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1 Introduction

The methods of experimental design described in the majority of the earlier
chapters are appropriate if the continuous response, perhaps after transfor-
mation, has independent errors with a variance that is known up to a multi-
plicative constant. (An exception is Chapter 5, which describes designs for
correlated errors). However, this is not a characteristic of the Poisson and
binomial distributions, where there is a strong relationship for these discrete
random variables between mean and variance. The main emphasis of this
chapter is on designs for generalized linear models appropriate for data from
these and other distributions.

The classic account of generalized linear models is McCullagh and Nelder
(1989). Issues in the design of experiments for these models are reviewed
by [Khuri et al| (2006); in addition to the methods of optimal experimental
design, they consider stochastic approximation (Robbins and Monro|, |1951)
and adaptations of response surface methodology (Box and Draper} 1963, and
Chapter 10 of this Handbook). Their emphasis is mainly on models with a
single explanatory variable. On the other hand, the review of Atkinson! (2006)
focuses on optimal design and models with several explanatory variables as,
to some extent, does the more recent review of Stuffken and Yang (2012),
where the emphasis is towards analytical results. Here we follow the approach
of [Atkinson,, but focus on more recent results and on computational methods.

The assumptions of normality and constancy of variance for regression
models enter the criteria of optimal design through the form of the infor-
mation matrix X’'X, where, as in other chapters, X is the n x p model,
or extended design, matrix. Other forms of information matrix arise from
other distributions. See |Atkinson et al.| (2014). Given the appropriate in-
formation matrix, the principles of optimal design are the same as those
described in earlier chapters. In designs for generalized linear models, the
asymptotic covariance matrix of the parameters of the linear model is of the
form X'U X, where the n x n diagonal matrix of weights U depends on the
parameters of the linear predictor, on the error distribution and on the link
between them. The dependence of the designs on parameters whose values
are unknown prior to experimentation means that, in general, designs for
generalized linear models require some specification of prior information.

In §2] we briefly review the class of generalized linear models, with par-
ticular emphasis on models for binomial, Poisson and gamma data. Some
fundamental ideas in optimal design of experiments are reviewed in §3], and
the optimality criteria employed in this chapter are introduced. We empha-
size the reliance of optimal designs on the unknown parameter values, and
discuss methods of overcoming this dependence. Locally optimal designs are



introduced in §4] for logistic models for binomial data with a single explana-
tory variable. In §5 we move on to designs for binomial, Poisson and gamma
data with several explanatory variables. This latter section also includes re-
sults on Bayesian designs. In g6, we discuss designs for dependent non-normal
data, for example, arising from blocked experiments, and demonstrate opti-
mal design for generalized linear mixed models through an example. In
we give some extensions and suggestions for further reading.

2 Generalized linear models

2.1 The family of models

The family of generalized linear models extends normal theory regression to
any distribution belonging to the one-parameter exponential family. As well
as the normal (with known variance), this includes the gamma, Poisson and
binomial distributions, all of which are important in the analysis of data.
The three components of a generalized linear model are:

1. A distribution for the univariate response y with mean pu.

2. A linear predictor n = f'(x)@ where f(x) is a p-vector of known func-
tions of the k explanatory variables x, and 6 is a p-vector of unknown
model parameters.

3. A link function g(u) =, relating « to the mean u.

The distribution of y determines the relationship between the mean and
the variance of the observations. The variance is of the form

var(y) = oV (), (1)

where ¢ is a ‘dispersion parameter’, equal to o2 for the normal distribution
and equal to one for the binomial and Poisson distributions. The variance
function V' (u) is specific to the error distribution.

The information matrix for a single observation at a point x is

M (z; 0) = u(x) f(z) f'(x) , (2)

with the weights for individual observations given by

u(w) = V() (j—ﬁ) . 3)

These weights depend both on the distribution of y and on the link function.



2.2 The normal distribution

The linear multiple regression model can be written as

E(y) =p=n=f'(x)0, (4)

where 1, the mean of y for given z, is equal to the linear predictor n. In (1),
V(p) = u(x) = 1 and, in this simple case, ¢ = o2

Important design problems arise with extensions to this model, particu-
larly those in which the variance is parameterized through a link function and
linear predictor, that may include parameters in common with the linear pre-
dictor for the mean (Muirhead, |1982; Magnus and Neudecker, |1988; |Atkinson
and Cook, [1995| and |[Fedorov and Leonov}, 2014, §6.3.1). Some references for
designs related to the extension of the model to include transformation of

the response and to transformation of both sides of the model are in §7]

2.3 Binomial data

For the binomial distribution, the variance function ([1)) is

Vip) = p(l —p). (5)
In models for binomial data with R successes in n observations, the response
y is defined to be R/n;. The link function should be such that, however
the values of  and @ vary, the mean p satisfies the physically meaningful
constraint that 0 < p < 1. We list four link functions that have been found
useful in the analysis of data.

1. Logistic:

n = log (ﬁ) : (6)

The ratio /(1 — p) is the odds that y = 1. In the logistic model the
log odds is therefore equal to the linear predictor. Apart from a change
of sign, the model is unaltered if “success” is replaced with “failure”.
For this canonical link, it follows from calculation of dn/du that

u(x) = p(l —p), (7)

a simpler form than for the other three link functions we shall discuss.



2. Probit:
n=2o"(u), (8)

where ® is the normal cumulative distribution function. This link has
very similar properties to those of the logistic link. In this case

_ @)
"= G- ey .

Here ¢ is the standard normal density.

3. Complementary log-log;:
n = log{—log(1 — p)}, (10)

for which

u(z) = “%’“‘){Mg(l e (1)

The complementary log-log link is not symmetric in success and failure,
so providing a model with properties distinct from those of the logistic
and probit links. Interchanging success and failure gives the following
log-log link.

4. Log-log:
n = log(—logp). (12)

A plot of these four link functions is in Figure 4.1 of McCullagh and Nelder
(1989). |Atkinson and Riani (2000, §6.18) describe a fifth link, the arcsine
link, which has some desirable robustness properties for binary data. In our
examples we only calculate designs for the logistic link. |Atkinson et al.| (2007,
§22.4.3) compare designs for logistic and complementary log-log links when
there is a single explanatory variable.

2.4 Poisson data

For Poisson data, where V(u) = p, we require that g > 0. The log link,
logpu = n, is standard for the analysis of Poisson data in areas such as
medicine, social science and economics; see, for example, |Agresti (2002, ch.
9), [Winkelmann| (2008), and [von Eye et al.|(2011). This link leads to models
with 1 = expn, which satisfy the constraint on values of p, and weights

u(x) = p.



2.5 Gamma data

The gamma family is one in which the correct link is often in doubt. The
physical requirement is again that g > 0. A useful, flexible family of links
that obeys this constraint is the Box and Cox family, in which

_ [ =1/ (A#£0)
9(pn) = { log jt (A=0). (13)
See Box and Cox] (1964) for the use of this function in the transformation of
data.

Differentiation of combined with shows that the weight for the
gamma distribution with this link family is

u(x) = . (14)

When X = 0, that is for the log link, the weights in are equal to one. It
therefore follows that optimal designs for gamma models with this link and
A = 0 are identical to optimal designs for regression models with the same
linear predictors. Unlike designs for binomial and Poisson generalized linear
models, the designs when A = 0 do not depend on the parameter 6.

This link is seemingly equivalent to the power family of links

g(p) = p", (15)
for which differentiation shows that

11 11
K2 p2e K22

u(e) = (16)
Since 1/k? is constant over X, the optimal design depends on 7, but not on
k. The situation is similar to that for normal theory regression, in which
D-optimal designs are independent of the value of the variance o2, although
the information matrix is a function of that parameter. In we discuss
the relationship of the designs produced by these two links.

The gamma model is often an alternative to response transformation (§7)).
In particular, with a log link, it may be hard to distinguish the gamma from
a linear regression model with logged response. A discussion is in §§8.1 and
8.3.4 of McCullagh and Nelder| (1989)) with examples of data analyses in §7.5
of [Myers et al.| (2010).



3 Optimal experimental designs

3.1 Theory

The first exposition of optimal design in its modern form is Kiefer| (1959),
although the subject goes back to Smith| (1918) (see Chapter 1 , especially
§1.9.3). Book length treatments include Fedorov| (1972), Pazman| (1986])
and [Pukelsheim| (1993)). The focus of [Silvey| (1980) and |[Fedorov and Hackl
(1997) is on the mathematical theory; |Atkinson, Donev, and Tobias| (2007)
and Berger and Wong| (2009) are more concerned with applications, whereas
Goos and Jones| (2011]) introduce theory and examples via the JMP software.
Pronzato and Pazman| (2013)) present the theory of optimal design for non-
linear models, while Fedorov and Leonov]| (2014) illustrate their theory with
pharmaceutical applications, particularly dose finding.

As in §3.1.2 of Chapter 2, where interest was in linear models, we let an
experimental design £ place a fraction w; of the experimental trials at the
conditions x;. A design with ¢ points of support is written as

g:{wl wz...xt}’ (17)

wp Wy...Wt

where w; > 0 and Z';:l w; = 1. There are thus two sets of weights: w;
which determine the proportion of experimentation at x; and wu(x;) which,
from (2)), partially determine the amount of information from observations
at that point.Any realisable experimental design for a total of n trials will
require that the weights are ratios of integers, that is w; = r;/n, where r; is
the number of replicates at condition x;. Such designs are called ezact and
are labeled d,,. The mathematics of finding optimal experimental designs
and demonstrating their properties is greatly simplified by consideration of
continuous designs in which the integer restriction is ignored.

The resulting design is a list of conditions under which observations are
to be taken. The order in which the observations are made is usually also
important; for example, the order should be randomized subject to any re-
strictions imposed by, for example, blocking factors (§6.2)).

Optimal experimental designs minimize some measure of uncertainty of
the parameter estimators, typically a function of the information matrix.
They require the specification of

1. A model, or set of models, of interest. For generalized linear models
the specifications will include a set of parameter values @ € ©, perhaps
with an accompanying prior distribution p(8).



2. A design criterion; for example, the minimization of a function of one
or more information matrices.

3. A design region X C R* to which the x; belong.

The information matrix for the design  with ¢ support points is, from (2)),

M(&; 0) = ZWM(“%; 0) = Zwiu(mi)f(wi)f/(ﬂfi)- (18)

As we are concerned with generalized linear models, the parameter values
enter only through the GLM weights u(x;).

For continuous designs we consider minimization of the general measure of
imprecision W{M (&; €)}. Under very mild assumptions, the most important
of which are the compactness of X and the convexity and differentiability of
U, designs that minimize ¥ also satisfy a second criterion. The relationship
between these two provides a ‘general equivalence theorem’, one form of
which was introduced by [Kiefer and Wolfowitz (1960). See §2.3 of this book
for a discussion of such theorems for linear models.

Let the measure £ put unit mass at the point & and let the measure &~
be given by

e =(1-a)k+af (0<a<l) (19)
Then, from (18)),

M 0) = (1 - a)M(& 0) +aM(&; 0). (20)
Accordingly, the derivative of ¥ in the direction £ is

U(w,€ 0) = Tim [W{(1-a)M(E; 0) +aM(E 0)) ~ W{M(S 0)}]. (2)

The values of M (§; ) and of the Fréchet derivative ¢ (x,&; ) depend

on the parameter value 0, as will the design £* minimizing W{M (§; 0)}.

Variation of £* with @ is one of the themes of this chapter. In order to

incorporate uncertainty in @ we define (pseudo) Bayesian criteria and state

the equivalence theorem in a form that incorporates the prior distribution
p(80) through use of

(e} = EpU{M(E; 0)} = / W{M(E 0)}p(0)do. (22)

and



The General Equivalence Theorem states the equivalence of the fol-
lowing three conditions on £*: (24)

1. The design £* minimizes ¥ (§).
2. The design £* maximizes the minimum over X of ¢ (x, &).

3. The minimum over X’ of ¥ (x, £*) is equal to zero, this minimum occur-
ring at the points of support of the design.

As a consequence of 3, we obtain the further condition:
4. For any non-optimal design ¢ the minimum over X" of ¥(x,¢) < 0.

The proof of this theorem follows Whittle| (1973). See (Chaloner and Larntz
(1989) and Woods and Lewis (2011]) for general equivalence theorems devel-
oped for, and applied to, optimal designs for generalized linear models.

As we illustrate later, the theorem provides methods for the construction
and checking of designs. However, it says nothing about ¢, the number of
support points of the design. If p(@) is a point prior, putting all mass at
a single value 6, the designs are called locally optimal. A bound on t can
then be obtained from the nature of M (&; ), which is a symmetric p X p
matrix. Due to the additive nature of information matrices (18), it follows
from Carathéodory’s Theorem that the information matrix of a design can be
represented as a weighted sum of, at most, p(p+1)/2+1 rank-one information
matrices. The maximum number of support points is therefore p(p +1)/2 +
1. A careful discussion is given by [Pukelsheim| (1993, §8.3), with a shorter
treatment by [Fedorov and Leonov| (2014, §2.4.1) who state a simple and
usually satisfied condition under which the maximum number of support
points reduces to p(p + 1)/2. In the examples that follow the number of
support points of optimal designs is usually appreciably less than this; often
as few as p is optimal. Of course, such designs with minimum support provide
no means of model checking (see . For more general priors p(@), the
number of support points may be larger, increasing with the variance of
the prior. |Atkinson et al. (2007, p. 300) give examples for one-parameter
nonlinear normal models in which the optimal designs have up to five support
points.



3.2 D-optimal designs

The most widely used design criterion is D-optimality (see Chapter 2) in
which W{M(&; 0)} = —log|M(&; )], so that the log determinant of the
information matrix is maximized. Then becomes

U(§) = —Eglog | M(E; 9)]. (25)

This (pseudo) Bayesian D-optimality criterion has been used to find designs
for generalized linear models by |Chaloner and Larntz| (1989) and Woods et al.
(2006), amongst others. See for a comment on the distinction between
such criteria and truly Bayesian designs.

Fedorov and Leonov| (2014, p. 68 and §10.1) provide the mathematical re-
sults, including matrix differentiation, required for calculation of the Fréchet
derivative . The expected derivative then becomes

V(&) = Eo{p—ul)f ()M (& 0)f(x)}
= p— Eo{u(@)f'(x)M (& 0)f(x)} . (26)

For locally D-optimal designs the number of support points ¢t may be between
pand p(p+1)/2+ 1. If t = p, the designs weights are w; = 1/p.

3.3 Design efficiency

Efficiencies of designs can be compared through the values of the objective
function (22)). If & is the optimal design for the prior py(@), comparison
is of the values of W{{;} and of U{{}, where ¢ is some other design to be
compared and both expectations are taken over the prior py(6).

There is a particularly satisfying form of efficiency for D-optimality when
p(0) is a point prior. Then from the locally D-optimal design maximizes
| M (&; 00)| and the efficiency of the design & is

[ IM(& 69)[ 7
EHD‘{|M<&;; eo>\} ' 27)

Raising the ratio of determinants to the power 1/p results in an efficiency
measure which has the dimensions of variance; a design with an efficiency of
50% requires twice as many trials as the D-optimal design to give the same
precision of estimation. If only one parameter is of interest, reduces
to comparison of the variances of the estimated parameters under different
designs (see §89.1 and 9.2 of Chapter 1 for a discussion of efficiency for



wider classes of designs and for functions of parameter estimates including
contrasts).

If the prior is not concentrated on a single point the optimal design has
to be found by taking the expectation of the determinant over the prior dis-
tribution. Usually this requires a numerical approximation to the value. The
efficiency in in addition requires calculation of the expectation of the
determinant for the design £. An informative alternative, which we illustrate
in §5.1.6} is to look instead at the distribution of efficiencies found by simula-
tion from the prior distribution. This procedure avoids taking expectations
since we calculate for each sampled value of ).

3.4 Parameter uncertainty

We illustrate the dependence of the locally optimal design on the value of
for logistic regression with a single explanatory variable in §4.1 An example
for two-variable logistic regression is in §5.1.5( and for two variable gamma

regression in §5.2.3l In addition to the Bayesian design of §5.1.6| we here list
some other approaches to parameter uncertainty.

3.4.1 Bayesian designs

Bayesian designs are found to maximize expectations such as . The ease
of calculation depends on the form of the prior p(€) and of U(.) as well as,
often crucially, on the region of integration ©. The easiest case is when
the @ have a multivariate normal distribution over R?, although numerical
approximation is still needed. Sometimes a transformation of the parameters
is required to achieve this simple structure for multivariate priors. For less
amenable cases, a standard solution is to sample from the prior distribution
and to use an average objective function. An example for a nonlinear model
is in §18.5 of |Atkinson et al.| (2007).

Designs maximizing expectations such as ignore the additional effect
of the prior information about @ on the information matrix and make no
assumption of a Bayesian analysis. The designs are accordingly sometimes
called pseudo-Bayesian. A discussion of Bayesian experimental design is
given by (Chaloner and Verdinelli (1995).

3.4.2 Sequential designs

Where possible, sequential experimentation can provide an efficient strategy
in the absence of knowledge of plausible parameter values. The usual steps
are:

10



1. Start with some preliminary information providing an estimate, or
guess, of the parameter values. This may lead to either a point prior
0, or a prior distribution p(8).

2. One or a few trials of the optimal design are executed and analysed. If
the new estimate of 0 is sufficiently accurate, the process stops. Other-
wise, step 2 is repeated for the new estimate and the process continued
until sufficient accuracy is obtained or the experimental resources are
exhausted.

An early example, for nonlinear regression, is Box and Hunter| (1965)), ex-
tended by Atkinson et al.| (2007, §17.7). [Dror and Steinberg (2008) developed

a Bayesian sequential design methodology for generalized linear models.

3.4.3 Minimax and maximin designs

The minimax approach overcomes dependence of designs on the unknown
value of @ by finding the best design for the worst case when the parameter
0 belongs to a set ©. A design &* is found for which

WAM(E")} = min max W{M(E; 0)}. (28)

In the criterion W(-) needs to be chosen with care. Suppose interest
is in D-optimality, with £*(6’) the locally D-optimal design for parameter
value ’. Unlike with linear models, the value of |[M{£*(0”); 6’}| depends on
the value of @’. Accordingly, the related design efficiencies are often used as
a criterion, when the maximin design £* is found to maximize the minimum
efficiency:

Effp(£) = max gleig Effp(&; 0").

A potential objection to these designs is that the minimax or maximin design
is often close to a combination of locally optimal designs for values of 8 at the
edges of the parameter space. If a prior distribution is available, such points
may have a very low probability; their importance in the design criterion may
therefore be over-emphasized by the minimax criterion. Providing adequate
performance in these unlikely worst case scenarios may greatly affect overall
design performance.

A computational difficulty is that such designs can be hard to find. Nu-
merical procedures are describe by |[Nyquist| (2013), Fedorov and Leonov
(2014, pp. 82 and p.130) and, in greatest detail, by Pronzato and Pazman
(2013} §9.3). Minimax designs for generalized linear models have been found
by Sitter| (1992) and |King and Wong (2000)). A practical difficulty is that the

11



designs may have an appreciable number of support points, some with very
low weights. Of course, approximations to the optimal design with fewer sup-
port points can always be evaluated, provided the optimal design has been
found.

3.4.4 Cluster designs

Some of the computational issues associated with finding Bayesian or mini-
max designs can be alleviated through the use of clustering of design points,
or other less formal techniques, to find designs that incorporate the overall
structure of the set of locally optimal designs. Cluster designs are found by (i)
sampling parameter vectors @ from a prior distribution; (ii) finding a locally
optimal design for each sampled vector; (iii) clustering the support points
of these designs; (iv) forming a new, robust design having equally weighted
support points that are the cluster centroids. See Dror and Steinberg (2006)).
Such methods are particularly effective in reducing computation when the
locally optimal designs are available analytically (Russell et al., [2009).

3.5 Small effects

If the effects of the factors are slight, the mean p; of each observation will
be similar, and so will each corresponding model weight u(x;). The informa-
tion matrix will then, apart from a scaling factor, be close to the unweighted
information matrix X'X and the optimal designs for the weighted and un-
weighted matrices will be close. Since the designs minimizing functions of
X'X are the optimal regression designs, these will be optimal, or near op-
timal, for generalized linear models with small effects (Cox [1988]). This is
in addition to the result of that regression designs are optimal for the
gamma model with log link.

4 Locally optimal designs

4.1 Binomial data: logistic regression in one variable

The logistic model is widely used for dose-response data when the response
is binomial. For example, [Bliss| (1935)) gives data from subjecting groups of
around 60 beetles to eight different levels of an insecticide. The response is
the number of beetles killed. The data are reported in numerous textbooks,
including |Agresti (2002])), |Collett| (2002), Dobson, (2001)) and Morgan| (1992).
The original analysis used a probit model, with more recent analyses prefer-
ring a logistic link. |Atkinson and Riani (2000, §6.14) use a goodness of link

12
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Figure 1: Logistic regression on a single explanatory variable. Response
functions for #; = 0.5,1 and 2 (the steepest curve). The D-optimal design
points e are clearly highly dependent on the value of 6;.

test to argue that a complementary log-log link is preferable; Atkinson et al.
(2007, §22.4) present locally optimal designs for both models.
With a single explanatory variable and the logistic link

log{p/(1 = p)} =n="00+ b1z (29)

Figure (1] shows these response curves for # = 0 and 8, = 0.5, 1 and 2. As 6,
increases, so does the rate of increase of the response at z = 0.

It is clear that optimal designs for the three sets of parameter values will
be rather different: experiments for values of x for which the responses are
virtually all 0 or 1 will be uninformative about the values of the parameters.
This intuitive result also follows from the weight u(z) (7)) which goes to zero
for extreme values of p. This result is also related to the phenomenon of
separation in the analysis of binary data (see Firth) 1993 and [Woods et al.|
2006), where a hyperplane of the design space separates the observed data
into zeroes and ones.

We start by finding the locally D-optimal design for the canonical case of
0 = (0,1). From §3.2| we know that the D-optimal design will have either
two or three support points. A standard way to proceed is to assume that
there are two, when, again from §3.2 each w; = 0.5. Further, with a response
symmetrical about zero, the design can also be assumed symmetrical about
zero. It is thus simple to calculate the D-optimal design within this class.
The equivalence theorem is then used to check whether the design is indeed
optimal. In this case, see Figure [ this is the correct form and the D-optimal

13



Table 1: D-efficiencies (%), of designs for one-variable logistic regression as
0, varies with 6y = 0. The design in column ¢ is optimal for the parameter
value in row j (100% efficiency when i = 7).

Design point z* (31
6, 3.086 1.5434 0.7717

0.5 100 7452 41.52
1 5756 100 74.52
2 572 57.56 100

design for a sufficiently large design region X is

« | —1.5434 1.5434
e={ T e )

that is equal weights at two points symmetrical about z = 0. At these
support points 4 = 0.176 and 1—0.176 = 0.824.

Although designs for other values of the parameters can likewise be found
numerically, design problems for a single & can often be solved in a canonical
form, yielding a structure for the designs independent of the particular pa-
rameter values (see §5.1.1). The translation into a design for other parameter
values depends, of course, on the particular 6.

For the upper design point in the linear predictor n = 0+ 1 X z has
the value 1.5434, which is the value we need for the optimal design whatever
the parameterization. If we solve for the n giving this value, the upper
support point of the design is given by

For linear regression the D-optimal design puts half of the design weight
at the two extreme values of X', whereas, for logistic regression, the design
does not span X, provided the region is sufficiently large. Note that as
01 — 0, the value of z* increases without limit. This is an example of the
result of (Cox (1988)) mentioned above that, for small effects of the variables,
the design tends to that for homoscedastic regression. In practice the design
region will not be unlimited and, depending on 6, the optimal design may
put equal weight on one boundary point and an internal point, or on the two
boundary points of X.

In addition to the plots of the probability of success u against = for three
values of 0, 0.5, 1 and 2, Figure (1| also shows the D-optimal design points.
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Derivative

Figure 2: Logistic regression on a single explanatory variable. Equivalence
theorem: derivative functions for three D-optimal designs for different values
of 6 assessed for #; = 1. Curves labelled by value of #;; e design points.

For the three parameter values we obtain design points of +3.0863, +1.5434
and +0.7717. The D-efficiencies of each for the other set of parameter values
are in Table [I] The most striking feature of the table is that the design at
+3.0863, that is for #; = 0.5 has an efficiency of only 5.72% when 6; = 2.
The explanation of this low efficiency is clear from Figure [I} the design
point is so extreme that the value of p when 6; = 2 is virtually 0 or 1, so
that the experiment yields little information. Clearly we need a compromise
design when the parameters are not approximately known. Note that this
comparison does not include the value of 6y, changes in which will make the
design asymmetrical about zero. A design robust to the values of 8 typically
involves more support points than does the locally optimal design. We give
an example in §5.1.6]

We conclude by showing how condition 3 of the Equivalence Theorem
can be used both to check the optimality of designs and to suggest
improvements to non-optimal designs.

Figure [2 plots the derivative functions ¥ (x, ) for the three designs,
assessed for #; = 1. The results therefore relate to the second line of Table
For #; = 1 the minimum of the function is at zero, the minimum occurring
at the points of support of the design. The design is therefore D-optimal.

For the other two designs the minima are both well below zero. The most
central set of design points are for §; = 2. Here the minima are around
42, indicating that the design points should be more extreme than they are.
Likewise, for 6; = 0.5, the design points are too extreme and the minimum
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of the function at the centre of the design region indicates that the design
should be shrunk. An important feature of the plot is that, for all three
designs, ¥(x,£) = 0 at the points of support of the design. In order to check
the optimality of designs it is necessary to search over X and determine the
minimum of the function, rather than just checking at the design points.

Although we have illustrated the use of ¥ (z,£) in the assessment of de-
signs, it can also be used in their construction. Sequential addition of design
points at the minimum of ¥ (z, £) leads to the D-optimal design. An example
of such sequential design construction is in §11.2 of |Atkinson et al.| (2007)).
A straightforward extension is to the adaptive construction of designs men-
tioned in where the parameters are re-estimated as observations be-
come available and one, or a few, trials added at the point maximizing the
criterion function. For D-optimality and addition of single observations, this
is achieved after N trials by addition of the point minimizing ¥ (z,&y) (Box
and Hunter, [1965)).

5 Optimal designs for two or more explana-
tory variables

5.1 Binomial data

5.1.1 Induced design region

As the information matrix is of a weighted form, design for the additive
linear predictor

k
77(1,') = ‘90 + Z ijj s (32)
7=1

is equivalent to (unweighted) design for the linear model

k k
E(y) = fov/u(@) + Y _ Oin/u(@)z;, = Opzo + > _ 02 (33)
Jj=1 J=1

Hence the original design region X can be transformed to the induced design

region Z for the induced variables zy, ..., z;. Clearly, Z depends on both X
and 6.

Ford et al.| (1992)) used this relationship with linear model design to pro-

vide geometric insight into the structure of designs for single variable gen-

eralized linear models. With one explanatory variable, X is a line segment

a < x < b. However, because in 20 = Vu(x), Z is of dimension 2.
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For the models for binomial data of and z € R, Z is a closed curve
similar to the “design locus” in Figure 2 of Box and Lucas| (1959)), the exact
shape of which will vary with 6. The results of [Ford et al. (1992) require
the careful enumeration of a large number of criteria and special cases. For
D-optimality they use results on the relationship between D-optimal designs
and the ellipse of minimum volume centered at the origin that contains Z
(Silvey and Titterington [1973; Sibson|, [1974; [Silvey, 1980)).

Ford et al| (1992) are concerned with exponential family linear mod-
els with a single explanatory variable. Mathematical results for the linear
predictor (33)) with more than one explanatory variable are not generally
available. An important limitation on the class of models for which results
can be expected comes from the form of which excludes interaction
and higher-order polynomial terms. We have written z; = \/u(x)z; and so
2, = Vu(x)rg. But zjz, # u(x)z;zy.

In we compute locally optimal designs for binomial data with linear
predictor for two variables. Views of the designs in X and in Z are quite
distinct, but both are informative about the structure of the designs. Those
in X relate the design points to the values of the response, whereas those in
Z show the design points at the extremes of the region and, for second-order
models, near centres of edges and at the centre of the region. The relationship
with response surface designs is clear, even if the mirror is distorted.

5.1.2 First-order models

The properties of designs for response surface models, that is with two or
more continuous explanatory variables, depend much more on the experi-
mental region than those where there is only one factor.

Although it was assumed in the previous section that the experimental
region X’ was effectively unbounded, the design was constrained by the weight
u to lie in a region in which g was not too close to zero or one. But with
more than one explanatory variable, constraints on the region are necessary.
For example, for the two-variable first-order model

log{p/(1 — p)} =n =6y + b1z1 + Oaza, (34)

with 8" = (0,7,7), all design points for which z; + z3 = 0 yield a value of
0.5 for p, however extreme the values of z.

We now explore designs for the linear predictor with the logistic link
for a variety of parameter values and X = [—1,1]?>. These and succeeding
designs were found by a numerical search with a quasi-Newton algorithm.
The constraints to ensure that x € X and on the design weights were enforced
using the trigonometric transformations listed in Atkinson et al. (2007, §9.5).
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Table 2: Sets of parameter values for first-order linear predictors in two
variables with the logistic link.

Set 0() 91 02

B1, 0 1 1
B2, 0 2 2
B3| 2 2 2
B4|25 2 2

Table 3: D-optimal designs for logistic models with the sets of parameter
values B1 and B2 of Table [2} w; design weights

Design for Bl Design for B2

U X Ty w; i T T w w?

1|-1 -1 0.204 0.119 0.1178 —1.0000 0.240 0.146
2 1.0000 —0.1178 0.240 0.854
3| 1 —1 0.296 0.500 1.0000 —1.0000 0.327 0.193 0.500
4| -1 1 0.296 0.500 | —1.0000 1.0000 0.193 0.327 0.500
5 —1.0000 0.1178 0.240 0.146
6 1 1 0.204 0.881 || —0.1178 1.0000 0.240 0.854

Four sets of parameter values are given in Table 2] D-optimal designs for
the sets B1 and B2 are listed in Table[3] The parameter values of B1 (0,1, 1)
are closest to zero. The table shows that the design has support at the points
of the 22 factorial, although the design weights are not quite equal. They are
so for the normal theory model and become so for the logistic model as #; and
0y — 0 with 6y > 0. At those factorial points for which zy + x5 =0, = 0.5
since ¢, = 6. At the other design points p = 0.119 and 0.881, slightly more
extreme values than the values of 0.176 and 0.824 for the experiment with a
single variable.

An interesting feature of our example is that the number of support
points of the design depends upon the values of the parameter 8. From
Carathéodory’s Theorem discussed in §3.1] the maximum number of support
points required by an optimal design is usually p(p+ 1)/2. Our second set of
parameters, B2 in which 8’ = (0,2,2), gives two four-point optimal designs,
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Table 4: D-optimal designs for logistic models with the parameter values B3
and B4 of Table [2} w; design weights

Parameter set B3 Parameter set B4
l T1i To; w; Mg T1; Ta; w; Hi

—1.0000 —0.7370 0.169 0.186 || —1.0000 0.5309 0.333 0.827
—1.0000 0.7370 0.331 0.814 || —1.0000 —1.0000 0.333 0.182
—0.7370 —1.0000 0.169 0.186 0.5309 —1.0000 0.333 0.827

0.7370 —1.0000 0.331 0.814

=W N =

with weights given by wZ(l) and wZ(Q) in Table |3| and support points where
@ = 0.146, 0.5 and 0.854. Any convex combination of these two designs,
aw!” + (1 — a)w'® with 0 < a < 1, will also be optimal, and will have six
support points, which is the value of the Carathéodory bound when p = 3.
These two component designs arise from the symmetry of the design prob-
lem; not only does 6; = 6, but also the design region is symmetrical in x;
and 5.

The D-optimal designs for the two remaining sets of parameters in Table
are given in Table These designs have respectively 4 and 3 points of
support. When 0" = (2,2,2), the design points are where y = 0.186 and
0.814. For 8 = (2.5,2,2) the minimum value of p, 0.182 at (—1,—1), is
sufficiently high that there are no experimental conditions for which © = 0.15.
The experimental values of p are 0.182 and 0.827. For this three-point design
for a three parameter model, the design weights w; = 1/3.

The relationship between the design points and the values of y are shown,
for parameter values B2 and B3, in Figure . For 0" = (0,2,2), one four-
point design for B2 is depicted by open circles, the other by filled circles;
the symmetry of the designs is evident. For 8’ = (2,2,2) there are again
four support points of the design, which now lie somewhat away from the
boundaries of the regions of high and low values of .

5.1.3 Induced design region for the logistic link

For the first-order model in k = 2 factors, with p = 3, the induced design
space Z is of dimension three. Two examples, projected onto z; and 2, and
thus ignoring zy = +/w, are given in Figure {4f for X' the unit square. In
the left-hand panel of the figure, 8 = (0,2,2) so that at the corner of X
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for which 7 = 2o = 1, n = 4 and p = 0.982. This is well beyond the
range for informative experiments and the projection of the induced design
space appears to be folded over. As a consequence, experiments at extreme
positions in Z are not at extreme points in X'. The results in the other panel
for ' = (2,2,2) are similar, but more extreme. For both sets of parameter
values the design points lie, as they should, on the boundary of the induced
design region.

These examples show the importance of both the design region and the
value of ¢ in determining the optimal design. In order to reveal the structure
of the designs as clearly as possible, the designs considered have all had ¢, =
65, and so are symmetrical in 7 and x2. When 6, # 65, both the design region
and the values of y are important in the resulting asymmetrical designs.
Asymmetrical designs also arise when the log-log and complementary log-log
links are used, since these links are not symmetrical functions.

X2

Figure 3: Support points for D-optimal designs for logistic models with pa-
rameter values B2 and B3 in Table 2] In the lightly shaded area u < 0.15,
whereas, in the darker region, g > 0.85. In the left-hand panel, one four-
point design for B2 is depicted by open circles, the other by filled circles.
The symmetry of the designs is evident.
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theta = (0, 2, 2) theta=(2, 2, 2)

0.2 0.4
0.0 0.2
I

z2
0.0
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-0.2
-0.2
I

-0.4
I

-0.4

-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2

Figure 4: Support points for D-optimal designs for logistic models with pa-
rameter values B2 (left) and B3 (right) of Table 2 in the induced design
region Z. For these first-order models all design points lie on the boundary
of Z.
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5.1.4 Theoretical results for a first-order predictor

Various authors have derived optimal designs for k£ > 1 for first-order linear
predictor for some special cases; see [Sitter and Torsney| (1995a)), |Sitter
and Torsney| (1995b)) and Torsney and Gunduz (2001)). |Yang, Zhang, and
Huang| (2011)) considered the case when the assumption of a bounded design
region X is relaxed by allowing one variable, say xj, to take any value in
R. As the D-optimality objective function is still bounded in this case, the
authors were able to provide a methodology to obtain a locally D-optimal
design analytically. We restate their corollary 1 for the special case of logistic
regression and D-optimality.

Theorem 1: (Yang et al., 2011)) For the logistic model with linear predic-
tor (32) and X = [—1,1]*"1 x R, a D-optimal design has 2% equally weighted
support points,

o — (T1gs -y Te—ryyap)  forl=1,... 21
! (T, oy Tmry, —ap) for l=2F"141, .. 2~

where

—1 if [==L—_7;
le:{ 1 if [gr=r=] is odd 1 k1,

1 if [54=] is even

[a] is the smallest integer greater than or equal to a, the numerator of the
fractions is | and af = n* —nf(k). Here, n* mazimises

2 dh(n)/dn F
! {hmm - h(n)]} !

where h = g~', the inverse of the logistic link function, and nf(k) = 6y +
k-1
> =1 Oz

This result has a fairly straightforward interpretation. If we fix the values
of k — 1 variables in the support points at the level combinations of a 2#~1
factorial design, then the selection of an optimal design reduces to a one
variable problem (the choice of the values to be taken by xj). Note that X
is such that each variable lies in an interval, rather than just taking the two
values +1.

To illustrate this result, Table [5| gives D-optimal designs on [—1,1] x R
for the sets of parameter values in Table[2 These designs are quite different
from the designs in Tables [3]and [, where the restriction of x5 to the interval
[—1,1] results in the designs having different numbers of support points,
different values for the supports points and different weights.
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Table 5: D-optimal support points from Theorem 1 (Yang et al.| 2011) for
parameter values in Table[2 For each design, the support points are equally
weighted.

Support points

Parameters Ty
Bl -1 —2.2229
—1 2.2229
+1 —0.2229
+1 0.2229
B2 -1 1.6115
-1 —1.6115
+1 —0.3886
+1 0.3886
B3 -1 0.6115
-1 —0.6115

+1 —1.3886

+1 1.3886
B4 -1 —0.3615
-1 0.3615

+1 —1.6386

+1 1.6386
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Figure 5: D-optimal designs for second-order logistic model as v varies (0 <
v < 2). Support points: numbers, v = 0; circles, 7 = 1; black dots v = 2;
and grey dots, intermediate values.

5.1.5 A second-order response surface

This section extends the results of earlier sections to the second-order re-
sponse surface model, again with two factors and again with the logistic link.
The purpose is to show the relationship with, and differences from, designs
for regression models. The D-optimal designs are found, as before, by min-
imizing —log |M (&; 0)|. With n = 9 and two-dimensional , the numerical
search is in 26 dimensions. However, once the structure of the designs is
established, with 8 of the design points on the edges of X (see Figure [5)
the search can be reduced to 18 dimensions, with the equivalence theorem
providing a check on this reduction.

To explore how the design changes with the parameters of the model we
look at a series of designs for the family of linear predictors

n= 60 + ’7(‘911'1 + ‘92[[’2 + 0121‘11'2 + 49111‘% + 02217%) with Yy Z 0, (35)

and design region X = [—1,1]?. The parameter v provides a family of sim-
ilarly shaped linear predictors which increasingly depart, in a proportional
way, from a constant value as « increases. When v = 0 the result of Cox
(1988)) shows that the design is the D-optimal design for the second-order
regression model, the unequally weighted 32 factorial design given in .

For numerical exploration we take 6y = 1, 61 = 2, 0 = 2, 15 = —1,
611 = —1.5 and 69 = 1.5. As ~ varies from 0 to 2, the shape of the response
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Figure 6: D-optimal designs for second-order logistic model. The values of
xo for support points 3, 6 and 9 of Figure |5 as v varies between zero and
two. The coding of the symbols is the same as in the earlier figure.

surface becomes increasingly complicated.

Figure 5| shows the support points of the D-optimal designs as v increases
from zero in steps of 0.1. The design points are labelled, for v = 0, in
standard order for the 32 factorial, with z; changing more frequently. The
figure shows how all but one of the design points stay on the boundary of the
design region; the circles and black dots are the support points for v = 1 and
2, respectively, with the grey dots indicating intermediate values. There is
little change in the location of the centre point, point 5, during these changes.
Initially the design has nine points, but the weight on point 8 decreases to
zero when v = 0.3. Thereafter, the design has eight support points until
v = 1.4 when the weight on observation 6 becomes zero.

Figure[6]serves to help interpret the behaviour of the design as «y increases,
showing the values of x5 for the three design points (3, 6 and 9) in Figure
for which z; = 1. Initially the values of 5 are those for the 3% factorial and
they remain virtually so until v = 0.6. Thereafter, they gradually converge
towards three more central values.
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Figure 7: Support points for D-optimal designs for the second-order logistic
model. Left-hand panel v = 1, right-hand panel v = 2. In the lightly shaded
area 1 < 0.15, whereas, in the darker region, > 0.85.

The relationship between the support points of the design and the values
of p is highlighted in Figure [7] where, as in Figure [3| the pale areas are
regions in which g < 0.15, with the dark regions the complementary ones
where p > 0.85. The left-hand panel of Figure [7] for v = 1, shows that the
8-point design is a distortion of a standard response surface design, with most
points in the white area and the remainder on the boundary of the design
region, some close to the contours of y = 0.15 or 0.85. In the numbering of
Figure |5, points 2 and 6 are on the edge of the design region where p is close
to 0.5. Points 3 and 9 are at higher values of p.

A similar pattern is clear in the seven-point design for v = 2 in the
right-hand panel of the figure; four of the seven points are on the edges of
the white region, one is in the centre and only points 3 and 9 are at more
extreme values of p.

The two panels of Figure [7] taken together explain the trajectories of the
points in Figure [5| as v varies. For example, points 1 and 4 move away from
(=1, —1) as the value of 1 at that point decreases, point 3 remains at (1, —1)
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until v is close to one and point 8 is rapidly eliminated from the design as
the value of p near (0, 1) increases with ~.

Further insight into the structure of the designs can be obtained from
consideration of the induced design region introduced in §5.1.3] Although,
as stated earlier, extension of the procedure based on to second-order
models such as (35)) is not obvious, it is still informative to look at the plot
the designs in Z space. The left-hand panel of Figure 22.8 of |Atkinson et al.
(2007) shows the eight-point design for v = 1 plotted against z; and z;
seven points lie on the edge of this region, well spaced and far from the
centre, which is where the eighth point is. The right-hand panel for v = 2
shows six points similarly on the edge of Z; the centre point is hidden under
the seemingly folded-over region near the origin.

In the induced design region these designs are reminiscent of response sur-
face designs, with a support point at the centre of the region and others at
remote points. However the form of Z depends on the unknown parameters of
the linear predictor, so this description is not helpful in constructing designs.
In the original space X we have described the designs for this second-order
model as a series of progressive distortions of designs with support at the
points of the 32 factorial. For small values of v the unweighted 3% factorial
provides an efficient design, with a D-efficiency of 97.4% when v = 0. How-
ever, the efficiency of this design declines steadily with ~y, being 74.2% for
v =1 and a low 38.0% when ~ = 2. If appreciable effects of the factors are
expected, the special experimental design methods of this section need to be
used. Further discussion of designs for two variable logistic models is given
by |Sitter and Torsney| (1995a)) with particular emphasis on the structure of
Z.

5.1.6 Bayesian D-optimal designs

We can also find Bayesian D-optimal designs, maximizing (25]), for response
surface designs and binomial data. Motivated by a food technology example,
Woods et al.| (2006) found designs for logistic regression with linear predictor

3 3 3
n(x) =060+ Y O+ Y Y Oymia;,
i1

i=1 j>i

with x; € [—1.2782,1.2782]. Here we find a Bayesian D-optimal design as-
suming independent uniform prior densities for the parameters in 6, defined
on the support

91,62 S [2,6], 60,63,9@‘ € [—2,2] for Z,j = 1,2,3.
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We approximate the expectation by the sample average across a 20 run
Latin Hypercube sample (see, for example, Chapter 19 and Santner et al.
2003, Ch. 6). Gotwalt et al. (2009) and [Woods and van de Ven (2011)
discuss and compare some alternative approaches for this approximation.

For this example, a simulated annealing algorithm (Woods, 2010) was
used to find an exact design, dig, with n = 16 points. The design is given in
Figure [8| and, in fact, has t = n = 16 support points and no replication. For
reference, Figure [§] also gives the design points of a 16 run central composite
design (CCD, see Chapter 10), d..q, with 8 factorial points, 6 axial points
with z; = £1.2782 and two centre points; see, for example, |Box and Draper
(2007). This design is standard for normal theory response surface studies
and is an obvious comparator for the Bayesian GLM design. In fact, a CCD
had been employed for the food technology example in previous experimen-
tation.

While there are some familiar features to the Bayesian D-optimal design,
including (near) centre points, there are also some distinct differences from
the CCD. These include the presence of extreme corner points in the D-
optimal design and, for z; and z,, fewer distinct levels (~ 3 for each of these
two variables).

The relative performance of the designs was assessed via a simulation
study. A sample of 1000 parameter vectors, 8, was drawn from the prior
distribution for 6. For each vector, we calculated the relative D-efficiency

1

M(dy); 69 "
Effp (1) = [ M(dio); 0| . l=1,...,1000. (36)
| M (deea); 0(1)|

The empirical cumulative distribution of the relative efficiency, Figure [9]
shows a dramatic difference in performance between the two designs. The
Bayesian D-optimal design is more efficient than the CCD for about 85% of
the sampled parameter vectors, and has efficiency of 1.75 or more for 50% of
the sampled vectors. The maximum relative efficiency is close to 7.

5.2 Gamma data
5.2.1 Theoretical results for first-order designs with the power

link

We use numerical examples to illustrate the great difference between designs
for gamma models and those for binomial responses of §5.1.2 The examples
are calculated using the power link. In this introductory section we present
the theoretical results of Burridge and Sebastiani| (1994)) for first-order mod-
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Figure 8: Two-dimensional projections of the Bayesian D-optimal design for
a logistic regression model (lower diagonal) and a central composite design
(upper diagonal).

els. Our numerical example of a first-order model is in §5.2.2) with an example
for a response-surface model in §5.2.3f We conclude with a brief comparison
of designs for the power link with those for the Box-Cox link.

If the design region for uncoded variables is of the form a; < ry < b;, the
region can be coded so that 0 < z; < 1 for j = 1,..., k. The requirement
that p > 0 for all non-negative x leads to a canonical form of the original
problem with §; > 0 for all j =0, ..., k, with at least one inequality. Since
the weights are monotonic in 7, the support points of D-optimal designs
as @ varies must then be some of the points of the 2* factorial. Which points
have non-zero weights depends on the values of the 6;. For effects large
relative to 6y, Burridge and Sebastiani (1994) provide the following theorem.
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Figure 9: Empirical cumulative distribution function of the relative D-
efficiency of the Bayesian D-optimal design compared to the central com-
posite design.

Theorem 2. (Burridge and Sebastiani, [1994)) For the coded design vari-
ables x;, the design which puts weights 1/(k+1) at each of the k+1 points

(0,...,0Y,(1,0,...,0Y,(0,1,0,...,0Y,...,(0,...,0,1)

is D-optimal for gamma regression, the power link and a first-order linear
predictor if, and only if, for alli,j =1,... k,

02 < 0,0,.

Thus, for ‘large’ effects a ‘one-factor-at-a-time’ approach is optimal. How-

ever, as the effects become smaller, the design approaches the 2* factorial in
line with the result of [Cox| (1988) discussed in §3.5] Of course, the weights
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Table 6: D-optimal designs for two-variable first-order model for gamma
responses with the power link; 8 = (1, x, x)’.

Design weights w;
r1 2 x=01 x=05 yxy=1

0271 0313  1/3
0252 0281 1/3
0252 0281 1/3
0225 0125 0

—_ - O O
— O = O

w; have to be found numerically. However, the numerical search is greatly
simplified by being restricted to the support of the 2* factorial. It is also a
great simplification that, as we showed in §2.5] the designs do not depend on
the value of x.

5.2.2 Examples of first-order designs with the power link

In both examples there are two explanatory variables. We only look at
symmetrical designs generated with 6; = 65 having the three values 0.1, 0.5
and 1. In all calculations 6y = 1. The resulting designs are in Table [6]

These results nicely illustrate the theoretical results of We have
parameterized the problem with 6; = 6 = x. For x = 0.1, that is with
small effects, the design is virtually the 22 factorial, with weights close to 1/4
ranging from 0.225 to 0.271. Increasing x to 0.5 leaves the support points
unchanged, but now the weights range, symmetrically of course in z; and
xg, from 0.125 to 0.3125, with the lowest weight on (1,1). When x = 1 we
have 0(2] = 0,60,, so that we are at the lowest value of x for which we obtain
a design with three support points. All weights are, of course, equal.

These designs were found numerically using a Quasi-Newton algorithm
combined with the transformations given in §9.5 of |Atkinson et al. (2007).
The general equivalence theorem was used to check the designs by evaluation
of the derivative function ¢ (x, &) over a fine grid in X. One point in the
construction of these designs is that with y = 1 the optimization algorithm
had not quite converged to the theoretical value after the default limit of
100 iterations, whereas around 10 iterations were needed for the other values
of x. The effect on the minimum value of ¥ (x, ) was negligible. A second
point is that, to five significant values, the weights for y = 0.5 were exactly
5/16, 9/32, 9/32 and 1/8. Such simple weights can be an indication that
theoretical results are possible. See Atkinson| (2010) and Dette et al.| (2012)
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Figure 10: Support points in the induced design region Z of D-optimal de-
signs for two-variable first-order model for gamma responses with the power
link; e design points

for an example in discrimination between polynomial regression models.

To conclude our discussion of this example, we look at the plots of the
design in the induced design region Z defined in . As the results of
Burridge and Sebastiani| (1994)) show, the boundary of Z is formed, for k£ = 2,
by straight line segments, as is shown in Figure There is none of the
curving over of the space of X’ that is caused by the nonlinear nature of the
GLM weights u(x;) for the binomial distribution that is evident in Figure

For small y the induced design region is virtually square, becoming less
so as x increases. The left-hand panel of Figure [10|is for y = 0.5, for which
the weight at @ = (1,1)" is 1/8. As x increases, the weight on this value
decreases. Insight about the case x = 1 comes from the results of Silvey
and Titterington| (1973) relating D-optimality to minimum volume ellipsoids
enclosing design regions. It follows that when x = 1 the values of z; and z, at
x = (1,1),say z1(1,1) and 25(1, 1), must be the same distance from the origin
as z1(1,0) and 29(1,0) (or 2z1(0,1) and 29(0,1)). Hence z(1,1) = 29(1,1) =
V/(2)/4. For larger values of x these values lie inside the circle and Z becomes
increasingly triangular. The design does not change as x increases above 1.

In these calculations we have taken x = 1. From the form of u(x) in ([L6]),
other values of k lead to identical figures, but with different numerical values
on the axes.
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Table 7: Parameter values for linear predictor with k = 0.5

Parameter set 90 91 92 911 022 012
G1 3.7 —-0.46 -065 —-0.19 —0.45 —0.57
G2 3.7 —0.23 —-0.325 —-0.095 —-0.225 —0.285

5.2.3 Second-order response surface with the power link

Atkinson and Riani| (2000, §6.9) use a gamma model to analyse data from
Nelson| (1981)) on the degradation of insulation due to elevated temperature
at a series of times. A second-order model is required in the two continuous
variables and a gamma model fits well with a power link with x = 0.5. We
scale the variables to obtain design region X = [—1,1]%. The linear predictor
is the quadratic

n =0+ 6z, + 222 + 91@% + 922353 + 012712, (37)

that is, with v = 1. Then the standard D-optimal design for the normal
theory regression model has unequally weighted support at the points of the
32 factorial: weight 0.1458 at the four corners of the design region, 0.0802 at
the centre points of the sides and 0.0960 at the centre of the region. This
design is optimal for the gamma model with log link and for the model with
the power link as the parameters in , apart from 6y, become small. We
take 0 to have the values given in Table[7], G1 being rounded from an analysis
of Nelson’s data.

The exact optimal 9-trial design for G1, found by searching over a grid of
candidates with steps of 0.01 in z; and zo, is in Table[8l This shows that, at
the points of the design, the minimum value of x4 is 1.90 and the maximum
14.59. The parameter values are thus such that we satisfy the requirement
w > 0.

As the left-hand half of Table |8 shows, the design has seven support
points. The points of the 22 factorial are in the upper part of the table. All
are included in the design, two being replicated. The other three support
points are slight distortions of some remaining points of the support of the
3% factorial. Figure [11] makes clear the virtually symmetrical nature of the
design, although the parameters are not quite symmetrical in value for x;
and .
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Table 8: Exact D-optimal designs for the parameter sets G1 and G2 of Table[7]

Design for G1 Design for G2
i T14 To; Ny i T14 T Ty i
1]-100 —-1.00 1 1296 | —1.00 —-1.00 1 13.32
2| —1.00 1.00 2 11.83 || —1.00 1.00 1 1274
3 1.00 —1.00 2 14.59 1.00 —1.00 1 14.14
4 1.00 1.00 1 190 1.00 1.00 1 645
5| 0.11 0.15 1 1246 | —1.00 0.00 1 14.71
6 0.26 1.00 1 538] —0.01 —-1.00 1 14.44
7 .00 029 1 7.07 0.07 0.09 1 13.33
8 0.08 1.00 1 9.66
9 1.0 0.09 1 11.01

To illustrate the approach of the design to the 32 factorial as the param-
eter values decrease we also found the D-optimal 9-point design for the set
of parameter values G2 in Table [7| in which all parameters, other than 6,
have half the values they have for design G1. As Table [§| shows, the range
of means at the design points is now 6.45 to 14.71, an appreciable reduction
in the ratio of largest to smallest response. The support points of the design
for G2 are shown in Figure [11| by the symbol X. There are now nine distinct
support points close to those of the 32 factorial. For G2 the three design
points in the lower half of the Table for G1 are moved in the direction of
the full factorial design. For linear regression the unweighted 3% factorial is
D-optimal.

5.2.4 Efficient standard designs for gamma models

We conclude our analysis of designs for the gamma model with second-order
predictor and a power link by briefly exploring how well the unweighted 32
factorial performs when there are nine trials by comparing both it and the
design for G2 with that for G1.

The D-optimal design for the less extreme parameter set G2 of Table[7]has
efficiency 97.32%, while the equi-replicated 32 factorial has efficiency 96.35%.
The main feature of these designs is how efficient they are for the gamma
model, both efficiencies being greater than 95%. The design for parameters
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Figure 11: Points for D-optimal 9-point designs for gamma models in Table
+, the points of the 32 factorial; o, G1 and x, G2. Points for G1 which are
replicated twice are darker.

G2 is for a model with smaller effects than G1, so that the design and its
efficiency are between those for G1 and the factorial design.

An indication of this example with a gamma response is that standard
designs may be satisfactory for second-order response surfaces. However,
Burridge and Sebastiani (1994) show that, for first-order models, full 2% fac-
torial designs, or their regular fractions (see Chapter 7), can be very inefficient
when the effects are strong and the optimal designs have only k£ + 1 points
of support.

5.2.5 Designs for the power link and for the Box-Cox link

We now briefly explore the relationship between designs for the power link
with weights given by and those for the Box-Cox link . We relate
the two through their dependence on the linear predictor 7.

From the weights for the power link can be written

{u(x)}™* =1, (38)

since the constant value of & is ignored. For the Box-Cox link, on the other

hand,

{u(x)} ™ = p*. (39)
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However, from

p= (14",
so that, for the Box-Cox link,

{u(x)} % = (1+ ) =1+ Xl + 0121 + ... + Opy) .

The condition in Theorem 2 of §5.2.1| that the one-factor-at-a-time design is
optimal therefore becomes

(14 \)* < \20,0; . (40)

An advantage of the Box-Cox link in data analysis is that it is continuous
at A = 0, becoming the log link. The search over suitable links to describe the
data therefore does not contain any discontinuity. In designing experiments,
on the other hand, a locally optimal design will be selected for a particular
A. The results of show that, if the power link is used, a value of k does
not have to be stated a priori. However, prior values will be required for
0. These will typically be ascertained from guessed responses as the factors
vary. Despite the absence of explicit reference to x in the design criterion,
the value will enter implicitly through the relationship between p and n .
Finally, shows that, as A — 0, the one-factor-at-a-time design will not
be optimal. Further, from the (39)), it follows that, under these conditions
the weights u(x) — 1 and the design will tend to the 2* factorial, even for
large values of the 0;.

5.3 Poisson data

D-optimal designs for Poisson regression with the log link, log u = 7, share
some similarities with the Gamma designs in In particular, for log linear
models with a first-order linear predictor,

k
logp=n="00+» 0;x;, (41)
j=1
the optimal design has a similar structure to those from Theorem 2.

There is only a moderate number of results on designs for Poisson re-
gression in the literature. For and k£ = 1, Minkin (1993)) found locally
optimal designs for estimating 6#;; see also Chapter 14 and the references
therein for more general results on models with one variable. For k = 1,2,
Wang, Myers, Smith, and Ye| (2006) investigated the dependence of locally
optimal designs on functions of the parameter values and Wang, Smith, and
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Figure 12: Support points for locally D-optimal designs for Poisson regression
with (41)) and @ = (0,r,7). Key: or =1, Ar =2, +r=3; x r=4; o
r = 5. All designs include the point (1,1).

Ye| (2006) developed sequential designs. For a single variable, Ford et al.
(1992) used a transformation of the design space to a canonical form, to-
gether with geometrical arguments along the lines of to find locally
optimal designs for a class of nonlinear models that included Poisson regres-
sion.

Russell et al.| (2009) addressed the problem of D-optimal design for
with £ > 1 and provided the following theorem.

Theorem 3. (Russell et al., 2009) A D-optimal design for Poisson re-
gression with l; < z;; < wu; and [0;(u; — ;)| > 2 (i =1,...,k) has the
k + 1 equally weighted support points
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r;, — c—e—ei, Z:L,I{I (42)
L1 = C,
for e; the ith column vector of the k x k identity matrix, © = 1,... k, and
c=(c1,...,cx), where ¢; =wu; if 6; >0 and ¢; = 1; if 0; < 0.

The proof of Theorem 3 is via a canonical transformation and an applica-
tion of the general equivalence theorem. Note that the D-optimal design does
not depend on the value of the intercept, 6y, and is invariant to permutation
of the factor labels. The requirement |0;(u; — ;)| > 2 is not overly restrictive
in practice; X = [—1, 1]* requires |6;] > 1,4 =1,..., k. In Figure , we give
the support points for £ = 2 and a number of example parameter vectors,
0 = (0,r,7). Notice the one-factor-at-a-time structure of the design and
how the support points tend towards (1,1) as r increases. Figure gives
the support points in the induced design space Z, projected into zi, zo and
defined from equation . The optimal support points lie on the boundary
of the induced space. Not only do the values of the z; increase with r, but
the induced design region itself becomes more elongated as r increases.

For |6;(u; — ;)| < 2, numerical investigation has found that both the
optimal support points and weights depend on 6y, in addition to the other
parameters. As expected, as |6;/60y| tends to zero, for i = 1,...,k, the D-
optimal design tends to the equally weighted factorial design.

For more general linear predictors, for example containing interactions or
quadratic terms, numerical search is required to find optimal designs. This
is also the case for Bayesian D-optimal designs except for the special case
of minimally-supported designs for , that is, designs with t = k + 1
support points. McGree and Eccleston| (2012)) provided theoretical results
for minimally-supported designs robust to a set of models of the form
defined through a discrete set of parameter vectors. We extend their result
to Bayesian minimally supported D-optimal designs.

Theorem 4: Assume a Poisson regression model with linear predic-
tor (41). The Bayesian D-optimal design among the class of minimally sup-
ported designs, minimising , 18 the locally D-optimal design for the
parameter vector 0* = E(0) provided |E(0;)(u; — ;)| > 2.

Proof: For a minimally-supported design, the model matriz

X =[f(x1),.... f(=)]
s p X p. Now the objective function can be written as
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Figure 13: Support points in the induced design space Z for D-optimal
designs for Poisson regression with and @ = (0,r,7). (a) r = 2; (b)
r=3;(c)r=4;(d) r=5.

u(E) = - / log | M (¢: 6)[p(6)d6 (43)

t
= —/210g|X|p(0)d0—/logHwiexp(m)p(B)dH
© © i=1

t

i=1 e
t

= —2log|X|— Z [log w; — nf]

i=1

= —log|M(& 6", (44)

39



where 0 = E(0) and nf = 05 + 2?:1 Oix;. The fourth line above follows as
1; s a linear function of @. The equality of and establishes that,
provided |E(0;)(u; — ;)| > 2, design is Bayesian D-optimal among the
class of minimally supported designs.

To illustrate Theorem 4, we find a Bayesian minimally supported D-
optimal design for and k = 5 factors with z; € [-1,1], 6y = 0 and
each 0; ~ U(a,b) (i = 1,...,5). The values of a and b are given in Table [9]
(a) in terms of a common parameter . Increasing « leads to more diffuse
prior densities. However, for any a > 2, the Bayesian minimally-supported
D-optimal design is given by the locally D-optimal design for ; = 0 and
0; = (a+b)/2 = (—1)FD(1 + a/2); see Table[g] (b).

Table 9: Bayesian minimally supported D-optimal design: (a) Ranges for the
uniform, U(a,b), prior densities for 6y, ..., 605; (b) Equally weighted support
points; 5 = [(a — 2)/(a + 2)] for a = 2,5, 10, 20.

(a) Parameter ranges (b) Support points
Limits T1 To T3 T4 Ts
Parameter a b 1 5 -1 1 -1 1
o I 1t+a 2 1 - 1 -1 1
0y —1-« —1 3 1 -1 B -1 1
0 1 1+a 4 1 -1 1 -8 1
0, S N | 5 1 -1 1 -1 f
0 1 1+a 6 1 -1 1 -1 1

We assess the performance of these designs through simulation of 10,000
parameter vectors from the uniform distributions defined by Table [9 (a) for
a = 2,5,10 and 20. For each parameter vector, we derive the locally D-
optimal design from Theorem 3, and then calculate the D-efficiency for
the design in Table [9] (b). The induced empirical cumulative distribution
functions are given in Figure

For relatively precise prior information (o = 2), high efficiency is main-
tained for all the samples from the prior distribution, with minimum effi-
ciency of 79% and median of 93%. As the prior distribution becomes more
diffuse (with increasing «), the induced efficiency distribution also becomes
more diffuse. For a@ = 5, the minimum and median efficiencies are 53% and
85% respectively; the corresponding summaries for o = 10 are 34% and 80%
and for a = 20 are 21% and 75%. The high median efficiencies maintained
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Figure 14: FEmpirical cumulative distributions for the D-efficiency of the
Bayesian minimally supported D-optimal design for four different prior dis-
tributions; see Table [0

for more diffuse distributions are not typical of minimally supported designs
in general (for example, see van de Ven and Woods, 2014 for binary data
designs). However, it seems the structure of the Poisson designs, with all
the support points on the boundary, makes Bayesian minimally supported
designs an efficient choice (see also McGree and Eccleston, 2012)

6 Designs with dependent data

There is a variety of practical experiments in which the observed responses
may be dependent; see also Chapter 5. Most obviously, and perhaps most
importantly, are experiments where there is a natural grouping in the ex-
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perimental units such that, given the same treatment, two observations from
within the same group are expected to be more similar than two observa-
tions in different groups. Common examples for non-normal data include
longitudinal studies in clinical and pharmaceutical trials (Diggle et al., |2002)
and blocked experiments in industry (Robinson et al.| [2004). Our exposition
in this section focuses on block designs but is equally appropriate for other
grouped experiments.

For experiments involving the observation of a continuous response that is
appropriately described by a normal distribution, there is, of course, a wealth
of literature on the design and analysis of blocked experiments for linear
models (see Part II of this book). There is also a considerable literature
on design for nonlinear models and dependent data, much of it stemming
from the world of pharmacokinetics/phamacodynamics (PK/PD) and the
seminal work of Mentré et al| (1997). For experiments with discrete data,
with a binary or count response, there are rather fewer results available,
although the results we describe below naturally share some similarities with
the PK/PD literature, particularly the so-called first-order approximation
(see Retout and Mentré, 2003/ and Bazzoli et al., 2010)).

As with linear models, the first decision is whether to model the block
effects as fixed or random. We will choose the latter option and take a mixed
model approach as: (i) in industrial experiments, the blocks are usually a
nuisance factor and not of interest in themselves; (ii) random block effects
allow prediction of the response for unobserved blocks; and (iii) pragmati-
cally, when finding optimal designs for nonlinear models, the use of random
block effects reduces the number of unknown parameters for which prior in-
formation is required. For example, with b blocks, a fixed-effects design would
require the specification of b — 1 block effects. See Stufken and Yang| (2012)
for locally optimal designs with fixed group effects and a single variable.

6.1 Random intercept model

To model the responses from a blocked experiment, we adopt the framework
of Generalized Linear Mixed Models (GLMMs; Breslow and Clayton, 1993)
and, in particular, apply random intercept models. We develop our frame-
work for b blocks each of equal size m. For the jth unit in the ith block,

yij|’yl-~7r(,uij), forizl,...,b;jzl,...,m,

where 7(+) is a distribution from the exponential family with mean p;; and
9(pij) = f'(2i;)0 + 7.
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Here g(-) is the link function and «;; is the ¢, jth combination of variable
values. As before, the vector f(x;;) holds known functions of the k variables
and 0 holds the p unknown regression parameters. The unobservable ran-
dom block effects ; are assume to follow independent N (0, 03) distributions,
with J,Qy known. Under this model, observations in different blocks are inde-
pendent. More general models including additional random effects, such as
random slopes, may also be defined.

6.2 Continuous block designs

We choose to generalise to include blocks of fixed size m through

)G G
5_{1011 wt}’

where (; € X™ is the set of design points that form the [th block (or “support
point”), 0 < w; < 1 is the corresponding weight; S°i_ w; = 1. See Cheng
(1995) and Woods and van de Ven (2011). For example, if K = m = 2, a
possible continuous design is

G=A{(=1L-1,01D} &={1-1,(-1,1)}
$= { 0.5 0.5 } ’

that is, one-half of the b blocks in a realised exact design would contain design
points 1 = o = —1 and z; = x5 = 1, and the other half would contain
design points 1 = 1,20 = —1 and xy = —1, 25 = 1.

6.3 Information matrix for a random intercept model

To apply the usual design selection criteria, for example, D-optimality, we
need to derive and evaluate the information matrix for 8. As observations in
different blocks are independent,

M(& ) =) wM((;T),
=1

where 7 = (60',02), and the information matrix for the /th block is, by

1Oy
definition,

0*log p(y,| T, ¢
M(CbT) = Eyl {_ ae(aé[ l)} )

where the m-vector y; = (i1, - - . .Yim)’ holds the responses from block (.

(45)
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Direct calculation of the expectation in is possible for small experi-
ments with binary data through

0 log p(y,| 7, )
M(Cl) T) - Z - T : p<yl|T> Cl) )
oy 0000

although both the marginal likelihood and its derivative will require numeri-
cal approximation (see Waite, |[2013]). For more practically-sized experiments,
this direct calculation will be computationally infeasible.

6.4 Approximating the information matrix using esti-
mating equations

For model estimation, the marginal likelihood can be approximated using
methods such as quadrature, Markov Chain Monte Carlo or the EM algo-
rithm (McCulloch et al., 2008). However, for the purposes of finding an
optimal design using numerical search, repeated evaluation of the informa-
tion matrix, or some alternative, is required. Hence, a fast approximation
to is needed.

An approximate variance-covariance matrix for @ is available from the
theory of estimating equations (see, for example, Godambe, [1991)). For a
GLMM, standard unbiased estimating equations are an extension of the score
equations for a GLM and have the form

t
ZU’ZXEAlVfl(yl — ) =0,
=1
where A; = diag [duw;/dni;], m; = f'(21;)0, and X, and p, are the m X p
model matrix and m x 1 mean vector defined for the [th block; V; is a
m X m weight matrix for the observations from the [th block. Depending
on the approximation, p; may be either the marginal mean response or the
conditional mean response given 7y, = 0.
The approximate variance-covariance of the resulting estimators is given

by

: -1
Var (é) ~ (; le;AlVl‘lAle> (46)

The inverse of this variance-covariance matrix can be used as an approxima-
tion to the information matrix M (£, 7).

Various different choices of V; and p; have been proposed, of which we
will discuss the following three:
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1. Quasi-Likelihood (QL): V; = Var (Y) and p;, = E(Y), the marginal
variance and mean; see Wedderburn| (1974). The marginal variance-
covariance matrix for Y, is generally not available in closed-form for
non-normal data. One notable exception is for the Poisson distribution,
for which |[Niaparast, (2009) and Niaparast and Schwabe| (2013]) used
quasi-likelihood to find D-optimal designs.

2. Marginal quasi-likelihood (MQL): V; = diag [Var(Y};)] + A;JA07,
with J = 11/, and p; = E(Y |y, = 0); see Breslow and Clayton| (1993).
Here, a linear mixed model approximation is used for the marginal
variance-covariance of Y;. This approximation has been used to find
designs for binary data by authors such as|Moerbeek and Maas| (2005)),
Tekle et al.| (2008) and Ogungbenro and Aarons) (2011)).

3. Generalized estimating equations (GEEs):

V= {diag[Var(Yj;)]}'”* R {diag [Var(¥;;)]}'"* ,

with R an intra-block marginal “working correlation” matrix, and p; =
E(Y |y = 0); see Liang and Zeger| (1986)). The matrix R is assumed
to be independent of  and usually chosen to have a standard form, for
example, exchangeable or known up to a small number of correlation
parameters. For discrete data, it is in fact often impossible for either
of these two assumptions to hold but the resulting estimators can be
relatively efficient compared to a full maximum likelihood approach
(Chaganty and Joe, 2004). Methodology for D-optimal designs using
this approach was developed by Woods and van de Ven| (2011).
Note that for each of these approximations, if 03 — 0 (or equivalently,
R — I), the variance-covariance matrix for Y; reverts to that for a simple
GLM. Waite and Woods| (2013)) developed, assessed and compared a variety
of methods of approximating M to find D-optimal designs for a GLMM.

6.5 Comparison of approximations

We use a small example to perform a simple comparison of designs from
the three approximations in the previous section. Consider an experiment in
blocks of size m = 2 with a single variable x to collect count data. Conditional
on the random block effect, we assume Y;|y; ~ Poisson(u;;) and we choose
a second-order predictor and the log link

log(pij) = 1 = i + 0y + 012 + 0927 |
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for x € [—1,1]. For the purposes of finding designs, we assume point prior
information and set 6, = 0, #; = 5 and 6, = 1. The random block effect has
distribution ~; ~ N (0, 03) fori=1,...,band 03 =0.5.

For the log link, A; = diag{s;}. We consider each of the three ap-
proximations, with py; representing either the marginal or conditional mean
response for the jth point in the Ith block of support (I = 1,...,t;5 =
1,...,m).

Quasi-Likelihood: Here, jy; = E(Y};) = exp (7713‘ + 03/2), the marginal mean
response, and

Vi = diag {exp (s +02/2)} + {exp (62) — 1} s
where f1; = {exp (n; + 02/2) };n:l

Marginal Quasi-Likelihood: For this approximation, j; = exp (;;), the con-
ditional mean response given 7, = 0, and

V= diag {exp (1)} + o2y,
where p; = {exp (le)};n:r

Generalized Estimating Equations: Now, p; = exp(n;), the conditional
mean response given 7y; = 0, and

V, = diag {exp (n;)}2 Rdiag {exp (m;;)}? ,

where the working correlation matrix for this example is

v (1)

Table 10: D-optimal continuous block designs with blocks of size m = 2
for a Poisson example and Quasi-Likelihood, Marginal Quasi-Likelihood and
Generalized Estimating Equations approaches (to 2 decimal places).

Support blocks
Block 1 Block 2 Block 3
QL/MQL (0.10, 0.88) (0.75, 1) -

Weights 0.5 0.5 -
GEE (0.02,0.84) (0.72,1) (0.26, 1)
Weights 0.38 0.35 0.27
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Table 11: Efficiencies of three optimal designs under three approximations
to the information matrix.

Approximation
Design  QL/MQL GEE
QL/MQL 1 0.90
GEE 0.87 1

For the GEE design, we redefine 7 = (6, ).

Locally D-optimal designs under the three approximations are given in
Table [I0] Note that the same design was found under the QL and MQL
approximations and that, for the GEE design, o = 0.5 was chosen so that
the working correlation closely matched the average intra-block correlation
(= 0.49) from the other design. Table|11] gives the D-efficiencies of each
design under each approximation; the GEE design is 87% efficient under the
QL and MQL approximations, whilst the QL/MQL design is 90% efficient
under the GEE approximation.

Optimality of these designs can be confirmed, as in §3.1] via the applica-
tion of a multivariate equivalence theorem; see Atkinson (2008b) and Woods
and van de Ven| (2011)). A necessary and sufficient condition for a design &*
to be locally D-optimal is

P, 7) = p —trace {M (C;7) M~ (£57)} >0, (47)

for all ¢ € X™. This condition can be verified numerically; Figure [L5| plots
the derivative function for each of the three approximations, with the support
points of the optimal designs marked. Notice that: (i) the support points
occur at minima of the derivative surface, with (x,*; 7) = 0; (ii) with
blocks of size m = 2, the derivative function must be symmetric in the line
x;1 = Tpo; and (iii) that the derivative surfaces for QL and MQL are very
similar.

7 Extensions and further reading

Although we have described designs for three types of response and several
link functions, interest in designs for generalized linear models continues to
focus on binary responses and the logistic link. Much of this reflects the
rapid growth of applications of the discrete choice models described in detail
in Chapter 29.
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(top left), MQL (top right) and GEE (bottom left) approximations.
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There is also appreciable interest in design for logistic regression in medi-
cal statistics, particularly drug development. A typical problem is to find the
dose giving a specified probability of toxicity. The natural way to proceed is
the use of a sequential design as described in The appropriate design
criterion is c-optimality, which designs to estimate this dose with minimum
variance. Such designs for nonlinear regression models are exemplified by
Atkinson et al.[ (2007, §17.5) and by Ford et al.| (1992) for GLMs. Often, how-
ever, the locally optimal design has a single support point at the estimated
dose. The sequential design may then fail to provide sufficient information
to guarantee identification of the required dose (Pronzatol 2000; O’Quigley
and Conawayl, 2010)). The designs need to provide sufficient perturbation in
the experimental conditions to ensure convergence.

The designs we have exemplified, particularly for first-order models, of-
ten have the number of support points equal to the number of parameters.
They therefore fail to provide any information for model checking and choice.
Designs for discriminating between two regression models were introduced
by [Fedorov and Malyutov| (1972) and by |Atkinson and Fedorov| (1975)) who
called them T-optimal. Ponce de Leon and Atkinson (1992) and [Waterhouse
et al| (2008) extend T-optimality to GLMs. A general design criterion for
discrimination between models using Kullback-Leibler distances is that of
Lépez-Fidalgo et al| (2007). A potential disadvantage of these designs is
that they focus exclusively on model discrimination. Compound designs for
the joint problem of parameter estimation and model discrimination, called
DT-optimal, are given, for regression models, by |Atkinson| (2008a). Water-
house et al.| (2008) also attend to the quality of parameter estimates, but not
through use of a compound criterion. D-optimal designs robust to the form
of the linear predictor were developed by |Woods et al. (2006) and Woods
and Lewis (2011]).

In some applications it is not necessary to establish a model that holds
globally. In the context of dose finding, (O’Quigley and Conaway| (2010)
recommends the use of a model that has adequate local behaviour. A more
formal approach to model uncertainty is in Chapter 24. In particular, |Li and
Wiens| (2011)), considers approximate models in dose response experiments,
whereas Wiens (2009) provides robust designs for discrimination between
regression models.

In we mentioned that response transformation is sometimes an alter-
native to the use of a gamma model. |Atkinson and Cook| (1997) find optimal
designs for estimation of the transformation in linear models whereas |Atkin-
son| (2005) studies designs for transforming both sides of a nonlinear model.

Finally, we note that some interesting models for non-normal responses
have a structure as in but with a predictor which is nonlinear in the
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parameters. Optimal designs for one particular generalized nonlinear model
are given by Biedermann and Woods| (2011]).
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