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On the Adjoint of Laplace’s Tidal Equations
David J. Webb
National Oceanography Centre, Southampton SO14 3ZH, U.K.

Correspondence to: D.J.Webb (djw@soton.ac.uk)

Abstract.

The concept of the adjoint is regularly used in studies of both the resonances of physical systems

and their response to external forcing. This report reviews the underlying theory involved in the

adjoints of both differential equations and matrices and shows how the theory may be used to derive

a physically meaningful adjoint to Laplace’s Tidal Equations.

Numerical models of the tides usually use a finite difference form of the tidal equations. The

report investigates the adjoint properties of the finite difference equations. It shows that the are not

necessarily symmetrical, i.e. the finite difference form of the adjoint tidal equations may not be

the same as the adjoint of the normal finite difference equations. It also shows that, with a suitable

choice of the way the boundary conditions and Coriolis terms are represented, the finite difference

forms can be made symmetric.

1 Introduction

This note is concerned with Laplace’s tidal equations and their Hermitian adjoint both as differential

equations and as a set of finite difference equations.

It arose out of some work on the the tides and resonances of the Hudson Bay complex (Webb,

2013b) using a finite difference model. There were questions concerning the correct way to represent

a radiational boundary condition in the model and this required some understanding of the boundary

condition in the adjoint set of finite difference equations.

As Laplace’s tidal equations with friction are not Hermitian, the eigenfunctions of the equations,

which physically are the resonances of the system, are no longer orthogonal. Instead for a resonance

expansion, one also has to make use of the eigenfunctions of the Hermitian adjoint set of equations.

Because of this connection between the resonances and the adjoint, it is helpful if the if there

exists the same sort of sensible physical interpretation of the adjoint equations as there is for the

normal equations. In the case of Laplace’s tidal equations, although it is straightforward to generate
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a physically sensible Hermitian adjoint, it was found that when the tidal equations and their adjoint

are converted to finite difference form there are two problems.

The first is that the two matrices formed by the complete set of finite difference equations, are

not necessarily the Hermitian adjoint of each other. The second is that in such cases, the Hermitian

adjoints of the two matrices do not appear to have a physically sensible interpretation.

A way of representing a radiational boundary condition which did not lead to such problems was

found and used for the Hudson Bay model. However the detailed argument needed to justify the

change would have detracted from the main aim of the Hudson Bay paper. It was therefore decided

to publish the details in a separate technical report.

Once this decision was made it appeared sensible to include more of the background detail than

would be included in a normal scientific paper. One reason for doing this is that although many

textbooks cover Hermitian equations and matrices, there is less published on the properties of non-

Hermitian systems.

A second reason is that the equations that make up Laplace’s tidal equations form a matrix dif-

ferential operator acting on a vector as opposed to the more normal set of differential operators

acting on a scalar. As far as I am aware there is also nothing published on the extension to matrix

differential equations or the on adjoint properties of the finite difference form of the equations.

The third reason is to publicise the use of an adjoint of the tidal equations which itself has physical

meaning. The adjoint equations, whose derivation has its origins in the theory of Green’s functions,

have been published previously, for example by Garrett and Greenberg (1977) and Webb (1989).

They are particularly useful for studying resonances where their physical basis can give insight into

the processes that most efficiently excite each resonance. Their simplicity needs to be be contrasted

with the results of using the Lagrange multiplier approach, widely used in data assimilation, where

the physical meaning of the adjoint state variables and equations is often unclear.

The main body of the report remains the radiational boundary condition and its use in the finite

difference equations representing Laplace’s tidal equations. I am aware that much of the content has

been previously published. Appendices are therefore used to summarise the adjoint properties matri-

ces and the recipe given by Morse and Feshbach for determining the adjoint of a normal differential

operator. The report is written primarily from the point of view of a physicist and so, while being

concerned with physical interpretation of the equations, it does not cover the existence or uniqueness

of solutions.

Section 2 gives the definition of an adjoint differential operator and discusses its use in the so-

lution of differential equations. Section 3 then applies the results to the matrix form of Laplace’s

Tidal Equations and section 4 extends this to the finite difference form of the equations. Section 5

considers the different types of boundary condition and their impact on the adjoint symmetries of

both the differential equations and their finite difference equivalents. This finally allows a informed

decision to be made about the best radiational boundary condition to use for the normal and adjoint
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sets of finite difference equations.

2 The Hermitian Adjoint Operator

The concept of a Hermitian adjoint1 is applicable to any linear operator K which operates on func-

tions, say p(x), of position x. The functions p(x) and the coordinate x may both be scalars or

vectors. The theory needs an inner product to be defined which, given two such functions p(x) and

q(x), generates a scalar S. If p and q are scalars then this is simply,

S=

∫
dx p∗(x)w(x)q(x) , (1)

where w(x) is a weighting function, often equal to one, and p∗ is the complex conjugate of p.

If p and q are vectors with components represented by pj and qk, then

S=

∫
dx

∑
j

∑
k

p∗j (x)wj,k(x)qk(x) , (2)

where the weighting matrix w is usually a diagonal matrix.

In the rest of this analysis the summation and weighting function will be implied whenever they

are missing and there is a product of the form q∗(x) p(x) or q∗(x)K(x) p(x). If the coordinate terms

(x) are also missing, it implies an integral of the product over the whole of the domain of x.

For each operator K, a Hermitian adjoint operator, denoted by K̃, exists if for each value of x, K̃
and a function P , called the bilinear concomitant, can be found which satisfy the equation,

q∗(x)K(x)p(x)−(p∗(x) K̃(x)q(x))∗=5·P (q(x),p(x)). (3)

This is a key equation. It is the basis of all the other results reported here. A method for calculating

K̃(x) and P (q(x),p(x)) for normal differential operators is given in Appendix B.

One reason for the importance of Eqn 3 arises because the operators K and K̃ have eigenvectors

and eigenvalues which form complete sets and which are orthogonal. Thus operator K will have

eigenvalues λj and eigenvectors pj(x) satisfying the equation,

(K(x)−λj)pj(x) = 0. (4)

If the domain of x is bounded or it extends to infinity, then boundary conditions are required in

order provide a complete set of functions2. In the case of a second order differential operator these

would normally require the fields p to be either zero on the boundary (Dirichlet conditions), have

zero normal gradient to the boundary (Neumann conditions) or a mixture of these.

1In systems where the solutions are all real functions, the term Hermitian adjoint is often replaced by the term adjoint. As

we are concerned with wave motions where the functions are often complex and proportional to exp(−ikx) or exp(−iωt),

the term Hermitian adjoint is more correct.
2If it is finite and unbounded, for example for a field defined on the surface of a sphere, then boundary conditions are not

needed.
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The adjoint operator also has eigenvalues and eigenvectors,

(K̃(x)−µj)qj(x) = 0. (5)

Integrating Eqn. 3 over the domain, when p equals pj and q equals qk,∫
dx [q∗k(x)K(x)pj(x)−(p∗j (x) K̃(x)qk(x))∗] =

∫
dx 5P (qk,pj), (6)

(λj−µ∗k)

∫
dx q∗k(x) pj(x) =

∫
ds n̂ ·P (qk, pj). (7)

The last term is the integral around the boundary of the normal gradient of P . If the boundary

conditions for the adjoint (Eqn. 5) are such that this is zero, then, treating the integral as implicit,

(λj−µ∗) (q∗ p) = 0. (8)

So either the eigenfunctions pj and qk are orthogonal or λj equals µ∗k.

From this it is obvious that the Hermitian adjoint K̃ is really only of use if its boundary conditions

have the right relationship to the boundary conditions of K. Similarly, discussions of a differential

operator and its adjoint need to treat each operator as consisting of both its differential form and its

boundary conditions.

2.1 Solving forced problems using eigenvectors

Once they have been determined, the eigenvalues and eigenvectors of K and its Hermitian adjoint

can be used to solve forced problems of the type represented by the equation,

(K(x)−λ)p(x) = z(x). (9)

Here z(x) usually represents the forces acting on a system and p(x) the system’s response.

Expanding the response in terms of the complete set of functions pj ,

p(x) =
∑
j

αj pj(x). (10)

Then substituting Eqn. 10 in Eqn. 9,∑
j

(λj−λ) αj p(x) = z(x). (11)

Multiplying both sides by q∗k and integrating over x,

(λk−λ) αk = q∗k z, (12)

αk = (q∗k z)/(λk−λ). (13)

Thus the solution, the response of the system, is given by,

p(x) =
∑
k

pk(x) (q∗k z)/(λk−λ). (14)

Thus the response depends on the eigenvectors of both the matrix K and its adjoint.
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3 Laplace’s tidal equations

In vector notation and with a linear friction term Laplace’s tidal equations are,

∂u/∂t+f×u+(κ/H)u+g∇ζ = g∇ζe , (15)

∂ζ/∂t+∇·(Hu) = 0 .

u is the depth averaged horizontal velocity, t is time, ζ sea level, ζe the height of the equilibrium

tide (corrected for Earth tides), κ the bottom friction coefficient, g the acceleration due to gravity, H

the depth and ’×’ indicates a vector cross product.

If the velocity u has components u and v, then the equations can be expressed in matrix form as,
∂/∂t+κ/H −f g ∂/∂x

+f ∂/∂t+κ/H g ∂/∂y

(∂/∂x)H (∂/∂y)H ∂/∂t



u

v

ζ

=


0

0

ζ0

 (16)

If the forcing is periodic and has a time dependence of the form exp(−iωt), then the solution vector

(u,v,ζ) will have the same time dependence. Removing the time dependent terms from the equation,

it becomes,


κ/H −f g ∂/∂x

+f κ/H g ∂/∂y

(∂/∂x)H (∂/∂y)H 0

− iω1


u

v

ζ

=


0

0

ζ0

 (17)

where 1 is the unit matrix.

It is convenient to define matrix K as the operator corresponding to the time dependent form

of Laplace’s tidal equations (Eqn. 16) and matrix L as the operator corresponding to the time

independent form (Eqn. 17).

K =


∂/∂t+κ/H −f g ∂/∂x

+f ∂/∂t+κ/H g ∂/∂y

(∂/∂x)H (∂/∂y)H ∂/∂t

, (18)

L =


κ/H −f g ∂/∂x

+f κ/H g ∂/∂y

(∂/∂x)H (∂/∂y)H 0

. (19)

3.1 The Inner Product

The state vector (u(x),v(x),ζ(x)) used in Eqns. 16 and 17, includes two velocities variables and

one length variable. If the state vector of the adjoint equation is represented by (c(x),d(x),e(x)),

and if the inner product is defined as,

S(x) =

∫
dx (c∗(x)u(x)+d∗(x)v(x)+e∗(x)ζ(x)), (20)
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then because each of the products in this equation need to have the same dimensional form, the

adjoint variables are forced to have different dimensional forms (i.e. if c and d are velocities, e

cannot be a length).

However if the inner product is defined, using an analogy with the addition of kinetic and potential

energy,

S(x) =

∫
dx (ρ/2)(c∗(x)H(x)u(x)+d∗(x)H(x)v(x)+e∗(x)gζ(x)), (21)

then if c and d are velocities, d is a length and S(x) has the dimensions of energy per unit area.

In this case all the adjoint variables have a simple physical interpretation and, as shown in the next

section, the adjoint operator has a simple physical form.

If ((u(x),v(x),ζ(x))) is represented by the vector z(x), then the dot product of two such vectors,

z1 and z2, becomes,

S= z∗2Wz1, (22)

where there is an implied integral over x and W , the diagonal weighting matrix, is,

W =


(ρH)/2 0 0

0 (ρH)/2 0

0 0 (ρg)/2

. (23)

3.2 The Hermitian Adjoint Operator

A method for determining the adjoint of a ordinary differential equation is given in Appendix B.

To see how this can be extended to operators involving matrices, let Kt be the part of operator K
involving ∂/∂t.

Kt =


1 0 0

0 1 0

0 0 1

∂/∂t (24)

Then for two vectors z1 and z2

z∗2WKtz1 = (ρ/2)(Hu∗2(∂/∂t)u1 +Hv∗2(∂/∂t)v1 +gζ∗2 (∂/∂t)ζ1) (25)

= ∂/∂t((ρ/2)(Hu∗2u1 +Hv∗2v1 +gζ∗2 ζ1))

−(ρ/2)(Hu1(∂/∂t)u∗2 +Hv1(∂/∂t)v∗2 +gζ1(∂/∂t)ζ∗2 )

= ∂/∂t((ρ/2)(Hu∗2u1 +Hv∗2v1 +gζ∗2 ζ1))−z1WKtz
∗
2.

Thus,

z∗2WKtz1 + (z∗1WKtz2)∗= ∂/∂t((ρ/2)(Hu∗2u1 +Hv∗2v1 +gζ∗2 ζ1)). (26)
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Thus from eqn. 3, the adjoint of Kt and the corresponding term of5·P are given by,

K̃t = −Kt, (27)

5·Pt(z2,z1) = ∂/∂t((ρ/2)(Hu∗2u1 +Hv∗2v1 +gζ∗2 ζ1)).

In this way it is straightforward to show that, if the above weighting is used, the adjoint of the

Laplace tidal operator K̃ and the corresponding bilinear concomitant are,

K̃ = −


∂/∂t−κ/H −f g ∂/∂x

+f ∂/∂t−κ/H g ∂/∂y

(∂/∂x)H (∂/∂y)H ∂/∂t

, (28)

5·P (z2,z1) = ∂/∂t[(ρ/2)(gζ∗2 ζ1 +Hu∗2u1 +Hv∗2v1)]

+∂/∂x[(ρgH/2)(ζ∗2u1 +u∗2ζ1)]+∂/∂y[(ρgH/2)(ζ∗2v1 +v∗2ζ1)].

The equations show that the matrix operator −K̃ is the same as K except for the sign of the friction

term. This is useful, because instead of being just an abstract mathematical concept, the solutions of

the adjoint equation can be thought of as long tidal waves going backward in time. As an example,

as when the adjoint is used in data assimilation, it is straight forward to understand how errors at one

time can be propagated back in time to identify where the errors may have arisen.

The same scheme can be used for the time independent operator L. Thus,

L̃ = −


−κ/H −f g ∂/∂x

+f −κ/H g ∂/∂y

(∂/∂x)H (∂/∂y)H 0

, (29)

5·P (z2,z1) = ∂/∂x[(ρgH/2)(ζ∗2u1 +u∗2ζ1)]+∂/∂y[(ρgH/2)(ζ∗2v1 +v∗2ζ1)]

The last equation is used to determine the adjoint boundary conditions for the normal modes. The

integral of the r.h.s. of Eqn. 6 will only be zero if P is zero at each point on the boundary. Thus on

the boundary,

ζ∗2 (u1 · n̂)+(u2 · n̂)∗ζ1 = 0. (30)

or,

(u1 · n̂)/ζ1 =−(u2 · n̂)∗/ζ∗2 , (31)

where u1 and u2 are vectors and n̂ is the outward normal vector on the boundary.

If the physical system is such that sea level is specified on the boundary (and the eigenfunctions

are zero there), then the adjoint eigenfunctions must have zero sea level there. If instead the normal

velocity is zero, the adjoint eigenfunctions must have zero normal velocity there. For other cases

where the ratio between the normal velocity and sea level is specified, the adjoint eigenfunctions

have the same boundary condition but with opposite sign.
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ui,jζi,j

vi,j-1

ui,jui-1,j

ζi,j+1

ζi+1,j

vi,j

dxi,j dxu;i,j

dyi,j dyu;i,j

dyv;i,j

dxv;i,j

Fig. 1. The Arakawa C-Grid, showing the relative position of sea level grid points (ζ) and the two components

of velocity u and v. The shaded area is the ’grid cell’ surrounding the point ζi.j with width dxi,j and height

dyi,j . Similar cells surround the points ui,j and vi,j the corresponding dimensions denoted using an extra

subscript, i.e. dxu;i,j . When the grid is curvilinear, for example in a latitude-longitude grid, the dimensions

vary from one grid square to the next.

4 Laplace’s Tidal Equations in Finite-Difference Form

Computer models of the tides usually convert Laplace’s tidal equations into finite difference form.

In such a model, the fields of sea surface height (ssh) and velocity are defined at the vertices of a

regular grid. The underlying differential equations are then approximated in the vicinity of each

vertex making use of the model variables at neighbouring vertices.

If the system of equations is linear, the resulting set of finite difference equations can be repre-

sented as the matrix equation,

Lz= z0. (32)

in which the matrix L, representing the finite difference operators, acts on the vector z consisting of

all the grid point model variables. Vector z0 represents the forcing.

Arakawa (1966) investigated the properties of a number of finite difference grids when used to

solve a form of Laplace’s tidal equations on a flat surface with constant depth and constant Coriolis

term. On the basis of his results, most tidal models use the Arakawa-C grid shown in fig 1. This was

the scheme used by Webb (2013a,b) and is the scheme analysed in the rest of this paper.

Let x and y represent the model’s horizontal axes, usually east and north. Let ζ be sea surface

height and u and v the velocity in the x and y directions. Individual vertices are denoted by the

indices i and j, where i increases in the x direction and j in the y direction. Thus ζi,j represents the

sea surface height at vertex (i,j). All the model variables together form the single vector z of Eqn.
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32.

For simplicity, first consider the case where where the Coriolis term is zero. To ensure conser-

vation of volume, the equation including ∂ζ/∂t has to be written in volume conserving form. The

finite difference equations for points ui,j , vi,j and ζi,j lying within the model region are then,

∂

∂t
ui,j+(κ/Hu,i,j)ui,j+(g/dxu;i,j)(ζi+1,j−ζi,j) = 0, (33)

∂

∂t
vi,j+(κ/Hv,i,j)vi,j+(g/dyv;i,j)(ζi,j+1−ζi,j) = 0.

∂

∂t
ζi,j+(dyu;i,jHu,i,jui,j−dyu;i−1,jHu,i−1,jui−1,j)/(dxi,jdyi,j)

+(dyv;i,jHv,i,jvi,j−dyv;i,j−1Hv,i,j−1vi,j−1)/(dxi,jdyi,j) = 0,

Here Hu,i,j and Hv,i,j are the depths and dxu;i,j etc. are the grid spacings at the ui,j and vi,j grid

vertices. For later use it is useful to define the areas A and volumes V of the cells,

Ai,j =dxi,jdyi,j , Vi,j = dxi,jdyi,jHu,i,j , (34)

Au;i,j=dxu;i,jdyu;i,j , Vu;i,j = dxu;i,jdyu;i,jHu,i,j ,

Av;i,j=dxv;i,jdyv;i,j , Vv;i,j = dxv;i,jdyv;i,jHv,i,j .

If the solution z′ of the adjoint operator is represented by u′, v′ and ζ ′, the finite difference

equations for the Hermitian adjoint operator K̃ are,

∂

∂t
u′i,j−(κ/Hu,i,j)u

′
i,j+(g/dxu;i,j)(ζ

′
i+1,j−ζ ′i,j) = 0, (35)

∂

∂t
v′i,j−(κ/Hv,i,j)v

′
i,j+(g/dyv;i,j)(ζ

′
i,j+1−ζ ′i,j) = 0.

∂

∂t
ζ ′i,j+(dyu;i,jHu,i,ju

′
i,j−dyu;i−1,jHu,i−1,ju

′
i−1,j)/(dxi,jdyi,j)

+(dyv;i,jHv,i,jv
′
i,j−dyv;i,j−1Hv,i,j−1v

′
i,j−1)/(dxi,jdyi,j) = 0,

As the grid spacing may not be constant, the finite difference form of the weighting function also

needs to include the area of each cell. Thus, within the weighting matrix W, the rows and columns

corresponding the variables ui,j , vi,j and ζi,j , are

W=


Vu;i,j 0. 0.

0. Vv;i,j 0.

0. 0. g Ai,j

, (36)

Let K represent the matrix containing the complete set of finite difference equations correspond-

ing to K. This includes the above equations plus those representing boundary conditions. Let K̃

represent the similar matrix corresponding to K̃. Although K and K̃ are adjoints of each other, K

and K̃ may not be matrix adjoints (discussed in Appendix 1).

The equivalent of Eqn. 3 is then,

z′∗WKz − (z∗WK̃z′)∗ =Mζ +Mu+Mv, (37)
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where,

Mζ =
∑
i,j

g

2

[
Ai,j

∂

∂t
(ζ ′∗i,jζi,j) (38)

+ζ ′∗i,j(dyu;i,jHu,i,jui,j−dyu;i−1,jHu,i−1,jui−1,j)

+ζ ′∗i,j(dxv;i,jHv,i,jvi,j−dxv;i,j−1Hv,i,j−1vi,j−1)

+ζi,j(dyu;i,jHu,i,ju
′∗
i,j−dyu;i−1,jHu,i−1,ju

′∗
i−1,j)

+ζi,j(dxv;i,jHv,i,jv
′∗
i,j−dxv;i,j−1Hv,i,j−1v

′∗
i,j−1)

]
,

Mu =
∑
i,j

Hu,i,j

2

[
Au;i,j

∂

∂t
(u′∗i,jui,j) (39)

+g dyu;i,ju
′∗
i,j(ζi+1,j−ζi,j)+g dyu;i,jui,j(ζ

′
i+1,j−ζ ′i,j)

]
,

Mv =
∑
i,j

Hv,i,j

2

[
Av;i,j

∂

∂t
(v′∗i,jvi,j) (40)

+g dxv;i,jv
′∗
i,j(ζi,j+1−ζi,j)+g dxv;i,jvi,j(ζ

′
i,j+1−ζ ′i,j)

]
,

and the summations are over all the corresponding ζ, u or v vertices within the model region.

If a sea surface height point and an adjacent velocity point both lie with the model region then

the corresponding coloured terms in the above equations cancel and all that is left is the change of

the system’s energy with time. This has the right form for the bilinear concomitant. However if one

of the two points lies on the boundary, then there is no cancellation and the result depends on the

boundary condition and the way it is implemented.

5 Boundaries

When setting up the finite-difference equations there are two ways of handling the boundary condi-

tions. In the first, variables on the boundary are included in the model vector and for each of these a

finite difference equations is added which represents the boundary condition at the boundary point.

In the second method, the boundary condition is treated implicitly. Boundary values are not

included in the model vector and instead the boundary condition is used to modify the standard finite

difference equation for points adjacent to the boundary.

5.1 Coastlines

At coastlines, unless special provision is made for wetting and drying, it is usual to assume that

the velocity normal to the boundary is zero. The simplest way to implement this is to approximate

coastlines by lines running along the edges of a set of ζ grid squares.

If the grid box surrounding ζi,j has a coastline running through the point ui,j , then in the first

method, ui,j is treated as one of the model variables and the following equation is added to the
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model,

ui,j = 0. (41)

For the adjoint system it is tempting to use the same approach, i.e.

u′i,j = 0. (42)

To see if this is valid, let the variable ui,j be the last variable of the array z, i.e. ui,j = zn, and let

the neighbouring height point be the (n−1)th term, so ζi,j = zn−1. The term Kn,n then equals one

and K and K̃ have the form,

K=


... ... ... 0.

... ... ... 0.

... ... ∂/∂t Hu;i,j/dx
′

0. 0. 0. 1.0

, (43)

K̃=


... ... ... 0.

... ... ... 0.

... ... ∂/∂t Hu;i,j/dx
′

0. 0. 0. 1.0

,

where H is the depth of cell ui,j and dx′ represents the term dxi,jdyi,j/dyu;i,j of Eqn. 33. Substi-

tuting into Eqn. 37, the terms involving zn and z′n are,

z′∗n−1(Hu;i,j/dx
′)zn+z′∗n zn−(z∗n−1( Hu;i,j /dx

′)z′n+z∗nz
′
n)∗

= ( Hu;i,j /dx
′)(z′∗n−1zn−z′∗n zn−1). (44)

Because of Eqns.41 and 42, the right hand side is zero for all solutions z and z′. As a result the

adjoint operator condition appears satisfied. However the matrices K and K̃ are not the simple

matrix adjoints of each other.

For the time independent form of the equations (i.e. Eqn. 17) there has to be a diagonal term

proportional to (−iω). This can be done by writing the boundary condition as

−iωui,j = 0. (45)

Again the matrix L and its adjoint satisfy Eqn. 37 but the terms of row n of matrix L are now all

zero. As a result both matrices now have zero determinant.

5.1.1 Implicit Method

The second, implicit, method drops the point ui,j from the set of model variables. As u is zero on

the boundary, the term −g/dx in Eqn. 33 and its adjoint make no contribution. The form of the

matrices K and K̃ are then the same as in Eqn. 36 except that the row and column corresponding to

ui,j are missing.
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The new K and K̃ satisfy the operator adjoint equation but this time they are also the simple matrix

adjoints of each other. This is also true for finite-difference matrices L and L̃ representing the time

independent operators. Computationally the implicit method is also preferred because it reduces

both the storage required for the model matrix and the number of computer operations required to

solve the equations.

5.2 Open Boundaries

If the model is being forced by sea level variations on the open boundary, then the system of equa-

tions is simplest if the open boundary is defined to follow a line of sea level vertices.

In the first, explicit, method of defining the boundary conditions, the boundary values are retained

and for each variable ζi.j the following equation added,

ζi,j = ζb, (46)

or for the time independent case

−iωζi,j =−iωζb, (47)

where ζb is the value imposed at the boundary.

The analysis of the adjoint properties proceeds as in the previous section but this time the right

hand side of Eqn. 37 can be non-zero for realistic solutions of the equations. In principal the

eigenfunctions of the time independent equation are always zero on the boundary, in these cases

saving Eqn. 37, but there is still the problem that the determinant of matrix K is zero.

In the second method of handling the boundary conditions, the boundary value is treated implicitly

by moving the terms involving the boundary value of sea surface height to the right hand side of the

equations. Thus if velocity point ui,j has an open boundary at the adjacent point at ζi+1.j with value

ζ0, the correspond part of eqn. 33 becomes,

∂

∂t
ui,j+(κ/Hu,i,j)ui,j−(g/dxu;i,j) ζi−1,j =−(g/dxu;i,j) ζ0. (48)

As before this essentially solves all the problems. The operators K, K̃, L and L̃ all satisfy the

adjoint equation and, as well as having normal determinants, they are all normal matrix adjoints of

each other.

5.3 Open Boundary with Radiation

Another common situation is a system forced at the open boundary by a specified incoming wave

but which also allows the model to loose energy via an outgoing wave. For time dependent tidal

models this is usually implemented by using the scheme proposed by Flather (1976). In this the

normal velocity at the boundary is given by,

u=uI+(ζ−ζI)c/H, (49)
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where ζ is the sea level on the boundary, u is the velocity normal to the boundary and ζI and uI

are the corresponding values for the incoming forced wave. c is the gravity wave speed, equal to

(gH)1/2, where H is depth.

We consider here the case of a regular grid where all variables have a time dependence of the form

exp(−iωt). At the open boundary the solution is represented as the sum of incoming and outgoing

waves propagating normal to the boundary,

ζ = (Aexp(ikx)+Bexp(−ikx))exp(−iωt) , (50)

u = (Aexp(ikx)−Bexp(−ikx))(c/h)exp(−iωt) .

where A and B are the amplitudes of the incident and reflected waves, x is the coordinate normal to

the boundary and k, the wavenumber in deep water, equals ω/c.

In terms of the Arakawa-C grid (see Fig. 1), consider the case where ζi,j lies on the open boundary

at the point where x equals zero. Assume also that ui,j lies in the positive x direction and that this

time it is within the model domain. If the grid spacing in the x direction is δx, then,

ζi,j = (A+B)exp(−iωt) , (51)

ui,j = (A∆−B∆−1)(c/h)exp(−iωt) .

where ∆ equals exp(iωδx/(2c)). After eliminating B, the outgoing wave, and dropping the time

dependent terms,

ζi,j+(H/c)ui,j = A(1+∆2) . (52)

This equation can be used as before to explicitly relate the value of ζ on the boundary to the neigh-

bouring velocity u or, implicitly, to replace the value on ζ on the boundary in the finite difference

equation for the adjacent velocity cell. However because ∆ is a function of ω, it means that in the

time independent form of the tidal equations, the matrix L itself becomes a function of ω and this

complicates the analysis.

The alternative is to ignore the term δx in the definition of ∆. This gives,

ζi,j+(H/c)ui,j = 2A. (53)

The operator L is now independent of ω. The change was investigated by Webb (2013b) for the

Hudson Bay region. In that case the effect was found to be small.

5.4 Adjoint Properties of the Radiational Boundary Condition

This time let ζi,j be the last element of the array z, i.e. ζi,j = zn, and let the neighbouring velocity

point be the (n−1)th element, so ui−1,j = zn−1. Also let the depth be H at both points.
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Using the explicit form of the boundary condition, the matrices K and K̃ are,

K=


... ... ... 0.

... ... ... 0.

... ... ∂/∂t+κ/H (g/dx)

0. 0. H/c 1.0

, (54)

K̃=


... ... ... 0.

... ... ... 0.

... ... ∂/∂t−κ/H (g/dx)

0. 0. H/c 1.0

,
where here dx refers to dxu;i−1,j .

Substituting into Eqn. 37 the terms involving zn and z′n are now,

z′∗n−1(g/dx)zn+z′∗n (H/c)zn−1 +z′∗n zn−(z∗n−1(g/dx)z′n+z∗n(H/c)z′∗n−1 +z∗nz
′
n)∗

= (g/dx)(z′∗n−1zn−z′∗n zn−1)+(H/c)(z′∗n zn−1−z∗nz′n−1). (55)

With a radiational boundary condition, ζ and ζ ′ will always be non zero somewhere on the boundary.

As a result in this case the right hand side is never zero and so the adjoint operator condition is not

satisfied. Both K and K̃ have simple matrix adjoints satisfy the matrix adjoint equation but the

physics behind these adjoint matrices is not obvious.

With the implicit form of the boundary condition the row and columns corresponding the values

of ζ on the boundary are missing. If the neighbouring velocity point is now zn, then

Kn,n = ∂/∂t+(κ/H)+(g/dx)(H/c), (56)

K̃n,n = −∂/∂t+(κ/H)+(g/dx)(H/c).

The bilinear concomitant, the r.h.s of Eqn. 37 is then zero, so the matrices are the true adjoints of

each other.

For the case, where the time dependence is of the form exp(−iωt), then the corresponding terms

of the matrices L and L̃ are,

Ln,n = +(κ/H)+(g/dx)(H/c), (57)

L̃n,n = +(κ/H)+(g/dx)(H/c).

The bilinear concomitant is zero so again the matrices of the adjoint operators are themselves the

adjoint of each other.

6 The Coriolis Term

When using the Arakawa-C grid, the Coriolis term at ’u’ velocity point ui,j depends on the ’v’

velocities at points vi,j , vi,j−1, vi+1,j−1 and vi+1,j . The Coriolis term at ’v’ points similarly depends

on four adjacent ’u’ points.
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If (fv)u;i,j is the Coriolis term at point ui,j , then the simplest symmetric approximation is,

(fv)u;i,j = f(vi,j+vi,j−1 +vi+1,j−1 +vi+1,j)/4, (58)

with a corresponding term for vi,j .

The velocity components of eqn. 33 then become

∂

∂t
ui,j+(κ/Hu,i,j)ui,j+(f/4)(vi,j+vi,j−1 +vi+1,j−1 +vi+1,j)

+(g/dx)(ζi+1,j−ζi,j) = 0, (59)

∂

∂t
vi,j+(κ/Hv,i,j)vi,j+(f/4)(ui,j+ui,j+1 +ui−1,j+1 +ui−1,j)

+(g/dy)(ζi,j+1−ζi,j) = 0, (60)

and the corresponding adjoint equations are,

∂

∂t
u′i,j−(κ/Hu,i,j)u

′
i,j+(f/4)(v′i,j+v′i,j−1 +v′i+1,j−1 +v′i+1,j)

+(g/dx)(ζ ′i+1,j−ζ ′i,j) = 0, (61)

∂

∂t
v′i,j−(κ/Hv,i,j)v

′
i,j+(f/4)(u′i,j+u′i,j+1 +u′i−1,j+1 +u′i−1,j)

+(g/dy)(ζ ′i,j+1−ζ ′i,j) = 0. (62)

Eqn. 37 becomes,

z′∗WKz − (z∗WK̃z′)∗ =Mζ +Mu+Mv+Mf , (63)

where, if fu,i,j is the Coriolis factor for cell ui,j ,

Mf = −
∑
i,j

fu;i,jVu;i,j u
′∗
i,j(vi,j+vi,j−1 +vi+1,j−1 +vi+1,j)/4 (64)

+
∑
i,j

fu;i,jVv;i,j v
′∗
i,j(ui,j+ui,j+1 +ui−1,j+1 +ui−1,j)/4

−
∑
i,j

fu;i,jVu;i,j ui,j(v
′∗
i,j+v′∗i,j−1 +v′∗i+1,j−1 +v′∗i+1,j)/4

+
∑
i,j

fu;i,jVv;i,j vi,j(u
′∗
i,j+u′∗i,j+1 +u′∗i−1,j+1 +u′∗i−1,j)/4.

If the Coriolis terms all have the value f0 and the cell volumes are all equal to V0 then,

Mf = −
∑
i,j

f0V0 u
′∗
i,j(vi,j+vi,j−1 +vi+1,j−1 +vi+1,j)/4 (65)

+
∑
i,j

f0V0 v
′∗
i,j(ui,j+ui,j+1 +ui−1,j+1 +ui−1,j)/4

−
∑
i,j

f0V0 ui,j(v
′∗
i,j+v′∗i,j−1 +v′∗i+1,j−1 +v′∗i+1,j)/4

+
∑
i,j

f0V0 vi,j(u
′∗
i,j+u′∗i,j+1 +u′∗i−1,j+1 +u′∗i−1,j)/4.
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and, as before, when points ui,j and vi,j both lie with the model domain, the red terms cancel.

Similarly for the other colours.

If points vi,j and vi,j−1 lie within the model region but ui,j lies on the boundary there is a residual

term,

(f0H0/4)(−v′∗i,jui,j+vi,ju
′∗
i,j−v′∗i,j−1ui,j+vi,j−1u

′∗
i,j). (66)

For the system to be self adjoint, the residual needs to be zero. At a coastline defined by velocity

points, ui,j will be zero and so the residual vanishes.

At an open boundary defined by sea surface height points, ui,j is the velocity along the boundary.

If it is set to zero then the residue Mf vanishes and the finite difference equations corresponding the

Laplace’s tidal equations and its adjoint are themselves the adjoint of each other.

6.1 Varying Depth and Coriolis Parameter

Espelid et al. (2000) showed that the approximation,

(fv)u;i,j = f(vi,j+vi,j−1 +vi+1,j−1 +vi+1,j)/4, (67)

only conserves energy when the Coriolis parameter, f , and all the grid box volumes are equal. For the

more realistic case where depths and/or grid box areas vary, a weighting has to be introduced which

ensures that the work done by velocity ui,j in its own grid box against the Coriolis term involving

vi,j exactly balances the work done by velocity vi,j in its own grid box against the Coriolis term

involving ui,j .

Espelid et al. (2000) and Webb (2013a) propose different methods of ensuring balance. They are

both of the form,

(fv)u;i,j =
∑
i′,j′

fui,j;i′,j′vi′,j′/4, (68)

fui,j;i′,j′ =
2fu;i,j;i′j′fv;i′,j′;i,jVv;i′,j′

fu;i,j;i′j′Vu;i,j+fv;i′,j′;i,jVv;i′j′
, (69)

where the sum is over the v points (i′,j′) surrounding ui,j . Here fu;i,j;i′j′ , the approximation to the

value of f at point ui,j used for the term involving vi′.j′ . Rewriting Eqn. 64 in this form,

Mf = −
∑
i,j

Vu;i,j u
′∗
i,j(f

u
i,j;i,jvi,j+fui,j;i,j−1vi,j−1 +fui,j;i+1,j−1vi+1,j−1 +fui,j;i+1,jvi+1,j)/4 (70)

+
∑
i,j

Vv;i,j v
′∗
i,j(f

v
i,j;i,jui,j+fvi,j;i,j+1ui,j+1 +fvi,j;i−1,j+1ui−1,j+1 +fvi,j;i−1,jui−1,j)/4

−
∑
i,j

Vu;i,j ui,j(f
u
i,j;i,jv

′∗
i,j+fui,j;i,j−1v

′∗
i,j−1 +fui,j;i+1,j−1v

′∗
i+1,j−1 +fui,j;i+1,jv

′∗
i+1,j)/4

+
∑
i,j

Vv;i,j vi,j(f
v
i,j;i,ju

′∗
i,j+fvi,j;i,j+1u

′∗
i,j+1 +fvi,j−1;i,j+1u

′∗
i−1,j+1 +fvi,j;i−1,ju

′∗
i−1,j)/4 .

The terms of Mf cancel as before.
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7 Summary and Discussion

This note has investigated the adjoint properties of Laplace’s tidal equations. It has shown, as re-

ported previously, that if a suitable weighting function is used, the adjoint set of equations have a

form similar to the original equations. Physically they represent a tidal wave propagating backwards

in time.

For practical solution in a numerical model, Laplace’s tidal equations are usually converted into

finite difference form on a regular grid. This note investigated the adjoint properties when the finite

difference model uses an Arakawa-C grid. This is the grid most often used for tidal studies.

The resulting finite difference equations can be represented by a simple matrix equation of the

form,

Kz= z0, (71)

where K is a matrix containing the finite difference coefficients, z a vector containing all the model

variables and z0 the forcing terms. The finite difference form of the adjoint to the tidal equaitons can

be represented by a similar matrix K̃.

If the variables all have a time dependence exp(−iωt), the system of equations can also be written,

(L− iω1)z= z0, (72)

where 1 is the unit diagonal matrix. Again the finite difference form of the adjoint set of equasions

can be represnted by a matrix L̃.

The analysis has shown that, away from the boundaries of the model, the matrices K and K̃, are

symmetric such that all but the ∂/∂t term in the bilinear concomitant cancel. As a result, in a model

with cyclic boundary conditions, K and K̃ are the simple matrix adjoints of each other. For the time

independent probelem, the bilinear concomitant is zero and the two matrices, L and L̃, are again the

simple matrix adjoints of each other.

Boundary conditions can either be included explicitly or implicit. In the explicit form, the model

variable on the boundary is included in the model vector z and an additional row added to the

matrices K or L representing the boundary condition.

In this case K and K̃ or L and L̃ are not simple matrix adjoints of each other. However for closed

boundaries and for open boundaries where the tidal height is imposed, the bilinear concomitant is

zero for all eigenvalues of the operator K.

The analysis has also shown that, when the implicit form of the boundary conditions is used, such

problems do not arise. The matrix K̃ is the simple matrix adjoint of K and the same is true for L and

L̃. The result is true for coastlines where the normal velocity is zero and also for open boundaries,

where the tidal height is forced and there may or may not be an additional radiation condition.

A final result concerns the radiation condition used for the time independent problem. For this

boundary condition, there is an advantage in ignoring the small separation between the open bound-

21



ary and the first row of velocity points. The approximation introduces a small error, but it means that

both the matrix operator L and its adjoint remain independent of angular velocity.
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Appendix A The Adjoint of a Matrix

Let M represent a N by N matrix with complex elements Mn,m. The adjoint of M, also known

as the conjugate transpose, Hermitian transpose and Hermitian conjugate is the matrix M∗ whose

elements are defined by the equation,

(M∗)n,m = (M)∗m,n, (A1)

where (M)m,n represents element (m,n) of matrix M and ′∗′ attached to a scalar represents its

complex conjugate. Thus for two vectors ψ and φ,

(φ∗M∗ψ)∗ = ψ∗Mφ (A2)

Many physical systems can be represented by an equation of the form,

(M−λ1)φ= z, (A3)

where φ is a vector representing the state of the system (the state vector) and z is a vector repre-

senting the forcing. 1 represents the unit diagonal matrix and λ is a scalar. In the time independent

form of Laplace’s tidal equations, λ is equal to (−iω) where i is the complex root of −1 and ω is

the angular velocity of the forcing.

One way of solving this equation is in terms of the eigenvalues and eigenvectors of the matrix M.

These are given by the solutions of the equation,

(M−λj1)φj = 0, (A4)

where φj is the j’th eigenvector and λj the corresponding eigenvalue.

In most cases of interest, a matrix M has N independent eigenvectors that can be combined to

represent any general vector φ. Thus there exist a set of scalars aj such that,

φ=

N∑
j=1

ajφj . (A5)

The coefficients aj are determined using the adjoint matrix M∗. Letψj and µj be the eigenvectors

and eigenvalues of the equation,

(M∗−µj1)ψj = 0. (A6)

22



Taking the dot product of φj with eqn A6 and of ψk with eqn A3,

φj
∗(M∗ −µk1)ψk = 0, (A7)

ψk
∗(M −λj1)φj = 0.

Taking the complex conjugate of the first and subtracting,

(φj
∗M∗ψk)∗−ψk

∗Mφj +λjψk
∗φj−µ∗k(φj

∗ψk)∗ = 0. (A8)

But (φj
∗ψk)∗ equals ψk

∗φj and, from eqn A1, (φj
∗M∗ψk)∗ equals ψk

∗Mφj , so,

(λj−µ∗k)(ψk
∗φj) = 0. (A9)

Thus either the eigenvectors ψk and φj are orthogonal to each other or λj equals µ∗k.

If the adjoint vector is normalised so that the dot product (ψj
∗φj) equals one, then the sum

over terms (φjψj
∗) (where φj is a vertical vector and ψj

∗ a horizontal vector) behaves as the unit

diagonal matrix. For example, acting on the eigenvector φj ,
N∑
k=1

(φkψk
∗)φj =

N∑
k=1

φkδk,j , (A10)

= φj .

Here δj,k is a delta function, equal to one when j equals k and zero otherwise.

The eigenfunctions can now be used to solve equation A3. Let,

φ=

N∑
j=1

ajφj . (A11)

Substitute in eqn A3,

(M−λ1)

N∑
j=1

ajφj = z, (A12)

N∑
j=1

(M−λ1)ajφj = z,

N∑
j=1

(λj−λ1)ajφj = z.

Taking the dot product of both side with the adjoint vector ψk
∗,

(λk−λ)ak = ψ∗
kz. (A13)

Solving for ak and substituting in eqn. A11

φ=

N∑
j=1

φj(ψ∗
j z)/(λj−λ). (A14)

Note that the contribution of each mode to the final solution depends, first, on the dot produce

between its adjoint and the forcing vector and, secondly, on the separation between λ and the mode’s

eigenvalue. The contribution will be largest when the adjoint is a good match to the forcing and the

eigenvalue λj lies close to the value of λ.

23



A1 Modified Dot Product

If the components of a vector φ have different dimensions, for example if some represent sea level

and some velocity, it is normal to redefine the dot product between vectorsψ and φ to have the form

ψ∗Wφ, where W is a diagonal matrix and, when the dimensions of components of ψ are the same

as those of φ, the products ψ∗iWi,iφi all have the same dimensions.

In the case where the vector φ represents the finite difference solution of Laplace’s tidal equations

this can be done by defining,

Wj,j = (ρg/2)Aj when φj represents sea surface height, (A15)

= (ρ/2)Vj when φj represents velocity.

where Aj is the area and Vj the volume of the cell. In this case the dot product has the dimensions

of energy.

The definition of the adjoint matrix also changes. For the first two terms in equation A8 to cancel,

the revised definition of dot product requires,

(φj
∗WM∗ψk)∗ = ψk

∗WMφj . (A16)

Equating the terms on each side proportional to (ψk)∗m and (φj)n,

((W)n,n((M∗)n,m)∗ = (W)m,m(M)m,n. (A17)

Then if the elements of D are real, the elements of the adjoint matrix are given by,

(M∗)n,m = ((M)m,n)∗(W)m,m/(W)n,n, (A18)

Appendix B The Adjoint of a Linear Differential Operator

Physical systems that involve fields are usually described in terms of linear differential operators

acting on continuous functions. Laplace’s tidal equations is an example where the partial differential

operators ∂/∂t, ∂/∂x and ∂/∂y act on continuous fields representing sea surface height ζ and water

velocity u. Such systems have many properties which are similar to those represented by finite sized

matrix equations. However the differences are important.

First the fields have an infinite number of degrees of freedom and this means that they have an

infinite number of eigenvalues and eigenfunctions. In systems of finite size, the eigenvalues are

usually separate unless some symmetry is involved. 3 If the system is infinite in size then many of

the eigenvalues will not be separate but will form a continuum. An example is the case of the modes

of an infinitely long canal.

3An example of the latter is a square drumhead, where there might be one mode with two nodes in one direction and one

in the second direction, and a second mode with the directions reversed, with both modes having the same resonant frequency.
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A second important difference is that partial differential equations need boundary conditions.

The form of the boundary condition depends on whether the differential equations are hyperbolic,

parabolic or elliptic.

In the full time dependent form of the tidal equations, the solution depends on the initial model

state but does require the state at the final time to be known beforehand. In this case the differential

equations are said to be parabolic.

When studying tidal waves of fixed angular velocity, such as the M2 tide, studies it is normal to

assume a fixed time dependence of the form exp(−ıωt). This removes the time dependent term in

the equations but leaves a set of equations whose solution depends on the boundary conditions all

around the model region. In this case the differential equations are said to be elliptic.

These changes affect the definition of adjoint. The transfer from a finite to an infinite number of

degrees of freedom is relatively straightforward but the boundary conditions introduce an extra level

of complication.

B1 The Basic Equation

A detailed derivation of the theory behind adjoint differential operators and their relation to Green’s

functions is given by Morse and Feshbach (1953). Let A be a partial differential operator. Then if

ψ and φ are two function, the equivalent of the adjoint condition (eqn. A2) is to find an operator Ã
and a vector P such that,

(ψ∗Aφ)∗−ψ∗Ã
∗
φ = ∇·P (ψ∗,φ). (B1)

P is called the bilinear concomitant, is a generalised vector function of ψ∗ and φ. The operator Ã
is then the adjoint of A.

The adjoint boundary condition is determined by integrating this equation over the physical do-

main. The terms on the left of the equation cancel. Then, after applying the divergence theorem,

the term on the right gives an integral around the boundary between the vector P and and the unit

vector normal to the boundary. This then determines the adjoint boundary conditions acting on φ

corresponding to the normal boundary conditions acting on ψ.

B1.1 The Del-squared Operator in 1-D

As a simple example, consider the del-squared operator in one dimension. If,

Aφ = p d2φ/dx2, (B2)

then

ψ∗Aφ = ψ∗p
d2

dx2
φ. (B3)

Express this as the derivative of the r.h.s. plus a correction,

ψ∗Aφ =
d

dx
(ψ∗p

d

dx
φ)− d

dx
(ψ∗p)

d

dx
φ (B4)
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Repeat, taking the derivative of the rightmost term,

ψ∗Aφ =
d

dx
(ψ∗p

d

dx
φ)− d

dx
(
d

dx
(ψ∗p)φ)+

d2

dx2
(ψ∗p)φ. (B5)

Thus,

ψ∗p
d2

dx2
φ− d2

dx2
(ψ∗p)φ=

d

dx
(ψ∗p

d

dx
φ− d

dx
(ψ∗p)φ). (B6)

In terms of equation B1, this means that the adjoint operator and bilinear concomitant are given by,

Ãψ =
d2

dx2
(p∗ψ), (B7)

P (ψ,φ) = ψ∗p
d

dx
φ− d

dx
(ψ∗p)φ (B8)

and if P (φ,ψ) is zero on the boundary then on the boundary,

1

φ

d

dx
(φ) =

1

pψ∗
d

dx
(pψ∗). (B9)

Thus if the main problem uses Drichlet conditions for which φ is zero on the boundary, then eqn. B9

requires p∗ψ to have the same boundary conditions. Similarly if φ has Neumann or mixed boundary

conditions, then p∗ψ will again have the same boundary conditions.

B1.2 Results for 1-D and 2-D

The above derivation is readily extended to higher order derivatives. In general if A is the operator,

Aφ = p dnφ/dxn, (B10)

then,

Ãψ = (−1)ndn(pψ)/dxn, (B11)

and,

P (ψ,φ) = pψ∗dn−1ψ/dxn−1 − d(pψ∗)/dx dn−2ψ∗/dxn−2 + (B12)

··· (−1)n−1dn−1(pψ∗)/dxn−1φ.

Any other differential operator in one dimension can be made up of a sum of such terms.

In two dimensions, the most general differential operator has the form

Aφ = p(x1,x2)
dn+m

dxn1dx
m
2

φ. (B13)

This has the adjoint and bilinear concomitant,

Ãψ= (− 1)n+m
dn+m

dxn1dx
m
2

p(x1,x2)ψ. (B14)

P (ψ,φ) = a1 [pψ∗
dn+m−1

dxn−11 dxm2
φ− d

dx1
(pψ∗)

dn+m−2

dxn−21 dxm2
φ+ ...+(−1)n−1

dn−1

dxn−11

(pψ∗)
dm

dxm2
φ]

+(−1)n a2 [
dn

dxn1
(pψ∗)

dm−1

dxm−12

φ− dn+1

dxn1dx2
(pψ∗)

dm−2

dxm−22

φ+ ...+(−1)m−1
dn+m−1

dxn1dx
m−1
2

(pψ∗) φ].
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