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Abstract. Provenance is a record that describes the people, institu-
tions, entities, and activities involved in producing, influencing, or deliv-
ering a piece of data or a thing. The W3C Provenance Working group
has just published the PROV family of specifications, which include a
data model for provenance on the Web. The working group introduces
a notion of valid PROV document whose intent is to ensure that a PROV
document represents a consistent history of objects and their interac-
tions that is safe to use for the purpose of reasoning and other kinds
of analysis. Valid PROV documents satisfy certain definitions, inferences,
and constraints, specified in PROV-CONSTRAINTS. This paper discusses
the design of ProvValidator, an online service for validating provenance
documents according to PROV-CONSTRAINTS. It discusses the algorith-
mic design of the validator, the complexity of the algorithm, how we
demonstrated compliance with the standard, and its REST API.
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1 Introduction

Provenance is a record that describes the people, institutions, entities, and ac-
tivities involved in producing, influencing, or delivering a piece of data or a
thing [1]. (Such a record is encoded in a PROVdocument [2].) The W3C Prove-
nance Working group has just published the PROV family of specifications [3],
which include a data model for provenance on the Web (PROV-DM [1]).

PROV comprises a notion of valid document [2]. A valid PROV document is
one that represents a consistent history of objects and their interactions that
is safe to use for the purpose of logical reasoning and other kinds of analysis.
Valid PROV documents satisfy certain definitions, inferences, and constraints,
specified in PROV-CONSTRAINTS [2]. There are several issues related to PROV-
CONSTRAINTS that motivate this work: we discuss them now.

By design, PROV-CONSTRAINTS provides a logic specification of what valid
provenance is. This gives implementors the opportunity to design their own
implementation, allowing them to meet the requirements set by their applica-
tions. To be compliant with PROV-CONSTRAINTS, implementations are expected
to produce the same results. In essence, compliance with PROV-CONSTRAINTS is
established by observational equivalence with the specification.



PROV-CONSTRAINTS relies on inference rules that lend themselves to imple-
mentation by rule-based languages. However, such a paradigm is not an option
for some implementors (for instance, having to work with an imperative language
or having to control memory management). Furthermore, rule-based specifica-
tions do not make explicit the execution order and the type of data structures
that are required. Thus, an open research question is the formulation of an al-
gorithm for PROV validation that could be readily adopted by implementors.

In PROV-CONSTRAINTS, not all inferences are necessary for validating docu-
ments. Instead, some simply exist because they are considered useful. While this
goal helps understand what is meant by provenance, it does not help implemen-
tors determine what is essential to implement in a validator.

PROV-CONSTRAINTS does not analyse the complexity of the problem of va-
lidity of provenance documents. Understanding this complexity would be useful
since provenance documents can become very big, especially those generated by
distributed applications with many nodes that run for a very long time.

PROV-CONSTRAINTS is concerned with specifying whether a provenance doc-
ument is valid. Hence, from this perspective, the outcome of validity checking is
a simple yes/no answer. We argue that the validation procedure can also output
useful information, which can be exploited by other provenance-processing tools.
For instance, the order of events underpinning a provenance document may be
useful for Gantt chart plotting applications.

Finally, a question relevant to practitioners is how such validation-checking
facility can be accessed. In the context of the Web, exposing such a functionality
as a REST service, which can be exploited by browser-based user interfaces or
specific applications, would be desirable.

This paper provides answers to these questions, as summarized by its con-
tributions: (i) An algorithm to validate provenance; (ii) An analysis of its
complexity; (i) A REST API for validating provenance graphs, but also ac-
cessing validation by-products. Doing so, the paper identifies those essential
inferences to save the effort of future validator implementors. Finally, we discuss
ProvValidator, an implementation of this algorithm, its exposition as a REST
service, and its testing.

Notation Convention We refrain from copying the text of definitions, inference
rules, and constraints of PROV-CONSTRAINTS; instead, we refer to them using
the following notations DEF 1, INF 5, CON 50, for definitions, inferences, and
constraints respectively. In the electronic version of this paper, they directly link
to the corresponding entries in the PROV-CONSTRAINTS specification.

2 A Brief Introduction to PROV

PROV is a family of specifications [3] for representing provenance on the Web.
It includes a conceptual data model, PROV-DM [1], which can be mapped and
serialized to different technologies. There is an OWL2 ontology for PROV, allow-
ing mapping of PROV to RDF, an XML schema for provenance, and a textual
representation for PROV.


http://www.w3.org/TR/prov-constraints/#optional-identifiers
http://www.w3.org/TR/prov-constraints/#communication-generation-use-inference
http://www.w3.org/TR/prov-constraints/#typing
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Fig. 1. pPrROV-DM UML Classes and Associations (simplified view)

Figure 1 summarises PROV-DM [1]. There are three classes: entities (the data
or things for which we want to express provenance), activities (representing what
happens in systems), and agents (bearing responsibility for things and activities).
These three classes can be related with some relations.

1. Derivation view: entities may be derived from others (Derivation).

2. Responsibility view: agents may be responsible for other entities (Attribu-
tion), for activities (Association), or for other agents (Delegation).

3. Process view: activities may have used entities (Usage), and vice-versa en-
tities may have been generated by activities (Generation). Furthermore, ac-
tivities can be informed by other activities (Communication). Activities can
be started and ended by entity triggers (Start and End).

4. Alternate and Membership views: entities may have alternates and special-
izations; entities may be collections with members.

In reality, relations are not necessarily binary, but may involve more instances
and may also contain attributes such as time information. Table 1 (in Section 3.1)
summarizes a textual notation for the model.

3 Validation Algorithm

The overall validation procedure is described in Algorithm 1. It consists of three
steps: (i) perform the inferences that are relevant to validation; (ii) merge
terms; (%) finally, if successful, check constraints. We discuss these steps in
turn.

Our approach relies on a type system and well-formed terms to deal with ille-
gal situations (many of the so-called impossibility rules in PROV-CONSTRAINTS).
First, we present the terms that are accepted by PROV-DM.



Algorithm 1 Validation Procedure

1: function VALIDATE(D : Document,T : TypeMap) = truelfail

2 D,,T1 < PERFORMRELEVANTINFERENCES(D, T)

3 res < MERGETERMS(D1, 1) > merge can succeed or fail
4 if res = Dy, Uz then

5: return CHECKCONSTRAINTS(Dz, Uz)

6 else

7 return false

8 end if

9: end function

3.1 Terms

A document is a set of terms, whose definitions are summarized in Table 1. We
assume here that, prior to validation, each term has been expanded! (DEF 3) and
has been put in a completed form, by introducing existential identifiers, where
appropriate, for optional term identifiers (DEF 1) and for optional placeholders
(DEF 4). For derivation and association, we consider two variants of these terms,
when placeholders are unknown; with these terms, CON 51 is enforced.

There are a few further points worth noting. First, identifiers occur in the first
position of terms. Second, entity, activity, and agent statements include a ground
identifier specified by the provenance asserter. For relations, their identifiers may
be grounded or existential variables (noted with the symbol v). Finally, time is
not a PROV term, but occurs in several of them; hence, its listing in Table 1.

PROV allows for optional extra attributes to be added to terms (see DEF 2).
For the purpose of validation, they can simply be ignored, except for prov:type,
which affects type checking. So, in the interest of space, we have also dropped
them from Table 1. We assume a map of types T populated as follows: v € T[]
whenever the term with identifier & contains an attribute-value pair prov:type=v
(this caters for EmptyCollection in CON 50). Furthermore, we determine the
type of identifiers for entities, activities, and agents, as follows. For every occur-
rence of variable a¢ in a term, ent € T[a®]; for every a® occurring in a term,
act € T[a*]; for every a®f occurring in a term, ag € T[a?] (cf. CON 50).

We also support bundles [1], which are named sets of terms occurring at the
top-level of documents. Due to space limitation, we do not discuss them. Bundles
are treated by PROV-CONSTRAINTS as mini-documents that can be validated
independently.

3.2 Relevant Inferences

PROV-CONSTRAINTS specifies inferences that potentially affect the outcome of
the merging (Section 3.3) and constraint checking procedures (Section 3.4), but
also inferences that have no impact on the outcome of the validation procedure.
Algorithm 2 specifies the former, whereas Section 3.5 discusses the latter.

! Expansion makes explicit optional arguments ommitted in PROV concise notation.
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Algorithm 2 Inference Procedure

1: function PERFORMRELEVANTINFERENCES(D : Document, T : Type)

2: = Document x Type
3: for any a such that relation(a,...) € D do > CON 50
4: T + T[a — {typeof(relation)} U T[a]]
5: end for
6: for any a° such that ent(a®) € D do > INF 7
7 if Aaf a%al gen(a?,a® a” at) € D then
8: D <+ DU{gen(v9,a®,v*,v")} with fresh v9, % v
9: end if
10: if Aot a% o inv(a’,af a% o) € D then
11: D « DU {inv(v}, a®,v*, v")} with fresh v, v v*
12: end if
13: end for
14: for any o, o}, ob such that act(a®, o}, ab) € D do > INF 8
15: if Aa® a% af, ot start(a®,a® a% af,a') € D then
16: D « DU {start(v®,a*,v¢,v{,v")} with fresh v°, v° v§ v
17: end if
18: if Aa™ a%af,al end(a™ a% af af,a’) € D then
19: D «+ DU {end(v",a%,v¢ v, v")} with fresh v™, v vf, vt
20: end if

21: end for

22: for any af, af” such that do > INF 9,INF 10

(start( of,af,af,a5,a%) € D
or end(af™, af,af,as,at), € D)
and Aaf, ot gen(a?, af,as,a’) € D
23: T + T[v? — {gen}]; D < DU {gen(v?,a$,a4,v")} with fresh v9,v"
24: end for

25: for any o such that der(a?,af,a$,a” a?,a*) € D do > INF 11
26: D + DU{gen(a?,a$,a®, vi),use(a", a®, af, vs)} with fresh vi, v}
27: end for
28: for any a®! such that del(a®®, a3, a5%, %) € D do > INF 14
29: if assoc(af’,a®,al?, af),assoc(as®, a® as?, a5) ¢ D then
for some af%,af 5
30: D + DU {assoc(vi?®, a®, ai?,vy), assoc(vs®, a®, as?, vs)}
31: with fresh v{®, vf, v59°, V5
32: T + T[vi — {ent}][v5s — {ent}][vT® — {assoc}][vs® — {assoc}]
33: end if
34: end for
35: for any af, a$, a5 such that spec(af, as), spec(as,as) € D do > INF 19
36: D + DU {spec(af,a$)}
37: end for
38: for any af, a5 such that spec(af, a5),ent(as) € D do > INF 21
39: D + DU {ent(a})}; T + T[af — T[at] U T[as]]
40: end for
41: for any af, a5 such that mem(af,as) € D do
42: T + T[af — T[af] U{nonEmptyCollection}]
43: end for

44: return D, T
45: end function
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Table 1. Terms, Term Types, and Variable Types

identifier ground |existential | pattern ||term type
type identifier| variable |variable
Entity 1d°® Ve a®  |lent(id®) ent
Activity id® v a® ||act(id®) act
Agent 1d®9 v a®  |lag(id*?) ag
Generation id9 v a?  |lgen(a?,id®, o, o gen
Usage id" vt a" use(a®,id®, a*, at) use
Invalidation id v at inv(a?,id®, a*, o) inv
Start id’® Ve o® ||start(a®,id*, o, %, o) |start
End id" v « end(af,id*, a®, a®, at) end
Derivation id? ve « der(a®,id®,id®, o, a?, a")|der
der | (ad, 1d°, id°) der |
Association 1d®® v*® a®® assocy (a®®,1d*, a®?) assoc |
assoc(a®®,id*, a®9, a®) assoc
Delegation id? v a? ||del(a?,id®?,id9, a®) del
Attribution id*t vot ot |attr(a®, id®,id*9) attr
Communication| d° v a®  ||comm(a®,id®,id®) comm
Influence id™™t vt o linfl(a™/ id, id) infl
Specialization spec(id®, id®) spec
Alternate alt(id®,1d°®) alt
Membership mem/(id®,id®) mem
time t vt ot

In Algorithm 2, lines 3-5, 23, 32, 39, and 42 update type information. Lines 6—
21 ensure that all events relevant to the graph are made explicit: each entity is
accompanied by generation and invalidation events, and each activity accompa-
nied by start and end events. INF 9 and INF 10 (lines 22-24) ensure the presence
of a generation event gen for every trigger af in start and end events. INF 11
(lines 25-27) links a9, ™ in a derivation event der to corresponding generation
and usage events, gen,use. INF 14 ensures that a delegation’s activity is asso-
ciated with both its agents (lines 28-34). INF 19 (lines 35-37) computes the
transitive closure of specialization spec. INF 21 (lines 38-40) propagates types
through specializations. Lines 41-43 infer the type non EmptyCollection for any
collection that has members. This type is introduced by this algorithm to enforce
CON 56 by means of the type system (see Section 3.4).

These inferences are applied till saturation. The algorithm’s termination can
be explained as follows.

— Lines 6-21 process a finite set of ent(a®), act(a®) in a finite document D.
— Lines 22-24 process a finite set of start/end events.

Lines 25—27 process a finite set of der events.

Lines 28-34 process a finite set of del events.

Lines 35— 37 compute a transitive closure over a finite set of spec relations.
Lines 38-40 process a finite set of spec tuples.

Lines 41-43 process a finite set of mem relations.
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So, the total number of iterations is bounded. We also note that at no point
in these inferences, we infer terms from which previous inferences could have
derived further terms.

3.3 Term Merging

MERGETERMS (see Algorithm 3) ensures that events that must satisfy a unique-
ness constraint are merged (lines 4-28); to this end, merging requires unifica-
tion [4]. If successful, the resulting document is in a “quasi-normal form”. Such a
quasi-normal form is essentially equivalent to PROV-CONSTRAINTS normal form,
except for some inferences that have not been carried out (see Section 3.5).

Algorithm 3 Term Merging Procedure
1: function MERGETERMS(D : Document, T : TypeMap)

2: = Document x UObject | fail

3: U<+ (0,T)

4: repeat

5: U, <~ U

6: if relation(a, 1,1, 1,2, .. .), relation(a, a1, 2,2,...) € D then

7: U «+— um’fy*({aLl = (21,12 = (272, .. .}, U) > CON 22,CON 23
8: end if

9: if gen(a?, o, a% al), gen(ad, a®,a% ab) € D then > CON 24
10: U + unify*({af = af,al = at},U)

11: end if

12: if inv(al, af, o of),inv(al, o, a*, ab) € D then > CON 25
13: U «— unify*({o) = ob, ol = ab},U)

14: end if

15: if start(af, af, af, a3, a}), start(ad, af,as,a5,ab) € D then > CON 26
16: U+ unify*({af = a3,af = a§,al = ab},U)

17: end if

18: if end(al, of, af,as, a}), end(ay, af,as,as, o) € D then > CON 27
19: U <+ unify*({af = of,af = a§,al = ab},U)

20: end if

21: if start(af,id}, af, a3, al), act(id},ob,al) € D then > CON 28
22: U <+ unify*({a! = at},U)
23: end if
24: if end(af,id{, af, ag,al), act(id}, ob,al) € D then > CON 29
25: U <+ unify*({a! = af},U)
26: end if
27: D < applySubstitution(U, D)

28: until U = U, or U = fail
29: if U = fail then

30: return fail
31: else

32: return D, U
33: end if

34: end function
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The algorithm’s termination can be explained as follows. Lines 4-28 can only
generate a finite number of different bindings oy = «, since oy, oo have to occur
in a finite document D, and no new variable is generated by this algorithm. So,
the number of iterations is bounded.

Term merging relies on unification, where the existential variables are con-
sidered as logical variables; for the purpose of validation of provenance terms,
we require full unification [4], except for the fact that variables only occur at the
top-level of PROV terms and cannot be nested in expressions. In Algorithm 4,
the meaning of U € UObject is now explicit: it pairs up bindings B and a type
map 7T

3.4 Constraint Checking

Algorithm 5 is concerned with checking the applicable constraints. First, in
lines 4-5, reflexive cases of specialization are rejected. Second, leveraging all
the type inferences performed in previous steps, lines 6-10 detect type impos-
sibility cases. They are all encoded in Table 2, where the presence of a cross
in cell conflict(m,72) indicates that 7 and 7o are conflicting types to which
no variable is allowed to be simultaneously assigned. Finally, lines 11-14 detect
violations of ordering constraints.

PROV-CONSTRAINTS defines an order between events, as opposed to an or-
der between time instants. Thus, Ordering constraints checking relies on a two-
dimensional matrix order indicating whether two events, identified by a; and
ag, are ordered by a “strictly precede” (order[ai,as] = 2) or by a “precede”
(order|ay, az] = 1) relation, or unordered (order|ay, as] = 0). The table order is
initialized with value 0. The following indicates how the order table is assigned
values, according to PROV-CONSTRAINTS.

Constraint Ordering Relation
CON 30, CON 31, CON 32, CON 33, CON 34, CON 35, CON| order|a;,as] =1
36, CON 37, CON 38, CON 39, CON 40, CON 41, CON 43,
CON 44, CON 45, CON 46, CON 47, CON 48, CON 49

CON 42 order|ay, as) = 2

Next, the transitive closure for the ordering relations is computed by a variant
of Floyd-Warshall algorithm [5], using the rule below.

if order|oan, ag] = x, for some z > 0
and order|as, ag] =y, for some y > 0
then order|ay, ag] + max(order|ay, as], x,y)
This rule ensures that a strict precedence between two events is also recorded

between sequence of events involving these two. The algorithm is further adapted
to work on a sparse matrix representation suitable for provenance graphs.

3.5 Validation-Neutral Inferences

It is safe to ignore some inference rules, referred to as validation-neutral (VN)
inferences. VN inferences are such that, for any document D, MERGETERMS
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Algorithm 4 Unification Procedure

31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

: function UNIFY" ({a” = a?} U A, U)
return UNIFY" (A, UNIFY(a®, a¥,U))
end function
function UNIFY* (0, U)
return U
end function
function UNIFY(a®,a¥,U)
if U = fail then return fail
end if
if o® = oY then return U
end if
if a” is an existential variable v” then
return unifyVar(v®, o, U)
end if
if oY is an existential variable ¥ then
return unifyVar(v¥,a”,U)
else
return fail > Two distinct ground value
end if

: end function
: function UNIFYVAR(v, o, U))

if v = o¥ then return U
end if
if bound(v,U) then
return UNIFYVAR(lookup(v,U),a”,U)
end if
if oY is a variable v¥ and bound(v¥,U) then
return UNIFYVAR(v, lookup(v?,U),U)
else
return EXTEND(v,a?,U) > oY is an unbound variable or a ground value
end if
end function
function EXTEND(v, a¥, U)
(B, T) « U
B' + By — o]
if oY is a variable v¥ then
T «+ Ty = Tw)UTWY)|[v = Tw)UT(WY)
else
T < T
end if
return (B, T')
end function
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Algorithm 5 Checking Constraints Procedure
1: function CHECKCONSTRAINTS(D : Document, U : UObject)

2: = truefail

33 BT«U

4: if spec(a®, a®) € D then return fail > CON 52
5: end if

6: if 71,72 € T[] for some « in D then > CON 53,CON 54,CON 55, CON 56
7 if conflict(m1,72) then

8: return fail

9: end if

10: end if

11: order < inferOrderingRelation(D)

12: order < transitiveClosure(order)

13: if order|a, a] = 2 for some a then return fail

14: end if

15: return true

16: end function

succeeds for D if and only if MERGETERMS succeeds for the document obtained
by application of VN-inferences to D. Furthermore, application of VN-inferences
do not entail ordering constraints that cannot be found otherwise. Below, we list
the VN-inferences, and why they can be ignored.

INF 5: the new Generation and Usage events for a new entity always satisfy
all ordering constraints.

INF 6: ordering constraints CON 35 can be inferred from CON 33, CON 34,
and by transitivity of the ordering relation.

INF 13: the ordering constraints related to Attribution (CON 48) imply the
ordering constraints related to Association (CON 47).

INF 15: can be ignored since there is no ordering constraint on Influence.

Likewise, INF 12, INF 16, INF 17, INF 18, INF 20 can be ignored since there
is no ordering constraints on Alternate.

4 Complexity Analysis

In this section, we establish that the validation process is polynomial. Specifi-
cally, VALIDATE is O(N3), where N is the size of document D. To establish this
result, we analyze the complexity of the various steps of the algorithm. We use
the superscripts of Figure 1 to denote the number of terms of that type. For
instance, we write f = O(e) to say that f grows asymptotically no faster than
the number of entities e (itself bounded by N).
PERFORMRELEVANTINFERENCES is O(N?) (see Algorithm 2).

Lines 3-5 O(N) by iterating over all elements and relations;

Lines 6-21 O(e) + O(a) = O(N) by iterating over entities and activities;
Lines 22-24 O(s) 4+ O(en) = O(N) by iterating over all starts and ends;
Lines 25-27 O(d) = O(N) by iterating over all derivations;
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http://www.w3.org/TR/prov-constraints/#wasAttributedTo-ordering
http://www.w3.org/TR/prov-constraints/#wasAssociatedWith-ordering
http://www.w3.org/TR/prov-constraints/#influence-inference
http://www.w3.org/TR/prov-constraints/#revision-is-alternate-inference
http://www.w3.org/TR/prov-constraints/#alternate-reflexive
http://www.w3.org/TR/prov-constraints/#alternate-transitive
http://www.w3.org/TR/prov-constraints/#alternate-symmetric
http://www.w3.org/TR/prov-constraints/#specialization-alternate-inference
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entity X X X X X X X X X X XXX XXX X
activity X X X X X XX X XXX XXXXX X XXX X
agent X X X X X X X X X X XX XXX X
generation X X X X X X X X X X X X X X X X X X X X X X X X
usage X X X X X X X X X X X X X X X X X X X X X X X X
communication X X X X X X X X X X X X X X X X X X X X X X X X
start X X X X X X X X X X X X X X X X X X X X X X X X
end X X X X X X X X X X X X X X X X X X X X X X X X
invalidation X X X X X X X X X X X X X X X X X X X X X X X X
derivation X X X X X X X X X X X X X X X X X X X X X
derivation | X X X X X X X X X X X X X X X X X X X X X
reviston X X X X X X X X X X X X X X X X X X X X
quotation X X X X X X X X X X X X X X X X X X X X
primarySource X X X X X X X X X X X X X X X X X X X X
attribution X X X X X X X X X X XXX X X X X X X X X X X X
association X X X X X X X XXX XXX XX X X X X X X X X X
association | X X X X X X X X X X X XXX XX X X X X X X X X
delegation X X X X X X X XX XXX XXX XX X X X X X X X
in fluence X X X X X X X X X X
bundle X X X X X X X X X XXX XXXX X
collection X X X X X X X X X X XXX XXX X
emptyCollection X X X X X X X X XX XXX XXX X X
person X X X X X X X X X X XX XXX X
organization X X X X X X XX XXX XXXX X
softwareAgent X X X X X X X X XXX X XXX X
nonEmptyCollection X X X X X X X X X X XXX XXX X X

Table 2. Conflicting Types con flict(Ti,T2)

Lines 28-34 O(del) = O(N) by iterating over all delegations;

Lines 35-37 O(spec®) = O(N?) by computing a transitive closure over the
specialization edges;

Lines 38-40 O(spec?) = O(N?) by iterating over the transitive closure of spe-
cialization edges;

Lines 41-43 O(mem) = O(N) by iterating over membership edges.

Specialization-related inferences aside, each inference adds 2 terms at most to
the document; with O(NN) inferences, the resulting document remains O(N). In
the worst case, a transitive closure over specialization can result in a quadratic
number of terms. In practice, we observe that specialization is relatively infre-
quently used, and that specializations do not form long chains?. So, assuming®
that spec << N, it is reasonable to conclude that the average inferred document

is O(N).

2 It is in fact revisions of entities that potentially create long derivation chains, each
entity in the chain being a specialization of one general entity.
3 This does not hold for the corner case consisting of a document of N specializations.
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The complexity of UNIFY is bounded by the number of bindings (see Algo-
rithm 4).
Lines 21-32 O(|U|): worst case is proportional to the number of bindings;
Lines 33-42 O(1): constant time operation.

MERGETERMS is O(N?) (see Algorithm 3). Worst case binding size is when
all variables are to be unified; binding size is proportional to document size.

Lines 6-8 O(edges x N): worst case scenario, all edges have the same identifier
and need to be merged;

Lines 9-11 O(g x N): worst case scenario, all generation edges have the same
entity identifier and need to be merged;

Lines 12-14 O(i x N): similar worst case scenario for invalidations;

Lines 15-17 O(s x N): similar worst case scenario for starts;

Lines 18-20 O(en x N): similar worst case scenario for ends;

Lines 21-23 O(max(s,a) x N): similar worst case scenario for starts or activ-
ities;

Lines 24-26 O(mazx(en,a) x N): similar worst case scenario for ends or activ-
ities;

Line 27 O(N?) since applySubstitution applies O(N) substitutions, on aver-
age, each costing O(N), on average.

The cost of checking constraints is O(N?) (see Algorithm 5). Let v be the

number of different types.

Lines 4-5 checking this impossibility constraint is O(spec);

Lines 6-10 identifying conflicting pairs of types for each statement is O(y x
7 x N)=0(N);

Lines 11-14 The size of order is O(N?), the number of ordering constraints
directly inferred is O(IV), and the transitive closure computation is O(N3).

5 Testing and Establishing Compliance with PR

ProvValidator is a Java-based implementation of the algorithm presented in this
paper. In order to make sure ProvValidator covers all the specified constraints,
we collated a test suite containing 168 unit test cases for specific constraints?

A test case here is a provenance document that is expected to pass or fail a
validity check. Hence, the result from validating a test case can be either PASS
for a valid provenance document or FAIL for an invalid one. Out of 168 test
cases, there are 101 PASS cases and 67 FAIL cases, covering all constraints in
the PROV-CONSTRAINTS specification (excluding the inferences). The test suite
was reviewed by the W3C Provenance working group and was adopted by the
group as the way to establish a validator implementation’s compliance with
PROV-CONSTRAINTS.

As shown in the PROV implementation report [6], ProvValidator fully covers
the PROV-CONSTRAINTS specification by passing all the specified test cases.

4 The full test suite is available at https://dvcs.w3.org/hg/prov/raw-file/
default/testcases/process.html, which also summarizes the coverage of various
constraints by its test cases.


https://dvcs.w3.org/hg/prov/raw-file/default/testcases/process.html
https://dvcs.w3.org/hg/prov/raw-file/default/testcases/process.html
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6 Validator API

ProvValidator is deployed as a Web service accessible from http://provenance.
ecs.soton.ac.uk/. This section discusses how the validation algorithm was
exposed by means of a REST API.

In designing an API to expose the validator functionality, we wanted to tackle
a number of requirements. First, the API should be easy to use and accessible on
the Web. Second, we would be providing a web-based front-end but also expect
other tools to interact with the facility. Third, the validation-checking process
generates a number of by-products (e.g., ordering matrix, quasi-normal form)
that may be of use to other tools, and therefore need to be exposed. Thus, we
chose to expose the API as a RESTful web service. In such services, the API’s focus
is on exposing information as resources, how the information is represented, and
the use of the verbs of the HTTP protocol to interact with the service [7].

The primary input to the validation process is a document containing PROV
statements. The validator supports a variety of representations of PROV: PROV-
N, PROV-XML, various formats of RDF, PROV-JSON. Documents are submitted
to the service via the POST HTTP verb to the URL: /documents/ . The body of
the POST request is the PROV document and the Content-type HTTP header
is used to indicate which representation is being used. In addition, to facilitate
easy integration with web-pages, posting of standard HTML form data is also
supported; here provenance documents can be submitted inline, by a URL or
using the HTML form file upload mechanism. If the document is syntactically
correct, a new resource for the document is created, with a URL following the
schema /documents/{id} where {id} is an identifier. This resource represents
the provenance document loaded by the service. In a hierarchical fashion, we
further expose a number of other resources that are generated by the validation
process (see Table 3).

Our API makes use of content negotiation in situations where there are mul-
tiple representations of an information resource [8]; then, we issue HTTP 303
See Other responses to redirect the client to the correct URL for the representa-
tion they requested. For example, a client’s request for /documents/{id} with an
Accept: text/provenance-notation header is redirected to
/documents/{id}.provn.

* /documents/ all the provenance documents

* /documents/{id} a provenance document

* /documents/{id}/validation/report a report generated by VALIDATE
/documents/{id}/validation/report/{part} a section of the validation report

% /documents/{id}/validation/matrix the order matrix

* /documents/{id}/validation/normalForm  the quasi-normal form
Table 3. Resources in the REST API. We use * to indicate a resource that supports
content negotiation.


http://provenance.ecs.soton.ac.uk/
http://provenance.ecs.soton.ac.uk/

14

The validation report is a document in XML format that indicates whether
a PROV document validated; if not, it also lists problematic statements to help
users identify and fix issues. The quasi-normal form and the order matrix are
the two by-products of the validation process that are made available.

7 Related Work

Two other validators for PROV have been publicly reported in [6]. Paul Groth’s
prov-check®, and James Cheney and Stephen Cresswell’s checker.pl®. The first
is based on SPARQL queries, whereas the second is Prolog based. SPARQL
queries lend themselves to the implementation of rules, by means of insert state-
ment, however, it is challenging to implement merging of terms with SPARQL
only. On the other hand, Prolog comes with rules and unification and therefore
handles easily term merging. While their source code is publicly available, it
is not directly integrated in a software release that is readily installable. There
is also a commercial implementation which reportedly” implements aspects of
provenance validation using some extensions to OWL-based reasoning.

The PROV-CONSTRAINTS specification was designed with a view to deploying
services on the Web supporting this PROV document validation. Several valida-
tors exist for other Web technologies. The W3C validator® checks the markup
validity of Web documents in HTML, XHTML, SMIL, MathML. W3C Jigsaw” is
a CSS validation service. The Manchester Validator 10 validates OWL ontologies.
Finally, W3C also hosts an RDFa validator!'!.

The PROV-CONSTRAINTS specification builds upon [9] providing a semantics
for OPM [10], a precursor to and subset of PROV.

8 Conclusion

In this paper, we have presented an algorithm for provenance validation. It relies
on a minimum set of inferences that have to be performed prior to validation, and
on type checking to detect most impossible situations. We expose the algorithm
functionality, and validation by-products such as the ordering matrix and quasi-
normal form of a document through a REST API.

In this paper, we have also investigated the complexity of the validation
process. Inferences are established to be linear in the size of the document to
validate. Merging terms is quadratic in its size. This is really a worst case situa-
tion: it is indeed possible to generate provenance documents that do not require

5 prov-check: https://github.com/pgroth/prov-check
5 checker: https://github.com/jamescheney/prov-constraints
" http://semtechbizsf2013.semanticweb.com/sessionPop.cfm?confid=
70&proposalid=5118
8 http://validator.w3.org/
9 http://jigsaw.w3.org/css-validator/
10 http://owl.cs.manchester.ac.uk/validator/
" http://www.w3.org/2012/pyRdfa/Validator.html


https://github.com/pgroth/prov-check
https://github.com/jamescheney/prov-constraints
http://semtechbizsf2013.semanticweb.com/sessionPop.cfm?confid=70&proposalid=5118
http://semtechbizsf2013.semanticweb.com/sessionPop.cfm?confid=70&proposalid=5118
http://validator.w3.org/
http://jigsaw.w3.org/css-validator/
http://owl.cs.manchester.ac.uk/validator/
http://www.w3.org/2012/pyRdfa/Validator.html
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any merging of terms. Finally, checking ordering constraints is cubic in the doc-
ument size, due to the computing of a transitive closure of some precedence
relation; however, it has been shown that it can be implemented efficiently.

Future work will investigate functionality that leverages the validation by-
products, including editors of valid provenance and visualization of (in)valid
provenance; the presented framework could also be extended with domain spe-
cific constraints capable of checking provenance even further.
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