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Abstract
Monte-Carlo tree search (MCTS) has been drawing
great interest in recent years for planning under un-
certainty. One of the key challenges is the trade-
off between exploration and exploitation. To address
this, we introduce a novel online planning algorithm
for large POMDPs using Thompson sampling based
MCTS that balances between cumulative and simple re-
grets. The proposed algorithm — Dirichlet-Dirichlet-
NormalGamma based Partially Observable Monte-
Carlo Planning (D2NG-POMCP) — treats the accu-
mulated reward of performing an action from a belief
state in the MCTS search tree as a random variable fol-
lowing an unknown distribution with hidden parame-
ters. Bayesian method is used to model and infer the
posterior distribution of these parameters by choosing
the conjugate prior in the form of a combination of two
Dirichlet and one NormalGamma distributions. Thomp-
son sampling is exploited to guide the action selection in
the search tree. Experimental results confirmed that our
algorithm outperforms the state-of-the-art approaches
on several common benchmark problems.

Introduction
While Markov decision process (MDP) provides a rich
mathematical framework for planning under uncertainty,
partially observable Markov decision process (POMDP) is
a generalization of MDPs in partially observable domains
(Kaelbling, Littman, and Cassandra 1998). Given only a
black-box simulator of the targeting domains, we consider
the problem of online planning in POMDPs without explic-
itly knowing the underlying transition and observation func-
tions in advance. Monte-Carlo tree search (MCTS) finds
near-optimal policies in these settings by building a best-
first search tree (Browne et al. 2012). The key idea of
MCTS is to evaluate each information state (i.e., system
state in MDPs or belief state in POMDPs) in the search
tree by the statistics of sampled simulations starting from
that state. MCTS has shown to be computationally effi-
cient, anytime and highly parallelisable. To date, great suc-
cess has been achieved by MCTS in variety of domains,
such as game play (Winands, Bjornsson, and Saito 2010;
Gelly and Silver 2011), planning under uncertainty (Kocsis
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and Szepesvári 2006; Silver and Veness 2010; Wu, Zilber-
stein, and Chen 2011), and Bayesian reinforcement learning
(Guez, Silver, and Dayan 2012; Asmuth and Littman 2011).

When applying MCTS to online planning in (PO)MDPs,
one of the fundamental challenge is the well-known explo-
ration vs. exploitation dilemma: an agent must not only ex-
ploit by selecting the action that currently seems best, but
should also keep exploring for possible higher future payoffs
(Browne et al. 2012). UCB1, originally introduced in multi-
armed bandit problems (MABs), is probably the most suc-
cessful and widely-used algorithm to address this dilemma
and it has been proved to be asymptotically optimal for
MABs (Auer, Cesa-Bianchi, and Fischer 2002). Specifically,
UCB1 selects the action that maximizes the UCB1 heuristic
that defines an upper confidence bound for the underlying
action values. On the other hand, Thompson sampling is per-
haps one of the earliest heuristics that tackles this problem
in a Bayesian fashion according to the principle of random-
ized probability matching (Thompson 1933). It selects ac-
tions stochastically based on their posterior probabilities of
being optimal. Comparing to UCB1, the main advantage of
Thompson sampling is that it allows more robust behavior
in terms of convergence under a wide range of problem set-
tings, e.g., MABs with multi-modal reward distributions.

In MABs, cumulative regret reduction aims to find ac-
tions that minimize the sum of differences between the ex-
pected reward of the best action and the obtained rewards
of all action pulls, while simple regret is the difference be-
tween the best expected reward and the expected reward of
the arm with the greatest sample mean after a number of
pure exploration of action pulls (Bubeck, Munos, and Stoltz
2011). Apart from the fact that Thompson sampling empiri-
cally converges faster in terms of cumulative regret than the
UCB1 approach (Chapelle and Li 2011), it has recently been
proved that Thompson sampling achieves logarithmic cu-
mulative regret which is asymptotically optimal for MABs
(Kaufmann, Korda, and Munos 2012). However, in Monte-
Carlo planning, it is usually the final action pull that col-
lects a reward. Therefore, it is more reasonable to minimize
the simple regret instead of the cumulative regret (Feldman
and Domshlak 2012). Although the reduction rate of sim-
ple regret for Thompson sampling remains an open ques-
tion, it is our observation that Thompson sampling empiri-
cally appears to yield lower simple regret than the state-of-



the-art, particularly if the action space is large. A recently
growing understanding is that it is better to balance between
cumulative and simple regrets in MCTS (Tolpin and Shi-
mony 2012). This motivated us to try Thompson sampling
on MCTS for POMDPs as it seems to be a promising ap-
proach in handling both cumulative and simple regrets.

In this paper, we borrow the idea of Thompson sampling
and propose Dirichlet-Dirichlet-NormalGamma based Par-
tially Observable Monte-Carlo Planning (D2NG-POMCP).
In this algorithm, we represent the uncertainty of the imme-
diate reward as a categorical distribution and the accumu-
lated reward of performing a particular action from a belief
state in the search tree as a convex combination of Normal
mixtures. We perform statistical inference on the posterior
distribution in Bayesian settings by choosing the conjugate
prior in the form of a combination of two Dirichlet distri-
butions and a NormalGamma distribution. At each decision
node, Thompson sampling is used to select the action to
be performed by Monte-Carlo simulation. We have tested
D2NG-POMCP in several instances of the common bench-
mark problems. Experimental results showed that our algo-
rithm outperforms the state-of-the-art approaches for online
planning in POMDPs. Furthermore, we show the conver-
gence of our algorithm to confirm its technical soundness.

Background
In this section, we briefly review the MDP and POMDP
models, the MAB problem, the MCTS framework, and the
POMCP algorithm. Related work is also discussed.

MDPs, POMDPs and MABs
Formally, an MDP is defined as a 4-tuple 〈S,A, T,R〉,
where S is the state space, A is the action space, T (s′|s, a)
is the probability of reaching state s′ if action a is applied in
state s, andR(s, a) is the reward received. A policy is a map-
ping from states to actions, specifying which action should
be taken in each state. For a given policy π, the expected
total reward (also known as the value function) is defined
as Vπ(s) = E[

∑∞
t=0 γ

tR(st, π(st))], where γ ∈ (0, 1] is
the discount factor, st is the state in time step t and π(st) is
the action selected by policy π in state st. The aim of solv-
ing an MDP is to find the optimal policy π∗ that maximizes
the value function for all states. The optimal value function,
denoted by V ∗, satisfies the famous Bellman equation (Bell-
man 1957):

V ∗(s) = max
a∈A

{
R(s, a) + γ

∑
s′

T (s′|s, a)V ∗(s′)

}
.

When extending to partially observable environments, a
POMDP is defined as a 6-tuple 〈S,A,O, T,Ω, R〉, where
S,A, T and R remain the same meanings as in MDPs, O is
the observation space, and Ω(o|s, a) is the probability of ob-
serving o after having applied action a and reaching state s.
A POMDP can be transformed into an MDP over belief state
(or belief for short) space. A belief b is a sufficient statistic
for the history of actions and observations, defined as a prob-
ability distribution over the state space, with b(s) denoting
the probability of being in state s. Given an initial belief b0, a

history of action-observation pairs h = {a0, o0, a1, o1, . . . }
uniquely determines the resulting belief, which can be ob-
tained by recursively using a Bayesian filter b′ = ζ(b, a, o):

b′(s′) = ηΩ(o|s′, a)
∑
s∈S

T (s′|s, a)b(s),

where η = 1/Ω(o|b, a) is a normalizing constant with
Ω(o|b, a) =

∑
s′∈S Ω(o|s′, a)

∑
s∈S T (s′|s, a)b(s). A pol-

icy is defined as a mapping from belief space (or history
space) to actions. The goal is to find the optimal policy that
maximizes the expected total reward. The Bellman equation
for POMDP in terms of belief is:

V ∗(b) = max
a∈A

{
r(b, a) + γ

∑
o∈O

Ω(o|b, a)V ∗(ζ(b, a, o))

}
,

where r(b, a) =
∑
s∈S b(s)R(s, a) is the reward function

in the transformed belief MDP. It is worth noticing that the
transition function in the resulting MDP can be written as
T (b′|b, a) =

∑
o∈O 1[b′ = ζ(b, a, o)]Ω(o|b, a), where 1 is

the indicator function. Given an initial belief, the terms be-
lief and history can be used interchangeably. In this paper,
we present our main results in terms of belief for conve-
nience, but implement our algorithm with respect to history
instead.

MABs are usually seen as fundamental decision-making
components of planning and learning problems. Intuitively,
an MAB can be seen as an MDP with only one state s
and a stochastic reward function R(s, a) := Xa, where Xa

is a random variable following an unknown stationary dis-
tribution fXa(x). At each time step t, one action at must
be chosen and executed. A stochastic reward Xat is then
observed. The goal of solving an MAB is usually to find
a policy that minimizes the cumulative regret defined as
RT = E[

∑T
t=1(Xa∗ − Xat)], where a∗ is the true best

action. A simple regret defined for a pure exploration strat-
egy after n times of action pulls is rn = E[Xa∗ − Xā],
where ā = argmaxa X̄a is the action with maximal empiri-
cal mean of reward.

MCTS and POMCP
In the domain of online planning for (PO)MDPs, MCTS
evaluates an information state by: 1) selecting an action ac-
cording to an action-selection strategy; 2) performing the
selected action by Monte-Carlo simulation; 3) recursively
evaluating the resulting state if it is already in the search
tree, or inserting it into the search tree and playing a roll-
out policy by simulations; and 4) updating the statistics of
tree nodes by back-propagating the simulation results up to
the root. MCTS iteratively repeats this process, and simul-
taneously builds an asymmetric best-first search tree. When
interrupted, MCTS reports the best action based on the re-
turned values of the tree search.

UCT is one of the most popular implementations of
MCTS for MDPs, which uses the UCB1 heuristic to guide
the selection of actions (Kocsis and Szepesvári 2006).
POMCP is an extension of UCT to POMDPs, and has been
shown to work quite well in practice (Silver and Veness



2010). In POMCP, each simulation starts from a state sam-
pled from the belief b(h) for history h of the root node,
and chooses the action that maximizes the UCB1 heuristic,
formally defined as Q̄(h, a) + c

√
logN(h)/N(h, a), where

Q̄(h, a) is the mean outcome of action a applied in history
node h in all previous simulations, N(h, a) is the visitation
count of action a following h, N(h) is the overall count
N(h) =

∑
a∈AN(h, a), and c is a constant that determines

the relative ratio of exploration to exploitation. POMCP uses
a particle filter to approximate the belief state, by adapting
a Monte-Carlo procedure to update particles based on sam-
pled observations, rewards, and state transitions.

Related Work

The DNG-MCTS algorithm is our previous effort of ap-
plying Thompson sampling to MDPs (Bai, Wu, and Chen
2013). The basic assumptions of DNG-MCTS are made
due to the fact that, given a policy, an MDP reduces to a
Markov chain defined over the state space. Unfortunately,
this cannot be straightforwardly extended to POMDPs be-
cause the Markov chain of a POMDP with given policy
must be defined over the joint space of the state and be-
lief space. Therefore, different assumptions are critically re-
quired to use Thompson sampling in POMDPs. In this pa-
per, for each decision node, we assume categorical distri-
bution for the immediate reward of POMDPs (known for
MDPs), and use mixture of Normal distributions for the ac-
cumulated reward of following π (Normal distribution for
MDPs), and do not explicitly model the accumulated reward
of performing an action and then following π because only
the expectation matters (mixture of Normal distributions for
MDPs). We also present new algorithms and analysis for on-
line planning in POMDPs with these assumptions, which are
nontrivial with respect to the existing work in DNG-MCTS.

Wang et al. (2005) presented a sampling approach for ap-
proximately optimal decision-making in Bayesian reinforce-
ment learning domains. Specifically, it maintains a posterior
distribution over MDP models (i.e., the transition and re-
ward functions), samples an MDP according to the belief
of models, and solves the sampled MDP to select an action
for current node to grow a lookahead tree. However, their
method requires to repeatedly solve the sampled MDP for
each action selected, which is very time consuming for large
problems. In contrast, our method directly maintains pos-
terior distributions of accumulated reward for actions taken
in the search tree and selects an action based on its poste-
rior probability of being optimal by using Thompson sam-
pling, which is much more efficient for online planning in
POMDPs.

The D2NG-POMCP Algorithm

In this section, we first introduce our assumptions on online
planning in POMDPs. Then, we propose our Bayesian mod-
eling and inference methods and our action selection strat-
egy given these assumptions. Finally, the main algorithm is
presented and the convergence of our algorithm is discussed.

The Assumptions
Formally, we define J = S × B to be the joint state space
of the state space S and the belief space B. Given a pol-
icy π, a POMDP agent and the environment it is interact-
ing with reduce to a Markov chain, {〈st, bt〉}, defined over
the joint state space J , where the transition function is
P (〈s′, b′〉|〈s, b〉, a) = T (s′|s, a)T (b′|b, a).

LetXb,a be a random variable denoting the immediate re-
ward of performing action a in belief state b, let Xs,b,π be a
random variable that denotes the accumulated reward of fol-
lowing policy π from joint state 〈s, b〉, and let Xb,π be a ran-
dom variable denoting the accumulated reward of following
policy π from belief state b. Our assumptions are: 1) Xb,a

follows a categorical distribution, 2) Xs,b,π follows a Nor-
mal distribution, and 3) Xb,π follows a mixture of Normal
distributions. We argue that these assumptions are realistic
with the following reasons.

We assume a discrete and finite set of possible immedi-
ate rewards in POMDP, I = {r1, r2, . . . , rk}, where each
ri = R(s, a) represents the immediate reward of taking
some action a from some hidden state s. It is then easy to
see that Xb,a follows a categorical distribution, denoted by
Cat(p1, p2, . . . , pk) , where pi =

∑
s 1[R(s, a) = ri]b(s)

is the probability of Xb,a = ri and
∑k
i=1 pi = 1.

For POMDPs, the sub-space reachable from the initial be-
lief state b0 is countable, since each combination of histor-
ical action-observation pairs determines uniquely a result-
ing belief state, and the history space is naturally countable
in lexicographic order. Therefore, the reachable sub-space
from 〈s0, b0〉 is also countable. Suppose that the resulting
chain {〈st, bt〉} is ergodic, i.e., it is possible to go from every
belief state to every other belief state (not necessarily in one
move). Let w denote the stationary distribution of {〈st, bt〉}.
According to the central limit theorem for Markov chains
(Jones 2004; DasGupta 2008), for any bounded function f
defined on a countable sub-space of J , we have:

1√
n

( n∑
t=0

f(st, bt)− nµ
)
→ N(0, σ2) as n→∞,

where 〈st, bt〉 is the chain state at time step t, µ = Ew[f ]
and σ is a constant depending only on f and w. This implies
that the sum of f(st, bt) follows N(nµ, nσ2) as n grows to
infinity. It is then natural to approximate the distribution of∑n
t=0 f(st, bt) as a Normal distribution if n is large enough.
For finite horizon POMDPs with horizon H , if γ = 1,

Xs0,b0,π =
∑H
t=0R(st, π(bt)) can be seen as a sum of

f(st, bt) = R(st, π(bt)). We claim that Xs0,b0,π is ap-
proximately normally distributed for each 〈s0, b0〉 ∈ J , if
H is sufficiently large. For the case γ 6= 1, Xs0,b0,π =∑H
t=0 γ

tR(st, π(bt)) can be expressed as a linear combina-
tion of

∑n
t=0 f(st, bt) for n = 0 to H: Xs0,b0,π = (1 −

γ)
∑H−1
n=0 γ

n
∑n
t=0 f(st, bt)+γH

∑H
t=0 f(st, bt). Note that

a linear combination of independent or correlated normally
distributed random variables is still normally distributed, if
H is sufficiently large and γ is close to 1. It is reasonable to
approximate Xs0,b0,π as a Normal distribution. Therefore,
we assume Xs,b,π is normally distributed in both cases.



The accumulated reward of following π from belief b
is totally determined in the reduced Markov chain with
stochastically sampled initial state s, i.e., Xb,π = Xs,b,π ,
where s is distributed according to b. Hence the probability
density function (pdf) of Xb,π can be expressed as a con-
vex combination of pdfs of Xs,b,π by definition: fXb,π (x) =∑
s∈S b(s)fXs,b,π (x). It is then straightforward to model the

distribution of Xb,π as a mixture of Normal distributions,
if Xs,b,π is assumed to be normally distributed for each
〈s, b〉 ∈ J .

In case if the policy π is not fixed and changes over time,
e.g., the derived policy of an online algorithm before it con-
verges, the real distribution of Xb,π is actually unknown and
could be some kind of very complex distribution. However,
if the algorithm is guaranteed to converge at infinity, it is
then convenient and reasonable to approximate Xb,π as a
mixture of Normal distributions.

The Bayesian Modeling and Inference Methods
In general Bayesian settings, the unknown distribution of a
random variable X can be modeled as a parametric like-
lihood function L(x|θ) depending on some parameters θ.
Given a prior distribution P (θ), and a set of past obser-
vations Z = {x1, x2, . . . }, the posterior distribution of θ
can then be obtained by using Bayes’ rules: P (θ|Z) ∝∏
i L(xi|θ)P (θ).
Assumption 1 implies that it suffices to model the dis-

tribution of Xb,a as a categorical likelihood with unknown
weights, i.e., Xb,a ∼ Cat(p1, p2, . . . , pk). A natural repre-
sentation on these unknown weights is via Dirichlet distri-
butions, since Dirichlet distribution is the conjugate prior
of a categorical distribution. For belief state b and action
a, a Dirichlet distribution, denoted by Dir(ψb,a), where
ψb,a = (ψb,a,r1 , ψb,a,r2 , . . . , ψb,a,rk), gives the posterior
distribution of pi if the immediate reward of ri has been
observed ψb,a,ri − 1 times. After observing an immediate
reward r, the posterior distribution is also Dirichlet and can
simply be updated as ψb,a,r ← ψb,a,r + 1.

Based on Assumption 2, we model the distribution of
Xs,b,π as a Normal likelihood N(µs,b, 1/τs,b) with un-
known mean µs,b and precision τs,b. The precision is defined
as the reciprocal of the variance, τ = 1/σ2. This is cho-
sen for mathematical convenience of introducing the Nor-
malGamma distribution as a conjugate prior. Let us briefly
review the NormalGamma distribution which is usually de-
fined by the hyper-parameters 〈µ0, λ, α, β〉 with λ > 0,
α ≥ 1 and β ≥ 0. It is said that (µ, τ) follows a Normal-
Gamma distribution NormalGamma(µ0, λ, α, β) if the
pdf of (µ, τ) has the form:

f(µ, τ |µ0, λ, α, β) =
βα
√
λ

Γ(α)
√

2π
τα−

1
2 e−βτ e−

λτ(µ−µ0)2

2 .

By definition, the marginal distribution over τ is a Gamma
distribution, τ ∼ Gamma(α, β), and the conditional dis-
tribution over µ given τ is a Normal distribution, µ ∼
N(µ0, 1/(λτ)). Suppose thatX is normally distributed with
unknown mean µ and precision τ , x ∼ N(µ, 1/τ), and that
the prior distribution of (µ, τ) has a NormalGamma dis-

tribution, (µ, τ) ∼ NormalGamma(µ0, λ0, α0, β0). Af-
ter observing n independent samples of X , denoted by
{x1, x2, . . . , xn}, according to the Bayes’ theorem, the pos-
terior distribution of (µ, τ) is also a NormalGamma distri-
bution, (µ, τ) ∼ NormalGamma(µn, λn, αn, βn), where
µn = (λ0µ0 +nx̄)/(λ0 +n), λn = λ0 +n, αn = α0 +n/2
and βn = β0 +(ns+λ0n(x̄−µ0)2/(λ0 +n))/2, where x̄ =∑n
i=1 xi/n is the sample mean and s =

∑n
i=1(xi − x̄)2/n

is the sample variance.
As explained in Assumption 3, Xb,π follows a mixture

of Normal distributions, which can be easily modeled as a
convex combination of b(s) and Xs,b,π for s ∈ S.

Now consider the accumulated reward of first perform-
ing action a in belief b and then following policy π
thereafter, denoted by Xb,a,π . According to the defini-
tion, Xb,a,π = Xb,a + γXb′,π , where b′ is the next be-
lief distributed according to T (b′|b, a). It is difficult to
explicitly describe the distribution of Xb,a,π . However, it
is rather easy to compute the expectation, expressed as
E[Xb,a,π] = E[Xb,a] + γ

∑
b′∈B E[Xb′,π]T (b′|b, a) =

E[Xb,a] + γ
∑
o∈O,b′=ζ(b,a,o)E[Xb′,π]Ω(o|b, a) (actually

E[Xb,a,π] is usually defined as the Q value with Qπ(b, a) =
r(b, a) + γ

∑
o∈O Ω(o|b, a)V π(ζ(b, a, o)) if the underly-

ing transition and observation functions are known). Re-
call that in our assumptions, Xb,a follows a categorical dis-
tribution, and Xb′,π follows a mixture of Normal distri-
butions. The question turns to be how to model the pre-
viously unknown observation model–Ω(·|b, a). Fortunately
Ω(·|b, a) can be easily inferred in Bayesian settings by in-
troducing a Dirichlet distribution as the conjugate prior, de-
noted by Dir(ρb,a), where ρb,a = (ρb,a,o1 , ρb,a,o2 , . . . )
are the hyper-parameters. After having observed a transition
(b, a)→ o, the posterior distribution of Ω(·|b, a) can simply
be updated as ρb,a,o ← ρb,a,o + 1.

Therefore, to compute the expectation of Xb,a,π in
Bayesian settings, we only need to maintain a set of hyper-
parameters 〈µs,b,0, λs,b, αs,b, βs,b〉, ψb,a and ρb,a for each
state s, belief state b and action a encountered in the MCTS
search tree, and update them by using Bayesian rules.

Now we turn to the question of how to choose the pri-
ors by initializing hyper-parameters. While the impact of the
prior tends to be negligible in the limit, its choice is impor-
tant especially when only a small amount of data has been
observed. In general, priors should reflect available knowl-
edge of the hidden model.

In the absence of any knowledge, uninformative priors
may be preferred. According to the principle of indifference,
uninformative priors assign equal probabilities to all possi-
bilities. For NormalGamma priors, we hope that the sampled
distribution of µ given τ , i.e., N(µ0, 1/(λτ)), is as flat as
possible. This implies an infinite variance 1/(λτ) → ∞, so
that λτ → 0. Recall that τ follows a Gamma distribution
Gamma(α, β) with expectation E[τ ] = α/β, so we have
in expectation λα/β → 0. Taking into consideration the pa-
rameter space (λ > 0, α ≥ 1, β ≥ 0), we can choose λ
small enough, α = 1 and β sufficiently large to approximate
this condition. Second, we hope the sampled distribution is
in the middle of the axis, so µ0 = 0 seems to be a good se-
lection. It is worth noting that intuitively β should not be set



Agent(b0 : initial belief)
Initialize H ← maximal planning horizon
Initialize I ← {possible immediate rewards}
Initialize h← ∅
Initialize P(h)← b0
repeat

a← OnlinePlanning(h,∅)
Execute a and get observation o
h← hao
P(h)← ParticleFilter(P(h), a, o)

until terminating conditions

D2NG-POMCP(s : state, h : history, T : tree, d : depth)
if d ≥ H or s is terminal then

return 0
else if node 〈h〉 is not in tree T then

Initialize (µs,h,0, λs,h, αs,h, βs,h) for s ∈ S
Initialize ρh,a and ψh,a for a ∈ A
Add node 〈h〉 to T
Play rollout policy by simulation for H − d steps
Get the accumulated reward r
return r

else
a← ThompsonSampling(h, d, True)
Execute a by simulation
Get next state s′, observation o and reward i
h′ ← hao
P(h′)← P(h′) ∪ s′
r ← i+ γD2NG-POMCP(s′, h′, T, d+ 1)
αs,h ← αs,h + 0.5
βs,h ← βs,h + (λs,h(r − µs,h,0)2/(λs,h + 1))/2
µs,h,0 ← (λs,hµs,h,0 + r)/(λs,h + 1)
λs,h ← λs,h + 1
ρh,a,o ← ρh,a,o + 1
ψh,a,i ← ψh,a,i + 1
return r

ThompsonSampling(h : history, d : depth,
sampling : boolean)
foreach a ∈ A do

qa ← QValue(h, a, d, sampling)
return argmaxa qa

OnlinePlanning(h : history, T : tree)
repeat

Sample s according to P(h)
D2NG-POMCP(s, h, T, 0)

until resource budgets reached
return ThompsonSampling(h, 0, False)

QValue(h : history, a : action, d : depth,
sampling : boolean)
r ← 0
foreach o ∈ O do

if sampling = True then
Sample wo according to Dir(ρh,a)

else
wo ← ρh,a,o/

∑
o′∈O ρh,a,o′

r ← r + woValue(hao, d+ 1, sampling)
r ← γr
foreach i ∈ I do

if sampling = True then
Sample wi according to Dir(ψh,a)

else
wi ← ψh,a,i/

∑
i′∈I ψh,a,i′

r ← r + wii
return r

Value(h : history, d : depth, sampling : boolean)
if d = H then

return 0
else

if sampling = True then
Sample (µs, τs) according to
NormalGamma(µs,h,0, λs,h, αs,h, βs,h)
for s ∈ P(h)
return 1

|P(h)|
∑
s∈P(h) µs

else
return 1

|P(h)|
∑
s∈P(h) µs,h,0

Figure 1: Dirichlet-Dirichlet-NormalGamma based partially observable Monte-Carlo planing (D2NG-POMCP)

too large, or the convergence process may be very slow. For
Dirichlet priors, it is common to set ψb,a,r and ρb,a,o be the
same small enough positives for each encountered instance
in the search tree to have uninformative priors.

On the other hand, if some domain knowledge is avail-
able, informative priors may be preferred. By exploiting do-
main knowledge, a decision node can be initialized with in-
formative priors indicating its priority over other nodes. In
D2NG-POMCP, this is done by setting the hyper-parameters
based on subjective estimation for state-belief pairs. Take
the NormalGamma priors as an example. According to the

interpretation of hyper-parameters of NormalGamma distri-
bution in terms of pseudo-observations, if one has a prior
mean of µ0 from λ samples and a prior precision of α/β
from 2α samples, the prior distribution over µ and τ is
NormalGamma(µ0, λ, α, β), providing a straightforward
way to initialize the hyper-parameters if some prior knowl-
edge (such as historical data of past observations) is avail-
able. Specifying detailed priors based on prior knowledge
for particular domains is beyond the scope of this paper. The
ability to include prior information provides important flex-
ibility and can be considered an advantage of the approach.
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Figure 2: Performance of Thompson sampling in terms of simple regret in MABs.

The Action Selection Strategy
Thompson sampling stochastically selects an action based
on its probability of being optimal. Specifically, in Bayesian
settings, action a is chosen with probability:

P (a) =

∫
1[a = argmax

a′
E[Xa′ |θa′ ]]

∏
a′

Pa′(θa′ |Z) dθ,

where θa is the hidden parameter prescribing the under-
lying distribution of reward by applying a, E[Xa|θa] =∫
xLa(x|θa) dx is the expectation of Xa given θa, and θ =

(θa1 , θa2 , . . . ) is the vector of parameters for all actions.
Fortunately, this can efficiently be approached by a sam-
pling method. To this end, a set of parameters θa is sampled
according to the posterior distributions Pa(θa|Z) for each
a ∈ A, and the action with highest expectation is selected,
namely, a∗ = argmaxaE[Xa|θa].

In D2NG-POMCP, at each decision node b of the search
tree, we sample wb,a,o for each o ∈ O according to
Dir(ρb,a), sample wb,a,r for each r ∈ I according to
Dir(ψb,a), and sample µs′,b′ for each 〈s, b′〉 ∈ J according
to NormalGamma(µs′,b′,0, λs′,b′ , αs′,b′ , βs′,b′). The ex-
pectation ofXb,a,π can then be computed as

∑
r∈I wb,a,rr+

γ
∑
o∈O,b′=ζ(b,a,o)

∑
s′∈S µs′,b′b

′(s′)wb,a,o. Finally, the ac-
tion with highest expectation is selected to be performed by
Monte-Carlo simulation.

The Main Algorithm
The main process of D2NG-POMCP is outlined in Figure 1.
As aforementioned, our algorithm is implemented based on
histories instead of explicit beliefs. Hence each node of the
search tree is represented by a history h. Specifically, we use
particles, denoted by P(h), to represent the respective belief
state of history h, which are updated using particle filters.
Here, the computation of E[Xb,a,π] is also implemented to
work with particles.

In more detail, the ThompsonSampling function has a
boolean parameter sampling. If sampling is true, Thomp-
son sampling method is used to stochastically select an
action, otherwise a greedy action is returned with respect
to current mean of E[Xs,b,π] = µs,b,0, E[wb,a,r] =
ψb,a,r/

∑
i∈I ψb,a,i, and E[wb,a,o] = ρb,a,o/

∑
x∈O ρb,a,x.

At each iteration, the D2NG-POMCP function applies
Thompson sampling to recursively select actions to be exe-
cuted by simulation from the root node to leaf nodes through

the existing search tree T . It inserts each newly visited node
into the tree, plays a default rollout policy from the new
node, and propagates the simulated outcome to update the
hyper-parameters for visited histories, states and actions.
Note that the rollout policy is only played once for each new
node at each iteration, the set of past observations Z in the
algorithm has size n = 1.

The OnlinePlanning function implements the any-
time characteristic of D2NG-POMCP. It is called with cur-
rent history h and a search tree T initially empty. It repeat-
edly calls the D2NG-POMCP function until some resource
budgets are reached (e.g., the computation times out or the
maximal number of iterations is reached). Then a greedy ac-
tion to be performed in the environment is returned to the
agent.

The Agent function is the overall procedure interacting
with the real environment. It calls OnlinePlanning to
select the planned best action, execute the action, get an ob-
servation, and update particles repeatedly until some termi-
nating conditions are satisfied (e.g., the problem is solved or
the maximal running time is reached).

Convergence
For Thompson sampling in stationary MABs, Agrawal and
Goyal (2013) have shown that: 1) the probability of select-
ing any suboptimal action a at the current step is bounded by
a linear function of the probability of selecting the optimal
action; 2) the coefficient in this linear function decreases ex-
ponentially fast with the increase in the number of selections
of optimal action. Thus, the probability of selecting the op-
timal action in an MAB is guaranteed to converge to 1 in the
limit using Thompson sampling.

In our settings, the distribution of Xb,π is determined by
both the underlying transition and observation functions and
the Q values given the policy π. When the Q values con-
verge, the distribution of Xb,π becomes stationary with the
optimal policy. For the leaf nodes (level H) of the search
tree, Thompson sampling will converge to the optimal ac-
tions with probability 1 in the limit since the MABs of leaf
nodes are stationary with respect to the underlying stationary
rollout policy. When all the leaf nodes converge, the distribu-
tions of the return values from them will remain unchanged.
So the MABs of the nodes in level H − 1 become stationary
as well. Thus, Thompson sampling will also converge to the
optimal actions for nodes in level H − 1. Recursively, this



holds for all the upper-level nodes. Therefore, we conclude
that D2NG-POMCP can find the optimal policy for the root
node by given sufficient computational resources.

Experiments
To empirically illustrate our motivation, we simply com-
pared Thompson sampling in terms of simple regret with
other common algorithms in MABs, including RoundRobin,
Randomized, 0.5-Greedy and UCB1. The RoundRobin al-
gorithm selects an arm in a round-robin fashion among all
arms (Feldman and Domshlak 2012); the Randomized algo-
rithm uniformly selects a random arm; the 0.5-Greedy al-
gorithm selects the best seen arm with probability 0.5, and
a random arm otherwise (Tolpin and Shimony 2012); the
UCB1 algorithm selects the arm that maximizes the UCB1
heuristic. In our experiments, each arm returns a random re-
ward sampled from a Bernoulli distribution; UCB1 is imple-
mented with exploration constant

√
2; Thompson sampling

chooses Beta distributions as the conjugate priors, initial-
ized as (α = 1, β = 1). We ran each of the algorithms over
10,000 experiments of randomly generated instances for dif-
ferent numbers of arms, and reported the average simple re-
gret as shown in Figure 2. It can be seen from the results
that Thompson sampling yields lower simple regret, and per-
forms much better if the action space is large. While Thomp-
son sampling theoretically achieves logarithmic optimal and
empirically performs very well in terms of cumulative regret
in MABs, to the best of our knowledge, it is observed for
the first time in the literature that Thompson sampling em-
pirically outperforms other common algorithms in terms of
simple regret also, providing a potential of success of apply-
ing Thompson sampling to Monte-Carlo planing domains.

We also tested D2NG-POMCP and compared the results
with POMCP in RockSample and PocMan domains. We im-
plemented our codes and conducted the experiments based
on POMCP — an open source software implementing the
POMCP algorithm and some benchmark problems.1

For each problem instance, we 1) ran the algorithms
for a number of iterations from the current history, 2) ap-
plied the best action based on the resulting action-values,
3) repeated the loop until terminating conditions (e.g., a
goal state is satisfied or the maximal number of running
steps is reached), and 4) reported the total discounted re-
ward and average computation time per action selected.
The performance of algorithms is evaluated by the aver-
age total discounted reward over 1,000 independent runs.
In all experiments, we initialized (µs,h,0, λs,h, αs,h, βs,h) to
(0, 0.01, 1, 100), ψh,a,r to 0.01, and ρh,a,o to 0.01 for all
s ∈ S, a ∈ A, r ∈ I, o ∈ O and encountered history h in
the search tree. When testing D2NG-POMCP and POMCP,
we used the same preferred actions based rollout policy as
described and implemented in (Silver and Veness 2010) and
POMCP respectively. For fair comparison, we also applied
the same settings as in POMCP: for each decision node, 1)
only applicable actions are selected, and 2) applicable ac-
tions are forced to be selected once before any of them is se-

1POMCP can be downloaded from http://www0.cs.ucl.
ac.uk/staff/D.Silver/web/Applications.html

RockSample [7, 8] [11,11] [15,15]

States |S| 12,544 247,808 7,372,800

AEMS2 21.37± 0.22 N/A N/A
HSVI-BFS 21.46± 0.22 N/A N/A
SARSOP 21.39± 0.01 21.56± 0.11 N/A
POMCP 20.71± 0.21 20.01± 0.23 15.32± 0.28
D2NG-POMCP 20.87± 0.20 21.44± 0.21 20.20± 0.24

Table 1: Comparison of D2NG-POMCP with existing ap-
proaches in RockSample for discounted cumulative reward.

lected twice. All experiments were ran on Linux 3.8.0 com-
puters of 2.80 GHz quad-core CPUs and 8 GB RAM.

The RockSample[n, k] problem simulates a robot explor-
ing in a n × n grid map containing k rocks. The goal is to
determine which rocks are valuable, collect valuable ones
as much as possible and leave the map finally, by taking
moving, checking and sampling actions. Sampling a valu-
able rock yields a reward of +10; sampling an invaluable
rock yields a reward of−10; moving into the exit area yields
a reward of +10. All other actions have no cost or reward.
The discount factor γ is 0.95. Empirical results are depicted
in Figure 3. Each data point shows the average result over
1,000 runs or at most 12 hours of total computation. The top
four figures depict the performance with respect to number
of iterations; the bottom four figures depict the performance
with respect to average time per action. Number of itera-
tions is the total number of calls to D2NG-POMCP allowed
for each decision of action in the OnlinePlanning func-
tion; average time per action is the average computation time
for each action selected in the OnlinePlanning func-
tion. We can see from the figures that D2NG-POMCP con-
verges faster than POMCP in terms of number of iterations,
and appears to be competitive with POMCP in terms of av-
erage time per action. Table 1 presents the comparison of
D2NG-POMCP with prior work, including AEMS2, HSVI-
BFS, SARSOP and POMCP. AEMS2 and HSVI-BFS are
online algorithms; SARSOP is an offline algorithm. They
are all provided with full factored representations of the un-
derlying problems. AEMS2 and HSVI-BFS used knowledge
computed offline by PBVI; results are taken from (Ross et
al. 2008). SARSOP was given approximately 1,000 seconds
of offline computation; results are taken from (Kurniawati,
Hsu, and Lee 2008). POMCP and D2NG-POMCP used the
same informed rollout policy. The results of POMCP are
taken from (Silver and Veness 2010). Each online algorithm
was given exactly 1 second per action. Performance is eval-
uated by average discounted return over 1,000 runs or at
most 12 hours of total computation. The results indicate
that D2NG-POMCP is able to provide competitive results on
RockSample[7, 8] and RockSample[11, 11], and advanced
POMCP with much better return on RockSample[15, 15].

The PocMan problem is firstly introduced in (Silver and
Veness 2010). The PocMan agent navigates in a 17 × 19
maze, while trying to eat some randomly distributed food
pellets and power pills. Four ghost agents roam the maze,
according to a given stochastic strategy. The PocMan agent
dies if it touches any ghost, unless it has eaten any power
pills within the last 15 time steps. It receives a reward of −1
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(a) RockSample[7, 8]
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(b) RockSample[11, 11]
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(c) RockSample[15, 15]
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(d) PocMan
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(g) RockSample[15, 15]
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(h) PocMan

Figure 3: Performance of D2NG-POMCP in RockSample and PocMan evaluated by average discounted return.
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Figure 4: Performance of D2NG-POMCP in PocMan evalu-
ated by average undiscounted return.

at each step, +10 for each food pellet, +25 for eating a ghost
and −100 for dying. A 10-bit observation is observed at ev-
ery time step, corresponding to the PocMan agent’s senses
of sight, hearing, touch and smell. The PocMan problem has
approximately 1,056 states, 4 actions, and 1,024 observa-
tions. The discount factor γ is 0.95. The performance of
D2NG-POMCP in PocMan evaluated by average discounted
return is shown in Figure 3 (d and h). Each data point shows
the average result over 1,000 runs or at most 12 hours of total
computation. It is worth noting that the algorithm’s perfor-
mance in PocMan experiment is evaluated by average dis-
counted return, instead of average undiscounted return as in
the original paper (Silver and Veness 2010). We believe that
using average discounted return to show the performance is
more reasonable, since average discounted return is what the
algorithms really intent to optimize. To provide a more com-
prehensive view, we also included the respective results with
regard to average undiscounted return in addition as shown
in Figure 4. In this domain, D2NG-POMCP performs much
better than POMCP with regard to both number of iterations
and average time per action.

Regarding to sample and computational complexities, al-
though the total computation time of D2NG-POMCP is lin-
ear with the total number of simulations, which is at most
width×depth (where width is the number of iterations and
depth is the maximal planning horizon), our approach does
require more computation than POMCP, due to the time-
consuming operations of samplings from various distribu-
tions. However, if the simulations are expensive (e.g., com-
putational physics in 3D environment or stochastic environ-
ment with multiple agents where the cost of executing the
simulation steps greatly exceeds the time needed by action-
selection steps in MCTS), D2NG-POMCP can obtain better
performance in terms of computational complexity because
D2NG-POMCP is expected to have lower sample complex-
ity (as confirmed by the resutls in PocMan).

Conclusion
We proposed the D2NG-POMCP algorithm — a novel
Bayesian modeling and inference based Thompson sam-
pling approach to MCTS that balances between cumulative
and simple regrets for online planning in POMDPs — and
presented the overall Bayesian framework for representing,
updating, decision-making and propagating of probability
distributions over rewards in the partially observable Monte-
Carlo search tree. Experimental results showed that D2NG-
POMCP outperformed the state-of-the-art algorithms (i.e.,
MEMS2, HSVI-BFS, SARSOP, and POMCP) in both Rock-
Sample and PocMan domains. One of the basic assumptions
of D2NG-POMCP is to model the uncertainty of the accu-
mulated reward of following policy π from belief b as a mix-
ture of Normal distributions, which in principle only holds
in the limit. In future work, we plan to extend this assump-
tion to more general distributions and test our algorithm on
real-world applications.



Acknowledgements
This work is supported in part by the National Hi-
Tech Project of China under grant 2008AA01Z150 and
the Natural Science Foundation of China under grant
60745002 and 61175057. Feng Wu is supported in part by
the ORCHID project (http://www.orchid.ac.uk).
Zongzhang Zhang is supported in part by MoE ARF grant
MOE2010-T2-2-071. We are grateful to the anonymous re-
viewers for their constructive comments and suggestions.

References
Agrawal, S., and Goyal, N. 2013. Further optimal regret
bounds for Thompson sampling. In Artificial Intelligence
and Statistics, 99–107.
Asmuth, J., and Littman, M. L. 2011. Learning is planning:
near Bayes-optimal reinforcement learning via Monte-Carlo
tree search. In Uncertainty in Artificial Intelligence, 19–26.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
learning 47(2):235–256.
Bai, A.; Wu, F.; and Chen, X. 2013. Bayesian mixture mod-
elling and inference based Thompson sampling in Monte-
Carlo tree search. In Advances in Neural Information Pro-
cessing Systems 26. 1646–1654.
Bellman, R. 1957. Dynamic Programming. Princeton, NJ,
USA: Princeton University Press, 1 edition.
Browne, C.; Powley, E. J.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of Monte
Carlo tree search methods. IEEE Trans. Comput. Intellig.
and AI in Games 4(1):1–43.
Bubeck, S.; Munos, R.; and Stoltz, G. 2011. Pure ex-
ploration in finitely-armed and continuous-armed bandits.
Theor. Comput. Sci 412(19):1832–1852.
Chapelle, O., and Li, L. 2011. An empirical evaluation of
Thompson sampling. In Advances Neural Information Pro-
cessing Systems, 2249–2257.
DasGupta, A. 2008. Asymptotic theory of statistics and
probability. Springer.
Feldman, Z., and Domshlak, C. 2012. Simple regret opti-
mization in online planning for Markov decision processes.
arXiv preprint arXiv:1206.3382.
Gelly, S., and Silver, D. 2011. Monte-Carlo tree search
and rapid action value estimation in computer go. Artificial
Intelligence 175(11):1856–1875.
Guez, A.; Silver, D.; and Dayan, P. 2012. Efficient Bayes-
adaptive reinforcement learning using sample-based search.
In Advances in Neural Information Processing Systems,
1034–1042.
Jones, G. L. 2004. On the Markov chain central limit theo-
rem. Probability surveys 1:299–320.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101(1-2):99–134.

Kaufmann, E.; Korda, N.; and Munos, R. 2012. Thompson
sampling: An optimal finite time analysis. In Algorithmic
Learning Theory, 199–213.
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