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Abstract When it is anticipated that data to be collected from an experiment cannot be ad-
equately described by a low-order polynomial, alternative modelling and new design methods
are required. Local linear regression, where the response is approximated locally by a series
of weighted linear regressions, is an effective nonparametric smoothing method that makes
few assumptions about the functional form of the response. We present new methods for
the optimal design of experiments for local linear regression, including a new criterion, called
DSI-optimality, to find designs that enable precise prediction across a continuous interval.
Designs are found numerically for weights defined through the Gaussian and uniform kernels.
Theoretical results are presented for the uniform kernel and the special case of prediction at
a single point. The sensitivity of the designs to the choice of bandwidth in the local linear
regression is studied, and it is found that designs for the Gaussian kernel with large band-
width have a small number of distinct design points. The methodology is motivated by, and
demonstrated on, an experiment from Tribology.
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1 Introduction

Increasingly, data from experiments in science and technology are used to investigate complex
systems where the response function cannot be adequately approximated by a simple regres-
sion function such as a low-order polynomial. For such data, the more flexible approach of
nonparametric regression is preferred where fewer assumptions are required on the functional
form of the response.

Previous research (Müller, 1992, 1996; Fedorov, Montepiedra and Nachtsheim, 1999) has
found designs for local linear regression tailored to prediction at a finite set of points within
the design region. The research in this paper gives, for the first time, methods for the efficient
design of experiments for prediction of the whole curve across a continuous interval using local
linear regression. We introduce a new design selection criterion, DSI-optimality, and present
properties of the resulting designs, together with some examples. The work is motivated by,
and demonstrated on, an experiment from Tribology.

1.1 Linear smoothing

Assume the response, y, depends on a single explanatory variable, x, through

yj = g(xj) + εj , (1)
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where g(·) is an unknown function, xj and yj are the jth design point and associated response,
respectively, and εj is an error random variable with constant variance σ2 (j = 1, . . . , n).
Further, we assume εi and εj are independent.

The function g(x) is estimated by a linear smoother ĝ(x), defined through the following
weighted linear combination of the observations yj,

ĝ(x) =
n∑
j=1

Sj(x)yj . (2)

Here, Sj(x) is a smoothing weight that determines the influence of yj on a prediction at x
(see, for example, Ramsay and Silverman, 2005, ch. 4). The simplest example of a linear
smoother is simple linear regression. Further, more complex, examples can be found in Buja,
Hastie and Tibshirani (1989), Wand and Jones (1995, ch. 5) and Simonoff (1996, ch. 5).

1.2 Tribology application

To motivate the methodology, we consider an experiment from the field of Tribology, which
is the study of interacting surfaces in relative motion. The experiment was a pilot study to
assess how different controllable factors affect the wear of a pin and disc assembly when the
surface of the disc is lubricated by an oil.

Data from one run of the process was obtained by measuring the total wear of the disc and
pin at a given number of time points after the disc has started spinning. The data from
different runs of the process may differ due to random variation and the various different
settings chosen for the controllable factors which included disc material, pin material and the
addition of various contaminants to the lubricant. Data from two runs of the process are
shown in Figure 1. Notice that wear can actually decrease at some time points due to a build
up of contamination in the groove, or “wear scar”, worn into the disc by the pin.

In this paper, we find optimal designs for predicting curves such as those given in Figure 1 us-
ing only a small number of design points; that is, we choose the ‘best’ subset {x1, . . . , xn} ⊂ R
of points at which to observe the process. In Section 2 we describe prediction via the local
linear estimator. Section 3 introduces optimal design for this prediction method and, in par-
ticular, DSI-optimal designs for predicting the curve across an interval. Results are presented
in Section 4 for the special case of prediction at a single point, as well as prediction across
an interval. In Section 5, DSI-optimal designs are found for a simulated wear experiment,
motivated by the Tribology application. We make our concluding remarks in Section 6.

2 Local linear regression

We employ local regression methods (Pelto, Elkins and Boyd, 1968 and Cleveland, 1979)
to estimate g(·). Local fitting weights the observations to ensure that points closer (or more
local) to x have larger influence on ĝ(x). For prediction at a point x∗, local weighted regression
fits a pth degree polynomial using weighted least squares.
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Fig 1: Data from run 1 (left) and run 2 (right) of the wear experiment with
examples of a locally linear smooth fit (red)

Suppose that the (p+ 1)th derivative of g(x) exists in a small neighbourhood about the point
x∗. Then, from a Taylor series expansion of g(x) about x∗,

g(x) ≈ g(x∗) + g(1)(x∗)(x− x∗) +
g(2)(x∗)

2
(x− x∗)2 + ...+

g(p)(x∗)

p!
(x− x∗)p

= β0(x
∗) + β1(x

∗)(x− x∗) + ...+ βp(x
∗)(x− x∗)p , (3)

where g(p)(x) denotes the pth derivative. We define u = x − x∗ to obtain g(x) = β0(x
∗) +

β1(x
∗)u+, . . . ,+βp(x

∗)up. On setting x = x∗, it becomes clear that prediction of g(x∗) is
equivalent to estimation of β0(x

∗).

Weights for each observation, yj, are introduced via a symmetric kernel function K(u; h) that
satisfies

∫
K(u; h) du = 1 and depends on a pre-specified constant h, known as the bandwidth.

This constant controls the degree of the locality in the prediction ĝ(x∗). Estimators β̂(x∗) =
[β̂0(x

∗), ..., β̂p(x
∗)]T are then found to minimise

n∑
j=1

1

h

[
yj − β0(x∗)− β1(x∗)uj − ...− βp(x∗)upj

]2
K(uj; h) , (4)

where uj = xj − x∗ for j = 1, . . . , n. When p = 1, we can write the solution to (4) as

β̂(x∗) = (XTWX)−1XTWY , (5)

where Y = (y1, . . . , yn)T , W = diag{K(uj; h)/h} and X = [1,u], with 1T = (1, . . . , 1) and

uT = (u1, . . . , un) (Wand and Jones, 1995, p.114). The prediction is ĝ(x) = β̂0(x
∗) + β̂1(x

∗)u
and hence the prediction at x∗, when u = 0, is given by ĝ(x∗) = β̂0(x

∗), where

β̂0(x
∗) =

1

nh

∑n
j=1 {ŝ2(x∗; h)− ŝ1(x∗; h)uj}K(uj; h)yj

ŝ2(x∗; h)ŝ0(x∗; h)− {ŝ1(x∗; h)}2
, (6)
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and ŝr(x
∗; h) =

∑n
k=1 u

r
kK(uk; h)/(nh), for r = 0, 1, 2. From (2), the smoothing weights at

x∗ are given by

Sj(x
∗) =

1

nh

∑n
j=1 {ŝ2(x∗; h)− ŝ1(x∗; h)uj}K(uj; h)

ŝ2(x∗; h)ŝ0(x∗; h)− ŝ1(x∗; h)2
.

Note that when K(uj; h) = h for all uj, then β̂0(x
∗) reduces to the ordinary least squares

estimator of the intercept in a simple linear regression. A further special case, the Nadaraya-
Watson estimator (Nadaraya, 1964; Watson, 1964), is obtained when p = 0. Fan (1992)
established the advantages of the local linear smoother (p = 1) over the Nadaraya-Watson
estimator in terms of expected squared error.

In this paper, we find designs for the uniform and Gaussian kernel functions:

Uniform: K(u; h) =

{
0.5 if |u/h| ≤ 1 ,

0 otherwise .

Gaussian: K(u; h) =
1√
2π

exp

{
− u2

2h2

}
, −∞ < u <∞ .

We choose these kernels to demonstrate the differences in optimal designs for truncated and
non-truncated kernel functions. Clearly, both kernel functions are non-increasing functions
of |u| = |x− x∗|. For the uniform kernel, observations y with corresponding |x− x∗| > h will
not influence prediction at x. The Gaussian kernel function is monotonically decreasing with
u2 but monotonically increasing with h. These two kernels present some different issues for
design; for example, with a truncated kernel such as the uniform, at least two design points
are required to lie within distance h of x∗ to enable the local linear smoother to be estimated.
For both kernels, lower prediction variance is obtained when more design points lie within h
of the point x.

3 Experimental design for local prediction

In this section, we define a design selection criterion, the DSI-criterion, for prediction of g(x∗)
for x∗ ∈ I = [a, b] ⊂ R using local linear smoothing. We find designs ξn = {x1, ..., xn}, with
x1 ≤ . . . ≤ xn.

Similar problems were considered by Müller (1992), Müller (1996) and Fedorov et al. (1999)
for local linear regression. Müller (1992) and Müller (1996) found designs that minimised a
weighted sum of variances of the estimator β̂0(xi), for prediction at points x∗i , i = 1, ..., q:

ΨM(ξ) = trace

{
q∑
i=1

Ai(X
T
i WiXi)

−1

}
, (7)

where Ai = aiA, ai is a given scalar and A = e1e
T
1 with e1 the first column of a p× p identity

matrix. The p× p matrix, XT
i WiXi, is the information matrix for the linear model

Y = Xiβ(x∗i ) + η , (8)
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where Xi = [1n,ui, . . . ,u
p
i ], u

T
i = (ui1, . . . , uin) and uij = xj − x∗i . The n-vector η ∼

N(0,W−1), with W the diagonal matrix of kernel weights. That is, (8) is the linear model
that would lead to estimators (5) of β(xi). Müller (1992) found designs by maximising (7)
for examples when prediction was required at a set of q = 9 equally spaced points in [−1, 1]
and when x could only take values from this same set.

Fedorov et al. (1999) also found designs for local linear smoothing but adopted a mean squared
error criterion where the true model was assumed to be a local linear regression of higher order.
We follow Müller (1992) and make the assumption that sufficient prior information is available
to choose an appropriate value of h to render the bias negligible.

Designs for alternative local smoothing methods have been considered by Cheng, Hall and
Titterington (1998) and Biedermann and Dette (2001), among other authors.

3.1 DSI-optimal designs for prediction

Our design selection criterion is motivated by model (8). Under this model, and using notation
that suppresses the dependence of X and W on x∗, the variance-covariance matrix of β̂(x∗)
is given from equation (5) by

Var
(
β̂(x∗)

)
= σ2(XTWX)−1XTWW−1WX(XTWX)−1

= σ2(XTWX)−1 , (9)

with corresponding information matrix M(ξn) = XTWX.

For the prediction of g(x∗), interest is only in β0(x
∗). Hence, we apply DS-optimality (see,

for example, Atkinson et al., 2007), which selects designs that minimise the variance of a
subset of model parameter estimators whilst regarding the remaining parameters as nuisance
parameters. The information matrix can be partitioned as

M(ξn) = XTWX

=

[
M11(ξn) M12(ξn)
M21(ξn) M22(ξn)

]
=

1

h

[ ∑n
j=1K (uj;h)

∑n
j=1 ujK (uj;h)∑n

j=1 ujK (uj;h)
∑n

j=1 u
2
jK (uj;h)

]
.

In general, the DS-optimality criterion seeks a design that minimises the determinant of
M−1

11 (ξn) or, equivalently, maximises

|M11(ξn)−M12(ξn)M−1
22 M

T
12(ξn)| = |M(ξn)|

|M22(ξn)|
.

For local linear regression, and estimation of β0(x
∗),

|M(ξn)| = |XTWX| =

[
1

h

n∑
j=1

K (uj; h)

][
1

h

n∑
j=1

u2jK (uj; h)

]
−

[
1

h

n∑
j=1

ujK (uj; h)

]2
,
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and

|M22(ξn)| = 1

h

n∑
j=1

u2jK (uj; h) .

Hence, a DS-optimal design for prediction at a point x∗ for local linear regression maximises
the objective function

ΨS(ξn) =

∑n
j=1K (uj; h)

∑n
j=1 u

2
jK (uj; h)− [

∑n
j=1 ujK (uj; h)]2

h
∑n

j=1 u
2
jK (uj; h)

. (10)

This objective function is equivalent to (7) with q = 1.

To select designs for predicting the whole curve over an interval, we construct a compound
criterion (Atkinson et al., 2007, ch.21) by integrating (10) across I = [a, b].

Definition 1: A DSI-optimal design ξ∗n for prediction across the interval [a, b] for local linear
regression maximises

ΨSI(ξn) =
1

h

∫ b

a

log

 n∑
j=1

K (xj − x∗; h)−

[∑n
j=1

(
xj−x∗
h

)
K (xj − x∗; h)

]2
∑n

j=1

(
xj−x∗
h

)2
K (xj − x∗; h)

 dx∗

=

∫ b

a

log [L(x∗)] dx∗ , (11)

where

L(x∗) =
1

h

 n∑
j=1

K (xj − x∗; h)−

[∑n
j=1

(
xj−x∗
h

)
K (xj − x∗; h)

]2
∑n

j=1

(
xj−x∗
h

)2
K (xj − x∗; h)

 .

We integrate the logarithm of (10) as an alternative to integrating the DS-efficiency across
[a, b]. Here taking logs compensates for any differences in scale in (10) for different values of
x∗ (see also Woods et al., 2006).

Note that we do not restrict the design region to be the interval [a, b] (cf Box and Draper,
1959 and the concept of the operability region). However, most DSI-optimal designs have all
points within, or close to, the interval [a, b].

Evaluation of (11) is analytically intractable for both the uniform and Gaussian kernels and
hence we find designs by applying a Legendre-Gauss quadrature approximation (see Golub and
Welsch, 1969). Thus, we maximise a weighted sum of the logarithm of objective function (10)
at pa abscissa values,

ΨSI(ξn) ≈
pa∑
i=1

κi log [L(x∗i )] , (12)

where x∗i are chosen as solutions to the Legendre polynomials and κi are Legendre-Gauss
weights. By comparing values of (12) calculated using different values of pa, we concluded
that pa = 25 was a sufficient in most cases (including for large n); a value of pa = 500 was
used for a few, more difficult, integrals.
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4 Theoretical and numerical results

In this section, we apply the DSI-criterion to find designs for different values of run sizes n.
First, we consider the special case of DS-optimality for predicting at a single point x∗, where
some theoretical results on optimal designs can be derived.

4.1 Designs for prediction at a single point

We now derive sufficient conditions for a design to be DS-optimal, i.e. maximising (10), for
prediction at a single point using local linear regression. We then demonstrate the results for
the uniform kernel. Our discussion of the Gaussian kernel is delayed to Section 4.2 where we
apply DSI-optimality. We first prove a simple but useful result.

Lemma 1. An upper bound, U , for objective function (10) is given by

U =
n

h
K(0; h) ≥ max

ξn∈Dn

{ΨS(ξn)} .

where Dn is the set of all possible designs of run size n.

Proof. By definition, K(0; h) is the maximum value ofK. Hence, K (uj; h) = [K(0; h)− f(uj)]
where f(x) ≥ 0 for all x and f(0) = 0 . Hence (10) can be expressed as

ΨS(ξn) =
1

h

(
n∑
j=1

[K(0; h)− f(uj)]−
[
∑n

j=1 ujK(uj; h)]2∑n
j=1 u

2
jK(uj; h)

)
.

As the kernel is a non-negative function,

[
∑n

j=1 ujK(uj; h)]2∑n
j=1 u

2
jK(uj; h)

> 0 ,

and hence

ΨS(ξ) =
1

h

(
n∑
j=1

[K(0; h)− f(uj)]−
[
∑n

j=1 ujK (uj; h)]2∑n
j=1 u

2
jK (uj; h)

)
(13)

≤ 1

h

n∑
j=1

[K(0; h)− f(uj)]

=
1

h

n∑
j=1

K(0; h)− 1

h

n∑
j=1

f(uj)

≤ n

h
K(0; h) . (14)

Lemma 1 leads directly to a sufficient condition for a design to be DS-optimal.

Theorem 1. A sufficient condition for design ξ∗n to be DS-optimal for prediction at a single
point using local linear regression is that ΨS(ξ∗n) = nK(0; h)/h.

Proof. Proof follows directly from Lemma 1.
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4.1.1 Optimal designs using the uniform kernel

We now find DS-optimal designs for prediction at a single point under the uniform kernel.
Using this kernel, objective function (10) simplifies to:

ΨS(ξn) =
1

2h

[
n∑
j=1

1A(uj)−
[
∑n

j=1 uj1A(uj)]
2∑n

j=1 u
2
j1A(uj)

]
, (15)

where

1A(uj) =

{
1 if uj ∈ A,
0 otherwise ,

and
A = {uj; |uj| ≤ h} . (16)

It is straightforward to establish the form of DS-optimal designs that maximise (15) as a
corollary to Theorem 1.

Corollary 1. For the uniform kernel and prediction at x∗, a design ξn = {x1, . . . , xn} with
n ≥ 2 that satisfies

(i) |xj − x∗| ≤ h for j = 1, . . . , n

(ii) x̄ =
∑n

j=1 xj/n = x∗

(iii)
∑n

j=1(xj − x̄)2 > 0

has ΨS(ξn) = n
2h

and is DS-optimal.

Proof. Conditions (i)-(iii) imply that (a) 1A(uj) = 1 for all j = 1, . . . , n, (b)
∑n

j=1(xj−x∗) = 0,

and (c)
∑n

j=1(xj − x∗)2 > 0. Hence, it follows from the form of (15) that

ΨS(ξ∗n) =
nK(0; h)

h
=

n

2h
. (17)

The DS-optimality of the design follows directly from Theorem 1.

The result from Corollary 1 was verified numerically by finding a variety of DS-optimal designs
via minimisation of −ΨS(ξn) using the fminsearch and ksrlin routines in MATLAB (2010)
and the Nelder-Mead algorithm (Nelder and Mead, 1965). Every design found satisfied the
conditions in Corollary 1, with ΨS(ξn) = n/2h. Fedorov et al. (1999) found designs under a
mean squared error criterion for the uniform kernel on [−1, 1] with h = 2. For this choice
of kernel and bandwidth, every design point in [−1, 1] has equal weight for prediction at any
point in x∗ ∈ [−1, 1]. Their design had equally replicated support points {−1, 1} and, from
Corollary 1, this design is also DS-optimal.

4.2 Designs for prediction across an interval

We apply the DSI-optimality criterion using local linear regression. For the numerical results,
we take the interval [−1, 1], that is a = −1 and b = 1. Designs for predicting at a finite
number of given points can be found in Fisher (2012).
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Table 1: DSI-optimal designs for prediction over [−1, 1] using a uniform kernel for
n design points and bandwidth h

n h = 0.2
12 ±0.08 ±0.27 ±0.45 ±0.62 ±0.80 ±0.98
15 ±1.00 ±0.83 ±0.68 ±0.54 ±0.38 ±0.24 ±0.11 0.00

h = 0.5
5 ±1.00 ±0.50 0.00
6 ±0.99 ±0.55 ±0.20
7 ±1.03 ±0.61 ±0.30 0.00
8 ±1.04 ±0.71 ±0.39 ±0.16
12 ±1.12 ±0.86 ±0.65 ±0.45 ±0.27 ±0.06
15 ±1.12 ±0.95 ±0.78 ±0.54 ±0.40 ±0.30 ±0.17 0.00

h = 0.75
4 ±0.94 ±0.25
5 ±1.09 ±0.53 0.00
6 ±1.10 ±0.63 ±0.13
7 ±1.10 ±0.82 ±0.22 0.00
8 ±1.17 ±0.83 ±0.46 ±0.08
12 ±1.18 ±1.04 ±0.80 ±0.55 ±0.16 ±0.05
15 ±1.20 ±1.09 ±0.90 ±0.70 ±0.52 ±0.18 ±0.10 0.00

h = 1
3 ±1.00 0.00
4 ±1.12 ±0.32
5 ±1.16 ±0.52 0.00
6 ±1.19 ±0.65 ±0.30
7 ±1.30 ±0.85 ±0.36 0.00
8 ±1.30 ±0.90 ±0.47 ±0.24
12 ±1.34 ±1.10 ±0.82 ±0.52 ±0.37 ±0.21
15 ±1.38 ±1.17 ±0.97 ±0.72 ±0.51 ±0.38 ±0.25 0.00
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4.2.1 DSI-optimal designs for the uniform kernel

Table 1 gives DSI-optimal and efficient designs found by numerical search for the uniform
kernel and a variety of values of n and h. The choices of n and h were restricted to ensure
adequate numbers of points in each sub-interval [x−h, x+h] (with x−h ≥ −1 and x+h ≤ 1).
For example, when h = 0.2 at least 11 points are required to predict over an interval of length
two. In general, the minimum number of design points required is given by

nmin =
b− a
h

+ 1 , (18)

The designs found are all symmetric about 0, resulting from the symmetry of the kernel
function and the prediction interval. The points span an interval just wider than the prediction
interval [−1, 1] and, although well spread across the interval, they are not equally spaced.
Generally, the range of the design points increases with n; the pattern with changing h is less
clear. For smaller n and larger h, the numerical optimisation was more straightforward and
faster.

4.3 DSI-optimal designs using the Gaussian kernel

As in the previous section, Table 2 presents DSI-optimal designs for the Gaussian kernel
found via numerical search. Once again all the designs are symmetric about 0, due to the

Table 2: DSI-optimal designs for prediction over [−1, 1] using a Gaussian kernel for
n design points and bandwidth h. When design points are repeated, the number
of repetitions is given in parentheses

n h = 0.2 h = 0.5
2 ±0.16 ±0.65
3 ±0.72 0.00 ±0.88 0.00
4 ±0.88 ±0.31 ±0.96 ±0.31
5 ±0.92 ±0.46 0.00 ±1.00 ±0.53 0.00
6 ±0.93 ±0.54 ±0.18 ±0.88(2) 0.00(2)
7 ±0.95 ±0.59 ±0.30 0.00 ±0.92(2) ±0.27 0.00
8 ±0.96 ± 0.64 ±0.39 ±0.12 ±0.95(2) ±0.50 0.00(2)
12 ±0.98 ±0.85 ±0.52(2) ±0.17(2) ±0.88(4) 0.00(4)
15 ±0.95(2) ±0.61(2) ±0.43 ±0.20(2) 0.00 ±0.88(5) 0.00(5)

h = 0.75 h = 1
2 ±0.77 ±0.87
3 ±0.98 0.00 ±1.09 0.00
4 ±0.86 ±0.68 ±0.87(2)
5 ±0.88(2) 0.00 ±0.99 0.00
6 ±0.85(2) ±0.60 ±0.87(3)
7 ±0.85(3) 0.00 ±0.95(3) 0.00
8 ±0.85(3) ±0.52 ±0.87(4)
12 ±0.84(5) ±0.33 ±0.87(6)
15 ±0.81(7) 0.00 ±0.90(7) 0.00
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symmetry of both the kernel function and prediction interval. However, for larger values of h,
the designs now have substantial numbers of repeated points. Larger values of h represent less
local behaviour, and hence fewer support points are required. Large values of h also result
in design points closer to the extremes of [−1, 1]; for larger h, these points will still have
substantial weight for predictions near the centre of the interval. However, unlike designs for
the uniform kernel, no points from these designs lie outside the prediction interval.

To assess the robustness of designs to the choice of kernel function, we calculate the efficiency
under the Gaussian kernel of a design found assuming the uniform kernel would be used for
the modelling. The efficiency is given by

Eff = exp
{

ΨG(ξu)−ΨG(ξG)
}
,

where ΨG(ξu) and ΨG(ξG) are the respective values of objective function (12) calculated using
the Gaussian kernel for two designs: (a) ξu, the DSI-optimal design under the uniform kernel;
and (b) ξG, the DSI-optimal design using the Gaussian kernel. Two examples are considered:
(i) h = 0.5 and n = 5 and (ii) h = 0.5 and n = 15. For both cases, design ξu can be found in
Table 1 and ξG in Table 2. For case (i), the two designs have very similar design points and
the uniform kernel design has very high efficiency of 0.998. For case (ii), the uniform design
has a substantially greater number of distinct design points than the design found using the
Gaussian kernel but still has high efficiency of 0.932.

In general, designs found for the Gaussian kernel may not perform well under the uniform
kernel, especially for large n, as they have fewer than nmin distinct design points. Hence,
designs for the uniform kernel are more robust to the choice of kernel function.

5 Application to the tribology experiment

We now demonstrate the DSI-criterion using simulated data sets motivated by the Tribology
experiment and assess the performance of the resulting designs. Recall that the aim of the
experiment was to predict the wear curve over an interval. For each of the two runs of the
process (Figure 1), the original data sets had 1900 data points, to which we fit local linear
regression models. The bandwidths, h = 0.2 and h = 0.1 for runs 1 and 2, respectively, were
chosen “by eye” to achieve adequate descriptions of the mean response.

DSI-optimal designs for these two bandwidths are given in Table 3 for the Gaussian kernel
and a variety of values of n. For design selection, we scaled the prediction interval to [−1, 1].
Notice once again the symmetry of the designs. For these relatively complex curves and
smaller bandwidths, the optimal designs have many distinct points; the designs for h = 0.1
have more distinct points than the designs for h = 0.2.

To allow assessment of the performance of these designs relative to using all the points in the
original data set, we simulate wear observations from independent normal distributions with
mean given by the local linear regressions (Figure 1) and variance 2.25×10−8, commensurate
with background variability exhibited by the process. We then compared the local linear
regression models obtained from the DSI-optimal designs and the whole data sets. Figure 2
shows the smoothed fits for these runs, using h = 0.2 and h = 0.1, respectively, for both the
whole data set and the data from the corresponding DSI-optimal designs with n = 25 (run
1) and n = 30 (run 2).
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Table 3: Further DSI-optimal designs for predicting over [−1, 1] using a Gaussian
kernel for n design points and bandwidth h. When design points are repeated,
the number of repetitions is given in parentheses

n h = 0.1
15 ±0.98 ±0.81 ±0.67 ±0.53 ±0.40 ±0.27 ±0.13 0.00
20 ±0.99 ±0.87 ±0.75 ±0.66 ±0.55 ±0.45 ±0.35 ±0.25

±0.15 ±0.05
25 ±0.99 ±0.94 ±0.77(2) ±0.63 ±0.58 ±0.48 ±0.41 ±0.32

±0.24 ±0.16 ±0.08 0.00
30 ±0.98(2) ±0.81(2) ±0.71 ±0.60(2) ±0.50 ±0.42 ±0.39 ±0.26(2)

±0.16 ±0.09 ±0.05

h = 0.2
15 ±0.95(2) ±0.61(2) ±0.43 ±0.20(2) 0.00
20 ±0.94(3) ±0.57(3) ±0.38 ±0.16
25 ±0.96(3) ±0.79 ±0.54(4) ±0.21(3) 0.16

For run 1, the prediction from the DSI-optimal design with n = 25 points slightly over-predicts
for x ∈ [600, 1200]. The choice of h = 0.2 for this run perhaps over-smoothes the data in this
sub-interval. However, a smaller choice of h leads to under-smoothing for larger values of x.
For run 2, the DSI-optimal design with h = 0.1 and n = 30 provides a reasonably accurate
fit.

To assess quantitatively the performance of the DSI-optimal designs, we calculated “moving
window” mean squared errors (MSEs):

δi =
k=i+100∑
k=i−100

[ĝ(xk)− yk]2 , i = 101, . . . , 1800 . (19)

For each run, (19) was calculated for the whole data set, labelled δi(w), and the DSI-optimal
design, labelled δ(ξ). For an overall comparison, we used the average standardised difference

∆̄ =
1

1700

1800∑
i=101

∆i ,

where

∆i =
δi(ξ)− δi(w)

δi(ξ)
. (20)

In all these comparisons, it should be recognised that a DSI-optimal design was found to
minimise the prediction variance and not the mean squared error.

For run 1, Figure 3 shows the fitted curves from DSI-optimal designs with n = 15, 20, 25
points and h = 0.2, the fitted curves for the whole data set, and plots of δi for the optimal
designs and the whole data set. Figure 4 gives equivalent plots for run 2 with DSI-optimal
designs for n = 15, 20, 25, 30 points and h = 0.1.

For both runs, there is little qualitative difference between the regression curves for the optimal
designs with different numbers of runs (Figures 3(a) and 4(a)). The moving window MSEs,
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Fig 2: Simulated data (small blue dots) and DSI-optimal designs (large black
dots) for n = 25 (run 1) and n = 30 (run 2) with smooth fitted curves using the
whole data set (red) and the data from the design points (black)

13



500 1000 1500 2000 2500
1

2

3

4

5

6
x 10−3

x

(a)

500 1000 1500 2000 2500
1

2

3

4

5

6
x 10−3

x

(b)

500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1.2
x 10−5

x

M
S

E

(d)

500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1.2
x 10−5

x

M
S

E

(c)

Fig 3: Run 1: Smooth fits from local linear regressions and MSE plots (a) ĝ(x)
using data corresponding to DSI-optimal designs with 15 (blue), 20 (green) and
25 (red) design points, (b) ĝ(x) for the whole data set, (c) MSE for ĝ(x) for 15,
20 and 25 design points and (d) MSE for ĝ(x) for the whole data set

δi, for each design (Figures 3(c) and 4(c)) are two-or three-orders of magnitude smaller than
the mean predictions, reflecting the strong signal to noise ratio. The MSE for the whole data
set for each run (Figures 3(d) and 4(d)) is of similar magnitude to that obtained from the
optimal designs. The common peaks in the plots for δi, in the sub-interval [600, 1200] for run
1 and [1000, 1500] for run 2, are indicative of areas where prediction is harder, for example
where the curve has its steepest slope for run 2.

The average standardised difference ∆̄ is smallest for run 1, ∆̄ = 0.189, when n = 15, and
smallest for run 2, ∆̄ = 0.166, when n = 25. While it would be expected that larger designs
would produce smaller values of ∆̄, it should be noted that these results are for a single
simulated set of data. A larger simulation study would likely produce more intuitive results.

5.1 Robustness of prediction to bandwidth selection

In general, there is likely to be some uncertainty in the correct choice of bandwidth h when
designing an experiment. Even when studying run 1 and run 2, with data available, this
choice was not completely clear. To assess the robustness of the quality of the model fit from
DSI-optimal designs to the choice of h, we use run 2 and compare predictions from using
the whole data set and h = 0.1 (considered the best “by eye” choice of bandwidth) to the
predictions obtained from optimal designs found for h = 0.2 and h = 0.3.
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Fig 4: Run 2: Smooth fits from local linear regressions and MSE plots (a) ĝ(x)
using data corresponding to DSI-optimal designs with 15 (blue), 20 (green), 25
(red) and 30 (light blue) design points, (b) ĝ(x) for the whole data set, (c) MSE
for ĝ(x) for 15, 20, 25 and 30 design points, and (d) MSE for ĝ(x) for the whole
data set

Figures 5 and 6 show the predicted curves and moving window MSE (δi) for h = 0.2 and h =
0.3 respectively. Although overall the prediction error is still small, it is clear from Figures 5(a)
and 6(a) that for both h = 0.2 and h = 0.3, the local linear regression overestimates the
response on the left of the inflection point, and underestimates the response on the right of
the inflection point; that is, the prediction is over-smoothed. This is also clear from the plots
of δi (Figures 5(c) and 6(c)), where the peak values of δi from the misspecified optimal designs
are around 10 times larger than from the whole data set. Compare this to Figures 3 and 4,
where peak values of δi for the optimal designs are less than twice that from the whole data
set.

6 Concluding Remarks

We have presented a new optimality criterion, the DSI-criterion, for selecting designs to
enable accurate prediction across a predetermined interval using local linear regression. The
new designs have been compared and assessed. The criterion makes use of a weighted least
squares approximation to the local linear regression. For the uniform kernel and model (1),
with identically distributed errors, the approximation to the prediction variance made via
model (8) differs from the true variance only by a multiplicative constant. For the Gaussian
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Fig 5: Run 2: Smooth fits from local linear regressions and MSE plots (a) ĝ(x)
using data corresponding to DSI-optimal designs with 15 (blue), 20 (green), 25
(red) and 30 (light blue) points for h = 0.2, (b) ĝ(x) for the whole data set with
true bandwidth, h = 0.1, (c) MSE for ĝ(x) for 15, 20, 25 and 30 design points,
and (d) MSE for ĝ(x) for the whole data set

kernel, the approximation also makes an adjustment to the bandwidth.

A clear direction for future work, motivated by the Tribology application, is to find designs
that assume a varying bandwidth across the prediction interval. Such models and designs
would be better able to approximate responses that display marked differences in smoothness.
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Fig 6: Run 2: Smooth fits from local linear regressions and MSE plots (a) ĝ(x)
using data corresponding to DSI-optimal designs with 15 (blue), 20 (green), 25
(red) and 30 (light blue) design points for h = 0.3, (b) ĝ(x) for the whole data
set with true bandwidth, h = 0.1, (c) MSE for ĝ(x) for 15, 20, 25 and 30 design
points, and (d) MSE for ĝ(x) for the whole data set
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