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We study the complete set packing problem (CSPP) where the family of feasible subsets

may include all possible combinations of objects. This setting arises in applications such as

combinatorial auctions (for selecting optimal bids) and cooperative game theory (for finding

optimal coalition structures). Although the set packing problem has been well-studied in the

literature, where exact and approximation algorithms can solve very large instances with up

to hundreds of objects and thousands of feasible subsets, these methods are not extendable

to the CSPP since the number of feasible subsets is exponentially large. Formulating the

CSPP as an MILP and solving it directly, using CPLEX for example, is impossible for

problems with more than 20 objects. We propose a new mathematical formulation for the

CSPP that directly leads to an efficient algorithm for finding feasible set packings (upper

bounds). We also propose a new formulation for finding tighter lower bounds compared

to LP relaxation and develop an efficient method for solving the corresponding large-scale

MILP. We test the algorithm with the winner determination problem in spectrum auctions,

the coalition structure generation problem in coalitional skill games, and a number of other

simulated problems that appear in the literature.

Key words : Set Packing Problem; Combinatorial Auctions; Winner Determination

Problem; Coalition Structure Generation; Large-scale MILP.
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1. Introduction and Literature Review

1.1. The Set Packing Problem (SPP)

The set packing problem and its variants (the set covering and set partitioning problems) are

among the most well-studied problems in combinatorial optimisation thanks to their wide ranges

of applications, their elegant mathematical formulation, and their special structural properties. In

the SPP, there are n objects which can be packed into a number of subgroups among m predefined

feasible subsets labelled as S1, . . . ,Sm. Each subset Sj has a payoff value of vj. The SPP aims to

divide these n objects into non-overlapping subgroups such that their total payoff is maximised.

The problem has many applications such as for routing and scheduling trains at intersections in

railway operations (Zwaneveld et al. [35]), for selecting winning bids in combinatorial auctions

(De Vries and Vohra [16]), for surgical operations scheduling (Velásquez and Melo [34]), and for

packets scheduling and transmission in communication networks (Emek et al. [18]) among many

others. In the context of combinatorial auctions, the winner determination problem (WDP) is

essentially a set packing problem. Sandholm [32] develops an algorithm that utilises the graphical

representation of the coalition structure search space for solving the WDP. Fujishima et al. [19]

develop an exact algorithm, where caching and pruning are used to speed up the search, and a

heuristic algorithm for solving the WDP.

The tractability of the SPP depends on the structure of the underlying IP formulation. Specif-

ically, Müller [28] and Rothkopf et al. [31] summarise special cases where the corresponding LP

relaxation solutions satisfy the integrality constraints and hence are also solutions of the SPP.

These are, however, very restrictive cases and it is generally very difficult to solve the SPP. In

fact, Karp [23] shows that the SPP problem is NP-complete while Sandholm [32] shows the inap-

proximability of the problem for general cases. Many methods, both exact and approximation,

have been proposed for solving the SPP. Padberg [29] and Cánovas et al. [7] show different sets of

facets of the set packing polyhedron which can be used to strengthen the LP relaxation solutions.

Landete et al. [24] present an alternative formulation for the SPP in a higher-dimensional space

where a set of facets can be identified.

Methods for solving the SPP often start with solving the corresponding LP relaxation problem.

De Vries and Vohra [16] survey different methods such as a constraint generation method for

solving the LP relaxation problem and a sub-gradient method for solving the Lagrangian relaxation.

The authors also provide interesting insights on how the numerical algorithm is interpreted in

the auctioning process. These methods have actually been well-studied in the context of the set

covering problem (SCP), a variant of the SPP where the objective is to minimise the total cost of

covering all the objects (see Beasley [4] and Beasley and Jörnsten [6] for examples). Caprara et al.

[10] survey methods to solve the SCP and compare their numerical performance on test problems

that appear in the literature.

There are also many heuristic methods for solving the SPP. In fact, Hoffman and Padberg [22]

state that “virtually every heuristic approach for solving general integer programming problems has
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been applied to the set-covering, packing and partitioning problems.” Delorme et al. [17] develops

GRASP, a greedy randomised algorithm for solving the set packing problem. Beasley and Chu [5]

develop a genetic algorithm for solving the set covering problem and this method can be adapted

to solve the SPP.

1.2. The Complete Set Packing Problem (CSPP)

In this paper, we aim to solve the SPP for cases when m= 2n, i.e. any subset of objects can be

grouped together in a packing, or when m is relatively large compared to n. This setting arises in

applications such as combinatorial auctions where bidders submit their bids in the form of value

functions on the objects selected. This bidding mechanism is favourable to auction designers and to

bidders because the information can be communicated in a more compact way. Another application

area is in multi-agent systems, e.g. in a sensor network [14], where players are grouped into coalitions

to maximise their total utility. As the number of possible subsets can grow exponentially, existing

methods (such as [6, 10, 19, 32]) are not applicable due to the large number of binary decision

variables involved.

Let N = {1, . . . , n} be the set of all objects and let x= (x1, x2, . . . , x2n) be a vector of binary vari-

ables with xj indicating whether subset Sj is selected in the packing. The CSPP can be formulated

as an MILP as follows:
CSPP(N ,v) := max

x
vtx

s.t. ANx≤ e,
x∈ {0,1}2n ,

(1)

where AN ∈R
n×2n is a matrix with element aij in row i and column j indicating whether subset

Sj contains object i, and e∈R
n is a vector with all elements being equal to one. For convenience

in notation, let aj = (a1j, . . . , anj)
t be a column vector of binary indicators for each j ∈ {1, ..,2n}.

To avoid ambiguity in the ordering of aj, we assign aj to the binary representation of (j− 1). Let

us denote vj ≡ v(aj)≡ v(Sj) as the payoff of subset Sj. For n≤ 15, problem CSPP(N ,v) can be

solved efficiently by CPLEX through a classical branch and bound technique. However, the size

of the MILP problem grows exponentially as the number of objects increases and it is impossible

for CPLEX to solve instances with more than 20 objects. We aim to develop an approximation

method for solving this MILP.

1.3. The Winner Determination Problem in Combinatorial Auctions

Combinatorial auctions have been used in the procurement of London bus routes (Cantillon and

Pesendorfer [8]), radio spectrum (Cramton [12]), and truckload transportation (Caplice and Sheffi

[9]), among many others. Combinatorial auctions arise in situations where bidders are interested

in buying bundles of objects that inherit some level of synergies among themselves. One of the

key problems in combinatorial auction is to find the best feasible combination of bids to maximise

the total payoff. This problem is equivalent to a complete set packing problem where objects are
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those to be sold and the payoff of each subset is the maximum bid that the bidders offer. In the

combinatorial auction literature, solution approaches such as Fujishima et al. [19] and Sandholm

[32] often assume that the number of bids are relatively small compared to the number of objects,

i.e. a few hundreds of objects and a few thousands of bids at most. However, in many real-life

situations such as in spectrum auctions, bidders might be interested in buying any subset of their

predefined frequencies. In this case, the bidders may express their interest through a compact value

function that involves their objects of interest and their specific synergy parameters (Cramton

et al. [13] and De Vries and Vohra [15]). Therefore, the set of feasible bids from all the bidders

is an exponential function of the number of objects. We discuss about one such case in spectrum

auctions in subsection 3.1.

1.4. The Optimal Coalition Structure Generation Problem in Cooperative Game Theory

Cooperative games with transferable utilities belong to a branch of game theory where groups of

players can form coalitions in order to jointly achieve the groups’ objectives. Cooperative game

theory has many applications in economics and business (e.g. for setting insurance premiums [26],

and for setting interchange fees for ATM bank networks [20]), in law and political science (e.g. for

computing voting power [25]), and in artificial intelligence (e.g. for coalition structure formation in

multi-agent systems [11]), among many others. One of the key problems in coalitional games is to

find a coalition structure, i.e. to divide the set of all players into disjoint subsets called coalitions,

such that the total payoff of these coalitions is maximised. This problem is equivalent to a CSPP

where players are viewed as objects, coalitions are viewed as subgroups, and a coalition structure

is equivalent to a packing. Sandholm et al. (1999) present a coalition structure graph to visualise

the set of all possible coalition structures. The authors then show interesting results about the

guaranteed bound on the best coalition structure within certain parts of the graph. Since then, new

exact methods have been introduced to exploit the special search space of the coalition structures.

However, these existing methods are only applicable for games with less than 30 players (Rahwan

et al. [30].)

1.5. Contributions

In this manuscript, we develop an approximation method for solving the CSPP. Our contributions

include the following:

1. We propose a new mathematical formulation for the CSPP that makes use of the subsets sug-

gested by the LP solution (or any heuristic solution and their combination). The new formulation

directly suggests an efficient method for generating near-optimal feasible packings.

2. We propose a method to find tighter upper bounds (compared to LP relaxation). This involves

a constraint generation framework to solve the corresponding large-scale MILP problem.
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3. We demonstrate the algorithm with the winner determination problem that arises in spectrum

auctions. We show that the constraint generation problem can be solved in O(n2 logn) and that

the LP relaxation problem can be solved in polynomial time. We provide numerical results for

instances with up to 200 objects.

4. We also perform numerical tests on the optimal coalition structure generation problem that

arises in large weighted coalitional skill games (Bachrach et al. [2]) and a number of other simulated

combinatorial auction settings that are accompanied by underlying economical interpretations

(Leyton-Brown and Shoham [27].)

The structure for the rest of the paper is as follows. We provide an alternative formulation for the

CSPP problem in subsection 2.1. This leads to an efficient method for finding feasible packings in

subsection 2.2. The upper bounds are obtained by solving the LP relaxation and a large-scale MIP

relaxation. These are done via constraint generation frameworks to be described in subsections 2.3

and 2.4. We demonstrate the algorithm through two applications in combinatorial auctions and

cooperative games in subsections 3.1 and 3.2. We provide numerical results in Section 4 and finally

conclude in Section 5.

2. Fast Approximation Algorithm for Solving the CSPP

2.1. Alternative Formulation for CSPP

Let I be the indices of columns that we have a high expectation on where the optimal set of subsets

will lie on, and let J be the indices of the remaining columns. For now, we assume that I and J
are given. The CSPP can be reformulated as:

max
xI ,xJ

vt
IxI +vt

JxJ ,

s.t. AIxI +AJxJ ≤ e,
xI ∈ {0,1}|I|,xJ ∈ {0,1}|J |,

(2)

where the matrix A, cost vector v and decision variable x are divided into two subsets according

to indices (I,J ), i.e. ⎡
⎣Av
x

⎤
⎦=

⎡
⎣AI AJ
vI vJ
xI xJ

⎤
⎦ .

Problem (2) can be reformulated as a bi-level optimisation problem:

max
xI∈{0,1}|I|

vt
IxI + max

xJ ∈{0,1}|J |
vt
JxJ ,

AJxJ ≤ e−AIxI,
AIxI ≤ e.

(3)

Let us denote f ∗
IP (N ,v) as the optimal value of CSPP(N ,v). We also use shorthand notation

f ∗
IP ≡ f ∗

IP (N ,v) where there is no confusion for not specifying (N ,v). For each choice of xI , let

N\AIxI be the set of remaining objects after subsets in AI have been selected according to the
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indicator vector xI. Let v\AIxI be the corresponding reduced vector of payoffs that subgroups

of N\AIxI can obtain. Then the second-level optimisation problem is equivalent to another set

packing problem on the remaining objects. The bi-level problem becomes:

max
xI

vt
IxI + f ∗

IP (N\AIxI ,v\AIxI),

AIxI ≤ e, xI ∈ {0,1}|I|. (4)

It is interesting to note that the reformulation has a smaller number of binary variables, i.e.

xI ∈ {0,1}|I|, instead of 2n binary variables that appear in model (1). However, this comes at a cost

of having an unknown non-linear term f ∗
IP (N\AIxI ,v\AIxI). Indeed, this quantity is the payoff

of the optimal set packing problem on the remaining objects. This means the problem is still hard

but this makes sense since two equivalent formulations should have the same level of complexity.

Notice, however, that the reformulation can provide us an idea of how to find a near-optimal

solution as will be described next.

2.2. Finding Near-Optimal Set Packings (Lower Bounds)

Instead of maximising the entire quantity {vt
IxI + f ∗

IP (N\AIxI,v\AIxI)}, let us approximate

the problem by replacing the second term f ∗
IP (N\AIxI,v\AIxI) with its linear approximation

ct(e−AIxI) as follows:

CSPPsub :=max
x

vt
IxI + ct(e−AIxI),

s.t. AIxI ≤ e,

x∈ {0,1}|I|,

where c is the vector of payoffs that individual objects can obtain and (e−AIxI) is the indicator

vector of the remaining objects. The corresponding formulation is an MILP with n linear constraints

and with |I| variables and could be solved efficiently by CPLEX, or some existing algorithms for

solving the set packing problem (e.g. [6, 10, 19, 32]) for relatively small |I|. We notice that the

objective function is equivalent to (vt
I − ctAI)xI where (vt

I − ctAI) is the corresponding reduced

cost vector for xI . After having found x∗
I, we can solve a new CSPP problem on the remaining

objects to find f ∗
IP (N\AIx∗

I ,v\AIx∗
I). This can be done through an exact algorithm if the number

of remaining objects is relatively small, or through an approximation method such as the one we

are describing otherwise. Formally, this is described in Algorithm 1.

In step (1) of Algorithm 1, we find an initial set of potential subsets that might appear in the

optimal packing. We will use the set I that is suggested by the LP relaxation solution. A possible

method for solving the LP relaxation is described in subsection 2.4. Notice, however, that the

algorithm is very flexible in choosing the candidate set. In fact, the set I can also be obtained from

any heuristic solution or from a combination thereof. In step (2) we solve problem CSPPsub to

find a near-optimal solution to the reformulation of CSPP in model (4). In step (3) we update the
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Algorithm 1 Approximation Algorithm for Finding Near-Optimal Set Packing (Lower Bound)

Initialisation: Set k=1, N (k) =N , f ∗
sub = 0.

while N (k) �= ∅ do

1. Find the set of candidate subsets I that is suggested by an LP relaxation solution.

2. Solve CSPPsub. Let x
∗
I be an optimal solution.

3. Update:

f ∗
sub = f ∗

sub +vt
Ix

∗
I , N

(k+1) =N (k)\AIxI ,v
(k+1) = v(k)\AIxI, k = k+1.

end while

Return solution f ∗
sub.

approximated objective value, the set of remaining objects, and their reduced vector of the payoff

values. The first result we can see immediately is that the algorithm provides us a feasible packing

solution and a lower bound to the CSPP as formally stated in the Lemma 1.

Lemma 1. Algorithm 1 produces a lower bound on the CSPP, i.e. f ∗
sub ≤ f ∗

IP .

Proof Since Algorithm 1 selects no same object twice for different subsets, it produces a feasible

packing solution with f ∗
sub being the packing’s total payoff. Thus, f ∗

sub ≤ f ∗
IP . �

Given the lower bound of CSPP, we are interested in judging how good the bound is. In theory,

the quality of the approximated solution depends on how good the linear approximation ct(e−
AIxI) is compared to f ∗

IP (N\AIxI,v\AIxI) around the truth optimum. In general, the linear

approximation is more accurate if ||e−AxI|| is small. In other words, the higher the accuracy

of picking the right candidate subset I, the smaller the size of the remaining set, and hence the

more accurate the linear approximation is. It is important that the approximated function f̃(xI) is

close to the original objective function f(xI) around the optimum xI. Notice also that, due to the

discreteness of xI, it is still possible for f̃(xI) to have the same optimum as f(xI) even though the

two functions differ at x∗
I . It is easy to extend the algorithm to use a quadratic approximation of

f ∗
IP (N\AIxI ,v\AIxI) and this would enhance the quality of the bound. However, this will come

at a cost of having a more computationally expensive approximation and hence the choice would

depend on how we want to trade off between the quality of the solution and the computation time.

We will use the upper bounds found via LP and MILP relaxation (to be described in subsections

2.3 and 2.4) to estimate the optimality gap of the solutions found by Algorithm 1.

2.3. Finding Upper Bound via MILP Relaxation

In LP relaxation, we relax the binary constraints on x and this provides us with an upper bound

to the CSPP. However, due to the excessive relaxation on all the 2n binary variables, the quality

of the bound might not be good enough for some instances. With the expectation that the optimal
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columns are mostly in AI, we develop a better relaxation strategy where only the vector xJ is

relaxed while still enforcing xI to be binary as follows:

CSPPMIP :=max
x

vt
IxI +vt

JxJ ,

s.t. AIxI +AJxJ ≤ e,

xI ∈ {0,1}|I|,
xJ ≥ 0,

where the constraint xJ ∈ {0,1}|J| has been relaxed to xJ ≥ 0. Notice that we do not have to

include xJ ≤ 1 because the packing constraint {AIxI +AJxJ ≤ e} has already enforced this. We

call this an MIP relaxation and notice that it has |I| binary variables and |J | continuous variables.
We will choose |I| relatively small, i.e. |I| ∼ n	 2n, and hence CSPPMIP is much easier to solve

compared to the original MILP but still more difficult than the LP relaxation due to the presence

of the binary variable xI . Solving CSPPMIP will provide us a better upper bound to the CSPP

compared to the LP relaxation, as stated in the following lemma.

Lemma 2. The following inequalities hold: f ∗
LP ≥ f ∗

MIP ≥ f ∗
IP ≥ f ∗

sub.

Proof The first two inequalities are obvious since CSPPLP is a linear relaxation of CSPPMIP (on

variable xI) and CSPPMIP is a linear relaxation of CSPP (on variable xJ ). The last inequality

was derived in Lemma 1. �
Despite the tighter bound obtained, solvingCSPPMIP given its exponential size is very challenging.

Due to the presence of the binary variable xI, we cannot apply the classical column generation

approach to handle the exponentially large number of columns. In what follows, we will present a

new approach for solving CSPPMIP.

We notice that CSPPMIP can be reformulated as a bi-level optimisation problem as follows:

max
xI∈{0,1}|I|

vt
IxI + max

xJ ≥0
vt
JxJ ,

AJxJ ≤ e−AIxI ,
AIxI ≤ e.

Due to the boundedness and the non-emptiness of the constraint set on xJ , we can replace the

LP in the second level with its dual:

max
xI∈{0,1}|I|

vt
IxI + min

β≥0
βt(e−AIxI),

At
Jβ≥ vJ ,

AIxI ≤ e.

Let FJ := {β :At
Jβ≥ vJ ,β≥ 0}; the bi-level problem can be further reformulated as:

max
xI∈{0,1}|I|,δ

vt
IxI + δ

s.t. βt(e−AIxI)≥ δ ∀β ∈FJ .
(5)
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This reformulation is an MIP with |I| binary variables and one continuous variable, and with a

semi-infinite number of constraints (one for each β ∈ FJ). Due to the linearity of the constraints

on β, the semi-infinite constraints are equivalent to a finite set of constraints for all the extreme

points and extreme rays {β1, . . . ,βK} of FJ . Model (5) can be reformulated as:

CSPPMIP2 := max
xI∈{0,1}|I|,δ

vt
IxI + δ

s.t. β(k)t(e−AIxI)≥ δ, ∀k= 1, . . . ,K.
(6)

The new MIP problem has |I| binary variables, one continuous variable, and K linear constraints

where K could be exponentially large. This means the reformulation is still as complex as the

original MIP but this makes sense since the two are equivalent. However, the formulation defined

by CSPPMIP2 allows us to apply a constraint generation framework where only relevant extreme

points and extreme rays of FJ are introduced to the model, as described in Algorithm 2.

Algorithm 2 Constraint Generation Algorithm for Solving MIP relaxation

Initialisation: Start with any initial relaxed constraint setM(0) = {β(0)}, where β(0) is a feasible

point in FJ and set k=0.

loop

1. Set k= k+1 and solve the relaxed problem:

(x
(k)
I , δ(k)) = argmin

x,δ

{
vt
IxI + δ : (e−AIxI)

tβ(j) ≥ δ, ∀j ∈ {0, . . . , k− 1}
}
.

2. Solve the constraint generation problem:

β(k) = min
β

{
βt(e−AIx

(k)
I ) : At

Jβ ≥ vJ , β≥ 0.
}

if (e−AIx
(k)
I )tβ(k) ≥ δ(k) then

Terminate the loop.

else

Update M(k) = {M(k−1),β(k)}.
end if

end loop

Return optimal solution x∗
I =x

(k)
I and set f ∗

MIP = vt
Ix

∗
I + δ(k).

In step (1) of Algorithm 2, we solve a relaxed problem of CSPPMIP2. This is an MIP and can

be handled by CPLEX for reasonably large n (up to a few hundred objects) as long as we keep

track of the number of constraints generated, i.e. we keep k below some bound relative to n. In step

(2) we solve the constraint generation problem. Notice the problem has exactly the same structure

compared to the dual of CSPPLP. We describe a solution approach for solving this problem in

subsection 2.4.
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It is important to note that we cannot apply a column generation algorithm directly to the

original MIP as that would not provide us a proof of optimality even when no further improving

column can be found, i.e. we could be trapped in local optimum due to the presence of the binary

variable xI . However, with the reformulation in CSPPMIP2, we have a proof of optimality on the

constraint generation algorithm once no further violating constraints are found.

2.4. Solving the LP Dual

Consider the dual of CSPPLP:

CSPPLPD :=min ety,

s.t. at
jy≥ v(aj), ∀j ∈ {1, ..,2n},

y≥ 0.

The dual problem contains a decision variable y ∈R
n and an exponentially large number of con-

straints. The optimal value of the dual LP relaxation problem, denoted as f ∗
LP , provides us an

upper bound on the optimal value of the original MILP. From this, we obtain f ∗
sub/f

∗
LP as a guaran-

teed optimality bound of the feasible packing found in subsection 2.2. Although this upper bound

is not as tight as the MIP upper bound, it is computationally less expensive and might be more

appropriate to use in situations with limited computational resources. For n ≤ 20, we can solve

CSPPLPD easily by using an LP solver like CPLEX. For n≥ 30, the problem contains more than

a trillion constraints and this makes it difficult to solve. However, it is interesting to observe that

only a small number of constraints are tight at the optimal solution. This means the remaining

non-binding constraints can be relaxed without changing the optimal solution. We can start with a

relaxed problem of CSPPLPD with a small set of constraints and then keep introducing violating

constraints to the relaxed problem until all the constraints are satisfied. At that point, the optimal

solution of the relaxed problem is also the optimal solution of the original problem. Formally, the

constraint generation method for solving CSPPLPD is described in Algorithm 3.

In step (1) of Algorithm 3, we find a subset z that violates constraint {zty(k) ≥ v(z)} mostly for

the given proposal y(k). Here, a subset is characterised by a binary indicator vector z with zi = 1 if

object i is in the subset and zi = 0 otherwise. We then check the optimality condition. If the worst

subset is not violated, then all other subsets satisfy this constraint and hence y(k) is an optimal

solution of CSPPLPD. Otherwise, we introduce the newly generated constraint {wty− v(w)≥ 0}
to the relaxed problem. In step (2), we solve the updated relaxed problem to obtain a new proposal

y(k) before going back to step (1).

Notice that the relaxed problem is an LP with smaller size and is easy to solve. The key, and often

the difficult part, for a successful constraint generation algorithm is the ability to generate violating

constraints efficiently. We will show that the CG problem in the spectrum auction application can

be solved in O(n2 logn). We will also show that the constraint generation problem in the WCSG
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Algorithm 3 Constraint Generation Algorithm for Solving LP relaxation

Initialisation: Start with any initial weight vector y(0) and initial relaxed constraint set M(0)

and set k =0.

loop

1. Solve the constraint generation problem: w = argmin
z∈{0,1}n

{
zty(k) − v(z)

}
.

if wty(k) − v(w)≥ 0 then

Terminate the loop.

else

Update relax set: M(k+1) = {M(k),w}.
end if

2. Set k = k + 1 and solve the relaxed problem:

y(k) = argmin
y

{
ety : zty≥ v(z), ∀z ∈M(k)

}
.

end loop

Return optimal solution y∗ = y(k) and set f ∗
LP = ety∗.

games with reasonable size (i.e. n≤ 200) can also be solved very efficiently. Some remarks on the

constraint generation problem follow.

• The constraint generation problem does not have to be solved exactly at every step except for

the last step. In fact, any violating constraint could be added to the relaxed problem. It is only

in the last step before terminating the loop that we need to obtain an optimal solution w and to

check if {wty(k) − v(w)≥ 0}.
• In some instances, the constraint generation problem might turn out to be very difficult to be

solved to optimality. In this case, we can still obtain an upper bound to the CSPP as stated in

Theorem 1.

Theorem 1. Let y(k) be the optimal solution of the relaxed problem at iteration k in Algorithm 3

and let ε=maxj{vj −at
jy

(k)}; then we have:

ety(k) ≤ ety∗ ≤ ety(k) +nε.

Proof Since y∗ is an optimal solution of CSPPLPD, it is also a feasible solution of any LP

relaxation problem at any iteration k. Thus, its objective value ety∗ should be at least the optimal

value ety(k) of the relaxed LP, i.e. ety(k) ≤ ety∗. We can also show that x= y(k) + εe is a feasible

solution to the relaxed LP by verifying that both the constraints at
jx≥ v(aj), ∀j ∈ {1, ..,2n} and

x ≥ 0 are satisfied. By the definition of ε = maxj{vj − atjy
(k)} and by the construction of the

algorithm, we have ε≥ 0 before the loop in Algorithm 3 terminates. Thus, x= y(k)+ εe≥ y(k) ≥ 0.

For j = 1 we have aj = 0 and vj =0 and hence the constraint at
jx≥ v(aj) holds trivially. For j ≥ 2,

we have:

at
jx = at

jy
(k) + εat

je
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≥ at
jy

(k) + ε

≥ at
jy

(k) +(vj −at
jy

(k)) = vj.

Thus, x is a feasible solution to CSPPLPD. Therefore,

ety∗ ≤ etx= ety(k) + εete= ety(k) +nε.

�
The implication of Theorem 1 is that if ε is sufficiently small relative to ety(k), we can stop the

CG algorithm and use the upper bound (ety(k) +nε) instead of ety∗.

3. Applications to Combinatorial Auctions and Cooperative Game Theory

3.1. The Winner Determination Problem in Spectrum Auctions

In a spectrum auction, there are n frequencies (objects) and m bidders. Each bidder is interested

in a subset of frequencies. Let Φ∈R
m×n be a 0-1 matrix where φij = 1 indicates whether bidder i

has an interest in frequency j and φij = 0 otherwise. We follow the model suggested by Cramton

et al. [13] and De Vries and Vohra [15] and assume that the individual object j has a payoff value

of vj. Bidder i will value a subset S of frequencies as {∑i∈S vi + μi

∑
k,q∈S∩φi

vkvq} where μi is a

parameter that models how strong bidder i views the complementarities (De Vries and Vohra [15]).

The largest bid on a subset S is:

v(z) =max
i∈N

⎧⎨
⎩
∑
i∈S

vi +μi

∑
k,q∈S∩φi

vkvq

⎫⎬
⎭ . (7)

Notice that v(z) is not given explicitly. To apply existing methods, we would have had to evaluate

v(z) for all z just to obtain the input to the CSPP. This is very expensive computationally. We

will show that, by applying our constraint generation framework, we will eliminate this stage and

only perform the calculation if needed. Specifically, we can combine the max operator in (7) into

the max operator of the CG problem as follows:

max
z

{
v(z)− zty

}

⇔ max
z,i∈N

⎧⎨
⎩
∑
i∈S

vi +μi

∑
k,q∈S∩φi

vkvq − zty

⎫⎬
⎭

⇔ max
i∈N

max
z

⎧⎨
⎩
∑
i∈S

vi +μi

∑
k,q∈S∩φi

vkvq − zty

⎫⎬
⎭

⇔ max
i∈N

max
z

{
vtz− zty+μi((φi �v)tz)2

}
⇔ max

i∈N
max

z

{
(btz)2 −atz

}
, (8)

where a= y−v, and b= (φi�v) is the element-wise production of the two vectors φi and v.
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For each fixed i, the CG problem is a quadratic binary optimisation problem (QBP) which is

NP-hard to solve except for special cases. Among these, Allemand et al. [1] develop a polynomial

time algorithm for solving unconstrained fixed-ranked homogeneous QBP, i.e. one with the form

maxz∈{0,1}n {ztQz} where Q is a symmetric positive definite matrix with a fixed rank. Specifically,

the authors show that there is an O(nd−1) algorithm for solving the QBP where d is the rank

of Q. We will extend this result to the case of nonhomogeneous fixed-ranked QBP and show an

O(n2 logn) algorithm for solving the constraint generation problem.

Theorem 2. The constraint generation problem described in (8) can be solved in O(n2 logn).

Proof In the CG problem, we need to maximise {(btz)2 −atz}. For each z ∈ {0,1}n, let P (z) =

(atz,btz) be the corresponding point in a 2-dimensional space, i.e. P (z) : {0,1}n →R
2. Since there

are 2n such points z, we have 2n corresponding points P (z) in 2-D. It is very interesting, however,

that the convex hall of these points has at most 2n extreme points (Allemand et al. [1]). Since we

are maximising a convex function {P2(z)
2−P1(z)}, the maximum is attained at one of the extreme

points. In addition, these extreme points can be listed out as follows:

Let pi = (ai, bi) and let αi =arctan(ai/bi). We first order α in an ascending order α(1) ≤α(2) . . .≤
α(n). The 2n extreme points are given by the following equations:

Ek =

⎧⎪⎨
⎪⎩
0 if k= 0∑

j≤k p(j) if 1≤ k≤ n∑n

j=k+1−n p(j) if n+1≤ k≤ 2n− 1.

Once these points have been found, we can compare the objective values {E2(z)
2 −E1(z)} only

among these 2n extreme points to find the maximum. This takes O(n) operations and the sorting

of vector α takes n log(n) operations. Since we have to solve this problem n times, one for each

bidder, the complexity of the algorithm is O(n2 log(n)). �
Figure 1 demonstrates the algorithm for solving the CG problem for the case of n = 10 for

some fixed i. Crossed generator points p = (p1, p2) are generated randomly with p1 following a

uniform distribution in [0,1] while p2 =
√
0.2u with u also following a uniform distribution. These

choices of these random points are only for the purpose of clearer demonstration in Figure 1. The

corresponding zonotope has 20 extreme points. The maximum of {P 2
2 −P1} is attained at E13. This

means z(j) =0, for 1≤ j ≤ 3 and z(j) = 1 for 4≤ j ≤ 10.

Theorem 3. The LP dual problem CSPPLPD in spectrum auction can be solved in polynomial

time.

Proof From Theorem 2, identifying a violating constraint for a given y can be done in O(n2 logn).

This means we have an ‘oracle-polynomial time’ to solve the separation problem. Therefore,

CSPPLPD can be solved in polynomial time using the ellipsoid method (see Theorem 6.4.9 in

Grotschel et al. [21]). �
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Figure 1 Zonotope demonstration for n= 10.

3.2. Finding the Optimal Coalition Structure in the WCSG games

The weighted coalitional skill games (WCSG) were proposed by Bachrach and Rosenschein [3]. In

this game, there are n players, T tasks and K skills. Each player has a subset of skills and each

task requires a subset of skills. Let Ψ be the player-skill matrix with ψik indicating whether player

i has skill k. Let Φ be the task-skill matrix with φtk indicating whether task t requires skill k. The

players can form groups to work collectively and a group can perform a task if the skills required

are available. Specifically, for each task t and the skill vector Φt that it requires, a coalition z will

be able to perform the task if, for all skill k, there exists at least one player in the coalition that

has skill φtk. Each task, if performed, returns some reward. The aim of the coalition structure

generation problem in the WCSG game is to divide players into non-overlapping subgroups such

that the total reward is maximised and this is equivalent to the CSPP problem. Bachrach and

Rosenschein (2008) show that the problem is NP-hard except for some very restricted cases, such as

with the bounded number of tasks and the bounded width of the tree that represent the skill-graph.

In addition, even with these restrictions, the authors only provide a polynomial-time algorithm

without any numerical result. We will apply our algorithm to find near-optimal CSPP of general

WCSG games.

Let Δ(z, t) be the binary indicator on whether coalition z can perform task t and it is defined

as:

Δ(z, t) =

{
1 if Ψtz ≥Φt,

0 otherwise.

We consider a weighted average utility function defined as v(S) =∑
t∈{1..T}ωtΔ(z, t). In this case,

the constraint generation problem minz∈{0,1}n {zty(k) − v(z)} can be reformulated as:

min
z∈{0,1}n

{
zty(k) −

T∑
t=1

ωtΔ(z, t)

}
.
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This is equivalent to:

min
z,δ

{
zty(k) −

T∑
t=1

ωtδt

}
, (9)

s.t. Ψtz ≥ δtΦt, ∀t∈ 1, .., T, (10)

z ∈ {0,1}n,ψt ∈ {0,1}m,

where Δ(z, t) has been replaced by δt. The set of constraints in (10) ensures that if the coalition z

does not have all the skills required in Φt, then δt must be equal to zero. Otherwise, δt should be

equal to one to drive the objective function to the minimum. The constraint generation problem is

a mixed-integer programming problem with (n+T ) binary variables and with (T ∗K) constraints.

Although the problem is NP-hard, we will show numerically that CPLEX can solve the game very

efficiently for many instances with up to 200 players (with 20 tasks and 10 skills).

4. Numerical Tests

4.1. The Winner Determination Problem in Spectrum Auctions

We perform numerical tests on spectrum auctions with the number of frequencies ranging from

n= 25 to n= 200. The number of bidders is set to be equal to the number of frequencies. Matrix

Φ is generated randomly using the Bernoulli distribution where each bidder has a 50% chance

of having an interest in a frequency. The payoff vector v and the synergy preference μ are also

generated randomly using the uniform distribution around [0,1].

Table 1 shows the performance of Algorithms 1-3 when the number of objects varies between 25

and 200. Columns 2-5 show statistics for solving the LP dual problem, columns 6-7 show statistics

for finding upper bounds, and column 8 shows the optimality bounds. In each column, the statistics

shown are obtained by taking the average over K = 10 random instances (using fixed random seeds

between 1 and K in MATLAB for the purpose of convenient replication). By creating random

instances, we can test the robustness of the algorithm when the input data vary.1 In general, there

is an increasing trend with a cubic shape in the total time taken to solve the LP dual problem

except for the case of n = 50.2 The total time taken to solve the LP dual is around 85 minutes

for the largest instance. The number of iterations required by the constraint generation method

to solve the LP dual is relatively small compared to the problem size. Specifically, to solve the LP

dual with 2200 constraints for the case of n= 200, it took around 3273 iterations, on average, to

identify the set of relevant constraints. This means we only need to solve around 3273 constraint

generation problems and the same number of small-size LPs, each with n = 200 columns and

1 All the numerical tests that appear in this manuscript are performed on a personal computer, Intel� Xeon� CPU
W3520 @2.67GHz with 12GB RAM and under the Windows 7 operating system. The code was written and tested
on MATLAB R2012a.

2 Among 80 random instances generated, there were two outliers for the case of n= 50 with random seeds numbers
4 and 5.
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with the number of rows ranging between 1 and 3273. The time required to solve the constraint

generation problem increases almost in a quadratic trend and this matches with the theoretical

complexity of O(n2 logn) as derived in Theorem 2. The time taken to find feasible packings is

relatively small compared to the time required to solve the LP relaxation with, at most, 20 minutes

for the largest instance. The optimality bounds between the feasible solutions and the LP upper

bounds are around 91.1%, which are reasonably good given the very large problem size. Notice that

this is the guaranteed bounds taken by f ∗
sub/f

∗
LP as we have no knowledge of the optimal values.

The actual optimality bounds could be higher.

Solving LP dual Finding lower bounds Optimality bounds
n Total time Relaxed LPs CG # iterations Total time # iterations f ∗

sub/f
∗
LP

25 4.92 0.87 3.77 215.6 0.10 3.2 97.46%
50 551.61 307.13 237.71 1437.5 1.82 3.9 94.24%
75 147.61 24.57 120.55 729.4 80.73 4.4 92.78%
100 265.85 46.89 215.38 1041 684.21 5 91.87%
125 526.54 129.23 391.27 1474.7 185.18 5.1 90.61%
150 966.3 289.23 667.92 1871.7 795.28 5.7 88.27%
175 2081.2 797.86 1267.8 2621.5 1202.3 6.2 86.94%
200 5060.1 2971.4 2064.2 3272.5 1005.9 6 86.42%

Table 1 Computational results for solving the winner determination problem in spectrum auctions

(computational time is in seconds)

4.2. Optimal Coalition Structure Generation in the Coalitional Skill Games

We also perform numerical tests on large WCSG games with the number of players n ranging

from 25 to 200 while fixing the number of tasks at 20 and the number of skills at 10. For each n,

we generate K = 10 random samples using random seeds between 1 and K. In each instance, the

player-skill matrix is generated randomly using the Bernoulli distribution with a 25% chance for

each player to have a skill. The task-skill matrix is also generated randomly with a 50% chance

that each task requires a skill. The weighted vector is generated uniformly between [0,1].

Table 2 shows the same statistics as Table 1 but for finding the optimal coalition structures of

the WCSG with the number of players varying between 25 and 200 (i.e. columns 2-5 show statistics

for solving the LP dual problem, columns 6-7 show statistics for finding upper bounds and column

8 shows the optimality bounds). In each column, the average performance over K = 10 runs are

recorded. There is an increasing trend in the total time taken to solve the LP dual problem (with

less than 10 minutes for the largest instance). Most of the time taken is for solving the constraint

generation problems. The number of iterations to solve the LP dual is also relatively small with

just over 300 iterations for the largest instances tested. The time required to find a feasible packing

solution is less than 1 second and this is significantly small compared to the time taken to solve

the LP dual problem. The optimality gap is around 99.5% which is quite impressive.
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Solving LP dual Finding lower bounds Optimality bounds
n Total time Relaxed LPs CG # iterations Total time # iterations f ∗

sub/f
∗
LP

25 2.48 0.036 2.42 36.4 0.023 14.3 98.58%
50 13.32 0.086 13.14 65.8 0.037 28.3 99.46%
75 42.24 0.466 41.35 126.9 0.367 44 99.12%
100 83.34 0.541 81.94 162.6 0.513 56.3 99.46%
125 160.00 0.393 158.59 195.9 0.646 71.7 99.78%
150 245.93 0.764 243.60 276.8 0.655 84.8 99.81%
175 402.52 0.343 400.66 239.8 0.875 100 99.78%
200 487.50 0.846 484.54 303.4 0.846 114.4 99.73%
Table 2 Computational results for finding the optimal coalition structure of the weighted coalitional skill games

(computational time is in seconds)

4.3. Random Instances from the CATS Library

The main aim of this manuscript is to find an approximation algorithm for solving large-scale

SPP where the number of feasible subsets is very large, and hence cannot be handled by existing

methods. Our method is, however, applicable to any SPP game with m� n. To demonstrate this,

we test the algorithm with randomly generated problems that appear in the CATS library developed

by Leyton-Brown and Shoham [27]. The value functions used in these instances have arisen in

combinatorial auctions where the underlying bids are accompanied with economical interpretations.

Tables 3 and 4 summarise the optimality bounds and the computational time for various random

distributions shown in the first columns. Columns 2-5 show the optimality bounds for (n= 100)

objects while varying the number of feasible subsets between 2500 and 10000. Columns 6-7 show

the same statistics but for fixed (m= 5000) while varying n between 50 and 150. The rows show

different distributions from the CATS library for generating random instances. For each distribution

and each pair of (n,m), we generate K = 10 random instances. The statistics are taken from the

average performance among theseK instances. In general, it is interesting to see that the optimality

bounds increase with the increase of m. The optimality bounds are 100%, i.e. we obtain optimal

solutions, for the ‘paths’ and ‘scheduling’ distributions. The average is 99.3% for all cases. The

computational time is less than 1 minute for the worst instance tested.

n = 100 m = 5000
Distributions m= 2500 m= 5000 m=7500 m=10000 n=50 n= 100 n= 150
Arbitrary 95.25% 96.86% 98.15% 99.28% 99.08% 96.86% 96.91%
Paths 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Matching 99.94% 99.98% 99.99% 99.99% 100.00% 99.98% 100.00%
Regions 98.10% 98.58% 99.36% 99.38% 99.66% 98.58% 98.45%

Scheduling 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Table 3 Optimality bounds f∗

sub/f
∗
LP for various random instances in the CATS library
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n = 100 m = 5000
Distributions m=2500 m= 5000 m= 7500 m= 10000 n= 50 n= 100 n= 150
Arbitrary 45.271 8.6534 6.7892 5.8766 1.7956 8.6534 210.85
Paths 0.35724 0.78781 1.2605 1.8112 0.70044 0.78781 0.93133

Matching 0.351 0.75504 1.2199 1.7831 0.81589 0.75504 0.81277
Regions 2.7628 2.6848 2.8923 3.3353 1.1435 2.6848 5.9795

Scheduling 0.34476 0.702 1.2262 1.8221 0.70356 0.702 0.72696
Table 4 Total computational time (in seconds) for various random instances in the CATS library

5. Conclusion

We provide an approximation method for solving the complete set packing problem (CSPP) where

the family of feasible subsets might be exponentially large. This includes a new mathematical

formulation with a much fewer number of binary variables that allows the direct pursuit of near-

optimal solutions. We also develop an algorithm for solving a large-scale MIP to obtain tighter

upper bounds to the CSPP. We show that the method works very effectively, both in computational

time and the quality of the bounds obtained, with the applications in combinatorial auctions and

in cooperative game theory. Specifically, we show that recent results in fixed-rank quadratic binary

programming can be extended to prove that the LP relaxation problem in spectrum auctions can

be solved in polynomial time. The fast performance of the constraint generation algorithm for

solving the LP relaxation problem of the coalitional skill games implies that the core and the least

core in these games can also be computed efficiently by using the same method. Results from this

research, particularly the new formulation for the CSPP, may stimulate future research to find

alternative methods for solving large-scale SPP problems. Our algorithm for solving the large-scale

MIP could also be applicable to other applications that involve an exponentially large number of

continuous variables.
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