
An Online Validator for Provenance:
Algorithmic Design, Testing, and API

Luc Moreau, Trung Dong Huynh, Danius Michaelides

Electronics and Computer Science, University of Southampton

Abstract. Provenance is a record that describes the people, institu-
tions, entities, and activities involved in producing, influencing, or deliv-
ering a piece of data or a thing. The W3C Provenance Working group
has just published the prov family of specifications, which include a
data model for provenance on the Web. The working group introduces
a notion of valid prov document whose intent is to ensure that a prov
document represents a consistent history of objects and their interac-
tions that is safe to use for the purpose of reasoning and other kinds
of analysis. Valid prov documents satisfy certain definitions, inferences,
and constraints, specified in prov-constraints. This paper discusses
the design of ProvValidator, an online service for validating provenance
documents according to prov-constraints. It discusses the algorith-
mic design of the validator, the complexity of the algorithm, how we
demonstrated compliance with the standard, and its rest api.

Keywords: provenance, prov, validation

1 Introduction

Provenance is a record that describes the people, institutions, entities, and ac-
tivities involved in producing, influencing, or delivering a piece of data or a
thing [1]. (Such a record is encoded in a provdocument [2].) The W3C Prove-
nance Working group has just published the prov family of specifications [3],
which include a data model for provenance on the Web (prov-dm [1]).

prov comprises a notion of valid document [2]. A valid prov document is
one that represents a consistent history of objects and their interactions that
is safe to use for the purpose of logical reasoning and other kinds of analysis.
Valid prov documents satisfy certain definitions, inferences, and constraints,
specified in prov-constraints [2]. There are several issues related to prov-
constraints that motivate this work: we discuss them now.

By design, prov-constraints provides a logic specification of what valid
provenance is. This gives implementors the opportunity to design their own
implementation, allowing them to meet the requirements set by their applica-
tions. To be compliant with prov-constraints, implementations are expected
to produce the same results. In essence, compliance with prov-constraints is
established by observational equivalence with the specification.

2

prov-constraints relies on inference rules that lend themselves to imple-
mentation by rule-based languages. However, such a paradigm is not an option
for some implementors (for instance, having to work with an imperative language
or having to control memory management). Furthermore, rule-based specifica-
tions do not make explicit the execution order and the type of data structures
that are required. Thus, an open research question is the formulation of an al-
gorithm for prov validation that could be readily adopted by implementors.

In prov-constraints, not all inferences are necessary for validating docu-
ments. Instead, some simply exist because they are considered useful. While this
goal helps understand what is meant by provenance, it does not help implemen-
tors determine what is essential to implement in a validator.

prov-constraints does not analyse the complexity of the problem of va-
lidity of provenance documents. Understanding this complexity would be useful
since provenance documents can become very big, especially those generated by
distributed applications with many nodes that run for a very long time.

prov-constraints is concerned with specifying whether a provenance doc-
ument is valid. Hence, from this perspective, the outcome of validity checking is
a simple yes/no answer. We argue that the validation procedure can also output
useful information, which can be exploited by other provenance-processing tools.
For instance, the order of events underpinning a provenance document may be
useful for Gantt chart plotting applications.

Finally, a question relevant to practitioners is how such validation-checking
facility can be accessed. In the context of the Web, exposing such a functionality
as a rest service, which can be exploited by browser-based user interfaces or
specific applications, would be desirable.

This paper provides answers to these questions, as summarized by its con-
tributions: (i) An algorithm to validate provenance; (ii) An analysis of its
complexity; (iii) A rest api for validating provenance graphs, but also ac-
cessing validation by-products. Doing so, the paper identifies those essential
inferences to save the effort of future validator implementors. Finally, we discuss
ProvValidator, an implementation of this algorithm, its exposition as a rest
service, and its testing.

Notation Convention We refrain from copying the text of definitions, inference
rules, and constraints of prov-constraints; instead, we refer to them using
the following notations DEF 1, INF 5, CON 50, for definitions, inferences, and
constraints respectively. In the electronic version of this paper, they directly link
to the corresponding entries in the prov-constraints specification.

2 A Brief Introduction to PROV

prov is a family of specifications [3] for representing provenance on the Web.
It includes a conceptual data model, prov-dm [1], which can be mapped and
serialized to different technologies. There is an OWL2 ontology for prov, allow-
ing mapping of prov to rdf, an XML schema for provenance, and a textual
representation for prov.

http://www.w3.org/TR/prov-constraints/#optional-identifiers
http://www.w3.org/TR/prov-constraints/#communication-generation-use-inference
http://www.w3.org/TR/prov-constraints/#typing

3

Entity Activity

Agent

Invalidation

End

Usage

Membership

Specialization

Start

Alternate

Delegation

Association

Attribution

Communication

Generation

Derivation

Visual Paradigm for UML Standard Edition(University of Southampton)

Fig. 1. prov-dm UML Classes and Associations (simplified view)

Figure 1 summarises prov-dm [1]. There are three classes: entities (the data
or things for which we want to express provenance), activities (representing what
happens in systems), and agents (bearing responsibility for things and activities).
These three classes can be related with some relations.

1. Derivation view: entities may be derived from others (Derivation).
2. Responsibility view: agents may be responsible for other entities (Attribu-

tion), for activities (Association), or for other agents (Delegation).
3. Process view: activities may have used entities (Usage), and vice-versa en-

tities may have been generated by activities (Generation). Furthermore, ac-
tivities can be informed by other activities (Communication). Activities can
be started and ended by entity triggers (Start and End).

4. Alternate and Membership views: entities may have alternates and special-
izations; entities may be collections with members.

In reality, relations are not necessarily binary, but may involve more instances
and may also contain attributes such as time information. Table 1 (in Section 3.1)
summarizes a textual notation for the model.

3 Validation Algorithm

The overall validation procedure is described in Algorithm 1. It consists of three
steps: (i) perform the inferences that are relevant to validation; (ii) merge
terms; (iii) finally, if successful, check constraints. We discuss these steps in
turn.

Our approach relies on a type system and well-formed terms to deal with ille-
gal situations (many of the so-called impossibility rules in prov-constraints).
First, we present the terms that are accepted by prov-dm.

4

Algorithm 1 Validation Procedure

1: function validate(D : Document, T : TypeMap) ⇒ true|fail
2: D1, T1 ← PerformRelevantInferences(D,T)
3: res ← MergeTerms(D1, T1) . merge can succeed or fail
4: if res = D2, U2 then
5: return CheckConstraints(D2, U2)
6: else
7: return false
8: end if
9: end function

3.1 Terms

A document is a set of terms, whose definitions are summarized in Table 1. We
assume here that, prior to validation, each term has been expanded1 (DEF 3) and
has been put in a completed form, by introducing existential identifiers, where
appropriate, for optional term identifiers (DEF 1) and for optional placeholders
(DEF 4). For derivation and association, we consider two variants of these terms,
when placeholders are unknown; with these terms, CON 51 is enforced.

There are a few further points worth noting. First, identifiers occur in the first
position of terms. Second, entity, activity, and agent statements include a ground
identifier specified by the provenance asserter. For relations, their identifiers may
be grounded or existential variables (noted with the symbol ν). Finally, time is
not a prov term, but occurs in several of them; hence, its listing in Table 1.

prov allows for optional extra attributes to be added to terms (see DEF 2).
For the purpose of validation, they can simply be ignored, except for prov:type,
which affects type checking. So, in the interest of space, we have also dropped
them from Table 1. We assume a map of types T populated as follows: v ∈ T [α]
whenever the term with identifier α contains an attribute-value pair prov:type=v
(this caters for EmptyCollection in CON 50). Furthermore, we determine the
type of identifiers for entities, activities, and agents, as follows. For every occur-
rence of variable αe in a term, ent ∈ T [αe]; for every αa occurring in a term,
act ∈ T [αa]; for every αag occurring in a term, ag ∈ T [αa] (cf. CON 50).

We also support bundles [1], which are named sets of terms occurring at the
top-level of documents. Due to space limitation, we do not discuss them. Bundles
are treated by prov-constraints as mini-documents that can be validated
independently.

3.2 Relevant Inferences

prov-constraints specifies inferences that potentially affect the outcome of
the merging (Section 3.3) and constraint checking procedures (Section 3.4), but
also inferences that have no impact on the outcome of the validation procedure.
Algorithm 2 specifies the former, whereas Section 3.5 discusses the latter.

1 Expansion makes explicit optional arguments ommitted in PROV concise notation.

http://www.w3.org/TR/prov-constraints/#definition-short-forms
http://www.w3.org/TR/prov-constraints/#optional-identifiers
http://www.w3.org/TR/prov-constraints/#optional-placeholders
http://www.w3.org/TR/prov-constraints/#impossible-unspecified-derivation-generation-use
http://www.w3.org/TR/prov-constraints/#optional-attributes
http://www.w3.org/TR/prov-constraints/#typing
http://www.w3.org/TR/prov-constraints/#typing

5

Algorithm 2 Inference Procedure

1: function PerformRelevantInferences(D : Document, T : Type)
2: ⇒ Document× Type
3: for any α such that relation(α, . . .) ∈ D do . CON 50
4: T ← T [α→ {typeof(relation)} ∪ T [α]]
5: end for
6: for any αe such that ent(αe) ∈ D do . INF 7
7: if 6 ∃ αg, αa, αt gen(αg, αe, αa, αt) ∈ D then
8: D ← D ∪ {gen(νg, αe, νa, νt)} with fresh νg, νa, νt

9: end if
10: if 6 ∃ αi, αa, αt inv(αi, αe, αa, αt) ∈ D then
11: D ← D ∪ {inv(νi, αe, νa, νt)} with fresh νi, νa, νt

12: end if
13: end for
14: for any αa, αt

1, α
t
2 such that act(αa, αt

1, α
t
2) ∈ D do . INF 8

15: if 6 ∃ αs, αe, αa
1 , α

t start(αs, αa, αe, αa
1 , α

t) ∈ D then
16: D ← D ∪ {start(νs, αa, νe, νa1 , ν

t)} with fresh νs, νe, νa1 , ν
t

17: end if
18: if 6 ∃ αn, αe, αa

1 , α
t end(αn, αa, αe, αa

1 , α
t) ∈ D then

19: D ← D ∪ {end(νn, αa, νe, νa1 , ν
t)} with fresh νn, νe, νa1 , ν

t

20: end if
21: end for
22: for anyαs

1, α
en
1 such that

(start(αs
1, α

a
1 , α

e
1, α

a
2 , α

t
1) ∈ D

or end(αen
1 , αa

1 , α
e
1, α

a
2 , α

t
1),∈ D)

and 6 ∃αg, αt, gen(αg, αe
1, α

a
2 , α

t) ∈ D

do . INF 9,INF 10

23: T ← T [νg → {gen}]; D ← D ∪ {gen(νg, αe
1, α

a
2 , ν

t)} with fresh νg, νt

24: end for
25: for any αd such that der(αd, αe

1, α
e
2, α

a, αg, αu) ∈ D do . INF 11
26: D ← D ∪ {gen(αg, αe

1, α
a, νt1), use(αu, αa, αe

2, ν
t
2)} with fresh νt1, ν

t
2

27: end for
28: for any αdel such that del(αdel, αag

1 , αag
2 , αa) ∈ D do . INF 14

29: if assoc(αas
1 , α

a, αag
1 , αe

1), assoc(αas
2 , α

a, αag
2 , αe

2) 6∈ D
for some αas

1,2, α
e
1,2

then

30: D ← D ∪ {assoc(νas1 , αa, αag
1 , νe1), assoc(νas2 , αa, αag

2 , νe2)}
31: with fresh νas1 , νe1 , ν

as
2 , νe2

32: T ← T [νe1 → {ent}][νe2 → {ent}][νas1 → {assoc}][νas2 → {assoc}]
33: end if
34: end for
35: for any αe

1, α
e
2, α

e
3 such that spec(αe

1, α
e
2), spec(αe

2, α
e
3) ∈ D do . INF 19

36: D ← D ∪ {spec(αe
1, α

e
3)}

37: end for
38: for any αe

1, α
e
2 such that spec(αe

1, α
e
2), ent(αe

2) ∈ D do . INF 21
39: D ← D ∪ {ent(αe

1)}; T ← T [αe
1 → T [αe

1] ∪ T [αe
2]]

40: end for
41: for any αe

1, α
e
2 such that mem(αe

1, α
e
2) ∈ D do

42: T ← T [αe
1 → T [αe

1] ∪ {nonEmptyCollection}]
43: end for
44: return D,T
45: end function

http://www.w3.org/TR/prov-constraints/#typing
http://www.w3.org/TR/prov-constraints/#entity-generation-invalidation-inference
http://www.w3.org/TR/prov-constraints/#activity-start-end-inference
http://www.w3.org/TR/prov-constraints/#wasStartedBy-inference
http://www.w3.org/TR/prov-constraints/#wasEndedBy-inference
http://www.w3.org/TR/prov-constraints/#derivation-generation-use-inference
http://www.w3.org/TR/prov-constraints/#delegation-inference
http://www.w3.org/TR/prov-constraints/#specialization-transitive
http://www.w3.org/TR/prov-constraints/#specialization-attributes-inference

6

Table 1. Terms, Term Types, and Variable Types

identifier ground existential pattern term type
type identifier variable variable

Entity ide νe αe ent(ide) ent
Activity ida νa αa act(ida) act
Agent idag νag αag ag(idag) ag
Generation idg νg αg gen(αg, ide, αa, αt) gen
Usage idu νu αu use(αu, ide, αa, αt) use
Invalidation idi νi αi inv(αg, ide, αa, αt) inv
Start ids νs αs start(αs, ida, αe, αa, αt) start
End idn νn αn end(αe, ida, αe, αa, αt) end

Derivation idd νd αd der(αd, ide, ide, αa, αg, αu) der

der⊥(αd, ide, ide) der ⊥
Association idas νas αas assoc⊥(αas, ida, αag) assoc ⊥

assoc(αas, ida, αag, αe) assoc

Delegation idd νd αd del(αd, idag, idag, αa) del
Attribution idat νat αat attr(αat, ide, idag) attr
Communication idc νc αc comm(αc, ida, ide) comm

Influence idinf νinf αinf infl(αinf , id, id) infl
Specialization spec(ide, ide) spec
Alternate alt(ide, ide) alt
Membership mem(ide, ide) mem

time t νt αt

In Algorithm 2, lines 3–5, 23, 32, 39, and 42 update type information. Lines 6–
21 ensure that all events relevant to the graph are made explicit: each entity is
accompanied by generation and invalidation events, and each activity accompa-
nied by start and end events. INF 9 and INF 10 (lines 22–24) ensure the presence
of a generation event gen for every trigger αe

1 in start and end events. INF 11
(lines 25–27) links αg, αu in a derivation event der to corresponding generation
and usage events, gen, use. INF 14 ensures that a delegation’s activity is asso-
ciated with both its agents (lines 28–34). INF 19 (lines 35–37) computes the
transitive closure of specialization spec. INF 21 (lines 38–40) propagates types
through specializations. Lines 41–43 infer the type nonEmptyCollection for any
collection that has members. This type is introduced by this algorithm to enforce
CON 56 by means of the type system (see Section 3.4).

These inferences are applied till saturation. The algorithm’s termination can
be explained as follows.

– Lines 6–21 process a finite set of ent(αe), act(αa) in a finite document D.
– Lines 22–24 process a finite set of start/end events.
– Lines 25–27 process a finite set of der events.
– Lines 28–34 process a finite set of del events.
– Lines 35– 37 compute a transitive closure over a finite set of spec relations.
– Lines 38–40 process a finite set of spec tuples.
– Lines 41–43 process a finite set of mem relations.

http://www.w3.org/TR/prov-constraints/#wasStartedBy-inference
http://www.w3.org/TR/prov-constraints/#wasEndedBy-inference
http://www.w3.org/TR/prov-constraints/#derivation-generation-use-inference
http://www.w3.org/TR/prov-constraints/#delegation-inference
http://www.w3.org/TR/prov-constraints/#specialization-transitive
http://www.w3.org/TR/prov-constraints/#specialization-attributes-inference
http://www.w3.org/TR/prov-constraints/#membership-entity-collection

7

So, the total number of iterations is bounded. We also note that at no point
in these inferences, we infer terms from which previous inferences could have
derived further terms.

3.3 Term Merging

MergeTerms (see Algorithm 3) ensures that events that must satisfy a unique-
ness constraint are merged (lines 4–28); to this end, merging requires unifica-
tion [4]. If successful, the resulting document is in a “quasi-normal form”. Such a
quasi-normal form is essentially equivalent to prov-constraints normal form,
except for some inferences that have not been carried out (see Section 3.5).

Algorithm 3 Term Merging Procedure

1: function MergeTerms(D : Document, T : TypeMap)
2: ⇒ Document× UObject | fail
3: U ← 〈∅, T 〉
4: repeat
5: Up ← U
6: if relation(α, α1,1, α1,2, . . .), relation(α, α2,1, α2,2, . . .) ∈ D then
7: U ← unify∗({α1,1 = α2,1, α1,2 = α2,2, . . .}, U) . CON 22,CON 23
8: end if
9: if gen(αg

1, α
e, αa, αt

1), gen(αg
2, α

e, αa, αt
2) ∈ D then . CON 24

10: U ← unify∗({αg
1 = αg

2, α
t
1 = αt

2}, U)
11: end if
12: if inv(αi

1, α
e, αa, αt

1), inv(αi
2, α

e, αa, αt
2) ∈ D then . CON 25

13: U ← unify∗({αi
1 = αi

2, α
t
1 = αt

2}, U)
14: end if
15: if start(αs

1, α
a
1 , α

e
1, α

a
2 , α

t
1), start(αs

2, α
a
1 , α

e
2, α

a
2 , α

t
2) ∈ D then . CON 26

16: U ← unify∗({αs
1 = αs

2, α
e
1 = αe

2, α
t
1 = αt

2}, U)
17: end if
18: if end(αn

1 , α
a
1 , α

e
1, α

a
2 , α

t
1), end(αn

2 , α
a
1 , α

e
2, α

a
2 , α

t
2) ∈ D then . CON 27

19: U ← unify∗({αn
1 = αn

2 , α
e
1 = αe

2, α
t
1 = αt

2}, U)
20: end if
21: if start(αs

1, id
a
1 , α

e
1, α

a
2 , α

t
1), act(ida1 , α

t
2, α

t
3) ∈ D then . CON 28

22: U ← unify∗({αt
1 = αt

2}, U)
23: end if
24: if end(αs

1, id
a
1 , α

e
1, α

a
2 , α

t
1), act(ida1 , α

t
2, α

t
3) ∈ D then . CON 29

25: U ← unify∗({αt
1 = αt

3}, U)
26: end if
27: D ← applySubstitution(U,D)
28: until U = Up or U = fail
29: if U = fail then
30: return fail
31: else
32: return D,U
33: end if
34: end function

http://www.w3.org/TR/prov-constraints/#key-object
http://www.w3.org/TR/prov-constraints/#key-properties
http://www.w3.org/TR/prov-constraints/#unique-generation
http://www.w3.org/TR/prov-constraints/#unique-invalidation
http://www.w3.org/TR/prov-constraints/#unique-wasStartedBy
http://www.w3.org/TR/prov-constraints/#unique-wasEndedBy
http://www.w3.org/TR/prov-constraints/#unique-startTime
http://www.w3.org/TR/prov-constraints/#unique-endTime

8

The algorithm’s termination can be explained as follows. Lines 4–28 can only
generate a finite number of different bindings α1 = α2, since α1, α2 have to occur
in a finite document D, and no new variable is generated by this algorithm. So,
the number of iterations is bounded.

Term merging relies on unification, where the existential variables are con-
sidered as logical variables; for the purpose of validation of provenance terms,
we require full unification [4], except for the fact that variables only occur at the
top-level of prov terms and cannot be nested in expressions. In Algorithm 4,
the meaning of U ∈ UObject is now explicit: it pairs up bindings B and a type
map T .

3.4 Constraint Checking

Algorithm 5 is concerned with checking the applicable constraints. First, in
lines 4–5, reflexive cases of specialization are rejected. Second, leveraging all
the type inferences performed in previous steps, lines 6–10 detect type impos-
sibility cases. They are all encoded in Table 2, where the presence of a cross
in cell conflict(τ1, τ2) indicates that τ1 and τ2 are conflicting types to which
no variable is allowed to be simultaneously assigned. Finally, lines 11–14 detect
violations of ordering constraints.

prov-constraints defines an order between events, as opposed to an or-
der between time instants. Thus, Ordering constraints checking relies on a two-
dimensional matrix order indicating whether two events, identified by α1 and
α2, are ordered by a “strictly precede” (order[α1, α2] = 2) or by a “precede”
(order[α1, α2] = 1) relation, or unordered (order[α1, α2] = 0). The table order is
initialized with value 0. The following indicates how the order table is assigned
values, according to prov-constraints.
Constraint Ordering Relation
CON 30, CON 31, CON 32, CON 33, CON 34, CON 35, CON
36, CON 37, CON 38, CON 39, CON 40, CON 41, CON 43,
CON 44, CON 45, CON 46, CON 47, CON 48, CON 49

order[α1, α2] = 1

CON 42 order[α1, α2] = 2
Next, the transitive closure for the ordering relations is computed by a variant

of Floyd-Warshall algorithm [5], using the rule below.

if order[α1, α2] = x, for some x > 0

and order[α2, α3] = y, for some y > 0

then order[α1, α3]← max(order[α1, α3], x, y)

This rule ensures that a strict precedence between two events is also recorded
between sequence of events involving these two. The algorithm is further adapted
to work on a sparse matrix representation suitable for provenance graphs.

3.5 Validation-Neutral Inferences

It is safe to ignore some inference rules, referred to as validation-neutral (VN)
inferences. VN inferences are such that, for any document D, MergeTerms

http://www.w3.org/TR/prov-constraints/#start-precedes-end
http://www.w3.org/TR/prov-constraints/#start-start-ordering
http://www.w3.org/TR/prov-constraints/#end-end-ordering
http://www.w3.org/TR/prov-constraints/#usage-within-activity
http://www.w3.org/TR/prov-constraints/#generation-within-activity
http://www.w3.org/TR/prov-constraints/#wasInformedBy-ordering
http://www.w3.org/TR/prov-constraints/#generation-precedes-invalidation
http://www.w3.org/TR/prov-constraints/#generation-precedes-invalidation
http://www.w3.org/TR/prov-constraints/#generation-precedes-usage
http://www.w3.org/TR/prov-constraints/#usage-precedes-invalidation
http://www.w3.org/TR/prov-constraints/#generation-generation-ordering
http://www.w3.org/TR/prov-constraints/#invalidation-invalidation-ordering
http://www.w3.org/TR/prov-constraints/#derivation-usage-generation-ordering
http://www.w3.org/TR/prov-constraints/#wasStartedBy-ordering
http://www.w3.org/TR/prov-constraints/#wasEndedBy-ordering
http://www.w3.org/TR/prov-constraints/#specialization-generation-ordering
http://www.w3.org/TR/prov-constraints/#specialization-invalidation-ordering
http://www.w3.org/TR/prov-constraints/#wasAssociatedWith-ordering
http://www.w3.org/TR/prov-constraints/#wasAttributedTo-ordering
http://www.w3.org/TR/prov-constraints/#actedOnBehalfOf-ordering
http://www.w3.org/TR/prov-constraints/#derivation-generation-generation-ordering

9

Algorithm 4 Unification Procedure

1: function unify∗({αx = αy} ∪A,U)
2: return unify∗(A,unify(αx, αy, U))
3: end function
4: function unify∗(∅, U)
5: return U
6: end function
7: function unify(αx, αy, U)
8: if U = fail then return fail
9: end if

10: if αx = αy then return U
11: end if
12: if αx is an existential variable νx then
13: return unifyV ar(νx, αy, U)
14: end if
15: if αy is an existential variable νy then
16: return unifyV ar(νy, αx, U)
17: else
18: return fail . Two distinct ground value
19: end if
20: end function
21: function unifyVar(ν, αy, U))
22: if ν = αy then return U
23: end if
24: if bound(ν, U) then
25: return unifyVar(lookup(ν, U), αy, U)
26: end if
27: if αy is a variable νy and bound(νy, U) then
28: return unifyVar(ν, lookup(νy, U), U)
29: else
30: return extend(ν, αy, U) . αy is an unbound variable or a ground value
31: end if
32: end function
33: function extend(ν, αy, U)
34: 〈B, T 〉 ← U
35: B′ ← B[ν → αy]
36: if αy is a variable νy then
37: T ′ ← T [ν → T (ν) ∪ T (νy)][νy → T (ν) ∪ T (νy)]
38: else
39: T ′ ← T
40: end if
41: return 〈B′, T ′〉
42: end function

10

Algorithm 5 Checking Constraints Procedure

1: function CheckConstraints(D : Document, U : UObject)
2: ⇒ true|fail
3: B, T ← U
4: if spec(αe, αe) ∈ D then return fail . CON 52
5: end if
6: if τ1, τ2 ∈ T [α] for some α in D then . CON 53,CON 54,CON 55, CON 56
7: if conflict(τ1, τ2) then
8: return fail
9: end if

10: end if
11: order ← inferOrderingRelation(D)
12: order ← transitiveClosure(order)
13: if order[α, α] = 2 for some α then return fail
14: end if
15: return true
16: end function

succeeds for D if and only if MergeTerms succeeds for the document obtained
by application of VN-inferences to D. Furthermore, application of VN-inferences
do not entail ordering constraints that cannot be found otherwise. Below, we list
the VN-inferences, and why they can be ignored.

INF 5: the new Generation and Usage events for a new entity always satisfy
all ordering constraints.

INF 6: ordering constraints CON 35 can be inferred from CON 33, CON 34,
and by transitivity of the ordering relation.

INF 13: the ordering constraints related to Attribution (CON 48) imply the
ordering constraints related to Association (CON 47).

INF 15: can be ignored since there is no ordering constraint on Influence.
Likewise, INF 12, INF 16, INF 17, INF 18, INF 20 can be ignored since there

is no ordering constraints on Alternate.

4 Complexity Analysis

In this section, we establish that the validation process is polynomial. Specifi-
cally, validate is O(N3), where N is the size of document D. To establish this
result, we analyze the complexity of the various steps of the algorithm. We use
the superscripts of Figure 1 to denote the number of terms of that type. For
instance, we write f = O(e) to say that f grows asymptotically no faster than
the number of entities e (itself bounded by N).

PerformRelevantInferences is O(N3) (see Algorithm 2).

Lines 3–5 O(N) by iterating over all elements and relations;
Lines 6–21 O(e) +O(a) = O(N) by iterating over entities and activities;
Lines 22–24 O(s) +O(en) = O(N) by iterating over all starts and ends;
Lines 25–27 O(d) = O(N) by iterating over all derivations;

http://www.w3.org/TR/prov-constraints/#impossible-specialization-reflexive
http://www.w3.org/TR/prov-constraints/#impossible-property-overlap
http://www.w3.org/TR/prov-constraints/#impossible-object-property-overlap
http://www.w3.org/TR/prov-constraints/#entity-activity-disjoint
http://www.w3.org/TR/prov-constraints/#membership-entity-collection
http://www.w3.org/TR/prov-constraints/#communication-generation-use-inference
http://www.w3.org/TR/prov-constraints/#generation-use-communication-inference
http://www.w3.org/TR/prov-constraints/#wasInformedBy-ordering
http://www.w3.org/TR/prov-constraints/#usage-within-activity
http://www.w3.org/TR/prov-constraints/#generation-within-activity
http://www.w3.org/TR/prov-constraints/#attribution-inference
http://www.w3.org/TR/prov-constraints/#wasAttributedTo-ordering
http://www.w3.org/TR/prov-constraints/#wasAssociatedWith-ordering
http://www.w3.org/TR/prov-constraints/#influence-inference
http://www.w3.org/TR/prov-constraints/#revision-is-alternate-inference
http://www.w3.org/TR/prov-constraints/#alternate-reflexive
http://www.w3.org/TR/prov-constraints/#alternate-transitive
http://www.w3.org/TR/prov-constraints/#alternate-symmetric
http://www.w3.org/TR/prov-constraints/#specialization-alternate-inference

11

e
n
ti
ty

a
c
ti
v
it
y

a
g
e
n
t

g
e
n
e
r
a
ti
o
n

u
s
a
g
e

c
o
m

m
u
n
ic
a
ti
o
n

s
ta

r
t

e
n
d

in
v
a
li
d
a
ti
o
n

d
e
r
iv

a
ti
o
n

d
e
r
iv

a
ti
o
n
⊥

r
e
v
is
io
n

q
u
o
ta

ti
o
n

p
r
im

a
r
y
S
o
u
r
c
e

a
tt
r
ib
u
ti
o
n

a
s
s
o
c
ia

ti
o
n

a
s
s
o
c
ia

ti
o
n
⊥

d
e
le
g
a
ti
o
n

in
f
lu

e
n
c
e

b
u
n
d
le

c
o
ll
e
c
ti
o
n

e
m

p
ty

C
o
ll
e
c
ti
o
n

p
e
r
s
o
n

o
r
g
a
n
iz
a
ti
o
n

s
o
f
tw

a
r
e
A
g
e
n
t

n
o
n
E
m

p
ty

C
o
ll
e
c
ti
o
n

entity × × × × × × × × × × × × × × × × ×
activity ×
agent × × × × × × × × × × × × × × × ×
generation ×
usage ×
communication ×
start ×
end ×
invalidation ×
derivation ×
derivation⊥ ×
revision ×
quotation ×
primarySource ×
attribution ×
association ×
association⊥ ×
delegation ×
influence × × × × × × × × × ×
bundle × × × × × × × × × × × × × × × × ×
collection × × × × × × × × × × × × × × × × ×
emptyCollection × × × × × × × × × × × × × × × × × ×
person × × × × × × × × × × × × × × × ×
organization × × × × × × × × × × × × × × × ×
softwareAgent × × × × × × × × × × × × × × × ×
nonEmptyCollection × × × × × × × × × × × × × × × × × ×

Table 2. Conflicting Types conflict(τ1, τ2)

Lines 28–34 O(del) = O(N) by iterating over all delegations;
Lines 35–37 O(spec3) = O(N3) by computing a transitive closure over the

specialization edges;
Lines 38–40 O(spec2) = O(N2) by iterating over the transitive closure of spe-

cialization edges;
Lines 41–43 O(mem) = O(N) by iterating over membership edges.

Specialization-related inferences aside, each inference adds 2 terms at most to
the document; with O(N) inferences, the resulting document remains O(N). In
the worst case, a transitive closure over specialization can result in a quadratic
number of terms. In practice, we observe that specialization is relatively infre-
quently used, and that specializations do not form long chains2. So, assuming3

that spec << N , it is reasonable to conclude that the average inferred document
is O(N).

2 It is in fact revisions of entities that potentially create long derivation chains, each
entity in the chain being a specialization of one general entity.

3 This does not hold for the corner case consisting of a document of N specializations.

12

The complexity of unify is bounded by the number of bindings (see Algo-
rithm 4).

Lines 21–32 O(|U |): worst case is proportional to the number of bindings;
Lines 33–42 O(1): constant time operation.

MergeTerms is O(N2) (see Algorithm 3). Worst case binding size is when
all variables are to be unified; binding size is proportional to document size.

Lines 6–8 O(edges×N): worst case scenario, all edges have the same identifier
and need to be merged;

Lines 9–11 O(g ×N): worst case scenario, all generation edges have the same
entity identifier and need to be merged;

Lines 12–14 O(i×N): similar worst case scenario for invalidations;
Lines 15–17 O(s×N): similar worst case scenario for starts;
Lines 18–20 O(en×N): similar worst case scenario for ends;
Lines 21–23 O(max(s, a)×N): similar worst case scenario for starts or activ-

ities;
Lines 24–26 O(max(en, a)×N): similar worst case scenario for ends or activ-

ities;
Line 27 O(N2) since applySubstitution applies O(N) substitutions, on aver-

age, each costing O(N), on average.

The cost of checking constraints is O(N3) (see Algorithm 5). Let γ be the
number of different types.

Lines 4–5 checking this impossibility constraint is O(spec);
Lines 6–10 identifying conflicting pairs of types for each statement is O(γ ×

γ ×N)=O(N);
Lines 11–14 The size of order is O(N2), the number of ordering constraints

directly inferred is O(N), and the transitive closure computation is O(N3).

5 Testing and Establishing Compliance with PR

ProvValidator is a Java-based implementation of the algorithm presented in this
paper. In order to make sure ProvValidator covers all the specified constraints,
we collated a test suite containing 168 unit test cases for specific constraints.4

A test case here is a provenance document that is expected to pass or fail a
validity check. Hence, the result from validating a test case can be either PASS
for a valid provenance document or FAIL for an invalid one. Out of 168 test
cases, there are 101 PASS cases and 67 FAIL cases, covering all constraints in
the prov-constraints specification (excluding the inferences). The test suite
was reviewed by the W3C Provenance working group and was adopted by the
group as the way to establish a validator implementation’s compliance with
prov-constraints.

As shown in the prov implementation report [6], ProvValidator fully covers
the prov-constraints specification by passing all the specified test cases.

4 The full test suite is available at https://dvcs.w3.org/hg/prov/raw-file/

default/testcases/process.html, which also summarizes the coverage of various
constraints by its test cases.

https://dvcs.w3.org/hg/prov/raw-file/default/testcases/process.html
https://dvcs.w3.org/hg/prov/raw-file/default/testcases/process.html

13

6 Validator API

ProvValidator is deployed as a Web service accessible from http://provenance.

ecs.soton.ac.uk/. This section discusses how the validation algorithm was
exposed by means of a rest api.

In designing an api to expose the validator functionality, we wanted to tackle
a number of requirements. First, the api should be easy to use and accessible on
the Web. Second, we would be providing a web-based front-end but also expect
other tools to interact with the facility. Third, the validation-checking process
generates a number of by-products (e.g., ordering matrix, quasi-normal form)
that may be of use to other tools, and therefore need to be exposed. Thus, we
chose to expose the api as a restful web service. In such services, the api’s focus
is on exposing information as resources, how the information is represented, and
the use of the verbs of the http protocol to interact with the service [7].

The primary input to the validation process is a document containing prov
statements. The validator supports a variety of representations of prov: prov-
n, prov-xml, various formats of rdf, prov-json. Documents are submitted
to the service via the post http verb to the url: /documents/ . The body of
the post request is the prov document and the Content-type http header
is used to indicate which representation is being used. In addition, to facilitate
easy integration with web-pages, posting of standard html form data is also
supported; here provenance documents can be submitted inline, by a url or
using the html form file upload mechanism. If the document is syntactically
correct, a new resource for the document is created, with a url following the
schema /documents/{id} where {id} is an identifier. This resource represents
the provenance document loaded by the service. In a hierarchical fashion, we
further expose a number of other resources that are generated by the validation
process (see Table 3).

Our api makes use of content negotiation in situations where there are mul-
tiple representations of an information resource [8]; then, we issue http 303

See Other responses to redirect the client to the correct url for the representa-
tion they requested. For example, a client’s request for /documents/{id} with an
Accept: text/provenance-notation header is redirected to
/documents/{id}.provn.

∗ /documents/ all the provenance documents
∗ /documents/{id} a provenance document
∗ /documents/{id}/validation/report a report generated by validate
/documents/{id}/validation/report/{part} a section of the validation report
∗ /documents/{id}/validation/matrix the order matrix
∗ /documents/{id}/validation/normalForm the quasi-normal form
Table 3. Resources in the rest api. We use ∗ to indicate a resource that supports
content negotiation.

http://provenance.ecs.soton.ac.uk/
http://provenance.ecs.soton.ac.uk/

14

The validation report is a document in XML format that indicates whether
a prov document validated; if not, it also lists problematic statements to help
users identify and fix issues. The quasi-normal form and the order matrix are
the two by-products of the validation process that are made available.

7 Related Work

Two other validators for prov have been publicly reported in [6]. Paul Groth’s
prov-check5, and James Cheney and Stephen Cresswell’s checker.pl6. The first
is based on SPARQL queries, whereas the second is Prolog based. SPARQL
queries lend themselves to the implementation of rules, by means of insert state-
ment, however, it is challenging to implement merging of terms with SPARQL
only. On the other hand, Prolog comes with rules and unification and therefore
handles easily term merging. While their source code is publicly available, it
is not directly integrated in a software release that is readily installable. There
is also a commercial implementation which reportedly7 implements aspects of
provenance validation using some extensions to OWL-based reasoning.

The prov-constraints specification was designed with a view to deploying
services on the Web supporting this prov document validation. Several valida-
tors exist for other Web technologies. The W3C validator8 checks the markup
validity of Web documents in HTML, XHTML, SMIL, MathML. W3C Jigsaw9 is
a CSS validation service. The Manchester Validator 10 validates OWL ontologies.
Finally, W3C also hosts an RDFa validator11.

The prov-constraints specification builds upon [9] providing a semantics
for OPM [10], a precursor to and subset of prov.

8 Conclusion

In this paper, we have presented an algorithm for provenance validation. It relies
on a minimum set of inferences that have to be performed prior to validation, and
on type checking to detect most impossible situations. We expose the algorithm
functionality, and validation by-products such as the ordering matrix and quasi-
normal form of a document through a rest api.

In this paper, we have also investigated the complexity of the validation
process. Inferences are established to be linear in the size of the document to
validate. Merging terms is quadratic in its size. This is really a worst case situa-
tion: it is indeed possible to generate provenance documents that do not require

5 prov-check: https://github.com/pgroth/prov-check
6 checker: https://github.com/jamescheney/prov-constraints
7 http://semtechbizsf2013.semanticweb.com/sessionPop.cfm?confid=

70&proposalid=5118
8 http://validator.w3.org/
9 http://jigsaw.w3.org/css-validator/

10 http://owl.cs.manchester.ac.uk/validator/
11 http://www.w3.org/2012/pyRdfa/Validator.html

https://github.com/pgroth/prov-check
https://github.com/jamescheney/prov-constraints
http://semtechbizsf2013.semanticweb.com/sessionPop.cfm?confid=70&proposalid=5118
http://semtechbizsf2013.semanticweb.com/sessionPop.cfm?confid=70&proposalid=5118
http://validator.w3.org/
http://jigsaw.w3.org/css-validator/
http://owl.cs.manchester.ac.uk/validator/
http://www.w3.org/2012/pyRdfa/Validator.html

15

any merging of terms. Finally, checking ordering constraints is cubic in the doc-
ument size, due to the computing of a transitive closure of some precedence
relation; however, it has been shown that it can be implemented efficiently.

Future work will investigate functionality that leverages the validation by-
products, including editors of valid provenance and visualization of (in)valid
provenance; the presented framework could also be extended with domain spe-
cific constraints capable of checking provenance even further.

Acknowledgements

Thanks to the Provenance Working Group members; the co-authors of prov-
constraints, James Cheney, Paolo Missier, Tom De Nies; other implemen-
tors of prov-constraints Paul Groth, James Cheney, and Stephen Cresswell.
This work is funded in part by the EPSRC SOCIAM (EP/J017728/1) and OR-
CHID Projects (EP/I011587/1), the FP7 SmartSociety Project (600854), and
the ESRC estat2 (ES/K007246/1).

References

1. Moreau, L., Missier (eds.), P., Belhajjame, K., B’Far, R., Cheney, J., Coppens,
S., Cresswell, S., Gil, Y., Groth, P., Klyne, G., Lebo, T., McCusker, J., Miles,
S., Myers, J., Sahoo, S., Tilmes, C.: PROV-DM: The PROV Data Model. W3C
Recommendation REC-prov-dm-20130430, World Wide Web Consortium (October
2013)

2. Cheney, J., Missier, P., Moreau (eds.), L., Nies, T.D.: Constraints of the PROV
Data Model. W3C Recommendation REC-prov-constraints-20130430, World Wide
Web Consortium (October 2013)

3. Groth, P., Moreau (eds.), L.: PROV-Overview. An Overview of the PROV Family
of Documents. W3C Working Group Note NOTE-prov-overview-20130430, World
Wide Web Consortium (April 2013)

4. Norvig, P.: Correcting a widespread error in unification algorithms. Softw. Pract.
Exper. 21(2) (February 1991) 231–233

5. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms.
2nd edn. McGraw-Hill Higher Education (2001)

6. Huynh, T.D., Groth, P., Zednik (eds.), S.: PROV Implementation Report. W3C
Working Group Note NOTE-prov-implementations-20130430, World Wide Web
Consortium (April 2013)

7. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Berners-Lee, T.: Hypertext trans-
fer protocol – http/1.1. Rfc2068, World Wide Web Consortium (January 1997)
Available from http://www.w3.org/Protocols/Specs.html.

8. Jacobs, I., Walsh, N.: Architecture of the world wide web, volume one. Technical
report, World Wide Web Consortium (2004)

9. Kwasnikowska, N., Moreau, L., Van den Bussche, J.: A formal account of the open
provenance model. (December 2010) Under Review.

10. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., Van
den Bussche, J.: The open provenance model core specification (v1.1). Future
Generation Computer Systems 27(6) (June 2011) 743–756

	An Online Validator for Provenance: Algorithmic Design, Testing, and API

