We
need to study the approximating properties (for example
error-bounds) of the reduced-order systems defined by our
procedures. In order for our method to be practical in real
application, we need to investigate the numerically robust and
computationally efficient implementation of the algorithms
(see Remark 3). Finally, we need to investigate the potential
of this approach to deal with dissipative systems.

VIII. APPENDIX

For completeness we slightly adapt the definition of a
Dirac structure as given in [4], [15], [14] to a real linear
space V with inner product 〈·|·〉. Define on V×V the bilinear
form

� (fa, ea), (f b, eb)�:= 〈ea | f b〉+ 〈eb | fa〉,

with (fa, ea), (f b, eb) ∈ V × V . Then D ⊂ V × V is a
Dirac structure with respect to the bilinear form � ·, · � if
D = D⊥⊥, where ⊥⊥ is with respect to � ·, · �. For a finite-
dimensional linear space V this is equivalent to dimD =
dimV and 〈e | f〉 = 0 for all (f, e) ∈ D.

This definition can be extended to the complex case as
follows.

Definition 2: Consider Cn (or any linear space over C)
with complex inner product 〈·|·〉. Define on Cn × Cn the
sesquilinear form

� (fa, ea), (f b, eb)�:= 〈ea | f b〉+ 〈eb | fa〉,

with (fa, ea), (f b, eb) ∈ Cn × Cn, and 〈· | ·〉 the complex
inner product. Then D ⊂ Cn × Cn is a complex Dirac
structure if D = D⊥⊥ where ⊥⊥ is with respect to the
sesquilinear form. This is equivalent to dimD = n and
〈e | f〉 = 0 for all (f, e) ∈ D.

Similarly, a complex Lagrangian subspace is defined as
follows:

Definition 3: Consider Cn (or any linear space over C)
with complex inner product 〈·|·〉. Define on Cn × Cn the
sesquilinear form

� (fa, ea), (f b, eb)�:= 〈ea | f b〉 − 〈eb | fa〉,

with (fa, ea), (f b, eb) ∈ Cn × Cn. Then L ⊂ Cn × Cn is a
complex Lagrangian subspace if L = L⊥⊥, where ⊥⊥ is with
respect to the sesquilinear form. This implies dimL = n.
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