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IN FRP SHIP STRUCTURES 

by Holly Jacqueline Phillips 

This work deals with assessing the significance of delamination-type defects in FRP 
ship structures. The purpose of the work has been to identify the internal structural 
load path that leads to failure and the tolerance of the structure to delamination cracks 
once these have formed. The approach adopted in the investigation seeks to link 
material behaviour at laminate and structural levels and to compare stress-based 
criteria with fracture-based parameters. 

At the laminate level, analytical models have been developed to examine the stability 
of delaminated beam panels. The influence on delamination on material stiffness 
properties and critical energy release rates have also been assessed. It has been shown 
that delaminations close to the material or structural surface are more likely to 
propagate than deeper ones. A similar study has been carried out for delaminations in 
typical generic structural elements such as top hat stiffeners and tee joints. In this 
instance the analysis was carried out using finite element techniques. The structural 
modelling confirmed the trends observed at laminate level and also pointed to defects 
in curved regions of the structure (e. g. roots of the overlaminate in a top hat stiffener 
or tee joint) as being more susceptible to propagation. 

The second major facet of this work deals with comparing stress- and fracture-based 
criteria in context of damage tolerance. Here the focus has been entirely on the 
structural elements. Response of both the tee joint and top hat stiffeners to loading 
conditions that may be encountered in service has been studied. The finite element 
analysis has revealed that the primary causes for the structural delaminations are the 
high, through-thickness stresses in the overlaminate. The modelling has been based on 
evaluating G and J-integral for different delamination cracks in the tee joints and top 
hat stiffeners. A detailed parametric study has been conducted to examine the 
influence of crack location, boundary conditions, loading regimes and material choice 
on the likelihood of crack propagation. The study has revealed close agreement 
between high through-thickness stress regimes and large G values for cracks in such 
locations. 

Overall, the results of this work form the first stage in enabling ship operators to 
draw-up guidelines for repair of defects in FRP structures. 
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1. INTRODUCTION 

Fibre Reinforced Plastics (FRP) have been used in the marine industry for over 50 years. 

Small craft were constructed out of Glass Reinforced Plastics (GRP) using hand lay-up 

techniques and mainly cold-cure polyester resin with E-Glass reinforcement. Over the 

last twenty years, the use of plastics in the marine industry has increased dramatically. 

The main advantages of using FRP over the more traditional material of wood are that 

E-Glass and polyester resin are less costly, there are reduced maintenance and repair 

costs and probably most importantly, complex shapes can be easily fabricated. Table 1.1 

shows typical mechanical properties of selected FRP laminates (Shenoi & Wellicome). 

The construction of 
larger 

vessels over about 40 m in length traditionally incorporate 

steel since it is cheap. However, fishing boats are now more commonly built out of FRP 

owing to the dramatic weight savings over steel which allows for greater speeds to be 

achieved. This is a very important factor since fishing boats of UK waters commonly 

fish between 20 and 30 miles off shore. In addition, GRP has advantages in naval 

applications. For example, GRP is used in the construction of naval mine sweepers 

owing to its low magnetic signature. This is important so as not to activate any mines 

in the vicinity of the ship. GRP is, like any other structural material, subject to damage. 

Damage in laminated composites can be caused as a result of environmental effects such 

as strength and stiffness losses due to humidity, temperature, impact, wave slamming 

loads and cyclic loads or residual stresses due to in-built thermal stresses resulting from 

the manufacturing processes. Residual stresses can be avoided by controlling the curing 

temperature and also the speed at which the layers of the laminate are built up. In some 

cases, only one layer of laminate per hour can be built up to allow for the increase in 

temperature due to the release of exotherms. The actual damage can take the form of 

resin matrix cracks, fibre splitting and delamination which is the most common type. 

Delaminations frequently occur in ship structures such as tee connections and top hat 

stiffeners. Damage due to delamination in critical areas in these connections and 

stiffeners can greatly effect the structural integrity of the structure and hence the load 

bearing capabilities of the ship as a whole. 'Root whitening' or delamination, is 

frequently seen in both tee connections and top hat stiffeners. Current practice involves 

the identification and repair of all defects in such structures. Part of this work 
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investigates the possibility that certain defects under specific loading conditions may not 
have an adverse effect on the structural integrity of the structure. Such defects, however, 

must be carefully monitored for any further signs of damage. 

The main aim of the current work is to understand more fully the damage tolerance of 

FRP ship structures. 

Specific objectives are as follows : 
(i) to examine current approaches of treating delamination-induced damage and its 

influence on the structural performance of FRP laminates and structural elements, 
(ii) to derive analytical solutions to predict delamination onset and the subsequent 

consequences on the remaining structural integrity of the laminates typically used in 

ships, 
(iii) to understand the influence of delaminations on the behaviour of ship structural 

elements such as tee joints and top hat stiffener connections. 
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2. DELAMINATION - INDUCED DAMAGE: A CRITICAL REVIEW 

2.1 What is a Delamination ? 

Delamination can be described as the separation of individual layers of a laminated 

structure. They occur as a result of interlaminar stresses which arise due to the mismatch 

in elastic constants of the adjacent laminae. The stage at which delamination occurs 

within a laminate depends upon a number of factors such as material properties, 

geometry and loading conditions. The failure of a laminate caused by delamination can 

be divided into three stages (Lagace) as shown in Figure 2.1 : (a) the initiation of 

delamination, (b) the growth of the delamination either with or without interaction with 

other damage modes and (c) failure of the laminate. 

The interlaminar stresses which cause delamination are created by impacts, eccentricities 
in the structural load paths or from discontinuities within the structure itself. Typical 

design details which may induce the local out-of-plane loads which cause interlaminar 

stresses are (Garg) straight or curved free edges, ply terminations, bonded joints and 

bolted joints. 

Highsmith and Reifsnider (1986) described delamination as being part of a damage 

development and accumulation process rather than as an isolated damage mode. 

Delaminations which occur can arise when one layer or ply debonds from another, for 

example due to high through-thickness stresses where the two layers are tom apart, or 

due to excessive interlaminar shear stresses where the two layers slide over each other. 

The effect of delaminations on the behaviour of laminated composites under various 
loading conditions is discussed in detail in the following sections. 

2.2 Operational Experiences in Ships 

The hulls of naval GRP ships are typically constructed of woven roving/chopped strand 

mat in a polyester resin. There are frequently many penetrations throughout the structure 

for access and piping for example. The openings are cut out of the finished laminate and 

may vary in size from 1 inch for an overboard discharge to 10 feet for larger openings 
in the main deck for equipment removal. The smaller holes which are not always 

reinforced may be the cause of cracks due to stress concentrations. 
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Cable compared three types of defect, void content, cracks from holes of different 

diameters and delamination length and calculated the quantity or dimension of each 

which would be necessary to cause failure at a given value of stress. This comparison 

was carried out in order to determine their relative importance. It was found that 

delaminations and cracks extending from circular cut outs were the critical defect types. 

It was reported that fishing boats were experiencing extensive delamination due to wave 

slamming loads. The hulls did not, however, fail catastrophically which emphasises the 

need for damage tolerance estimations. 

The weakest links and most probable sources of failure in FRP ships are bonded 

structural connections such as tee joints and top hat stiffeners (Smith, 1972). This is due 

to the absence of load-bearing fibres across bonded interfaces, the low strength under 

tensile and shear forces of the thin layer of resin forming the bond, the occurrence of 

stress concentrations caused by geometric irregularities and manufacturing imperfections 

and the tendency of small cracks and imperfections within the bond to propagate under 

load. 

2.3 Experimental Work on Laminates 

O'Brien (1982) carried out a series of tensile tests on graphite-epoxy laminates. These 

laminates were specifically designed to delaminate due to high interlaminar normal 

stresses at the edges. The tests were carried out so as to calculate the experimental 

stiffness losses due to the presence of delaminations and to validate the analytical 

predictions. Chow and Yang also investigated the stiffness and strength losses due to 

edge delaminations in angle-ply graphite/epoxy laminates under tension. Finite element 

models were generated to yield the stress distributions along the interface of the 

delamination. Rybicki et. al. carried out both experimental and analytical studies to study 

the initiation and growth characteristics of free-edge delamination of boron/epoxy 

laminates under tension. Finite element models were used to determine the stiffness 
losses due to delamination in addition to estimate axial strains. 

Suemasu investigated the compressive stability of composite panels with through-width 

multiple delaminations using analytical, numerical and experimental techniques: Teflon 

sheets were inserted in composite panels of woven glass/epoxy laminae to represent the 

delaminations. It was found that the compressive buckling load suddenly started to 
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decrease when the multiple delaminations reached a certain length. Highsmith and 
Reifsnider (1982) tested a series of glass/epoxy laminates in both static tension and 

tension-tension fatigue to investigate the effect of matrix cracking on the stiffness losses. 

The results were compared with those obtained from finite element modelling and for 

three out of the four specimen types were in good agreement. 

Highsmith and Reifsnider (1986) carried out a series of experiments on graphite/epoxy 

laminates firstly to induce delamination within the specimens and then to measure the 

local surface displacements close to the delaminations. Kim & Soni tested a series of 

angle-ply graphite/epoxy laminates under in-plane tension and compression. The 

interlaminar stress levels at the onset of delamination have been calculated using an 

analytical approach and compared with the experimental values. A reasonable correlation 

was achieved. 

Sczepanik-Weinmann et. al. carried out compression tests on composite panels of 

prepreg tapes of unidirectional carbon/epoxy with teflon film inserted to form the across- 

width delamination. The results showed that crack propagation occurred initially from 

one of the free edges. This was contrary to results of a 3D finite element analysis for 

which the highest values of the mode I and mode II strain energy release rates (see 

Appendix 2A) were found to be in the inner part of the specimen model. Compression 

tests were also carried out by Wang & Socie on prepreg E-Glass/epoxy laminates. 

Failure strains were measured for both unidirectional (UD) and cross-ply (CP) laminates 

and failure envelopes in terms of stress and strain were plotted. Under longitudinal 

compression, the UD laminates failed by delamination or fibre shear and CP laminates 

failed by delamination or by kink band. Under transverse compression, the UD laminates 

failed by delamination or matrix shear and CP laminates failed by delamination or kink 

band. In both cases, however, failure due to delamination occurred at lower stresses than 

failure by other modes. 

Sun & Kelly investigated the failure modes in angle structures analytically and from 

experimentation for two different prepreg materials, graphite/epoxy and fiberglass/epoxy. 

The results showed that in the laminates with groups of 0 degree plies on the outer 

surface, the bending stresses were the most significant which caused radial bending 

cracks. On further loading, the high through-thickness tensile stresses caused failure due 

to delamination. The laminates not containing the 0 degree plies near the surface only 
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exhibited the delamination failure. These failure modes were evident from both the 

experiments and the analytical models. 

2.4 Modelling Laminate Behaviour under Compmssive Loads 

In the case of a compressive in-plane loading, the reduction of load bearing capability 

of a delaminated beam or a delaminated strip of a long plate can be derived in terms of 

a critical buckling load. i. e the load at which the beam will buckle. Moshaiov & 

Marshall calculated the buckling load from a closed-form analytical solution whose 
derivation was based upon a linear differential equation with harmonic solutions by 

solving the continuity and compatibility conditions. 

Moshaiov and Marshall also formulated an energy approach to the same problem. An 

equation for the potential energy of the delaminated strip was written in terms of the 

bending energy and work done by the external compressive load. A series of 
displacement functions were specifically selected so as to satisfy the continuity condition 

and hence yield the total potential energy in three series which each represent the three 

regions of the delaminated strip, the undelaminated region and the upper and lower 

delaminated regions. The total potential energy was then minimised to yield the 

eigenvalue which can be solved to yield the critical buckling load. 

Simitses et. al. derived a one-dimensional model to predict the critical buckling loads 

for delaminated homogeneous plates. The model assumed that the plate material was 

linear elastic and that the delamination existed and would grow in a plane parallel to the 

reference plane. The properties of the plate were assumed to be homogeneous or, at 

most, orthotropic. In addition, the delamination was assumed to exist prior to the 

application of the compressive load. The primary state of the plate as it was loaded 

while the plate remains flat can be characterised by the boundary and continuity 

conditions. The solution of the buckling equations can be found from the boundary, 

continuity and kinematic continuity conditions using a perturbation technique. A system 

of 24 linear algebraic equations can be derived and reduced to 9 by manipulation. The 

characteristic equation can be solved by forcing the determinant of 9x9 matrix to equal 

zero. Thus the lowest eigenvalue which is obtained is a measure of the critical buckling 

load. 
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Chai et. al. used fracture mechanics-based criteria (also see Appendix 2A) to investigate 

delamination growth, stability and arrest of laminated plates. For a plate whose 

unbuckled portion can be considered as infinitely thick, the strain to cause buckling and 

the postbuckled shape can be calculated from beam theory. Equations for the buckled 

layer have been derived from which the strain energy release rate for the laminate can 

be calculated. Plots of strain energy release rate versus delamination length have been 

generated which indicate that delamination growth of an initially delaminated plate may 

be characterised as stable, unstable or as unstable growth followed by a stable growth. 

The variety of behaviour was found to be dependent upon the dimensions of the 

delamination, the load at which it was introduced and the fracture energy. 

Ilic & Williams carried out a series of experiments on aluminium plates bonded with 

epoxy to investigate the buckling characteristics of a plate consisting of bonded isotropic 

layers containing a through-width delamination. Plots of strain energy release rates, G, 

versus delamination length have been generated using analytical, numerical and 

experimental approaches. It was concluded that local buckling appears to be the key 

factor defining the initiation of delamination growth under compressive loading. This is 

due to a rapid increase in the strain energy release rate when local buckling occurs. It 

was also found that following local buckling, G increased rapidly as the delamination 

length increased but then decreased towards an asymptotic value. In addition, it was 

suggested that for a given specimen, a critical delamination length exists below which 

any delaminations present cannot grow. 

Pierson & Roorda discussed the buckling problem with relation to circular plates. The 

study was carried out for which the delaminated area was located between a near surface 

and midplane condition. A numerical integration was carried out to solve a fourth order 
formula in order to calculate the critical buckling load for clamped conditions. The main 

conclusions drawn were that a delamination close to the surface of a plate with a large 

radius possessed a significantly reduced buckling load when compared with the buckling 

load of an undelaminated plate. Partridge et. al. used numerical and analytical 

approaches to analyse delamination behaviour in circular laminates. Both approaches 

yielded values of the strain energy release rate, G, for different values of the 

delamination radius. Both methods gave consistent results which concluded that as the 

radius of the delamination increased, the strain energy release rate tended to an 

asymptotic value. Pavier & Clarke derived a special finite element so as to represent the 
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delamination buckling and growth in a composite laminate containing an embedded 

circular delamination. Values of the total strain energy release rate were calculated at 

points along the delamination edge for three applied compressive strains. The values 

compared extremely well with an existing three dimensional model for the same 

problem. 

2.5 Analysis of Woven Laminates 

Analytical solutions exist which allow the calculation of stiffness losses due to 

delamination which are based upon the intact laminate stiffness (see Section 2.6). Thus, 

in order to characterise the delamination behaviour of woven laminates it is necessary 

to obtain an approach which can yield the mechanical properties of the. laminate prior 

to delamination. 

Marine-type laminates used in the construction of the hull shell, bulkheads and out-of- 

plane joints consist largely of woven roving layers of E-glass embedded in a polyester 

resin. The woven fabric consists of warp and weft (or fill) yarns interwoven in two 

orthogonal directions. These types of fabrics are easier to handle and their fabrication 

costs are lower than the traditional unidirectional laminates. Out-of-plane joints such as 

tee connections and top hat stiffeners consist partly of mixed layers of woven layers and 

chopped strand mat layers. Since the exact lay-up sequence of each woven or mixed 
laminate may not be the same in each case, it is important to be able to estimate the 

mechanical properties of such laminates relatively simply. 

A progression has been made from one-dimensional models to two-dimensional models 

and those applicable only to satin weaves and are discussed in Appendix 2B. 

Experiments carried out by Ishikawa et. al. (1985) show that the elastic properties of 

eight harness carbon/epoxy satin weave are well predicted by the bridging model 
discussed in Appendix 2B. There is, however a discrepancy between the experimental 
derived moduli and the predictions based upon the fibre undulation model, or crimp 

model as it is sometimes named, both with and without bending constraints. 

It is, therefore, necessary to turn to an alternative approach in order to predict the elastic 

properties of plain weave composites. Naik and Shembekar derived a two dimensional 
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model for a plain weave lamina which takes into account the inherent undulations in 

both the warp and the fill threads. Shape functions define the warp and fill yarn 

undulation and classical laminate plate theory is assumed to apply. Correlation between 

the predicted elastic properties and experimental results was found to be good. 

Shembekar and Naik extended the analyses to predict the elastic behaviour of plain 

weave laminates which also compare favourably with experimental results. 

Two types of the two dimensional model discussed in Appendix 4C are described, 

namely the series-parallel model and the parallel-series model. Pieces of a section 

parallel to the loading direction are in series and are assumed to be under constant stress 

and pieces of a section across the loading direction have mid-plane strains which are 

assumed to be the same. An assembly of pieces of a section along the loading direction 

with an iso-stress condition is termed a series model and an assembly of pieces across 

the loading direction with an iso-strain condition is termed a parallel model. The series- 

parallel model (SP) involves the assemblage of pieces of a section along the loading 

direction with an iso-stress condition followed by an assemblage of pieces along the 

loading condition under an iso-strain condition. The parallel-series model (PS) involves 

an assemblage of pieces across the loading condition under iso-strain conditions 
followed by an assemblage of pieces across the loading direction under iso-stress 

conditions. The models also take into account the lamina shifts which occur naturally 

within woven laminates. 

Shembekar and Naik carried out analyses to investigate the effect of laminate 

configurations for plain weave laminates on the elastic constants predicted by both the 

SP model and the PS model. The predictions given by both models were very similar 
but the values derived from the SP model tended to be lower than those derived from 

the PS model. In addition, Shembekar and Naik carried out a series of experiments on 
both carbon/epoxy and E-glass/epoxy laminates to compare their elastic properties with 

the theoretical predictions. The predicted models using both models were in very good 

agreement with the experimental results. 

This section has described the models from the literature which can be used to predict 
the elastic properties of woven laminates. The mosaic model omitted the fibre continuity 

and undulation. The fibre undulation model considered the continuity and undulation of 

the threads but only for a one-dimensional strip of fabric. Neither the mosaic model nor 
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the fibre undulation model gave accurate predictions. The bridging model successfully 

predicted the elastic properties of eight-harness satin weaves. Since the woven laminates 

used in ship construction are largely plain weave, the SP two dimensional model has 

been used to calculate the elastic properties of marine-type woven laminates. However, 

none of the above models allow the calculation of entirely mixed laminates such as 

those consisting of any combination of chopped strand mat, unidirectional layers and 

woven layers and this requires investigation. 

2.6 Strength and Fracture Cnteiia for Laminates 

The presence of delaminations can greatly reduce the ability of a laminate to withstand 

load. Damage tolerance levels of a particular structure containing a defect depends 

largely on the type of loading configuration which it must sustain. The loading may be 

transverse, compressive, tensile or a combination of load conditions. 

An analytical method was developed by Liu et. al. to investigate the interaction between 

matrix cracking and delamination propagation in [0n/90m] symmetrical laminates 

subjected to a transverse concentrated line load. The model consisted of three parts, a 

stress analysis, a contact analysis and a failure analysis. The stress analysis calculated 

the stresses and deformations of the laminate. The contact analysis dealt with the 

condition of the surface of both the matrix cracks and the delaminations. By combining 

the stress and contact analyses, an equation for the total potential energy of the laminate 

was derived. The equation for total potential energy can be solved using a non-linear 

finite element technique and can then be minimised to yield the equilibrium equations. 

The failure analysis adopted failure criteria in order to predict the initiation of matrix 

cracking and delamination and to model the growth of initial damage. Crack propagation 

was modelled using a mixed mode fracture criteria. 

The predicted load-displacement relationship for both flat panels and curved composite 
beams subjected to a concentrated line-loading compared very well with test data for 

graphite/epoxy laminates. The main conclusions of the work were that matrix cracking 
in the 90 degree plies initiated damage in the laminates which then resulted in the 

formation of delamination. In addition, delamination growth induced by intra-ply 

bending cracks was stable and progressive whereas delamination growth induced by 

intra-ply shear cracks was very unstable and catastrophic. 
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Tensile loadings may also cause the formation of delaminations due to the presence of 

imperfections such as voids or the presence of edge effects. High interlaminar stresses 

develop close to the laminate edge due to the mismatch in Poisson contraction of the 

individual plies. O'Brien (1982) utilised a simple rule-of-mixtures formulation in 

association with classical laminate theory to calculate the stiffness loss due to 

delamination. The derivation assumed that the sublaminates resulting from complete 

delamination(s) underwent the same axial strain and that the volume fraction of the 

phases (i. e the fibre and the matrix) which was used in the rule of mixtures was equal 

to the sublaminate thickness ratio, (i. e the sublaminate thickness ratio equalled the ratio 

of the sublaminate to the total laminate thickness). The approach can be adopted to 

investigate the stiffness loss due to either complete or partial delaminations. O'Brien also 

carried out experiments for angle-ply graphite/epoxy laminates which were especially 

designed to delaminate at the edges under a tensile loading, in order to verify the theory 

put forward. The experimental results compared extremely well with the rule of mixtures 

analysis. 

O'Brien's method can be used to yield values of stiffness loss due to delamination and 

critical delamination onset strains for laminates under tension. However, there are a 

number of restrictions which should be noted as follows. In order to predict the stiffness 

loss of a delaminated laminate, the interface where the delaminations are most likely to 

occur must be known. Finite element modelling could be used to establish which 

interface is most likely to delaminate for each particular laminate under consideration 

but this is altogether time consuming. The method is, however, an extremely simple way 

of calculating which interfacial delamination would cause the greatest stiffness loss 

under tension for particular laminates. The methods described above to calculate stiffness 
loss for laminates under tensile loadings are applicable to unidirectional laminates where 

the rule of mixtures theory can be applied. In order to calculate the stiffness losses in 

woven or mixed laminates, an approach must first be adopted by which the elastic 

properties can be calculated using an adapted laminate theory. 

The mixed mode fracture criteria used by Liu et. al. was adopted to predict the initiation 

of crack propagation. Onset of crack growth was based upon critical mode I and mode 
II strain energy release rates. The fracture criteria was introduced into a two dimensional 

numerical model and if delamination was predicted either as a result of matrix cracking 

or delamination, then an appropriate crack or delamination would be introduced into the 
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model. The results of the work showed that mixed mode fracture dominated onset of 

shear crack-induced delamination whilst mode I fracture dominated the onset of bending 

crack-induced delamination. The growth of a delamination induced by a bending crack 

was found to be governed by mode I fracture and that induced by a shear crack 

depended strongly on the critical mode II strain energy release rate. It was also 

concluded that ply orientation and curvature can greatly affect the response and the 

damage tolerance of laminated composites. 

O'Brien (1982) derived an expression to predict the critical strain level at which 
delamination onset would occur. The critical strain value depends upon the critical strain 

energy release rate necessary to form the delamination, the stiffness of the undamaged 
laminate, the stiffness of the laminate containing the delamination and the total thickness 

of the laminate. The stiffness of the delaminated laminate can be carried out reasonably 

simply using a combined rule of mixtures and classical laminate theories as discussed 

above. The value of the critical strain energy release rate for the particular laminate can 

either be taken as a quoted material property from the literature for the laminate or 

calculated from a series of experiments. 

Brewer and Lagace developed an analytical quadratic stress criterion which can be used 

to predict the stress at which delamination initiation occurs. The analytical predictions 

were compared with results using a strain energy release rate approach and experimental 
data. The results showed that for graphite/epoxy specimens of three different lay-ups, 

the strain energy release rate approach did not accurately correlate with the experimental 
data. The critical value of the strain energy release rate was found to be dependent upon 

the ply thickness. The quadratic stress criterion, however, showed excellent correlation 

with the delamination initiation stresses yielded from experiments. 

An additional cause of delamination is that of matrix cracks which run parallel to the 
fibres in a layer. The interlaminar stresses which occur in the interfaces at the matrix 

crack tip may cause local delaminations to develop and grow. The equation used to 

calculate the critical strain for delamination onset due to edge delamination (or complete 
delamination) (O'Brien, 1982) was adapted to yield an equation to calculate the value 

of critical strain at which delamination occurred as a result of matrix cracks (O'Brien 

1985). The latter value of critical strain depends upon the number of delaminations 

growing from the matrix ply crack, the modulus of the locally delaminated region, the 
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thickness of the uncracked layers, the modulus and thickness of the undamaged laminate 

and the critical strain energy release rate which was determined from experiments. 

2.7 Structural Elements 

2.7.1 Top Hat Stiffeners 

The stiffness of large unsupported panels constructed of fibre reinforced plastic (FRP) 

materials is inherently low. Thus it is necessary to stiffen such panels by a suitable 

method, usually in the form of top hats. The top hat stiffener provides shear stress 

transmission between the shell and frame flanges as a result of local bending forces. 

Such bending forces may be the result of lateral pressure such as a slamming load or 

concentrated lateral loads. 

There are various designs of top hat stiffeners. However, typical geometries comprise 

a flange plate (the shell) and 12 layers of overlaminate (the frame) which consist of 

woven roving E-glass and polyester resin, a fillet resin and a non-structural core 

material. The geometries of two types of Top Hat stiffeners are given in Figures 2.2 and 

2.3. Figure 2.2 represents the type of top hat used in mine counter-measure vessels (type 

I) and Figure 2.3 shows the single role mine hunter (type II) type of top hat stiffener. 

The main difference between the two types top hat stiffeners is the back fill angle of the 

resin. Originally, the flange plates and overlaminate in the type I stiffeners were bolted 

down with non-magnetic titanium bolts to prevent them from peeling apart. This was 

extremely expensive and thus an alternative type of stiffener was sought which did not 

require the addition of bolts. The type II stiffener was the answer with one alteration 
being the angle of back fill. The type II needed a larger area of fillet bond because of 

the large stiffness difference between the frame and shell material and also because bolts 

were no longer used. In addition a highly flexible resin, urethane acrylate replaced the 

polyester with milled glass resin used in the type I stiffeners. 

Dodkins et. al. carried out a sensitivity study with regard to the top hat design variables, 
fillet radius, overlaminate thickness, gap between base panel and stiffener and angle of 
fillet backfill. This sensitivity study was carried out for straight pull-off loads. There is 

also a need to investigate the internal stress distributions for other loading configurations 

such as three-point bending and reverse bending. 
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Shenoi and Hawkins, 1995 carried out a series of finite element investigations on top 

hat stiffener connections. This was to compare the effect of altering the overlaminate 

thickness, fillet angle of backfill, fillet radius and the gap between the lower tip of the 

web and the top of the flange on the behaviour of the top hat. For a straight pull off 

load, the model deflections and internal stress patterns were noted for each case. The 

results showed that, based upon stiffness and strength evaluations, the gap size and angle 

of backfill have only a limited effect on the top hat's performance. The fillet radius and 

overlaminate thickness, however, have a significant effect. 

Smith, 1990 made a comprehensive study of top hat stiffened panels. He examined the 

compressive buckling of longitudinally and transversely stiffened panels using both 

analytical and numerical techniques. Smith focused more on the global buckling 

behaviour of the overall panel rather than on the internal stress distributions within the 

stiffener connections. 

2.7.2 Tee Joints 

Tee joints are constructed at the intersection of two orthogonal plates (web and flange). 

The joints are formed by placing laminated strips of reinforcement cloth on both sides 

of the joint (overlaminate). The resulting gap formed between the cloth and plates is 

filled with an appropriate resin. i. e one which is compatible with the cloth material and 
is generally one with a high yield strength. A typical tee joint configuration is shown 
in Figure 2.4. The flange (hull shell) and the web (bulkhead, for example) typically 

consist of E-glass woven roving (WR) cloth set in polyester resin. The overlaminate or 
boundary angle consists of layers of E-glass woven roving and layers of chopped strand 

mat (CSM) comprising chopped E-glass in a polyester resin. The fillet material in these 

joints is typically of urethane acrylate which is a flexible resin whose quoted strain to 

failure is 100 % (Scott Bader). 

The main function of the tee connection is to transfer a variety of loads between the hull 

shell and the bulkhead and/or the deck. These loads may be a combination of flexural, 

tensile and shear loading. For example, if a watertight bulkhead was to flood, then the 

tee connection would be subjected to a bending moment and shear loadings. The typical 

type of failure of these types of connections is that of 'root whitening' which is caused 
by the presence of delaminations in the tee joint boundary angle. It is this type of 
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damage which is of most concern. Delaminations in such joints can occur as a result of 
different types of loading. For example, high through-thickness stresses caused by 

impact loads can cause a mode I (opening) type of delamination. In addition, a mode II 

(tearing) type of delamination may be the result of excessive interlaminar shear loads. 

Hawkins & Shenoi and Shenoi & Hawkins, 1992 carried out a parametric study on the 

influence of fillet radius, number of plies in the boundary angle, material make-up of the 

boundary angle plies, edge gap between the web and flange of the joint and also the 

shape of the web edge. An experimental and numerical investigation was carried out for 

tee joints subjected to a 45 degree pull off load as shown in Figure 2.5. The three most 

significant variables were found to be the fillet radius, overlaminate thickness and gap 

size. The main conclusions were that the fillet radius should be as large as possible since 

this reduces the fillet stresses and thus delays failure. Premature delamination can be 

avoided by reducing the overlaminate thickness and thus reducing the through-thickness 

stresses. The gap size had little effect on the overall deflections or stresses in the 

overlaminate. Also, for fillet radii greater than 75 mm, gap size had little effect up to 

20 mm. 

A significant amount of work has been carried out to optimise the design of tee 

connections. Hawkins et. al. looked into the variations of tee joint design by carrying 

out a series of experiments to compare the joint stiffness variations and their failure 

modes. Shenoi and Hawkins, 1992 investigated the physical behaviour of tee joints for 

a variety of fillet resin material and joint geometries. A series of finite element (FE) 

models were generated to investigate the internal stress patterns and failure modes of 

each joint configuration. The FE models were generated using three dimensional (3D) 

solid and shell elements. In order to represent the laminate construction, it was necessary 

to use eight noded solid elements which can be stacked on top of each other to represent 

the boundary angle. In the boundary angle only two elements were used in the through- 

thickness direction. 

Work has been extended to cover sandwich structure joints also. The geometry of a 

typical sandwich tee joint is shown in Figure 2.6. Hicks et. al. carried out a series of 

experiments and numerical analyses on sandwich tee joints. The core material was a 

PVC type of density 80 kg/m3 and the inner skin was constructed of E-glass WR with 

the outer skin being made up of E-glass/Kevlar WR. The thin boundary angle was 
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constructed of E-glass bonding tape. The loading conditions for the experiments was a 

45 degree pull off load. The load-deflection characteristics were investigated as were the 

internal stress patterns from the finite element results. The precise sequence of failure 

depends on the applied load and boundary conditions but there are common features. 

The dominant failure modes of these type of joints is cracking in the resin fillet or in 

the core of the web piece (Shenoi & Violette). 

Theotokoglou & Moan carried out a series of straight pull off tests on sandwich tee 

joints. The core was a PVC core with density 100 kg/m3 and the skins were constructed 

from E-Gl ass/Poly ester. Two major failure modes were observed from the experiments, 

(i) failure in the laminate, glue and attachment lap and failure of the web core and (ii) 

shear fracture of the flange core. A series of nonlinear finite element models were also 

generated by Theotokoglou & Moan to investigate strain and stress distributions to 

determine the regions most susceptible to failure initiation. It was found that the strength 

of the sandwich tee joints was slightly influenced by the weight of the attachment lap 

but less dependent upon the lap geometry. 

It was reported in Elliott and Hawkins et. al. that the main damage mode in single skin 

tee joints was that of delamination in the curved region of the boundary angle. Trask 

reported that the delamination was, in fact, within the inner layers chopped strand mat 

layers. Hawkins et. al. also reported that the delaminations occurred within the inner 

plies of the overlaminate. 

Dodkins et. al. generated a series of finite element models to yield the internal stress 

distributions within tee joints of different geometric configurations. The analysis was 

only carried out for a 45 degree pull-off load and only two elements through the 

thickness of the overlaminate were modelled. There is a need to investigate alternative 

loading configurations and the resulting failure modes. In order to carry this out using 

finite element modelling, one element per layer through the thickness of the 

overlaminate must be modelled. 

2.8 Drawbacks in Existing Wow 

The majority of experimentation and hence validation with analytical and/or numerical 

models has been carried out on materials generally used in the aerospace industry such 
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as graphite/epoxy angle-ply laminates. Materials used in the marine industry such as 

glass/polyester laminates have not been discussed in as much depth. In addition, the 

materials discussed are largely angle-ply or cross-ply unidirectional laminates. The 

marine industry commonly use woven laminates or mixed laminates which are 

comprised of a combination of woven, unidirectional and random short fibre composites 

such as chopped strand mat. Hence, the approaches discussed above must be directed 

towards typical marine-type laminates. Also, additional analytical approaches must be 

sought so as to analyse mixed laminates. 

A large amount of work has been carried out on the study of delamination of beams and 

plates consisting of unidirectional laminates. Approaches include stiffness assessments 

of unidirectional laminates containing delaminations under different loading conditions 

and prediction of load or strain levels at which existing delaminations will propagate. 

Fracture mechanics approaches have also been used to predict delamination propagation 
based on critical values of strain energy release rates. These techniques, however, have 

not been applied to cracks present in marine-type structures. 

Significant research has been carried out to analyse laminates under single-mode loading 

such as pure tension and pure compression. The loading configuration which is imparted 

to typical ship structural elements is rarely single-mode but mixed-mode. As a result, 

analytical solutions are not available for these types of components. Consequently, the 

structural assessment of delaminations in structures such as tee joints and top hat 

stiffeners cannot be carried out using analytical approaches owing to their complexity. 

Limited work has, however, been directed towards the analysis of structural components. 
Strength- and stiffness- based approaches have been used to calculate the structural 

capabilities of laminated tee connections and top hat stiffeners. In both cases, the 

numerical models which have been generated do not represent each layer within the 

overlaminate. As a result, the internal stress patterns and most significantly the 

overlaminate through-thickness stresses, are not truly representative. In addition, in the 

case of the tee joints, delaminations between layers of the overlaminate cannot be 

modelled. In the case of top hat stiffeners, the overall behaviour of stiffened panels has 

been investigated rather than the stress distributions within the top hat itself, such as the 
fillet. In addition, the experimentation and numerical modelling has generally been 

restricted to one loading configuration. 
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The approaches adopted to identify regions of potential weakness in structural 

components have largely been strength-based. This is a useful method but it is limited 

in that specific parameters cannot be calculated to assess the stability of delaminations 

present in the structure. Fracture mechanics techniques also provide a useful basis but 

have been restricted to the analysis of laminated plates. 
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3. ME`rHODOLOGY ADOPTED 

n 

3.1 Local Stricture Assessment 

It is necessary to yield approaches which can be used to assess the remaining load- 

bearing capability of laminates containing delaminations. The approaches discussed 

below analyse the response of laminates under tensile forces and those under 

compressive forces. The analysis used to calculate the elastic properties of both angle- 

ply, woven and mixed laminates under tension is discussed in Section 4.2. The analytical 

approach used to calculate laminate stiffness reduction due to delamination is discussed 

in Section 4.3. Section 4.4 investigates the compressive stability of delaminated beams 

for beams of varying thickness with across-width delaminations of varying lengths and 

through-thickness location. Three approaches are discussed, namely analytical and 

numerical approaches which have been validated from experimental data. 

It is proposed that techniques involving the calculation of fracture mechanics criteria are 

to be used in the assessment of structural elements. Thus, it is first necessary to validate 

the method for simple laminates. This has been carried out using both an analytical 

approach and a numerical approach by way of finite element modelling. 

The delaminations which occur in the tee joint boundary angles are primarily in the 

chopped strand mat layer (Trask). Thus a delamination in a layer of chopped strand mat 
has been represented by a straight crack in a layer of resin sandwiched between two 

layers of chopped strand mat. This model is analysed under loadings which represent the 

two modes of fracture, mode I (opening) and mode II (shearing). Both analytical and 

numerical techniques can be used to calculate the fracture parameters. These methods 

are discussed in Section 4.5. 

3.2 Stmcturd Element Strength-Based Assessment 

Once the behaviour of delaminated laminates has been investigated, it is necessary to 

understand the behaviour of typical ship structural elements under various loading 

configurations and also how they behave when they contain delaminations. Two types 

of structural element have been focused on in this study, due to the large number of 
them present in FRP ships. These are top hat stiffeners and tee joints. Owing to the 
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complexity of the problem, the analysis is to be carried out using finite element (FE) 

modelling. The main aim of this work is to identify the regions of weakness within the 

structural element which are most susceptible to damage under a variety of loading 

conditions. 

3.2.1 Top Hat Stiffeners 

Stiffness and strength assessments are to be carried out using FE modelling for two 

types of top hat stiffener. The results of the modelling shall be compared with 

experimental findings to validate the model and to further understand the internal stress 

patterns within the stiffener when subjected to a selection of loading conditions. The 

loading conditions are chosen so as to represent as closely as possible the modes of 

loading which are present in the ship itself. These include, (i) a three point bending load 

which represents a docking load, (ii) a reverse bend which represents loading due to hull 

bending under hydrostatic loading and (iii) a straight pull-off load which is caused by 

inertia effects of machinery fixed to the top hat, for example. The internal stress 

distributions allow the regions within the stiffener which are most likely to damage to 

be identified. This work is discussed in Chapter 5. 

3.2.2 Tee Joints 

Stiffness and strength assessments are to be carried out on a typical tee joint 

configuration found in FRP ships. The model is to be generated so as to represent a tee 

joint loaded under a three point bending load. This is a typical load scenario which is 

present during docking. Experimental results (Elliott, 1994) show that the successive 

reductions in the joint stiffness are due to the delaminations which occur in the 

overlaminate. For this reason an iterative approach will be used which involves the 

generation of six finite element models. The first model represents the undamaged model 

and the second model represents the initial failure mode due to a fillet crack. Models 

three to five represent successive amounts of delamination in the overlaminate with 

model five representing the final failure scenario noted from the experiments. Model six 

represents additional delamination along both the overlaminate/web and 

overlaminate/flange interfaces. The internal stress patterns are to be investigated in each 

case and regions likely to be damaged identified. These models are discussed in Chapter 

6. 
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3.3 Stn, ctural Element Energy-Based Assessment 

The delaminations which occur in both types of structural element are most commonly 

found in the overlaminate material (Elliott, 1994). Thus, it is these delaminations which 

shall be represented using a fracture mechanics approach. The finite element models 

used in the strength assessment are to be adapted so as to include special elements 

which can be used to calculate fracture parameters such as the strain energy release rate, 

G, or the J-Integral, J. 

In the first instance, the behaviour of the structure should be assessed as to whether it 

is linear or non-linear. If it is thought that the behaviour of the structural element is to 

be non-linear owing to the non-linear stress/strain characteristics of the fillet resin for 

example, then the J-integral must be calculated. The strain energy release rate is only 

applicable to linear elastic fracture mechanics (LEFM) so would not be applicable in this 

case. If, however, LEFM is found to be applicable then both the strain energy release 

rate and the J-integral are valid parameters and the calculated values of each are equal. 

i. e G=J. In the case of LEFM, the calculation of both parameters also provides a check 

that the correct value has been obtained. 

It shall be assumed that a delamination can be represented by a crack in each case. 

3.3.1 Top Hat Stiffeners 

A series of finite element models shall be generated with a single delamination in the 

overlaminate material of the top hat stiffener. Values of the fracture parameters will be 

calculated with a view to understanding the effect of crack depth and crack length when 

the top hat stiffener is subjected to three loading conditions, three point bending, reverse 
bending and a straight pull-off load. The results of the study are given in Chapter 7. 

3.3.2 Tee Joints 

Finite element models are to be generated in order to investigate the presence of 
delaminations on the behaviour of a tee joint structural element. A sensitivity study will 
be carried out to look into the effect of loading condition, boundary condition, boundary 

location, material properties, crack depth and crack length on the values of J-integral 
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and/or strain energy release rates. In addition, the effect of the presence of two cracks 

in the overlaminate will be investigated, as well as the presence of a crack in the central 

curved region of the overlaminate. The results of the study are given in Chapter 8. 

3.4 Comparison of the Two Approaches used in the Study of Tee Joints 

It is important to determine whether similar trends and conclusions can be drawn 

regardless of which method has been employed. For this reason, the results derived from 

both the strength assessment and the energy-based assessment shall be compared in the 

case of the tee joints. The findings are reported in Chapter 9. 

22 



4. DELAMINATIONS IN LAMINATES 

4.1 Background 

Although delaminations are not the -only type of defect which occur in laminated 

composites, they are considered to be the most common. Delaminations may be caused 
by high through-thickness stresses or, indeed, by excessive interlaminar shear stresses. 

The presence of delaminations within a laminate consequently effect its structural 

performance which depends upon the loading condition. Under tensile loads, 

delaminations tend to reduce the laminate stiffness and strength and under compressive 
loads, delaminations cause the laminate to be more susceptible to buckling. In order to 

calculate the stiffness losses due to delamination, it is first necessary to calculate the 

stiffness of the laminate which does not contain delaminations. This is because the 

stiffness reduction is directly related to the laminate stiffness prior to delamination. 

Section 4.2 discusses the methods by which the laminate stiffness can be calculated for 

either unidirectional, woven or mixed laminates. Section 4.3 discusses the analytical 

approach derived by O'Brien (1982) which can be used to calculate the stiffness loss due 

to delamination in unidirectional or angle-ply laminates. 

Section 4.4 describes the method by which the critical buckling load of a delaminated 

beam under compression can be calculated and Section 4.5 introduces the way in which 

the calculation of fracture mechanics criteria can be used to assess the stability of 

specific cracks. 

4.2 Calculation of Laminate Stiffness 

Laminates can be constructed from either unidirectional (UD) plies, woven roving (WR) 

plies, layers of chopped strand mat (CSM) which is a random short fibre composite or 

a combination of all three types to yield a so-called mixed laminate. The laminate 

stiffness prior to delamination can be calculated from classical laminate theory (CLT) 

for unidirectional laminates and adapted CLT for woven or mixed laminates. These three 

methods are described below. 
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4.2.1 Unidirectional Laminates 

The laminate stiffness can be calculated using classical laminate theory and depends 

upon the properties of the constituent fibre and resin properties, the orientation of each 
layer and the total laminate thickness. The laminate constitutive equation which relates 

the laminate stiffness matrices, in-plane forces and edge moments to the laminate mid- 

plane strains and curvatures is given in Equation 4.1. The derivation of Equation 4.1 is 

given in Appendix 4A. 

{N} [[A] [B] {e0} (4.1) 
{M} B] [D] {x} 

where: [A] is the in-plane stiffness matrix 
[B] is the coupling stiffness matrix 
[D] is the flexural stiffness matrix 
{N} is the applied force vector 

{M} is the applied moment vector 
{ c°} is the laminate mid-plane strains vector 
{x} is the laminate plate curvatures vector 

The elements of the laminate compliance matrices [a], [b] and [d] can be calculated by 

inverting Equation 4.1. Thus, [a], [b] and [d] can be evaluated from the following 

equations. 

[a] = [A]-1 - [b][B][A]-1 

[b] ° -[A]-1 [B] [d] 

[d] _ ([D] - [B][A]-1[B])-1 (4.2) 

Hence, the laminate material properties can be calculated from the elements of the 
laminate compliance matrix [a] and the laminate thickness, t. The full derivation of 
Equation 4.3 is shown in Appendix 4B. 

EX = 
all t; 

Ey = 
a22 t; 

Gam, =at; v, ý, 
äa1 (4.3) 

666 all 

where: all, a22 etc. are elements of the laminate in-plane compliance matrix 
Ex is the laminate longitudinal elastic modulus 
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Ey is the laminate transverse modulus 
G,, is the laminate shear modulus 

vxy is the Poisson ratio 

If the laminate is symmetrical then matrix [B] in Equation 4.2 equals zero and [a] _ 

[A]-1. Consequently, the in-plane stiffness of a laminate can be re-written as: 

1 EX __ Xilt 
(4.4) 

where: X11 is the first element of the laminate in-plane stiffness matrix [A]. 

4.2.2 Woven Laminates 

Chapter 2 discussed a variety of analytical approaches which can be used to calculate 

the mechanical properties of woven laminates. It has been concluded that the most 

appropriate method (Naik & Shembekar) is based on the approach used for 

unidirectional laminates but which also takes into account the inherent fibre undulations 

in both the warp and fill (or weft) direction. Figure 4.1 shows a typical unit cell of a 

woven lamina. 

As discussed in Chapter 2, the series-parallel (SP) model has been used in this particular 

case since it tends to give lower values for laminate moduli than the parallel-series (PS) 

model. Thus, the estimates will be, at worst, conservative rather than too high. 

The final equations for the average laminate compliance matrices based upon the SP 

model are shown in Equation 4.5, the derivation of which is given in Appendix 4C. 

of+9f 

Air j+ Aj j (Y) . Bj j (Y) (Y) (4.5) 
a" 9w 0 

v 

where: Aii SP, B". SP and Dii SP are the average in-plane stiffness constants 

calculated from the SP model 

Inversion of Equation 4.5 gives rise to the average in-plane compliance constants similar 

to those given in Equation 4.2. Similar equations to those in Equation 4.3 can then be 

used to calculate the mechanical properties of the woven laminate. 
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4.23 Mixed Laminates 

Since the majority of laminates used in the marine industry are comprised of a mixture 

of laminae such as UD and WR in top hat stiffeners (see Chapter 5) and WR and CSM 

in tee joint overlaminates (see Chapter 6), it is important to be able to calculate the 

mechanical properties of such laminates whose laminae could be stacked in any 

combination. Figure 4.2 shows a typical mixed laminate. Appendix 4D describes the 

method by which the stiffness matrices, [A], [B] and [D] can be calculated for a CSM 

lamina. 

The overall stiffness matrices for a mixed laminate, Aij(x, y)MIX, Bij(xy)MIX and 

Dij(x, y)MIX which are functions of the location in the x-y plane can be calculated from 

Equations 4.6. 

Aij (X., y) Mzx' Bij (x# y) Mzx' Dij (X, Y) Msx 

M 

Afj(x, Y)ý, B j(x, Y)ý, Dsf(x, Y)un ;. ýi 

+ Aij(x, Y)csM, BBj(x, Y)csM, Dsj(X, Y)csM 
"1 

P 

+A jiX. Y), ,B 
j(X. Y)wi, " Dj3(X"Y)wz, 

al 

(4.6) 

where: M is the total number of Unidirectional (UD) laminae 

N is the total number of Chopped Strand Mat (CSM) laminae 

P is the total number of Woven Laminae (WL) 

Inversion of Equation 4.6 gives rise to the average in-plane compliance constants similar 
to those given in Equation 4.2. Similar equations to those in Equation 4.3 can then be 

used to calculate the mechanical properties of the mixed laminate. 
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4.3 Laminate Stiffness Reduction due to Delamination 

Laminates which have delaminated can be considered to be either completely or partially 
delaminated. Complete delamination indicates that the delamination has spread across 

the complete laminate width as well as along its length. Partial delamination, on the 

other hand implies that only part of the interface is delaminated. The analytical approach 

to calculate stiffness losses due to complete delamination is discussed in Section 4.3.1 

and due to partial delamination in Section 4.3.2. 

4.3.1 Stiffness Loss due to Complete Delamination 

An example of complete delamination is given in Figure 4.3. In this particular figure, 

there are two complete delaminations which form three sublaminates. i. e the laminate 

is separated into three distinct regions. Equation 4.7, the derivation of which is given in 

Appendix 4E, gives the equation from which the stiffness of the completely delaminated 

laminate, E, can be calculated. 

n 

E_ 
Ei tj (4.7) 

t 

The complete delamination(s) result in the formation of n sublaminates each of thickness 

tj . and stiffness Ei.. The total laminate thickness is t. 

4.3.2 Stiffness Loss due to Partial Delamination 

Complete delamination is not always present as in the case of edge delamination 

(Wang). In this case, the delamination can be considered to be partial. Figure 4.4 shows 

an example of partial delamination. Appendix 4F describes the analysis of a partially 
delaminated laminate. The final equation gives the stiffness of the laminate which has 

been partially delaminated, EP, and is given in Equation 4.8. 

EP (E EL AM) ;+ 
ELAM (4.8) 

where: Ep is the stiffness of a partially delaminated laminate 

E is the stiffness of a completely delaminated laminate 

ELAM is the intact laminate stiffness 
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A is the delaminated area 
A* is the total interfacial area 

4.4 Instability of Delaminated Beams 

Delaminations which form in laminated beams have the effect of reducing their 

compressive stability. It is important to be able to predict the critical buckling stress. i. e 

the compressive stress at which the delaminated beam will buckle. A simple closed-form 

analytical approach derived by Moshaiov & Marshall is to be used in this case. Other 

approaches have been discussed in Section 2.4. A numerical analysis by way of finite 

element modelling has also been carried out for comparative purposes. 

4.4.1 Analytical Appmach 

Moshaiov & Marshall derived a simple one-dimensional model to calculate the stress 

at which a delaminated beam would buckle. The approach takes into account the 

delamination depth and length in addition to the material properties of the laminate. 

Figure 4.5 shows a diagram of a typical delaminated beam. The beam is considered to 

be split into three parts (i=1,2,3) : (1) represents the region of the beam which is not 
delaminated, (2) represents the delaminated region of the beam which has delaminated 

but not buckled and (3) represents the region of the beam which has both delaminated 

and buckled. The length and thickness of parts 1 to 3 are denoted by 11 to 13 and tl to 

t3 respectively. 

The theory described in Appendix 4G gives rise to the characteristic equation which is 

an implicit expression for Al as shown in Equation 4.9. 

Alt13 
cos 111 + 

11t22t1 
cos 

ý1t112 
+ 

kt32t1 1113t 

6sinA111 
6sin 

A112tl 2 t2 
6sin 

A113tl 
cos 

2 t3 

2t2 2t3 

+ 
tl t2 t3 

=0 (4.9) 
13 

where: ti is the thickness of part i (i=1,2,3). 

li is the length of part i (i=1,2,3). 

ý. 1 relates the axial force per unit length to the laminate stiffness from Equation 4.10. 
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A2 = 
Pi 

D 
Et (4.10) 

i 
Di 

i 12 (1-v2) 

and Pi is the axial force per unit length in the ith part 
Di* is the stiffness of the ith part 

ti is the thickness of the ith part 
E is the Young's modulus 

u is the Poisson ratio 

Equation 4.10 can be re-written for the critical case to give: 

3 
2-P Et ýcr 

Dj 
Di _ 

12 (1 
jv2) (4.11) 

Hence, the value for the critical load, Pcr, is obtained by first solving Equation 4.9 to 

yield Acr, and substituting this value into Equation 4.11 to yield Pcr. The value of the 

critical buckling stress, ocr, is obtained from Equation 4.12. 

Pcr 
°cr - Area 

(4.12) 

where: Area is the area of the ends of the beam subjected to the applied load 

4.4.2 Finite Element Modelling Appmach 

The analytical approach described is peculiar to a beam or panel strip. The geometry 

under consideration is not always of such simplicity. Analysis of complex geometries 

such as tee joints and top hat stiffeners rely on numerical approaches such as finite 

element (FE) modelling. Therefore, since the results of the FE models generated for 

complex geometries cannot be compared with existing analytical solutions, it is 

important to compare the results of both approaches when applied to simple beams. Both 

three dimensional (3D) and two dimensional (2D) models have been generated to 

represent beams containing delaminations of various depths and lengths. 

(A) Three Dimensional (3D) Models 

The 3D model has been constructed of solid anisotropic brick elements whose details 
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are given in Appendix 4H. Each element is generated from eight nodes each of which 

has three translational degrees of freedom. In the FE model, an example of which is 

shown in Figure 4.6, the end of the beam subjected to the applied pressure is fixed in 

the through-thickness and across width direction. The other end of the beam is fixed in 

all three degrees of freedom. A buckling analysis which is discussed in Appendix 41 has 

been carried out to yield the value of stress at which the beam will buckle in addition 

to the buckled shape. 

A sensitivity study has been carried out to determine the effect of mesh density on the 

value. of critical stress and the buckled shape of the beam. The material properties and 
dimensions of the beams represented in the FE models are shown in Table 4.1. 

Table 4.2 shows the effect of number of elements along the delamination length on the 

value of the critical buckling stress and the buckled shape. Diagrams of what is meant 
by 'typical' buckled shape and 'non-typical' buckled shape are shown in Figures 4.7(a) 

and 4.7(b) respectively. It is shown in Table 4.2 that the number of elements along the 

delamination length has a significant effect on both the value of the critical buckling 

stress and on the buckled shape. Figure 4.8 shows plots of the analytical and numerical 

values of critical buckling stress against the number of elements along the delamination 

length. The graph shows that as the number of elements along the delamination length 

increases, the value of critical buckling stress calculated from the FE models reduces 

towards the analytical value. The FE values below the analytical value do not give the 

correct buckled shape so can be considered to be invalid results. 

The effect of the number of elements across the beam width has also been investigated. 

Table 4.3 gives the values for the element aspect ratio, critical buckling stress and the 

buckled shape. It is shown that the number of elements across the beam width has an 
insignificant effect on the value of the critical buckling stress. 

(B) Two Dimensional (2D) Models 

The 2D model has been constructed of structural solid elements whose details are given 
in Appendix 4J. Each element is generated from four nodes each of which has two 

translational degrees of freedom. In the FE model, the end of the beam subjected to the 

applied pressure is fixed in the through-thickness direction. The other end of the beam 
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is fixed in both degrees of freedom. The material properties and geometry of the models 

are as for the 3D beams but with zero properties in the across-width direction. Plane 

stress conditions have been applied since the beam width is considered to be of the same 

order as the beam thickness and length for the same beams as were considered in the 

3D analysis. 

The 2D models have been generated using an automatic meshing technique, where by 

there exists pre-set values for the maximum and minimum element aspect ratios. As a 

result there are no meshing problems such as those experienced with the 3D modelling. 

Therefore, it is the 2D modelling which has been used to compare with the analytical 

and experimental results in Section 4.4.3. 

4.4.3 Comparison with Experimental Values 

Values for the critical stress have been calculated analytically from Equations 4.9,4.11 

and 4.12 above, numerically from the 2D FE models and compared with experimentally 

derived data (Sumpter & Lay). Beams manufactured using two different methods have 

been tested, those hand laid up and those fabricated by means of vacuum assisted resin 

transfer moulding (VRT). All the beams tested each consist of approximately 25 layers 

of woven roving glass/polyester. Table 4.1 gives the material properties and dimensions 

of the two sets of beams; those of the hand lay-up beams in the first column and of the 

VRT beams in the second. For each of the two series of beams tested, a delamination 

was built into the beam at different through-thickness locations using PTFE film less 

than 15 µm thick. Figure 4.9 shows an example of one of the beams in the test rig. In 

addition, the length of the delamination was also varied. All the beams were loaded in 

compression until failure occurred and the stresses at which the first buckle and final 

failure occurred were noted. 

(A) Hand Laid Up Beams 

Figures 4.10(a) to 4.10(e) show the curves of critical buckling stress calculated from the 

analytical approach, 2D FE approach and the experimentally determined values for the 
hand laid up beams. The analytical and FE values are almost identical in each case. 
Figure 4.10(a) shows that the analytical and FE results are identical to the experimental 

value for a defect length of 40 mm. The values for shorter defects are slightly higher 
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than the experimental values. Figure 4.10(b) shows that the analytical and FE values are 

slightly higher than the experimental values up to a defect length of 60 mm and slightly 
lower for defect lengths greater than 60 mm. Figure 4.10(c) shows that the analytical and 

FE values are slightly higher than the experimental values up to a defect length of 60 

mm but slightly lower for defect lengths greater than 60 mm. Figure 4.10(d) shows that 

the analytical and FE values are slightly higher than the experimental values up to a 
defect length of 100 mm but slightly and at times, significantly, lower for defect lengths 

greater than 100 mm. It should be noted, however that the experimental stress values for 

defect lengths of 180 mm and 200 mm could be higher than the first buckle stress since 
in certain cases it was difficult to define the point at which first buckle occurred. 
Consequently, the experimental critical buckling stress value is likely to be closer to the 

analytical and numerical values. Similar conclusions can be drawn with regard to the 

difference in results shown in Figure 4.10(e). The analytical and numerical values are 

significantly lower than the experimental values for all defect lengths considered. 

(B) VRT Beams 

Figures 4.11(a) to 4.11(d) show the curves of critical buckling stress calculated from the 

analytical approach, 2D FE approach and the experimentally determined values for the 

VRT beams. As for the hand laid up beams, the analytical and FE values are almost 
identical in each case. Figure 4.11(a) shows that the analytical and FE values of critical 
buckling stress are consistently higher than the experimental values. All three approaches 

give nearly identical values for a defect length of 40 mm but are significantly different 

for defect lengths of 20 mm and 30 mm. For defect lengths greater than and equal to 

80 mm, Figure 4.11(b) shows that the three methods give virtually identical results. As 

the defect length reduces, the consistency in results also reduces. Figure 4.11(c) shows 

that the analytical and FE values are significantly higher than the experimental values 
for all values of defect length considered. For the two beams tested shown in Figure 

4.11(d) it shows that the analytical and FE values are significantly higher than the 

experimental values. 

4.4.4 Critical Buckling Stress Calculated using Stiffness Reduction Method 

In the case of the VRT specimens, where the analytical and FE values for critical 
buckling stress differ significantly from the experimental values it is because they are 

32 



greater than the experimental values. This is shown clearly in Figure 4.11(c). It should 

be noted at this point that the value of the Young's modulus used in both the analytical 

and FE approaches is that of the laminate compressive modulus which has been 

determined as part of the experimental program (Sumpter & Lay). The laminate 

compressive modulus is that of a laminate which did not previously contain any 

delaminations. In order to truly represent the buckling behaviour of the delaminated 

beam, however, it is the compressive modulus of the laminate containing delaminations 

which is required. 

It is assumed for the purposes of this analysis that the percentage stiffness loss of a 
laminate containing delaminations when subjected to a compressive load is equal to the 

percentage stiffness loss of the same laminate containing delaminations when subjected 

to a tensile load. Thus the approach used to calculate the stiffness loss in a laminate 

under tension which is discussed in Section 4.3 has been adapted in order to calculate 

the stiffness loss in a laminate under compression. 

Figure 4.12 shows a representation of a tested specimen. The region containing the 

PTFE film, the delaminated region, is the shaded area of the sketch. The beam width is 

labelled b and the beam length is labelled L. The width of the delaminated region is 

labelled b2 which is in fact equal to the beam width, b and the delamination length is 

labelled L2. Equation 4.8 above which gives an equation to calculate the stiffness loss 

due to partial delamination, can be adapted for this particular case. 

The parameter, A, which is termed the delaminated area is equal to b2 multiplied by L2. 

The parameter, A*, which is termed the total interfacial area is equal to b multiplied by 

L. Thus Equation 4.8 can be written as Equation 4.13 for this case and assuming that 

the intact and delaminated portions act as independent components. 

Ep = (E' - SLAM LZ 
+ EZAM (4.13) 

where: Ep is the stiffness of a partially delaminated laminate 

E is the stiffness of a completely delaminated laminate 

ELAM is the intact laminate stiffness 
L2 is the length of the delamination 

L is the total length of the beam 
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The steps used to calculate the stiffness of a partially delaminated beam under 

compression are as follows: 

(i) Calculate laminate intact tensile stiffness, ELAM, using classical laminate theory. 

(ii) Calculate laminate stiffness as a result of complete delamination, E*, using 

Equation 4.7. 

(iii) Calculate laminate stiffness as a result of a partial delamination using Equation 

4.13. 

(iv) Calculate % stiffness loss due to partial delamination from (i) and (iii). 

(v) The critical stress to cause buckling is directly proportional to the modulus, E, 

used in Equations 4.10 and 4.11. Reduce the value of E by the same % as 

calculated in (iv). This gives the new value of the critical buckling stress. 

Table 4.4 gives the VRT beam results for E* and Ep for each delamination length and 

depth. It can be noted that the values of Ep in all cases are only slightly less than the 

value of the intact laminate stiffness and as a result there is very little % stiffness lower 

and consequently negligible reduction in the critical buckling stress. Thus it can be 

concluded that excessive values of the critical buckling stress calculated from the 

analytical approach cannot be accounted for by the value of E used in Equations 4.10 

and 4.11. This is because the stiffness loss due to partial delamination is only about 3 

% at the most. The fact that the experimental values are significantly lower than the 

analytical and numerical values must be due to other factors. The tested specimens are 

constructed from layers of woven laminae. The analytical and finite element models 

incorporate only one value of E. It is likely that in the case of woven laminates, their 

orthotropic nature must be taken into account by adapting the models to include values 

of elastic moduli in the orthogonal directions. The undulating characteristics of the 

woven laminates is likely to be one of the main reasons why the tested specimens 

buckled at lower stresses than those predicted by the models. 

4.5 Fracture Criteria 

Section 2.6 discusses the approaches available in the literature which incorporate fracture 

mechanics parameters. Appendix 2A describes the fracture mechanics parameters which 

can be used in linear elastic fracture mechanics (LEFM) and in elastic-plastic fracture 

mechanics. 
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4.5.1 Analytical Approaches 

4.5.1.1 Cracks in Isotopic Materials 

The magnitude of the elastic stress field at the crack tip such as that shown in Figure 

4.13 can be described by the stress intensity factor, K. The calculation of K characterises 

the crack growth and fracture behaviour as long as the crack tip stress field remains 

predominantly elastic. The elastic stress field equations in the vicinity of the crack can 

be derived for three modes of loading, i. e mode I (opening mode), mode II (shearing 

mode) and mode III (tearing mode) as shown in Figure 4.14. The effect of a mode III 

type loading is considered to be negligible and thus the following paragraphs only 

discuss mode I and mode II loadings. 

The formula for a mode I stress intensity factor for an isotropic plate with a central 

crack under a tensile pressure load is readily available in the literature such as Ewalds 

& Wanhill. Equation 4.14 can be used to calculate the mode I stress intensity factor for 

an infinite plate with a central crack length of 2a under a tensile stress a. 

KS = Co na (4.14) 

C takes into account the specimen width and can be calculated from the following 

equation. 

C=1+0.256 (W) - 1.152 (W) 2+ 12.200 (W) 3 (4.15) 

where: W is the plate width. 

A non-dimensional or normalised value of K denoted by KI can be written as: 

g= KI 
= IC (4.16) 

o na 

4.5.1.2 Cracks in Layered Isotropic Materials 

The analytical methods derived by Sih & Chen have been used to calculate the mode 
I and mode II stress intensity factors for a specific application. Delaminations in the 
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boundary angles of tee joints (see also chapter 6) commonly occur in the chopped strand 

mat (CSM) layers. These delaminations can occur as a result of high through-thickness 

stresses caused by a mode I type of load, or as a result of high interlaminar shear 

stresses caused by a mode II type of load. Thus the approach can be adapted so as to 

represent a delamination, or crack, in a chopped strand mat layer under each of the mode 
I and mode II types of loading. 

Figure 4.15 represents a polyester resin crack sandwiched between two layers of E- 

glass/polyester CSM. The crack is 10 mm in length and the resin layer is 5 mm thick. 
The material properties of the system are given in Table 4.5. 

(A) Mode I 

The normalised mode I stress intensity factor, «I(1) is calculated from the theory 

described in Sih & Chen and the mode I stress intensity factor, K1, can then be 

calculated from Equation 4.17. 

K1 = Or ( l)Q, fa- (4.17) 

For the above scenario, 'I(1) is calculated to be 0.783. It is stated that 7 MPa is the 

ultimate through-thickness stress which can be sustained by an E-glass/polyester woven 
roving/CSM laminate (Bird & Allan). Thus it is this value of stress which shall be used 
in the analysis. The critical value of KI, i. e the value at which a crack will propagate, 

stated by Lau & Rowlands for a compact tension (C-T) specimen of polyester resin is 

stated to be 2.98 MPa�m. Lee wrote that the value of Klcrit is dependent on the 

conditions, namely the temperature and cross-head speed. He concluded that for 

polyester resin, the value of Klcrit ranges between 1.0 MPa/m and 5.0 MPadm. The 

value quoted by Lau & Rowlands is, therefore consistent with Lee's results. Thus the 

range quoted by Lee will be used for the analysis in the following paragraphs. 

For a 10 mm crack in a5 mm thick resin layer and a value of 01(1) of 0.783, Equation 

4.17 can be used for three different calculations to determine whether crack propagation 
is likely: (i) To calculate the stress at which the crack will propagate for a given value 
of KIcrit and compare with the ultimate through-thickness stress of 7 MPa, (ii) To 

calculate the value of KI for an applied stress of 7 MPa and compare with quoted values 

of KIcrit, or (iii) for an applied stress of 7 MPa and an assumed value of KIcrit, the 
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critical crack length at which propagation would occur can be calculated. 

(i) If K1crit equals 1.0 MPa�m then the stress at which propagation will occur is equal 

to 18.1 MPa and if K1crit equals 5.0 MPa�m then the stress at which propagation will 

occur is equal to 90.5 MPa. Thus the values of stress are much greater than the 

experimental ultimate stress of 7 MPa. It is concluded that the analytical system of a 

resin crack between layers of CSM can sustain a higher load than in experiments. 

(ii) For an applied stress of 7 MPa, the value of KI equals 0.388 MPa�m. This value 

is lower than the lowest quoted critical value of 1.0 MPa�m and it can, therefore, be 

concluded that the 10 mm crack would not propagate under an applied stress of 7 MPa. 

(iii) For an applied stress of 7 MPa and a value of K1crit of 1.0 MPa�m, the critical 

crack length to cause propagation is equal to 66 mm. An assumed value of K1crit of 5.0 

MPa�m gives a critical crack length of 1650 mm. Thus crack propagation is not likely 

to occur until the crack reaches a length of 66 mm. 

(B) Mode II 

The normalised mode II stress intensity factor, b11(1), has been calculated from the 

theory described in Sih & Chen and the mode II stress intensity factor, KII, can then be 

calculated from Equation 4.18. 

K11 = 011(1) ra 
(4.18) 

For the same crack scenario as for the mode I loading, 0II(1) is calculated to be 0.922. 

It is stated that 26 MPa is the ultimate interlaminar shear stress which can be sustained 

by an E-Glass/polyester woven roving/CSM laminate (Hancox & Mayer). It is this value 

of stress which shall be used in the analysis. 

For a 10 mm crack in a5 mm thick resin layer and a value of lII(1) of 0.922, Equation 

4.18 can be used for three different calculations to determine whether crack propagation 
is likely: (i) To calculate the stress at which the crack will propagate for a given value 

of K11crit and compare with the ultimate interlaminar shear stress of 26 MPa, (ii) To 

calculate the value of KII for an applied stress of 26 MPa and compare with quoted 

values of KIIcrit, or (iii) for an applied stress of 26 MPa and an assumed value of 

K11crit, the critical crack length at which propagation would occur can be calculated. 
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(i) If Kllcrit equals 1.0 MPa�m then the stress at which propagation will occur is equal 

to 15.3 MPa and if K11crit equals 5.0 MPa�m then the stress at which propagation will 

occur is equal to 76.5 MPa. Thus the values of stress at which crack propagation will 

occur lies in the range of 15.3 MPa to 76.5 MPa. This is consistent with the 

experimental value of 26 MPa which lies in the range. 
(ii) For an applied stress of 26 MPa, the value of KII equals 1.7 MPa�m. This value 
lies in the given range for Kllcrit of 1.0 MPaVm to 5.0 MPa�m. Thus it can be 

concluded that under these conditions, the crack would propagate under an applied load 

of 26 MPa. 

(iii) For an applied stress of 26 MPa and a value of K11crit of 1.0 MPa�m, the critical 

crack length to cause propagation is equal to 3.5 mm. An assumed value of Kllcrit of 
5.0 MPa�m gives a critical crack length to cause propagation of 87 mm. 

4.5.2 Numerical Approaches 
gA, 

4.5.2.1 Cracks in Layered Isotropic Materials 

In order to further validate the use of finite element modelling for calculation of fracture 

parameters and to compare with the analytical results discussed in Section 4.5.1, an FE 

model has been generated to represent the resin crack sandwiched between two layers 

of CSM as in the analytical method. The elements used are two dimensional plain strain 

elements and their characteristics are described in Appendix 4K. A typical FE model of 

the crack is shown in Figure 4.16. As before, the resin crack is 10 mm in length and is 

embedded in a5 mm thick layer of resin with the material properties given in Table 4.5. 

Two modes of loading have been investigated, namely mode I and mode II. 

(A) Mode I 

For an applied stress of 7 MPa, the normalised mode I stress intensity factor has been 

calculated from the FE model to be 0.739 using the value of the mode I stress intensity 

factor, KI, and Equation 4.16. This can be compared with the value of 0.783 calculated 
from the analytical approach in Section 4.5.1. Thus the FE result is within 6% of the 

analytical approach. 
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(B) Mode II 

For an applied load of 26 MPa, the mode II stress intensity factor, K11, is calculated 
from the FE model to be 1.23 MPa�m. The analytical approach in Section 4.5.1 gives 

a value for the non-dimensional mode II stress intensity factor, 1II(1) of 0.922. For an 

applied stress of 26 MPa, this gives a value of K11 of 1.7 MPaVm. Thus the FE result 
is within 30 % of the analytical value. 

4.5.2.2 Multiple Cracks 

Delaminations in laminated composites rarely occur singly. Multiple delaminations 

commonly occur with delaminations between numerous layers. An FE model has been 

generated of an arbitrary square isotropic 250 mm2 plate containing not only a central 

crack of 30 mm but also a 30 mm crack parallel to the central crack but at a distance 

of 12.5 mm from it. The FE model of the plate is shown in Figure 4.17. The aim of the 

analysis is to investigate the effect of the additional crack on the original central crack 
for a mode I type of loading based on strain energy release rate calculations with the 

two central edge nodes fully clamped. Values of the strain energy release rate and J- 

integral have been calculated at the four crack tips. The values are listed in Table 4.6 

and show the mode I and mode II stress intensity factors, strain energy release rate 

values calculated for the central crack (crack 1) prior to the introduction of the second 

crack in addition to the values for both cracks after the introduction of the second crack 
(crack 2). 

The results show that the mode I stress intensity factors for the two crack tips of crack 
I reduce by 21 % due to the introduction of crack 2. However, the mode II stress 
intensity factors for the crack 1 tips increase by 2364 % due to the presence of crack 
2. Thus, the effect of introducing crack 2 into the plate is to reduce the mode I stresses 

on crack 1 but to significantly increase the mode II stresses on crack 1. 

4.6 Discussion and Implications 

Existing analytical approaches have been discussed which enable the calculation of 

mechanical properties of angle-ply laminates and woven laminates. The approach used 
for the analysis of woven laminates has been adapted so that the mechanical properties 
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of mixed laminates can be calculated. Mixed laminates can consist of any combination 
of unidirectional laminae, woven laminae or layers of chopped strand mat. 

The effect of delamination on the remaining structural behaviour of the laminate has 

been investigated for laminates under both tensile loading and compressive loading. 

Under a tensile loading, the amount of stiffness reduction due to delamination depends 

on the actual size of the remaining interface still intact between the two layers which 

have separated. Not surprisingly, the greatest stiffness reduction occurs when the two 

layers are completely separated. For a typical marine type laminate, one complete 
delamination can reduce the tensile stiffness of the remaining laminate by as much as 
12 %. This reduction in stiffness has the effect of increasing the flexibility of the 

laminate which allows it to carry further load. As the load is increased, additional 
delaminations further reduce the stiffness of the laminate. Ultimately, the laminate 

contains a large number of delaminations and loses all load bearing capability. 

Under compressive loading, the stress at which a delaminated beam will buckle is of 

importance. Analytical and numerical models have been derived and validated which 
both give a good predictive tool. They can be used to calculate the critical buckling 

stresses for delaminated beams of different thicknesses, materials and containing 

delaminations at varying through-thickness locations. Beams containing delaminations 

which are close to the surface will buckle at a lower stress than beams containing 
delaminations close to their mid-thickness. Additionally, long delaminations will cause 

beams to buckle at a lower stress than beams containing short delaminations. These 

conclusions can be drawn from experimental, analytical and numerical results. A 

comparison can also be made between the two methods of manufacture, namely hand 

lay-up and VRT. For both methods it can be noted that the predicted values of critical 
buckling stress, when compared with the experimental values, become less accurate as 

the defect depth increases. In the case of the hand lay-up beams, the predicted values 

tend to underestimate the critical buckling stress. In the case of the VRT specimens, 
however, the predicted values tend to overestimate the critical buckling stress. 

On a more microscopic level, fracture mechanics parameters have been calculated for 

a resin crack under two modes of loading, mode I (opening) and mode II (shearing). 

Simple analytical models can be used to calculate the relevant parameters for a resin 

crack between two layers of chopped strand mat commonly found in ship's structures, 
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for cracks of different lengths in layers of various thicknesses. Critical crack lengths 

have been calculated for the two modes of loading assuming values of maximum applied 
load and critical stress intensity factors. Table 4.7 shows critical crack lengths for the 

two modes of loading for a straight crack in a5 mm thick resin layer. The material 

properties of the system are given in Table 4.5. The assumed value of the stress intensity 

factor in each case is 1.0 MPa, /m which is the lowest quoted value taken from the 

literature. Table 4.7 shows that for applied loads equal to the assumed maximum values, 
i. e 7 MPa for mode I and 26 MPa for mode II, the mode I type of loading is the most 

stable resulting in a critical crack length of 66 mm. 

In addition, for a 10 mm crack the stress levels at which the crack will propagate are 

shown in Table 4.8. The table shows that a 10 mm crack is most stable under a mode 

I type of loading since it will not propagate until a higher level of stress is reached than 

in the case of the mode II type of loading. The results show that a 10 mm crack will 

propagate under a mode I load of 18.1 MPa or under a mode II load of 15.3 MPa. 

The analysis up to now has been for a resin crack sandwiched between two layers of 

chopped strand mat. This represents a crack in the overlaminate material of tee joint 

boundary angles. It is, however, interesting to note that the quoted value for the 

interlaminar shear strength of chopped strand mat is 17 MPa (Hancock & Mayer) which 
is very similar to the results above. For a crack in a CSM layer, propagation will occur 

under a mode II configuration when the applied stress reaches 15.3 MPa. 
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5. STRENGTH ANALYSIS OF TOP HAT STIFFENERS 

5.1 Purpose of Analysis 

The main purpose of this chapter is to investigate the load transfer mechanisms within 

two types of stiffener (Phillips et. al. ). From the internal stress response distributions for 

a number of loading types and a knowledge of the material ultimate failure stresses, the 

regions within the stiffeners which are most susceptible to damage, especially 
delaminations, have been identified. 

The construction of large FRP structures such as a ship requires that large unsupported 

panels are laid up. The stiffness of such panels is low and requires some form of 

stiffening arrangement. The usual method is by the addition of top hat stiffeners. The 

geometries of two types of top hat stiffeners are given in Figures 5.1 and 5.2. The main 

difference between the two types of top hat stiffeners is the back fill angle of the resin 

and has been discussed in Chapter 2. 

Owing to the large difference in stiffness between the top hat section and- the panel, the 

joint between them is under high loads. Out-of-plane loads are caused by hydrostatic 

pressure, docking or explosive loadings and in-plane loads which can be,, tensile or 

compressive are caused by hull bending loads. In-service applied loads and boundary 

conditions which are transferred to the top hat stiffener can be simulated in the 

laboratory. For example, a three-point bending test simulates docking or berthing loads, 

a reverse bending test simulates loads present due to the attachment of machinery and 

a straight pull-off load represents the load which must be sustained by the stiffener due 

to the presence of machinery during a slamming or explosive load. Figure 5.3 shows 

schematics of the three loading configurations: (a) three point bending, (b) reverse 
bending and (c) straight pull-off load. 

5.2 Features of the FE Models 

All the finite element (FE) models discussed here have been generated using the 

software package ANSYS (ANSYS). 
0 
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5.2.1 Modelling Considerations 

A series of models have been generated using two dimensional (2D) structural solid 

elements. The characteristics of these elements are given in Appendix 4J. A typical 

model used in the analyses is given in Figure 5.4. Each of the 12 layers in the 

overlaminate is represented by one element through the thickness. The flange plate of 

the top hat stiffener has been represented by one element through the thickness. 

Conditions of plain strain have been assumed throughout. 

5.2.2 Loads, Material Properties and Boundary Conditions 

The loads applied to the structural model attempt to mimic those in an experimental 
investigation (Elliott, 1994). The load types considered are: (a) three-point bending, (b) 

reverse bending and (c) straight pull-off. Figure 5.5 shows the FE models for three load 

conditions. For each of these configurations, stress distributions have been computed (i) 

at the load at which initial damage was noted and (ii) at the failure load of the stiffener. 

The exception has been the case of the type II stiffener where the failure in the reverse 

bend and pull-off tests is catastrophic; Consequently only one load has been applied to 

the models in these cases. 

The material properties (Shenoi & Hawkins, 1995 & Vosper Thornycroft (UK) Limited) 

used in the FE model generation are given in Table 5.1. 

Figures 5.5(a), 5.5(b) and 5.5(c) also show the boundary conditions applied to the 

models. In the case of the three-point bend shown in Figure 5.5(a), the model has been 

restrained in the y-direction at two constraint locations which are at a distance of 600 

mm apart. Boundary conditions have been chosen to represent, as close as possible, the 

condition of simple supports. However, to prevent the occurrence of rigid body motions 

of the FE model it was also necessary to restrain one of the constraint nodes in the x- 
direction also. 

5.3 Stiffness Characterisation 

The first step which is necessary to validate the FE models is by comparing the FE 

model stiffness with that of the equivalent tested specimen. This is best carried out by 
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comparing the FE model initial stiffness with the experimental load-deflection curve. 
The FE model and experimental initial stiffnesses of the two types of top hats under 

each of the three loading configurations are shown in Table 5.2. 

5.3.1 Comparison of FE and Experimental Results for the Type I Top Hat 

(A) Three-Point Bending 

The stiffener tested (Elliott, 1994) showed linear load-deflection behaviour up to a load 

of 13.5 kN. At this load level, initial failure occurred at the interface of the fillet and 

overlaminate. The initial stiffness of the test specimen is 696.8 N/mm. The initial 

stiffness of the FE model is 731.2 N/mm, i. e the FE model is 5% stiffer than the test 

specimen. 

(B) Reverse Bending 

The experimental load-deflection curve is linear up to a load of 5 kN when the fillet was 

seen to crack. The experimental initial stiffness of the stiffener is 384.6 N/mm. The FE 

model gives a stiffness of 713 N/mm, i. e it is 85 % stiffer than the tested specimen. A 

sensitivity study has been carried out to account for possible variations in material 

properties, stiffener geometry and loading geometry. This is discussed in Section 5.4.1. 

(C) Straight Pull-Off 

The experimental load-deflection curve is linear up to a load of 5.5 kN when the fillet 

was seen to crack. The experimental initial stiffness of the stiffener is 1000.0 N/mm. 

The FE model gives a stiffness of 620.6 N/mm, i. e is 38 % more flexible than the tested 

specimen. A sensitivity study similar to that discussed in the case of the reverse bend 

has also been carried out and is detailed in Section 5.4.2. 

5.3.2 Comparison of FE and Eapeiimental Results for the Type II Top Hat 

(A) Three-Point Bending 

The stiffener tested (Elliott, 1994) showed linear load-deflection behaviour up to a load 
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of 12.5 kN had been reached. At this load level, delaminations in the overlaminate were 

visible and there was a reduction in stiffness. The initial stiffness of the test specimen 

is 740.7 N/mm. The stiffness of the FE model is 820.9 N/mm, i. e it is 11 % stiffer than 

the test specimen. 

(B) Reverse Bending 

The experimental load deflection curve is almost linear up to a load of 17.0 kN when 

the stiffener failed. The experimental initial stiffness of the stiffener is 303.0 N/mm. The 

FE model gives a stiffness of 639.1 N/mm, i. e it is 110 % stiffer than the tested 

specimen. A sensitivity study has been carried out to account for possible variations in 

loading geometry. This is discussed in Section 5.4.3. 

(C) Straight Pull-Off 

The experimental load-deflection curve is linear up to a load of 15.0 kN when the 

stiffener failed. The experimental initial stiffness of the specimen is 880 N/mm. The FE 

model gives a stiffness of 639 N/mm, representing 27 % more flexibility than the tested 

specimen. A sensitivity study has been carried out to account for possible variations in 

loading geometry. This is discussed in Section 5.4.4. 

5.4 Sensitivity Studies 

In the cases where the difference between the stiffness of the FE structural model is 

significantly large, a sensitivity study has been carried out to account for these 

discrepancies. The implications of these studies are outlined in Section 5.4.5 below. 

5.4.1 Type I Top Hat Stiffener - Reverse Bend 

The initial stiffness of the FE model discussed in Section 5.3.1(B) was 85 % stiffer than 

the initial stiffness of the tested specimen prior to failure. A sensitivity study has been 

carried out to account for the difference in the stiffnesses of the FE model and the tested 

specimen. Eight variations on the original FE model have been investigated for the 

reverse bend loading case. The original values of the material properties are given in 

Table 5.1. 
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(A) Woven Roving/ Polyester Moduli: 

Since the material properties of composites are subject to variations, the values of Ex 

and Ey have been reduced by 10 % and 20 % of the original values which are given in 

Table 5.1. 

(B) Fillet Resin Modulus: 

The value of resin modulus may not be exactly equal to that quoted for the material. 

Therefore, the value of the resin elastic moduli have been reduced by 10 % and 20 % 

of the original values. 
(C) Span between supports: 
The location of the supports may not have been located in exactly the same location as 

in the experiments so the effect on the FE model stiffness has been calculated for two 

cases for which the supports are 620 mm and 640 mm apart. The original support span 

being 600 mm. 

(D) Size of overlaminate/flange interface: 

The length of the interface between the overlaminate and flange has been reduced by 20 

mm and 40 mm from the original case for which the interface length equalled 220 mm. 
(E) Combination of Effects (&to LD)l 

The first combination includes a 10 % reduction in the moduli of the woven 

roving/polyester, a 20 mm increase in the support span and a 20 mm reduction in the 

size of the overlaminate/flange interface. The second combination includes a 20 % 

reduction in the moduli of the woven roving/polyester, a 40 mm increase in the support 

span and a 40 mm reduction in the size of the overlaminate/flange interface. 

(F)_Core Modulus: 

Although the core is non-structural and should not contribute to the load-carrying 

capability of the stiffener, the value of the core modulus has been reduced to 10'10 MPa 

to ensure that it has an insignificant effect on the overall stiffness of the top hat. 

(G) Presence of Fillet Void: 

Experience in the analysis of tee joint strength (discussed in Chapter 6) has shown that 

voids can be present in the fillet resin which lead to premature failure of the joint. In 

this study, a void has been placed in the fillet resin of the stiffener model by removing 

a single element and calculating the new stiffness of the top hat. 

(H) Change method by which load is applied to FE model: 
The original method of applying the reverse bending load has been to apply loads at the 

nodes along the crown of the FE model. In this case, the steel plate which was present 
in the experiments has also been modelled and the load applied by means of a uniformly 
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distributed load along the plate. 

Table 5.3 show the results of the sensitivity study. The moduli of the woven 

roving/polyester which is used in the overlaminate have a significant effect on the 

mechanical stiffness of the top hat. The reduction in the modulus gives an identical 

reduction in top hat overall stiffness. A reduction in the fillet resin modulus also gives 

a marked reduction in the overall top hat stiffness. A reduction in resin modulus would 

be caused by the presence of voids. Voids are extremely difficult to avoid during the 

manufacture of these types of structures. An increase in the span size between supports 
increases the flexibility of the stiffener. The size of the overlaminate/flange interface had 

very little effect on the overall top hat stiffness. 

Two combination effects were represented in (E). The second combination of effects 

gave rise to an FE model stiffness of 458.3 N/mm. The experimental initial stiffness of 

the specimen tested under reverse bend was 384.6 N/mm. Hence, the FE model from the 

sensitivity study in this case is 19 % stiffer than the tested specimen. This combination 

of effects gives an improvement on the original model. 

The modulus of the non-structural core material had a negligible effect on the top hat 

stiffness from the FE model. This is expected since the core material bears no load and 

-- is in fact removed in other test configurations. The presence of the void in the fillet 

reduced the stiffness of the FE model by a negligible amount. The FE model stiffness 

reduced from 713 N/mm in the original model to only 712 N/mm for the model which 

includes the void. The experimental set-up used a plate across the crown of the top hat 

to transfer the load to the stiffener. The original FE model did not take the plate into 

account. The revised model which includes the plate in the FE model gives an initial 

stiffness of 679 N/mm. The stiffness of this model is marginally closer to that of the 

tested top hat. 

The implications of these studies are outlined in Section 5.4.5 below. 

5.4.2 Type I Top Hat Stiffener - Pull-Off Load 

A similar sensitivity study for cases (A), (B), (C) and (H) above has been carried out 

as for the reverse bend except that the values in (A) and (B) have been increased rather 
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than decreased in the case of the reverse bending load. Also in (C), the span has been 

reduced rather than increased. This is because in this case, the original FE model is 

more flexible than the tested specimen where as in the case of the reverse bend test, the 

FE model was stiffer than the tested top hat. Table 5.4 shows the results of the 

sensitivity study in the case of the pull-off test. 

Similar trends to those discussed in Section 5.4.1 have been found. The modulus of the 

woven roving/polyester and the size of the span had a marked influence on the overall 

stiffness of the top hat. 

An important point to note, however, is that the modulus value of the fillet resin had 

very little effect on the stiffness of the top hat in the case of the pull-off load. In the 

case of the reverse bend, the change in fillet modulus had a large effect on the top hat 

stiffness. This can be explained by the fact that the initial failure mode in the reverse 
bend test was that of a crack in the fillet. In the pull-off test the initial failure was a 

crack along the interface of the fillet and the flange plate. Thus, since the fillet itself did 

not crack, the fillet does not contribute to the failure mode of the stiffener under a pull- 

off load. 

The original FE model used to represent the pull-off load did not contain the steel plate 

which was present in the experimental test configuration. A revised model has been 

generated which includes the steel plate to simulate the loading mechanism more 

accurately. The FE model generated which includes the plate is shown in Figure 5.6. 

The stiffness of the FE model containing the plate is 930 N/mm which is within 7% 

of the experimental specimen stiffness of 1000 N/mm and is a marked improvement. 

5.4.3 Type II Top Hat Stiffener - Reverse Bend 

Since the initial stiffness of the type II finite element model for a three point bending 

load has been shown to be within 11 % of the experimental initial stiffness, the material 

properties and stiffener geometry used can be considered to be reasonable. Thus, only 

the method of load application has been changed to try and improve the stiffness 

accuracy of the FE model under a reverse bending load. As with the type I stiffener, the 

steel plate used in the experiments to apply the load, has also been modelled in the FE 

model. The initial stiffness of the tested top hat is equal to 303 N/mm. The FE model 
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containing the steel plate gives a stiffness of 616 N/mm which is a slight improvement 

on the previous value but is still only within 103 % of the experimental value. As with 

the type I top hat, the addition of the steel plate into the FE model only gives a marginal 

improvement with regard to the initial stiffness. 

5.4.4 Type II Top Hat Stiffener - Pull-Off Load 

The FE model which does not include the steel plate gives a stiffness which is only 

within 27 % of the experimental value. The steel plate has also been included in the 

case of the type II top hat. The FE model containing the steel plate gives a value of 

stiffness of 897 N/mm. This value is within 2% of the experimental stiffness value of 

880 N/mm. Hence, the inclusion of the steel plate in the FE model gives a significant 

improvement with regard to the stiffness. 

5.4.5 Implications 

The results of the sensitivity study show that the stiffness of the FE models which have 

been generated to simulate both a reverse bend type and a straight pull-off type of load 

is effected significantly by the chosen value of the modulus of the woven 

roving/polyester and also the size of the span. It shows that it is important to choose the 

correct material properties for the overlaminate material in particular. Since the stiffness 

values from the FE models of both types of top hat under a three point bending load are 

very close to the respective experimental stiffnesses, it can be concluded that the values 

of the material properties selected and stiffener geometry are acceptable. Therefore, it 

can be concluded that it is the method of loading representation which is responsible for 

the differences in stiffness for the top hats under reverse bending and pull-off. In the 

case of the type I top hat under a pull-off load, this is shown by comparing the stiffness 

value of the FE model without the steel plate (620.6 N/mm) and the stiffness of the FE 

model with the steel plate included (930 N/mm). The latter value is within 7% of the 

experimental stiffness value. The equivalent comparison for the type II stiffener is within 
2% of the experimental stiffness value. 

5.5 Stress Patterns 

The stress distributions of interest are the fillet principal stress, overlaminate through- 
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thickness and in-plane stresses, flange plate through-thickness and in-plane stresses. It 

is also necessary to compare the load transfer mechanisms predicted from the FE models 

with some experimentally derived failure modes. A summary of the experimental failure 

patterns (Elliott) is given in Table 5.5. 

5.5.1 Type I Top Hat Stiffener 

Table 5.6 shows the value and location of the maximum stress for each load level and 
load configuration for the type I stiffener. 

(A) Three-Point Bending 

The most significant stress patterns for the top hat at the experimental initial load of 
13.5 kN are shown in Figure 5.7(a): the overlaminate through-thickness stresses and 
Figure 5.7(b): the flange in-plane stresses. The magnitude of the fillet principal stress 
is the greatest in the central region in the fillet as shown in Table 5.6 but is less than 

the ultimate value. Thus, the fillet is unlikely to fail at this load. The region of the 

overlaminate which is under both the highest in-plane and through-thickness stresses is 

the outer region in the curved part above the fillet as shown in Figure 5.7(a). 

Delaminations are likely to form due to high through-thickness stresses. Although the 

flange is unlikely to fail, the region under the greatest in-plane stress is the inner central 

part below the core. The region of the flange under the highest through-thickness stress 
is in the outer central part as shown in Table 5.6. 

The value of the maximum principal stress in the fillet at the stiffener experimental 
failure load of 16.5 kN is 18.09 MPa. The ultimate tensile strength (UTS) of the fillet 

material in the literature (Hawkins & Shenoi) is 26 MPa; so the fillet would remain 
intact at this load. This corresponds to the failure mode in the experiments in which the 

fillet itself did not crack. The initial damage was seen along the interface of the fillet 

with the overlaminate. The in-plane stress in the overlaminate at 16.5 kN is not great 

enough to cause failure. The through-thickness stress at the initial failure load of 13.5 

kN, however, is greater than the quoted interlaminar tensile strength (ILTS) of 7 MPa 

for the woven roving/polyester (Bird & Allen). Hence the FE model predicts that 
delaminations would occur near to the outer surface of the overlaminate at 13.5 kN due 

to through-thickness stresses greater than the ILTS of the material. This exactly matches 
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the experimental findings. The ultimate tensile strength of the flange material is 207 

MPa. At a load of 13.5 kN the in-plane stress in the flange plate is not enough to cause 

failure. At 16.5 kN, however, the in-plane stress in the flange is 208 MPa which is 

greater than the UTS. The FE model predicts that the flange plate would fail in the 

centre of the upper surface at a load of 16.5 kN, which exactly mirrors the experimental 

findings. 

(B) Reverse Bending 

The material properties and top hat geometry used to represent the top hat under a three 

point bending load gave similar results to those derived experimentally. Therefore, in 

the case of the reverse bend, it is likely that it is the way in which the load is 

represented which causes the discrepancies between the FE model and the experimental 

stiffnesses. Thus, the FE model used to yield the internal stress patterns is the model 

from the sensitivity study part (H) which includes the steel plate in the load 

representation. The most significant stress pattern for the top hat at the experimental 

initial load of 5 kN is shown in Figure 5.8(a): the overlaminate through-thickness 

stresses. 

At a load of 5 kN, the fillet principal stress is 4.8 MPa which is much less than the UTS 

of 26 MPa. The FE model, therefore, does not predict fillet failure at this load level. The 

initial failure mode in the experiments, however, was that of fillet cracking. The 

presence of voids within the fillet would cause higher stresses which could have caused 

premature failure. An additional model has been run which contained a void in the fillet 

in the same location as the region of maximum principal stress obtained from the 

undamaged model. The fillet maximum principal stress given from the revised model 

containing the void is still only 6.6 MPa. It must be pointed out, however that during 

the experiments, once the fillet cracks had formed they did not extend in any way on 

further loading. This indicates that large voids may have been present in the fillets prior 

to loading which opened out due to the nature of the load but did not cause any further 

damage within the fillets. The experimental load/deflection curve showed no sudden loss 

of stiffness and an FE model containing a void in the resin exhibits an almost identical 

value of stiffness as the model not containing voids. Thus it seems likely that the cracks 
in the fillet were due to the voids opening out under load with no loss of top hat 

stiffness. 
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The in-plane stresses in the overlaminate are lower than the in-plane failure stress but 

the through-thickness stresses in the overlaminate predicted by the FE model are 21 MPa 

along the interface of the overlaminate and the fillet as shown in Figure 5.8(a). This is 

about three times the ILTS so delaminations would be predicted in this location. No 

delaminations, however, were visible in the experiments in this location. The high 

through-thickness stresses may have caused a debond between the overlaminate and the 

fillet which in turn caused the fillet crack. The FE model predicts maximum in-plane 

and through-thickness stresses in the flange plate which are not high enough to cause 
failure at a load of 5 kN. This is consistent with the experimental initial failure mode 

at 5 kN. 

The fillet principal stress at a load of 14 kN which is the experimental failure load is 

13 MPa which is still less than the UTS of the fillet resin. Also, the in-plane and 

through-thickness stresses in the flange are less than the respective ultimate strengths. 
The experimental failure mode, however, at 14 kN was that of damage on the lower 

surface of the flange plate in the centre. 

(C) Straight Pull-Off 

The FE model used to yield the internal stress patterns within the stiffener is the model 
from the sensitivity study part (H) which includes the steel plate to apply the load. This 

model yielded a value of stiffness within 7% of the experimental top hat stiffness so 
is considered to represent the tested specimen reasonably well. The most significant 

stress pattern for the top hat at the experimental initial load of 5.5 kN is shown in Figure 

5.9(a): the overlaminate through-thickness stresses. 

The maximum values of stress for the fillet principal stress, overlaminate in-plane and 

through-thickness and flange in-plane and through-thickness stresses are given in the 

lower two rows of Table 5.6. The fillet maximum principal stress at the stiffener 

experimental failure load of 7 kN is 7.8 MPa. This is much lower than the UTS of the 
fillet material of 26 MPa. The FE model would not, therefore, predict fillet failure at this 
load. This corresponds to the experimental failure mode in which no fillet cracks were 

visible. 

The maximum in-plane stresses in the overlaminate and in the flange are less than the 
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UTS (in-plane) stress of 207 MPa at a load of 7 W. Therefore, no failure is predicted 

at this load from the FE model as a result of high in-plane stresses. The maximum 

through-thickness stress of 2.8 MPa in the flange is lower than 7 MPa which is the 

ILTS. The maximum through-thickness stress in the overlaminate, however, is higher 

than the ILTS. The FE model would predict delamination of the overlaminate in the 

curved region close to the fillet due to high through-thickness stresses as shown in 

Figure 5.9(a). 

5.5.2 Type II Top Hat Stiffener 

Table 5.7 shows the value and location of the maximum stress for each load level and 
load configuration for the type II stiffener. 

(A) Three-Point Bending 

The most significant stress patterns for the top hat at the experimental failure load of 
14.5 kN are shown in Figure 5.10(a): the fillet principal stresses, Figure 5.10(b): the 

overlaminate through-thickness stresses and Figure 5.10(c): the flange in-plane stresses. 
At a load of 12.5 kN which is the initial failure load of the top hat in the tests, the FE 

model would predict a maximum fillet principal stress of 23 MPa. This is approaching 

the UTS of the fillet of 26 MPa. The location of this maximum stress is in the fillet 

corner adjacent to the interface of the core and the flange as shown in Figure 5.10(a). 

The photograph of the damaged specimen (Elliott, 1992) indicates that there is a gap 

between the flange and the core in this location. The crack is likely to have formed due 

to the high fillet principal stresses and then continued along the core/flange interface. 

The through-thickness stresses in the overlaminate at a load of 12.5 kN are greater than 

the ILTS of 7 MPa. The FE model would predict delaminations due to high through- 

thickness stresses in the curved region of the overlaminate towards the outer surface. 
This is in the exact location where delaminations were seen in the experiments at a load 

of 12.5 kN and is shown in Figure 5.10(b). 

At the experimental failure load of 14.5 kN, the in-plane stresses in the flange are 

approaching the UTS of 207 MPa. The FE model predicts these high in-plane stresses 
in the centre of the flange plate on the inner surface as shown in Figure 5.10(c). Damage 
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was visible in this location in the experiments as the top hat approached final failure. 

(B) Reverse Bending 

The FE model containing the steel plate has been used to generate the stress patterns 

within the top hat stiffener. The most significant stress pattern for the top hat at the 

experimental failure load of 17 kN is shown in Figure 5.11(a): the flange through- 

thickness stresses. 

In the experiments, the type II top hat failed catastrophically under the reverse bend. No 

damage was visible until the flange plate failed in tension in the centre on the outer 

surface at a load of 17 W. At this load the FE model would predict that all the values 

of maximum in-plane and through thickness stresses in the overlaminate, maximum fillet 

principal stress and flange in-plane stresses are less than the limiting values. However, 

the maximum through-thickness stress in the flange is equal to 9 MPa at a number of 

locations along the flange plate as shown in Figure 5.11(a). Thus, the delaminations 

visible in the experiments at this load in the lower central plies of the flange plate are 

likely to be due to excessive through-thickness stresses. 

(C) Straight Pull-Off 

The möst significant stress pattern for the top hat at the experimental failure load of 17 

kN is shown in Figure 5.12(a): the overlaminate through-thickness stresses. This test also 

gave rise to catastrophic failure at a load of 15 W. At this load the overlaminate became 

completely detached from the flange plate. Of the two specimens which were tested, one 
became detached on one side only where as the second specimen became detached on 
both sides. There was no other visible signs of failure within the specimens. At a load 

of 15 kN the FE model would predict that no damage would occur in the flange plate, 

fillet or in the overlaminate due to in-plane stresses since all the maximum stress values 
in these regions are less than the ultimate values. However, delaminations would be 

predicted due to high through-thickness stresses in the curved part of the overlaminate 

close to the fillet. 

54 



5.6 Discussion 

5.6.1 Stiffness Correlation 

For both types of top hat stiffeners, the stiffness of the FE models compares extremely 

well with the initial stiffness of the tested specimens under the three point bending load 

configuration. In the case of the reverse bend test, the FE models of both types of top 

hat gave rise to about twice the stiffness when compared with the experimental initial 

stiffnesses. In order to take into account this pronounced increase in stiffness a 

sensitivity study has been undertaken. The results of the study showed that the stiffness 

of the FE model is greatly influenced by reducing the moduli of the woven 

roving/polyester material which makes up the overlaminate and the flange. A 25 % 

reduction in the in-plane and through-thickness moduli results in a corresponding change 
in the slope of the load/deflection curve. In addition, the inclusion of the steel plate in 

the FE model for the pull-off load increased the model stiffness to within 7% (type I) 

and 2% (type II) of the experimental stiffness thus indicating the importance of 

correctly representing the loading configuration in order to validate the FE models. 

5.6.2 Assumed Material Properties and Boundary Conditions 

In the case of the three point bending load, the FE models of both types of top hat gave 

very similar values of stiffness when compared with the stiffness of the tested specimen. 
Therefore, under this loading condition, the assumed material properties were close to 

those of the actual specimen material. In order to represent as closely as possible the 

simple support conditions, two nodes were constrained only in the vertical direction. 

This represents the test case where the flange of the top hat stiffeners were positioned 

on the supports and were assumed not to move in the vertical direction. In order to 

prevent rigid body motions of the FE model, one of the two constraint nodes was also 

restricted in translation in the horizontal direction. This is not the case in the tested 

specimen where the test piece is free to move around the support. Since the initial 

stiffness of the FE model under three point bending is very similar to the experimental 
initial stiffness, it is shown that this additional boundary condition does not invalidate 

any subsequent results. 
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5.6.3 Comparison of FE Stiess Patterns with Experimental Damage 

The internal stress distributions in the two types top hat which have been predicted by 

the FE models for a three point bending load compare very well with the respective 

failure modes of the tested specimens. The predictions of the stress patterns for both 

types in the case of the reverse bend and pull-off loads, however, are not as consistent 

with the experimental failure modes. Tensile tests on the fillet material carried out by 

Read indicate the UTS of the fillet may in fact be of the order of 16 MPa as opposed 

to the quoted value of 26 MPa. This may explain the premature fillet failure which was 

seen in the case of the type I top hat under a reverse bending load. The pull-off tests on 

both types of top hat showed that no damage occurred other than the overlaminate 

becoming detached from the flange plate on one (type I) or both (type II) sides. The FE 

models, however, predict that delaminations would occur in the curved region of the 

overlaminate close to the fillet due to high through thickness stresses. Therefore, the 

premature peeling of the overlaminate from the flange plate could have been caused due 

to poor bonding between the overlaminate and the flange. 

5.6.4 Comparison Between the Two Types of Top Hat Stiffener 

The only difference between the two top hat stiffeners is the geometry of the fillet but 

there are marked variations in their behaviour under the three modes of loading. Under 

the three point bending load, the type I top hat initial and final failure loads are slightly 

greater than the equivalent values for the type II top hat. However, the values of the 

maximum principal stresses in the fillet are significantly greater for the type II than 

those for the type I. The stress distributions in the overlaminate and in the flange are 

very similar for both types of top hat and the maximum values are of a similar 

magnitude. In the case of the reverse bend tests, the final failure mode in both cases was 

that of damage in the lower, central regions of the flange but the type I top hat also 

sustained initial failure in the form of fillet cracking. The maximum principal stresses 
in the type I fillet are significantly higher than those in the type II top hat. In addition, 

the overlaminate through-thickness stresses are significantly greater in the case of the 

type I than for the type II. Both types of top hat behaved in a similar manner in the 

straight pull-off test with one complete side of the overlaminate becoming separated 
from the flange. The exception being that one of the type II top hats failed on both sides 

at a load more than twice the failure load of the type I. Under reverse bending and 
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straight pull-off loads, the type II top hat stiffener behaves in a more catastrophic 

manner than the type I. This could have serious structural consequences since there are 

no signs of damage prior to final failure. 

5.7 Concluding Remarks - Identification of Delamination Prone Areas 

The damage prone areas in both types of top hat stiffener are (i) in the curved region 

of the overlaminate and (ii) in the central region of the flange plate. This is indicated 

by the presence of high through-thickness stresses in the curved region of the 

overlaminate and also the presence of high in-plane stresses in the flange. For example, 
Figure 5.7(a) shows the overlaminate through-thickness distribution at the experimental 

three point bending test initial failure load of 13.5 W. It show that the outer regions in 

the curved part of the overlaminate are subjected to the highest through-thickness 

stresses which are greater than the ILTS of the material and are thus most susceptible 

to delamination damage. Also, Figure 5.7(b) shows the in-plane stress distribution in the 

flange plate at the experimental three point bending test initial failure load of 13.5 kN. 

It shows that the maximum in-plane stress in the flange plate is greater than the failure 

stress and occurs in the central inner plies of the flange. This damage, however, is due 

to high in-plane stresses and is not likely to be delamination. Delamination damage 

primarily occurs under three point bending loads, where it appears in the curved region 

of the overlaminate. It is these regions which shall be studied further in Chapter 7, from 

an energy perspective with a view to identifying damage tolerance. 
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6. STRENGTH ANALYSIS OF TEE-JOINTS 

6.1 Purpose of Analysis 

The main aim of this chapter is to investigate the load transfer mechanisms within a 

typical tee joint. From the internal stress patterns and a knowledge of the material 

ultimate strengths, the regions of the joint which are most susceptible to damage (mainly 

in the form of delaminations) have been identified. 

Figure 6.1 shows a diagram of a typical tee joint. The main function of a tee joint in a 

ship is to transmit flexural, tensile and shear loads between the two orthogonal panels 

which may be in the form of a bulkhead, side shell or deck. Flexural or tensile loads 

may cause the plies in the web or the flange to peel off. Also, shear loads could result 
in the separation of the boundary angle (or overlaminate) from the base plate. Finally, 

flexural loads could cause the plies in the overlaminate to separate from each other due 

to interlaminar tearing. 

A tee joint is typically subjected to a docking or berthing type of load such as that 

shown in Figure 6.2. This load scenario can be represented experimentally by a three- 

point bending test. 

6.2 Features of the FE Models 

6.2.1 Modelling Considerations 

Both three dimensional (3D) and two dimensional models (2D) have been generated in 

order to represent a tee joint under a three-point bending load. 

Previous tee joint research has involved the generation of three dimensional (3D) finite 

element models (Shenoi & Hawkins, 1992). An investigation has been carried out to 

compare the results which were achieved from a 2D model with those from a 3D model. 
These results are discussed in Appendix 6A. The results showed that the 2D model gave 

consistent results with the 3D model. Owing to the ease of model generation and greater 

simplicity of the 2D model, it is this type which has been used in all further analysis. 
In order that the individual delaminations between the layers in the overlaminate can be 
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modelled, it is important that each layer is modelled with one element through the 

thickness of each layer. A typical two dimensional (2D) finite element tee joint model 

is shown in Figure 6.3. 

All models incorporated the large deflection option which takes into account the effect 

of large strains on the stiffness matrices of the materials in the joint. The effect on the 

results is shown in Section 6.3.5. 

6.2.2 Loads, Boundary Conditions and Material PmpeWes 

The loads which have been applied to the models have been chosen so as to represent 

the loads at which damage has been observed in three point bending experiments 

(Elliott, 1992). 

In order to represent simple support conditions, the finite element model is constrained 
in two locations. The positions of the constraints are shown in Figure 6.3. Both nodes 

are prevented from translation in the y-direction such that the boundary conditions 

represented in all the finite element models are those of simple supports. In order to 

prevent rigid body motions, one of the constraint nodes has also been restricted in the 

x-direction. 

The linear material properties for the overlaminate, web, flange used in the FE models 

are given in Table 6.1. The fillet material, however, possesses a non-linear stress-strain 

curve which is shown in Figure 6.4. The initial modulus of the fillet material is taken 

to be 1500 MPa (Shenoi & Hawkins, 1992) which was found to be a more appropriate 

value than 500 MPa which is the quoted value for the urethane acrylate fillet material. 
Hence, all the models incorporate the non-linear material option to take into account the 

non-linear behaviour of the fillet material. The effect of using the non-linear materials 

option is discussed in Section 6.3.4. 

6.2.3 Simplified Tee Joint Models 

A simplified tee joint model consisting of one element through the thickness of the 

overlaminate gives a good preliminary insight into the stress distributions within the 

joint and also into the load transfer mechanisms. It is not, however, possible to insert 
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delaminations within such a model. Owing to its simplicity, the model is quick and easy 

to generate. In order to represent as closely as possible the material which is present in 

the overlaminate, the material properties must first be estimated. This can be carried out 

using two methods. 

Method A assumes that the elastic properties of the actual materials used are available 

and known and uses a percentage of the properties of each layer depending on the 

relative amounts of each material. Method B involves calculating the properties using 

an adapted laminate analysis technique. Section 4.2.3 in Chapter 4 discusses the method 

by which the elastic properties of mixed layered composites can be calculated from an 

adapted laminate analysis. The overlaminate material in the tee joints can be considered 

to be a mixed laminate with layers of woven roving/polyester, (WR), and chopped strand 

mat/polyester, (CSM). Both methods will be discussed in Sections 6.2.3 (A) and (B) 

respectively. Section 6.2.3 (C) compares the results from both methods. 

(A) Method A 

The tee joint which is currently under consideration consists of 11 plies in the 

overlaminate, namely 6 plies of CSM and 5 plies of WR. The in-plane modulus and 

through-thickness modulus of the single elements through the thickness of the 

overlaminate are assumed to be in the same proportions as the actual number of layers. 

For example the through-thickness modulus equals 6/11 of the CSM through thickness 

modulus plus 5/11 of the WR through-thickness modulus. The load applied to the model 

under three point bending is 5500 N which is equal to the experimental load at which 

the first sign of damage was seen in the way of fillet cracks (Elliott, 1994). Figures 

6.5(a), 6.5(b) and 6.5(c) show the stress distributions of the fillet principal stresses, the 

overlaminate in-plane stresses and the overlaminate through-thickness stresses 

respectively. 

(B) Method B 

The adapted laminate theory discussed in Section 4.2.3 is used to calculate the overall 
laminate properties of the 11 layered overlaminate material used in the tee joints. The 

WR layers are assumed to have 50 % undulation i. e. along a unit cell of material half 

of the warp tow is straight and half is undulating. 
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(C) Results for Both Methods 

Table 6.2 shows the maximum deflections, maximum fillet principal stresses, maximum 

overlaminate in-plane stresses and maximum overlaminate through-thickness stresses for 

the two methods compared with the results of an FE model of a tee joint which contains 

one element per layer through the thickness of the overlaminate (model 1). The 

maximum stress and deflection values for model 1 are given in Table 6.3. Figures 6.6(a), 

6.6(b) and 6.6(c) show the fillet principal stress distribution, overlaminate in-plane stress 

distribution and overlaminate through-thickness stress distribution for model 1 and can 

be compared with Figures 6.5(a), 6.5(b) and 6.5(c) from method A. It can be shown that 

the fillet principal stress distribution is similar in the lower regions of the fillet. The 

region of maximum principal stress is also in the same location but the value from 

method A is slightly higher than that for model 1. The distributions in the upper region 

of the fillet are noticeably different. The overlaminate in-plane. stress distributions are 

similar for both models but the value of the maximum in-plane stress for method A is 

considerably lower than that for model 1. The overlaminate through thickness stress 

distributions differ significantly. This is due to the fact that the single element through 

the thickness of the overlaminate in the model using method A has a linear stress 
distribution. However, the region of maximum through-thickness stress is in the same 

location for both model 1 and the model using method A. This indicates that 

delamination would be predicted for both models due to high through-thickness stresses. 

The value of the maximum through-thickness stresses are very similar since the through- 

thickness moduli of the WR layers and the CSM layers are equal. 

For method B, and an applied load of 5500 N, the distributions for the fillet principal 

stress, SP, the overlaminate in-plane stress, Si_p and the overlaminate through-thickness 

stress, St_t are very similar to those from method A. The maximum value of Sp is equal 

to 11.3 MPa, the maximum value of Si_p is equal to 40.4 MPa and the maximum value 

of St_t is equal to 6.74 MPa. The region of maximum through-thickness stress is in the 

same location as for model 1 and the model using method A. 

The result of this study emphasises a number of points. Firstly that it is possible to 

simply calculate the mechanical properties of a mixed laminate consisting of layers of 

woven roving and layers of chopped strand mat using an adapted laminate theory. In 

order to make preliminary predictions of the behaviour of a structural component under 
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specific loading conditions, the calculated material properties of the laminate can be 

entered into a simplified FE model. Table 6.2 shows that the values of maximum 
deflection are very similar for the detailed FE model, model 1 which contains one 

element per layer and the models using methods A and B which only contain one 

element through the thickness of the tee joint overlaminate. In addition, the values of 

maximum stresses are reasonably close for the three cases. 

The calculation of the mechanical properties from the adapted laminate theory in 

combination with a simplified FE model gives a very good first estimate of the 

structures behaviour and the location of regions under high stresses. However, if a more 
detailed analysis is required such as including actual delaminations, then a model must 
be generated which contains one element per layer through the thickness of the 

overlaminate. 

6.2.4 Two Dimensional (2D) Model 

The elements used to generate the models are 2D structural solid elements which have 

been used in FE models in Chapter 4 and whose characteristics are given in Appendix 

4J. Plane strain conditions are assumed to prevail in the 2D models since the joints on 

board ships can be considered wide in relation to the length and thickness. One element 
is modelled per layer of the overlaminate material. For the 2D models, the finite element 
load is equal to the applied load per unit width of the joint which in this case is 100 

mm. Constraints for the 2D case mirrored those adopted for the 3D model. 

6.3 Tee Joint Damage Modelling 

The formation of delaminations in the overlaminate of a joint is commonly termed as 

'root whitening'. In order to understand the consequences of root whitening under a 

typical load configuration, experiments must be performed. The experimental 
load/deflection curve gives vital clues as to the extent of the damage, at what loads it 

occurs and the corresponding loss in stiffness due to the damage. It is also necessary to 

be able to pin point the exact location within the joint where the delamination occurred. 
Papers such as Shenoi & Hawkins, 1992 and Hawkins et. al. discuss the failure modes 

of particular joints but do not give an exact location and extent of the damage due to 

delamination. Therefore, alternative experimental results had to be found. 
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6.3.1 Damage Repnesenta6on, Experimental Evidence 

Elliott (1994) carried out a series of three point bending experiments on tee joints. A 

typical load-deflection curve yielded from the tests is shown in Figure 6.7. The points 

marked A to D correspond to the loads at which damage was observed in the tests, the 

details of which are given in Table 6.4. It can be noted from the graph that changes in 

slope of the load-deflection curve occur at loads of 5500 N, 7500 N, 8600 N, 11500 N, 

13000 N, 17600 N and 19000 N when the specimen finally failed. These changes of 

slope are due to stiffness reductions due to progressive damage to the joint. The exact 
location and extent of the delamination damage could be obtained from these tests. 

Consequently, a series of detailed 2D FE models have been generated to mirror the 

experimental load-deflection curve. 

6.3.2 Modelling Details 

The FE models have been tailored to mimic the damage observed in the tests. The 

experimental failure patterns (Elliott 1994) are given in Table 6.4. The analyses have 

been carried out with the following objectives: (i) to correctly represent the stiffness 

reduction due to the successive delaminations in the boundary angle, (ii) to predict the 

damage progression within the joint and (iii) to ultimately predict the failure mode of 

the joint. The damage zones (i. e the debond, fillet crack and delaminations) in the joints 

have been modelled by inserting a small gap between the relevant elements. 

A total of 6 models, numbered 1 to 6 have been generated to represent the undamaged 

tee joint (model 1), the successive damage (A to D) noted in the experiments shown in 

Table 6.4 (models 2-5) and a tee joint containing additional delamination (model 6). 

Values of maximum deflection, overlaminate in-plane and through-thickness maximum 

stresses and fillet principal stresses have been calculated for each model at each load 

level. 

6.3.3 Initial Stiffness Validation 

The initial stiffness of the 2D finite element model, model 1, has been compared with 

the stiffness of the tested specimens. The maximum values of deflection for the tee joint 

under a load of 5500 N are given in Table 6.5 for both the experimental joint and the 
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finite element model. This load level corresponds to the load at which the experimental 
load-deflection curve becomes non-linear. By comparing the values of maximum 

deflection it is shown that the stiffness of the model is within 13 % of the stiffness of 

the tested joint. 

6.3.4 Effect of using Non-Linear Fillet Material Properties 

Except for model 1 for which only one load has been applied, a series of load steps 

corresponding to the changes in slope of the experimental load-deflection curve have 

been applied to the full 2D FE models to investigate the effect on the stiffness of the 

non-linear fillet material stress-strain curve. The stiffness of the joint at each load level 

has also been calculated. Table 6.6 gives a selection of the values of maximum 

deflection, fillet principal stresses and strains and overlaminate maximum in-plane and 

through-thickness stresses and joint stiffness for the loads investigated. The values of 

stiffness of the joint at each load level are almost equal for each load, thus indicating 

that the inclusion of the non-linear material stress-strain curve has no effect on the 

overall stiffness of the joint. 

This was not unexpected since the damage sustained by the tested joint was dictated by 

the overlaminate rather than the fillet material. For tee joints with a thin overlaminate, 

however, the response of the tee joint is largely dependent upon the fillet resin (Shenoi 

& Hawkins). Consequently the correct representation of the resin non-linear stress/strain 

curve is much more important. 

6.3.5 Effect of using Non-linear Geometry 

Due to the nature of the applied load, large deflections may cause distinctive changes 

in the model geometry. For example, a 45 degree pull-off load shown in Figure 6.8 

initially causes the web of the joint to bend. As the deflections become larger, the 45 

degree pull-off load is acting more like an axial pull-off load. The large deflection 

option alters the material stiffness matrices accordingly to take this increase in strain into 

account. A large deflection analysis has been carried out on all the models at a number 

of load steps to note the effect on the tee joint stiffness. Table 6.7 shows the values of 

maximum deflection and hence the stiffness achieved at two load levels for model 1. It 

can be noted that the joint stiffness is almost unaffected by the inclusion of the non- 
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linear geometry option. 

6.3.6 Correlation with Experimental Load-Deflection Curve 

Graphs showing points on the load versus deflection (P/6) curve for each of the six 

models compared with the experimentally derived curve are shown in Figures 6.9(a) to 

6.9 (f). 

From Figure 6.9(a) it can be seen that the 2D undamaged model (Model 1) gives very 

similar values of deflection and hence initial stiffness to those obtained from the linear 

section of the experimental load-deflection curve. Model 2 results yield a stiffness of 

1796 N/mm for a load of 5500 N, which is 20 % greater than the equivalent value 

yielded from the experimental curve at this load. The points on the P/b curve are almost 
identical to those for model 1 for the loads considered. This can be seen in Figure 6.9 

(b). 

The points on the P/6 curve generated for model 3 are given in Figure 6.9(c). The 

results show a certain amount of stiffness reduction. i. e for a given load, the value of 

deflection calculated for model 3 is greater than that for both models 1 and 2. When 

comparing models 3 and 4, it can be seen that there is very little stiffness reduction due 

to the increased amount of delamination in the overlaminate in model 4. This can be 

noted when comparing Figures 6.9(c) and 6.9(d). The stiffness at a load of 10000 N for 

model 3 is 1762 N/mm and for model 4 is 1639 N/mm which is only a7% reduction. 

It can be noted that the deflections are very low when compared with the experimental 

values at the equivalent loads. 

Model 5 represents the full experimental damage scenario. It can be noted that for only 

a small amount of delamination between the web/overlaminate interface and the 

flange/overlaminate interface, there is a large reduction in stiffness to 1265 N/mm for 

a load of 19000 N. This is clearly seen when comparing Figures 6.9(d) and 6.9(e). This 

value of stiffness is an 18 % reduction from the equivalent value for model 4 of 1548 

N/mm. The deflections yielded from the FE models are approaching the equivalent 

experimental values. 

In an attempt to achieve similar deflections to those obtained from experiment, model 
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6 was analysed which contains the same damage as model 5 but with further 

delaminations along the web/overlaminate and flange/overlaminate interfaces. This 

amount of delamination does give values of deflections close to the experimental values 

although there is still some difference, as can be seen from Figure 6.9(f). 

It is likely that there was internal damage which was not visible during the experiments. 

In addition, it is possible that there was more delamination along the web/overlaminate 

and flange/overlaminate interfaces than was visible during the tests. This would account 
for the increased flexibility and hence deflection of the joint for a given load. To 

confirm this hypothesis, an FE model of the flange plate alone was generated and loaded 

in three point bending. The central deflection at a load of 19 kN is equal to 27.7 mm 

which is within 0.8 % of the experimental maximum deflection of the entire joint. This 

result shows that the tee joint behaviour is ultimately dictated by the stiffness of the 

flange plate. In addition, a 2D tee joint finite element model has been generated to 

represent complete delamination along the entire overlaminate/flange interface. The fillet 

material elements, however, remained in contact with the flange. The value of the 

maximum deflection at the tip of the web for this model equalled 21.6 mm for an 

applied load of 19 kN. This suggests that there may have been substantially more 
delamination along the flange/overlaminate interface than could be observed from the 

experiments. 

Five notable features can be concluded: 

(i) The stiffness of each of the finite element models generated appears to be higher than 

that of the tested specimens at the equivalent loads. 

(ii) There was no visible damage which occurred at 8600 N to explain the sudden 

stiffness loss at this load. Poor resin impregnation, however, within the woven roving 
layers thus giving rise to a delamination would account for the sudden loss of stiffness 

at 8600 N. This would, as a result, give rise to larger deflections for a given load. 

(iii) From a comparison of the stiffness values calculated at a load of 19000 N which 
is the experimental failure load of the joint, models 4 and 5 show that an increase in the 

amount of delamination along the web/overlaminate and flange/overlaminate interfaces 

greatly increases the deflections. It is likely that a certain amount of delamination 

between the web/overlaminate and flange/overlaminate occurred earlier than was visible 

with the naked eye. 
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(iv) The stiffness of an FE model of the flange plate alone is almost identical to the 

stiffness of the tested tee joint. It can be concluded from this that at the time of failure, 

the overlaminate and fillet did not significantly contribute to the stiffness of the tee joint. 

Thus, the final failure of the tee joint is dictated by the flange plate alone. 

(v) Importantly, however, the stiffness losses associated with the numerically generated 

load-deflection curves mirror the stiffness losses of the tested specimens with reasonable 

accuracy. 

6.4 Stiess Patterns 

MODEL I 

The first sign of damage in the experiments was noted at 5500 N when the fillet was 

seen to crack. It was this value of load which has been used to evaluate the theoretical 
deflection obtained from the undamaged model. This has been used to assess the 

accuracy of the model. The values of the maximum fillet principal stress, maximum 

overlaminate in-plane stress and maximum overlaminate through-thickness stresses are 

given in Table 6.8. 

The distributions for fillet principal stress, Sp, overlaminate in-plane, Si_p, and through- 

thickness, St_t, stresses are shown graphically in Figures 6.6(a), 6.6(b) and 6.6(c) 

respectively. The maximum value of fillet principal stress is 8.6 MPa at 5500 N which 

would not be enough to cause failure since the ultimate tensile stress of the fillet 

material can be taken as 26 MPa (Scott Bader). The maximum value occurs in the upper 
fillet corner where the overlaminate material meets the web and is shown in Figure 

6.6(a). 

The maximum value of in-plane stress in the overlaminate occurs on its outer surface 

near the centre and is shown in Figure 6.6(b). A value of 53 MPa is not enough to cause 
failure since the in-plane tensile strength of the overlaminate material is taken to be 207 

MPa (Shenoi & Hawkins). 

The distribution for the overlaminate through-thickness stresses is shown in Figure 6.6(c) 

and has a maximum value of 6.3 MPa. This would be enough to cause failure since it 

is approximately equal to the quoted interlaminar tensile strength of 7 MPa (Bird & 
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Allan). The maximum value of the overlaminate through-thickness stress occurs near the 

lower fillet corner indicating likely delamination along the flange/overlaminate interface. 

MODEL 2 

Only the fillet was seen to crack in the experiments but it is likely that a small debond 

would have occurred first as this would induce higher stresses in the fillet causing it to 

fail. Stress results have been obtained for this model at five different load levels. 

Since the internal stress distribution for this model is almost identical to that of the 

undamaged model (model 1), plots of the stress distributions have not been repeated. 

Alternatively, the values of the maximum fillet principal stress, maximum overlaminate 
in-plane stress and maximum overlaminate through-thickness stresses are given in Table 

6.9 in addition to a sketch of the exact location of each stress. 

At a load of 5500 N. Table 6.9 shows that the maximum value of the fillet principal 

stress occurred in the upper fillet corner. The magnitude is, however, lower than the 

fillet ultimate tensile strength of 26 MPa. In addition, the strains in the fillet have been 

found to be of the order of 0.5 % which is negligible compared with the quoted 

elongation at break value of 100 % (Scott Bader). The regions of maximum 

overlaminate in-plane and through-thickness stresses are in the same location as for 

model 1. As the applied load is increased, the overlaminate through-thickness stresses 

increase above the ultimate stress thus indicating that delaminations would occur. 

As the load is increased, the location of the regions of maximum stress remain in the 

same location as for lower loads. The size of the region under maximum stress, 

however, enlarges slightly as the load is increased. 

MODEL 3 

This model represents the debond, the crack in the fillet and the first delamination. The 

values of the maximum fillet principal stress, maximum overlaminate in-plane stress and 

maximum overlaminate through-thickness stress and their locations are given in Table 

6.10. 
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At a load of 5500 N the maximum principal stress in the fillet, Sp, occurs in the upper 

fillet corner on the damage side of the model as before. High values of Sp are obtained 

in the upper fillet corner on the non-damage side. The region of maximum stress appears 

to be smaller than in the case of model 2. The maximum value of Si. p 
in the 

overlaminate is in a similar region as model 2 and is of a similar magnitude. 

The maximum value of St_t in the overlaminate occurs at the upper end of the inserted 

delamination. For example, at a load of 7500 N, the magnitude of this stress has been 

taken to be 29 MPa which is high in comparison with the equivalent value at the lower 

end of the delamination of about 8 MPa. The reason for this high value is that no 

explicit failure criterion has been set in the models used here. Hence a value higher than 

the interlaminar tensile strength indicates failure in a qualitative sense. 

The exceptionally high stresses have been found to be due to the presence of 

singularities. To be certain of this, the average nodal stresses have been noted for the 

nodes along the delamination passing around the radius of the overlaminate in model 3 

at a load of 7500 N. Figure 6.10 shows the distribution of nodal average stresses around 

the delamination. Position 12 represents the node at the delamination tip whose through- 

thickness stress is exceptionally high when compared with the other nodal values. The 

exceptionally high values calculated can therefore be explained by the presence of 

singular stresses. Hence, the actual value of maximum overlaminate through-thickness 

stress at a load of 7500 N is taken to be of the order of 8 MPa having removed the 

effect of the singularity. All values of through-thickness stresses stated from now on 

have had the effect of the singularity removed. 

Table 6.10 shows that as the applied load increases the through-thickness stresses in the 

overlaminate increase to values greater than the ultimate stress and would thus cause 

further delamination. 

MODEL A 

This model represents the debond, the crack in the fillet and further delaminations. The 

values of the maximum fillet principal stress, maximum overlaminate in-plane stress and 

maximum overlaminate through-thickness stresses and their locations are given in Table 

6.11. 

69 



At a load of 10000 N the maximum fillet principal stresses occur in the region of the 

lower fillet corner, again indicating that damage along the flange/overlaminate interface 

is likely. The magnitude of the maximum SP is approaching the failure load of the fillet. 

At a load of 15000 N the principal stress distribution in the fillet is the same as at a load 

of 10000 N except that there is an additional high stress region in the upper fillet comer 

on the other side of the web. 

0 

The principal stress distribution in the fillet at a load of 19000 N is the same as at a 

load of 15000 N except that there is an additional high stress region in the lower fillet 

corner on the other side of the web. The maximum value of Si-p in the overlaminate is 

in a similar region as model 3. Failure due to overlaminate in-plane stresses would not 

be predicted to occur at this load since the maximum stress value is less than the 

ultimate tensile strength of 207 MPa. At a load of 19000 N, however, the maximum in- 

plane stress in the overlaminate is greater than the ultimate stress and thus damage is 

predicted at this load. The maximum value of overlaminate through-thickness stress 

occurs near the ends of the inserted delaminations and their magnitude is great enough 

to indicate propagation. 

MODEL 5 

This model represents the completely damaged joint as observed from experiments at 

the failure load of 19000 N. The values of the maximum fillet principal stress, maximum 

overlaminate in-plane stress and maximum overlaminate through-thickness stresses and 

their locations are given in Table 6.12. 

At a load of 5500 N the maximum principal stress in the fillet occurs in the lower 

region of the fillet. A region of high principal stress also occurs at the lower end of the 

inserted crack. There are also regions of high fillet principal stresses in the upper and 
lower fillet corners on the other side of the web at a load of 17000 N. 

The value for the maximum in-plane stresses in the overlaminate increase steadily as the 

applied load increases. At a load of 15000 N and above, the magnitude is such that 
damage would be predicted. The maximum value of the overlaminate through-thickness 

stress is significantly lower than that for the same load for previous models. The 

magnitude also suggests that further delamination is unlikely. 
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MODEL 6 

This model represents the completely damaged joint as observed from experiments at 

the load of 19000 N as well as additional delamination along the web/overlaminate and 

flange/overlaminate interfaces. The values of the maximum fillet principal stress, 

maximum overlaminate in-plane stress and maximum overlaminate through-thickness 

stresses and their locations are given in Table 6.13. 

The stress distributions yielded from this analysis are similar to those generated for 

model 5. The overlaminate in-plane and through-thickness stresses are lower than the 

equivalent ultimate values thus suggesting that no further damage or delamination is 

likely. 

6.5 Discussion 

6.5.1 Stiffness Correlation 

The experimental load-deflection curve has been modelled satisfactorily. However, the 

numerical results did not give as much deflection for a given load as that which 

occurred in the experiments. This could be due to a number of reasons. It is possible 

that damage was present in the joint prior to loading, due to such factors as fabrication 

technique and method of fillet injection. An FE model of the flange plate alone gives 

an almost identical value of stiffness as the specimen at the failure load. This indicates 

that the overlaminate does not contribute to the load bearing capability of the joint close 

to failure. 

It has been shown that the presence of delaminations in the overlaminate material of a 

tee joint under three point bending causes a stiffness reduction of the joint. The 

overlaminate material in this case is built up of 11 plies of woven roving (WR) and 

chopped strand mat (CSM) in a polyester resin. The exact lay-up, starting from the inner 

ply is, CSM, CSM, WR, CSM, CSM, WR, CSM, CSM, WR, WR, WR. In the case of 

the tee joint under a three point bending load, the delaminations have been found to 

occur between the second CSM layer and first WR layer (i. e between plies 2 and 3). On 

further loading, a delamination appeared between the first WR and the third CSM layer 

(i. e between plies 3 and 4). It is this latter delamination which shall be discussed below. 
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The stiffness reduction for a delamination between plies 3 and 4 has been calculated 

from the analytical stiffness reduction technique discussed in Section 4.3.1. The value 

of stiffness of the mixed laminate which makes up the overlaminate has been calculated 

from the equations in Section 4.2.3. The overall stiffness reduction has been calculated 

to be 9.0 %. The experimental stiffness reduction due to the presence of a delamination 

in this location is equal to 15 %. The finite element representations of the tee joint 

discussed above give a stiffness reduction of 9.2 % due to the presence of the 

delamination. 

It has thus been shown that the analytical model discussed in Section 4.3.1, although 

intended for the analysis of angle-ply laminates, gives a reasonable value of the stiffness 

reduction of a delaminated mixed laminate when compared with finite element 

representations. However, the stiffness reduction calculated from the analytical model 

is significantly lower than the stiffness reduction of a tested specimen. The discrepancies 

between the amount of stiffness reduction calculated from the analytical model and the 

experimental stiffness reduction can be explained by the fact that the analytical approach 

assumes that the laminate is initially flat and under pure tension. This is not the case in 

the experiments where flexural and shearing loads are also present and where the 

overlaminate is initially curved. 

6.5.2 Assumed Material Properties and Boundary Conditions 

Since the assumed material properties may not completely represent the actual values 

of the materials used in the joint, a series of analyses have been carried out to 

investigate the effect of varying two of the material properties. For the undamaged 2D 

model (model 1), the fillet elastic modulus has been varied in addition to the WR value 

of the Poisson Ratio. Table 6.14 shows the values of deflection, maximum fillet 

principal stresses and strains and the maximum overlaminate through-thickness and in- 

plane stresses for an applied load of 5500 N for each of the analyses in addition to the 

results for the original model. From the table it is shown that if the fillet elastic modulus 
is reduced from 1500 MPa to 500 MPa, the maximum deflection of the joint increases 

by 6.7 %. On the other hand an increase in fillet elastic modulus from 1500 MPa to 

3500 MPa reduces the maximum deflection by 3.3 %. 

The assumed material properties used in the FE models are given in Table 6.1. Any 
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uncertainties with respect to the assumed material properties are not likely to differ by 

large amounts. Consequently, the stiffness and internal stress patterns of the model 

representing the tee joint will not vary significantly. Thus the initial values used in the 

FE models have not been altered. 

Since delaminations rarely occur smoothly between two layers, it is assumed that the 

stiffness of the material in the vicinity of the delamination(s) is reduced due to the local 

damage associated with the delamination(s). Table 6.15 shows the effect on the joint 

stiffness when the stiffness of certain elements is reduced. Table 6.15 shows, however, 

that this has very little effect on the overall joint stiffness. 

Stresses in the fillet are low and not adequate to cause the experimentally observed 

failure. As indicated earlier, the fillet failure may have been due to imperfections or 
flaws. Importantly, stress patterns in the overlaminate seem to adequately mirror the 

damage scenario seen in the experiments. In addition, tensile tests have been carried out 
by Read on small specimens of urethane acrylate resin which is the material used in the 

tee joint fillets. The ultimate tensile stress was estimated to be of the order of 16-17 

MPa rather than the quoted value of 26 MPa. This also explains the premature failure 

of the fillet. 

6.5.3 Comparison of Finite Element Stress Patterns with Experimental Damage 

MODEL I 

At a load of 5500 N the high principal stresses in the upper fillet comers indicate that 

damage is likely along the web/overlaminate interface. Figure 6.6(a) shows the stress 
distribution. The resulting stresses in the fillet at a load of 5500 N equal to 9 MPa 

would not be enough to cause failure of the fillet material which has a UTS of 26 MPa. 

It is possible that either an initial flaw or void was already present in the fillet due to 

fabrication processes. This flaw may have caused premature failure in the joints. Further 

research (Elliott, March 1996), however, in which a series of tensile tests were carried 

out on the urethane acrylate fillet material gave rise to a number of interesting points: 

(i) Problems were experienced in the test specimen manufacture due to the 
large number of voids. 
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(ii) The voids present in the specimens led to a reduction in the elongation 

of the material from 100 % which is the quoted value (Scott Bader) to 

less than 5% and in the worst case to 1.7 %. 

(iii) Elliott suggested that the presence of the voids led to the premature fillet 

failure which was seen in the tee joint experiments. 

In order to check whether or not the presence of voids in the fillet gave rise to the 

experimental premature failure of the fillet, a series of finite element models have been 

generated which contain voids in the fillet. The load applied to the models was 5500 N 

in each case which is the experimental load at which the fillet was seen to crack. The 

values of the fillet principal stresses and strains calculated for each model are given in 

Table 6.16. The model containing a void in the region of highest principal stress (shown 

in Figure 6.6(a)) gives a maximum principal stress of 14.3 MPa and a strain of 0.8 %. 

This indicates that the presence of voids in the fillet greatly increases the principal 

stresses in the fillet. 

As already mentioned, Read discovered that the UTS of the fillet material was of the 

order of 16 MPa and not 26 MPa quoted by the manufacturers. It is thus likely that the 

premature failure of the fillet could be due to the presence of voids in the fillet. 

The highest values of through-thickness stress in the overlaminate occur in the lower 

three to four layers of the overlaminate in two distinct regions as shown in Figure 6.6(c). 

This is consistent with the delaminations which were seen in the experiments. 

MODEL 2 

At a load of 5500 N the principal stress in the fillet is lower than the fillet ultimate 

tensile stress of 26.0 MPa. In addition, the strains in the fillet were found to be of the 

order of 0.5 % which is negligible compared with the quoted elongation at break value 

of 100 %. This result indicates that the fillet would not fail at this load. 

The through-thickness stress distribution at this load is similar to that for model I at the 

corresponding load level and indicates that the delamination would progress. At a load 

of 7500 N at which the first signs of delamination were visible, high through-thickness 

overlaminate stresses occur near the lower fillet corner, indicating that there would be 
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delamination along the flange/overlaminate interface. 

MODEL 3 

At a load of 7500 N high regions of through-thickness overlaminate stresses occur in the 

central regions of the overlaminate where the delaminations are present indicating that 

further damage in these regions is likely. When the load is increased to 10000 N, a 

much greater region of high through-thickness overlaminate stresses is present which is 

consistent with the observed failure at this load indicating numerous delaminations in 

this region. 

MODEL 4 

At loads of 10000 N and 19000 N, regions of high through-thickness overlaminate 

stresses indicate that delaminations are likely along the web/overlaminate and 

flange/overlaminate interfaces. This is consistent with the experimental findings. 

MODEL 5 

At a load of 19000 N stresses in the fillet are still low and not great enough to cause 

the experimentally observed failure. As indicated earlier, the fillet failure is likely to 

have been due to imperfections or flaws. Importantly, stress patterns in the overlaminate 

seem to adequately mirror the damage scenario seen in the experiments. The maximum 

values of the overlaminate through-thickness have reduced significantly indicating that 

further delamination is unlikely. The introduction of the delaminations into the model 
has the effect of relieving these stresses within the boundary angle. The in-plane 

stresses, however, are much greater than the ultimate stress level at loads above 15000 

N. This would indicate damage on the outer surface of the boundary angle. 

6.5.4 Identification of Delamination Prone Areas 

The initial decision to use a two dimensional model rather than a three dimensional 

model has allowed the generation of a large number of models since the models are less 

complex to produce without the loss of accuracy. The series of full 2D models has given 

an indication of the stiffness reduction due to the progressive delaminations within the 
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joint. As a result of the stress analyses it has been possible to identify the regions which 

are most susceptible to damage. The curved region of the overlaminate is inherently the 

region in the joint which is most prone to delamination. 

The stress values yielded from the analyses have given an indication as to whether 
delaminations would be likely to form. It has, therefore, possible to determine areas 

which are initially prone to delamination. 

In order to fully understand the load transfer mechanisms within the joint, it is necessary 

to investigate the overlaminate in-plane and through-thickness distributions along two 

paths as shown in Figure 6.11. The tee joint which has been investigated in this manner 
is the undamaged tee joint model (model 1) under a three point bending load of 7.5 kN. 

This is the load level at which the first delamination occurred in the experiments. Two 

paths, numbered '1' and '2' have been defined which pass through the thickness of the 

overlaminate in different locations. The in-plane and through-thickness stresses at all the 

nodal locations along each path have been calculated. The path analysis has also been 

carried out for the model containing the initial delamination in the overlaminate (model 

3). 

Figure 6.12(a) and 6.12(b) shows the in-plane and through-thickness stresses calculated 

at 12 nodal positions along path 1 for model 1. Figure 6.13(a) and 6.13(b) show the 

equivalent results for model 3. In the Figures, '1' is the inner-most node defining the 

overlaminate and '12' is the outer-most node of the overlaminate, close to the surface. 

The in-plane stresses and through-thickness stresses calculated along path 2 are given 
in Figures 6.14(a) and 6.14(b) for model 1 and Figures 6.15(a) and 6.15(b) for model 
3. 

Figure 6.12(a) shows that the in-plane stresses gradually increase from the inner regions 
to the outer regions of the overlaminate. Thus, at higher loads, damage is more likely 

to occur in the outer plies. Figure 6.12(b) shows that the through-thickness stresses 

steadily rise towards the centre of the overlaminate and then drop dramatically as the 

outer plies are reached. This shows that at higher loads, delaminations are more likely 

to occur in the inner or central regions of the overlaminate rather than close to the 

surface of the overlaminate. This is consistent with the experimental findings (Elliott). 

The oscillatory nature of the curve occurs because the inner most node at position 1 is 
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not at the location of the maximum through-thickness stress. The following nodes in 

positions 2-8 pass through the regions of higher through-thickness stress which then tails 

off as the outer layers are reached. 

Figure 6.13(a) shows a similar distribution as in Figure 6.12(a) except that there is a 

drop in the in-plane stress at node position 4. The delamination tip is at node position 

3 and it is due to the presence of the tip that the in-plane stress drops. Figure 6.13(b) 

shows that the through-thickness stress is greater than the ILTS in the inner regions of 

the overlaminate and that it gradually reduces close to the surface. 

Figure 6.14(a) shows that the value of the in-plane stress is greatly dependent upon the 

type of material present in each layer. The values of the in-plane stress have been 

calculated at nodes along the path which are at the interface between two layers of the 

overlaminate with one element modelled per layer. The graph shows distinct peaks at 

the nodes which are at the interface between a layer of WR and a layer of CSM (nodes 

at positions 3,4,6,7 and 9). This is due to the difference in the values of the in-plane 

stiffness of the WR and CSM layers. The nodes in positions 10,11 and 12 are located 

between layers of WR. The outer regions of the overlaminate are under the highest in- 

plane stresses. 

Similar findings have also been reported by Dulieu-Smith et. al.. Thermoelastic stress 

analyses have been carried out on tee joints tested under static 45 degree pull-off loads. 

Plots of the sum of the principal stresses have been plotted at points along a path 

crossing from the outer edge of the overlaminate under tension, through the web plate 

and to the outer edge of the overlaminate under compression. The principal stresses in 

this case have been assumed to be equal to the through-thickness stress and in-plane 

stress. The ultimate aim is to be able to separate these two components of stress from 

the results of the thermoelastic technique in conjunction with a photoelastic technique 

which measures the principal strains. Figure 6.16 shows an example of the thermoelastic 

signal for one path. The thickness of the overlaminate in this case is about 15 mm. The 

ordinate shows the summation of the principal stresses at each point along the path. 
There is a distinct jagged appearance to the curve which is likely to be due to the 
difference of the materials used in each layer. 

Figure 6.14(b) shows that the through-thickness overlaminate stresses in the region close 
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to the fillet are greater than the ILTS of 7 MPa. The node in position 1 is in the exact 
location of the maximum through-thickness stress at this load. The through-thickness 

stress gradually decreases towards the outer layers of the overlaminate. This corresponds 

with the experimental findings that a delamination occurred within approximately ply 

3 of the overlaminate under a three point bending load (Elliott, 1994). 

Figure 6.15(a) shows that the peak in-plane stress occurs close to the delamination tip 

at position 3. The reason why the values of in-plane stress do not rise close to the outer 

surface of the overlaminate as in the case of model 1 shown in Figure 6.14(a) is because 

the presence of the delamination re-distributes and tends to even out the stresses. Along 

path 2, the in-plane stress contours are very similar from the centre to the outside of the 

overlaminate. Figure 6.15(b) shows that the highest through-thickness stress also occurs 

close to the delamination tip at position 3. This is to be expected, since it is likely that 

the delamination would propagate at this load due to high through-thickness stresses. 

It has been shown that the delaminations form in the inner regions of the overlaminate 
due to high through-thickness stresses. These delaminations have the effect of reducing 

the through-thickness stresses. On further loading the through-thickness stresses cause 

additional delaminations. There reaches a point whence the through-thickness stresses 
have dropped significantly, even at high loads, and thus delamination due to through- 

thickness stresses ceases. However, the presence of the delaminations in the inner 

regions of the overlaminate causes an increase in the in-plane stresses in the outer 

regions of the overlaminate. Thus, damage is subsequently caused in these outer regions 
due to high in-plane stresses. 

Similar results have been obtained in Chapter 4 for a square plate containing straight 

cracks. Under a mode I, opening, type of load acting perpendicular to the crack front, 

it has been shown that the presence of a second crack reduces the mode I stress intensity 

factor thus indicating that crack propagation is less likely to occur due to through- 

thickness stresses. The presence of the second crack dramatically increases the mode II 

stress intensity factor. This indicates that crack propagation is much more likely to occur 
due to in-plane shear stresses when a number of cracks are present in the laminate. 
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6.6 Stiess Patterns for a 45 Degree Pull-Off Load 

The stiffness and stress distributions for model 1, discussed above, have also been 

yielded for a 45 degree pull-off load. The results have been compared with published 

data obtained from similar tee joints (Shenoi & Hawkins, 1992). Figure 6.17 (Sample 

B) shows a typical experimental load/deflection plot. The figure shows that there is a 

significant drop in stiffness when the applied load reaches about 5 kN, indicating that 

delaminations have formed. Further load application shows additional load carrying 

capability up to 11 kN resulting in further delamination and final failure at 15 W. For 

an applied load of 5 kN, which is the load at which delaminations occurred in the 

experiments, the deflection calculated from the FE model is equal to 3.48 mm. This 

corresponds very well with the equivalent value from the experimental load/deflection 

curve. At a load of 5 kN, the maximum through-thickness stress in the overlaminate is 

equal to 7.5 MPa in the inner regions of the overlaminate indicating that delaminations 

are likely to occur in these regions because this value is greater than the quoted ILTS 

of 7 MPa (Bird & Allan). This corresponds directly to the experimental findings for 

which delaminations occurred within the third ply of the overlaminate at a load of 5 W. 

Consequently, the model is not only consistent with data from a three point bending load 

but also with data determined from a 45 degree pull-off load. 

6.7 Conclusions 

The simplified tee joint model which uses material properties calculated from the 

adapted laminate theory would predict delamination in the inner regions of the 

overlaminate for a three point bending load of 5500 N. Thus using this simplified 

method it is possible to identify the region most susceptible to damage. It is a good first 

step but the more detailed models containing one element per layer of overlaminate are 

necessary so as to exactly represent the delaminations which occur under load. 

The finite element models containing delaminations can appropriately represent the 

stiffness reduction due to delamination which has been seen in three point bending 

experiments. In addition, the resulting internal stress distributions indicate regions within 

the overlaminate under high through-thickness stresses. These regions which would be 

likely to delaminate directly correspond with the regions of the tested tee joint 

overlaminate which contained delaminations. 
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The reason why the finite element model did not correctly predict fillet failure is 

explained by the fact that the experimental tee joints contained a significant number of 

voids which reduced the ultimate tensile stress of the fillet material. Finite element 

models containing voids in the fillet successfully predicted that premature failure would 

have occurred since the voids had the effect of increasing the fillet principal stresses. 

Under three point bending, the presence of the delaminations in the overlaminate has the 

effect of relieving the stress which enables the structure to continue sustaining load. On 

further loading, the through-thickness stresses increase again thus resulting in 

delaminations. This damage continues as the load is increased. This is shown well by 

comparing the through-thickness stresses for models 3 and 4 at a load of 10000 N. For 

model 3 the equivalent value is 10.7 MPa which would result in delaminations forming 

since it is greater than the ILTS. For model 4, the maximum value of through-thickness 

stress is 5.5 MPa which does not indicate that delaminations are likely to form. As the 

load is again increased for model 4, the through-thickness stresses increase above the 

ILTS and thus indicate the likely formation of delaminations. 

The in-plane stresses in the outer regions of the overlaminate increase as the amount of 

delamination increases in the inner regions. It can, therefore, be concluded that initially, 

the delaminations arise on the inner surface of the overlaminate due to the presence of 

high through-thickness stresses. As loading increases, the delaminations which form have 

the effect of relieving the through-thickness stresses. As the load increases, the in-plane 

stresses increase and ultimately cause damage close to the outer surface of the 

overlaminate. 
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7. FRACTURE BEHAVIOUR OF TOP HAT STIFFENERS 

7.1 Introduction 

Chapter 5 discussed the strength approach adopted in order to assess the integrity of two 

types of top hat stiffener under three loading configurations. In the case of the three 

point bending load scenario, the failure modes of the two types were very similar. Both 

types of top hat initially failed by delamination in the curved part of the overlaminate 

near the outer surface and then by flexural failure in the central region of the flange 

plate on the inside. In the case of the reverse bend, both types of top hat ultimately 

failed in flexure in the flange in the central region of the outer surface. In the case of 

the pull-off load, both top hat types failed by the overlaminate separating completely 

from the flange plate. This chapter focuses on delamination damage. Since under three 

point bending loads, both types of top hat stiffener initially failed due to delaminations 

in the curved region of the overlaminate, only the type I stiffener shall be discussed in 

this chapter. It is assumed that delaminations can be treated as cracks. 

Using the fracture mechanics approach, it is possible to determine the most critical crack 

lengths and depths for cracks in the curved region of the overlaminate for a top hat 

under three point bending, reverse bending and straight pull-off loads (Phillips et. al. ). 

Although, delaminations did not occur in the overlaminate in the case of the reverse 

bending or the pull-off loads, it is important to assess the damage tolerance of 

delaminations under these modes of loading. A three-point bending type load may 

initially cause the formation of the delaminations but the load scenario may change to 

be that of a reverse bend or pull-off type. 

7.2 Fracture Mechanics Criteria used in the Appmach 

Two dimensional linear elastic fracture mechanics (LEFM) models have been used to 

calculate mode I and mode II stress intensity factors which, in turn, have been used to 

evaluate strain energy release rates, G. The theoretical basis has been outlined previously 
in Appendix 2A and Chapter 4. The load-deflection characteristics of the top hat 

stiffener under the three modes of loading discussed in Chapter 5 are almost linear. For 

this reason, only the strain energy release rate has been calculated in each case. 
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7.3 Modelling Details 

The FE model used in the strength analyses discussed in Chapter 5 has been adapted so 

as to include a region containing cracks. The crack elements are six-noded triangular 

elements with their mid-side nodes at the quarter point. The details of the crack elements 

are given in Appendix 4K. Figure 7.1 shows a typical FE model used in the analysis and 

the region containing the crack is shown in Figure 7.2. 

Investigations showed that under certain conditions the two crack faces crossed over 

each other, i. e under a tensile load, the vertical displacement of the top crack face was 
in fact less than the vertical displacement of the lower crack face. In order to prevent 

this from occurring, a number of 'gap' elements were inserted along the crack face. The 

gap element behaves as a linear spring in compression but the tensile stiffness drops to 

zero thus not inhibiting the crack face should it open. In addition, the unloaded crack 
face is generated using nodes at the same location since the gap element allows 

connection of two nodes which are initially coincident. The problem of crack faces 

overlapping has been discussed by Pavier & Clarke and Tian & Swanson, the latter 

stating that four methods exist which can be used to overcome this problem: (a) 

application of displacement constraints on the crack face nodes, (b) application of nodal 

loads on the crack face, (c) application of gap elements at the crack interface or (d) to 

assume that the overlapping effect is negligible. Long & Swanson also used gap 

elements to prevent interpenetration. Details of the gap elements used in the model are 

given in Appendix 7A. A check has been made to confirm that the presence of the gap 

elements does not affect the calculated values of the strain energy release rate. This has 

been done by comparing the results from two models with and without the gap elements 

present. The two sets of results are identical indicating that the presence of the gap 

elements has no effect on the calculations. 

7.4 Loads, Material Properties and Boundary Conditions 

The material properties used in the finite element model are given in Table 7.1. 

Conditions of simple supports have been applied to each of the FE models. The applied 
load in each case is chosen as 10 kN in each case. The significance of this load is that 

it is below any delamination damage which occurred in the three point bend and reverse 
bend tests (Elliott, 1992). Thus, any cracks inserted in the model should be stable at this 
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load. Additionally, since the strain energy release rates are proportional to the square of 

the applied load, it is simple to interpolate values for different load values. 

7.5 Sensitivity Studies 

A series of two dimensional models have been generated and values of G calculated at 

the crack tip furthest from the centre line of the top hat. The calculation of G requires 

that the face of the crack is parallel to the global x-axis. This crack tip (marked *) is 

shown in Figure 7.2. 

7.5.1 Three Point Bending 

The strength analysis discussed in Section 5.5.1 (A) showed that the failure mode of the 

top hat under a three point bending load consisted of delaminations in the overlaminate. 
For this reason, the cracks which have been modelled are located in this region. Two 

sensitivity studies have been carried out for cracks in the overlaminate, namely effect 

of crack depth and crack length on the calculated values of the strain energy release rate, 
G. 

(A) Crack Depth 

Figure 7.3 shows the variation of G with crack depth. It can be noted that there is a 

peak value of G which corresponds to a crack depth of 4 mm. Cracks which are deeper 

than 4 mm give rise to lower values of G. It is anticipated that the reason why the value 
of G calculated for the crack at 2 mm depth is lower than expected is due to the 

proximity of the crack to the surface. Cracks close to the surface are more difficult to 

model than those deeper within the overlaminate due to the limited area available to 

mesh with. elements. This problem can be avoided to a degree, by refining the mesh 
close to the surface. All the values of G are, however, less than the critical value of 0.5 
kJ/m2. This indicates that none of these cracks under the three point bend would 
propagate. The trend does, however, suggest that under three point bending, cracks 
which are deeper within the overlaminate are less likely to propagate than those nearer 
the surface. 
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(B) Crack Length 

Figure 7.4 shows the variation of G with crack length. Each crack is at a depth of 6 mm 
from the outer surface of the overlaminate. It can be noted from the graph that the 

values of G increase at a steady rate as the crack length increases. The critical value of 
G is 0.5 kJ/m2. From the graph in Figure 7.4, this value of G corresponds to a crack 
length of about 38 mm. Therefore, it can be concluded that cracks greater than 38 mm 
in length at a depth of 6 mm under these loading conditions are likely to propagate. 

7.5.2 Reverse Bending 

The effect of crack depth and crack length on the calculated values of the strain energy 

release rate has been investigated for a top hat under a reverse bending load. 

(A) Crack Depth 

Figure 7.5 shows the variation of G for four crack depths. A similar trend as for the 

three point bending load is found. All the values of G, however, are lower for each 

crack depth when compared with the equivalent value for the crack under a three point 
bend load. As for the three point bending load, deeper cracks are less likely to propagate 

than those close to the surface. 

(B) Crack Length 

Figure 7.6 shows the variation of G for a variety of crack lengths. It can be noted that 

none of the values are greater than the critical value of 0.5 kJ/m2. Thus under a reverse 
bend load of 10 kN cracks less than 55 mm would not be expected to propagate. 

7.5.3 Strnight Pull-Off 

The effect of crack depth and the effect of crack length has also been investigated for 

the case of a straight pull-off load. 
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(A) Crack Depth 

Figure 7.7 shows the effect of crack depth on the calculated values of G, the strain 

energy release rate. It can be seen from the graph that a similar peak occurs at a depth 

of 4 mm as occurred in the case of the three point bend load. The peak value which 

occurs for a crack at a depth of 4 mm occurs at a value which is marginally lower than 

for an equivalent crack under a three point bending load but higher than for an 

equivalent crack under a reverse bending load. It can be concluded that deep cracks are 

less likely to propagate than cracks close to the surface. 

(B) Crack Length 

Figure 7.8 shows the variation of G for different crack lengths. All the cracks in this 

case are at a depth of 6 mm from the outer surface of the overlaminate. A similar trend 

as for the three point bend is achieved. There is a gradual increase in G for increasing 

values of crack length. The critical value of 0.5 kJ/m2 for G corresponds to a crack 

length of about 30 mm. Therefore, it can be concluded that under a straight pull-off load 

of 10 kN cracks at a depth of 6 mm will propagate if they are greater than 30 mm in 

length. 

7.6 Typical In-Service Load Conditions 

7.6.1 Introduction 

The effect of crack depth and length for the three different loading conditions discussed 

in the preceding chapters have been analysed at a load level of 10 W. Naval vessels are 

likely to be in-service under extreme conditions due to warfare and environmental 

conditions. Shock loadings due to the proximity of the vessel to an exploding mine 

result in excessive loadings on the structure. Shock trials on such vessels have been 

carried out which yield values of shock loads which must be sustained by the hull 

structure (Sumpter). Therefore, in order to investigate the damage tolerance levels of top 

hat stiffeners under typical in-service loadings, the loads applied to the FE models must 
be representative. It is necessary to represent a dynamic load by a static load. 
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7.6.2 Calculation of In-Service Load 

The shock load which has been applied to tee joints in shock tests (see Chapter 8) is 

said to represent the type of damage which occurs in-service, namely root whitening. It 

is assumed in this case that the acceleration which is applied to the tee joints to 

represent an in-service load can also be applied to the top hat stiffeners in this 

investigation. In order to simulate a shock load, a three point bending load, F, can be 

applied to the flange which is equal to: 

F=Mx a X7.1) 

where: M is the mass of the top hat stiffener and equals 4.8 kg 

a is the acceleration experienced by the tee joint in the shock tests and 

is approximately equal to 2000 m/s2. 

From Equation 7.1, the applied force, F, which must be applied to the top hat flange is 

calculated to be 9.8 kN. The shock load can be represented by applying this load of 9.8 

kN as a three point bend load, as shown in Figure 7.9. 

7.6.3 Calculation of Critical Crack Length for the In-Service Condition 

Values of the strain energy release rate have been calculated for cracks of different 

depths and lengths for the type I top hat stiffener under a three point bending load of 

9.8 kN. The curve of strain energy release rate versus crack length at this load is almost 

identical to that at a load of 10 kN which is shown in Figure 7.4. Therefore, it can be 

concluded that for curved cracks at approximately mid-depth, those greater than 38 mm 

are likely to propagate under an in-service load condition. 

7.7 Discussion 

Figure 7.10 shows the effect of crack depth on the values of G, for all three modes of 
loading at loads of 10 W. Ignoring the values calculated at depths of 2 mm, the results 

show that surface cracks are more likely to propagate than deep cracks. This is a 

consistent results for all three loading configurations considered. Figure 7.11 shows the 

effect of crack length on values of G, for all three modes of loading. The graph shows 

that the crack is most likely to propagate under a straight pull-off load. The crack is next 
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likely to propagate under a three point bending load and is most stable under a reverse 
bending load. The critical crack length for a straight pull-off load can be calculated from 

the curve to be 30 mm. This is assuming that the critical value of the strain energy 

release rate is equal to 0.5 kJ/m2. 

A typical in-service loading can be represented by a three point bending load. A three 

point bending load of 9.8 kN has been found to represent a typical in-service load. From 

this it can be concluded that curved cracks in the overlaminate at approximately mid- 
depth, are likely to propagate once they reach 38 mm in length. 
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8. FRACTURE BEHAVIOUR OF TEE JOINTS 

8.1 Intmduction 

Chapter 6 discussed the strength approach used to assess the structural adequacy of tee 

joints. The material within the tee joint is deemed to have failed if the level of stress 

predicted by the finite element model is greater than a limiting value for the particular 

material. The regions within the tee joint which are most susceptible to damage have 

been shown to be within the overlaminate. The damage has been shown to be 

delamination"induced. Assuming that delaminations can be represented by cracks, it is 

possible to explore the sensitivity of crack propagation with regard to different geometric 

and material features of the tee joint. 

This chapter discusses a fracture mechanics based approach to determine whether or not 

a particular crack will propagate under specified loading and boundary conditions. The 

criteria which have been calculated in the analyses are discussed in Section 8.2. A series 

of two dimensional (2D) finite element models have been generated using the ANSYS 

package (Solecki) which contain a variety of crack geometries and locations (Shenoi et. 

al. 1996), the details of which are given in Section 8.3. In addition, the loading and 

boundary conditions have been varied. 

8.2 Fracture Mechanics Criteria used in the Approach 

Two dimensional linear elastic fracture mechanics (LEFM) models have been used to 

calculate mode I and mode II stress intensity factors which, in turn, have been used to 

evaluate strain energy release rates. The theoretical basis has been outlined in Appendix 

2A and Chapter 4. The approach adopted here is similar to that used for top hat 

stiffeners as outlined in Section 7.2. In addition, owing to the possible non-linear 

characteristics of the tee joint, values of the J-integral have also been calculated since 

the strain energy release rate is only valid in the case of LEFM. The J-integral can also 
be calculated for problems of LEFM and can be compared with values for the strain 

energy release rate since in LEFM the strain energy release rate is numerically equal to 

the J-integral. 
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83 Modelling Details 

The finite element model generated in Chapter 6 (model 1) used to represent the 

undamaged tee joint, such as the one shown in Figure 8.1, has been adapted so as to 

include a region containing crack elements. Figure 8.2 shows the enlarged regions of the 

joint overlaminate ((a) flat region and (b) curved region) which contain the crack 

elements. In Chapter 6, it was stated that a significant amount of damage was seen in 

the overlaminate under a three point bending load. This is also the case for tee joints of 

a similar configuration under a 45 degree pull off load (Shenoi & Hawkins, 1992) where 
delaminations were seen in the curved region of the overlaminate. Therefore, all the 

models generated in this chapter contain cracks which are within the overlaminate 

region. The crack elements used are six-noded triangular elements with their midside 

nodes at the quarter point. This results in the required singularities in the strain at the 

crack tip. The crack tip elements used in the analyses are the same as those discussed 

in Chapter 4, the details of which are given in Appendix 4K. The method used to insert 

crack elements into the existing model are given in Appendix 8A. One restriction in 

using this approach is that the material in the cracked region is assumed to be 

homogeneous. Conditions of plane strain have been assumed since the tee joints are 

considered to be long in relation to their width. As in the case of the top hat stiffener 

models, gap elements have been included to prevent interpenetration of the two crack 
faces, details of which are given in Appendix 7A. 

8.4 Loads, Material Properties and Boundary Conditions 

The applied load chosen in all cases is 10 kN which is the load at which a significant 

amount of delamination occurred in the tee joints when loaded under a three point 
bending load (Elliott). In addition, a series of 45 degree pull off tests have been carried 

out by Shenoi & Hawkins, 1992 which show that a large amount of delamination occurs 

up to a load of 10 W. It is also approaching the failure load of the joint. Thus, at this 
load level, values of the strain energy release rate and J-integral would be greater than 

the corresponding critical values indicating that crack propagation is likely. 

The material properties used in the analysis, unless otherwise stated, are shown in Table 
8.1. As mentioned in the previous section, the crack elements are assumed to have 

homogeneous properties, so values for the separate in-plane and through-thickness 
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moduli are not acceptable. The value for their elastic moduli is assumed to be between 

the value of the overlaminate in-plane moduli (13060 MPa for the WR and 6890 MPa 

for the CSM) and the through-thickness moduli (7770 MPa for both the WR and the 

CSM). A value of 10000 MPa has been chosen for the elastic modulus of the crack 

elements and 0.25 for the Poisson's ratio. 

To represent the most severe type of loading, a 45 degree pull off load has been applied 
in each case under fully clamped conditions which have been modelled by restricting 
two nodes in both translational degrees of freedom. 

8.5 Verification of the J Integral 

Since all the analysis discussed in Chapter 4 involved only linear elastic fracture 

mechanics, the J"integral has not yet been discussed. Since the J-integral is to be used 
in the analysis of cracks in tee joints, it is necessary to verify its use. Section 4.5.3 

discusses the verification of the use of the strain energy release rate, G, by comparing 
FE derived values with results from an analytical model, for a crack in a square plate. 
Values of J-integral have also been calculated for this model and the values of G 

(analytical), G (FE) and J-integral (FE) are given in Table 8.2. It can be seen that all 

three values are very similar. 

Initially, all the values of the J-integral which have been calculated were calculated at 

the right hand crack tip (marked * in Figure 8.2(b)) i. e. in order that the orientation of 

the crack tip is such that its face is parallel to the x-axis of the tee joint model and 

perpendicular to the y-axis. For these cases the existing software macro could be used. 
Consequently, the existing macro could only be used in a limited number of cases and 

an alternative approach had to be sought in order to calculate the J-integral values at 

crack tips which are orientated at angles to the global x-axis. An alternative macro is 

required in the case of crack tips in the curved part of the overlaminate. The existing 

macro has been adapted to be able to calculate the J-integral values at crack tips with 

any orientation relative to the xy plane of the tee joint model. The adapted macro is 

given in Appendix 8B. 

In order to verify that the adapted macro gives correct results, a simple 2D FE model 

of a 250 mm2 square isotropic plate containing a horizontal central crack of length 30 
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mm subjected to an arbitrary pressure load of 100 MPa has been generated and is shown 
in Figure 8.3. The two central nodes on both sides are restricted in both the translational 

degrees of freedom (x- and y- directions). The J-integral values using both the existing 

macro and the adapted macro have been calculated at both crack tips. In addition, to 

verify the J-integral calculated using the adapted macro, three FE models have been 

generated of a 250 mm2 square plate with a 30 mm straight crack at various angles to 

the global x- axis. Figure 8.4 shows the three locations of the crack. The values of the 

J-integral have been calculated at both crack tips and compared with the calculated 

values of strain energy release rate. The results are given in Table 8.3. 

It can be seen that the adapted macro gives identical results to the existing macro for 

a straight central crack. In addition, the values of the J-integral calculated from the 

adapted macro for cracks at different orientations compare very well with the values of 

the strain energy release rate. It is also interesting to note that the values of both the J- 

integral and strain energy release rate increase as the crack rotates from 0 degrees to 30 

degrees and then fall as the crack is rotated from 30 degrees to 60 degrees. 

8.6 Sensitivity Studies 

8.6.1 Effect of Loading Conditions 

Both 45 degree pull-off and three point bend load configurations have been modelled 
for a horizontal crack of length 10 mm at a depth of 6 plies from the outer surface of 

the overlaminate adjacent to the flange plate. This is at approximately mid-depth since 

the overlaminate is 11 plies thick. 

Table 8.4 shows the J-integral values calculated from the finite element models for each 
loading condition. The results indicate that although the 45 degree pull-off is the worst 
condition, there is little possibility of the crack propagating since the strain energy 

release rate is well below the critical value of 0.5 kJ/m2 (Court). 

8.6.2 Effect of Boundary Conditions 

The boundaries used in the models were those of rigid clamping and simple supports. 
The load level applied was as before. Table 8.5 shows the J-integral values calculated 
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for each boundary condition. It can be seen that the clamped condition gives marginally 
higher values than the simple supports. Thus, in the case of a ship, a tee joint which is 

fixed both sides of the web due to two tanks, for example, would present more serious 

consequences than if the joint was able to move more freely. 

8.6.3 Effect of Boundary Locations 

For the 45 degree pull-off load, the clamped boundaries have been set at three different 

spans. Figure 8.5 shows the J-integral values calculated for each condition. The trend 
indicates that the J-integral value is higher if the clamped boundaries are close together. 

For example, if the flange plate (hull shell) of the tee joint is stiffened on both sides of 

the web (bulkhead) then damage is most likely- to occur if the stiffeners are close 

together. 

8.6.4 Effect of Material Pmpenies of Crack Elements 

The crack elements used in this case have been assumed to have homogeneous 

properties. As a result, only one value of the elastic modulus can be chosen. In order to 

identify the effect of varying the modulus, the value of elastic modulus of the crack 

elements was set to three different values and the J-integral calculated in each case. 
Figure 8.6 shows the J"integral values calculated for each value of elastic modulus. It 

can be observed that the value of the J-integral is higher for low values of elastic 

modulus. This result must be taken into account when calculating the critical crack 

lengths (see Section 8.6.6) since the critical crack lengths will reduce if the assumed 

value of the crack element elastic modulus is reduced. i. e if the material is assumed to 

be less stiff. The influence of each of the in-plane and through-thickness moduli of the 

overlaminate materials must be estimated, in order to enter an appropriate value for the 

crack element elastic modulus. 

8.6.5 Effect of Crack Depth 

Up to now, only horizontal cracks have been considered. The experiments and finite 

element analyses discussed in Chapter 6 indicate that the delaminations most commonly 

occur within the curved region of the overlaminate. In this investigation, models have 

been generated to study the effect on the J-integral values of the crack depth for both 
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horizontal cracks and curved cracks. Figure 8.7 gives the values for the J-integral for the 

different crack configurations for both (a) horizontal and (b) curved cracks. The results 
indicate that for both curved cracks and horizontal cracks, the J"integral values are 

greater for deep cracks. i. e deep cracks are most likely to propagate. 

8.6.6 Effect of Crack Length 

In the case of a horizontal crack, the J"integral values for four different crack lengths 

have been calculated, see Figure 8.8. The right hand crack tip in each case remained in 

the same location and the length of the crack has been determined by the position of the 

left hand crack tip. It can be noted from the graph that long horizontal cracks give rise 

to higher values of the J-integral than shorter cracks. 

In the case of curved cracks, a series of 9 models have been generated containing cracks 

of different lengths at approximately mid-depth of the overlaminate. From the results of 

section 8.6.5, it has been shown that deep cracks are more likely to propagate than 

cracks near the surface. Thus, the values of critical crack length calculated at the mid- 
depth are considered to be average values. Equivalent models which contain deeper 

cracks, would yield lower values for the critical crack lengths. Figure 8.9 shows an 

example of the finite element mesh generated for one particular case. The right hand 

crack tip (marked *) remained in the same location. The other tip was moved to 9 

different locations around the radius of the overlaminate. It should be pointed out that 

the left tip of the longest crack extends into the vertical region of the overlaminate 

adjacent to the web. 

The most severe loading condition has been found to be that of a 45 degree pull-off load 

under clamped conditions. These conditions have been applied in each case with an 

applied load of 10 kN and the constraints at 50 mm from each end of the joint. Figure 

8.10 shows the values of the J-integral calculated at the right hand crack tip, for each 

crack length. 

The results show that the maximum value of the J-integral occurs between crack lengths 

of 25 mm and 36 mm. This is in the region of maximum curvature of the overlaminate. 
The critical value of the strain energy release rate for the overlaminate material is quoted 

to be equal to 0.5 kJ/m2 (Court). If a line is drawn across from the ordinate axis at this 
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value to the curve, the critical crack length for this loading configuration is equal to 16 

mm. It can be concluded, therefore, that cracks longer than 16 mm are likely to 

propagate under these conditions. 

In order to calculate the values of the J-integral at the left hand crack tip, it has been 

necessary to generate additional finite element models with a linear crack face close to 

the left hand tip. Four models representing cracks of four different lengths have been 

generated. Since the coordinate system for the left hand crack tip is not parallel to the 

global model coordinate system it is necessary to calculate the rotation angle of the 

crack local coordinate system with respect to the global model coordinates. A short 

program has been written to calculate the rotation angle and is discussed in Appendix 

8B. The J-integral values have been calculated using the adapted macro at the left hand 

crack tip and using the existing macro at the right hand crack tip. In addition, strain 

energy release rates for both tips have been calculated, since all the analyses are linear 

elastic. 

Figure 8.11 shows the strain energy release rate values and J-integral values calculated 

at both crack tips for four crack lengths, for cracks at approximately mid-depth. The 

results calculated at the left hand tip are higher than those at the right hand tip. This is 

to be expected, since the through thickness stresses in the curved region of the 

overlaminate are much greater than those in the flat region of the overlaminate. The 

curve for the left hand tip has a peak prior to that for the right hand tip. This indicates 

that the crack tips approaching the region of maximum curvature are the most likely to 

propagate. The critical strain energy release rate for the overlaminate material has been 

taken as 0.5 kJ/m2 as already mentioned. Assuming this critical value, the critical crack 
length based on the values at the left hand tip can be calculated to be 8 mm. This is half 

the critical crack length of 16 mm based on the values at the right hand tip. 

8.6.7 Modelling Two Cracks in the Ovedaminate 

Delaminations rarely occur singly (Elliot, Shenoi et. at. 1995). Thus it is important to 
investigate the effect of multiple cracks on the structural integrity of the tee joint. A 2D 

finite element model has been generated which contains two curved cracks, the enlarged 

crack region of which, is shown in Figure 8.12. As for the previous models, a 45 degree 

pull off load of 10 kN has been applied to the model. The values of the strain energy 
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release rate have been calculated at the two right hand crack tips (both marked *). The 

values of the mode I and mode II stress intensity factors and the strain energy release 

rate values are given in Table 8.6. In the table, model 1 contains a single crack and 

model 2 contains two cracks. The value for the strain energy release rate calculated at 

the right hand tip in the case of a single curved crack (model 1) is equal to 2.82 kJ/m2. 

Thus, the presence of the second crack serves so as to reduce the strain energy release 

rate at the original crack tip by more than 60 %. It can therefore be concluded that the 

formation of the second crack is stress relieving and temporarily prolongs the life of the 

tee joint. It is also interesting to note that the formation of the second crack reduces the 

mode I stress intensity factor at the lower crack. 

This conclusion has also been reached from the results of the tee joint strength analysis 

(Chapter 6) for a tee joint under a three point bending load. It was concluded that the 

initial delaminations formed in the inner regions of the overlaminate due to high 

through-thickness stresses. As loading increased, further delaminations formed until the 

through-thickness stresses actually reduced such that no further delamination was likely. 

The presence of the delaminations, therefore, reduces the through-thickness stresses but 

increases the in-plane stresses in the outer regions of the overlaminate. Ultimately, high 

in-plane stresses would be likely to cause damage in the outer regions of the 

overlaminate. 

8.6.8 Curved Crack Modelled in the Cent al Region of the Ovedaminate 

The effect of curved crack length discussed in Section 8.6.6 was for a series of cracks 

in the overlaminate for which the right hand crack tip, in the horizontal region above the 

flange, was kept in the same location and the crack length was increased around the 

overlaminate radius. An FE model has also been generated which contains a curved 

crack in the overlaminate but whose right hand tip is moved closer to the curved region 

of the overlaminate as shown in Figure 8.13. A 45 degree pull-off load of 10 kN has 

been applied to the model. For the crack shown in the figure, which is 34.8 mm long, 

the value of the strain energy release rate at the left hand crack tip is equal to 0.1 kJ/m2. 

For a similar but slightly longer crack whose right hand tip extends into the flat region 

of the overlaminate, the value of the strain energy release rate at the left hand tip is 

equal to 3 kJ/m2. Thus, it can be concluded that a crack which extends into the flat part 

of the overlaminate is much more likely to propagate than one which is contained 
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entirely within the curved region. 

8.7 Typical In-Service Load Conditions 

8.7.1 Introduction 

The sensitivity study discussed above allows the identification of critical crack 

geometries and loading conditions. In addition, it highlights the relative importance of 

specific cracks and their likelihood to propagate. The applied load of 10 kN used above, 

corresponds to the load at which damage was seen in static tests. In order to assess in- 

service damage tolerance levels, however, it is necessary to apply a typical in-service 

type of load to the FE models discussed above. 

The tee joints under consideration are commonly used in minehunters which may be 

subjected to shock loads due to explosions under wartime conditions or slamming loads 

due to wave pressures or indeed impact loads with dockside or other vessels. The 

problem, therefore, requires that a dynamic shock or impact load must be represented 
by a static load. This has been carried out as follows. 

8.7.2 Calculation of Applied Loads 

Shock tests have been carried out on a variety of tee joint configurations (Sumpter). In 

order to simulate the type of damage, namely root whitening, which has been seen in 

tee joints on board ships, a large mass was fixed to the web of the tee joint on one side. 
This is shown diagrammatically in Figure 8.14. When the shock load is applied to the 

shock table, the web bends in such a way that root whitening occurs in the overlaminate 

on the opposite side of the web from the added mass. The added mass causes the root 

whitening in a similar manner in which a bulkhead, for example, causes root whitening 
due to inertia effects. In order to simulate a shock load, a pressure load, P, has been 

applied to the flange in the FE model. 

P=F (8.1) 
A 

where: A is the area of the flange exposed to the pressure load 

F is the force which can be calculated from Equation 8.2 
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F= (M+m) xa (8"2) 

where: m is the mass of the tee joint 

M is the mass of the added mass 
a is the acceleration experienced by the tee joint in the shock tests and 

whose value is typically about 2000 m/s2. 

In addition a direct force, F*, is applied at the centre of mass of the added mass, where 

F* is defined as: 

F' =Mx a (8.3) 

In this case, the added mass applied to the web of the tee joints in the shock tests is 

equal to 16.8 kg and the mass of the tee joint is equal to 3.933 kg. From Equations 8.1 

and 8.2, the applied pressure load along the flange is calculated to be 0.709 N/mm2. 

From Equation 8.3 the applied force, F*, which must be applied to the added mass 

equals 34.47 kN. Figure 8.15 shows the finite element representation of the tee joint 

with the added mass. The tee joint model used is the undamaged model (model 1) which 

has been discussed in Chapter 6. One element per layer of overlaminate material has 

been generated in order to represent the individual layers of WR and CSM which make 

up the overlaminate. 

8.7.3 Stiess Patterns 

The pressure load of 0.709 N/mm2 has been applied to the flange and the load of 34.47 

kN has been applied to the added mass. The overlaminate through-thickness stress 
distribution is shown in Figure 8.16. The maximum value of the through-thickness stress 
is 9.7 MPa, which is greater than the ILTS of 7 MPa (Bird & Allan), would cause the 

delaminations or root whitening associated with the failure mode of this type of joint. 

Figure 8.17 shows a typical overlaminate through-thickness stress distribution for a tee 

joint under a 45 degree pull-off load. The plot shown is for a 45 degree pull-off load of 
10 kN. It can be seen by comparing Figures 8.16 and 8.17 that although the stress 
distributions are slightly different, the locations of the peak through-thickness stresses 
in the two cases are virtually identical. It can therefore be assumed that since the static 
45 degree pull-off load gives rise to a similar distribution of through-thickness stress as 

the simulated shock load, then it can be used to simulate atypical in-service load condition. 
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8.7.4 45 Degree Pull-Off Load Representing In-Service Condition 

Since the through-thickness stress in the overlaminate is directly proportional to the 

applied static 45 degree pull off load, then it is simple to calculate that an equivalent 45 

degree pull off load which would result in a through-thickness stress in the overlaminate 

of 9.7 MPa. From Figure 8.17 it can be deduced that the equivalent load is equal to 4.2 

kN. 

8.7.5 Calculation of Critical Crack Lengths for the In-Service Condition 

The finite element models discussed in Sections 8.6.2 to 8.6.6 inclusive are all for 45 

degree pull off loads of 10 W. However, since the values of strain energy release rate 

and J-integral are proportional to the square of the applied load, then the equivalent 

values can be simply calculated for an applied load of 4.2 W. 

Figure 8.18 shows the J-integral values calculated at the right hand crack tip for a crack 

at approximately mid-depth of the overlaminate under a 45 degree pull off load of 4.2 

kN. It shows that the maximum value of the J-integral occurs at a crack length of 35 

mm and is equal to 0.515 kJ/m2. The critical value for the overlaminate material is 

equal to 0.5 kJ/m2 which indicates that cracks greater than 35 mm are likely to 

propagate under these loading conditions. Figure 8.19 shows a plot of J-integral values 

and strain energy release rates calculated at both crack tips against curved crack length. 

It shows that for an assumed critical strain energy release rate of 0.5 kJ/m2, the critical 

crack length is equal to approximately 22 mm for values calculated at the left hand 

crack tip under this loading configuration. 

8.8 Discussion 

The fracture mechanics approach discussed in this chapter allows the damage tolerance 

of certain cracks to be-quantified. The sensitivity study discussed in Sections 8.5.1 to 

8.5.6 yielded criteria which can be used in the assessment of damage tolerance levels. 

The results showed that a 45 degree pull-off load gives greater values of the J-integral 

than a three point bend load, clamped conditions give greater values of the J-integral 

than simple support conditions, boundaries close together give greater values of the J- 

integral than boundaries far apart, low crack element modulus gives greater values of 
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the J-integral than high crack element modulus, deep cracks give greater values of the 

J-integral than surface cracks and long horizontal cracks give greater values of the J- 

integral than short horizontal cracks. 

In the case of the curved cracks, the critical length of a crack which will propagate 

under a 45 degree pull-off load with clamped boundaries subjected to a load of 10 kN 

is 8 mm for values calculated at the left hand tip and 16 mm for values at the right hand 

crack tip. 

A typical in-service shock load has been represented by a static 45 degree pull off load 

of 4.2 kN based on the comparison of the overlaminate through-thickness stress 

distributions for both load scenarios. A 45 degree pull off load of 4.2 kN gives rise to 

a critical crack length of 35 mm for a curved overlaminate crack at approximately mid- 

thickness for values calculated at the right hand crack tip or equivalently 22 mm for 

values calculated at the left hand crack tip. Thus it is important to calculate values at 
both crack tips since the delamination is likely to favour propagation in one direction 

rather than the other. 

The analysis carried out in this chapter assumes that the cracks shall propagate along the 

existing line of the crack face, i. e it does not take into account delaminations which are 

prone to jumping across interfaces. In addition, the FE models generated here assume 

that cracks have pre-existed in specific locations. In reality, cracks arise due to high 

through-thickness stresses or stress concentrations, for example. The formation of a 

delamination serves so as to relieve the local stress. As loads increase, however, they 

may cause the formation of a new delamination in an additional region of high stress 

rather than propagation of the initial crack. For these reasons, a crack extension analysis 

would give a more accurate estimation as to the full extent of the damage tolerance of 

the tee joints. The method discussed here does, however, draw our attention to the most 
damage critical areas within the joint and also to those most prone to delamination 

damage. In addition, critical crack lengths can be calculated which determine the damage 

tolerance of the tee joints. 

8.9 Concluding Remarks 

The main conclusions which can be drawn from the fracture mechanics studies on the 
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tee joints are as follows : 

(i) The region of a tee joint which is most susceptible to damage is the curved region 

of the overlaminate. 
(ii) Curved cracks in the boundary angle are likely to propagate around the radius under 

a typical in-service load represented by a static 45 degree pull-off load. Curved cracks 

greater than 50 mm are unlikely to propagate under this loading regime. This is in direct 

correlation with three point bending tests in which delamination damage occured 

primarily in the curved region of the overlaminate (Elliot). It can, therefore, be 

concluded that eventhough delamination is likely to occur in the curved region of the 

overlaminate, thay will only propagate around the radius of the boundary angle and then 

arrest. 
(iii) Deep cracks within the overlaminate are much more likely to propagate than cracks 

near the surface and must, therefore, be closely monitered in existing vessels. 
(iv) In order to fully ascertain the stability of specific cracks within the overlaminate, 

this method needs to be validated. This could be carried out by inserting films of PTFE 

tape of a specific length and location within the overlaminate. The tee joints containing 

the PTFE could then be tested and the load at which the cracks propagated noted. From 

the FE analysis, one value of strain energy release rate is known for a particular load 

level. These values of load can than be compared with those obtained experimentally at 

which crack propagates. 
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9. COMPARISON OF STRENGTH-BASED AND ENERGY-BASED APPROACHES 

WHEN APPLIED TO TEE JOINT'S 

9.1 Introduction 

Two different approaches have been used to investigate the behaviour of tee joints 

containing delaminations. The first used a stiffness- and strength-based approach to 

identify regions within the joint most likely to be damaged. Stress patterns have been 

compared with limiting values of maximum stress with those calculated at locations 

within the joint. The stress distributions which have been analysed are those of the 

overlaminate through-thickness stresses and the overlaminate in-plane stresses. The 

results of this study are discussed in Section 9.3. 

In the case of the energy-based approach, the delaminations have been treated as cracks 

and values of J-integral have been calculated at both tips for cracks at different locations 

within the overlaminate material. If the calculated value is greater than an assumed 

critical value then the particular crack would be assumed to propagate at that load level. 

The results of this study are discussed in Section 9.4. 

The loading condition considered in this chapter is that of a 45 degree pull-off load 

since it is deemed to be the most severe type of loading which can be applied to a tee 
joint. The magnitude of the load is 10 kN in each case 

9.2 The Problem 

It has been shown that delaminations (or cracks) commonly occur within the 

overlaminate of the tee joint under both three point bending loads and 45 degree pull-off 
loads. In the analysis which follows, the two approaches shall be used in order to predict 

whether a delamination (or crack) would propagate under the given conditions. Two 

single delaminations shall be modelled in each case to represent delaminations of two 
different lengths. 

9.3 Strength-Based Assessment 

The material properties of the models are the same as those discussed in Chapter 6 and 
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are given in Table 6.1. 

Two FE models have been generated to represent a tee joint containing a single 

delamination of two different lengths. The delamination in both cases has been modelled 

at a depth of 6 plies from the outer surface of the overlaminate on one side. The 

delamination extends from the flat region above the flange around the radius. Figures 

9.1(a) and 9.1(b) show the location of the delamination in the FE models (a) and (b) 

respectively. The two crack tips are marked A and A* in Figure 9.1(a) and B and B* 

in Figure 9.1(b). A 45 degree pull off load of 10 kN has been applied to both the 

models with the delamination on the tension side. The overlaminate in-plane and 

through-thickness stress distributions have been analysed and the maximum values 

recorded in both cases. 

Model (a) 

Figure 9.2 shows the in-plane overlaminate stress distribution for which the maximum 

value is 141.1 MPa in the outer plies of the overlaminate. Figure 9.3 shows the through- 

thickness overlaminate stress distribution for which the maximum value is 43.5 MPa at 

the tip marked A*. As with the models discussed in Chapter 6, it is likely that the actual 

magnitude of the peak through-thickness stress is due to the presence of a singularity. 

If the stresses due to the singularity are removed, then a more realistic value for the 

maximum through-thickness stress is of the order of 10 MPa at tip marked A*. From 

this it can be concluded that under this load, the crack would propagate around the 

radius since the maximum through-thickness stress is greater than the ILTS of 7 MPa 

(Bird & Allan). 

Model (b) 

The stress distributions for this model are similar to those for model (a) except for the 

magnitudes of the maximum stresses. The maximum overlaminate in-plane stress is 211 

MPa and the maximum overlaminate through-thickness stress is 30 MPa at the tip 

marked B*. The maximum through-thickness stress is greater than the ILTS and 

consequently, further delamination would be predicted. Values of through-thickness 

stress greater than the ILTS are also predicted at the tip marked B. Thus, further 

delamination would be predicted from both ends of the existing delamination. 
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9.4 Energy-Based Assessment 

Values of the J"integral which have been calculated must be compared with the critical 

value of the strain energy release rate for the material under consideration. If the 

calculated value is greater than the critical value then crack propagation would be 

predicted. For the material under consideration in this study, the critical value for the 

strain energy release rate is equal to 0.5 kJ/m2 (Court). 

Two FE models have been generated which contain a single curved crack in the same 
locations as the delaminations which have been modelled for the strength assessment in 

Section 9.3 above. Figure 9.4 shows the locations of the two cracks. The short crack 

equivalent to the delamination in model (a) above is defined by tips marked C and C*. 

The long crack equivalent to the delamination in model (b) above is defined by tips 

marked D and D*. The value of the J-integral has been calculated at both tips for a load 

of 10 kN in each case. For the crack CC*, the value of the J-integral is calculated to be 

0.2 kJ/m2 at the tip marked C and 0.7 kJ/m2 at the tip marked C*. Consequently, crack 

propagation would be predicted from the tip marked C*. For the crack DD*, the value 

of the J-integral is calculated to be 2.9 kJ/m2 at the tip marked D and 3.4 kJ/m2 at the 

tip marked D*. Thus, crack propagation would be predicted from both crack tips at this 

load. 

9.5 Comparison of Results 

The strength-based approach has shown that under a 10 kN 45 degree pull-off load, the 

short delamination would be expected to grow around the radius due to high through- 

thickness stresses. The energy-based approach is in direct correlation with this result, 

predicting that crack propagation would occur around the radius due to a value of the 

J-integral greater than the critical value. Also, both approaches suggest that further 

delamination is likely from both tips in the case of the longer delamination. 

9.6 Conclusions 

It has been shown that two approaches can be used to assess the damage tolerance of 

specific delaminations which are inherently present in tee joint boundary angles. The 

first approach uses strength-based criteria to determine firstly whether damage is likely 
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to occur in specific regions and secondly whether further delamination is likely based 

upon limiting values of stress. The strength-based approach successfully predicts the 

regions within which damage is likely to occur. Difficulties, however, do arise due to 

the presence of singularities at the two tips of the delaminations. 

The second, energy-based, approach implements the calculation of fracture mechanics 

parameters such as the J-integral. The calculated values are compared with pre- 
determined critical values to determine whether the delaminations are likely to 

propagate. 

A comparison of the two methods has shown that similar conclusions can be reached 
from both methods. It is considered that both methods complement each other and 

should be carried out in combination if possible. 
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10. DISCUSSION AND FURTHER WORK 

The main aim of the work has been to understand more fully the damage tolerance of 

FRP ship structures. This has been carried out by assessing the structural consequences 

of delaminations in particular, in laminates and in structural components. The methods 

used have included analytical and numerical approaches. Both strength - based and 

energy - based techniques have been employed to identify regions most susceptible to 

delaminations. These methods have also been used to predict whether an existing 

delamination (or crack) is likely to propagate under a given set of conditions. 

Existing analytical approaches have been extended in order to calculate the mechanical 

properties of mixed laminates. i. e those which contain layers of chopped strand mat, 

unidirectional (or angle-ply) and woven layers. This is an important capability since the 

mechanical properties of specific laminates is not always readily available. 

The behaviour of delaminated plates under compressive loads has been investigated for 

woven laminates using analytical and numerical inodels. The results have been compared 

with published data and show good agreement. The critical buckling stress of laminated 

plates containing delaminations across their width is shown to be dependent upon the 

length and depth of the delamination. The longer the delamination then the lower the 

critical buckling stress indicating that the plate is more likely to buckle. In addition, 

plates containing delaminations close to the surface are more likely to buckle than those 

with deep delaminations. 

Existing analytical solutions for calculating the mode I and mode II stress intensity 

factors for a crack in a layered isotropic material have been adapted for a particular 

application. The delaminations which form in the overlaminate of tee joints commonly 

occur within the chopped strand mat layers. Therefore, the existing models have been 

tailored to represent a resin crack sandwiched between two layers of chopped strand mat. 
This represents a crack in a resin rich area of a chopped strand mat (CSM) layer. For 

a 10 mm crack and an assumed critical stress intensity factor of 1.0 MPa�m, the stress 

at which the crack is likely to propagate under the two modes of loading has been 

calculated. The values of stress are found to be 18 MPa for the mode I loading and 15 

MPa for the mode II loading. From this it can be noted that the crack is most likely to 

propagate under a mode II type of loading. The value calculated for the mode II type 
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of loading directly correlates with the quoted value of the interlaminar shear strength of 

CSM of 17 MPa. Critical crack lengths have also been calculated which indicate the 

maximum length of a crack which would be stable and not propagate under a given set 

of conditions. Therefore, this technique can be used to assess the stability of specific 

cracks and hence the damage tolerance of the material. This laminate level work has 

been extended to cover generic structural elements such as top hat stiffeners and tee 

joints. 

Detailed finite element models have been generated to represent two types of top hat 

stiffener. Internal stress patterns have been yielded for both types of top hat under each 

of three loading configurations which are representative of typical in-service loads, 

namely three point bending, reverse bending and straight pull-off loads. The finite 

element results compare well with experimental findings. The most notable are that 

under a three point bending type load, the delaminations which occurred in the 

overlaminate in both types of stiffener are due to excessive through-thickness stresses 

and the damage in the flange is due to excessive in-plane stresses. The failure of both 

types of top hat under this mode of loading is that of either partial or complete 

separation of the stiffener from the flange. It is anticipated that the inclusion of the 

interface between the overlaminate and flange plate would explain this mode of failure. 

The analysis has shown that the curved region of the overlaminate close to the fillet is 

a delamination prone area in both types of top hat stiffener. 

Finite element models have also been generated to represent single skin tee joints. 

Previous models have only represented one or two elements through the thickness of the 

overlaminate. This method does not allow for the introduction of delaminations between 

layers of the overlaminate into the model and does not give rise to detailed stress 

contours within the overlaminate. Therefore, models containing one element per layer 

have been generated here. This allows delaminations to be introduced between the layers 

of the overlaminate as required. In addition, this more detailed modelling gives rise to 

improved internal stress distributions, most importantly in the through-thickness 
direction. 

An iterative approach has been used to represent tee joints under three point bending 

loads. Delaminations have been incorporated into the numerical models to mirror the 

experimental failure modes of the joints. The finite element models predict the stiffness 
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reduction well when compared with the experimentally derived load/deflection curve. 

The fillet failure which occurred in the experiments but which is not predicted by the 

FE models, can be attributed to the fact that voids were found to be present in the fillet 

resin. These had the effect of increasing the fillet principal stresses and causing the 

premature failure of the fillet. 

The internal stress distributions which have been generated indicate that the initial 

delaminations which form in the inner regions of the overlaminate are a result of high 

through-thickness stresses. The formation of the delaminations serves as to relieve the 

through-thickness stresses. Further loading causes additional delaminations to form due 

to high through-thickness stresses. As the number of delaminations increases, it has been 

shown that, subsequently, it is the high in-plane stresses which are likely to cause 
damage in the outer regions of the overlaminate. The overlaminate in-plane stress 
distributions have been plotted along a path which runs through the overlaminate 

thickness. This stress distribution shows that there are distinct peaks in the in-plane 

stress which occur at the interface between layers of chopped strand mat and layers of 

woven roving. 

Crack elements have been introduced into the numerical models of both the top hat 

stiffeners and the tee joints to represent delaminations and have allowed values of the 

strain energy release rate to be calculated. These have been used to assess the stability 

of specific cracks and their likelihood to propagate. This energy-based approach shows 

that in the case of the top hat stiffeners, a curved crack in the overlaminate is most 
likely to propagate under a pull off load, the critical crack length of which is 31 mm for 

a 10 kN applied load. The cracks are less likely to propagate under a three point bending 

load and are most stable under a reverse bending load. The results also show that surface 

cracks are more likely to propagate than cracks deep within the overlaminate surface. 

In the case of the tee joints, the results of the FE models have shown that greater values 

of the J-integral are obtained for application of a 45 degree pull off load rather than a 

three point bending load, clamped conditions rather than simple supports and use of a 

short span rather than a long span. In addition, low values of crack element elastic 

modulus gives greater values of J than high values. The results have also shown that 

under a 45 degree pull off load, deep cracks are more likely to propagate than cracks 

closer to the surface. Under a 45 degree pull off load of 10 kN, a critical crack length 
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of 8 mm has been calculated. This is the maximum crack length which would be stable 

under these conditions. The results also show that once the cracks have propagated 

around the radius of the overlaminate then the crack becomes more stable and is not 

likely to propagate further. 

A comparison has been made between the strength assessment and energy-based 

assessment of tee joints under a 45 degree pull off load. It is shown that the two 

methods yield similar results. For example, the strength assessment yields high values 

of through-thickness stress in the curved region of the overlaminate indicating that the 

formation of delaminations is likely at a load of 10 W. The energy-based approach 

predicts high values of the J-integral at a load of 10 kN in similar regions of the 

overlaminate. Thus predicting also that crack propagation is likely to occur. 

The current work has highlighted some areas which require further investigation: 

The delaminations which have been introduced into the finite element models have been 

manually generated from a knowledge of experimental results. The ideal situation would 

involve a crack extension technique where a crack is automatically generated if certain 

stress or energy based conditions are violated. For example, if the calculated strain 

energy release rate was found to be greater than a predetermined critical value then the 

crack would be automatically extended. This technique would also allow delaminations 

to jump across layers of the overlaminate. 

The behaviour of ship's components under static loading configurations have been 

successfully represented using both strength- and energy- based approaches. In order to 

represent typical in-service dynamic loads, however, an assumed static load situation has 

been adopted. Since typical in-service loading conditions are largely dynamic, these 

existing models must be adapted so as to be able to represent dynamic loads such as 
impact and fatigue load scenarios. 

Other than the material parameters such as the critical stress intensity factors and strain 

energy release rates it is important to identify the key material and geometric parameters 

which cause certain structures to be more sensitive to delamination damage than others. 
For example, a sensitivity study on the existing FE models of tee joints containing 

cracks could be carried out to investigate the effect of tee joint geometry, overlaminate, 
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flange, web and fillet material. The top hat stiffener connections and tee joints in high 

speed craft are commonly constructed of sandwich materials. The propagation of cracks 

within these type of connections could be investigated using a similar approach to that 

discussed here for the single skin components. 
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11. CONCLUSIONS 

This work has been concerned with the damage tolerance levels in laminated composites. 

Existing analytical techniques have been adapted and extended to represent specific 

problems connected with the delamination behaviour of composite plates. Numerical 

modelling has been carried out on typical ship structural elements such as tee joints and 

top hat stiffener connections so as to investigate the internal load transfer mechanisms 

and thus identify areas of weakness within the structure. Additionally, fracture 

mechanics criteria have been incorporated into the model allowing the stability of 

specific cracks to be assessed. The principal thrust of the work has thus been to study 

the significance of delaminations (or cracks) in different parts of a structure. 

The main conclusions from this work are as follows : 

(i) Existing analytical approaches have been used to assess the stability of woven 
laminated plates under compressive loadings. Previous work does not cover these types 

of materials. The results have been compared with numerically derived values and 

experimental data. It has been found that plates containing delaminations are more likely 

to buckle when the delaminations are long or close to the surface of the plate. 

(ii) An existing analytical model has been used to calculate values of stress intensity 

factors for modes I and II for a specific problem. Delaminations (or cracks) commonly 

occur within the chopped strand mat layers of tee joint overlaminates. Consequently, the 

problem has been represented by a resin crack sandwiched between two layers of 

chopped strand mat. For applied loads equal to the ILTS (equivalent to a mode I load) 

and the ILSS (equivalent to a mode II load), critical crack lengths have been calculated 
for which propagation is likely. The results have shown that a crack would reach a 

greater length before propagating under a mode I type load than under a mode II type 

load. This method can be used to assess the damage tolerance on a material level. 

(iii) It has been shown that the delamination prone areas in top hat stiffeners are 
located in the curved region of the overlaminate close to the outer surface. The 

delaminations are likely to be due to excessive through-thickness stresses. The damage 

which occurs in the flange is likely to be due to excessive in-plane stresses in the case 

of three point bending loads and due to excessive through-thickness stresses in the case 
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of reverse bending loads. 

(iv) An iterative procedure has been used to characterise the damage which occurs 
in tee joints under a three point bending load. Three important features have been 

brought out as a result. Firstly, the initial delaminations which form in the inner regions 

of the boundary angle are caused by excessive through-thickness stresses. Secondly, the 

delaminations which form have the effect of relieving the stresses and allowing further 

loading to take place. Thirdly, the subsequent damage which forms in the outer regions 

of the boundary angle is caused as a result of high in-plane stresses. 

(v) In tee joint overlaminates, excessive in-plane stresses occur at the interface of the 

chopped strand mat layers and the woven roving layers. Hence, damage is likely in these 

locations. 

(vi) Calculation of fracture parameters with regard to delaminations in the top hat 

overlaminates, have shown that curved delaminations are most likely to propagate under 

a straight pull-off load. They are next likely to propagate under a three point bending 

load and are most stable under a reverse bending load. Also, delaminations close to the 

surface are more likely to propagate than deep delaminations in the case of all three 

loading scenarios. 

(vii) In the case of a tee joint under a 45 degree pull-off load, both straight and curved 

delaminations in the overlaminate are more likely to propagate if they are deep rather 

than close to the surface. Also, delaminations at approximately mid-depth, are likely to 

propagate once they have reached the curved part of the overlaminate. 

(viii) The results of this work have shown that it is possible to predict the damage 

tolerance of laminates and structural elements based on either a strength - based or 

energy - based approach. 
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Figure 2.6 Example of Sandwich Tee Joint Configuration 
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Figure 4.6 Three Dimensional Finite Element Model of a Delaminated Beam 



Figure 4.7(a) Typical Buckled Shape 

Figure 4.7(b) Non-Typical Buckled Shape 
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Figure 4.9 Delaminated Beam in Test Rig (Taken from Sumpter) 
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(b) Defect Depth = 1.7 mm 
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(c) Defect Depth = 2.5 mm 
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Figure 4.13 Elastic Stress Field at the Crack Tip 
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Figure 4.14 Mode 1, Mode II and Mode III types of Loading 
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Figure 4.15 Cracked Layer Sandwiched between Two Half-Planes 
(Taken from Sih & Chen) 



Figure 4.16 Finite Element Model of a Plate Constructed of Layered Materials 



Figure 4.17 Finite Element Model of a Plate with Two Cracks 
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Figure 5.7 Typical Stress Plots for the Type I Stiffener under a Three Point 

Bending Load of 13.5 kN 
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Figure 5.8 Typical Stress Plots for the Type I Stiffener under a Reverse 

Bending Load of 5 kN 
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Figure 5.9 Typical Stress Plots for the Type I Stiffener under a Pull-Off 

Load of 5.5 kN 
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Figure 5.10 Typical Stress Plots for the Type 11 Stiffener under a Three Point 

Bending Load of 14.5 kN 
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Figure 5.12 Typical Stress Plots for the Type II Stiffener under a Pull-Off 

Load of 15 kN 
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Figure 6.1 Typical Tee Joint Configuration 
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Figure 6.3 Two dimensional Finite Element Model 
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Figure 6.5 Finite Element Stress Distributions for the Simplified Tee Joint Model 

using Method A: 
(a) Fillet Principal Stresses 
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Figure 6.8 Tee Joint under a 45 Degree Pull-Off Load 
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Figure 6.10 Nodal Average Stress Distribution around the radius of the 
Overlaminate 
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Figure 6.12(a) In-Plane Stress Distribution along Path I for Model 1 
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Figure 6.13(a) In-Plane Stress Distribution along Path I for Model 3 
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Figure 6.14(a) In-Plane Stress Distribution along Path 2 for Model I 
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D 

3456789 10 11 12 
Node Position 

Through-Thickness Stress Distribution along Path 2 for Model 3 

23456789 10 11 12 
Node Position 



AO-IN MM 
O 
r-+ 

Co 

b 
-2500 

. -5800 
b 

Distance (mm) 

Figure 6.16 Example of a Typical Thermoelasticity Plot 
(Taken from Dulieu-Smith et. al. ) 
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Pull-Off Load. (Taken from Shenoi & Hawkins, 1992) 
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Figure 7.1 Typical FE Model of a Type I Top Hat Stiffener 

Figure 72 Cracked Region of the FE. Model 



0.00250.002 

i'w 0.0015 

0.001 t7 

0.0005-- 

0 
2 

0.7 

Crack Depth (mm) 

Figure 7.3 

4 6 8 

Variation of Strain Energy Release Rate with Crack Depth for a Top 
Hat under a Three Point Bending Load 

0.6 

0.5 
0.4 

0.3 

0.2 

0.1 

06 
S 16.2 24.3 32.5 40.7 55.1 

Crack Length (mm) 

Figure 7.4 Variation of Strain Energy Release Rate with Crack Length for a Top 
Hat under a Three Point Bending Load 



0.0014- 

0.0012-- 

0.001 

I 0.0006 

6 0.0006 

0.0004 

0.0002 

0 
2 4 6 8 

Crack Depth (mm) 

Figure 7.5 

0.14 

0.12 

0.1 
N 

0.08 
v 0.06 

0.04 

0.02 

0 

Variation of Strain Energy Release Rate with Crack Depth for a Top 
Hat under a Reverse Bending Load 

8 16.2 24.3 32.5 40.7 55.1 

Crack Length (mm) 

Figure 7.6 Variation of Strain Energy Release Rate with Crack Length for a Top 
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Figure 7.7 Variation of Strain Energy Release Rate with Crack Depth for a Top 
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Figure 79 FF Representation of a Type I Stiffener under a Typical In-Service Load 
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Figure 8.1 Finite Element Model to Represent an Undamaged Tee Joint 

FANGE 

Figure 82 Enlarged Regions of the FE Model which contain the ('rack 
(a) Straight ('rack in Flat Portion of the Overlarninate 
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(b) Curved Crack in the Radiused Portion of the Overlaminate 
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Figure 8.3 Finite Element Model containing a Central Crack 
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Figure 8.4 Model of plate containing a Central Crack at Three Different 
Orientations 
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Figure 8.7 J-Integral Values for Different Crack Depths 
(a) Straight Crack (Crack Length = 10 mm) 

3.0 

2.5 

2.0 
C%j 
E 

1.5 
I- CM 

1.0 

0.5 

0.0 -t 
0 12345 

depth from outside (mm) 

(b) Curved Crack (Crack Length = 36 mm) 

6 

12345678 

ply depth (no. of plies from outside) 



0.03 

0.025 

F 0.02 

0.015 

S' 
E 
4 0.01 

0.005 

0.0 

crack length (mm) 

Figure 8.8 J-Integral Values for Straight Cracks of Different Lengths 
(Crack Depth =6 mm) 

05 10 15 20 25 30 

.. -- --....... ýý........... b 'a %ui VGU L. IaGA 



3.0 

2.5 

N 2.0 

1.5 
rn a) 
c 
'ý 1. a 

o. v 

0. ( 

Figure 8.10 J-Integral Values for 9 Curved Crack Lengths 
(Crack Depth =6 mm); Values at Right Hand Crack Tip 
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Figure 8.12 FE Model Containing 2 Cracks in the Curved Region of the 
Overlaminate 



Figure 8.13 FE Model Containing a Curved Crack in the Central Region of the 
Curved Part of the Overlaminate 
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Figure 8 14 Diagram of Shock Tests carried out on Tee Joints 
(taken from Sumpter) 

Figure 8 15 FE: Representation of Tee Joint with Added Mass 
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Figure 8.16 FE Generated Through-Thickness Stress Distribution in the 
Overlaminate under a Simulated Shock Load 
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Figure 8.17 Overlaminate Through-Thickness Stress Distribution 
under a 45 Degree Pull-Off Load 
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Figure 8.18 J-Integral Values for 9 Curved Crack Lengths Calculated at the 
Right Hand Crack Tip under a 45 Degree Pull-Off Load of 4.2 kN 
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Figure 9.4 Finite Element Model of a Tee Joint Containing Cracks of Two Lengths 
(Crack Tips Marked C and C*, D and D*) 
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Beam Type I Beam Type II 

Gauge Length (mm) 240 240 

Width (mm) 50 50 

Thickness (mm) 20 12.7 

Longitudinal Compressive 
Modulus (MPa) 

18824 29597 

Table 4.1 Geometry and Material Properties of Beam Specimens 

Number of Aspect ratio of Critical Critical Critical Stress Buckled 
elements along elements in Stress Stress (MPa) Shape 
delamination delamination (MPa) (MPa) FE (FE results) length region Anal. Expt7 Results 

Results Results 

4 10.0 100.7 71.28 148.64 typical 
5 12.5 100.7 71.28 126.78 typical 

6 15.0 100.7 71.28 76.47 non-typical 
10 25.0 100.7 71.28 7.26 non-typical 

Table 4.2 Effect of Number of Elements Modelled along the Delamination Length 

Number of Aspect ratio Critical Critical Stress Critical Stress Buckled 
elements along of elements in Stress (MPa) (MPa) Shape 
delamination delamination (MPa) Expt'l Results FE (FE results) length region Anal. Results 

Results 

1 12.5 104.2 71.28 126.78 typical 
2 6.25 104.2 71.28 126.84 typical 

Table 4.3 Effect of Number of Elements Modelled across the Width of the Beam Model 



Delamination Depth 

(mm) 
Delamination Length 

(mm) 
Eý (MPa) El? (MPa) 

0.53 20 18659 18707 

30 18659 18705 

40 18659 18703 

60 18659 18699 

1.06 40 18226 18631 

60 18226 18590 

80 18226 18550 

100 18226 18509 

120 18226 18469 

160 18226 18388 

180 18226 18347 

1.59 60 18666 18700 

80 18666 18696 

100 18666 18693 

120 18666 18689 

2.12 100 18469 18610 

120 18469 18590 

Note : The intact laminate stiffness, Ewl =18712 MPa in each case 
The total laminate thickness is 12.7 mm 

Table 4.4 Calculation of laminate stiffness reduction due to partial delamination for the 
VRT specimens. 

Layer Number Material type Shear Modulus Poisson's ratio 
(MPa) 

l Polyester resin 1320 0.36 

2 E-Glass / Polyester & 2750 0.32 
CSM 

Table 4.5 Material Properties of laminate used to represent a resin crack. 



Crack Tip Mode I Stress Mode II Stress Strain Energy Release 
Intensity Factor Intensity Factor Rate (kJ/m2) 

(MPa'Im) (MPaIm) 

Lower Right 28.42 0.163 75.82 
(model 1) 

Lower Left 22.24 4.01 47.95 
(model 2) 

Lower Right 22.38 4.03 48.55 
(model 2) 

Upper Left 36.29 9.19 131.6 
(model 2) 

Upper Right 36.29 9.30 131.7 
(model 2) 

Table 4.6 Calculation of the Strain Energy Release Rate Values for a Square Plate 
containing Two Straight Cracks 

Mode Max. applied load 
(MPa) 

Non-dimensional 
stress intensity factor 

Critical crack length 
(mm) 

I 7 0.783 66 

II 26 0.922 3.00 

Table 4.7 Calculation of critical crack lengths for a resin crack 

Mode Crack length (mm) Non-dimensional 
stress intensity factor 

Applied load at 
propagation (MPa) 

1 10 0.783 18.1 

Il 10 0.922 15.3 

Table 4.8 Calculation of applied loads to cause a 10 mm resin crack to propagate 



Material Location Property Value 

Polyester/ Woven 
Roving Glass 

Stiffener, Flange and 
Overlaminate 

Ex 13060 MPa 

Ey 7770 MPa 

nuxy 0.25 

Urethane Acrylate Fillet Ex 1500 MPa 

Ey 1500 MPa 

nuxy 0.25 

Core Material Ex 10'6 MPa 

Gxy 10`6 MPa 

nuxy 0.25 

Table 5.1. Material Properties used in the Finite Element Models 

Top Hat 
Type 

Three Point Bending 
(3PB) 

Reverse Bending (RB) Straight PuU Off (PO) 

FE 
(N/mm) 

Expt. 
(N/mm) 

FE 
(N/mm) 

Expt. 
(N/mm) 

FE 
(N/mm) 

Expt. 
(N/mm) 

Type 1 731.2 696.8 713.0 384.6 620.6 1000 

Type 11 820.9 740.7 639.1 303.0 639.0 880.0 

Table 5.2 Values of Initial Stiffness for Both Types of Top Hat Stiffener 



Experimental Stiffness = 342.6 N/mm 

Original FE model Stiffness - 713 N/mm 

Study Carried Out Value used FE model Stiffness (N/mm) 

A -20% 573.6 

B -20% 622.6 

C 640 mm 523.9 

D - 40 mm 693.9 
E Second combination 458.4 

F Core Modulus -10'10 MPa 713 

G Includes Fillet Void 712 

H Includes Steel Plate 679 

Table 5.3 Results of the Sensitivity Study for the Type I Top Hat under a Reverse 
Bending Load 

Experimental Stiffness =1000 N/mm 

Original FE model Stiffness = 620.64 N/mm 

Study Carried Out Value used FE model Stiffness (N/mm) 

A +20% 742.1 

B +20% 623.2 

C 560 mm 734.3 

H Includes Steel Plate 930.0 

Table 5.4 Results of the Sensitivity Study for the Type I Top Hat under a Pull-Off Load 



Loading Condition Failure Mode Type I Type II 

Three Point Bending (3PB) Initial Fillet to top hat Progressive 
interface followed by delaminations in 
progressive curved part of 
delaminations in overlaminate 
curved part of 
overlarninate 

Final Flexural failure of Flexural failure of 
inner surface of flange inner surface of flange 
plate plate 

Reverse Bending (RB) Initial Through fillet None 
cracking 

Final Flexural failure of Flexural failure of 
outer surface of outer surface of 
flange plate flange plate 

Straight Pull Off (PO) Initial Fillet Cracking None 

Final Failure of one side of Failure of one or both 
top hat interface with sides of top hat 
flange plate interface with flange 

plate 

Table 5.5 Experimental Failure Modes for both types of Top Hat Stiffener 
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Material Location Property Value 

Polyester/ Woven 
Roving Glass 

Web, Flange and 
Overlaminate 

Ex 13060 MPa 

Ey 7770 MPa 

nuxy 0.25 

Polyester/CSM Overlaminate Ex 6890 MPa 

Ey 7770 MPa 

nuxy 0.25 

Urethane Acrylate Fillet Ex 1500 MPa 

Ey 1500 MPa 

nuxy 0.25 

Table 6.1 Material Properties used in the Finite Element Models 

model Load Max. Max. Pos'n Max. Pos'n Max. Pos'n 
no. (N) defl'n 

(mm) 
fillet 
prin. 
stress 
(MPa) 

o/lam 
In- 

Plane 
stress 
(MPa) 

olam 
thru- 
thk. 
stress 
(MPa) 

l 5500 3.045 8.541 53.10 6.314 

A 5500 3.164 10.79 38.33 6.47 

B 5500 3.03 11.26 40.4 6.74 

Table 6.2 Comparison of Stresses and Deflections of the two Methods (A and B) 

used to Calculate the Overlaminate Material Properties 



LOAD DEFL'N FILLET POS'N. O/LAM POS'N. O/LAM POS `N 
STRESS IN. " ROB 
si PLANE TMCK. 

STRESS STRESS 

(N) (mm) (Wa) (NTa) ('a) 

5500 3.045 8.541 53.10 6.314 

Table 6.3 Stress and Deflection results for Model I 

REFERENCE LOAD (N) DESCRIPTION 

A 5500 Crack appeared in Fillet 

B 7500 First Delamination appeared 
in Overlain hate 

C 10000-15000 Continuing Delamination 
Development 

D 19000 Final Failure : Delaminations 
present along the 

overlaminatelweb & 
overlaminatelflange interfaces 

Table 6.4 Experimental Failure Patterns 



MODElJEXPT. LOAD (N) DEFLECTION (mm) STIFFNESS (N/mm) 

FULL 2D FE 
MODEL 

5500 3.045 1806 

EXPERIMENT 5500 3.438 1600 

Table 6.5 Validation of Initial Stiffness of 2D FE Model. 

LOAD 
STEP NO. 

LOAD (N) DEFL'N 
(mm) 

FILLET aP 
(MPa) 

FILLET Ep 
(x 10.2 
MPa) 

OVER 
LAM. 
a, (MPa) 

OVER 
LAM. a,. ( 
(MPa) 

1 5500 3.045 8.56 0.542 53.07 6.31 

3 7600 4.207 11.84 0.750 73.33 8.72 

7 13000 7.197 20.25 1.28 125.4 14.92 

9 19000 10.52 29.60 1.87 183.3 21.81 

Table 6.6 Selection of Deflection and Stress Values including Non-Linear Fillet 
Material. 

LOAD STEP NO. LOAD (N) DEFL'N (mm) FILLET Op (MPa) 
1 5500 3.05 8.57 

9 19000 10.56 29.61 

Table 6.7 Selection of Deflection and Fillet Stress Results including Non-Linear Fillet 
Material and Non-Linear Geometry. 



LOAD DEFL'N FILLET POS'N. O/LAM POS'N. 0/LAM POSH 
STRESS IN- THRO' 
sl PLANE THICK. 

STRESS STRESS 

(N) (mm) (Wa) 'a) (MPa) 

5500 3.045 8.541 53.10 6.314 

Table 6.8 Stress and Deflection results for Model 1 

LOAD DEFL'N FILLET 
STRESS 
Si 

POSH. O/LAM 
IN- 
PLANE 
STRESS 

POSH. O/LAM 
T[-at0' 
TI-HCK. 
STRESS 

POS'N 

5500 3.06 8.603 54.00 6.33 

6000 3.339 9.384 58.90 6.90 

6500 3.62 10.198 ý3 63.79 7.47 

7000 3.90 10.967 68.68 8.04 

7500 4.18 11.753 /ý., 73.58 8.61 

Table 6.9 Stress and Deflection results for Model 2 



LOAD DEFL'N FILLET 
STRESS 
sl 

POS'N. O/LAM 
IN- 
PLANE 
STRESS 

POS'N. 0/LAM 
THRO' 
THICK. 
STRESS 

POS'N 

(N) (mm) (MPa) (N[Pa) (Mp$) 

5500 3.11 10.89 59.09 5.90 

7500 4.25 14.69 80.46 8.05 

9000 5.10 16.75 96.44 9.66 

10000 5.68 17.18 107.06 10.73 " 

13000 7.46 18.16 
. 

2-7 139.31 13.95 " 

15000 8.70 18.96 161.49 16.10 

19000 11.39 20.40 211.18 20.39 " 

Table 6.10 Stress and Deflection results for Model 3 

LOAD DEFL'N FILLET 
STRESS 
Sl 

POSN. O/LAM 
IN- 
PLANE 
STRESS 

POS'N. 0/LAM 
THRO' 
7iiICK. 
STRESS 

POSN 

(N) (mm) (tea) (Mpa) (MPa) 
10000 6.10 19.93 119.8 5.46 

15000 9.40 21.22 180.42 8.20 

19000 12.27 21.41 jL1 232.41 
r, 

10.383 

Table 6.11 Stress and Deflection results for Model 4 



LOAD DEFL'N FILLET 
STRESS 
si 

POSN. OILAM 
IN- 
PLANE 
STRESS 

POS'N. O/LAM 
IHRO' 
THICK. 
STRESS 

POS'N 

(? d) (mm) (MPa) (MPa) (MPa) 

5500 4.26 6.982 77.675 0.524 

7500 5.80 10.544 105.82 0.714 

9000 6.95 11.379 126.89 0.857 

10000 7.72 12.257 140.97 0.953 

13000 10.07 16.304 184.39 1.24 

15000 11.67 17.174 213.77 1.43 

16000 12.49 16.870 228.35 1.52 

17000 13.33 17.481 242.49 1.62 

18000 14.17 17.702 256.03 1.71 

19000 15.02 17.795 268.99 1.81 

Table 6.12 Stress and Deflection results for Model 5 



LOAD DEFL'N FILLET 
STRESS 
si 

POSN. O/LAM 
IN- 
PLANE 
STRESS 

POSN. O/LAM 
THRO' 
THICK. 
STRESS 

POSN 

(N) (mm) (MPa) (MPa) (MPa) 

5500 5.17 11.69 47.62 0.599 

9000 8.50 16.26 79.618 0.981 

10000 9.47 15.166 89.33 1.09 

13000 12.45 16.873 119.31 1.42 

15000 14.50 16.941 
gig 

140.27 1.63 

18000 17.60 17.012 171.76 1.96 

19000 18.64 17.057 182.24 2.07 

Table 6.13 Stress and Deflection results for Model 6 



Material Property Old value / Deflection Fillet Sp O/Lam Si., O/Lam St{ 
Changed changed New value (mm) (MPa) (MPa) (MPa) 

- Base - 3.045 8.56 53.07 6.31 
Model 

Fillet E 1500/500 3.25 8.32 59.92 7.81 
MPa 

Fillet E 1500/2500 2.98 8.95 50.74 6.37 
MPa 

Fillet E 1500/3500 2.94 9.04 49.63 6.29 
MPa 

Po1y/WR 0.25/0.15 3.15 8.69 54.37 6.16 

Poly/WR v, Y 0.25/0.35 2.89 8.40 51.70 6.21 

Table 6.14 Effect of changing the Assumed Material Properties in the FE Model 1 for a 
load of 5500 N 

MODEL 
NO. 

LOAD (N) MATERIAL 
CHANGED 

E; p (MPa) E,. t (MPa) DEFL'N 
(mm) 

3 7500 - CSM: 6890 
WR. - 13060 

CSM: 7770 
WR: 7770 

4.246 

3 7500 CSM 3445 7770 4.251 

3 7500 CSM 6530 3885 4.252 

3 7500 WR 6530 7770 4.252 

Table 6.15 Effect of Reducing Material Propeties of Elements Adjacent to 
Delamination. 



MODEL NO. LOAD (N) LOCATION 
OF VOID(S) 

FILLET MAX. 
PRINCIPAL 
STRESS 
(MPa) 

FILLET 
MAX. 
PRINCIPAL 
STRAIN (%) 

1 5500 NONE 8.56 0.54 

1 5500 

" 

8.56 0.54 

1 5500 14.25 0.80 

1 5500 14.32 0.8 

1 5500 9.32 0.6 

1 5500 11.66 0.67 

1 5500 10.31 0.564 

1 5500 10.52 0.565 

1 5500 8.81 0.56 

1 5500 8.55 0.543 

Table 6.16 Effect of Voidage on the Maximum Fillet Principal Stress 



Material Location Property Value 

Polyester/ Woven 
Roving Glass 

Stiffener, Flange and 
Overlaminate 

Ex 13060 MPa 

Ey 7770 MPa 

nuxy 0.25 

Urethane Acrylate Fillet Ex 1500 MPa 

Ey 1500 MPa 

nuxy 0.25 

Core Material Ex 1e MPa 

Gxy 106 MPa 

nuxy 0.25 

Crack Elements Cracked Region E 10000 MPa 

nu 0.25 

Table 7.1. Material Properties used in the Finite Element Models 



Material Location Property Value 

Polyester/ Woven 
Roving Glass 

Web, Flange and 
Overlaminate 

Ex 13060 MPa 

Ey 7770 MPa 

nuxy 0.25 

Polyester/CSM Overlaminate Ex 6890 MPa 

Ey 7770 MPa 

nuxy 0.25 

Urethane Acrylate Fillet Ex 1500 MPa 

Ey 1500 MPa 

nuxy 0.25 

Crack Elements Cracked Region E 10000 MPa 

nu 0.25 

Table 8.1 Material Properties used in the Finite Element Models. 

G (analytical) kJ/m2 G (finite element) kJ/m2 J-integral (finite element) 
W/m2 

4712 4003 4085 

Table 8.2 Verification of the J-Integral. 

Angle of 
orientation 
(degrees) 

G at left hand tip 
(kJ/m2) 

J at left hand tip 
(kJ/m) 

G at right hand 
tip (id/ n) 

J at right hand 
tip (kJ/m) 

0 3.098 3.000 3.048 3.306 

30 3.152 3.172 3.132 3.230 

60 2.839 2.981 2.823 2.947 

Table 8.3 J-Integral and G values calculated for cracks at three orientations. 



45 Degree Pull Off Load Three Point Bending 

Elastic Modulus, E (MPa) 10000 10000 

Poisson's Ratio, NU 0.25 0.25 

Supports Clamped Clamped 

Crack Length (mm) 10 10 
Crack Depth (no. of plies 
from outer surface) 

8 8 

Applied Load (N) 5000 5000 

Constraint Position from LH 
and RH edges of Joint model 
() 

50 50 

J-Integral (kJ/m) x 10"3 1.46 0.643 

Table 8.4 Effect of Loading Condition on the J-integral, 

Clamped Boundaries Simple Supports 

Elastic Modulus, E (MPa) 10000 10000 

Poisson's Ratio, NU 0.25 0.25 

Applied Load Configuration 45 Degree Pull Off Load 45 Degree Pull Off Load 

Crack Length (mm) 10 10 

Crack Depth (no. of plies 
from outer surface) 

8 8 

Applied Load (N) 5000 5000 

Constraint Position from LH 
and RH edges of Joint model 
(mm) 

190 190 

J-Integral (kJ/m) x 1073 36.9 36.7 

Table 8.5 Effect of Boundary Condition on the J-integral. 



Crack Tip Mode I Stress Mode II Stress Strain Energy Release 
Intensity Factor Intensity Factor Rate (kJ/m2) 

(MPa'm) (MPa'm) 

Lower right 5.51 0.26 2.82 

(model 1) 

Lower right 3.33 0.18 1.04 

(model 2) 

Upper right 0.71 2.38 0.58 

(model 2) 

Table 8.6 Mode I and Mode II Stress Intensity Factors and Strain Energy Release Rates 
for Two Curved Overlaminate Cracks. 



APPENDICES 



APPENDIX 2A. FRACTURE MECHANICS CRITERIA -A REVIEW 

2A. 1 Intmduction 

The first steps towards the analysis of fracture - dominated problems was taken by 

Griffith in 1920 who analysed the propagation of brittle cracks in glass. Griffith derived 

the concept that an existing crack will propagate if the total energy of the system is 

lowered. He assumed that a simple energy balance exists consisting of a decrease in the 

elastic strain energy stored within the stressed body as the crack extends which is 

counteracted by the energy required to create the new crack surfaces. A couple of 

decades later, Irwin pointed out that the energy balance must be between the stored 

strain energy and the surface energy plus the work done in plastic deformation. Irwin 

also recognised that the energy required to form new crack surfaces is generally 
insignificant compared with the work done in plastic deformation in the case of ductile 

materials. He defined a material property, G, the strain energy release rate, as the total 

energy absorbed during cracking per unit increase in crack length and per unit thickness. 

A paper by Irwin discusses the application of fracture mechanical concepts to large 

welded structures. He came to the conclusion that if the nominal stress in a structure of 

mild steel plates never exceeds 30,000 psi then a crack which forms and extends into 

a plate of the structure should not go unstable until it has developed to a length of 4 

inches. The critical crack length for a stress of 15,000 psi would be four times as large. 

It is this type of damage tolerance calculations which are required for composite 

materials used in the marine industry. 

Owing to the complexity of certain structures used in the construction of ships such as 

tee joint connections and top hat stiffeners it is not possible to entirely use analytical 

techniques to calculate damage tolerance levels. It is, however, possible to combine 

numerical analyses such as finite element modelling along with analytical techniques to 

calculate fracture mechanics criteria to yield critical crack lengths, for example. The 

paragraphs which follow discuss the fracture mechanics criteria which have been used 
in the analysis of isotropic plates (Chapter 4), top hat stiffeners (Chapter 7) and tee 

joints (Chapter 8). 



2A. 2 Iinear-Elastic Fracture Mechanics (LEFM) 

2A. 2.1 Elastic Stiess Field Approach. 

From linear elastic theory, Irwin developed the stress intensity approach. In the region 

of the crack tip, the stress intensity factor, K, can determine the magnitude of the elastic 

stresses. The value of K, shown in Equation 2A. 1 depends upon the magnitude of the 

applied stress, a, the length of the crack, 2a and a parameter which depends upon the 

crack and specimen geometry, f(a/W) where W is the specimen width. 

K=onaf(W) (2A. 1) 

Irwin proved that the achievement of a critical stress intensity factor, KC, is exactly 

equivalent to the Griffith-Irwin balance approach which requires the achievement of a 

stored elastic strain equal to GC. For tensile loading, the relationships between Kc and 
GC is given in Equation 2A. 2a for plane stress and Equation 2A. 2b for plane strain. 

2 

Gc -ý plane stress (2A. 2a) 

2 

Gc =E (1-v 2) plane strain (2A. 2b) 

All stress systems in the vicinity of the crack may be derived from three modes of 
loading, (a) mode I which is the opening mode, (b) mode II which is the sliding mode 

and (c) mode III which is the tearing mode. The mode I elastic stress field equations can 

be expressed in terms of principal stresses which are in turn written in polar coordinates 

(Ewalds & Wanhill). Similar expressions for modes II and III can also be written. 

The elastic stress field equations mentioned earlier are only valid for an infinite plate. 

The factor f(a/W) in Equation 2A. 1 takes into account finite specimen geometry where 

a is half the crack length and W is the specimen width. A number of numerical 

approximations are available, an example which is given in Equation 2A. 3 is accurate 

to 0.3 % for a/W < 0.35 and is found to be the most accurate approximation. 



f (A) = sec ( W) (2A. 3) 

2A. 2.2 Energy Balance Appmach 

The Griffith energy balance approach states that the total energy content, U, of an 

elastic, remotely loaded cracked plate can be written by Equation 2A. 4 where UO is the 

elastic energy content of the uncracked plate (a constant), Ua is the change in the elastic 

strain energy caused by introducing the crack in the plate, UY is the change in elastic 

surface energy caused by the formation of the crack surfaces and F is the work 

performed by external forces. 

U=U0+Ua+UY-F (2A. 4) 

Crack instability will occur as soon as U is no longer increasing with increasing crack 
length, i. e when dU/da = 0. By rearranging Equation 2A. 4 and noting that UO is a 

constant then we can write Equation 2A. 5. 

2: 
dUy 

(F U 
a g) - da 

(2A. 5) 

The left hand part represents the energy given to the body by the external work per unit 

crack extension. dF/da - dUa/da is the amount of energy that remains available for the 

crack tip to propagate. The right hand part of Equation 2A. 5 represents the elastic 

surface energy of the crack surfaces. This is the energy required for the crack to grow. 

The elastic strain energy required to open the crack can be written as in Equations 2A. 6a 

and 2A. 6b where E is the Young's modulus, a is half the crack length and a is the 

remotely applied stress. 

7Ca2a2 
aE 

-v2) 
ýO2a2 

E 

plane stress (2A. 6a) 

plane strain (2A. 6b) 



It can be shown that dUa/da =G and, therefore, for mode I (opening mode), expressions 

for the mode I strain energy release rate, GI, can be written in terms of the mode I stress 

intensity factor, KI, from Equations 2A. 6a and 2A. 6b and Equation 2A. 1 for f(a/W) _ 

1 (infinite plate) as shown in Equations 2A. 7a and 2A. 7b. 

2 

G=E plane stress (2A. 7a) 

a 
Gz = 

EZ 
(1-v2) plane strain (2A. 7b) 

The strain energy release rate, G can be considered to be the amount of energy which 

is available for crack extension and can be written in terms of the three stress intensity 

factors for mixed mode behaviour: 

G= 
(K. +K 1) k+1) 

+K 
11 (2A. 8) 

8µ 2µ 

where: KI is the mode I stress intensity factor 

KII is the mode II stress intensity factor 

KIII is the mode III stress intensity factor 

µ is the material shear modulus 

x is the conversion factor between conditions of plane strain and 

plane stress. Equals 3-4v for plane strain conditions 

v is the material Poisson's ratio 

For the case where only modes I and II are applicable, mode III is assumed to give a 

negligible contribution to the strain energy release rate and hence the strain energy 

release rate can be calculated from: 

G= 
(KI +K 1) (x+1) (2A. 9) 

8µ 

2A. 3 Elastic-Plastic Fracture Mechanics (EPFM) 

The use of linear elastic fracture mechanics (LEFM) may not always be applicable, for 



example in the case of ductile materials where the crack tip plastic zone is too large. It 

is therefore necessary to identify alternative parameters to analyse EPFM problems. 

2A. 3.1 The J integral 

The J"integral approach was first introduced by Rice and is based on an energy balance 

as with the strain energy release rate, G, in the case of LEFM. Consider Equation 2A. 4 

given above which remains valid as long as the material behaviour remains elastic, it 

need not necessarily be linear. An important consequence of this is that this nonlinear 

elastic behaviour can be used to represent the plastic behaviour of a material. One 

restriction of its use, however, requires that no unloading occurs in any part of the body. 

This is because in actual plastic behaviour, the plastic part of the deformation is 

irrecoverable. Hence the nonlinear equivalent to the LEFM parameter, G can be given 

as J, the J-integral. 

The J-integral is a path independent line integral which measures the magnitude of the 

singular stresses and strains near a crack tip: 

ýT =Wdy-tj 
äX 

ds (2A. 10) 

where: r is any path surrounding the crack tip 

W is strain energy density (strain energy per unit volume) 

tx is the traction vector along x-axis (axnx + o, yny) 
ty is the traction vector along y-axis (oyny + o, ynx) 
o is the component stress 

n is the unit outer normal vector to path r 

u is the displacement vector 

s is the distance along path r 

The J-integral approach may be used for nonlinear elastic materials and thus can be used 

in a wider variety of problems than the strain energy release rate, G which is only valid 
in the case of linear elastic behaviour. 

For linear elastic materials, the J-integral is related to the stress intensity factors in a 

similar manner as the strain energy release rate (Equations 2A. 8 and 2A. 9). i. e for linear 

elastic materials, J=G. A crack will propagate if the calculated value of the strain 



energy release rate (or J-integral) is greater than or equal to the material critical strain 

energy release rate. 



APPENDIX 2B. ANALYSIS OF WOVEN LAMINATES 

2B. 1 One-Dimensional Mosaic Models 

Ishikawa and Chou (1983) derived a one-dimensional analytical model to derive the 

elastic moduli upper and lower bounds of a woven fabric composite. This model does 

not take into account the fibre continuity or the undulation which naturally occurs in 

these type of laminates. Classical laminate plate theory has been adopted as the basis 

of this model leading to simple closed form solutions for the upper and lower bounds. 

The woven fabric is assumed to be comprised of a series of cross-ply laminates. Figure 

2B. 1 shows the idealisation of the mosaic model in the case of an eight-harness satin 

weave. i. e a fill thread is woven with every eighth warp thread and a warp thread is 

woven with every eighth fill thread. Two one-dimensional models give rise to the upper 

and lower bounds these being the parallel and series models respectively. The sections 

of the cross-ply laminates are either in parallel or series. This is shown in Figure 2B. 2. 

The parallel model assumes a state of constant strain (iso-strain) in the laminate 

midplane. An applied average membrane stress is applied to the laminate. Equations 

2B. 1 give the upper bounds of the stiffness constants of the woven fabric, AijMP' Bii Mp 

and Dii MP based on the parallel mosaic model. 

All = Ai j, Bjf = 
(i-_i) 

Bi j Dij 
(2B. 1) 

9 

The stiffness constants, Aid, Bid and Did are calculated from the basic laminate where 

the top layer is the fill threads. ng dictates the type of weave present in the laminate. For 

plain weave, ng = 2, twill weave ng =3 and for satin weave, ng 4 (four-harness) or 

ng =8 (eight-harness). 

The series model assumes that the disturbance of stress and strain near the interface of 

the woven region is negligible. If an in-plane force in the longitudinal direction is 

applied to the laminate, the iso-stress condition leads to Equations 2B. 2 for the upper 
bounds of the composite compliance constants, aii 

Ms, bijMs and dijMs and hence the 

lower bounds of the composite stiffness constants. 

j= ajj bis = 1-n 
)bij 

,dý= di 
(2B. 2) 

9 

where: aid, bid and did are the compliance constants which relate to the average 



where superscripts M, F and W represent the matrix, fill thread and warp thread 

respectively. The local stiffness of the fill yarn, QijF(6) depends upon the local fill angle 

to the x-axis. Thus, the effective elastic moduli depend upon the value of the fill angle 

(Lekhnitskii). If the fill angle exists then the effective elastic moduli in the x-direction 

are reduced. 

This model only considers a one-dimensional strip of laminate and is, therefore not 

suitable for calculating non-axis constants. In addition, the fibre undulation model is 

inadequate for calculating the elastic constants for satin weave fabrics. 

The averaged in-plane compliance constants for the woven laminate under a uniformly 

applied in-plane stress resultant are given for the FUM by Equations 2B. 4. 

aj 
naa 

a+2 
a3 

naJajj 
(x) dx 

g9 as 

82 

br1n bij +na fbij (x) dx 
99 80 

a2 (2B. 4) 2 di 
(i- 2a 

a 
dij +naf dij (X) dx 

99 eo 

The compliance constants are obtained numerically from Equations 2B. 4. Finally, the 

stiffness constants are obtained by the inversion of Equations 2B. 4 

2B. 3 Analysis of First Knee Behaviour of Woven Composites 

The tensile stress-strain behaviour of woven roving composites, on a macroscopic level 

exhibits distinctive knee points. It is reported in Kimpara et. al. that the first knee occurs 

at a relatively low stress level. The internal failure mechanism is due to failure in the 

weft roving followed by the accumulation of matrix cracks between the filaments in the 

weft rovings transverse to the applied load. 

A series of finite element models were analysed which represent a two dimensional 



idealisation of a glass/polyester woven roving composites each containing elements 

representing the warp, weft yams and the matrix. The stresses and strains were computed 
for each element under a prescribed uniform displacement until the critical value of 

principal matrix strain (2 %) was reached. The rigidity of the element(s) which are 
deemed to have failed is then reduced to I %. This procedure is repeated to yield a 

stress strain curve from which a series of Young's moduli can be computed which mirror 

the rigidity loss due to the knee behaviour. The decrease in rigidity around the first knee 

is quoted to be 25 % which is consistent with the actual behaviour of FRP. 

Ishikawa and Chou (1982 b) uses an analytical approach to calculate the stress/strain 
behaviour of a plain weave glass/polyester composite. It is assumed that classical 
laminate theory is applicable in this case. The reduced stiffness of the warp threads 

which are transverse to the load in this case, is represented by reducing the Qijs except 
Q22 by a factor of 1/100. This is so as to represent the stiffness reduction due to 
transverse cracking. Two predictions for the stress/strain behaviour have been made, the 
first assuming bending-free conditions and the second allowing bending to take place. 
The bending-free condition compares extremely well with the FE result from Ishikawa 

and Chou (1982 b). In plain weave composites, the local bending is constrained by the 

adjacent interlaced regions hence the bending-free condition is the most likely condition 
to exist. 

2B. 4 Bridging Model for Satin Weaves 

The fibre undulation model discussed above is effective for plain weave fabrics since 
there are no straight thread regions surrounding the woven regions in the plain weave 
laminate. This is shown in Figure 2B. 4. In satin weaves, however, where ng Z 4, the 

woven regions are separated from each other by straight thread regions. This is shown 
in Figure 2B. 5. These straight regions have higher in-plane stiffnesses than the woven 

regions due to the lack of undulation. Thus the straight regions have the effect of 
carrying higher loads causing load transfer by bridging. Figure 2B. 6 shows the concept 
of the bridging model. Equations 2B. 5 give rise to the averaged compliance constants 
for a satin weave plate based in the bridging model. 



a j= 1 (2aj j+ (ý-2) asj I 

Y"9 

bj=1 [2bj j+ (/-2)bf ) 

dsj =1 [2djj + (T-2)d7'] (2B. 5) 

The stiffness constants can then be obtained by inverting Equations 2B. 5. 



(a) 

(b) - 

(t) 

Figure 2B. 1 Idealisation of the Mosaic model : 
(a) cross-sectional view of a woven fabric before resin impregnation 
(b) woven fabric composite 
(c) idealisation of the mosaic model 
(taken from Ishikawa & Chou) 
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Figure 2B. 2 Mosaic model of : 

(a) repeating region in an eighth harness satin composite 
(b) a basic cross-ply laminate 
(c) parallel model 
(d) series model (taken from Ishikawa & Chou) 
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Figure 2B. 3 Geometry used in the Fibre Undulation Model 
(taken from Ishikawa & Chou) 
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Figure 2B. 4 Regions in a Plain Weave Laminate 
(taken from Ishikawa & Chou) 

(a) 

(D) 

Figure 2B. 5 Straight Thread Regions within Satin Weaves 
(a) four harness satin 
(b) eight harness satin 
(taken from Ishikawa & Chou) 
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Figure 2B. 6 Concept of the Bridging Model : 
(a) shape of the repeating unit of an 8 harness satin weave 
(b) modified shape for the repeating unit 
(c) idealisation for the bridging model 
(taken from Ishikawa & Chou) 



APPENDIX 4A. DERIVATION OF LAMINATE CONSTITUTIVE EQUATIONS. 

For an orthotropic material, Generalised Hooke's law yields the Equation 4A. 1 which 

relates the strain components to the stress components via the compliance matrix. The 

inverse of the compliance matrix is the stiffness matrix whose elements are the material 

stiffness constants. 

6 

ei = S. jaj 
(4A. 1) 

Classical laminate theory (CLT) assumes plane stress conditions within all the laminae 

constituting the laminate. If we consider the diagram in Figure 4A. 1, and let the xlx2 

plane represent the plane of plane stress, then o3,04 and 05 are equal to zero. Thus, 

Equation 4A. 2 can be written to represent the plane stress components. 

l°1 011 Q12 e1 
(4A. 2) 

02 ° Q12 022 0 c2 10 ]k [C Ik 

a6k 00 Q66k 
k6ik 

where the elements Qij are the reduced stiffness constants for plane stress. 

For the laminate shown in Figure 4A. 2 with a coordinate system x, y, z, the mid-plane of 

each lamina k has principal material directions, (xl)k and (y 1)k" If the x- and y-axes in 

that plane are rotated through an angle 8k and are denoted by (*1)k and ('1)k then the 

reduced stiffness matrix with respect to the principal directions of the laminate can be 

denoted by [Q]k the elements of which are given in Shenoi & Wellicome. Equation 

4A. 3 represents the lamina stress strain relations with respect to the principal directions 

of the laminate. 

ýQ}It 
-[DJklý]k 

(4A. 3) 

Equation 4A. 4 represents the in-plane strain vector of each lamina k as a function of the 
distance from the laminate midplane to the lamina midplane, z. 

{e}k={e°} +z{x} ; zx_1 < z< Zk 
(4A. 4) 

By substituting Equation 4A. 4 into Equation 4A. 3, the stress-strain variation in a lamina 

k with respect to the principal directions of the laminate can be given by Equation 4A. 5. 



11 
P12 . 016 1E°x l1 

ý12 
u16 1kx (4A. 5) 

Qy = )12 . 022 D26 E°y +Z D12 022 '026 kr 

xy k 
Q16 Q26 

66 k0 xy 
Q16 Q26 

66 k' 

where: Q11, Q12, Q22 and Q66 are elements of the kth lamina reduced stiffness 

matrix and can be found in Shenoi & Wellicome. 

To define the forces and moments applied to a rectangular section of the plate as shown 
in Figure 4A. 2, the stresses must be integrated over the thickness of the plate, thus 

giving equations for the resultant forces per unit edge length: 

n Zx 

{ N) =rf{ä}k dz (4A. 6) 

zx-ý 

The variation in normal stress in the thickness direction (z), corresponds to a bending 

moment per unit length, M. The remaining stress components, ax and aX, each give 

rise to bending moment My and twisting moment Mme,. 

n Zk (4A. 7) 
{M} =r f {Q}kzdz 

ý1 
Zk-1 

Since the stress distribution through the laminate thickness is discontinuous at the 
laminae interfaces, the integration of stresses over the whole thickness to determine the 

laminate stiffness matrices [A], [B] and [D] must be replaced by integrals over the 

individual laminae which are then summed. Hence, from a knowledge of the laminate 

construction the elements of the [A], [B] and [D] matrices can be calculated from 

Equations 4A. 8 and the reduced laminate stiffness matrix. 

Afj = [-Oij) x (Zk - Zk-i) 

n_ 
Bij -2ý IDJj3 

k 
(Zk - Zk-1 T. 

n 
Djj =3 ý.:, IQiiI k (z1 Zk-1) (4A. 8) 

where: i, j = 1,2,6 



Equations 4A. 8 can be combined to yield the load-strain relations of the laminate 

according to CLT. 

{ NJ] [[A] [B] { c°} (4A. 9) 
{M} B] [D] {x} 

X2 
Q2 
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Q4 
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dx2 
Ql 
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_ý 
xi 

Joe dxl 

// 
dx3 

x3 

Figure 4A. 1 Diagram of Positive Stress Direction Convention and Coordinate System 
(taken from Shenoi & Wellicome) 
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APPENDIX 4B. CALCULATION OF LAMINATE ELASTIC MODULI 

The laminate stiffness matrix which was derived in Appendix 4A can be written as 

{N} 
_ 

FAuBI1 {e 
{M} B] [D] {x} 

where: [A] is the in-plane stiffness matrix 
[B] is the coupling stiffness matrix 
[D] is the flexural stiffness matrix 
{eo} is the in-plane strains vector. 
{x} is the plate curvatures vector. 
{N} is the in-plane forces vector. 
{M} is the edge moments vector. 

(4B. 1) 

Equation 4B. 1 must now be inverted in order to give the laminate compliance matrix. 

This is given in Equation 4B. 2. 

[ [eO] [a] ', [N] ] 
[K] 

]=[ 
[ý] [d] 

[ 
[M] 

where: [a] is the in-plane compliance matrix. 
[b] is the coupling compliance matrix. 

[d] is the flexural compliance matrix. 

and [a] = [A]-1 - [b][B][A]-1 

[b] = -[A]-1 [B][d] 

[d] = ([D] - [B][A]-1[B])-1 

(4B. 2) 

The coupling effects due to the coupling matrix [B] can be avoided if the laminate is 

constructed symmetrically with respect to its midplane, for which the laminate coupling 

matrix [B] equals zero. As a result, a uniaxial in-plane force will not cause bending or 

twisting. If Nx , the force per unit length in the x-direction is the only non-zero force 

then Equation 4B. 2 can be re-written as: 

e0x=a11Nx (4B. 3) 

Nx is shown graphically in Figure 4B. 1. Now, Nx is related to the direct in-plane stress 

in the x-direction, averaged across the laminate thickness, t as in Equation 4B. 4. 



Nx (4B. 4) vX =t 

Substituting Equation 4B. 4 into Equation 4B. 3 yields: 

cxo=all axt (4B. 5) 

Now the stiffness EXO can be written as : 

Exo _ 
ox (4B. 6) 
E0 x 

Rearranging 4B. 5 and substituting into 4B. 6 gives the following equation for the 

stiffness of an arbitrary composite laminate, EX 

1 EX _ 
all t 

(4B. 7) 

where: al i is the first element of the in-plane compliance matrix [a]. 

t is the laminate thickness 

also, for laminate with n plies 

n 

k 
(Zk - Zk-1) Aij = CQýjJ 

" 1 

n 

k 

Djj =3 [Qij] 
k (Zk3 Zk-13) ;. ý, 

where: 

LQjJk 

is the reduced stiffness matrix for each ply k. 

(4B. 8) 

For a symmetric laminate, the coupling matrix [B) is equal to zero and Equation 4B. 7 

can be re-written as: 



_ EX 
Xi 

1 

lt 

where: X11 is the first element in the matrix [A]". 

Also, the other engineering constants can be yielded from Equations 4B. 10. 

EY =1 
&22 

h V 
a21 G=1 y all a66 h 

(4B. 9) 

(4B. 10) 

Y 

31 

Figure 4B. 1 Forces and Moments per Unit Length acting in the Laminate 
(taken from Shenoi & Wellicome) 



APPENDIX 4C DERIVATION OF WOVEN LAMINATE RELATIONS. 

The analysis which is described here is restricted to the analysis of plain weave type 
fabric laminates. The warp and fill material are assumed to be the same. It is first 

necessary to discuss the analysis of one lamina. The extension to laminates shall then 
be discussed. 

Consider a unit cell of a plain weave lamina such as the one shown diagrammatically 

in Figure 4C. 1. The unit cell is divided into sections depending on the nature of the 

weave along both the x- and y-axes. These sections are distinguished by al_5 along the 

x-axis and bl_5 along the y-axis. The exact location of these sections along the x-axis 
is dependent upon the width of the warp yam (aw), the gap between two adjacent warp 
yarns (gw) and the undulation length of the fill yarn (uf). 

Figure 4C. 2 shows the side DC of the unit cell. The shape functions by 1(y) and hy2(y) 
define the yam configuration across the y-axis. The undulation is assumed sinusoidal in 
form. Figure 4C. 3 shows the side AD of the unit cell. The shape functions hxi(x, y), 
hx2(x, y) and hx3(x, y) define the yarn configuration. These shape functions depend upon 
both the x and y location within the unit cell. 

The shape functions defining the yams along the x-axis are defined in Equations 4C. 1. 

hxl (x, Y) 
[1_Sifl{(X_a3) it (iy2 (Y) + hYl (Y) 

+ hy2 (y) 
uf-gM 2 

a3 sxs a5 

hxl (x, y) = hy2 (Y) a5 sxs (aM+gw) 

hx2 (x, Y) (h, 
v-hy1(Y) - (hf-hxl (a4, Y) )] cos (x-a5) 

f 

(hf-hx1(a4, Y)) a4 sx sa, 



hx2 (x, Y) = hYl (Y) - hM a5 sxs (aM+9�) 

(4C. 1) 

where: hf is the maximum fill yam thickness 

hw is the maximum warp yarn thickness 

In addition, the local angles of the warp and fill yarns to the global coordinate axes must 
be defined. Equation 4C. 2 gives the local angle between the warp yarn and the global 

coordinate system, 0W(y) and the local angle of the fill yam to the global coordinate 

system, Of(x, y). 

0, (x, y) = tan-1 
dhxl , y) 6w (y) = tan-1 

ý al (Y) ); 
dx Y 

(4C. 2) 

Classical laminate theory in Appendix 4A gives equations for the in-plane, coupling and 

flexural matrices (Equation 4A. 8) which must be adapted to take into account the 

different regions within the woven lamina. For example, in the region where 0sxs a3 

and 0sys b3, the in-plane matrix can be defined by Equation 4C. 3. 

hx3 (x, y) hxi (x, y) hxz (x, y) 

Ali (x, y) =fQ dz +Qj (x, y) dz + 
hx3 x, Y hx1 tx y) l) 

2 

QJ (X, y) dz 

h 
2 

+ Qjdz 
hx2 X, Y) 

(4C. 3) 

Equations 4C. 4 give the resulting equations for the in-plane, coupling and flexural 

matrices for the woven lamina. 

A; j(x, Y) = Q.. M [hx3(x, Y) +h- hx2(x, Y)] 
+ QijW(xY)Ihx2(x, Y) - hxl(x, Y)] 

+ Qij F(x, 
Y)[hxl(x, Y) - hx3(x, Y)J 

B; j(x, Y) = 1/2 Q. jM [hx3(x, Y)2 - hx2(x, Y)21 

+ 1/2 QijW(x, Y)[hx2(x, Y)2 - hx1(x, Y)2J 

+ 1/2 Q, jF(x, Y)[hxl(x, Y)2 - hx3(x, Y)21 



D; j(x, Y) = 1/3 Q.. M [hx3(x, Y)3 + h3/4 - hx2(x, Y)3] 
+ 1/3 Q. jW(xY)[hx2(xY)3 - hx1(x, Y)3] 

+ 1/3 QijF(x, Y)[hx1(x, Y)3 - hx3(x, Y)3] (4C. 4) 

The composite cylinder assemblage model or CCA (Naik) gives simple closed-form 

analytical expressions or close bound solutions for the effective composite moduli. The 

fibre and the matrix are assumed to be transversely isotropic (Lekhnitskii). The CCA 

model yields values for the elastic constants in the principal material directions of a 

unidirectional lamina. Due to the inherent undulations in the fill and warp yams, these 

elastic moduli must be adapted. They need to incorporate a dependence on the local 

angles of the fill and warp yarns to the global coordinate system. It is assumed that the 

woven fabric lamina is subjected to a uniform in-plane loading along the x-axis. 
Infinitesimal pieces of a section parallel to AD (Figure 4C. 3) are in series with respect 
to the loading condition and are assumed to be under constant stress. Alternatively, all 
infinitesimal pieces of sections parallel to DC (Figure 4C. 2) are in parallel with respect 
to the loading condition and the mid-plane strains of these pieces are the assumed to be 

the same. 

An assemblage of infinitesimal pieces of a section Along the loading direction under iso- 

stress is described as a SERIES model. An assemblage of infinitesimal pieces of a 

section across the loading direction under iso-strain is described as a PARALLEL model. 

A Series-Parallel model is such that all the infinitesimal pieces of a section along the 
loading direction are first assembled with an iso-stress condition and then with an iso- 

strain condition. A Parallel-Series model is such that all the infinitesimal pieces of a 

section across the loading direction are first assembled with an iso-strain condition and 
then with an iso-stress condition. 

In the case of the Series-Parallel model, for a uniformly applied in-plane stress resultant 
for sections along the loading direction, the average in-plane compliance constants can 
be calculated from Equation 4C. 5. 

a(y), b j(y)(y)=a 1 

w+gw, 

au 16 7M 

f ajj(x, Y), bij(x, Y), djj(x, Y) dx 
0 

(4C. 5) 



For a plain weave lamina, the average coupling compliance, 6ijs(y) becomes zero since 
the lamina is symmetrical with respect to its mid-plain. The average in-plane stiffness 
constants Aijs(y), Bijs(y) and Dijs(y) can be obtained by inverting the average in-plane 

compliance constants given in Equation 4C. 5. The average in-plane stiffness constants 

of the unit cell of woven fabric lamina can then be found by integrating the in-plane 

stiffness constants of all sections along the Y-axis with an iso-strain condition using 
Equation 4C. 6. 

at`9t 
XOP, 

j -2j o 
DIP, 

= 
BM+gN 

f X. j (Y) ýi j (Y) . Ds j (Y) (4C. 6) 
0 

Aii sp, Bii SP and Dii SP are the average in-plane stiffness constants obtained by the series- 
parallel (SP) model. Bii sp equals zero for a plain weave. The elastic moduli of the 

woven laminate can be obtained using the same method as for unidirectional laminates 

which has been discussed in Appendix 4B. 
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APPENDIX 4D. LAMINA STIFFNESS MATRICES FOR CHOPPED STRAND MAT 

LAMINAE. 

Chopped Strand Mat laminates have a random fibre orientation. The isotropic in-plane 

moduli may be derived from the moduli of aligned short-fibre composites. The following 

equations give values of E, the Young's modulus and G, the shear modulus: 

E=3E+5 ECT G= 1 Eel, +1 EcT (4D. 1) 
8884 

where: EcL is the longitudinal modulus of a unidirectional composite of the 

same material 
EcT is the transverse modulus of a unidirectional composite of the 

same material 

The Poisson's ratio, u, can be calculated from u= (E/2G) -1. 

Now, the stiffness matrix [Q] can be calculated as: 
Q11 = Q22 = E/(1-u2) 

Q12 = Q21 = Eu/(1-u2) 

Q33=G 

Q13 = Q23 = Q31 = Q32 -0 (4D. 2) 
The in-plane stiffness matrix [A], the coupling stiffness matrix [B] and the flexural 

stiffness matrix [D] can now be determined for the CSM lamina using Equations 4A. 8 

and replacing with the stiffness matrix [Q] whose elements are given above . 

APPENDIX 4E. CALCULATION OF STIFFNESS OF A COMPLETELY 
DELAM HATED LAMINATE. 

In the case of multiphase materials with n phases the following relationship holds: 

E_ Es Vf (4E. 1) 
1«1 

where: E is the total elastic modulus of the multiphase material. 
Ei is the modulus of phase number i. 
Vi is the volume fraction of phase number i. 

Since the volume fraction is proportional to the thickness ratio (thickness of one phase 



to total laminate thickness), Equation 4E. 1 can be written as: 

n 4E. 2 E= 1 Ei ti () 
t 3-i 

where: t is the total laminate thickness. 

ti is the thickness of phase number i. 

If we assume that the laminate completely delaminates, as shown in Figure 4E. 1, then 

we can assume that each sublaminate caused by the complete delaminations can be 

treated as a "phase j" in the above equations (O'Brien, 1982). Re-writing Equation 4E. 2 

we have: 

r Ej ti 

t 

where: E* is the stiffness of a completely delaminated laminate. 

Ei is the stiffness of sublaminate number j. 

t. is the thickness of sublaminate number j. 

t is the total laminate thickness. 

D= Complete delamination 

Nx 

(4E. 3) 

D rý - 

_. ý_ D . _. _. _. _. _.. 
Nx 

Figure 4E. 1 Completely Delaminated Laminate 



APPENDIX 4F. CALCULATION OF STIFFNESS OF A PARTIALLY 

DELAMINATED LAMINATE. 

O'Brien, 1982 developed an equation for the stiffness of a partially delaminated 

laminate, Ep. Figure 4F. 1 shows a laminate of width 2b with equal-sized delaminated 

strips width a along both edges. Assuming that each of the three parts of the laminate 

can be treated as three phases, an equation for Ep can be formulated as in Equation 

4F. 1. 

Ep = 
E (2b-2a) + E'a + E'a (4F. 1) 

2b 

where: ELAM is the stiffness of a laminate with no delaminations 

E is the stiffness of a completely delaminated laminate 

Rearranging Equation 4F. 1 yields a relationship for a partially delaminated laminate. 

Ep =b [E*-ELAN] + E1, au1 (4F. 2) 

A more general form of Equation 4F. 2 can be derived, if it is assumed that the laminate 

stiffness loss and delamination size are related by Equation 4F. 3: 

E--Sy 
-A Eý - Ey A* 

(4F. 3) 

where: A is the delaminated area 
A is the total interfacial area 

Rearranging Equation 4F. 3 gives: 

E_ (E' - ELAM) Ä++ ELAM (4F. 4) 

of which Equation 4F. 2 is a special case when a/b = A/A* 
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Figure 4F. I Partially Delaminated Laminate 



APPENDIX 4G. DERIVATION OF EQUATION USED TO CALCULATE THE 

CRITICAL BUCKLING STRESS. 

The sign convention for positive moments and forces is shown in Figure 4G. 1, where 

N and Q are the longitudinal and transverse components of force on the cross section, 

respectively. M is the bending moment. 

From the diagram shown in Figure 4G. 2, which represents the forces and moments 

acting on a column element in a deformed configuration, the following analysis can be 

carried out. 

Summation of forces in the x-direction gives: 

-Ncos ß-Qcos(90- ß)+(N+dN)cos(ß+d (3)+(Q+dQ)cos(90-(ß+d ß)) =0 (4G. 1) 

In order that the effect of rotations on the structure can be accounted for, the equilibrium 
Equations are applied to the structure in a slightly deformed state. For a rotation, ß, the 

square of the rotation is assumed to be small compared with unity. Therefore sin ß is 

replaced by ß and cosp replaced by 1. 

Now, cosß=l 

cos(90- a)=sin a= p 
cos(a+d ß)=l 
cos(90-(p+d ß))=sin(ß+d ß)= ß+d ß (4G. 2) 

Substituting Equations (4G. 2) into (4G. 1) gives: 

-N+(N+dN)-Q ß+(Q+dQ)(ß+d ß)=0 (4G. 3) 

which reduces to: 

dN+Qdm; + ßdß=0 (4G. 4) 
dx dx dx 

Summation of forces in the z-direction gives: 

Nsin ß-Qsin(90- ß)-(N+dN)sin(ß+d ß)+(Q+dQ)sin(90-(ß+d ß)) =0 (4G. 5) 



Substituting Equations (4G. 2) into (4G. 5) gives: 

N ß-Q-(N+dN)(ß+d ß)+(Q+dQ) =0 (4G. 6) 

which reduces to: 

-NAA - ßdN+dQ=0 (4G. 7) 

dx dx dx 

Summation of Moments gives: 

M-(M+dM)+Qdx=O 

or, 

Q=dM (4G. 8) 

dx 

If we are considering slender beams, then transverse shearing stresses and forces are 

quite small. Therefore, we can assume that all quadratic terms representing nonlinear 
interaction between small transverse and shearing forces and rotations may be neglected. 
The equilibrium Equations (4G. 4), (4G. 7) & (4G. 8) become: 

dN =0 (4G. 9) 

dx 

d(Q' - NdA =O (4Q10) 

dx dx 

Q= dM (4G. 8) 

dx 

Substituting Equation (4G. 8) in (4G. 10): 

N' =0 (4Q11) 

M"-Nß'=0 (4G12) 
Also, ß= -w' (4013) 

and M= -EIw" (4Q]4) 

where: ' is the first differential w. r. t. x. 
is the second differential w. r. t. x. 



w is the deflection in the z-direction. 
E is the Young's Modulus. 

I is the cross-section second moment of area. 

Substituting Equations (4G. 13) and (4G. 14) into (4G. 12) we have: 

(EIw")" - Nw" =0 

and for constant EI, 

EIw1" - Nw" =0 (4G. 15) 

From Equation (4G. 11) it appears that N=constant in x, but from boundary conditions 

we see that for x=O, L, N=-P. 

Hence, Equation (4G. 15) can be written as: 

wiv + X2w.. =0 (4Q16) 

where: 

X2 P (4G. 17) 

or in the case of a plate, 

1l2 =p (4G. 18) 
D' 

where: 

D' _ 
Et 3 (4G. 19) 

12 (1-v2) 

and u is the Poisson ratio. 

Equation (4G. 16) applies to each of the three parts shown in Figure 4G. 3. 

So for the three parts, i=1,2,3 and the following Equation holds: 

wii v+ 112 Will =0 («320) 



where: 

and 

N 

j2 = 
PI 

Di' = 
Etj3 

(4G. 21) 
Df 12 (1-v2) 

Pi is the axial force per unit length in the ith part. 
Di* is the stiffness of the ith part. 

dx p* dQ 
M+dM 

N+dN 

Figure 4G. 1 Sign conventions for Positive Moments and Forces 
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Figure 4G. 2 Forces and Moments acting on a Column Element in a Deformed Configuration 
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APPENDIX 41E. THREE DIMENSIONAL SOLID ELEMENTS USED IN Ft 

ANALYSIS 

The elements used to generate the three dimensional (3D) finite element model are 3D 

structural solid elements. The element is defined by eight nodes each having three 

degrees of freedom: translations in the nodal x, y, and z directions. Figure 4H. 1 shows 

the geometry, node locations and the coordinate system for the element. 
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Figure 4H. 1 3D Solid Element 
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APPENDIX 4L DETAILS OF FE BUCKLING ANALYSIS 

Two techniques are available in the ANSYS finite element package for predicting the 

buckling load and buckling mode shape of a structure. These are a nonlinear buckling 

analysis and eigenvalue (or linear) buckling analysis. Only the eigenvalue buckling 

analysis is discussed here as this is the type which has been used in the analysis. 

The eigenvalue buckling analysis predicts the theoretical buckling strength of an ideal 

linear elastic structure. i. e. one which does not contain imperfections, plastic behaviour 

and does not possess large deflections. This method corresponds to the textbook 

approach to elastic buckling analysis. For example, an eigenvalue buckling analysis of 

a column will exactly match the classical Euler solution (Timoshenko & Young). 

Generally, however real structures do not achieve their theoretical elastic buckling 

strength, their actual buckling stress is below this level. Figure 41.1 shows the Load- 

Deflection Curve for both the nonlinear and eigenvalue buckling curve. The eigenvalue 
buckling analysis has been carried out in order to calculate the highest possible value 

of the critical buckling stress. It must be noted, however, that this method often yield 

unconservative results and should not, therefore, be used for the design or evaluation of 

actual structures. 

Snap-tiaoagh budding 
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Figure 4I. 1 Buckling Curves: 

(a) Non-Linear Load-Deflection Curve 

(b) 
U 

(b) Linear (Eigenvalue) Buckling Curve 



APPENDIX 41 TWO DIMENSIONAL STRUCTURAL SOLID ELEMENTS USED IN 

THE FE ANALYSIS 

The element can be used either as a plane stress or plane stress element. It is defined 

by four nodes each having two degrees of freedom: translations in the nodal x and y 

directions. The geometry, node locations and the coordinate system for the element is 

shown in Figure 4J. 1. 

LK 

Y 
Element Coa: dmate O 
SYstem (shown for 2 

(°? AOa) KEYOPT(1)M1) 
I 

X (or Radial) 1 

Figure 4J. 1 2D Structural Solid Element 

APPENDIX 4K. TWO DIMENSIONAL CRACK ELEMENTS USED IN THE FE 

ANALYSIS 

The elements used to represent cracks in finite element models are six-noded triangular 

structural solid elements. The geometry and node locations are shown in Figure 4K.!. 

Each node has two degrees of freedom being translations in the nodal x and y directions. 

The midside nodes (labelled L and N) may be moved to the quarter point towards node 
I if a singularity is required at node I. 
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(or Axial) 
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X (or it i-1) J 

Figure 4K. 1 2D Triangular Structural Solid Elements 



APPENDIX 6A. COMPARISON BETWEEN 3D AND 2D FINITE ELEMENT TEE 

JOINT MODEIS 

6A. 1 'Three Dimensional (3D) Model 

This model was generated using two element types, namely the 3D structural solid 

element, details of which can be found in Appendix 4H and the 3D layered structural 

solid element, details of which are given in Appendix 6B. A 3D layered structural solid 

element was selected in order to represent any number of layers. This type is used in the 

overlaminate, web and flange. In addition, 3D structural solid elements are used in the 

fillet. In an experimental three-point bend simulated load, the flange plate is supported 

by rollers on both sides and a load is applied across the centre of the flange plate 

6A. 2 Two Dimensional (2D) Model 

The elements used to generate the models are 2D structural solid elements which have 

been used in FE models in Chapter 4 and whose characteristics are given in Appendix 

Q. Plane strain conditions are assumed to prevail in the 2D models since the joints on 
board ships can be considered wide in relation to the length and thickness. One element 

is modelled per layer of the overlaminate material. For the 2D models, the finite element 
load is equal to the applied load per unit width of the joint which in this case is 100 

mm. Constraints for the 2D case mirrored those adopted for the 3D model. 

6A. 3 Comparison of 3D and 2D Models 

For the purposes of the comparison between the 3D and 2D models only, since the 

loading and geometric configuration of the joints is symmetrical, only half the joint has 

been modelled in each case. 

It is necessary to compare the relative stiffness and strength of the 2D and 3D tee joint 

models in order to verify that no accuracy is lost if 2D models are to be used for further 

analyses. The stiffness and strength representations of both the 3D and the 2D models 

are discussed in Sections 6A. 3.2 and 6A. 3.3 respectively. 



6A. 3.1 Assumed Loads 

The load applied to each of the 3D and the 2D models was equivalent to an actual three 

point bending load of 5500 N. This corresponds to the load at which the experimental 

load-deflection curve for a tee joint under a three point bending load becomes non-linear 

(Elliott, 1994). 

6A. 3.2 Initial Stiffness Comparison 

Table 6A. 1 gives the deflection values for both the 3D and the 2D models which have 

been calculated at a load of 5500 N. The deflection value for the 2D model is 

approximately 5% lower than that for the 3D model, i. e the 2D model is very slightly 

stiffer than the 3D model. 

6A. 3.3 Load Transfer Mechanisms 

Table 6A. 2 gives the maximum in-plane stress (oi_p) and maximum through-thickness 

stress (ot_t) in the overlaminate and also the maximum principal stresses (op) and strains 
(ep) in the fillet. It can be noted that all the results for the 2D model are very similar 

to those for the 3D model. For example, the maximum through-thickness stress in the 

overlaminate for the 2D model is only 3% higher than that for the 3D model. This 

indicates that the load is transferred within the 2D and 3D models in a similar manner. 

As a result of both the stiffness and strength investigations it has been shown that very 
little accuracy will be lost if 2D models are used as opposed to 3D models. Thus, all 
further analyses have been generated in two dimensions. 

FE MODEL MAXIMUM DEFLECTION (mm) 

3D 3.2128 

2D 3.0447 

Table 6A. 1 Comparison of Maximum Deflections for 2D and 3D Models. 



FILLET OVERLAMINATE 

MODEL oP (MPa) Cp (MPa) ol. , (MPa) ot. t (MPa) 

3D 9.532 0.0057 51.704 6.214 

2D 8.541 0.0054 53.065 6.314 

Table 6A. 2 Comparison of Maximum Stresses for 2D and 3D Models. 

APPENDIX 6B. THREE DIMENSIONAL LAYERED SOLID ELEMENTS USED IN 

THE FE ANALYSIS 

Figure 6B. 1 shows the geometry and coordinate system of the 3D layered structural solid 

element used in the finite element generation of a tee joint. Each element is defined by 

eight nodes each with three translational degrees of freedom. The element allows up to 

100 material layers through the thickness. 

P TOP 

Figure 6B. 1 3D Layered Structural Solid Element 



APPENDIX 7A. GAP ELEMENTS USED IN THE FINITE ELEMENT CRACK 

MODELS 

The element used in the finite element crack models to prevent the two crack faces from 

overlapping is a 2D 'point to point' contact element defined by two nodes each having 

two degrees of freedom. These are translations in the x and y directions. The two nodes 

may be coincident if required. The element is capable of supporting only compression 

in the direction normal to its surfaces and also shear in the tangential direction. Figure 

7A. 1 shows the geometry, node locations and the coordinate system for this element. 

J" 

S 

detamiaa element 
orientation 

Y (or Axial) I" 

Nodes may be coincident 
X (or radial) 

Figure 7A. 1 Two Dimensional Point-to-Point Contact Element 



APPENDIX 8A. METHOD OF INSERTING CRACK ELEMENTS INTO AN 

EXISTING FE MODEL 

In order to insert crack elements into an existing 2D tee joint model it has been 

necessary to ensure node compatibility. i. e that nodes belonging to the six-noded crack 

elements also defined the elements on the outer edge of the existing FE model. 
However, since the crack elements are six-noded, it had to be ensured that the third 

(central) node on the outer edge was not generated since the existing FE model is 

generated from four-noded elements. Figure 8A. 1 shows the problem diagrammatically. 

To prevent this occurring, it was necessary to force the crack elements around the edge 

of the cracked region to only use two nodes in the definition of their outside edges and 

thus be compatible with the rest of the tee joint model. 

The steps involved in inserting the cracked region in the existing tee joint model are as 
follows: 

(1) Delete the elements of the existing tee joint model which are to be replaced by 

crack elements. 

(2) Generate two-noded 'beam' elements along the boundary between the existing tee 
joint model and the cracked region. Ensure that the nodes of the beam elements 

are coincident with the existing nodes of the tee joint model. 
(3) Select the two nodes which are to be the crack tips and ensure that a singularity 

will be present at these nodes by moving the midside nodes of the surrounding 

crack elements (see Appendix 4K). 

(4) Define appropriate areas of the cracked region used to define the crack. 
(5) Mesh the areas of the cracked region with crack elements. The elements around 

the edge of the cracked region will automatically have only two nodes defining 

their outside edges due to the existence of the two-noded beam elements. 
(6) Delete the beam elements as they are only required in the model generation. 
(7) Select the nodes along each interface of the cracked region and the rest of the 

model and merge the node numbers. This ensures that the nodes along the 
interfaces are truly coincident and that each node along the interface is defining 

the crack element and the existing tee joint element. This is shown in Figure 

8A. 2. 
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Figure 8A. 1 Problem of Inserting Crack Elements into an Existing Model 
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Figure 8A. 2 Crack Elements Successfully Inserted into Existing Model with Coincident 
Nodes along Interface 



APPENDIX 8B. ADAPTED MACRO USED IN THE CALCULATION OF THE J- 

INTEGRAL 

The existing macro available in the FE software package assumes that the crack face is 

parallel to the global x-direction of the entire model and that the global y-direction is 

perpendicular to the crack face as shown in Figure 8B. 1. This is very restricting since 

this is not always the case. In the current work, varying curved crack lengths need to 

be analysed which therefore changes the angle of the crack face to the global x 

coordinate. Initially, it was thought that the entire model could be rotated so as to make 
the crack face parallel to the global x coordinate but this proved to be very complicated. 
Instead, the existing macro has been adapted so that the J-integral could be calculated 
for a crack tip whose face was at any orientation. The adapted macro is shown at the 

end of this Appendix. 

In the case where curved cracks are being analysed, the tip of the crack must be linear 

in order that the J-integral can be calculated. A computer program has been written 

which calculates the angle, e, through which the local coordinate system at the crack 

tip must be rotated so that the local x coordinate is parallel to (or anti-parallel to) the 

global x-direction of the model. The local and global coordinate systems and theta are 

shown in Figure 8B. 2. 

The required input to the adapted macro includes: 

E Young's modulus of crack elements (MPa) 

NU Poisson's ratio of the crack elements 
CRX Crack tip x-coordinate in global coordinates (mm) 

CRY Crack tip y-coordinate in global coordinates (mm) 
THETA Value of theta calculated from computer program (radians) 

(see Figure 8B. 2) 

POS Position of crack tip relative to the global coordinate system 
(see Figure 8B. 3) 

ROTA Position of Crack Face Coordinate Axes (see Figure 8B. 4) 

Calculation of the rotation angle. theta. for use in the adapted macro. 

Figure 8B. 2 represents a typical left hand crack tip along with its local crack tip 



coordinate system. The global crack tip coordinate system is also shown. In order to 

calculate either the strain energy release rate or the J-integral, it is necessary to locate 

the local crack tip x-coordinate parallel to the crack face and the local y-coordinate 

perpendicular to the crack face. The required input to the program used to calculate theta 

is described below: 

(1) CR Crack tip coordinates in cylindrical coordinates (r in mm) 
The crack face nodes have been generated using a cylindrical coordinate 

system in order to generate the crack around the radius of the 

overlaminate and is shown in Figure 8B. 5. The coordinates of the crack 

tip is required in cylindrical coordinates i. e (r, 8). 

(2) GCEX The centre of the cylindrical coordinate system defined in global 

coordinates (x in mm). 
The centre of the cylindrical coordinate system used to generate the crack 
face nodes is required in global coordinates. 

(3) GCTX The coordinates of the crack tip in global coordinates (x in mm) 
(4) GCTY The coordinates of the crack tip in global coordinates (y in mm) 
(5) GAX The coordinates of the end of the straight part of the crack face in global 

coordinates (x in mm) 

(6) GAY The coordinates of the end of the straight part of the crack face in global 

coordinates (y in mm) 

As mentioned, whilst generating a curved crack, it is necessary to generate a straight 

region close to the crack tip as shown in Figure 8B. 6. The global coordinates required 
in (5) and (6) are those of the opposite end of the straight region from the crack tip. 

Once the value of theta, e, has been calculated then the local crack tip coordinate 

system can be located and the values of the strain energy release rate and the J-integral 

can be calculated using the adapted macro. 

i 
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Figure 8B. 1 Assumed Crack Coordinate System for use with the Existing Macro 
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Figure 8B. 2 Assumed Location of the Crack for use with the Adapted Macro 
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Figure 8B. 3 Definition of the Parameter 'POS' in the Adapted Macro 
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Computer Listings. 

(A) Adapted macro used to calculate the J-integral for cracks at any orientation to the global 
coordinate system. 

(B) Computer program used to calculate the rotation angle of the crack local coordinate 
system. (for input into the adapted macro in (A)). 
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