On positive-realness and stability of switched linear differential systems

Jonathan C. Mayo-Maldonado, Paolo Rapisarda

Abstract—We present some results regarding the stability of switched linear differential systems (SLDS) in the behavioral framework. Positive-realness is studied as a sufficient condition for stability and some implications derived from the use of positive-real completions are discussed.

Index Terms— switched systems; behaviors; quadratic differential forms; positive-realness.

I. INTRODUCTION

A switched system is a set of dynamical systems with a rule that orchestrates the switching among them [2]. They are usually studied in the state space framework: all the dynamical regimes share the same state space, i.e. in the linear case each system is described by $\frac{d}{dt}x = Ax + Bu$; or in descriptor form $E\dot{x} = Ax + Bu$, where E is a singular matrix, [11]. In [6],[5], a new approach has been put forward in which the dynamical regimes do not necessarily share the same state space, and they are described by sets of higher-order differential equations. We call these *switched linear differential systems* (SLDS).

Switching between stable systems may give rise to unstable responses (see [2], pp.19-20); consequently, it is important to find conditions that guarantee asymptotic stability (see e.g. [2],[3],[8]). In the state space setting, the notion of positive realness has been employed for the analysis and derivation of sufficient conditions of stability for switched linear systems (see e.g. [7],[14]). In the linear differential systems case, some results have been presented in [6],[5] using positive-realness as a sufficient condition for stability. In this contribution we present several new results using the the concept of *positive-real completion*.

II. BACKGROUND

A. Notation

The space of real vectors with n components is denoted by \mathbb{R}^n , and the space of $n \times m$ real matrices by $\mathbb{R}^{m \times n}$. The ring of polynomials with real coefficients in the indeterminate ξ is denoted by $\mathbb{R}[\xi]$; the ring of two-variable polynomials with real coefficients in the indeterminates ζ and η is denoted by $\mathbb{R}[\zeta, \eta]$. $\mathbb{R}^{n \times m}[\xi]$ is the space of $n \times m$ polynomial matrices in ξ , and the space of $n \times m$ polynomial matrices in ζ and η is denoted by $\mathbb{R}^{n \times m}[\zeta, \eta]$. A polynomial $p \in \mathbb{R}[\xi]$ is *Hurwitz* if its roots are all in the open left half-plane.

We now introduce the concept of *R*-canonical representative of a polynomial differential operator. Given $R \in \mathbb{R}^{w \times w}[\xi]$ nonsingular, and $f \in \mathbb{R}^{1 \times w}[\xi]$; f can be uniquely written as $fR^{-1} = s + n$, where s is a vector of strictly proper rational functions, and $n \in \mathbb{R}^{1 \times \mathbf{w}}[\xi]$. We define the (polynomial) *R*-canonical representative of f as $(f \mod R)(\xi) :=$ $s(\xi)R(\xi)$. The definition of *R*-canonical representative is extended in a natural way to polynomial matrices.

The set of infinitely-differentiable functions from \mathbb{R} to $\mathbb{R}^{\mathbb{w}}$ is denoted by $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathbb{w}})$. Given $f : \mathbb{R} \to \mathbb{R}$, we define $f(t^-) := \lim_{\tau \nearrow t} f(\tau)$ and $f(t^+) := \lim_{\tau \searrow t} f(\tau)$, provided that these limits exist.

B. Linear differential behaviors

We call $\mathfrak{B} \subseteq \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathtt{w}})$ a *linear time-invariant differential behavior* if \mathfrak{B} is the set of solutions of a finite system of constant-coefficient linear differential equations, i.e. if there exists a polynomial matrix $R \in \mathbb{R}^{\mathtt{g} \times \mathtt{w}}[\xi]$ such that $\mathfrak{B} = \{w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathtt{w}}) \mid R(\frac{d}{dt})w = 0\} =: \ker R(\frac{d}{dt})$. If $\mathfrak{B} = \ker R(\frac{d}{dt})$, then we call R a *kernel representation* of \mathfrak{B} . We denote with $\mathfrak{L}^{\mathtt{w}}$ the set of all linear time-invariant differential behaviors with \mathtt{w} variables.

Autonomous behaviors are defined as follows (see Ch. 3 of [4]).

Definition 1: $\mathfrak{B} \in \mathfrak{L}^{\mathsf{w}}$ is autonomous if for all $w_1, w_2 \in \mathfrak{B}$, $\{w_1(t) = w_2(t) \text{ for } t < 0\} \implies \{w_1 = w_2\}.$

It can be shown that if \mathfrak{B} is autonomous, it admits a kernel representation with R square and nonsingular. Moreover, it is finite-dimensional as a subspace of $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{W})$, and its dimension equals deg(det(R)).

In this paper we use the notion of positive-realness [1].

Definition 2: A square matrix $B(\lambda)$ of rational functions is said to be *positive-real* if: all its entries are analytic in $\operatorname{Re}(\lambda) > 0$; $B(\lambda)$ is real if λ is real; and $B(-\lambda)^{\top} + B(\lambda) \ge 0$ for all $\operatorname{Re}(\lambda) \ge 0$.

The third condition of Definition 2 implies that

$$B(-j\omega)^{\top} + B(j\omega) \ge 0 \ \forall \omega \in \mathbb{R} .$$
⁽¹⁾

If the inequality is strict, we call B strictly positive-real.¹

C. Quadratic differential forms

Let $\Phi \in \mathbb{R}^{\mathbf{w} \times \mathbf{w}}[\zeta, \eta]$ be a two-variable polynomial matrix. Without loss of generality we assume that $\Phi(\zeta, \eta) = \Phi(\eta, \zeta)^{\top}$, i.e. that $\Phi(\zeta, \eta)$ is symmetric. We say that $\Phi(\zeta, \eta)$ has order L if it can be written as $\Phi(\zeta, \eta) = \sum_{k,\ell=0}^{L} \Phi_{k,\ell} \zeta^k \eta^\ell$, where $\Phi_{k,L} = \Phi_{L,k}$ is a nonzero matrix for some $k \in \mathbb{N}$. The quadratic differential form (QDF) Q_{Φ}

J.C. Mayo-Maldonado and P. Rapisarda are with the CSPC group, School of Electronics and Computer Science, University of Southampton, Great Britain, e-mail: {jcmm1g11,pr3}@ecs.soton.ac.uk, Tel: +(44)2380593367, Fax: +(44)2380594498.

¹The definition of strictly positive real functions is not uniform in the literature; we refer to [10], Th. 2.1.

associated with $\Phi \in \mathbb{R}^{w \times w}[\zeta, \eta]$ is defined by

$$\begin{aligned} Q_{\Phi} : \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\texttt{w}}) &\longrightarrow \quad \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}) \\ w &\mapsto \quad Q_{\Phi}(w) = \sum_{k, \ell} (\frac{d^k}{dt^k} w)^{\top} \Phi_{k, \ell}(\frac{d^{\ell}}{dt^{\ell}} w) \end{aligned}$$

We define the order of the quadratic differential form Q_{Φ} as the order of $\Phi(\zeta, \eta)$. Note that $\Phi(\zeta, \eta) = S_L^{\mathsf{w}}(\zeta)^{\top} \widetilde{\Phi} S_L^{\mathsf{w}}(\eta)$, where *L* is the order of $\Phi(\zeta, \eta), S_L^{\mathsf{w}}(\xi)^{\top} := [I_{\mathsf{w}} \ \zeta I_{\mathsf{w}} \ \cdots \xi^L I_{\mathsf{w}}]$, and $\widetilde{\Phi} \in \mathbb{R}^{L_{\mathsf{w}} \times L_{\mathsf{w}}}$ is the *coefficient matrix* of Φ .

We say that a QDF Q_{Φ} is *nonnegative along* \mathfrak{B} , denoted $Q_{\Phi} \geq 0$, if $(Q_{\Phi}(w))(t) \geq 0$ for all $w \in \mathfrak{B}$ and $t \in \mathbb{R}$. If a QDF Q_{Φ} is nonnegative for every trajectory in $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ we write $Q_{\Phi} \geq 0$ and say that Q_{Φ} is *nonnegative definite*. Note that Φ is nonnegative definite if and only if $\widetilde{\Phi} \geq 0$. We say that Q_{Φ} is *positive* along \mathfrak{B} , denoted by $Q_{\Phi} \geq 0$, if $Q_{\Phi} \geq 0$ and $Q_{\Phi}(w) = 0$, $w \in \mathfrak{B}$, implies that w = 0. A QDF is *positive definite* if it is positive along $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$; this happens if and only if $\widetilde{\Phi} > 0$. We define $Q_{\Phi} \leq 0$, etc. in an analogous manner.

The derivative $\frac{d}{dt}Q_{\Phi} =: Q_{\Phi}$ of a QDF Q_{Φ} is also a QDF, and the associated two-variable polynomial matrix is $\Phi(\zeta, \eta) := (\zeta + \eta)\Phi(\zeta, \eta)$ (see [12], section 3).

A Lyapunov function for a behavior $\mathfrak{B} \in \mathfrak{L}^{\mathsf{w}}$ is defined as a quadratic differential form Q_{Φ} whose values $Q_{\Phi}(w)$ are nonnegative and decrease with the time for all $w \in \mathfrak{B}$, i.e. $Q_{\Phi} \stackrel{\mathfrak{B}}{\geq} 0$ and $\frac{d}{dt} Q_{\Phi} \stackrel{\mathfrak{B}}{\leq} 0$.

The concept of *R*-canonical representative is employed for two-variable polynomial matrices. Let $R \in \mathbb{R}^{\mathbf{w} \times \mathbf{w}}[\xi]$ be nonsingular and $\Phi \in \mathbb{R}^{\mathbf{w} \times \mathbf{w}}[\zeta, \eta]$. Factorize $\Phi(\zeta, \eta) = M(\zeta)^{\top}N(\eta)$ and compute the *R*-canonical representatives $M' = M \mod R$; and $N' = N \mod R$. Then the *R*-canonical representative of $\Phi(\zeta, \eta)$ is defined as $\Phi(\zeta, \eta) \mod R := M'(\zeta)^{\top}N'(\eta)$. In this sense, the QDFs $Q_{\Phi}, Q_{\Phi'}$ are equivalent along ker $R\left(\frac{d}{dt}\right)$, which means that $Q_{\Phi'}(w) = Q_{\Phi}(w)$ for all $w \in \ker R\left(\frac{d}{dt}\right)$.

III. SWITCHED LINEAR DIFFERENTIAL SYSTEMS

We recall the basic definitions of [6], [5].

Definition 3: A switched linear differential system (SLDS) Σ is a quadruple $\Sigma = \{\mathcal{P}, \mathcal{F}, \mathcal{S}, \mathcal{G}\}$ where: $\mathcal{P} = \{1, \ldots, N\} \subset \mathbb{N}$ is the set of indices; $\mathcal{F} = (\mathfrak{B}_1, \ldots, \mathfrak{B}_N)$, with $\mathfrak{B}_j \in \mathfrak{L}^{\mathsf{w}}$ for $j \in \mathcal{P}$, is the bank of behaviors; $\mathcal{S} = \{s : \mathbb{R} \to \mathcal{P}\}$ with s piecewise constant and right-continuous, is the set of admissible switching signals; and $\mathcal{G} = \{(k, \ell), G_{k \to \ell}^+(\xi), G_{k \to \ell}^-(\xi)\}$, where $(G_{k \to \ell}^+(\xi), G_{k \to \ell}^-(\xi)) \in (\mathbb{R}[\xi]^{\bullet \times \mathsf{w}})^2$ and $(k, \ell) \in \mathcal{P} \times \mathcal{P}$, $k \neq \ell$, is the set of gluing conditions. For a given $s \in \mathcal{S}$, the set of switching instants with respect to s is $\mathbb{T}_s := \{t \in \mathbb{R} \mid \lim_{\tau \nearrow t} s(\tau) \neq s(t)\} = \{t_1, t_2, \ldots\}$ where $t_i < t_{i+1}$.

We make the standard assumption that the switching signal is arbitrary and *well-defined*, i.e. every finite interval of \mathbb{R} contains only a finite number of switching instants (see [9]). Definition 4: Let Σ be a SLDS and $s \in S$. The s-switched behavior \mathfrak{B}^s with respect to Σ is the set of trajectories satisfying the following conditions: 1) for all $t_i, t_{i+1} \in \mathbb{T}_s$, there exists $k \in \mathcal{P}$ such that $w_{|_{[t_i, t_{i+1})}} \in \mathfrak{B}_{k|_{[t_i, t_{i+1})}}$; 2) w satisfies the gluing conditions \mathcal{G} at the switching instants:

$$\begin{split} (G^+_{s(t_{i-1})\to s(t_i)}(\frac{d}{dt}))w(t_i^+) &= (G^-_{s(t_{i-1})\to s(t_i)}(\frac{d}{dt}))w(t_i^-) \ , \\ \text{for each } t_i \in \mathbb{T}_s. \end{split}$$

The switched behavior \mathfrak{B}^{Σ} of Σ is defined by $\mathfrak{B}^{\Sigma} := \bigcup_{s \in S} \mathfrak{B}^{s}$.

In the rest of this paper we consider scalar ($\mathbf{w} = 1$) behaviors, and "standard" gluing conditions which are defined as follows. Let Σ be a SLDS and let $\mathfrak{B}_k := \ker p_k\left(\frac{d}{dt}\right), \mathfrak{B}_\ell :=$ $\ker p_\ell\left(\frac{d}{dt}\right)$ be a pair behaviors in \mathcal{F} , where $(p_k, p_\ell) \in \mathbb{R}[\xi]$ and $n_k := \deg(p_k), n_\ell := \deg(p_\ell)$. We define the standard gluing conditions when we switch from the behavior \mathfrak{B}_k to \mathfrak{B}_ℓ for all $t_i \in \mathbb{T}_s$ as

$$\begin{bmatrix} 1\\ \frac{d}{dt}\\ \vdots\\ \frac{d^{n_{\ell}-1}}{dt^{n_{\ell}-1}} \end{bmatrix} w(t_i^+) = \begin{bmatrix} 1\\ \frac{d}{dt}\\ \vdots\\ \frac{d^{n_{k}-1}}{dt^{n_{k}-1}} \end{bmatrix} w(t_i^-) \text{ if } n_k = n_{\ell};$$

$$\begin{bmatrix} 1\\ \frac{d}{dt}\\ \vdots\\ \frac{d^{n_{\ell}-1}}{dt^{n_{\ell}-1}} \end{bmatrix} w(t_i^+) = \begin{bmatrix} 1\\ \frac{d}{dt}\\ \vdots\\ \frac{d^{n_{\ell}-1}}{dt^{n_{\ell}-1}} \end{bmatrix} w(t_i^-) \text{ if } n_k > n_{\ell};$$

$$\begin{bmatrix} 1\\ \frac{d}{dt}\\ \vdots\\ \frac{d^{n_{\ell}-1}}{dt^{n_{\ell}-1}} \end{bmatrix} w(t_i^+) = \begin{bmatrix} 1\\ \frac{d}{dt}\\ \vdots\\ \frac{d^{n_{k}-1}}{dt^{n_{k}-1}} \end{bmatrix} w(t_i^-) \text{ if } n_k < n_{\ell},$$

$$\begin{bmatrix} 1\\ \frac{d}{dt}\\ \vdots\\ \frac{d^{n_{k}-1}}{dt^{n_{k}-1}} \end{bmatrix} w(t_i^-) \text{ if } n_k < n_{\ell},$$

$$\begin{bmatrix} \frac{d^{n_{k}-1}}{dt^{n_{k}-1}}\\ \prod \begin{bmatrix} \frac{d^{n_{\ell}-1}}{dt^{n_{k}-1}}\\ \vdots\\ \frac{d^{n_{k}-1}}{dt^{n_{k}-1}} \end{bmatrix} \end{bmatrix}$$

where $\Pi \in \mathbb{R}^{(n_{\ell}-n_k) \times n_k}$ is such that

$$\begin{bmatrix} \xi^{n_k} \\ \vdots \\ \xi^{n_\ell - 1} \end{bmatrix} \mod p_k = \Pi \begin{bmatrix} 1 \\ \vdots \\ \xi^{n_k - 1} \end{bmatrix} \ .$$

In words, when switching from a dynamical regime \mathfrak{B}_k to \mathfrak{B}_ℓ , we rewrite if necessary every derivative of w of order higher than $n_k - 1$ as a linear combination of derivatives of order at most $n_k - 1$, according to the canonical representative of ξ^j modulo p_k , $j = 0, ..., n_\ell - 1$, (see section II-A). Thus at every switching instant, the state of the active behavior is uniquely specified as a linear function of the state of the behavior before the switch, allowing the continuation of the trajectories of the switched behavior by providing a full set of "initial conditions" after the switch. We call a SLDS with such gluing conditions a *standard switched linear differential system*.

IV. STABILITY AND POSITIVE-REALNESS

Asymptotically stable SLDS are defined as follows.

Definition 5: A SLDS Σ is asymptotically stable if $\lim_{t\to\infty} w(t) = 0$ for all $w \in \mathfrak{B}^{\Sigma}$.

We prove the stability of a SLDS showing the existence of a Lyapunov function Q_{Ψ} , i.e. a QDF such that: $Q_{\Psi} \stackrel{\mathfrak{B}_k}{\geq} 0$ and $\frac{d}{dt}Q_{\Psi} \stackrel{\mathfrak{B}_k}{\leq} 0$ for all $k \in \mathcal{P}$; and the value of Q_{Ψ} does not increase at the switching instants, i.e. $Q_{\Psi}(w)(t_i^-) \geq Q_{\Psi}(w)(t_i^+)$ for all $t_i \in \mathbb{T}_s$.

We summarize previous results (see [6], [5]) on the stability of SLDS with two behaviors in the following theorem.

Theorem 1: Let $p_j \in \mathbb{R}[\xi]$, j = 1, 2, be Hurwitz polynomials, and define $n_j := \deg(p_j)$, j = 1, 2. Let $\mathcal{F} = \{\mathfrak{B}_1, \mathfrak{B}_2\}$ with $\mathfrak{B}_j := \ker p_j\left(\frac{d}{dt}\right)$, j = 1, 2. Assume that $\frac{p_2}{p_1}$ is strictly positive-real with $n_1 \ge n_2$. Define $x_1(\xi) := \begin{bmatrix} 1 & \cdots & \xi^{n_1-1} \end{bmatrix}^{\top}$, $x_2(\xi) := \begin{bmatrix} 1 & \cdots & \xi^{n_2-1} \end{bmatrix}^{\top}$, and the set of gluing conditions \mathcal{G} with $G_{2\to1}^-(\xi) = x_1(\xi) \mod p_2$; $G_{2\to1}^+(\xi) = x_1(\xi)$; and $G_{1\to2}^-(\xi) = x_2(\xi) = G_{1\to2}^+(\xi)$. Define $\Phi(\zeta, \eta) := p_1(\zeta)p_2(\eta) + p_2(\zeta)p_1(\eta)$. Then, there exists a polynomial vector $d \in \mathbb{R}^{\bullet \times 1}[\xi]$ such that

1.
$$p_1(-\xi)p_2(\xi) + p_2(-\xi)p_1(\xi) = d(-\xi)^{\top} d(\xi).$$

2.
$$\Psi(\zeta,\eta) := \frac{\Phi(\zeta,\eta) - d(\zeta)^{\top} d(\eta)}{\zeta + \eta} \in \mathbb{R}[\zeta,\eta].$$

3. Q_{Ψ} is a Lyapunov function for \mathcal{F} .

Proof: See [6] Theorem 10, and [5] Theorem 2.3. ■

As shown in [13] Th. 5.10, if we assume that $\frac{p_2}{p_1}$ is strictly positive-real, then the degree of p_1 and p_2 cannot differ by more than one, consequently, Theorem 1 only covers the situation where $n_1 - n_2 = 0$ or $n_1 - n_2 = 1$. To study the stability of behaviors whose state space dimension differs arbitrarily, we introduce the concept of *positive-real completion*.

Definition 6: Let Σ be a standard SLDS. The polynomial $m \in \mathbb{R}[\xi]$ is a strictly positive-real completion of $\frac{p_2}{p_1}$ if $\frac{mp_2}{p_1}$ is strictly proper and strictly positive-real.

Remark 1: Not every pair of Hurwitz polynomials has a strictly- positive-real completion, for example the polynomials $p_1(\xi) := 2523677 + 435616\xi + 81559\xi^2 + 7000\xi^3 + 603\xi^4 + 24\xi^5 + \xi^6$ and $p_2(\xi) := 65 + 46\xi + 26\xi^2 + 6\xi^3 + \xi^4$.

Remark 2: Strictly- positive-real completions are not unique; for instance the rational function $\frac{mp_2}{p_1}$ with $p_1(\xi) := (\xi + 1)(\xi + 3)(\xi + 6)$ and $p_2 := \xi + 2$ is positive-real with m equal to $\xi + 4$, $\xi + 5$ and many other options.

A. Computation of a positive-real completion

To compute a strictly-proper positive-real completion mwe can use the positive-real lemma [1]. Define $p_3 := mp_2$ and $n_3 := \deg(p_3)$; in the following we assume that $n_1 = n_3 + 1$. A realization (A, B, C, 0) of $\frac{p_3(\xi)}{p_1(\xi)}$ can be written in controllable canonical form, i.e. $Ax(\xi) := \xi x(\xi) \mod p_1 = \xi x(\xi) - Bp_1(\xi)$, and $p_3(\xi) = Cx(\xi)$, where $x(\xi) = \begin{bmatrix} 1 & \cdots & \xi^{n_1-1} \end{bmatrix}^{\top}$. The coefficients of *m* are parameters to be determined, so we write

$$C^{\top} := \underbrace{\begin{bmatrix} p_{2,0} & 0 & 0 & \cdots & 0 \\ p_{2,1} & p_{2,0} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \cdots & \vdots \\ =: \tilde{T} & & & \\ & & =: \tilde{m} \end{bmatrix}}_{=: \tilde{m}} \tag{3}$$

where $\tilde{T} \in \mathbb{R}^{n_1 \times (n_1 - n_2)}$ is a Töplitz matrix containing the coefficients $p_{2,j}$ of $p_2(\xi)$; and $\tilde{m} \in R^{(n_1 - n_2) \times 1}$ contains the unknown coefficients of $m(\xi)$.

Now if for some $\varepsilon \ge 0$ and for some m_i , $i = 0, \ldots, n_1 - n_2 - 1$, the inequality

$$\begin{bmatrix} A^{\top}\tilde{\Psi} + \tilde{\Psi}A + 2\varepsilon\tilde{\Psi} & \tilde{\Psi}B - C^{\top} \\ B^{\top}\tilde{\Psi} - C & 0 \end{bmatrix} \le 0 , \qquad (4)$$

has a positive-definite solution $\tilde{\Psi} = \tilde{\Psi}^{\top} \in \mathbb{R}^{n_1 \times n_1}$, then $G(\xi) = \frac{p_3(\xi)}{p_1(\xi)} = C(\xi I - A)^{-1}B$ is strictly positive-real, and m is a completion. The LMI (4) can be solved using standard computational methods. On the other hand, if (4) has no solution, we conclude that the pair p_1, p_2 does not have a positive-real completion, see Remark 1.

B. Stability of SLDS using positive-real completions

In the following section we analyse some further consequences of the existence of positive-real completions.

V. MAIN RESULTS

To discuss the main results of this paper we need to illustrate first an important structural property of a Lyapunov function Q_{Ψ} for a SLDS Σ with $\mathcal{F} := \{\mathfrak{B}_i := \ker p_i\left(\frac{d}{dt}\right)\}_{i=1,2}$ with $p_i \in \mathbb{R}[\xi], i = 1, 2$, and gluing conditions as in (2). Let $\Psi(\zeta, \eta)$ induce a Lyapunov function for a standard SLDS as in def. 4, and write

$$\Psi(\zeta,\eta) = \begin{bmatrix} 1 & \cdots & \zeta^{n_1-1} \end{bmatrix} \underbrace{\begin{bmatrix} \Psi_{11} & \Psi_{12} \\ \Psi_{12}^\top & \Psi_{22} \end{bmatrix}}_{=:\widetilde{\Psi}} \begin{bmatrix} 1 \\ \vdots \\ \eta^{n_1-1} \end{bmatrix} ,$$

for suitable matrices $\Psi_{11} \in \mathbb{R}^{n_2 \times n_2}$, $\Psi_{12} \in \mathbb{R}^{n_2 \times (n_1 - n_2)}$ and $\Psi_{22} \in \mathbb{R}^{(n_1 - n_2) \times (n_1 - n_2)}$. Note that since Q_{Ψ} is positive along \mathfrak{B}_1 , the coefficient matrix

$$\tilde{\Psi} := \begin{bmatrix} \Psi_{11} & \Psi_{12} \\ \Psi_{12}^\top & \Psi_{22} \end{bmatrix}$$
(5)

is positive definite. Now consider the following Lemma.

Lemma 1: Let Σ be SLDS with $\mathcal{F} := \{\mathfrak{B}_i := ker \ p_i\left(\frac{d}{dt}\right)\}_{i=1,2}$ with $p_i \in \mathbb{R}[\xi], i = 1, 2$, and gluing conditions as in (2). Define $n_i := \deg(p_i), i = 1, 2$ and assume that $n_1 > n_2$. Assume that there exists a Lyapunov function Q_{Ψ} for Σ and let its coefficient matrix $\tilde{\Psi}$ be partitioned as in (5), then $\Psi_{12} = -\Pi^{\top}\Psi_{22}$.

Proof: In order to prove the claim, define $z := \begin{bmatrix} w & \cdots & \frac{d^{n_2-1}}{dt^{n_2-1}}w \end{bmatrix}^{\top}$ and $v := \begin{bmatrix} \frac{d^{n_2}}{dt^{n_2}}w & \cdots & \frac{d^{n_1-1}}{dt^{n_1-1}}w \end{bmatrix}^{\top}$,

then taking the standard gluing conditions (2) into account, when switching from \mathfrak{B}_1 to \mathfrak{B}_2 at t_k , the inequality $Q_{\Psi}(w)(t_k^-) - Q_{\Psi}(w)(t_k^+) \ge 0$ holds true if and only if

$$\begin{bmatrix} z(t_k^-) \\ v(t_k^-) \end{bmatrix}^\top \begin{pmatrix} \tilde{\Psi} - \begin{bmatrix} I_{n_2} & \Pi^\top \\ 0 & 0 \end{bmatrix} \tilde{\Psi} \begin{bmatrix} I_{n_2} & 0 \\ \Pi & 0 \end{bmatrix} \begin{pmatrix} z(t_k^-) \\ v(t_k^-) \end{bmatrix} \ge 0 .$$

Since $[z^{\top}(t_k^{-}) \ v^{\top}(t_k^{-})]$ is arbitrary in \mathbb{R}^{n_1} for the trajectories of Σ , the last equality implies that

$$\tilde{\Psi} - \begin{bmatrix} I_{n_2} & \Pi^\top \\ 0 & 0 \end{bmatrix} \tilde{\Psi} \begin{bmatrix} I_{n_2} & 0 \\ \Pi & 0 \end{bmatrix} \ge 0 .$$
(6)

After standard linear algebra manipulations we find that (6) is equivalent to

$$\begin{bmatrix} -(\Psi_{12} + \Pi^{\top} \Psi_{22}) \Psi_{22}^{-1} (\Psi_{12}^{\top} + \Psi_{22} \Pi) & 0 \\ 0 & \Psi_{22} \end{bmatrix} \ge 0 \ . \ \ (7)$$

Now consider that the (1, 1) block in (7) is negative semidefinite; consequently, (7) holds if and only if the (1, 1) block is zero, i.e. if and only if $\Psi_{12} = -\Pi^{\top} \Psi_{22}$. The claim is proved.

A. Positive-realness and stability of SLDS with three behaviors

We now prove a sufficient condition for the asymptotic stability of a SLDS with *three* behaviors.

Theorem 2: Let $p_i \in \mathbb{R}[\xi]$, i = 1, 2, be Hurwitz polynomials such that $\deg(p_1) > \deg(p_2)$. Assume that there exists $m \in \mathbb{R}[\xi]$, with $\deg(m) = \deg(p_1) + 1$, and a Lyapunov function Q_{Ψ} for ker $p_i\left(\frac{d}{dt}\right)$, i = 1, 2, as in Lemma 1, such that the coefficient matrices \tilde{m} and $\tilde{\Psi}$ satisfy the LMI (4) with C as in (3). Define $p_3(\xi) := m(\xi)p_2(\xi)$, $\mathfrak{B}_j := \ker p_j\left(\frac{d}{dt}\right)$, j = 1, 2, 3, and denote $n_j := \deg(p_j)$, j = 1, 2, 3. Moreover, define $x_2(\xi) := \begin{bmatrix} 1 & \cdots & \xi^{n_2-1} \end{bmatrix}^\top$; $x'_3(\xi) := \begin{bmatrix} \xi^{n_2} & \cdots & \xi^{n_3-1} \end{bmatrix}^\top$, $x_3 := \begin{bmatrix} x_2(\xi) & x'_3(\xi) \end{bmatrix}^\top$ and $x'_1(\xi) := \xi^{n_1-1}$.

Consider the SLDS Σ' with $\mathcal{F}' = (\mathfrak{B}_1, \mathfrak{B}_2, \mathfrak{B}_3)$ and gluing conditions

$$\begin{split} \left(G_{2\to1}^{-}(\xi), G_{2\to1}^{+}(\xi)\right) &:= \left(\begin{bmatrix} x_{2}(\xi) \\ \Pi_{1}x_{2}(\xi) \end{bmatrix}, \begin{bmatrix} x_{2}(\xi) \\ x'_{3}(\xi) \\ x'_{1}(\xi) \end{bmatrix} \right) , \\ \left(G_{1\to2}^{-}(\xi), G_{1\to2}^{+}(\xi)\right) &:= (x_{2}(\xi), x_{2}(\xi)) , \\ \left(G_{3\to1}^{-}(\xi), G_{3\to1}^{+}(\xi)\right) &:= \left(\begin{bmatrix} x_{3}(\xi) \\ \Pi_{3}x_{3}(\xi) \end{bmatrix}, \begin{bmatrix} x_{3}(\xi) \\ x'_{1}(\xi) \end{bmatrix} \right) , \\ \left(G_{1\to3}^{-}(\xi), G_{1\to3}^{+}(\xi)\right) &:= (x_{3}(\xi), x_{3}(\xi)) , \\ \left(G_{2\to3}^{-}(\xi), G_{2\to3}^{+}(\xi)\right) &:= \left(\begin{bmatrix} x_{2}(\xi) \\ \Pi_{2}x_{2}(\xi) \end{bmatrix}, \begin{bmatrix} x_{2}(\xi) \\ x'_{3}(\xi) \end{bmatrix} \right) , \\ \left(G_{3\to2}^{-}(\xi), G_{3\to2}^{+}(\xi)\right) &:= (x_{2}(\xi), x_{2}(\xi)) , \end{split}$$

where $\Pi_1 \in \mathbb{R}^{(n_1-n_2)\times n_2}$, $\Pi_2 \in \mathbb{R}^{(n_3-n_2)\times n_2}$, $\Pi_3 \in \mathbb{R}^{(n_1-n_3)\times n_3}$ are such that $\begin{bmatrix} x'_3(\xi) \\ x'_1(\xi) \end{bmatrix} \mod p_2 = \Pi_1 x_2(\xi);$ $x'_3(\xi) \mod p_2 = \Pi_2 x_2(\xi);$ and $x'_1(\xi) \mod p_3 = \Pi_3 x_3(\xi).$ Then there exists a Lyapunov function Q_{Ψ} for \mathcal{F}' . *Proof:* In order to show that Q_{Ψ} is a Lyapunov function for \mathcal{F}' , we prove the following statements:

S1.
$$Q_{\Psi} \stackrel{\mathfrak{B}_{1}}{\geq} 0$$
 and $\frac{d}{dt}Q_{\Psi} \stackrel{\mathfrak{B}_{2}}{<} 0$
S2. $Q_{\Psi} \stackrel{\mathfrak{B}_{2}}{\geq} 0$ and $\frac{d}{dt}Q_{\Psi} \stackrel{\mathfrak{B}_{2}}{<} 0$
S3. $Q_{\Psi} \stackrel{\mathfrak{B}_{3}}{\geq} 0$ and $\frac{d}{dt}Q_{\Psi} \stackrel{\mathfrak{B}_{3}}{<} 0$

and moreover, we show that the value of Q_{Ψ} does not increase at the switching instants, i.e.

- **S4.** when we switch from \mathfrak{B}_1 to \mathfrak{B}_2 and viceversa.
- **S5.** when we switch from \mathfrak{B}_1 to \mathfrak{B}_3 and viceversa.
- **S6.** when we switch from \mathfrak{B}_3 to \mathfrak{B}_2 and viceversa.

Note that statements **S1** and **S2** and **S4** hold, since Q_{Ψ} is a Lyapunov function for $\{\mathfrak{B}_1, \mathfrak{B}_2\}$.

In order to prove **S3**, define $\Psi_3(\zeta, \eta) := \Psi(\zeta, \eta) \mod p_3$. Note that since $Q_{\Psi} \ge 0$ and $Q_{\Psi} \stackrel{\mathfrak{B}_3}{=} Q_{\Psi_3}$, it follows that $Q_{\Psi_3} \ge 0$. To prove the second part of the statement, since $\frac{p_3}{p_1}$ is strictly positive-real, then

$$(\zeta + \eta)\Psi(\zeta, \eta) = p_1(\zeta)p_3(\eta) + p_3(\zeta)p_1(\eta) - d(\zeta)^{\top}d(\eta)$$
(8)

for some polynomial vector $d \in \mathbb{R}^{\bullet \times 1}[\xi]$ (see Theorem 1, section IV). From standard results in the theory of quadratic differential forms (see [12], p.1716), we know that the derivative of Q_{Ψ_3} is induced by the two variable polynomial $(\zeta + \eta)\Psi(\zeta, \eta) \mod p_3 = -d'(\zeta)^{+}d'(\eta)$, where $d' := d \mod p_3$. Therefore, to prove that the derivative of Q_{Ψ_3} decreases along \mathfrak{B}_3 it is enough to check that $\operatorname{col}(d'(\lambda), p_3(\lambda))$ is full column rank for all $\lambda \in \mathbb{C}$, which guarantees that $\frac{d}{dt}(Q_{\Psi_3}(w))$ is non zero for the trajectories of \mathfrak{B}_3 . By contradiction, assume that there exists $\lambda \in \mathbb{C}$ such that $p_1(\lambda) = 0$ and $d(\lambda) = 0$. Note that since p_1 is Hurwitz necessarily $\lambda \in \mathbb{C}_{-}$, the open left half-plane. Substitute $\zeta = \overline{\lambda}$ and $\eta = \lambda$ in the expression in (8), obtaining $(\overline{\lambda} + \lambda)\Psi(\overline{\lambda}, \lambda) = 0$. Since $\lambda \in \mathbb{C}_{-}$, this is equivalent with $\Psi(\overline{\lambda},\lambda) = 0$, which implies that $\overline{\Psi}$ is not positive-definite, a contradiction.

The validity of statement **S5** follows from Th. 1, since $\frac{p_3}{p_1}$ is strictly positive-real and $\deg(p_3) = \deg(p_1) - 1$.

It remains to prove **S6**. When we switch from \mathfrak{B}_3 to \mathfrak{B}_2 , the condition $Q_{\Psi}(w)(t_i^-) - Q_{\Psi}(w)(t_i^+) \ge 0$ must be satisfied. Since

$$\left(\begin{bmatrix} x_2(\xi) \\ x'_3(\xi) \\ x'_1(\xi) \end{bmatrix} \mod p_3 \right) \mod p_2 = \begin{bmatrix} x_2(\xi) \\ x'_3(\xi) \\ x'_1(\xi) \end{bmatrix} \mod p_2 ,$$

the condtion can be written as

$$Q_{\Psi \mod p_3}(w) - Q_{(\Psi \mod p_3) \mod p_2}(w) \ge 0.$$
(9)

In the following, we aim to express condition (9) in terms of a matrix inequality. We proceed by expressing the relation between Π_1 , Π_2 and Π_3 , and we first compute

$$\begin{bmatrix} x_2(\xi) \\ x'_3(\xi) \\ x'_1(\xi) \end{bmatrix} \mod p_2 = \begin{bmatrix} x_2(\xi) \\ \Pi_1 x_2(\xi) \end{bmatrix} .$$
(10)

Partition $\Pi_3 := \begin{bmatrix} \Pi'_3 & \Pi''_3 \end{bmatrix}$ with $\Pi'_3 \in \mathbb{R}^{(n_1 - n_3) \times n_2}$ and $\|$ that the coefficient matrix of $Q_{\Psi \mod p_3}$ is $\Pi_{3}^{\prime\prime} \in \mathbb{R}^{(n_{1}-n_{3}) \times (n_{3}-n_{2})}$, then

$$\begin{bmatrix} x_2(\xi) \\ x'_3(\xi) \\ x'_1(\xi) \end{bmatrix} \mod p_3 = \begin{bmatrix} x_2(\xi) \\ \Pi_2 x_2(\xi) \\ \Pi'_3 x_2(\xi) + \Pi''_3 x'_3(\xi) \end{bmatrix}$$

Consequently

$$\left(\begin{bmatrix} x_2(\xi)\\ x'_3(\xi)\\ x'_1(\xi) \end{bmatrix} \mod p_3\right) \mod p_2 = \begin{bmatrix} x_2(\xi)\\ \Pi_2\\ \Pi'_3 + \Pi''_3\Pi_2 \end{bmatrix} x_2(\xi) \begin{bmatrix} \cdot\\ \cdot\\ \cdot\\ \cdot \end{bmatrix}$$
(11)

By comparing equations (10) and (11) we have that $\Pi_1 =$ $\left| \Pi'_{3} + \Pi''_{3} \Pi_{2} \right|$. Now consider the coefficient matrix of the Lyapunov function Q_{Ψ} and partition it as

$$\tilde{\Psi} := \begin{bmatrix} \Psi_{11} & \Psi_{12} & \Psi_{13} \\ \Psi_{12}^{\top} & \Psi_{22} & \Psi_{23} \\ \Psi_{13}^{\top} & \Psi_{23}^{\top} & \Psi_{33} \end{bmatrix} , \qquad (12)$$

with $\Psi_{11} \in \mathbb{R}^{n_2 \times n_2}$, $\Psi_{12} \in \mathbb{R}^{n_2 \times (n_3 - n_2)}$, $\Psi_{13} \in \mathbb{R}^{n_2 \times (n_1 - n_3)}$, $\Psi_{22} \in \mathbb{R}^{(n_3 - n_2) \times (n_3 - n_2)}$, $\Psi_{23} \in \mathbb{R}^{(n_3 - n_2) \times (n_1 - n_3)}$ and $\Psi_{33} \in \mathbb{R}^{(n_1 - n_3) \times (n_1 - n_3)}$. From the results of Lemma 1, since the Lyapunov function Q_{Ψ} does not increase when switching from \mathfrak{B}_1 to \mathfrak{B}_2 , this implies that

$$\begin{bmatrix} \Psi_{12}^{\top} \\ \Psi_{13}^{\top} \end{bmatrix} = - \begin{bmatrix} \Psi_{22} & \Psi_{23} \\ \Psi_{23}^{\top} & \Psi_{33} \end{bmatrix} \Pi_{1}$$
$$= - \begin{bmatrix} \Psi_{22} & \Psi_{23} \\ \Psi_{23}^{\top} & \Psi_{33} \end{bmatrix} \begin{bmatrix} \Pi_{2} \\ \Pi_{3}' + \Pi_{3}'' \Pi_{2} \end{bmatrix},$$

and consequently

$$\Psi_{12}^{\top} = -(\Psi_{22}\Pi_2 + \Psi_{23}\Pi_3' + \Psi_{23}\Pi_3''\Pi_2) , \qquad (13)$$

and

$$\Psi_{13}^{\top} = -(\Psi_{23}\Pi_2 + \Psi_{33}\Pi_3' + \Psi_{33}\Pi_3''\Pi_2) .$$
 (14)

The following lemma provides important structural properties of $Q_{\Psi \mod p_3}$ that will be essential for the rest of the proof.

Lemma 2: Let Q_{Ψ} , its coefficient matrix $\tilde{\Psi}$ and $\Pi_3 :=$ $[\Pi'_3 \quad \Pi''_3]$, be as previously defined and let $\tilde{\Psi}$ be the coefficient matrix of $Q_{\Psi \mod p_3}$. Consider the partition

- ~

$$\tilde{\tilde{\Psi}} := \begin{bmatrix} \tilde{\tilde{\Psi}}_{11} & \tilde{\tilde{\Psi}}_{12} \\ \tilde{\tilde{\Psi}}_{12}^\top & \tilde{\tilde{\Psi}}_{22} \end{bmatrix} , \qquad (15)$$

with $\tilde{\tilde{\Psi}}_{11} \in \mathbb{R}^{n_2 \times n_2}$, $\tilde{\tilde{\Psi}}_{12} \in \mathbb{R}^{n_2 \times (n_3 - n_2)}$ and $\tilde{\tilde{\Psi}}_{22} \in \mathbb{R}^{(n_3 - n_2) \times (n_3 - n_2)}$. Then

$$\tilde{\tilde{\Psi}}_{11} = (\Psi_{11} + \Pi'_{3}\Psi_{13}^{\top} + \Psi_{13}\Pi'_{3} + \Pi'_{3}^{\top}\Psi_{33}\Pi'_{3}),
\tilde{\tilde{\Psi}}_{12} = (\Psi_{12} + \Pi'_{3}^{\top}\Psi_{23}^{\top} + \Psi_{13}\Pi''_{3} + \Pi'_{3}^{'\top}\Psi_{33}\Pi''_{3}),
\tilde{\tilde{\Psi}}_{22} = (\Psi_{22} + \Pi''_{3}^{\top}\Psi_{23}^{\top} + \Psi_{23}\Pi'_{3} + \Pi''_{3}^{'\top}\Psi_{33}\Pi''_{3}).$$

Proof: Following the same procedure as in Lemma 1 and considering the partitions (12) and (15), we conclude

$$\begin{bmatrix} \tilde{\Psi}_{11} & \tilde{\Psi}_{12} \\ \tilde{\tilde{\Psi}}_{12}^{\top} & \tilde{\tilde{\Psi}}_{22} \end{bmatrix} = \\ \begin{bmatrix} I_{n_2} & 0 \\ 0 & I_{(n_3 - n_2)} \\ \Pi'_3 & \Pi''_3 \end{bmatrix}^{\top} \begin{bmatrix} \Psi_{11} & \Psi_{12} & \Psi_{13} \\ \Psi_{12}^{\top} & \Psi_{22} & \Psi_{23} \\ \Psi_{13}^{\top} & \Psi_{23}^{\top} & \Psi_{33} \end{bmatrix} \begin{bmatrix} I_{n_2} & 0 \\ 0 & I_{(n_3 - n_2)} \\ \Pi'_3 & \Pi''_3 \end{bmatrix} .$$
(16)

The desired equalities follow by inspection.

Now we return to the proof of the main Theorem. Note that from the inequality (9) we can obtain

$$\begin{bmatrix} \tilde{\tilde{\Psi}}_{11} & \tilde{\tilde{\Psi}}_{12} \\ \tilde{\tilde{\Psi}}_{12}^\top & \tilde{\tilde{\Psi}}_{22} \end{bmatrix} - \begin{bmatrix} I_{n_2} & \Pi_2^\top \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \tilde{\tilde{\Psi}}_{11} & \tilde{\tilde{\Psi}}_{12} \\ \tilde{\tilde{\Psi}}_{12}^\top & \tilde{\tilde{\Psi}}_{22} \end{bmatrix} \begin{bmatrix} I_{n_2} & 0 \\ \Pi_2 & 0 \end{bmatrix} \ge 0 \ .$$

Note that similarly to Lemma 1, this inequality holds if and only if $\tilde{\Psi}_{12}^{\top} + \tilde{\Psi}_{22}\Pi_2 = 0$, or equivalently from Lemma 2, the condition is satisfied if and only if

$$\begin{split} \Psi_{12}^{\top} &+ \Pi_{3}^{\prime\prime\top} \Psi_{13}^{\top} + \Psi_{23} \Pi_{3}^{\prime} + \Pi_{3}^{\prime\prime\top} \Psi_{33} \Pi_{3}^{\prime} = \\ &- (\Psi_{22} + \Pi_{3}^{\prime\prime\top} \Psi_{23}^{\top} + \Psi_{23} \Pi_{3}^{\prime} + \Pi_{3}^{\prime\prime\top} \Psi_{33} \Pi_{3}^{\prime\prime}) \Pi_{2} \; . \end{split}$$

Substituting (14) in the latter equation we obtain (13) and we conclude that

$$\left\{ \begin{bmatrix} \Psi_{12}^\top \\ \Psi_{13}^\top \end{bmatrix} = - \begin{bmatrix} \Psi_{22} & \Psi_{23} \\ \Psi_{23}^\top & \Psi_{33} \end{bmatrix} \Pi_1 \right\} \implies \left\{ \tilde{\tilde{\Psi}}_{12}^\top = -\tilde{\tilde{\Psi}}_{22} \Pi_2 \right\} .$$

Consequently Q_{Ψ} does not increase when switching from \mathfrak{B}_3 to \mathfrak{B}_2 . It is a matter of straightforward verification to check that when we switch from \mathfrak{B}_2 to \mathfrak{B}_3 the value of Q_{Ψ} remains the same before and after the switch. This concludes the proof of the Theorem.

Theorem 2 shows that the existence of a strictly positivereal completion m associated to a SLDS Σ with two behaviors $\mathfrak{B}_j := \ker p_j\left(\frac{d}{dt}\right), j = 1, 2$, in the bank \mathcal{F} , implies the existence of a third behavior $\mathfrak{B}_3 := \ker p_3\left(\frac{d}{dt}\right)$ with $p_3 := mp_2$, in an augmented bank \mathcal{F}' of a SLDS Σ' . We defined the standard gluing conditions for Σ' , associated to the switching among the behaviors \mathfrak{B}_i , i = 1, 2, 3, as in (2) following that $n_1 > n_3 > n_2$. Consequently, the stability conditions derived from the analysis of the switching between the behaviors in \mathcal{F} are compatible with the stability conditions for \mathcal{F}' concluding that if Σ is asymptotically stable, so is Σ' .

B. Positive-realness and stability of families of three*behaviors*

Another consequence of the notion of positive-real completion is given in the following Theorem.

Theorem 3: Let Σ' be a SLDS as in Theorem 2. Assume that there exist two different strictly positive-real completions m_1 and m_2 for $\frac{p_2}{p_1}$, and let $\alpha \in [0, 1]$. Then $m_\alpha := \alpha m_1 + \alpha m_1$ $(1-\alpha)m_2$ is also a completion, i.e. $\frac{m_{\alpha}p_2}{p_1}$ is strictly positivereal.

Moreover, define

$$\mathfrak{F}'_{\alpha} := \{ \ker \ p_1(\frac{d}{dt}), \ker \ p_2(\frac{d}{dt}), \ker \ p_{3,\alpha}(\frac{d}{dt}) \}$$

with $p_{3,\alpha} := m_{\alpha}p_2$ and the standard gluing conditions as in Theorem 2. Then \mathfrak{F}_{α} is stable.

Proof: The fact that m_{α} for all $\alpha \in [0, 1]$ is strictly positive-real follows from straightforward computations:

$$\begin{split} & \frac{m_{\alpha}(-j\omega)p_{2}(-j\omega)}{p_{1}(-j\omega)} + \frac{m_{\alpha}(j\omega)p_{2}(j\omega)}{p_{1}(j\omega)} \\ &= \frac{(\alpha m_{1}(-j\omega) + (1-\alpha)m_{2}(-j\omega))p_{2}(-j\omega)}{p_{1}(-j\omega)} \\ &+ \frac{(\alpha m_{1} + (1-\alpha)m_{2})p_{2}(j\omega)}{p_{1}(j\omega)} \\ &= \alpha \underbrace{\left(\frac{m_{1}(-j\omega)r_{2}(-j\omega)}{p_{1}(-j\omega)} + \frac{m_{1}p_{2}(j\omega)}{p_{1}(j\omega)}\right)}_{>0 \text{ for all } \omega \in \mathbb{R}} \\ &+ (1-\alpha) \underbrace{\left(\frac{m_{2}(-j\omega)p_{2}(-j\omega)}{p_{1}(-j\omega)} + \frac{m_{2}p_{2}(j\omega)}{p_{1}(j\omega)}\right)}_{>0 \text{ for all } \omega \in \mathbb{R}} \end{split}$$

To prove that \mathfrak{F}_{α} is stable, use Theorem 2.

Theorem 3 shows that the existence of two separate completions allows to establish the stability of a whole family of parameter-dependent SLDS with three behaviors \mathfrak{F}_{α} . This result also shows that the asymptotic stability of a completion established in Theorem 2 is robust: perturbations of a given completion, parametrized by α as in Theorem 3, also result in a stable SLDS.

We now provide a method to compute more than one strictly- positive-real completion; the intuition behind this procedure is to consider small perturbations of a positivereal completion that result in other completions satisfying the frequency domain inequality (1).

Consider the realization (A, B, C, 0) associated to a strictly positive real function $G(\xi) := C(\xi I - A)^{-1}B$ in section IV-A, and the LMI (4) with C as in (3). Consider that $G(\xi - \varepsilon)$ is strictly positive-real for some constant $\varepsilon > 0$ (see [10], Th. 3.3). We can use this fact to numerically compute different solutions \tilde{m} and $\tilde{\Psi}$ for a given pair of polynomials (p_1, p_2) by defining different values of $\varepsilon \ge 0$. In order to define an upper bound for ε , define $Q := A^{\top} \tilde{\Psi} + \tilde{\Psi} A$. Since $\tilde{\Psi}$ is symmetric and positive definite, there exists a nonsingular matrix $N \in \mathbb{R}^{n_1 \times n_1}$ such that $\tilde{\Psi} := N^{\top}N$. Consequently, ε is such that $Q + 2\varepsilon \tilde{\Psi} < 0$ if and only if $N^{-\top}QN^{-1} + 2\varepsilon < 0$. In order for this to hold, ε must be less than $-\frac{1}{2}\lambda_{max}$, where λ_{max} is the largest eigenvalue of $N^{-\top}QN^{-1}$. Consequently, ε must necessarily belong to the interval $[0, -\frac{1}{2}\lambda_{max})$.

Based on this discussion, we state the following algorithm. Algorithm 1:

Input: Hurwitz polynomials p_1 , p_2 with $n_1 > n_2 + 1$. **Output:** If they exist, two strictly- positive-real completions. **Step 1:** Define A, B as in the controllable canonical realization of $\frac{1}{p_1}$, and $C^{\top} := \tilde{T}\tilde{m}$ as in (3).

Step 2: Solve the LMI (4) with $\varepsilon = 0$, to obtain $\tilde{\Psi}_0$ and the coefficient vector \tilde{m}_0 . If there is no solution, **EXIT**.

Step 3: Compute a factorization $\tilde{\Psi}_0 := N_0^\top N_0$ and define $Q_0 := A^\top \tilde{\Psi}_0 + \tilde{\Psi}_0 A$.

Step 5: Compute the largest eigenvalue $\lambda_{max,0}$ of $N_0^{-\top}Q_0N_0^{-1}$, and choose $\varepsilon_1 \in (0, -\frac{1}{2}\lambda_{max,0})$.

Step 2: Solve the LMI (4) with $\varepsilon = \varepsilon_1$, to obtain $\tilde{\Psi}_1$ and the coefficient vector \tilde{m}_1 .

Step 6: RETURN \tilde{m}_0 and \tilde{m}_1 .

VI. CONCLUSIONS

We studied the stability of scalar switched linear differential systems with three behaviors using the concept of positive-real completion, and we illustrated how a family of switched differential systems can be obtained the convex combination of two completions.

REFERENCES

- B.D.O. Anderson and S. Vongpanitlerd. Network Analysis and Synthesis: A Modern Systems Theory Approach. Prentice-Hall, Inc., NJ, 1973.
- [2] D. Liberzon. Switching in Systems and Control. Birkhauser. Boston, Basel, Berlin, 2003.
- [3] H. Lin and P.J. Antsaklis. Stability and stabilizability of switched linear systems: A survey of recent results. *IEEE Transactions on Automatic Control*, 54(2):308–322, 2009.
- [4] J.W. Polderman and J.C. Willems. Introduction to Mathematical System Theory: A Behavioral Approach. Springer, Berlin, 1997.
- [5] P. Rapisarda and P. Rocha. Positive realness and Lyapunov functions. Proceedings of the 20th International Symposium on Mathematical Theory of Networks and Systems, 2012. Melbourne, Australia.
- [6] P. Rocha, J.C. Willems, P. Rapisarda, and D. Napp. On the stability of switched behavioral systems. 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pages 1534–1538, 2011.
- [7] R. Shorten, M. Corless, K. Wulff, Steffi Klinge, and R. Middleton. Quadratic stability and singular siso switching systems. *Automatic Control, IEEE Transactions on*, 54(11):2714–2718, 2009.
- [8] R. Shorten, F. Wirth, O. Mason, K. Wulff, and C. King. Stability criteria for switched and hybrid systems. *SIAM Review*, 49(4):545– 592, 2007.
- [9] Z. Sun and S.S. Ge. Switched Linear Systems: Control and Design. Springer-Verlag, New York, 2005.
- [10] G. Tao and P.A. Ioannou. Necessary and sufficient conditions for strictly positive real matrices. *In Circuits, Devices and Systems, IEE Proceedings G. IET.*, 137(5), 1990.
- [11] S. Trenn. Switched differential algebraic equations. Dynamics and Control of Switched Electronic Systems. Chapter 6 of: Francesco Vasca and Luigi Iannelli (eds.), Springer Verlag, 2012.
- [12] J.C. Willems and H.L. Trentelman. On quadratic differential forms. SIAM J. Control Optim., 36:1703–1749, 1998.
- [13] O. Wing. Classical Circuit Theory. Springer-Verlag, New-York, 2008.
- [14] Ezra Zeheb, Robert Shorten, and S. Shravan K. Sajja. Strict positive realness of descriptor systems in state space. *International Journal of Control*, 83(9):1799–1809, 2010.