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MAGNETIC FLUX INSTABILITIES
IN HIGH TEMPERATURE SUPERCONDUCTORS
by John William Burgoyne

The occurrence of magnetic flux instabilities, or flux jumping, has been studied in
macroscopic tubes of the YBa,Cu;O,, and Bi,Sr,CaCu,Oq,, high temperature
superconductors between 2.2 and 4.5K, up to +3T. The first flux jump field By has
been determined for Bi,Sr,CaCu,Oq.,, from shielding measurements and the derivation
of magnetisation loops, and the variation of By with applied field sweep rate and
temperature examined. Values of Bg up to 3.18T at 4.5K, 0.124Tmin" were found
and are compared to the theoretical predictions for high temperature superconductors
based on adiabatic theory. The sweep rate and temperature dependencies are found
to be in qualitative agreement with some of those empirically established for
conventional low temperature superconductors. The sharp rises in temperature which
accompany flux jumps have been observed, and from these the specific heat of the
material estimated, showing good agreement with the value obtained from the
adiabatic theory for the measured B;, yC=0.027JK'cm?, and indicating that flux
jumps occur over the whole tube volume. Some novel flux jumping features were
observed in the shielding region which may be due to the microstructure of the
material. No flux jumps appeared to be present in YBa,Cu;0,, measurements at
continuous sweep rates up to 0.31Tmin" at 2.2 or 4.5K in fields up to 3T.

Some aspects of the critical current density and flux creep characteristics of the
tubes are discussed in the 2.2 to 4.5K and 67 to 77K ranges, and are found to be
dominated by the intergranular region. Field sweep rate-dependent magnetisation
loops were found for Bi,Sr,CaCu,Oq,, tubes at 77K, and for YBa,Cu;0,, at 4.5K.

An investigation into glass-ceramic processing of Bi,Sr,Ca,Cu;0,, is described.
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Nomenclature.

Where appropriate, the dimensions of quantities are given for clarity. SI units are
used throughout. Quantities which are only quoted locally in the review sections are

not included.

a width or thickness

ag adiabatically stable thickness

a coefficient of flux line velocity in Wipf’s theory

B magnetic flux density, [T]

B average magnetic flux density across tube wall, = (B,+B,)/2
B, applied magnetic flux density

B, upper critical field, [T]

B; first flux jump field

b; coefficient of flux line velocity in Wipf’s theory

B, magnetic flux density in enclosed volume of tube
By, magnetising applied flux density

B, expansion coefficient of J(B) in critical state model
By, maximum shielded flux density of tube

B, trapped magnetic flux density

c heat capacity, [JK]

C specific heat, [Jkg'K']

C, effective specific heat, [Jkg'K']
thickness of shielding layer
magnetic diffusivity

d

D

D, thermal diffusivity
E electric field
S

function measuring steadiness of temperature distribution

X1l



force (density)

Lorentz force

flux pinning force

magnetic field strength, [Am™]

average magnetic field strength across tube wall, = (H,+H)/2
magnetic field at which a slab is penetrated to centre
lower critical field

lower critical field of grains

upper critical field

magnetic field limit for full stability (Wipf’s theory)
magnetic field in enclosed volume of tube
shielded magnetic field of tube

electric current

current density

critical current density

Boltzmann constant, =1.38x 102 JK!
magnetisation, [Am™]

magnetisation in positive region of loop
magnetisation in negative region of loop
initial remanent magnetisation

penetration depth

heat energy

heat applied to slab (adiabatic theory)
radial variable

range of pinning potential

mean radius of tube

displacement

time variable

initial time

temperature

critical temperature

final temperature reached in flux jump

X1il



operating temperature
Ug magnetic energy density

Uy magnetic energy

U, ideal flux pinning energy

14 flux line velocity

Vy flux line drift velocity

Vv volume

w tube wall thickness

X distance variable

X, magnetic flux penetration distance prior to flux jump

o expansion coefficient of J(B) in critical state model, [ATm™]
B coefficient of 77 in specific heat temperature dependence
Y density

0 indicates incremental quantity

A indicates change in quantity

] "viscosity" of flux movement

0 opening angle of tube

K thermal conductivity

Ko permeability of free space, = 47 x107 Hm

v flux line hopping frequency
v, attempt frequency

£, coherence length

Py flux flow resistivity

Py normal state resistivity

¢ magnetic flux

T, glass transition temperature (Appendix 1)
T, melting temperature (Appendix 1)

T, crystallisation temperature (Appendix 1)
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1 Introduction.

1.1 High temperature superconductors: discovery

and possibility.

Following the discovery of superconductivity above 77K in 198721 there was
an almost unprecedented rush of interest and expectancy, both scientific and popular.
It was soon found however that these high temperature superconductors (HTS) were
severely limited in their performance, and optimism was replaced by a degree of
pessimism. Recent advances have redressed the balance so that goals and possible
applications are viewed with an optimistic realism. Other ceramic HTS have been
found in addition to the original YBa,Cu,;0,, ("YBCO 123", where the numbers refer
to the cation ratios, 7.=93K), most importantly those of the Bi-Sr-Ca-Cu-OF!
(BSCCO 2201, 7.=10K; 2212, 80K; 2223, 110K) and TI-Ba-Ca-Cu-O*! (with
similar phases to BSCCO, 7,=110-125K) families, each with their own particular
potential areas of applicability. Many of the problems with HT'S materials arise in the
fabrication process because they are ceramics, and hence have a brittle, granular
structure. Nevertheless, many small-scale applications have been realised, and HTS
microwave components and antennae are already available off the shelf. Medium-
scale prototypes have been built to demonstrate the use of HTS in energy storage,

magnets and large current-carrying capacities, with relative success.

1.2 Limiting factors in HTS materials.

Two issues quickly became obvious in the development of HTS, those of critical
current density and flux creep®!. As already noted, early results were disappointing

for the applications of HTS where high critical current is important. To be



comparable at 77K to "conventional" low temperature superconductors (LTS) such
as Nb-Ti and Nb,Sn operating around 4.2K, HTS require a critical current density
J.=10°Acm™. Critical transport currents of early sintered samples of YBCO were
around 10°Acm?, and 10*Acm™ for melt-grown samples, despite an intrinsic critical
current on the order of 10° to 10°Acm™ within the superconducting grains'®. Thus
the control of granularity is seen to be fundamental to bulk HTS development; much

higher critical currents are observed in thin films.

In the granular system of a polycrystalline HTS the transport current must flow across
weak-link Josephson-type junctions between the grains, limiting the intergranular
(transport) J,, despite the high intragranular J.. This is accentuated by the very short
coherence length of HTS (£,<100A), so that even small grain boundaries have a
deleterious effect on transport current. The weak-link grain boundaries lead to a
highly magnetic field-dependent critical current, decreasing around an order of
magnitude in 10mT at 77K®. Much effort has concentrated on improving and
controlling HTS microstructure with grain orientation (the grain properties are highly

anisotropic), melt-texturing and grain growth.

Flux creep strictly occurs at all temperatures in a superconductor (the detailed theory
will be described in 3.2), but in HTS at elevated temperatures does so in a massive
way. Unless the flux lines can be effectively pinned, the Lorentz force between the
transport current and the flux lines causes the latter to move, generating a voltage and
dissipating energy. Flux lines are pinned by inhomogeneities in the superconductor:
inclusions, voids, dislocations, erc. However, because of the small coherence length,
such inclusions must be very small to act as effective pinning centres. Twin
boundaries within grains are known to act as pinning sites, and finely-dispersed
inclusions such as the non-superconducting phase Y,BaCuOs (YBCO 211) in YBCO
have shown great improvements. Flux creep is particularly a problem in BSCCO,
where it is very fast above 30K; below this both flux pinning and J(B) are much

enhanced.



1.3 Prospects for HTS: magnets and large-scale

applications.

The possibility of HTS magnets and conductors operating at 77K is undoubtedly
attractive, with the associated economies of scale and refrigeration. It is clear, given
the conditions described above, that much more effort is required to realise such
devices, and goals have changed to accommodate the strictures of working with these
materials. Not only the electrical and magnetic, but also the mechanical properties of
the material in question are of importance: the superconductor has to be made into
wires or tapes and wound in a suitable form, and must be able to withstand the
stresses generated by the magnet’s field. Since ceramic HTS are so brittle, the
majority of wires produced have been of the "wind-and-react" variety. Because of the
weak-link nature, the wire is only as good as the weakest link along its length,

making the production of long lengths very difficult.

The greatest success so far has been with Ag/BSCCO wires and tapes using the
"powder-in-tube" method, in which BSCCO (2212 or 2223) powder is compacted into
a silver tube, which is then successively drawn to small diameters (1-2mm) and rolled
or pressed into ribbons (~O0.lmm thick by 3mm wide) to make tapes.
Multifilamentary tapes can also be produced by such a method. The composite HTS-
metallic conductor structure serves a number of purposes: the conductor provides a
parallel current path in case of failure in the HTS; Ag is chosen for its low reactivity
with thé HTS. The metallic sheath also conducts heat, which will be seen to be
important when designing for stability in magnets, and gives mechanical and

atmospheric protection.

The rolling process may be repeated several times, with intermediate sintering, to
align the grains with the preferential superconducting plane parallel to the conduction
path, with low-angle grain boundaries, significantly improving J.. Various partial
melting and directional solidification techniques are also used. Critical currents for

such wires at 77K have been achieved in the range of 30 000 to 47 000Acm™ in OT,



and 6 000 to 11 000Acm™ for 1T parallel to the tape. However, for magnetic fields
applied perpendicular to the tape, practically no current is found above 1T, The
high field-dependence of J, is well-known around 77K, but is very much reduced at
low temperatures, close to 4.2K, even for fields over 20T. This behaviour suggests
the high level of thermally-activated flux creep to be the reason for the J(B)
deterioration rather than the weak-link structure. Thus unless flux pinning can be
improved, BSCCO materials are likely to be limited to operation below 30K. The
major flux-pinning advances have been made in YBCO which has a higher J, than
BSCCO at 77K, but lower at 4.2K, and is much more difficult to make into wires.
The continued development of HTS wires is essential, not only for magnets, but also

motors, generators, energy storage and a range of large-scale applications.

A possible alternative to the powder-in-tube methods is the glass-ceramic approach
for BSCCO®!, in which the precursors are quenched to a glass, from which fibres
may be drawn in a similar process to that for optic fibres. The wound fibres can then
be heat treated to grow the appropriate superconducting phase®. This has many
advantages, although only moderate success has been achieved so far. An

investigation into glass-ceramic BSCCO superconductors is described in Appendix 1.

A number of small HTS magnets have been constructed using Ag/BSCCO wire and
tapeltOHI2AM3 - operating mainly below 30K. These have used liquid helium
(LHe) or neon (LNe) as refrigerants, although Ne is expensive and cannot currently
be obtained in liquid form in the UK at least, requiring it to be condensed from gas;
pressurised LHe may be an alternative for LNe temperatures. A second possibility for
cooling is the use of closed-cycle refrigerators, eliminating the need for liquid
cryogens and increasing efficiency and reliability. Recent advances make such systems
a viable and attractive option!*¥!, especially for the 20-30K range in which BSCCO
properties might be optimised. Based on recent design studies, HTS magnets may be
used to generate fields up to around 5T, or as inserts to LTS magnets to generate

very high fields of 20T and above'l.



A useful comparison of some relevant issues may be made between LTS at 4.2K and

HTS operating in the 20 to 80K range!!:

LTS vs. HTS
Achievable field approximately same
Mechanical approximately same
requirements
Stability much easier in HTS
Coil protection much more difficult in HTS

1.4 Flux tubes: an alternative magnet design.

A suggested alternative to the use of wire-wound HTS magnets to generate high
magnetic fields is that of the "flux tube": a macroscopic HTS component in a tubular
geometry. This circumvents the fabrication difficulties of HTS wires, and high
magnetic fields could be produced by flux pumping!’®. Such methods have
previously been studied for LTS™®, although flux jumping limited the fields which
could be generated"”. As will be seen, the limits on HTS, particularly at higher
temperatures, are much less strict. It has been shown that higher fields can be trapped

in a solid tube than a solenoid configuration™®,

Other uses of superconducting tubes include magnetic shields, which are less reliant
on high critical currents. A number of studies of magnetic shielding have been
madel!PIP0RUR2231 - and  the particular properties of tubes have also been

used to extract magnetisation and critical current information for HTSPZ2326],



1.5 Research aims and method.

Among the parameters to be considered in designing superconducting magnets is that
of magnetic stability or flux jumping, and it is upon this issue that the following work
concentrates. In the flux jump process large amounts of magnetic flux move through
the superconductor in a short time, dissipating large amounts of energy which may
lead to the whole superconducting magnet undergoing a transition to the normal state.
A fuller qualitative description of flux jumping is given in Chapter 2, with the
detailed theory and mechanism being outlined in Chapter 3.

Flux jumping is a well known phenomenon in high field type II superconductors, and
as such has been extensively characterised for conventional LTS materials. Adiabatic
theories such as will be described in Chapter 3 allow predictions of flux jumping, and
hence stabilisation against it, and empirical dependencies for applied field sweep rate
and temperature have been found. The usual stabilising solution of finely-divided
filamentary superconducting wire is not a desirable one, and may not even be
practicable with HTS; it is therefore important to know the limitations placed upon
such bulk materials by flux jumping. It has been predicted that HTS are immune up
to quite high fields at 77K; at 4.2K instabilities may begin to appear around 0.4T (see
2.4.1) and flux jumping must be considered in light of the possible high-field

applications of Bi-based HTS at low temperatures.

Flux jumps have previously been observed in single crystal and melt-textured cuprate
oxides in small samples, and these results are reviewed in 2.4.2. In the present study
both YBa,Cu;0,, and Bi,Sr,CaCu,0, flux tubes (4.1) have been used to investigate
flux jumping and other superconducting properties in these materials. The use of such
a geometry allows the straightforward observation of these features in a bulk sample,

as opposed to the small-sample measurements made to date.

Shielding and flux creep measurements were made on the HTS flux tubes by

measuring the field inside the tube and the applied magnetic field. Magnetisation



curves can be derived from the field difference across the tube wall (see 3.1.2), and
critical current values calculated from these and the shielding curves. By examining
the occurrence of flux jumping in the magnetisation and shielding curves, the
relationships with respect to field sweep rate and temperature can be established for
HTS, and the theoretical predictions checked. In addition, measuring the temperature
rises due to flux jumps will allow the estimation of specific heat data which may be

further used in confirming adiabatic predictions.



2 Flux jumping: qualitative description and review.

In this chapter the phenomenon of flux jumping is qualitatively discussed, and the
literature for both LTS and HTS is reviewed. The detailed theories of magnetic flux

movement and flux jumping in particular will be outlined in Chapter 3.

2.1 The flux jump process.

The magnetisation of type II superconductors is described by the concept of "critical
states". While this theory will be described in detail in 3.1, it may be stated briefly
as being the state in which every macroscopic region of a superconducting sample
carries the maximum current density, or critical current, determined only by the local
magnetic field in that region. In an increasing applied magnetic field the
superconductor moves from one critical state to another. As will be shown later,
critical states are inherently unstable, and flux jump instabilities may occur when this
movement between critical states becomes fast. This was quickly observed in the

development of the critical state models considered in 3.1%7,

The flux jump process occurs when part or all of the superconductor sample
experiences a temperature rise, allowing the rapid re-distribution of large amounts of
magnetic flux. Such a rise in temperature may result from a fast change in magnetic
field (or other change in the Lorentz force) which requires the dissipation of energy,
from mechanical shock, or directly from other outside influences. In extreme cases

all of the sample may undergo a transition to the normal state.

To initiate a flux jump, enough thermal energy must be dissipated to depin the flux
lines from their pinning centres (explained more fully in 3.2). Since this heat is

usually generated by the viscous movement of flux lines, one can see that a positive



feedback situation can occur. Whether the thermal energy goes into depinning flux
lines or is simply conducted away depends on the thermal conductivity and heat
capacity of the superconductor. Materials with low thermal conductivity, low heat
capacity and low density are the most vulnerable, showing flux jumping to be an
intrinsic materials property. For high rates of magnetic field change there are

correspondingly high rates of heat generation which may be greater than the energy

loss via conduction, efc. in a given region.

In addition to viscous flux motion, heat may also be generated by the annihilation of
flux lines of opposite signs®. This happens when magnetic flux of the opposite
sign to that trapped in the superconductor begins to penetrate the sample. The eﬁergy
released in annihilation is enough to depin some of the neighbouring flux lines,
generating further heat through viscous movement. This type »f flux jump initiation

has been observed experimentally in LTS,

Flux jumps may be observed as sharp drops in the shielding or magnetisation curves
of a sample. Following a complete jump, the magnetic field inside the superconductor
is equal to the applied field, the sample temperature having exceeded 7, and all the
stored magnetic energy being lost. For the case of a partial flux jump, stability is
recovered by thermal conduction, ezc. before all the flux in the sample is lost. The
shielding curve shows a sharp drop in trapped or excluded field over a very short
time, followed by a plateau at which the flux remains constant until the equilibrium
curve is reached (Figure 2.1). In a magnetisation curve, the jump is followed by an
increasing magnetisation, parallel to the virgin penetration curve; the heating
produced in a flux jump may be observed as a sharp increasing spike in the sample
temperature. In brittle LTS materials a large-scale flux jump can in fact cause severe
mechanical damage, or even disintegration of the sample, due to the large amounts
of energy moving on a short timescale (Figure 2.2). HTS are also very brittle and
mechanical support is more difficult, so flux jumping must be carefully considered

in the mechanical as well as superconducting design of a magnet, efc.



The most common parameter by which a material’s stability is characterised is the
flux jump field, B, at which instabilities first occur. This will be derived fully in 3.4,
but is stated here to make the following discussion of various materials clear. Two

equivalent forms of the equation can be obtained®“P!:;

B, = [BuyC(T,-T)T’

B, = [Bu,C I

aJ /0T
where + is the density and C the specific heat. Adiabatic conditions are assumed in

the analysis, usually a good approximation.

2.2 Review of flux jumping in LTS.

Flux jumping was quickly recognised as a problem following the discovery of high-
field type-1I superconductors®. Prior to the discovery of such materials (alloys
such as Nb,;Sn, Nb-Zr, Nb-Ti), superconductivity had remained an esoteric curiosity
of low temperature physics for almost half a century since its discovery in 1911 by
Kamerlingh Onnes. The poor prospects for application were due to the low critical
fields of the then available materials. The advent of high-field superconducting alloys

led to a much greater interest, both experimental and theoretical.

Following Bean’s phenomenological theory of flux penetration®®), the highly
influential work of Kim er al. (1962, 1963) also brought to light the existence of what
they called "flux jumping"B*?7!, This was done with Nb,Sn and Nb-Zr hollow tubes
in which the field inside the tube and the applied field were measured to obtain
shielding curves. The tubular geometry provided a simple measurement method, and
was also of practical interest at the time, following the suggestion of flux compression

in such geometries by Swartz & Rosner!!’..
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Subsequent studies quickly derived empirical dependencies for a number of quantities.
Goldsmid & Corsan (1964)P*! found flux jumping to be absent in Nb,;Sn tubes with
applied field sweep rates up to 4kGmin™ and noted the importance of this and thermal
effects. Corsan (1964)P°! made systematic measurements of the effect of sweep rate
in Nb,Sn solid cylinders, also observing large amounts of heating due to flux jumps.
Later measurements of sweep rate dependence were made by Lange (1965)%" in
Nb,Sn tubes, Wipf & Lubell (1965)P% in Nb-Zr cylinders and Watson (1966,
1967)P9 in In impregnated glass, the latter two being the most complete.
These results are treated fully in 3.6. Lange also considered the effects of
temperature, finding that there existed a boundary temperature for a given sweep rate
above which flux jumping did not occur, and of current density. It was observed that
there was an increased tendency to jumping with increasing current density (i.e. lower
temper~fure and improved sample quality), and that improved thermal conductivity

also reduced the tendency.

A number of other authors studied various aspects of flux jumping. Evetts e al.
(1964)1in Pb-Bi cylinders, found the two mechanisms responsible as described in
2.1. While most studies reported jumps in shielding curves, Carden (1965)#!
observed the resulting discontinuities in the magnetisation loops of Nb-Zr and Nb,Sn
wires and cylinders. Incomplete, or partial, flux jumps were observed by Smith ez al.
(1965)%2, those previously reported having been complete jumps. They found that
the effect of sweep rate was smaller for the sample in He gas than in liquid, and that
the jumps were more closely spaced in gas. Since flux jumping prevented
establishment of the full critical state in their Nb,;Sn tubes, Smith er al. suggested the
use of concentric cylinders such that the current would flow across the whole width
of each cylinder, also improving cooling. Such suggestions of sub-division of the
superconductor may be considered to precee later solutions to flux jumping based on
a complete theory, and the need for such a theory based on thermal qualities is indeed
noted. The fact that flux jumping is determined by macroscopic parameters rather
than individual pinning configurations is noted by such authors as Morton (1968)#%

investigating Nb-Zr and Nb,Sn tubes. The speed with which flux jumps proceed
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through Nb discs was measured by Goodman & Wertheimer (1965)“ using a high-

speed camera technique to observe the flux fronts.

A simple criterion for stability against flux jumping was derived by Hancox
(1965) in analysing a Nb,Sn cylinder. Following an early theory proposed by
Swartz & Bean (1965)1) Neuringer & Shapira (1966)“" discussed their results
for Nb-Zr cylinders, particularly noting the reproducibility of flux jump positions and
a decreasing jump spacing with decreasing temperature. They derived an equation for
instabilities to occur, based on an adiabatic assumption, and noted that a comparison
of the thermal and magnetic diffusivities could determine the validity of such an
assumption. For high fields, the flux line diffusion time was short compared to

thermal diffusion and long compared to magnetic relaxation, justifying adiabaticity.

Major progress towards a complete theory over the various stages of instability was
made by Wipf (1967)1® using a force-balance approach which will be discussed in
detail in 3.3. Yamafuji er al. (1969)¥°! developed Wipf’s theory further to include
a number of external variables explicitly, also taking in the annihilation instability
region. These were largely superseded by the adiabatic theory of Swartz & Bean
(1968)B1, which has been used almost universally since as the main basis for

predicting and analysing flux jump instabilities. A derivation of the Swartz & Bean

result is detailed in 3.4.

Subsequent to these theoretical developments very little was published on flux
jumping, now much more regarded as a solvable engineering problem than a physics
research interest. The nature of the solution will be outlined below, centring mainly
on the use of filamentary superconducting wires to achieve stability. A very complete
study of these was published by Wilson er al. (1970)°%, Later studies of the field
are those of Akachi er al. (1981)P" in which a diffusion theory for instabilities in
Nb-Ti cylinders was developed, and of Mints & Rakhmanov (1981)F%, a broad

review of flux jumping in superconducting composites under varying conditions.
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2.3 Methods of stabilisation.

2.3.1 Cryostability and quench protection.

Although a small normal zone may contract and disappear if heat is conducted away
faster than it is generated, this is not likely to be sufficient for large disturbances, and
improved heat conduction and transfer must be arranged. The solution of cryostability
is to have a parallel normal conductor, in good contact with the superconductor,
which will provide a parallel current path, sharing the current with the normal zone.
The heat generated in the stabiliser, which will have a higher thermal conductivity
than the superconductor, is transferred to the cryogen. For a given heat generation
rate, heat transfer coefficient and operating and critical temperatures, a cryostable

geometry can be deduced.

The improved overall thermal conductivity gives protection in a quench, when the
whole magnet goes normal. To avoid damage to the coil, heat should be removed as
quickly as possible to minimise local temperature rises due to ohmic heating, which
otherwise could burn out the winding. This ability to remove heat and have a normal
zone spread quickly is quantified as the quench propagation velocity. In addition to

the above passive protection method, other active techniques are sometimes used.

2.3.2 Adiabatic stability.

A parallel solution to cryostability is that of adiabatic stabilisation. This deals directly
with the prevention of flux jumping and is derived from the adiabatic theory of
Swartz & Bean®!, If the superconductor is fully penetrated before the first flux jump
field, then flux jumping is eliminated. In high-J, LTS materials this is achieved by
fine sub-division of the superconductor into filaments of around 100um. The critical

size is called the adiabatically stable thickness, a;, the half-width below which a slab

13



is self-stable against flux-jumping. Since single 100um wires are not practical, and
would need too many windings for high fields, a large number of such strands are
embedded in a copper matrix (providing cryostability) to produce a multifilamentary

composite conductor.

2.4 Flux jumping in HTS.

In this section the predicted and experimental flux jumping properties of HTS are

reviewed. Numerical values are widely quoted to facilitate comparison with those

obtained in this work.

2.4.1 Stability predictions for HTS.

The possibility of using HTS materials in magnets was one of the very obvious ideas
widely discussed following their discovery. As a direct replacement for LTS
considerable economies in scale and cost could be achieved. Thus the criteria for HTS
magnet stability came to be examined, even before HTS wires or suitable current
densities were available. Since the fabrication difficulties posed by such brittle
material were quickly recognised, the limits placed on magnet conductor geometries

by stability criteria were of great interest in establishing what form of conductor

would be necessary.

Twasa (1988)"* found that HTS tapes up to about 10mm wide should be stable for
a magnet operated adiabatically, but also noted that some form of active quench
protection would be necessary since the propagation velocity of a normal zone in HTS
is extremely slow, rendering self-protection impossible. Wipf (1988)P% also
discusses a number of stability issues. The first flux jump field at 77K 1is predicted
to be an order of magnitude higher that for LTS at 4.2K, allowing non-filamentary
conductors to be stable; for a conceptual 123 HTS with 10’<J,<10°Am™ the
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adiabatically stable thickness is 600> a,;>6mm. This is attributed to the high specific
heat at high operating temperatures 7, and the higher operating margin 7.-7,. Figure
2.3 shows Wipf’s plot of B4(7). The data suggests that tape conductors 5 to 10mm
wide would be adiabatically self-stable. The idea of using HTS solid cylinders as
"permanent” magnets which would perform better than the best present ferromagnets
may be feasible. Wipf also discusses cryostability which, being the more conservative
stability criterion, demands the use of stabilising material. Here again HTS is more
stable and requires less stabiliser than LTS. Quench protection is again noted to be

poor compared to LTS.

A thorough study of various factors affecting stability is given by Laquer er al.
(1989)%1 finding that B, peaks at 60K and 7+2T for 7,~90K, and at 75K and
around 12T for T,~ 120K. The adiabatically stable thickness is plotted as a function
of temperature, increasing two orders of magnitude from ~35 to 85K. The quench
propagation velocity is predicted to drop 4 or 5 orders of magnitude from 5 to 80K,
being very low at high temperatures. It is suggested that the whole area of quench
protection may need re-thinking for HTS. Although more stable against quenching,
if such a quench should occur then propagation is so slow as to make burn-out of the
winding highly likely. The high stability is attributed to the same causes as above. In
a companion paper, Wipf & Laquer (1989)P%! reconsider the possibilities for
superconducting "permanent” magnets using flux trapped in cylinders or tubes. As
was seen in 2.2, such methods using LTS were frustrated by the low flux jump fields
of bulk samples. It is proposed that a 90K superconductor with B;=6T should be able
to trap 3T, five times better than the best permanent magnet materials. Replacing
wound electromagnets with bulk flux-trapping structures would bypass fabrication

difficuities and avoid current-carrying normal-superconductor contacts.

Collings (1988, 1989, 1990)P7S8%T considers a wide range of flux jump and
cryostability influences. For a 90K superconductor operating at 80K, B;=5.24T is
derived; the adiabatically stable diameter of an isolated filament is found as 8.68cm,
compared to 4.65x107%m for Nb-Ti®""®® For a fully cryostable HTS operating

around in liquid nitrogen 30% more copper stabiliser is needed compared to
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Cu/Nb-Ti at a given current load””®, A later paper®® obtains values at 4, 20 and

80K which may be summarised as:

4K 20K 80K
B; (T) 0.4 4.2 55
Quench field (T) 10.0 9.9 5.1
Adiabatically stable filament 0.7 6.8 83.0
diameter (mm)
Adiab. self-field stable dia. (mm) 1.9 19.0 255.6

The self-field stability is considered as that relating to an isolated current-carrying

conductor with no additional external field.

In a series of papers concerned with design issues for HTS conductors, Ogasawara
(1989)® found values for a;: a;(77K)=4.95mm (J,=10°Am™), ,(20K)=0.40mm
(J,=10'""Am™), contrasting these with Nb-Ti and Nb;Sn, a,(4.2K) ~ 100xm. Dynamic
stability (which has the same basis as adiabatic but also takes in thermal and magnetic
diffusion and heat transfer to the cryogen) is discussed in light of the low thermal
conductivity, noting that in LTS the approximate equality of dynamically and
adiabatically stable dimensions is fortuitous, and that elevated temperature operation
makes dynamic stability the much more stringent condition. It is concluded that a

stable conductor would be a composite YBCO/Cu tape or a multifilamentary

composite with a Cu matrix.

A recent study by Iwasa (1992)"! examines these issues based on properties of recent
Bi(Pb)SrCaCuO short samples. Stability is discussed in terms of the "stability
margin", e,, the energy required to raise the conductor from the operating
temperature 7, to the current-sharing temperature T, at which current begins to flow

in the stabilising material, generating heat. The stability margin is given by
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Ta
e = LCW(Y)(ZT

where C,, is the winding heat capacity. For a notional 4.5T HTS magnet at 20K,
e, =4500kIm?; for 22T at 4.2K (e.g. as a high-field insert to a 17T LTS magnet),

. =105kJm™. These are very favourably compared to e, =1.5kJm™ for a Nb;Sn 4.5T
magnet at 4.2K, although the need for active coil protection is reiterated. Since HTS
tapes and wires have become more widely available, such stability projections based
on real material parameters will provide greater insight and guidance as HTS magnets
move from being a possibility to a reality. Some of the predictions above are included
in a review of flux jumping in HTS by Wipf (1991)%" which also includes a

number of experimental studies which are among those reviewed in the next section.

2.4.2 Review of HTS experimental data.

Flux jumping has been observed in a number of HTS compounds, for both single
crystal and polycrystalline samples. The first observation was that of Levet et al.
(1988)1%% in large YBCO single crystals, with flux jumps present in magnetisation
measurements up to 18T, below 15K. The jumps were found to be periodic, between
two magnetisation "envelope” curves. Measurements were performed in both liquid
helium (LHe) and a helium exchange gas, showing that the amplitude of the jumps
depended on both the sample size and cooling efficiency (jumps in LHe were
smaller), and to a lesser extent on applied field variation rate. Since the jumps

lowered the attainable J, by a factor of two, the need for stabilisation is pointed out.

A subsequent paper by the same group, Tholence er al. (1988a)®!, reports similar
measurements at 1.2, 4.2, 7.0K and higher with the field parallel to the
crystallographic c-axis (B, || ¢) and perpendicular (B, Lc). The number of jumps
increased with decreasing temperature 7, and no jumps were present above 15K for

B, || c. In the case of B, Lc the jumps were greater in number and more closely
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spaced, disappearing above 7K. Similar conclusions to Levet er al. are reached, and
the limiting influence of flux jumping on J, is suggested as a possible reason for the
large differences between single crystals and the better thermalised thin films. Guillot
er al. (1988)"®, again of the same group, report like results, also finding that jumps
were slightly larger and more widely spaced for field variations of 0.0015Ts? than
for 0.03Ts? at 4.2K. Smaller jumps were observed in a small HoBa,Cu;0, single
crystal, further suggesting that the amplitude of jumps increases with crystal size and
decreases with improved thermal contact (in LHe), depending also on the field rate

and waiting time between measurements.

Melt-processed YBCO samples were examined by Chen er al. (1990)%1 in fields
up to +5.4T. With B, || ¢ jumps were observed all around the magnetisation loop at
5K; at 7.5K the jumps were wider spaced, and only one jump was observad in either
half of the loop at 10K, none being present at 20K. The number of jumps at SK
decreased when the measuring time was lengthened, and hardly any jumps were
observed for B, L ¢. Hsu er al. (1990)® found reproducible jumps in magnetisation
curves at 5, 7.5 and 10K in the same material, with closer spaced jumps at lower T.
The effect of field sweep rate was also considered, finding fewer jumps at 5K for
0.17Tmin" than for 0.34Tmin", B, || ¢. Only one jump was found at 5K, 0.34Tmin"*
for B, L ¢; the number increased at 0.68Tmin", predominantly in the field-increasing

region. These results are also summarised in a related paper by Wang er al.

(1991)17,

The effect of field sweep rate and relaxation time between measurements was
investigated by Chen er al. (1991)®*1. Jumps were observed around the
magnetisation loop to +5.4T at 5K for a sweep rate S=1.5Tmin" and relaxation time
R=30s; the jump separation increased for §=1.2Tmin", R=30s. Only one jump was

observed for S=1.2Tmin"!, R=52s and none for R=72s. B, for various values of S

and R are given as:

18



S (Tmin™) R (s) No. of jumps in B; (T)
complete loop

1.8 30 12 3.3
1.5 30 10 3.4
1.2 19 8 4.2
1.2 30 6 5.2
1.2 40 4 6.1
1.2 52 2 7.1
1.2 72 0 -

The flux jump field is found as the field from maximum or minimum applied field
at which flux jumping first occurs. At fixed S, B; was found to be linear with R. The
temperature rise in the sample due to flux jumping was calculated as 32K. The sweep
rate and relaxation time data suggests that instabilities may be avoided by increasing
the magnetic relaxation or decreasing field variation rates such that the thermal
diffusivity exceeds the magnetic diffusivity, conducting away heat impulses which

would otherwise create flux jumps.

The high field magnetisation of melt-grown YBCO, up to 23T at 4.2K, was measured
by Watanabe er al. (1991, 1992a)®179 Flux jumps were found in increasing
fields of 0.5Tmin" for both B, || ¢ and B, L ¢, and the properties relating to adiabatic

stabilisation at 4.2K are listed for a number of superconductors®®!:
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YBCO BSCCO BSCCO Nb-Ti
2212 2223
Electronic specific 1.41 0.193 0.091 1.95
heat, C, (mJcm?K™)
v, (mImol'K?) 35 24 14 10
T-T, (K) 88 81 108 7
B; (T) 0.68 0.24 0.19 0.22

The results here suggest that fine filaments are needed for stable high-field YBCO
applications at 4.2K: adiabatically stable filament diameters are given as ~ 10um,
B,Lc and ~80um, B, || c. Watanabe er al. (1992b)" also found that different
magnetisation measurement methods, which led to differing flux conditions in the
sample, gave different flux jumping results. Jumps were again observed in the 4.5-5K

region, but none at 77K, up to 23T.

A ring-shaped melt-grown YBCO single crystal was examined by Takizawa et al.
(1991)7# in a pulsed magnetic field. The induced voltage in a search coil inside the
ring showed a sharp spike during flux penetration, indicative of flux jumping. At 30K
the spike appeared when the field was pulsed to a maximum of 0.6T in 15ms. Ata
maximum pulsed field of 0.69T the sharp spike disappeared above 40K. A stability
condition for the ring geometry is derived using specific heat data, but shows poor
agreement with the experimental values. Localised flux jumping is suggested as the

reason for this, and the data is satisfactorily explained as such.

A number of studies have observed flux jumping in the BSCCO 2212 material:
Guillot er al. (1989)"! found jumps in preferentially oriented polycrystalline 2212
in magnetisation curves up to 20T at 4.2K and 10K. The large electromechanical
strains produced by flux jumping are noted, these often being large enough to break
the crystal. Kadowaki & Mochiku (1992)7" observed a single, very large, jump in
the decreasing field part of a single crystal 2212 magnetisation up to +5.5T at 5K.
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The magnetisation of single crystal 2212 under very high field sweep rates was
considered by Gerber ez al. (1992)7!. Flux jumping is regarded as a rapid process,
on the order of milliseconds; here, however, it was found that jumps had a time
duration of tens of milliseconds at 1Ts up to hundreds of milliseconds for 5Ts".
Gerber er al. also performed measurements on a LaSr,CuQy single crystal at 4.2K.
Jumps were present at 5 and 10Ts, but a strongly suppressed magnetisation with no
jumps was found at 42Ts". Calculated values of B; are 0.86T at 25K and 0.11T at
4.2K. The periodicity of flux jumping was found to be well-defined by the field

sweep rate, which also affected the flux jump size.

McHenry er al. (1992)U% have studied a similar compound in a La, ¢St 4CuO,
single crystal, and, in common with Chen er al."®, have shown that flux creep may
have a stabilising effect .1 HTS. The magnetisation at 2, 3, 4, 5, 6, and 7K shc./s
jumps in the virgin curves up to 7K in applied fields up to ST. At 2K the jumps are
all incomplete, while at 3-5K the first jumps are nearly complete, with almost all the
stored magnetic energy being lost. The jumps are regularly spaced, the number
decreasing and spacing increasing with increasing 7. No jumps were observed at 7K.
A calculation of the temperature rise due to flux jumps confirms that nearly complete
jumps raise 7 to ~ 7., while for incomplete jumps 7<7,. The above measurements
were taken at an average field rate of 0.24Tmin"; since the field is in fact raised
stepwise, with a pause for measurement, the inequivalence of such an average to a
true sweep rate is emphasised. The pause between steps allowed relaxation through
flux creep, and this appeared to aid stability. B; was significantly affected by the time
between steps, the number of jumps decreasing with field rate, with no jumps at the
slowest of 0.06Tmin"". Adiabatic calculations indicated B; ~0.075T at 5K, around 15
times smaller than that observed. This suggests that adiabatic theory is inadequate
here, although consideration of the magnetic and thermal diffusivities suggested that
adiabatic conditions did indeed prevail. Thus it is concluded that flux creep between
field steps leads to a sub-critical state prior to the next step, stabilising fully or

partially against flux jumping.
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Other HTS compounds investigated include HoBa,Cu;O,, by Tholence er al.
(1988b)7"1 in which jumps were observed at 4.2K in magnetisation curves up to
18T, in a similar way to Guillot ez al.™. Durmeyer er al. (1990)" found that no
jumps occur in the initial magnetisation region (1st quadrant) of LiTi,O, up to 1, but
that jumps occurred in field decreasing regions (2nd and 4th quadrants) and were
closely spaced in the 3rd quadrant reversed field region. The pattern was highly
reproducible around subsequent loops, with equal numbers of jumps in the 1st and
3rd quadrants on the second and following cycles. More small instabilities appeared
in the 1st and 2nd quadrants at 2K, between an outer unstable envelope and an inner
stable envelope in the magnetisation. The jumps disappeared at 7K, and were found
to depend strongly on sweep rate and waiting time between measurements. Flux
jumping has even been observed in the organic superconductor x-(BEDT-TTF),-
Cu(NCS), (T.=10.4K) by Swanson et al. (1990)"!. The jumps were found at
40mK in the magnetisation to 4T at 0.4Ts™ and 0.13Ts™. They were no longer visible
at 0.9K, and the amplitude and spacing of the jumps decreased with faster field sweep
rate. Although large flux creep steps in a BSCCO 2223 superconductor were
attributed to flux jumping by Cao Xiaowen & Huang Sunli (1989)%% these are not

in fact flux jumps as conventionally defined®" or described here.
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Figure 2.1 Flux jumps in a shielding curve.
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catastrophic flux jump. Taken trom Ref. 56 (®1989 IEEE,

used by permission).
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3 Theory.

3.1 Critical state models.

The macroscopic magnetic behaviour of type II superconductors may be characterised
by phenomenological "critical state" models. These are extremely useful for HTS
since a satisfactory microscopic theory does not yet exist. There are a number of
variants of the critical state model, those of Bean™™®! Kim er al.™®* and new
models developed specifically for HTS. From their simple nature they provide a clear

conceptual framework in which to describe magnetic flux in superconductors.

The quasi-microscopic theory of flux penetration shows that magnetic flux enters the
superconductor in quantised flux lines, or vortices; the penetration begins at the lower
critical field H,; and is completed at the upper, H.,. The magnetic flux and electric

currents in the superconductor between these two fields - the mixed state - are

described by the aforesaid models.

3.1.1 The Bean model.

The starting assumption of the Bean model®®! is that there exists a macroscopic
current density J,, an upper limit to the current which may flow losslessly in the
superconductor, and that an induced electric field of any magnitude will cause a
current equal to J, to flow in that locality. This critical current density is assumed

independent of local field B; this is equivalent to assuming the external field H is not

close to H,, or H.,.

When a magnetic field A is applied parallel to a semi-infinite superconducting slab,

an electric field is induced, and thus currents flow in the surface of the slab which
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try to screen A from the interior. For the first increment of field AH, a screening
current greater than J, is induced. Since a lossless current greater than J, cannot be
sustained, the screening current decays resistively to J,, whereupon decay ceases. The
resistive decay allows the external field to penetrate to a depth p. A further identical
increment AH allows penetration to a depth 2p. From Maxwell’s equation
VXB = p,J and B={0,B,,0}, we find a linear field profile in the superconductor as
shown in Figure 3.1, where dB/dx = n,J. = u,AH/p. In equilibrium, oppositely
directed current sheets flow at J, to a depth p(H) on either face of the slab. (The field

exclusion up to A, is not shown in the Figure for simplicity, and the model assumes

H>H,,.)

At H=H the field profile reaches the centre of the slab (Figure 3.2a), and the current
flows at +J, across either half of the slab (Figure 3.2b). Above H=H" the field
profile does not change while H is not close to H,,. Although J, is independent of
local field B, it is nevertheless a function of external field H. Thus for increasing H
the gradient of the internal field profile will decrease, eventually becoming zero at H,,
(Figure 3.3). In summary, Bean’s model states that, in equilibrium, currents flow at

either J, or zero across the slab with a linear field profile dB/dx.

An identical mechanism operates in the flux trapping regime, and the model gives the
maximum trapped field B,=u H . The consequences of complete and incomplete
penetration for flux trapping are illustrated in Figure 3.4a,b. B, is maximised when
the slab has been penetrated such that H>=2H", the trapped field for H decreasing
from H=H" being much less (the trapped field is proportional to the area under the
field profile). In granular HTS the above applies not only to the bulk material, but
also to the individual grains, and therefore care must be taken to obtain the maximum

B,,; this is usually attained by field-cooling the sample since HTS are known to have

a high intrinsic (granular) H,,.

The preceding description of flux penetration and trapping is similarly applied to a
tubular geometry, where the field profile in the non-superconducting enclosed volume

will always be flat, and the field in that volume, H,, will be equal to that at the inner
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radius of the tube wall. The enclosed volume is totally screened from the external
field up to a value H=H,, the maximum shielded field (Figure 3.5). At H,, the
critical current density J, flows across the entire width of the tube wall. Above H,,,
H, increases until complete penetration gives H;=H. Flux may be trapped in the
enclosed volume of the tube, in which case, for H=0, J, flows in the opposite sense

to the shielding region. For an ideal tube in the Bean model, the maximum trapped

field is H,=H,.

3.1.2 Kim et al.: the critical state.

The model of Kim er al.?’® is a generalisation of the Bean model in which the
"critical state" is defined as that wherein a critical current density J,(B) flows in every
macroscopic region of the superconductor, dependent only on the local field B in that
region. In general J, is a decreasing function of B, so that once a critical state is

reached further increases of H tend to reduce J. since the mean field in the sample

increases.

This model is based on experiments with hollow superconducting tubes, where H,(H)
is measured. Reproducible and predictable curves of H,(H) are found for H and H,
close to their equilibrium values (i.e. low H). A magnetisation M due to the induced

currents in the tube is defined as M = H-H, which may be written as

W

H =H+ LJ{B(r)]dr (3.1)

H

where r is the radial variable and w the wall thickness. Thus M is a direct measure
of current density J in the tube. For given H, the shielding current corresponding to
negative M (M =H-H,) is greater than the trapping current for positive M (M™=H-H)
since the tube experiences a larger average field at M™ than M. This difference is

made negligible by considering the average field H:
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H+H +
=" g Mg M 3.2)
2 2 2

Eliminating r in (3.1) gives an integral equation

A, ”"m+:¥)
W= J_fiB_ - I dB (3.3)
s ) -0, B)

The average current density in the tube may be found as

7-_M (3.4)
wcost
where 6 is the opening angle of the tube. For cosf=1 this is simply J=M/w. For
H=H,, where H, is just equal to zero, the critical current density J. may be found

since J,. flows in one direction across the whole wall thickness at that point:

;oo 3.5)

wcosf

which is again usually simplified by taking cosd=1. J(B) may be expanded as

2 =B +B+aB*+a,B*+... 3.6)
J (2
and for small a,
o
— =B +B 3.7
] o
Substituting into (3.3) gives
wa =
= uH+B 3.8
" p i +B, (3.9

which implies a straight-line relationship between 1/M and A, and may be used to test
the validity of the critical state model. From this and the current relationship of (1.7)

the critical state curve H,(H) may be derived to give two hyperbolas in the first

quadrant:
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(uH,+B) - (uH+B) = +2aw 3.9)

and a circle in the second quadrant:

(uH+B) + (wH-B) =2(aw+B,) (3.10)

H

The curves thus derived are found to be in agreement with experimental data.

For B>B,, /B = « = constant, which implies that the flux line movement is
dominated by the Lorentz force F;. It is found that « is temperature dependent (with
the form (1 - 7/7,)* for T/T,> 0.4) implying a thermally-activated process for flux line
motion (this will be discussed further in 3.2). The critical state, therefore, is actually
only a quasi-equilibrium and is inherently unstable; H must be slow in moving from
one critical state to another otherwise the rapid change in magnetic field distribution
may dissipate heat, initiating a flux jump as will be described in 3.3 and 3.4. In the
critical state, pinning and Lorentz forces are balanced, Fp = F, = JXB, and « is

seen as the pinning force density. The physical role of B, is not fully clear.

For the field-independent current density of Bean’s model a linear internal field
profile dB/dx was obtained. The critical state model of Kim er al. with J(B) given by
(3.7) has a parabolic field profile.

3.1.3 Variants of the critical state model for HTS.

Other critical state models have been derived specifically for HTS. These result from
other J(B) relationships than (3.7), mostly taking the form of exponential or power-
law dependencies. The HTS situation is complicated by the granular nature of the
materials, as will be seen, and by the extreme anisotropy of the electrical and
magnetic properties. Some models have regarded the material as an array of
Josephson junction weak links between strongly superconducting grains, and have

used the appropriate equations to obtain a macroscopic description. A detailed
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analysis of HTS is complicated by the exact nature of the superconducting weak links
which form the intergranular network. The properties of the grains have also been

widely considered where microstructural features such as twinning planes are present.

3.2 Flux creep.

3.2.1 Basic flux creep theory.

The basic model used to describe flux creep in all superconductors is that of
Anderson™ which was developed at the same time as the critical state model. This
showed that the critical state is in fact only a quasi-equilibrium, and that a thermaily-
activated process leads to flux movement at constant applied fields for 7#0.
Anderson introduced the concept of "flux bundles", localised groups of flux lines,
which could be "pinned" by free energy barriers in the material. Such flux pinning
centres occur in voids, inhomogeneities, erc. - at any strain centre. Since the flux

creep theory is well-documented it will be summarised here.

Flux bundles are trapped in potential wells of height U,, the pinning potential. The

thermally-activated "hopping" of flux bundles between pinning sites is described by

a hopping frequency,

) = Vaexp(—k_UT) (3.11)

b

where v, is an attempt frequency, and the activation energy U is

a

U=U, - V{F(s)ds (3.12)
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where V is the mean flux bundle volume, F is a driving force density, s is the flux
bundle displacement, and a is the half-size of the pinning potential. In the presence

of a Lorentz force with energy

U, = JBVr, (3.13)

where r, is the range of the pinning force, the forward (in the direction of the Lorentz

force) hopping rate is

-U
Vi = V,€XP(= kBTL) (3.14)
and the reverse hopping rate is
U,+U,
= y exp(-—2 3.15
Z)rev Vo p( kBT ) ( )
The resulting net effective hopping rate is then
U . .. U,
=y exp(-—)sinh(— 3.16
ar = 2SR s 19

The Lorentz force "tilts" the pinning potential as shown in Figure 3.6%%. For
U, =U, the barrier height is zero, and complete depinning occurs leading to diffusion
of the flux lines and a transition to the flux flow regime. In LTS this is characterised
by a flux flow resistivity p,=p(B/B,,), and flux line movement is no longer governed

by a barrier-hopping probability but by a viscosity due to vortex interactions.

The main result of the Anderson flux creep theory is that it predicts a logarithmic
relaxation of magnetisation,

dM ~ ka 3 17
d(Int) M, () G179

0

where M, is the initial magnetisation. Flux creep can be shown to occur at all values
of B and J and there is thus no precise "critical state"; the critical state is usually

defined as one at which flux creep has dropped to an unobservably small level.
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3.2.2 Flux creep in HTS.

The mechanisms of flux creep and pinning have been one of the most controversial
topics in HTS research, due to the much higher levels of creep found in these
materials than in LTS. Two main theories have been proposed. The superconducting
glass model of Ebner & Stroud®! treats the superconductor as a disordered array
of weak links between grains, which are coupled as Josephson junctions. Although
this interpretation explains a number of features in ceramics well, it does not seem
to be satisfactory for single crystals. A more conventional approach is that of the
giant flux creep model of Yeshurun & Malozemoff®®! which explains the high rates
of flux creep in HTS in terms of the Anderson theory, in which the combination of
high T, and low pinning barriers leads to the "giant" creep. While this is much more
compatible with general theories of superconductivity than the superconducting glass

model, there remain some aspects which are still better explained by the latter.

The precise nature of flux pinning sites in HTS is still not completely clear,
particularly on a granular scale. Recent observations have shown that the flux lines
in HTS can form either a vortex lattice in a triangular array, as classically expected,
or a "vortex glass" in a disordered pattern®!, depending on whether the material
is clean, with few defects (lattice) or dirty (glass). At high fields and temperatures
there is a "vortex liquid" region where thermal fluctuations melt the solid. The
discovery of such novel states makes the investigation of flux pinning fundamental to

a full understanding of the macroscopic magnetic properties of HTS.

3.3 Flux jumping theory (1): a force-balance

approach.

The starting point of one conventional theory of flux jumping, based on that of

Wipf*l, is a force-balance equation for flux motion in the shielding layer in equilibrium:
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FL = FP + v (3.18)

The stability of this equation against disturbances is to be found.

To solve the above force-balance equation two approximations are introduced:

1. The viscous force nv is neglected since v 18 small. This is equivalent to
assuming isothermal conditions throughout the sample such that J=J(B) only.
In HTS, where flux pinning is known to be weak at elevated temperatures, the
validity of this approximation must be carefully considered. The continuity of
B and H at the superconductor surface implies a drift velocity:

S ) ) (3.19)
" 3B/ax *° 4xJ(B=H)

A disturbance leads to an increment of flux A® into the interior of the sample,
which may be pictured as a flux density wave propagating much faster than
v,. This leads to the second approximation:

2. Assume H constant over the timescale of Ad.

These simplify the force-balance equation in equilibrium to

F =F (3.20)

i.e. the sample is in the critical state.

A disturbance changes F, and F, such that F; is reduced since dB/dx is smaller for
the same value of B (see Figure 3.7); F, changes due to AT from the energy
dissipated in A®, and is reduced since dF,/dT < 0. Thus the limit for full stability

is given by

-|AF,| = -|AF,| (3.2
which is approached with increasing H since the reduction of F, with A is greater
for small H than for large (Figure 3.8a). This has two important applicational resulits.

For a slab or cylinder of superconductor, once the field has penetrated to the centre

a given change in F, requires a smaller A$ than before, since flux enters from both
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sides (Figure 3.8b). Thus the risk of flux jumping is reduced if the superconductor
is penetrated to the centre without a flux jump occurring (see also 3.4). If the
superconductor is in the form of a hollow tube, as will be specifically considered in
this work, the likelihood of flux jumping increases once the field has penetrated to

the inner wall, since an increased A® is then needed to fill the non-superconducting

volume (Figure 3.8c).

Above the stability limit, ;> F, and the flux lines accelerate under a disturbance; it
is then necessary to include the viscous force since v is no longer negligible and the
original force-balance equation ¥, = F, + nv must be solved. Under a disturbance,
the thermal conductivity leads to a decreasing temperature difference AT which
restores F, and reduces the flux line acceleration, limiting the instability to a local,
although large, disturbance. The process is short enough that the shielding layer does
not grow significantly compared to the original x,. If | vdr becomes comparable to
x, during acceleration, heat conduction becomes progressively less effective and the
shielding region may grow at such a rate that heat conduction becomes negligible and
the process is effectively adiabatic. This process is a "runaway" instability, producing

a flux jump.

3.3.1 Full stability.

As stated at the outset, the purpose of this theory is to find the stability limit in terms

of H. This is obtained by considering the conditions of full stability under an

incremental change in B:

B(x) = B(x) + AB(x)
= [, = F, + AF, (3.22)

F,—= F, + AF,
Since this is a fast process, the stability limit for all x is given by

AF, = AF (3.23)

L P
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The Lorentz and pinning force increments are considered as follows. F; is mainly

dependent on B(x):

AF, = F,(B+AB) - F,(B)

(3.24)
_(By + ABa_B)
ox

n, 0x

i

the second-order term in AB JAB/dx being negligible. AF, is primarily dependent on

AT and to a lesser extent on AB; thus

dF oF
AF, = AT + —_LAB (3.25)
oT 3B

The energy dissipated in an ingression of flux A® is

Ag = JA® = - L B | ppax (3.26)
K, 0x
The initial temperature rise is
AT = 24 (3.27)
c

where c is the specific heat (this assumes that the magnetic diffusivity, D,,, is much

greater than the thermal diffusivity, D4,), and thus

aF, = -9 1 35 [ aBas - 9 ap (3.28)
0T pc ox dB
Hence, with the stability limit AF, =AF,,
oF, ;
gIB . (___ 0__)AB _ 19B %% JAB‘[X =0 (3.29)
0x dB cox 8T

The boundary conditions AB(x=0) = 0 and AB(x,) = constant give the limit for full
stability in terms of external field. A,. This requires the explicit dependencies of

Fu(B,T). Wipf’s theory takes the usual empirical approximations
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N B
F, = a(B+B0) (3.30)
OF, doo, B
P =2 3.31
5T~ 37B<B 31

where da/0B = 0B,/0T = 0. Since F, = F,,

o 1 6B
—— =9{ .
B-B, T ox 3-32)

P
Continuity requires that B=/H at x=0, thus

Fe
(H+B)* - (B+B) = 2u,0x (3.33)

Substituting into (3.29) gives = differential equation

(R-2x)AB” - 3AB’ - SAB =0 (3.34)

Fo
where S = (1/¢)(0a/0T) and R = (BO-!zH)z/yoa. This may be solved to give

H. = _
A2 9a/dT

- TR (3.35)

The empirical temperature dependence of F, is given by

Fpm = FP(O) [1 _(T/Tc)z]z (3.36)

(The free energy difference between normal and superconducting states is proportional
to H* which has a temperature dependence like (3.36), therefore it is reasonable to

take that for F, as the same.) From (3.30), (3.31) and (3.36) the temperature

dependence of « is found to be

da _ -a(1)4AT
a7 ____..____( 7T (3.37

Substituting into (3.35) gives an explicit equation for Hj:

(3.38)



It is notable that A is not dependent on J,, dH/dt, «, Fp, efc., but only on material
parameters: the heat capacity ¢ and critical temperature 7,, and on sample
temperature 7. Wipf asserts that H; in (3.33), the full stability limit, is not
synonymous with Hj, the flux jump field, since the viscous force nv has not been
taken into account. The process initiated by an instability above H; is examined in a

"limited instability" region, taking the full equilibrium equation (3.18).

3.3.2 Limited instability.

The full force-balance equation (3.18) may be written as an equation of motion for

the flux lines:

0F,  0F, gy an (3.39)

= — YVl

o o Ta e

This must be valid for all x and 7. Conservation of flux across the superconductor

surface must also be fulfilled:

m=J§m (3.40)
o Jt
= _.B_B - JdBv _ Bav - VaB (341)

ar  ax ox ox
where the negative sign appears from x(B) < x(B=0). Expressions for dF;/d¢t and

0F,/dt then have to be derived. From (3.41) and F, = -B/u, 0B/dx,

5F ,
Lo g 9B _ 9By _pdviB, (3.42)

9w, oxdr ox 9x ox

This is simplified by the following approximations:

L. For | v(x,)dr < x,, neglect dv/dx, giving
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dF 2
O v 9By . p9B, (3.43)
ot u,  ox ox?

2. For { vdr = x, approximate as

) § v(0)dr = A | v(x,)dt, from which one obtains

av y
- = 3.44
ar x +x (544)

(ii) 0B/ox o H/x,, from which it may be shown that

d oB JdB 2v
— == - 3.45
ar ox 0x x,+x G.49)
oF
- 2o 8By 9B 3 (3.46)
or K, O0x ox x +x

The difference between (3.42), (3.43) and (3.46) is usually negligible since (dB/dx)*

dominates.

The term for F, may be written as:

OF, _ 0F, 3T  9F» 0B (3.47)
ot oT or dB ot

in which the temperature is given by a heat equation

ff’ld[ - Ijﬁﬁdz (3.48)
dr cl ot

where f = f{x,1,0q/3r) measures the steadiness of the temperature distribution with
fladiabatic) = 1, f{isothermal) = 0. Leaving aside any change in the shielding

current,

99 _ ;9% _;p - YBOB (3.49)
or ot ®, 0x

and one can write
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Ty OBy O v, 9B, (3.50)
ot T ¢ 0B ox dx

Substituting the above terms in F;, F, into the equation of motion (3.39), the form
of the acceleration of flux lines may be found as

Yoo ay by (3.51)
ot

where a,, b, are terms which may be derived depending on the magnitude of v. For

small 7 (since the process is assumed to be fast in relation to other timescales) this

may be solved as

v = v exp(ar) (3.52)

which is valid for the majority of the instability range, where | vdr = x,. It can be
seen that for a<0, v decreases, and v=v,=constant for ¢=0; in other words the
instability will stop by itself and stable equilibrium will be re-established for a<0.
Although a is not given here explicitly, the mechanism of the process may be clearly
seen. An exact solution of the equation of motion would give v(x,?) to describe the

limited instability process completely; this however would be an unjustifiably difficult

exercise.

The quantity /" was introduced in (3.48), and comes into a. Prior to a disturbance,
f=1 over the shielding layer (the adiabatic case), except at the surface where f=0 for

good heat transfer conditions, e.g. in liquid helium. For short timescales, the

adiabatic case is a good approximation.
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3.3.3 Runaway instability: flux jumping.

Above the stability limit, flux lines are accelerated by F; due to the weakening of F;.
For a limited instability, the maximum velocity attained i1s low, allowing thermal
conduction to recover the bulk of the shielding layer. The pinning forces recover and
decelerate the flux lines, stopping the instability. If the thickness of the shielding
layer, d = x,+ | vdt, increases significantly during acceleration, the situation may
be different. If 4 grows faster than /**, heat conduction is too slow and the process
becomes, and remains, adiabatic (f=1). The acceleration continues up to a final
runaway speed, the flux movement eventually terminating due to the boundaries of
the superconductor. This is the full flux jump process. The field for runaway
instability, H;, may be found through a consideration of d as given above, where H;
comes out in a similar way to H; in (3.38) from the coefficients associated with v.

This is not reproduced here however, since another derivation of H; will be

described.

Although the preceding theory does not give H; explicitly, it does give a clear picture
of the mechanism of flux jumping: the balance-of-forces approach is a conceptually
simple one and thus a good starting point. Isothermal conditions were assumed
throughout the above as a simplifying approximation; for much of the regime of
interest the process is in fact adiabatic, as is the case for large dH/dr. A fully

adiabatic theory will therefore be outlined.

3.4 Flux jumping theory (2): adiabatic theory.

The most commonly used theory of flux jumping is the adiabatic theory of Swartz &
Bean®'®"! Wilson®" outlines a similar theory starting from a heat increase AQ,,
which is simpler than the detailed approach of Swartz & Bean who start from an

adiabatic increment in the local field. Since both arrive at essentially the same result,

41



and the mechanism of flux jumping has been shown in 3.3, Wilson’s version is

followed here.

A thermally isolated slab of width @ has an amount of heat AQ, applied, and
experiences a temperature rise A7. J, is thus reduced, allowing flux movement and
hence energy dissipation éq. The resistive current component decays leaving a new
flux profile as shown in Figure 3.9. In a width éx there is a flux change 6®(x) and
thus a resistive voltage. For small AJ, the current in dx may be taken as constant,

I(x) = J.6x. The heat generated in dx is thus
Sqx) = j I)E()dr = J 5x58(%) (3.53)

The flux change §®(x) is found from the change in local field between x and x=0:

R X

5d(x) = iAB(x)dx = u, LAJC(a -x)dx = p AJ (ax - 3‘.23) (3.54)

The average heat per unit volume across the slab is

a a 2 3
AQ = .(1. léq(x)cbc - 212 LyOJCMC(ax - Dyde = pga L G5
{

Assuming a linear J(7) dependence,

A = -y AT (3.56)

where 7, is the nominal operating temperature. The heat-balance equation for the
complete slab is

wt Z’a 2

o AT = yCAT (3.57)
3(7T.-T,)

AQ. +

where v is the sample density and C the specific heat. An effective specific heat per

unit volume for the whole slab may be defined as
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2.2
¥C,y = %Qii = 7C - _____32" ;,CJ“_‘ZT) (3.58)
The temperature rise due to AQ, is increased by the energy stored in the screening
current. A flux jump will occur under the smallest disturbance when the temperature
is caused to rise without limit, i.e. the effective heat capacity is zero; the scenario
may be thought of in terms of the positive feedback loop of Figure 3.10. The

condition for this to be avoided is

2,2
_mJam g (3.59)
~C(T.-T)

In practical conductors, this is limited by making a <a; such that the superconductor
is fully penetrated before there is any danger of flux jumping (a; corresponds to
equality in (3.59)). This is the basis of the widely used method of adiabatic
stabilisation in which superconducting wires are finely sub-divided to a filament
diameter less than a;. To find the field at which flux jumping will first occur (which
is the aim of the quantitative theory), one considers a slab of thickness a> a; in which
the shielding layer penetrates to a depth p. For D,,> D, the shielding layer may be
taken to be thermally isolated from the rest of the sample during a flux jump, and the
above theory may be applied to this layer. In an increasing applied field, flux jumping

will first occur at

B, = uJ.p = BuyCT, - T)I’ (3.60)

from equality in (3.59). The exact theory of Swartz & Bean gives 7/4 instead of 3

in (3.59), and H; is derived as

J :
H = [-myCe T 3.61
b = g G-6D

orf!
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B, = [3u,xC I (3.62)

3T 13T

This is the same as the instability limit of Wipf, (3.38), in the adiabatic limit®". (It

may be noted that since the original Swartz & Bean derivation uses the volume

specific heat the density v does not appear in the references).

In deriving (3.60) ezc., the case of a full flux jump, where the temperature rise is
unbounded, was considered. Partial flux jumps may occur when C increases rapidly

with temperature, thus recovering stability before reaching 7.

3.5 Diffusion theory of flux jumping.

In the previous section time was ignored as a quantity, and the movement of heat,
erc. was not considered. This is a good approximation in most superconductors, but
not in composites, as will be seen. Theories which take into account the time variable

are called "dynamic" stability theories, and are based on the thermal and magnetic

diffusion equations:

D,V°T = %ltf (3.63)
D, VB = %_lj (3.64)

where the thermal and magnetic diffusivities are, respectively,

D =_f (3.65)
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D, =2~ (3.66)
Ho
where « is the thermal conductivity, and p, is the normal state resistivity, more
accurately replaced by the flux flow resistivity, o,=pWB/B_). A solution of the
diffusion equations is very difficult, and as the adiabatic approximation is sufficient
for the superconducting material only, the theory of 3.4 will be that used here.

WilsonP” quotes values of D, and D,, for Nb-Ti and copper at 4.2K:

Dy (m?s™) D,, (m’s")
Nb-Ti 2x107 0.5
Cu 1.1 8% 107

These show clearly that while the adiabatic approximation, valid for Dy> Dy, is
good for the superconductor, it is not applicable to a composite. The Cu stabiliser
slows down magnetic movement considerably, allowing even heat dissipation and
thermal recovery. Estimates for the diffusion constants in the LaSrCuO HTS give
D,,=1.3m%" (reduced by a factor of 50 to 250 when the flux flow resistivity is

taken) and Dy, =10 m?s™, which confirm the validity of the adiabatic assumptions.

3.6 Empirical dependencies for flux jumping.

It is important to know the effects of experimentally variable parameters such as
dH/dt=H and T on flux jumping. A number of studies have examined these, in
particular those of Wipf & Lubell®® and Watson®#%. Although the flux jumping
criteria (3.61) and (3.62) give the necessary conditions for a flux jump to occur, this

may not be a sufficient condition, and the influence of H must be taken into account.

Wipf & Lubell identify three regions for H: (1) large H where H,=constant; (2)

intermediate H, H,o 1/H; (3) small H, where no flux jumping occurs and flux creeps
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smoothly. As previously stated, the first case approximates well to adiabatic

conditions; the second may be taken to be isothermal.

Watson also gives H dependencies: H; decreases with H at constant temperature, and
HjoclogH over most of the range. At low H, logH, o 1/H. 1t is noted that for each
external field sweep rate there is a temperature above which flux jumping does not

occur. Up to Hj;, the magnetisation is independent of H.

Examining the temperature dependence, Watson finds that the value of H at which
behaviour deviates from logHj o 1/H increases with temperature. H; increases initially
as 7' is lowered from 7., reaches a maximum, and then decreases. The maximum is
more pronounced for small H. In general, the number of flux jumps around a
magnetisation loop increases as 7 decreases. The number of jumps per unit of
magnetic field decreases with T before increasing at low temperatures, and increases
with increasing H, possibly approaching a constant value at high rates. For given T,

H the position of jumps around a magnetisation loop is reproducible for subsequent

loops.

There seems to be a consistent pattern to the number of flux jumps in each quadrant
of the magnetisation loop. Taking the first quadrant Q1 as that in which the virgin
magnetisation curve occurs, then for the first cycle the number of jumps in

Q1=Q3-1; in the second and subsequent cycles Q1=Q3. For all cycles, Q1 =Q2+1
and Q4=Q2.
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Figure 3.1 Flux penetration profile in the Bean model.

Figure 3.2 Bean’s model in a slab: (a) flux penetration in increasing field,
(b) critical current flow.
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Figure 3.3 Flux profiles in a slab in increasing applied field at high values.

Figure 3.4 Consequences of flux trapping in a slab in applied field decreasing

from (@) H', (b) 2H .
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Figure 3.5 Flux penetration in a tube in increasing field.
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Figure 3.6 Effect of Lorentz force on flux pinning potential®¥,

49



Figure 3.7 Change of flux profile and dB/dx in flux jump.

H small —

Figure 3.8 (a) Reduction of F, with A$ for A small and large; change of flux

A® for given change of F;: (b) in a slab, (c) in a tube.
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Figure 3.9 Change of flux profile produced by flux jump in a slab.

Figure 3.10 Positive feedback loop of quantities controlling flux jump.
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4 Experimental setup and apparatus.

4.1 Flux tubes.

Three different flux tubes were used in the work reported here: YBa,Cu,0,,, 11.8mm
o.d. X 8.3mm i.d. X 52mm; Bi,Sr,CaCu,04,,, 25mm o0.d. X 15mm i.d. X 50mm
(hereafter denoted by BSCCO #1); Bi,Sr,CaCu,04,,, 48mm o.d. X 42mm i.d. X
50mm (BSCCO #2). These are shown in Figure 4.1.

The YBCO tube was supplied by ICI Advanced Ceramics, and was prepared by
mixing polymers and non-aqueous solvents with YBCO powder to form a plastic
mass. The mixture was extruded and fired at ~900-930°C in an oxygen atmosphere.
The final density of the tube was estimated at 85 %, giving an interconnected porous
structure to allow O, permeation™. Both BSCCO tubes were supplied by
Hoechst AG. The material is quoted as being phase pure by X-ray diffraction, with
T.(R=0) = 89-91K. The density is estimated as 6.0gcm™. The tubes were formed by

Hoechst’s proprietary melt-processing method®,

4.2 Instrumentation.

4.2.1 Magnetic field measurement.

Magnetic fields inside the HTS tubes were measured by cryogenic Hall probes (BHA-
921, F W Bell Inc.) which give a highly linear voltage output for field (+1% max.
to +£3T, +2% max. to +£15T), operating over a wide temperature range from 1.5K
to 370K. The mean temperature coefficient is quoted as + 100ppmK™" maximum; it

was found that temperature effects on the probes were negligible. The sensing
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elements are 6.35mm (0.25") overall diameter, with an active area approximately
0.508mm (0.020") diameter, located ~0.635mm (0.025") behind the front face. The
probes are very susceptible to mechanical shock, particularly when cold, and

therefore require careful handling; thermal cycling must be < 100Kmin™ to prevent

damage.

The Hall probe supply current and output voltage were connected to a Redcliffe 102D
magnetometer, which gives a calibrated reading in Tesla and a linear voltage output.
The Hall probe supply current is set on the magnetometer using a calibrated
permanent magnet, and with probe and magnetometer calibrated together an accuracy
of +0.5mT and maximum resolution of 0.1mT in 0.4T can be obtained; the full-scale
reading is 3.9999T. The output of the probes has to be multiplied by ten on the front
panel reading of the magnetometer, i.e. it ~eads in the 0.4T range for up to 3.9999T,

and provides a rear-panel voltage output of 1VT.

Applied magnetic fields generated by the magnets were obtained by measuring the
voltage across 0.1Q or 1€Q standard resistors in series with the magnet to find the

magnet current. A magnetic field-current calibration could then be applied (see 4.3).

4.2.2 Temperature measurement.

At temperatures around 77K measurement was made by T-type thermocouples. In the
low-temperature region (close to 4.2K) a diode thermometer was used (Southampton
Miniature Diode Thermometer (SMDT), Cryogenics Advisory Unit, Institute of
Cryogenics). The SMDT operates over a range from 1K to 435K, with an output
voltage 1.8-0.5V, eliminating the need for further signal amplification. The mean
calibration curve is shown in Figure 4.2. An equation was fitted to the low-
temperature (< 10K) end of the calibration, and the result offset to fit the measured
voltage at 4.2K of the diode used. The SMDT is supplied by a 10pA constant current
source. There is known to be a significant magnetic field effect on the diode which

depends on supply current and diode orientation®™. Because of this the diode was
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fixed to the magnet for most of the measurements since the trapped flux in the HTS

tube would otherwise affect the temperature reading, making subsequent temperature

adjustment difficult.

The SMDT was fixed to the desired surface using GE varnish which could be easily
dissolved by a 50/50 methanol-toluene solution. The semiconductor chip is mounted
on a sapphire substrate (2 X 2 X 0.15mm) with two gold plated pads to provide
electrical contact. Because the chip is connected to one of these pads by a 25um gold

wire, considerable care must be taken in handling the diode.

4.2.3 Data logging.

The various measuring elements are connected to the inputs of a Keithley 199 System
DMMY/Scanner. The scanner module has eight input channels which can be selected
independently or scanned. The DMM is computer controlled by the Asystant GPIB
software package (Asyst Software Technologies Inc.) via an IEEE-488 interface. The
software allows IEEE devices to be configured and talked to interactively, or by
programs. Data can be stored in memory as the Asystant’s variable arrays, or written
to disk as ASCII files. The Asystant environment also provides a wide range of
analysis and manipulation options for the data arrays. The instrumentation setup is

illustrated schematically in Figure 4.3.

Programs were written in the Asystant GPIB to scan the appropriate channels for a
measurement, store the data and apply calibration equations. Scanning is performed
very quickly, giving near-simultaneous measurements on the selected channels. For
shielding measurements on the HTS tubes data could be displayed graphically in real

time. Waveforms from data could be edited to eliminate erroneous readings due to

noise, erc.
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4.3 Magnets.

4.3.1 Copper-wound solenoid.

For low-field measurements a copper-wound solenoid was fabricated, generating a
field of up to 0.085T at 10A. The coil consists of two concentric halves bolted
together and connected in parallel. In this configuration a bore of 75mm was

available; the magnet length is 270mm. The outer coil could be used alone at lower

fields if a larger bore was required (102mm).

In measurements on the HTS tubes, the tube was held in a Tufnel former in a glass
cryostat and positioned axially at the point of maximum field using the Hall probe
mounted centrally in the tube. A field-current calibration could then be obtained prior
to cooling, typically around 8.5mTA™. The maximum supply current being 10A, a

peak central field of 85mT could be generated.

4.3.2 3T superconducting magnet.

Low-temperature and high-field measurements were performed in a 3T
superconducting magnet and cryostat (Oxford Instruments Ltd.). The coil is wound
from Nb-Ti and gives a central field of 3T at 4.2K for 4.98A, in a bore of 27mm.
Field homogeneity is quoted as 1% in a 10mm diameter spherical volume. The
magnet is conduction cooled by the LHe volume, and sits in an exchange gas space,
including the magnet bore. The sample temperature is therefore restricted to that of
the magnet via the exchange gas. While it should be possible to heat the sample
independently of the magnet, sufficient thermal isolation could not be obtained in such
a small bore. A schematic diagram of the cryostat is shown in Figure 4.4, and
photographs of the magnet and cryostat in Figures 4.5 and 4.6. The tubes were held

centrally in the magnet bore by nylon line.
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The magnet specification allows a maximum current ramp rate of 0.5Amin! (10
minutes to field) for both increasing and decreasing field, i.e. a maximum field sweep

rate of ~0.3Tmin.

The LHe cryostat is equipped with a lambda point fridge (LPF) which, by pumping
on a port controlled by a needle valve, allowed the magnet and sample temperature

to be reduced from 4.2K to 2.2K and points in between.

4.3.3 Applied field sweep controllers.

Both the above magnets were supplied by a Kingshill 10A/100V power supply, which
was modified such that the current could be swept by an external control unit. Two
of these units were used, the first being an Oxford Instruments sweep unit. This
operates by driving a multi-turn potentiometer from an electric motor via a series of
gears; the potentiometer is connected in place of the current control on the power
supply. The gears can be selected to give fixed and highly reproducible sweep rates.
Since the rates were fixed at the intervals determined by the gears, a second sweep
unit was designed and constructed using an electronic motor controller (RS
components) to give a continuous range. In both cases the sweep direction was

switched for up or down, and the polarity of the applied field reversed by a crossover

switch.
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Figure 4.1 HTS flux tubes, left to right: YBCO, BSCCO #1, BSCCO #2.
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Figure 4.3 Instrumentation setup for shieiding measurements.
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Figure 4.6 3T superconducting magnet.
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5 Experimental results, 67-77K.

A number of measurements were performed on the HTS flux tubes at and around 77K
to provide general characterisation of the materials. The main purpose of the research
being the investigation of flux jumping at low temperatures, these were not
exhaustive. Although not a full treatment, useful data relating to the flux shielding,
trapping and creep properties could quickly be obtained. From the high predicted flux

jump fields at 77K given in 2.4 flux jumping was not expected to be observed at this

temperature.

5.1 Magnetic properties of granular HTS tubes.

A number of studies have previously been made on the shielding properties of YBCO
tubes! AN ‘much of the interest arising from the possible use of HTS tubes as
magnetic shields in SQUID systems, erc. at high temperatures. As discussed in 3.1,
the tube geometry provides a simple method of measuring a number of
superconducting properties, and as such was used in the original derivation of the
critical state model outlined there. HTS tubes have similarly been used to extract
critical current and magnetisation information!®12% However, care must be taken

in interpreting such data because of the granular nature of the material.

In a granular HTS, two systems may operate separately or together, depending on the
magnetic field range: the inter- and intra-granular regions. The superconductor is
considered to be a network of weakly-linked superconducting grains, with an
intergranular current tlowing across these weak links. It is well-known that this
intergranular transport J, is orders of magnitude lower than that in the grains for

sintered HTS, and thus there is a quite clear difference between the lower critical
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fields at which flux first penetrates the superconductor for the intergranular network
(very low) and the individual grains (much higher). Furthermore, when measuring the
magnetic field enclosed by an HTS tube, the two systems contribute magnetisations
of opposite sign™®# in the centre of the tube. Up to By, the tube behaves as a bulk
superconducting material and screens the external magnetic field completely from the
inside of the tube. Surface screening currents flow in the grains to exclude the field,
up to the lower critical field of the grains, H,,°, after which flux also enters the
granular regions. Because the direction of these intragranular currents is the same as
the transport current on the outer tube wall, and opposite on the inner tube wall, the
grains contribute a magnetisation in the same direction as the intergranular M outside
the tube, and opposite to it in the enclosed volume. Thus at intermediate fields the
magnetisation due to the grains lowers total magnetisation observed inside the tube.

At high fields all of the weak links are broken and only the granular magnetisation

will be observed.

Considering the flux trapped by a superconducting ring, Figure 5.1a shows the
magnetic field and flux distribution of an ideal sample in which the flux is trapped in
the enclosed volume only by a circulating persistent current. With flux trapped inside
the granular material only, the magnetisation inside the tube is in the opposite
direction to that due to a persistent current, as shown in Figure 5.1b (after Leidener
& FeileP!). Moving between the two situations, as outlined above, the granular
contribution will make an increasing negative contribution to the flux profile at the
centre of the tube. As the Figure shows, the intragranular contribution in the enclosed
volume has a much smaller magnitude than the intergranular part over much of the

range where the two act together. Intergranular effects will therefore dominate in

observations in which a large bulk persistent current flows.
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5.2 YBCO tube.

5.2.1 Shielding and magnetisation.

The shielding curve of the YBCO tube was obtained at 77K in liquid nitrogen by
simultaneously measuring the internal and applied magnetic fields as described in
Chapter 4, up to B,=+20mT. The curve is given in Figure 5.2, and shows
B,,=3.5mT and B,=4.5mT, with the tube being fully penetrated (B,=B,) by 15mT.

Using the critical state model for a tube at B, gives the critical current density as

B
Jo= 5.1

© p,wcost
where 6 is the opening angle of the tube; here §=9.1° i.e. cos§=0.987. A bulk
J(77K)=161Acm™ is calculated, typical of critical current values for sintered YBCO.
Other measurements at lower temperatures (produced by reducing the pressure above
the liquid nitrogen) gave values at 67.5K: B,=5.8mT, B,=6.4mT, J.=267Acm?and
63K: B,,=6mT, B,=7.3mT, J,=276Acm™. The magnetisation of the tube is found

as

uM =B, - B, (5.2)

and is shown in Figure 5.3. No variation in the size of the magnetisation loop was

observed for field sweep rates between 0.075 and 1.5mTs™.

There is a significant enhancement of B, over B,,, as has been previously observed
in such tubes®”. This has been interpreted to be indicative of granular effects where
the grains are totally screened in the shielding region, but begin to be penetrated at
higher fields, thus trapping an "extra" amount of flux over the intergranular region.
It must be borne in mind that the critical state model was developed for a
homogeneous superconductor, in which a specific outcome is that B,=B8,. If
additional flux was trapped in the grains following a complete field excursion, it

would be expected that the point at which B, crosses zero thereafter would be larger
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than B,, for the virgin curve. In fact, both the positive and negative B, points at which
B,=0 appear to be at +B8,, It may be that the extra pinning is occurring in the

intergranular network itself.

A close examination of the magnetisation loop shows a "tilt" of the higher-field ends
approaching the maximum +B,, where the magnetisation crosses zero and increases
with field, in the opposite direction to that for the intergranular system. This may
suggest the onset of magnetisation due to isolated grains. Much higher field
measurements are really needed to clarify the situation - excursions to the maximum
available field of the copper-wound solenoid used here (4.3.1) did not yield any more
useful information. A comparison of the magnetisation loop here with those found for
the intergranular region only (e.g. Puig er al.®™) suggests that the intergranular
magnetisation does indeed dominate, and that the tube is behaving as a
superconducting bulk for the greater part. One can then use the concept of an
"intergranular critical state". Without attempting to separate the inter- and intra-
granular components, the critical current density was derived from the magnetisation
curve ast!

J o= MM (5.3)
° 2uwcost

where M™, M are the magnetisations in the positive (upper) and negative (lower)
parts of the loop respectively at the same B, value. The applied field dependence of
the magnetisation J, is shown in Figure 5.4, and a J, of 210Acm™ at zero field is
obtained, somewhat higher than that from B. This is analogous to the common
difference observed between transport and magnetisation J,’s since in this case the
shielding current is simply a bulk intergranular transport current. The usual order of
magnitude drop in 10mT is observed™. The standard critical state model J(B)

dependence of
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does not appear to be followed here at low fields (Figure 5.4). This is similar to the
dependence found by Cimberle er al.?, also in an YBCO tube at low field, although
they observed no disparity between B, and B,, and by Gyorgy er al.® for a tube
in which intragranular effects were shown to be negligible. The behaviour at high and

low fields near 4.2K will be considered in Chapter 6.

One way by which it is possible to separate out the inter- and intra-granular effects
in a tube or ring is to cut the sample such that the intergranular current path is
broken, and the granular magnetisation in the tube can be observed. This was clearly
not a viable option with only one sample available. An alternative which time could
not permit would be to use an a.c. magnetisation method to find the total bulk
magnetisation, and then separate the predominantly intergranular magnetisation
obtained above from that obtained. Doing this in a range of applied fields could show

the granular influence on the internal field B,.

5.2.2 Flux creep and pinning.

In any practical use of a flux tube to contain magnetic field, the rate at which the flux
creeps out of the enclosed volume is of immediate interest. The decay of trapped flux
in the YBCO tube was measured over time up to 10°s at 77K for both zero-field-
cooled (ZFC) and field-cooled (FC) conditions. The initial applied field was 52mT,
which was switched off to give a step change to zero field, or an applied field up to
8mT. The magnetisation decay for ZFC and FC is shown in Figure 5.5 and 5.6

respectively. The logarithmic decay can be characterised by
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) 5.9
where M,=M(r,) is the remanent magnetisation at an initial time #,. Obviously £,=0,
the time at which B,, goes to zero cannot be used, so an arbitrary choice is usually
made such that the very fast relaxation at the beginning has passed; here 7,=2s was
used. U is the "ideal" pinning energy (there may actually be a distribution of pinning
energies). Figure 5.7 plots -U(B,), and shows that as expected the ZFC conditions
show greater relaxation than FC®¥, Again, the fact that M(FC)>M(ZFC) would
not seem to suggest granular effects, although one would expect flux to be pinned
within the grains in an FC situation. M(FC) may indeed be reduced compared to the
same case if granular pinning was not present - the measurement does not make this
clear. The zero-field values of U, are in reasonable agreement with the 0.76eV found
in similar tubes by Wang er al.™! (the sign is a matter of convention). It should be
noted that this derivation of U is not always valid, especially for fast-relaxing
systems, and is only really true if M(0) is equal to the true maximum magnetisation

at that point, i.e. J(0)=J/. The numerical results are summarised below:

ZFC ZFC FC FC
B, (mT) | dM/d(n) x10? | -U(eV) | dM/ddn) x10% | -U (V)

0 7.11 0.52 -5.92 0.65
1 -5.90 0.57 -4.08 0.83
2 -7.38 0.39 -6.92 0.45
3 -8.84 0.29 -7.55 0.37
4 -7.34 0.31 -6.73 0.33
5 -6.03 0.32 -6.83 10.34
6 -8.74 0.20 -7.51 0.26
7 -10.87 0.12 -7.17 0.21
8 -6.32 0.22 -7.81 0.19
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Some deviation from linearity is clear in the 7mT ZFC plot, and possibly in others.
This may be due to non-logarithmic relaxation, although it would be expected that
consistent results should be obtained for a given tube; a more likely explanation is
that it is due to a cross-over in pinning energy at long times®. This has been
attributed®! to a change from pinning by both the granular and intergranular regions
to that of the intergranular network only: since the local field gradient at the surface
of the grains is quite high, flux creep there may dominate initially. Longer time scales
(up to at least 10%) are needed to investigate this further. Figure 5.8 confirms that
the FC initial remanent magnetisation is consistently enhanced over the ZFC.

Obviously when M, <0 the external field exceeds the enclosed field, and flux creeps

into the tube.

Leidener & Feile®! found that rings cooled in small applied fields showed flux
trapped only by a persistent current (Figure 5.1a), and that order of magnitude larger
cooling fields were needed before any reduction in the enclosed volume field
distribution due to flux in the material could be observed (all the fields in question
were low here because of poor sample quality). Considering that intergranular effects
are dominant, two mechanisms may contribute to the decay of trapped flux in a tube
such as this: decay of the persistent current due to an apparent resistance, and
thermally-activated creep of the trapped flux. Measurements by Yeh er al.®® and
Mohamed er al.®! suggest that the latter is the responsible effect. Persistent
currents have been measured to decay at much slower rates than trapped flux, and
comparing the results for a disk, ring and cut ring seem to indicate that the observed
trapped field decay is due to flux trapped in the intergranular regions. Comparing
these results of others to the observations reported here, it appears that the decay of

trapped field in the tube is predominantly due to flux creep through the intergranular

network.
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5.3 BSCCO tubes.

The shielding curves of BSCCO tubes #1 and #2 (4.1) were measured in a similar
way to YBCO, and the corresponding magnetisation loops derived as above. Those
of BSCCO #1 are shown in Figures 5.9 and 5.10 respectively, for temperatures of
77, 73 and 67K and an applied field sweep rate B,=1.5mTs'. The resultant

parameters may be summarised as:

77K 73K 67K
B,, (mT) 11.4 24.2 30.3
B, (mT) 10.7 23.8 29.4
7, (Acm?) 189 401 503

The opening angle of this tube is §=16.6°, i.e. cos§=0.958. In this tube it is apparent
that B, =B,, at all the measured temperatures, and no enhancement of trapping is
observed. In fact, the values given show B, slightly lower; this is because of the
discrete field steps at which data was taken, so B,, is probably slightly overestimated
in the above since the precise point at which flux first penetrated the tube centre is
not clear. B, data points could be taken more or less exactly at zero field. This is
manifestly not the origin of the B, > B,, in the YBCO tube, since from the foregoing

it is obvious that B, will always tend to be over- and never under-estimated.

The field dependence of J, calculated from the magnetisation loop by equation (5.3)
is shown in Figure 5.11. The zero-field values are equal to those found from the
shielding curve within experimental error (77K: 173Acm?, 73K: 397Acm?,
67K: 494Acm?). Although the field at which the very fast fall-off of J (B) begins
increases with decreasing 7, the strong J, field-dependence is still clearly seen at these
temperatures. There is insufficient data to try to find the temperature dependence of
the critical current here; this will be returned to in Chapter 6. Surprisingly, J. is

slightly larger than for the YBCO tube. This is most likely to be due to improved
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sample quality and density gained through the melt-process production, compared to

the extruded and sintered YBCO tube (4.1).

The shielding and magnetisation of both BSCCO tubes were measured at 77K with
various applied field sweep rates, B,, between 0.075 and 1.5mTs. The lower rate
was determined by the amount of heating that seemed reasonable to allow in the
power supply, and the upper rate by the sweep unit used and the data collection rate
to give a useful interval in B,. These are shown in Figures 5.12 to 5.15, and a
significant reduction in the width of the magnetisation loop with decreasing B, is seen.
The parameters obtained for tube #2 at 1.5mTs" are B,=3.7mT, B,=3.2mT and
J.=125Acm?; the opening angle of tube #2 is 40°, cos§=0.766. The critical current
is lower than that of tube #1, presumably reflecting sample quality. The field
dependence of J, of the two BSCCO tubes is compared in Figure 5.16; although tube
#2 has a lower J (0)=110Acm™, the fall-off with applied field is rather less than tube
#1, showing higher current densities at the higher fields. Both the magnetisation and
current density plots of BSCCO #2 show a sharp dip at zero field. This is due to a
high rate of flux creep which occurs in the field reversal time (data was collected

continuously at set time intervals, including this "dead time").

The field dependence of the critical current found from (5.3) at the various sweep
rates for tube #1 is shown in Figure 5.17. The curves show very similar shapes. Both
the field at which the fast decline of J(B) begins and that at which J,=0 decrease
with B,. In figure 5.18, the current density at 0, 5, 10 and 20mT for tube #1, and
OmT for tube #2, are plotted against B, on a logarithmic scale, all showing linear
relationships. The two tubes have practically the same gradient for OmT as might be
expected. Had a wider sweep rate range been available, we would expect to find that
J. < B,, up to an undecayed value J,, above a certain limit of B,. This dependence of
"critical" current density on sweep rate is analogous to the voltage criteria used in
four-point resistance measurements of J.®°!, and B, defines the dissipative electric

field. From the induction law,
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E = 4%ld R 4B, (5.6)
27R 2 dt

where R is the mean sample radius (i.e. taken here as the radius of the centre of the

tube wall). Translating the sweep rates here accordingly, we find E between

37.5uVem! and 1.69mVem™. Obviously these are not particularly useful criteria for

comparison to the usual 1uVem™, but Poldk er al.®™ have shown that identical

measurements on a small YBCO thin-film ring can give much greater sensitivities

than those possible with contact methods.

The field sweep rate dependence of magnetisation loop width has previously been
observed in solid HTS samples®!%) and it has been shown theoretically!l
that the conventional relaxation model of Anderson® relates the behaviour seen here

directly to that of "conventional” flux creep at B,=0. The relaxation rates can be

equated:

dM M

d(InB,) " dam) ©-7

Because magnetisation hysteresis measurements are often easier to perform than those
of flux decay, the method described above may in many cases provide a more

convenient and more sensitive route to discovering flux creep characteristics.

Figure 5.18 indicates that, as expected, the relaxation is more pronounced as the
applied field increases: the gradient of dJ/d(InB,) increases rapidly from O to 10mT.
At very low J, for B,=20mT, the gradient is much less. This is where the curves of
J(B) in Figure 5.17 begin to converge. One of the restrictions of the critical state
model is to fields well below H,,; considering the weak-linked intergranular network,

this field is clearly being approached at 20mT.
Applying equation (5.7) to the magnetisation values M(0), corresponding to the ZFC

case, of BSCCO #1 for 0.075<B,<1.5mTs" gives dM/d(InB,)=1. This may be

compared to the directly measured ZFC relaxation up to 3200s shown in Figure 5.19

71



for the tube with B,,=80mT. The trapped flux decay shows a crossover between two
Int regions around 150s, from dM/d(Inf)=-0.6 to dM/d(Inr)=-0.4. The initial
magnetisation p,M,=9mT, giving U,=-0.1eV and -0.15eV for the two regions
respectively. As would be expected, these are rather lower than U, measured for the
YBCO tube. The slopes |dM/d(Inf)| are of the same order of magnitude as

dM/d(InB,); given the limited B, range this seems reasonable agreement.
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6 Experimental results, 2.2-4.5K.

6.1 YBCO tube.

6.1.1 Low-field measurements.

Measurements on the YBCO tube at low temperatures were initially performed at
4.2K with the sample immersed in liquid helium. A double glass cryostat was used
for this, mounted axially in the copper-wound solenoid with the tube in the region of
maximum field. The shielding curve and resulting magnetisation loop for a sweep rate
of 1.5mTs? (0.09Tmin"') are shown in Figures 6.1 and 6.2 respectively. The
shielding curve gives B,,=17mT, B, =17.3mT and J,=783Acm™. In contrast to the
77K results, the difference between B, and B,, is almost negligibly small given that
the B, intervals were quite large, making it difficult to find B,, exactly. The
magnetisation curve and the J, field-dependence found from it (Figure 6.3) show that,
similarly to the 77K curves, the critical current initially falls off very quickly with
applied field, although not by the order of magnitude seen at 77K. However, at 4.2K
the decrease in J(B) at higher fields is much less; the width of the magnetisation loop
is almost constant, and there is no indication that the upper critical field of the
intergranular network is being approached. No flux jumping occurs at these low

fields, as one would expect from the predictions in 2.4.1.

6.1.2 Measurements to 3T.

Since a persistent superconducting current seemed to extend to much higher fields

than the copper solenoid could provide, the YBCO tube was mounted in the 3T
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superconducting magnet (4.3.2) and cooled to 4.5K. Thermal contact was maintained
by a helium exchange gas at 1Torr throughout the experiments. It is not clear why
the magnet and sample (at the same temperature) did not quite cool to 4.2K.
Measurements errors were considered and subsequently ruled out, and there were no
obvious heat leaks since all the instrumentation wires were thermally dumped on
entering the sample space. The magnet cooled down to this temperature consistently,
to within less than +0.02K, and readings at 2.2K were always accurate, so the
temperature measurement was accepted as accurate (time did not permit further
investigation of the cryostat). The cryostat was always left overnight once filled with

LHe before any measurements were made to ensure thermal equilibrium.

The shielding and magnetisation curves to +3T at 4.5K are shown in Figures 6.4 and
6.5 respectively, for a sweep rate of 0.31Tmin™. It is immediately obvious that the
hysteresis is much greater than the 4.2K magnetisation, and the magnetisation loop
shape is very different. From the shielding curve, B,,=0.05T, B, =0.07T and
J,=2300Acm?. The magnetisation curve is quite noisy due to the small B-B,
difference, and this makes it difficult to obtain a J,(0) value from the magnetisation
curve, as the J, field-dependence in Figure 6.6 shows. A value of J.(0) =3500Acm™
is estimated. The high rate of flux creep at the B,=0 crossings is clear from the
magnetisation loop, and again makes J,(0) difficult to find accurately. Other features
of the magnetisation which require some explanation are the spikes which appear at
high fields in both positive and negative, increasing and decreasing, applied field. The
most likely source of these is non-linearities in B,; these could not be seen in a B,(r)
plot, but may be very small since the magnetisation is quite weak. A sharp decrease
is seen at around 0.5T in M  which might be identified as a flux jump. However,
examination of B; shows no sudden decrease in magnitude, and given the noise

present in the measurement such a conclusion cannot be reliably drawn.

The very different shapes and sizes of the magnetisation loops at 4.5K, 0.31Tmin
and 4.2K, 0.09Tmin"! suggest that, similarly to the BSCCO tubes at 77K, the
magnetisation hysteresis is field sweep rate dependent. Further 4.5K measurements

were made to +1T giving the set of hysteresis loops in Figure 6.7; the +1T,
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0.31Tmin" loop fitted as an exact sub-loop of that at 4.5K and the same B,. These
show that the width of the magnetisation loop does indeed depend on B,, an outcome
which is surprising at such low temperatures where flux creep would be expected to
be extremely low. The loop at 0.062Tmin"', however, is still much larger and quite
different to the 4.2K, 0.09Tmin" loop. Although it might at first appear that this
could be explained in terms of granularity as discussed in 5.1, this does not in fact
seem to be the case. If the 4.5K loops were intragranular in origin, we would still
expect to see a loop similar to that at 4.2K in the virgin case, up to the upper critical
field of the intergranular network, with the magnetisation changing sign and the
intragranular component being observed to higher fields. However, the virgin curve
at 4.5K (Figure 6.5) proceeds directly to the main hysteresis loop, suggesting that it
is still the intergranular component which is being observed. No satisfactory

interpretation of these results can be given at present.

The tube was also measured at 2.2K, 0.31Tmin" (Figure 6.8). The shielded field
B,,=0.07T is slightly larger than at 4.5K, giving J,=3225Acm™, while B, =0.072T
is very similar to that at 4.5K, and the magnetisation loops are virtually identical. The
same irregular features occur as at 4.5K, in almost exactly the same positions. No
flux jumping was observed down to this temperature; it may be that, as has been
found in other HTS, the flux creep which is evident from the magnetisation loops is

acting to stabilise the sample against flux jumping.

6.2 BSCCO tube #1.

6.2.1 Temperature dependence of flux jumping.

Shielding curves of the BSCCO #1 tube were measured in the 3T superconducting

magnet. Temperatures below 4.5K were obtained by use of the lambda point fridge
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(LPF) which was regulated by a needle valve to give measurements at 3.8, 3.2 and
2.7K. To reach 2.2K, the LHe lambda point, the pressure above the helium was
reduced by pumping directly on the LHe space. As it was difficult to control the
temperature over long times with the LPF needle valve, the maximum sweep rate of
0.31Tmin" was used in examining the flux jumping temperature dependence. The
temperature could not be controlled during the time of the experiment because of the

magnetic field effect on the SMDT (4.2.2).

The curves obtained are shown in Figures 6.9 to 6.18, and indicate that the sample
is quite far from full penetration. Following Chen ez al.®®] the first flux jump field
By is found as the difference between the maximum (minimum) field and that at which
flux jumping first occurs. This assumes an ideal Bean model. The virgin curve was
measured for the 4.5, 3.8 and 2.2K cases (4.5 and 2.2K sbown in Figure 6.20, 3.8K
is almost indistinguishable from 4.5K); it was found that curves taken immediately
after the virgin curve and those following several field excursions showed no
difference. Because the whole cryostat had to be heated to above 7, to return the tube
to the normal state it was not practical to do this for every measurement, both in
terms of time and LHe use. Because of flux jumping across the B,=0 line B, could

not be measured at this sweep rate. The numerical values found are:

T (K) B, (T) B, (T) J. (Acm?) First f.j. in virgin
curve (T)

4.5 1.73 0.48 7975 1.24

3.8 1.71 0.485 8060 1.14

3.2 1.70 - - -

2.7 1.65 - - -

2.2 1.56 0.49 8140 1.10

It should be noted that B, is not synonymous with the field at which flux jumping first

occurs in the virgin curve.
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The temperature dependence of B; is shown in Figure 6.19 and indicates a smooth
decrease with 7. This is as expected at low temperatures. As described in 3.6, it was
found that Bj; initially increases as 7 decreases from T,, reaching a maximum and then
decreasing®!. From the calculations of Wipf® and Laquer er al.®, it is expected
that the low temperatures here will be well within the decreasing B region since
Bs(T) peaks around 60 to 70K. Although By(T) in Figure 6.19 seems to be
approaching a plateau around 5K, the temperature range is really too small to attach
much quantitative importance to an analytical form for By; in fact in this region the
temperature dependence is likely to be almost linear. The numerical B; values found
are somewhat higher than those predicted for HTS at low temperatures®?! but are
on a par with some experimentally observed at 5K in melt-processed YBCO™ ¥, albeit
at lower B,. Conclusive comparisons are difficult to make because of the variability
of HTS materials. It may be observed that the first flux jumps at this high sweep rate
are close to the maximum field at which they would be observable for the field

excursion in these loops, given the B;=B, region. This is not ideal, and higher field

excursions would be useful.

Although adiabatic theory can be used to predict By, this requires a knowledge of the
specific heat of the superconductor and its temperature dependence, which is not
clearly agreed upon despite extensive studies (Junod"™ and references therein);
the predictions for HTS are usually based on some approximation of C(7). While this
may be reasonable for a generic HTS material, it cannot be as easily applied to a

specific real one. This theme will be returned to in 6.2.3. The general form of the

flux jumping equation,

B, = BuyC——i T’ 6.1)

<
dJ /dT
does not assume the J.(7) dependence and may therefore be more useful in
considering experimental data where dJ/dT is available. These all point to the need
for further good HTS data over a wide temperature range. The major limitation of
the adiabatic theory is of course that B, is not taken into account, and the qualitative

empirical forms outlined in 3.6 are resorted to. Although the theory developed by
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Yamafuji er al.*! does account for B,, detailed knowledge of other parameters such

as heat transfer are also required.

The symmetry in the shielding and magnetisation loops is clear in the Figures,
although sometimes a large jump is "mirrored"” by two smaller jumps in the other half
of the magnetisation. A common feature is that large jumps may be preceded by small
ones. All the flux jumps are incomplete. LTS measurements have shown that the
number of jumps in the magnetisation loop tends to increase with decreasing
temperature, and that the jump spacing decreases with 7, increasing again at low
temperatures. Here it is found that the total number decreases with temperature: from
31in M™ at 4.5K to 19 at 2.2K. Consideration of the number, spacing and magnitude
of flux jumps at the temperatures above points out some very interesting effects. A
close examination of these may help to clarify the flux jumping process in HTS.
Plotting the size of the flux jump, AM?, against the applied field at which the jump
occurs, B, shows quite a marked behaviour at Bf <-1.2T and > +1.2T, as seen in
Figures 6.21 and 6.22, and might be thought of as showing three regions of flux
jumping grouped by jump size. This is in contrast to most HTS measurements in
which flux jumps around a magnetisation loop are of quite a constant size (at least
compared to those here); jumps of decreasing amplitude were observed in virgin
curves of LaSrCuO® although full penetration was being approached, clearly not the

case here.

In the flux trapping region, i.e. |B,| decreasing, three large jumps are observed in
M* and M at all the temperatures. The spacing of these is very similar for the
different temperatures, although slightly less for 2.2K. On entering the annihilation
region (quadrants 1 and 3) a number of smaller jumps is found which show a general
trend of increasing magnitude with decreasing temperature. These cannot be solely
identified with vortex annihilation however since the jumps also extend into quadrants
2 and 4. For B> +1.2T and <-1.2T a clear temperature dependence is present in
the flux jump size. At 4.5K, the jump amplitude decreases exponentially; this portion
of the magnetisation looks similar to an underdamped simple harmonic oscillator.

With decreasing temperature the initial size increases and the decrease in amplitude
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with B decreases. At 2.2K the small jumps are of almost constant size. It is also in
this region that the number of jumps changes, decreasing with temperature. The field
spacing of the jumps is quite uniform for 7<3.8K, and increases with decreasing
temperature. The observation of these small flux jumps is a novel feature not reported
elsewhere. In all cases flux jumping seems to continue to +3T, so that higher field
measurements would be useful to see whether an exponential decay in AM? is seen
at progressively higher fields for decreasing temperature. The origin of the flux jump

structure described above will be considered in 6.2.3.

The conclusions here are very much qualitative in nature, mainly due to the limited
temperature range over which the measurements were performed. In light of probable
applications at 20 to 30K an extended range is highly desirable. The sweep rate
dependence of flux jumping is considered in the next section, and shows that the
maximum sweep rate, where there are jumps all round the loop even at 4.5K, is not
in fact the best to use in examining the effect of temperature, and slower rates would

be more enlightening if the sample temperature could be stabilised over the necessary

time.

6.2.2 Sweep rate dependence of flux jumping.

The effect of applied field sweep rate on flux jumping in BSCCO #1 at 4.5 and 2.2K
is shown by the shielding and magnetisation loops in Figures 6.9, 6.10, 6.17, 6.18
and 6.23 to 6.44. The sweep rates used and the resulting B, (calculated as described

in 6.2.1) at either temperature were as follows:
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B, (Tmin) B, (T), 4.5K B; (1), 2.2K
0.31 1.75 1.56
0.256 1.83 1.65
0.225 1.88 1.73
0.17 2.15 1.72
0.144 2.98 1.764
0.124 3.19 1.76

At 0.093Tmin” no flux jumping is present at 4.5K (Figures 6.33 and 6.34), so that
this may be taken as the equilibrium curve. Because of the long time required at this
rate a 2.2K measurement was not done. The trapped field B, can be found from this
loop and compared to the virgin curve value of B, found at 0.31Tmin; a comparison
of the loop sizes shows that the magnetisation width is independent of sweep rate. A
B, =1.0T was found, almost twice the value of B, =0.438T reported in the previous
section, but equal to the B,(B,=0) value found here. It was noted in 5.2.1 that if
additional flux trapping in the grains was the reason for the enhanced B, over the
virgin curve B,,, the B,(B,=0) value would be larger than B, This is indeed the
case here, so granular effects may be appropriately considered. A J.(0)=17200Acm™
is found from the magnetisation, and the decrease in fields up to 1T is very small, as
shown in Figure 6.45 (67 and 77K J(B,) are shown for comparison). This low critical
current field-dependence is typical of BSCCO at low temperatures up to much higher
fields than 1T (although the maximum B,= +3T, the critical current cannot be found
in the B,=constant region on the returning B,). Once more, an extension to
significantly larger applied fields would be very useful. Since these tubes are now
available "off the shelf" at a reasonable price (£100-£200) it would be feasible and

worthwhile to perform these measurements on a cut tube to obtain direct information

on the granular magnetisation.
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The relationship between B, and B, was described in 3.6; that derived by Watson“”

gives

B, oclogBa (6.2)
over most of the sweep rate range, and

1
logB, ;3: (6.3)
at low sweep rates. These can be compared with the Bﬁ(Ba) results found here. Figure
6.46 shows each on linear axes, and B; decreases with increasing B,, the decrease
being much more marked for 4.5K. The 2.2 and 4.5K points begin to converge for
0.225Tmin™ and above, suggesting a transition to the same dependency. The By(T)
values at 0.31Tmin™ lie between the 2.2 and 4.5K points, and thus suggest that points
for temperatures between these also lie between the respective lines at lower sweep
rates, as one would expect. The relationship at low B, is considered by plotting logB;
against 1/B, as in Figure 6.47. This dependency may be good for all points at 2.2K,
and the lowest rates at 4.5K, but is clearly not held for the whole 4.5K range. The
more general dependence of (6.2) is shown in the linear plot of Figure 6.46, and can
certainly be said to hold for B,>0.225Tmin™ at either temperature. As stated in 3.6,
the value of B, at which the relationship deviates from (6.3) increases with
temperature. While there is a clear break in the dependence at 4.5K, there is not
sufficient data to be conclusive as to the nature of the change, although qualitative

agreement with established LTS relations is found.

Considering the form of the magnetisation loops one can see a similar exponential
decay of small jumps in the shielding regions at 0.256 and 0.225Tmin” at 4.5K to
that at 0.31Tmin"". At the lower sweep rates the jumps extend to lower B,, and by
0.17Tmin™ this structure is no longer apparent. All of the loops show symmetry in
M*, M and were found to be highly reproducible around subsequent field excursions.
The total number of jumps decreases with sweep rate as one would expect from the
empirical results of 3.6. Both the large and small flux jumps can be seen to "grow"

with increasing B,. At 2.2K the same behaviour is seen, but is less obvious. Flux
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jumping clearly extends to sweep rates well below 0.124Tmin!, where at 4.5K
jumping ceases between 0.124 and 0.093Tmin': this concurs with Watson’s finding®
that there is a temperature for given B, above which flux jumping does not occur. The
number of jumps in each quadrant of the magnetisation was found to obey the general
rule of Q1=Q3, Q2=Q4=QI-1 after the initial magnetisation curve®. Although
symmetry gives Q1=Q3 and Q2=Q4 for most cases, the Q2=QI1-1 formula is not

observed. This departure is due to the small jumps in the shielding region described

above.

6.2.3 Possible origins of novel flux jumping observations.

The flux jumping behaviour seen in the shielding regions of the magnetisation loops
at the temperatures and field sweep rates described above requires some explanation
as it does not correspond to any of the empirically derived flux jumping relations in
LTS. Since it has been established in the previous section that granular effects are
apparently present, one might reasonably look to these as a possible source of
unconventional behaviour, as has been so widely observed in weak-linked HTS
materials. Since the fall-off in J(B) is very small, in may be concluded that
intergranular currents will be dominant over the field range here. One can also take
into consideration the virgin curves shown in Figures 6.20, 6.23 and 6.24; as noted
in 6.2.1, the first flux jump field in the virgin curve is lower than that found from the
full magnetisation loop at the given T, B,. A full critical state has clearly been

established prior to the first jump in the virgin curve.

Since the unusual small jumps are all in the shielding area, and correspond directly
to those in the virgin shielding curve, it is reasonable to suppose that these occur
solely in the intergranular region. If, after a field excursion to the maximum applied
field, flux is trapped in the grains as well as by the intergranular persistent current,
jumps in the trapping part of the curve could be due to a combination of the two

components. The "middle" group of jumps described in 6.2.1, partly existing in the
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annihilation region, might then represent a transition to the purely intergranular flux
jumping which follows. Since B; « J/(dJ/dT), there is likely to be a higher field at
which flux jumps begin in an intragranular-only sample than for a weak-linked
network of grains. Although there will be some difference in specific heat between
the two, this is less influential. If a flux jump occurs in an intragranular area, it is
reasonable to expect that this might trigger a concurrent jump in the intergranular
area. This is clearly a very tentative explanation, and experimental evidence of flux

jumping in the intragranular regions only (with a cut tube) would be needed before

advancing any further.

To explain the decay features of the small jumps seen at different temperatures in
6.2.1, one may consider the influence of flux pinning. It has been shown in HTS that
flux creep stabilises against flux jumping for stepwise increments in B,'%*17%): it has
not been demonstrated for continuous sweep rates, although the inverse of the sweep
rate frequency is analogous to the measurement interval between discrete applied field
steps. The flux jump magnitude was seen in 6.2.1 to decrease exponentially with
increasing applied field at a given temperature, and to increase with decreasing 7. As
B, increases, pinning centres in the superconductor become weaker, allowing flux to
move smoothly through the material. Thus at lower B, flux may be constrained to
move by jumping rather than smooth creep. In the same way at lower 7, stronger
pinning centres disallow stabilising flux creep and make flux jumping more likely.

Again this is a cautious conclusion which requires more data at higher B, and wider

T to draw upon.

6.2.4 Temperature spikes due to flux jumps.

In order to observe the temperature rise due to the heating associated with flux
jumping, the SMDT was fixed directly onto the inner tube wall of BSCCO #1, and
the temperature logged with B, and B, during the applied field ramp. From such

measurements it should be possible to obtain an estimate of the specific heat of the
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BSCCO material. Measurements were taken at 7,=4.5K and sweep rates of 0.124
and 0.31Tmin"". A one-to-one correspondence of temperature spikes and flux jumps

could be observed for all the jumps in a loop. These are similar to those observed in

LTS by Neuringer & Shapira®”.

It should first be possible to find a theoretical value for the specific heat from the

adiabatic flux jump equation,
B, = Bu,yC(T,-T)I’ (6.4)

Although the adiabatic theory does not account for the applied field sweep rate, one
might reasonably suggest that the theoretical B; will be that at which flux jumping
first appears in the sample taking the overall conditions, i.e. at the lowest sweep rate.
As noted in 6.2.2, flux jumping ceased between 0.124 and 0.093Tmin!; data at
0.124Tmin"! will thus be used. Using this hypothesis, values of 7,=90K (this value
is used since the quoted 7,=89-91K), 7,=4.5K and B;=2.942T (from this

measurement) can be inserted into (6.4), giving a volumetric specific heat:

vC = 0.027JK'cm™

The difference between B; above and that found at the same sweep rate in 6.2.2 can
be attributed to experimental conditions; although measurements at a given rate were
reproducible around more than one loop for immediately following excursions, there
may be enough temperature variation, efc. between different cool-downs to give some

small scatter in the numerical values as above.

Figures 6.48 and 6.49 show the rises in temperature as voltage spikes in the SMDT
output at 0.31Tmin™; these give an even clearer indication of flux jumping than B,.
The magnetic field effect on the diode is evident, and this made calibration of the
voltage too difficult to do for so many closely spaced jumps. Because the diode is
influenced not only by the applied field, but also by the local field at the inner tube
wall, a simple calibration could not be done. The field effect is in the form of a

temperature offset®. The same measurement performed at 0.124Tmin" gave the
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spikes shown in Figures 6.50 and 6.51. The calibrated temperature rise was found by
assuming that the temperature before the flux jump is 7,=4.5K, and that the sample
returns to this temperature upon completion of the flux jump and re-joining the
equilibrium magnetisation line. Thus the magnetic field-dependent offset could be
found either side of the jump, and, since B, is constant for some time after the jump
and the change in B, is small, a calibration could be applied working from either side
of the jump to give the real temperature rises shown in Figures 6.52 and 6.53. These

show the following changes in B, and final temperatures 7g:

B,(T) AB; (T) Tr (K)
0.058 0.459 « 12.22
-0.777 0.181 9.43
-1.136 0.037 5.83
0.049 0.457 12.93
1.068 0.132 6.84

The specific heat of the tube is estimated as follows. It is well known that the stored

magnetic energy density in an infinitely long solenoid generating a field B is given

by

2
u, = i (6.5)

Since the 3T superconducting magnet coil is somewhat longer than the tube, we can
approximate it as being infinite. Considering the stored magnetic energy, we have to
include both the tube itself and the enclosed volume. To do this, the magnetic field
in the inner volume is simply B;, and assuming a Bean model B(r) the field in the

tube wall is taken as the average field across it,
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.58 (6.6)

(see Figure 6.54). To find the stored energy U, before and after a flux jump, (6.5)
is applied in each region with the appropriate volume. If adiabaticity is assumed, all
of the change in stored energy will go into raising the temperature of the tube. The

specific heat can then be found:

dg _ AUs (6.7)

The values of yC thus found are in the range of 0.014 to 0.041K"cm™, very close to

the adiabatic theory prediction. The mean value is:

vC = 0.0276JK'cm’
st. dev. = 0.0101
var. = 0.0001

This is practically identical to the theoretical estimate.

The above result seems good given the approximations and experimental errors
involved. Because the temperature spike increases over a short time, the true value
of 7T may not in fact be observed, and those above may be underestimates. However,
since two flux jumps of similar magnitude gave similar 7}, it appears that the
measurement is very close to being correct; the flux jump with the highest
T.=12.93K gave yC=0.026JK'cm™, the closest to the theoretical value, which
suggests that this is very near to the real 7. In both the 0.124 and 0.31Tmin"
measurements the temperature spikes are in proportion to the flux jump size (Figures
6.48 to 6.51). If 7 was seriously underestimated in the data, one would expect to see
some out-of-proportion spikes since the point during the temperature rise at which the
measurement is made is essentially random. End effects in the tube are not accounted
for in applying (6.5), and U, is therefore likely to be slightly overestimated since the
internal field profile will not be flat over the length of the tube. If data starting from
the virgin state was used, U, could be found from the equivalence between the

hysteretically stored energy and the work done:
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H,

U, = L MdH (6.8)

However, although all the energy is dissipated in a complete flux jump, i.e. T=T,,
the amount lost in a partial jump would still have to be estimated. This method has
to be used for solid samples (disks, rods, ezc.); the tubular geometry allows B to be
found easily from measurements. The simple calculation used here gives sufficiently
good results. Other sources of error are B, for the start and finish of the flux jump
and B, for the start of the jump; these are likely to be insignificant. The specific heat
also has a field-dependence® which is not well documented. This could explain

some of the scatter in the yC values above, although there seemed no clear

relationship to either B, or B.

Three other features of the above are worth noting. First, because the volume of the
whole tube was used in calculating U, and hence the specific heat, the agreement
between measurement and theory would imply that the flux jumps occur across the
whole volume of the tube, at least for the larger jumps, and are not localised in the
tube wall. Also, examining the number of points in the temperature spike shows that
flux jumping occurs over a much longer time than conventionally expected. The flux
jump duration in LTS is on the order of milliseconds to tens of milliseconds. Here
the measurement interval was approximately 1s, and the jump can be seen to take
between one and two seconds to complete. This is extremely slow. The subsequent
decrease in temperature back to 7, is noticeably slower. Thirdly, from the agreement
of the theoretical and experimental values, the adiabatic assumptions in using (6.4)
and in taking Ag=AUj in (6.7) seem justified, as does the calculation of B, from the

magnetisation loops used (i.e. as the difference between the maximum or minimum

field excursion and the field of the first jump).
Clearly the measurement of temperature rise could be improved upon by faster data

logging in the flux jump region. Obtaining B;(f) during a jump could also be of use

in determining the velocity of the flux front.
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Comparison of this specific heat value to other experimental data is not easy because
of the differing samples and conditions for which such data is given. Junod"" gives
minimum values of C/7~ 11mJK?mol™" for BSCCO 2212. There is some uncertainty
as to the specific heat temperature dependence at low temperatures; a number of
authors have found that there is no linear term for the low temperature C(7)!021%1,
Taking y=6.0gcm™ the specific heat value derived above gives C/T=0.889JK?mol",
somewhat larger than other values. If the linear C(7) term can indeed be neglected,

a C=QBT? relationship gives yC and B; from (6.4) as:

vC(2.2K) = 0.0032JK"'cm?
B,(2.2K) = 1.03T

This is a rather gross simplification because, irrespective of the linear term, there are
several others in C(7) which may need to be included, and the temperature
dependence is far from simple. With the above values of specific heat, the
adiabatically stable thickness, a;, can be found. Estimating J,(2.2K)=17660Acm™
from the linear J(7) dependence used in 3.4 to derive the from of (6.4), and

J(4.5K)=17200Acm™ (the magnetisation value) we find:

as(4.5K) = 1.36mm
ag(2.2K) = 0.46mm

values which compares well with HTS predictions (2.4.1). This may explain why no
flux jumping was observed in the YBCO tube down to 2.2K at 0.31Tmin?, in

addition to the evidence of flux creep, as the wall thickness of 1.75mm may be close

to or below g, for that material.
The preceding results indicate a size which is technologically useful: while

multifilamentary wires are likely to be used to provide parallel current paths to

overcome poorly-linked regions in one conductor, these values of a; means that flux
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jumping is not likely to be a problem with such HTS wires having filaments with

dimensions on the order of a millimetre to tenths of millimetres.
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Figure 6.4 Shielding curve of YBCO tube to +3T at 4.5K, 0.31Tmin".
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Figure 6.11 Shielding curve of BSCCO #1 at 3.8K, 0.31Tmin™.
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Figure 6.12 Magnetisation loop of BSCCO #1 at 3.8K, .31Tmin".
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Figure 6.22 Flux jump size in M" versus applied field at which jump occurs.
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Figure 6.26 Magnetisation loop of BSCCO #1 at 4.5K, 0.225Tmin™.

116



@]

]

Figure 6.27 Shielding curve of BSCCO #1 at 4.5K, 0.17Tmin".

M (T)

.

©
(]

5

o

5

-1
45K, 0.17Tmin
I
IW’\\J\\ {\
N \ S N h
5 \ ™
N N \ f AN
\\\ y \\\
\ \
\ A
N \\
\
\ N
\‘\ \\
\ \\
. \
N \\
N N N\
H ‘\ N Y
~ ; AN I\ /
\j N N Jj\\}
. | I ’
N P
\l’ o A
|
-3 -2 - 0 2 3

Figure 6.28 Magnetisation loop of BSCCO #1 at 4.5K, 0.17Tmin™.

117




z
3
9]
2 L
1
!
P
’L__.
~
e \.J_
sl
N
2L
AE_
i i

!
(X
|
N
oL
(
N
[N

"\ 4
B (T
B, (T)

Figure 6.29 Shielding curve of BSCCO #1 at 4.5K, 0.144Tmin".

45K, 0.144Tmin

-
N
~oE ! N
U.O :
AN
P 2\'
pa—ce A
~
= U.u =
o
-
=
N \\
A

|
-
(o)
I

—1 5 i i
R

= - - 0 1 7 Z
- - w £ ~

[ 7T

] i

PR

L1

Figure 6.30 Magnetisation loop of BSCCO #1 at 4.5K, 0.144Tmin".

118



(@3]
I

)L ///F/—

\‘/‘- Q Lo i// f/
m ,_/
f

-1
~7 L
-3
! |
_3 ) —1 0 1 2 3
[ (T
ba )

Figure 6.31 Shielding curve of BSCCO #1 at 4.5K, 0.124Tmin".

1.5
4.5K, 0.124Tmin
1 - |
O /’/’\\ [
0.5 F N
A \\
N\
o 5 \\
N hY N\
= 0.0 R \
:io \\
\
-0.5 -
~. [N
—-1.5 |
-3 -2 - 0 ! 2 3
8 (T)
~a

Figure 6.32 Magnetisation loop of BSCCO #1 at 4.5K, 0.124Tmin".
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Figure 6.36 Magnetisation loop of BSCCO #1 at 2.2K, 0.256Tmin".
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Figure 6.37 Shielding curve of BSCCO #1 at 2.2K, 0.225Tmin™.
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Figure 6.38 Magnetisation loop of BSCCO #1 at 2.2K, 0.225Tmin™.
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Figure 6.39 Shielding curve of BSCCO #1 at 2.2K, 0.17Tmin™.
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Figure 6.41 Shielding curve of BSCCO #1 at 2.2K, 0.144Tmin".
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Figure 6.43 Shielding curve of BSCCO #1 at 2.2K, 0.124Tmin™.
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Figure 6.44 Magnetisation loop of BSCCO #1 at 2.2K, 0.124Tmin™.
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Figure 6.45 Applied field dependence of critical current for BSCCO #1 at 4.5,
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Figure 6.46 Sweep rate dependence of flux jump field at 2.2 and 4.5K.
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Figure 6.48 Temperature spikes due to flux jumps at 4.5K, 0.31Tmin".
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Figure 6.49 Temperature spikes due to flux jumps at 4.5K, 0.31Tmin.
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Figure 6.50 Temperature spikes due to flux jumps at 4.5K, 0.124Tmin".
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Figure 6.51 Temperature spikes due to flux jumps at 4.5K, 0.124Tmin".
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Figure 6.52 Calibrated temperature rises due to flux jumps at 4.5K,
0.124Tmin™.
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7 Conclusions.

7.1 Shielding and magnetisation.

The shielding measurements performed on the HTS tubes at and around 77K show
the low critical current densities of 100 to 200Acm™? which are typical of these
materials. The applied field dependence shows a fast decrease in J, in small fields as
is usual at these high temperatures; both J, and its field-dependence increased rapidly
as the temperature was lowered even moderately, to around 63K. Flux creep rates are
high in both the YBCO and BSCCO tubes, and are manifested as a sweep rate
dependent magnetisation in BSCCO. These factors repeat the well-known limitations
on HTS applications at 77K. Improvements may be made on the sintered YBCO
performance by melt-processing methods, but BSCCO still seems unlikely to be to be
useful for large-current applications at liquid nitrogen temperatures. The granular
nature of the YBCO sample is believed to be responsible for the enhancement of flux
trapping over shielding, and the larger J. which is found from the magnetisation loop

width compared to that from the virgin shielding field.

At liquid helium temperature the improvement in critical current for YBCO is small,
J.=780Acm™, and a rather surprising sweep-rate dependent magnetisation was found
at 4.5K in fields up to +3T. Although the granular structure may be the source of
some of the unusual characteristics at low temperatures, no clear explanation could
be given without further experimental work. The J, of BSCCO was much more
improved at low temperatures. A large difference between the shielding field B,, and
the trapped field B, appears at low temperatures, giving a magnetisation
J.=17200Acm™, twice that found from B,,. This again seems to indicate that granular
effects are involved. The J.(B) dependence is very small up to 1T, and appears to

extend to much higher fields before decreasing significantly; this is as expected for
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BSCCO at low temperatures and shows the most promise for high-current or high-

field applications of any of the HTS materials.

Although the issue of the inter- and intra-granular components was not resolved for
these samples, it would be a simple task to do so if time were available. By cutting
an axial slot in the tube wall the intergranular current path can be broken and the

intragranular magnetisation detected by the same method as used here.

7.2 Flux jumping properties.

No flux jumping was observed in the YBCO tube, possibly because the wall thickness
was below the adiabatically stable limit, or because the flux creep creating a field

sweep rate dependent magnetisation stabilised the sample against flux jumping.

Flux jumping was clearly observed in the BSCCO #1 tube between 2.2 and 4.5K at
various sweep rates. The flux jump field B; increases with both increasing
temperature and decreasing sweep rate. At 4.5K no jumping was observed below
approximately 0.124Tmin"; although the field sweep rate dependence of B; apparently
follows the conventional empirical relationship of B,o logB, at sweep rates equal to
and above 0.225Tmin", the dependence at lower rates is not entirely clear. No
analytical temperature dependence can be given because of the limited range. Both

the field sweep rate and temperature ranges need to be extended to obtain firm

quantitative relationships.

The granular effects evidenced by the flux trapping and critical current properties may
well create unusual flux jumping behaviour not seen in previous studies on small or
single crystal samples. Such effects have been invoked here to provide a possible
explanation of the flux jump structure observed in the shielding regions of the

magnetisation, where exponentially decaying jumps were present at all the
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temperatures considered and at the higher sweep rate values used. Further

experimental data on the intragranular state is required to be conclusive.

Despite the tentative nature of some of the interpretation of the results, a number of

important numerical parameters for flux jumping in BSCCO have been found:

® For the lowest sweep rate at which flux jumping occurs, 0.124Tmin", B;=2.9
to 3.2T at 4.5K from the two measurements taken. This is rather higher than

most HTS predictions but comparable to some other experimental values.

® For B;=2.942T at 4.5K, a volumetric specific heat yC=0.027JK'cm is
found from the adiabatic flux jump equation. This is in very good agreement
with a mean value yC=0.0276+0.0101JK'cm™ found from a direct
measurement of the temperature rise and energy dissipation in flux jumps at

0.124Tmin" and 4.5K. The adiabatic approximations thus seem justified.

@ The above value of specific heat gives the adiabatically stable thickness

as= 1.36mm at 4.5K.

® For a simple 7-only specific heat temperature dependence, the value at 4.5K

implies yC=0.0032JK'cm”, B;=1.03T and a;=0.46mm at 2.2K.

The above suggests that flux jump instabilities can be easily eliminated in BSCCO at
low temperatures by controlling the conductor size, without having to resort to the
extremely small diameters of LTS. At liquid nitrogen temperatures flux jumping does
not appear to be a serious issue at all in moderate magnetic fields should efficient
HTS conductors be developed which can operate that region. Measurements
performed on a bulk sample have given parameters which may be considered when
designing a solid form of HTS device such as a flux tube, flux pump or quasi-
permanent magnet. The experimental results confirm the theoretical flux jumping
predictions for HTS in being encouraging for the application of these materials in

high-field and high-current situations.
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Appendix 1 An investigation into glass-ceramic

HTS.

A1.1 Introduction.

A1.1.1 Glass-ceramics in the Bi(Pb)-Sr-Ca-Cu-0 system.

Glass-ceramic materials are formed by the controlled re-crystallisation of glasses.
They have a highly dense, fine-grained structure, and applications range from
cookware to missile nose cones. The advantage of these materials lies in their strength
and machinability, neither of which are usually associated with ceramics. The
discovery of superconductivity in the Bi-Sr-Ca-Cu-O system®! suggested that it may

be possible to make glass-ceramics out of these compounds.

Although none of the cations in the HTS compounds are glass-formers as defined in
the original treatise on glass formation by Zachariasen®™!, Bi,O, is a conditional
glass former““l, i.e. it can form a glass in the company of certain other
compounds. Bi-Pb glasses were previously made by Dumbaught®i%  These
make the possibility of glass formation and subsequent re-crystallisation in the
superconducting Bi-Sr-Ca-Cu-O system promising. The successful production of such
glass-ceramics was first reported by Komatsu er al. (1983)8), All three
superconducting phases (2201, 2212 and 2223) have been observed in glass-ceramic
BSCCO. It was quickly found in sintered ceramics that Pb addition was beneficial in
the 2212 phase, and really essential for growth of the 2223 phase. Very large
amounts of Bi and Pb can be accommodated in silicate glasses (e.g. up to 90%wt.
Pb), and the ease of glass formation in such compounds is related to the electronic
structure of Pb?*, suggesting that the Pb content might aid glass formation in a

Bi(Pb)-Sr-Ca-Cu-O material. Studies have shown that a 20% substitution of Pb for
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Bi is the most effectivel!®1®!: the Pb substitutes in a 1:1 ratio onto the Bi sites.
It is not universally agreed whether or not Pb does indeed aid glass formation.
Although glass-ceramic processing for YBCO with added B,O; or P,0s (both well-
known glass-formers) has been attempted™? it is not possible to obtain an

amorphous pure-YBCO glass®.

The technological advantages of a glass-ceramic HTS are two-fold: first, a
machineable material would enable bulk shapes to be worked on after heat treatment,
which is not possible with the brittle ceramic HTS. A second advantage is the
possibility of being able to produce glass-ceramic HTS fibres. This is done by
drawing fine glass fibres from a glass pre-form, and subsequently heat treating them
to obtain the superconducting phase®N2 - Sych a method of manufacturing
HTS wires is attractive because it is a simple process, and uses existing technology
similar to that for optic fibres. However, to draw fibres from a glass melt requires
good glass formation, a suitably high viscosity and a large working range (the
temperature range available for drawing). Ca, and possibly Sr, are "network
modifiers" which tend to reduce the viscosity the glass; one of the main problems in
obtaining Bi(Pb)-Sr-Ca-Cu-O fibres is the very low viscosity of the molten glass.
Only very low critical current densities have been reported: 22Acm™ at 30K"!! to
approximately 40Acm™ at 60K, with 7, lower than the bulk material. Bulk J.’s of
up to 1800Acm™ have been reported", and densities of almost 100% of

theoretical can be obtained (although in mixed phases)!**,

The main problem of glass-ceramic production is that of isolating the desired phase.
The 2212 phase is much easier to obtain than 2223 which requires annealing at very
well-controlled temperatures (to within a few °C) for long times. However, 2223 is
the most attractive phase from an applications standpoint due to its high 7, of around
110K. The process of glass formation in these materials has to be understood to
achieve a useful viscosity and working range. Determination of the 2223 phase
nucieation and growth mechanisms are of the highest importance if HTS glass-

ceramics are to be successful.
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A1.1.2 Characterisation of glass-ceramics.

The thermal properties of glass-ceramics are mainly characterised by three
temperatures: the glass transition temperature 7,, one or more (depending on the
number of phases) crystallisation temperatures 7, and the melting point 7,,. These can
be found from differential thermal analysis (DTA). This technique measures the
temperature of a sample compared to an inert standard (usually burnt alumina) in a
heating ramp, and thus measures the exotherms and endotherms at various
temperatures which can be associated with the above characteristic points. 7, is
defined as the temperature below which the material is strictly a glass, and above
which it is a super-cooled liquid™®’; it shows in DTA curves as a slight hump or
change of gradient. The accurate identification of 7, from DTA data is often difficult
and requires experience to do well. The "working range" of a glass is the difference
between T, and 7,. The crystallisation of different phases shows up as exothermal
peaks in DTA as the material moves to a lower free energy state, while partial
melting occurs as endotherms. The associated technique of thermogravimetric (TG)

analysis measures the mass of the sample, indicating oxygen uptake, etc.

DTA can be used in conjunction with X-ray diffraction (XRD) data to identify the
various phases with their respective 7. This is usually done by using XRD on a
sample quenched from a given temperature to preserve its state at that point. In the

case of superconducting materials, 7, measurements by resistance or susceptibility can

also be used to identify the phases.

A1.1.3 Research aims.

The intention of this study was to examine the formation of the Bi(Pb)-Sr-Ca-Cu-O
2223 glass-ceramic, aiming to identify the phase growth process, with the hope of

understanding the 2223 nucleation. XRD and DTA of the materials was carried out

at the Pilkington Technology Centre, Lathom.
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A1.2 Glass formation.

Although the Bi(Pb)-Sr-Ca-Cu-O 2223 system forms a glass easily on rapid cooling,
there has been repeated evidence of crystalline CaO in the glass. To make glass
preforms suitable for drawing into fibres, it is important to have a completely
amorphous glass. An excess Bi content was shown by Komatsu er al. (1990)1!%
to aid crystallite-free glass formation. Since the ability to form a glass is fundamental

to further investigation, this was selected as an experimental starting point.

Bi,0;, PbO, SrCO;, CaCO; and CuO of =99.99% purity were mixed and ground in
an agate mortar in stoichiometric ratios to give Bi, ¢, Pb,,Sr,Ca,Cu;0,, with y=0.0,
0.4, 0.9, and 1.4. The precursor powders were melted in alumina crucibles for 30
minutes at 1150°C in air, and then quenched between copper plates. The resuiting
glassy material was in the form of plates 0.4 to 1.2mm thick, with a lustrous grey-
black colour. These were powdered for XRD analysis, using a percussion mortar

since the glasses were extremely hard.

The powder XRD patterns are shown in Figure Al.1. A small CaO peak can be seen
in the XRD pattern for y=0.0; no crystalline material was detected for higher Bi
contents, and the XRD graphs show the broad amorphous curve associated with a
glass. X-ray fluorescence (XRF) was used to detect any impurities since it is known
that the BSCCO compounds are very susceptible to poisoning, and showed that all the
samples contained 2 to 3% Al, approximately equivalent to a formula ratio of 0.9.
This indicates that alumina crucibles are not suitable for use with these materials, and
that platinum ones are necessary. More importantly, ALL,O; is a well-known glass-
former, and may screen any effects of varying the Bi content. It is not clear whether
this level of Al contamination would affect the superconductivity or phase formation;
in fact Al has been added to BSCCO compounds to aid glass formation without
expecting to significantly alter the superconducting properties™“M7  (many

additives have been used for various reasons, e.g. Sn, Sb, Pt, and even Te). Al also
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increases the viscosity of the molten glass which may make it a good additive for

fibre production. However, an uncontrolled Al content has to be avoided.

The DTA of two powdered y=0.0 samples at 10°Cmin™* showed T,=330°C, two
crystallisation peaks of T, =475°C and T,,=525°C, and a range of partial melting
endotherms from 715°C to 950°C (Figure A1.2). This 7, value is slightly lower than
most reported which are generaily in the range of 340-390°C, with some higher, 400-
450°C. This could be because the estimate of the position in the DTA curve is too
low; as noted above, it is not always easy to identify 7, accurately. The very sharp

T, peaks indicate rapid crystallisation.

The above compositions were repeated using platinum crucibles with precursor
powders that had been previously decomposed overnight at 800°C. The XRD patterns
showed the CaO and some CaCO; crystalline content more clearly for y=0.0. DTA
on the powdered y=0.0 sample gave 7, very similar to the above, but with T,; and
T, slightly lower at 428°C and 512°C respectively; a solid sample gave the same 7,
but higher 7;, T, of 442°C and 555°C. The onset of partial melting in both cases was
practically the same as above. TG analysis showed a large weight gain up to the
crystallisation peaks in the powdered sample, which one may associate with oxygen
uptake; the solid sample showed only a small weight gain, around the partial melting
endotherms. It is not clear how much influence the Al poisoning in the first set of
samples had, although the clearer crystalline peaks in the second y=0.0 XRD point
to its glass-forming enhancement. The difference in 7,,,7,, between the solid and
powdered samples suggests a surface nucleation mechanism since one would not
expect any difference where bulk nucleation dominates; this finding is similar to that

of Tatsumisago er al. (1989)!*® for similar BSCCO glasses.

139



A1.3 Superconducting phase formation and heat

treatment.

The kinetics of phase growth in the BSCCO system are very complicated, and can be
strongly affected by small changes in composition, temperature, efc. The three main
phases of 2201, 2212 and 2223 seem to grow successively from each other at
increasing time and temperature in the heat treatment. The 2223 phase forms in a
very small temperature-time region, and often co-exists with 2212; obtaining phase-
pure 2223 is very difficult. Crystallisation of a given phase is determined by both the
nucleation rate and the crystal growth rate"’”. In the BSCCO system the following
process seems to occur® (the exact temperatures vary between references). The
2201 phase forms first above around 450°C, with phases of Cu,0, CaO and possibly
Ca,Cu0O; and CaPbO;. Above about 620°C 2212 starts to grow at the expense of
2201, which practically disappears at 840°C. 2223 begins to form after about 60 hours
annealing at near this temperature from an intergrowth of 2212 and other phases. Pb
substitution for Bi decreases the time required for 2223 formation!!® and therefore
seems to play a role in crystal growth or nucleation; the exact nature of this role will
be important to determine. Formation of phase-pure 2223 requires very close
temperature control. Most authors have reported heat treatment temperatures between

845 and 850°C: even a difference of a few degrees can affect the end phases.

A1.3.1 Experimental resuits.

To investigate the heat treatment process, the second batch of glasses prepared in
Al.2 were annealed in air in a tube furnace at 844°C and 850°C for 24 and 120
hours. The as-quenched glassy plates were put on platinum gauze on an alumina slide
to prevent contamination, and the temperature ramped up over approximately 40

minutes; on completion of the heat treatment the samples were allowed to slowly cool
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to room temperature. The furnace temperature was calibrated using Al and Ag wire

to find set points at their melting temperatures (660.37°C and 961.93°C respectively).

The a.c. susceptibility of the 844°C/120h sample with y=0.0 is shown in Figure
Al1.3. The double transition of a two-phase sample is observed, indicating the
presence of 2212 with 7,=78-81K and 2223 with 7,=102-109K. The onset of the
upper transition is very much slower than the lower one, showing the poor quality of
the 2223 phase. The sharp 2212 transition implies relatively good quality. Because
the measurement is uncalibrated, the superconducting volume fraction of the whole
cannot be estimated; 2223 makes up approximately 35% of the superconducting
volume from the susceptibility curve. The data is taken in zero applied d.c. field with
an a.c. field of 0.3mT at 11Hz, with increasing temperature. It is therefore the flux
expulsion that is measured, a more reliable verification of bulk superconductivity than
the shielding fraction. The curve is very noisy due to the small volume of the sample,
and possibly a small superconducting volume. Because the susceptometer was not
routinely available for use this measurement could not be performed on other

samples, a major limitation to analysis.

The samples were powdered for XRD analysis to remove any crystal orientation
which might distort the peak heights. The XRD patterns (Cu-K« radiation) are shown
in Figures Al.4 to Al.7. Because the standard JCPDS data files for the different
Bi(Pb)-Sr-Ca-Cu-O phases were not available, exact determination of all the phases
present is difficult. The 2212 and 2223 phases can be identified by their characteristic
(002) peaks at 20=>5.8° and 4.7° respectively!. Other clear peaks are at 33° for
the 2212 (020) and (200) planes, and at 24° for 2223. For 844°C/24h and 850°C/24h
(Figures Al.4 and A1.5) the patterns are identical; the (002) peaks at approximately
5.8° are clear and the sample is almost completely 2212. This is as expected for the
short annealing time before the 2223 has begun to grow. No impurity phases were
detected by the computer matching program. At the longer annealing times of 120h
the 2223 phase has grown as evidenced by the 4.7° peaks in Figures Al.6 and Al1.7,
with 2212 also present. The relative fractions of the two main phases can be estimated

from the (002) peak heights, showing that the 850°C/120h sample is predominantly
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2212 with 2223, while the 844°C/120h sample contains a larger fraction of 2223 with
2212 as witnessed by the much stronger 4.7° and 24° peaks. These results agree with
the two-phase results of the a.c. susceptibility measurement on the 844°C/120h

sample, although the relative fractions are different.

The above indicates that a heat treatment temperature of close to 844°C is the
optimum for formation of the 2223 phase in the glass-ceramic, with long processing
times requires for the transformation of 2212 to 2223. Samples with increased Bi
content, y=0.4 and 0.9, were also annealed at 850°C for 120h. The XRD patterns in
Figures A1.8 and A1.9 show that these contain 2212 only with no 2223. Thus a Bi-
rich composition apparently impedes 2223 formation. The production of a 2212 glass-
ceramic is evidently much easier than the 2223, and may prove to be the only form

in which a single-phase material can be routinely obtained.

A1.3.2 High temperature XRD.

In order to further clarify the phase formation mechanism, a high temperature XRD
technique was attempted. Most XRD analysis of phase formation is performed by
quenching the material from a series of time and temperature points and examining
the development of the phases with respect to these!'™'29) However, the cooling
process may change the structure of the material, giving misleading conclusions as
to the intermediate phases. Some high temperature XRD has been done with small
samples on a Pt heater!’”™. The system at Pilkington’s Technology Centre uses a
Philips diffractometer with a small tube furnace which has windows through which
an angle of 55° can be scanned; this was the first commercial high temperature XRD
apparatus in the UK. A powdered sample is held in a Ti plate in the furnace, which

is then evacuated to prevent oxidation of the heating elements.

This procedure was used on 2223 glass samples from the batches described

previously. A computer controlled program was set to take scans at various
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temperatures in the heating schedule from 400°C to 850°C, with two scans 20 minutes
apart at each temperature. Although devitrification of the glass could be observed at
400°C, no phase identification was possible for any of the XRD patterns obtained.
The reasons for this are unclear; although heating in a vacuum may be expected to
affect phase formation, identification of the phases present should still be achieved.
This negative result for the 2223 glass-ceramic was also found by others using an

identical system*! although very good results were obtained with 22121124,

A1.4 Conclusions.

The following points may be drawn from the above investigation of 2223 glass-

ceramics:

® The 2223 material forms a glass easily upon rapid quenching from the melt.
An excess Bi content aids glass formation, but impedes the growth of the
desired 2223 phase. Al may be a better additive to improve glass formation

and increase viscosity if fibres are to be drawn.

@ The optimum temperature for heat treatment to obtain the 2223 phase is close

to 844°C.

@ While the 2212 phase forms within 24h at the correct temperature, the 2223
phase formation requires very much longer processing times. Although 2223
was obtained for 120h heat treatments, no single-phase samples were

achieved.

In order to pursue such an investigation further, constant access to XRD and other

measurement facilities are essential, and a number of furnaces are required to perform
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parallel processing in view of the long times involved, where here a single one was

used and use of XRD erc. with Pilkington was necessarily limited.

The nucleation mechanism for 2223 continues as the most important feature to be
determined. The samples considered here were solid glass plates as quenched; the
heat treatment of powdered glasses may improve nucleation, as well as making the
production of shaped components easier. It may be possible to nucleate the phase by
"seeding" a powdered glass with phase-pure 2223 as this is a common method with
other glass-ceramics. The roles of the various cations and their respective ratios also
remain to be clarified. The precise temperature control and long times involved in
2223 formation may make it unlikely to be a commercial success, and 2212 could be
reverted to. Nevertheless, from the limited results presented here, the feasibility of

a glass-ceramic processing route for HTS has been demonstrated.
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Figure Al.4 XRD pattern of Bi(Pb)-Sr-Ca-Cu-O 2223 glass-ceramic annealed at
844°C for 24h.
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Figure A1.5 XRD pattern of Bi(Pb)-Sr-Ca-Cu-O 2223 glass-ceramic annealed at
850°C for 24h.
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Figure A1.6 XRD pattern of Bi(Pb)-Sr-Ca-Cu-O 2223 glass-ceramic annealed at
844°C for 120h.
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Appendix 2 Papers published in the course of this

work.

"Flux jumping in high temperature superconducting flux tubes", J.W. Burgoyne &

J.H.P. Watson.

Oral presentation at the 6th Annual Conference on Superconductivity and

Applications, Buffalo, NY, USA, 15-17 September 1992.

Also presented as a poster at the 4th International Conference on Superconductivity:

Materials, Physics and Applications (ICMAS-92), Paris, France, 21-22 October 1992.
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FLUX JUMPING IN HIGH TEMPERATURE
SUPERCONDUCTING FLUX TUBES.

J. W. Burgoyne & J. H. P. Watson
The Institute of Cryogenics, University of Southampton,
Highfield, Southampton SO9 5NH, U.K.

ABSTRACT

Flux jumping in the intergranular shielding curves and magnetisation
hysteresis of a Bi,Sr,CaCu,04,, flux tube has been studied at temperatures close
to 4.2K and at various applied field sweep rates. Large incomplete flux jumps are
observed, increasing in number with field sweep rate. For higher sweep rates,
large jumps are followed by a number of exponentially decaying small jumps
which are explained in terms of the granular nature of the superconductor. The
results are compared to conventional flux jumping theory and predictions for high
temperature superconductors.

INTRODUCTION

Flux jumping is a well known phenomenon in high field type II
superconductors, and has been extensively characterised for conventional low-7,
materials. Adiabatic theories’” allow predictions of flux jumping, and hence
stabilisation against it, and empirical dependencies for dH/ds and T have been
found®*°. The usual solution of finely-divided filamentary superconducting wire
may not be practicable with high temperature superconductors (HTS), and it is
therefore important to know the limitations placed upon such bulk materials by flux
jumping.

It has been predicted that HTS are immune to flux jumping below 5 to 9T
at 77K%73; at 4.2K the flux jump field is predicted to fall to around 0.4T? and flux
jumping must be considered in light of the possible high-field applications of Bi-
based HTS at low temperatures. Flux jumps have been observed in single
crystal®!®!12 and melt-textured''**!¢ cuprate oxides in small samples. The use
of a flux tube allows the straightforward measurement of bulk intergranular
properties on a small-device scale; the use of flux tubes to produce high fields has

been suggested by Watson'’,

EXPERIMENTAL

The flux tube used in these experiments is of melt-textured Bi,Sr,CaCu,Os,
(x=0.15 to 0.20) with 7,=89 to 91K, supplied by Hoechst AG, with dimensions
I15mm i.d. x 25mm o.d. x 50mm. Measurements were carried out in an Oxford
Instruments exchange gas cryostat with a 3T superconducting magnet. The cryostat
temperature may be lowered to 2.2K by a lambda point fridge. The magnet is
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conduction-cooled, and the sample sits in a He
exchange gas at ~ 1 torr (Figure 1): heat transfer e
conditions are known to affect flux jumping, so

|
|
gun
f

this situation may be more prone to flux jumping i

than in liquid helium. Measurements to higher |

field in liquid helium are proceeding. The applied T
field B, is measured from the magnet current, and LHe

the field in the enclosed tube volume B; by a

cryogenic Hall probe (F.W. Bell BHA-921); the  Magnet ~\\\j\ 7
sample temperature is measured by an SMDT i< XJ
silicon diode thermometer (Institute of HTS |+

Cryogenics). The magnetic field was swept at tube | He 9’52*3‘3"99

rates between 0.062 and 0.31Tmin”, the upper
limit being set by the magnet specification,
applied axially to the tube bore. The tube
magnetisation is obtained as u,M = B, - B, and is
quoted in Tesla to emphasise this fact.

Figure 1: 3 Tesla magnet
and cryostat.

RESULTS AND DISCUSSION

The flux tube shielding curve was measured at 4.5K and applied field sweep
rates of 0.093, 0.124, 0.17, 0.225 and 0.31Tmin". The virgin curve at 0.31Tmin™
is shown in Figure 2. The critical current density may be derived from

Bsh (1)
oW

J =

¢

where B,, is the maximum shielded field and w the tube wall thickness. In the
virgin shielding region the intergranular current component only is measured and
thus for B,=0.48T an
intergranular, or transport,
J(0T, 4.5K) = 7640Acm™ is

L Nl
s 4.5K, 0.31Tmin

obtained. Previous 5.0

measurements at 77K indicate sk

J (0, 77) = 160Acm™. : =
The penetration of flux = 2O | e

- . . ~ 3 (/’”—’J

into the tube in a series of flux = « ; -

jumps starting at 1.24T is b s
clearly seen; the average field - /

which the tube sees at this point 05k W

is B = (B,+B,)/2 = 0.82T. ook et ,
The ﬂux Jump Size decreases 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
exponentially with increasing B, (M

applied field. The magnetisation Figure 2: Virgin shielding curve at 4.2K.

152



1.5 !
- . 1
3 51 Tmin - 0.225Tmin
1.0 1.0+ AN
NN N
— | NN
051 A 0.5 - % NN
— — \
: -
= [
= 00F N s 00r A
(=} Es] ‘.\
= 3
B -0.5 - A AN T -05 - . A N )
-, Y K i
AR
NN \\: N J,W N AR w/
10 k- N -1.0 RN
~1.5 : -15 :
~3I -2 -1 o 1 2 3 -3 -2 -1 G 1 2 3
B (T) 5, (1)
1.5 5
1 LT .-
" 0.17Tmin o _0.124Tmin
[ I~ o
/,«\ M \\J RN ‘//\f/\\§
- Y N N Y - 7 N S
05k ¢ { 0.5 F \ N
= = 5
N 5\ | f— 5
s} - N O - 3
= 0.0 . \ = 0.0 \\
o N \ o \
3 \, = N
-0.5 | N -0.5 | \
A . A
\J . \ ‘N// E\ /
-1.0 k- N —-10 - A
~1.5 : ~1.5 i i I ! 1
-3 =2 -1 G 2 3 -3 =2 ~1 ¢} 2 3
£ fes,
B, | BG (M
5
L 0.093Tmin
LU /\
65k % AN
.
- \ \
=z \ |
00 -
E (OIS} N
5
S .
-0.5 \
ol \/
-1.5
-3 -2 =1 0 1 2 3
B (T)

Figure 3: Magnetisation loops at 4.5K and various applied field sweep rates.

curves at 4.5K (Figure 3) show an increase of flux jumping with sweep rate B,.
The width of the magnetisation loop is effectively constant for all B,. Other
measurements indicate that the position and size of flux jumps for given T, B, are
closely reproducible around subsequent loops. The flux jumps may be described
as "major" and "minor" jumps, the minor jumps being particularly noticeable at
0.225 and 0.31Tmin". These two regions will be discussed in turn.

The number of major jumps around the hysteresis loop clearly increases
with B, as observed in conventional superconductors. It is expected that the number
of jumps in the first quadrant Q7 (+8,, -M) will equal the number in the third
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Figure 4: Applied field sweep rate dependence of flux jump field B.

quadrant Q3, and that Q2 = Q4 = QI - 1*. This empirical rule is only partially
observed, for 0.124, 0.225 and possibly 0.17Tmin™.

Considering still only the major jumps, the flux jump field B;, may be
found from the magnetisation as the field from the maximal B, at which flux
jumping first occurs” (this assumes an ideal Bean model). Thus we find
B; = 1.73,1.84,2.13, 3.18T for 0.31, 0.225, 0.17, 0.124Tmin"’ respectively; the
dependence of B; on B, is shown in F1gure 4. At low sweep rates B, one expects’

1
logB, « 7 )

a

and for the behaviour to deviate from this at higher B,. Figure 4 suggests that this
may be the case for the above measurements, although a wider range of B, is really

required.
Figure 5 shows part of the shielding curve at 0.093Tmin", which may be

taken as the equilibrium curve,

together with the virgin curve at s
0.31Tmin™. Since the hysteresis oozt
loops do not change 20 r o3 tTmin”

significantly with sweep rate,
the two may be directly
compared to show a large
enhancement of flux trapping
over shielding such that
B,B,=0) = 1.0T compared
with B, = 0.48T. This effect
has previously been observed in
YBa,Cu,0,, tubes’™® and
explained in terms of the B, (T)

granular nature of HTS. It IS gio e 5. Shielding curves at 0.093Tmin’
well known that these materials (equilibrium curve) and 0.31Tmin".

B (1)

154



have inter- and intra-granular 5.

components to many of their ol 2,26, 0.31Tmin""
properties, and these may be B

quite clearly seen in a tubular 25 - ,
geometry. At low fields the ., I o
grains are totally shielded and ~ ~ - o

flux enters only into the e — -
intergranular network; at higher Ty Sm— e

fields the grains will be I ~

penetrated and hence trap flux, U I

producing the above R Y T amera
enhancement of B, compared to -

the ideal Bean model where
B, = B,,. Calculating J, from
the magnetisation loop yields
J("total") = 16500Acm?2.

The virgin shielding curve at 2.2K and 0.31Tmin” is shown in Figure 6
from which values of B, = 0.49T and J,(0, 2.2) = 7800Acm? are derived. Flux
jumps are observed in a similar way to 4.5K, but here the jumps are of an almost
constant size after the first flux jump at 1.1T, lower than at 4.5K. The subsequent
jumps are also very uniformly spaced. Full magnetisation loops at 3.2K and 2.2K
are given in Figure 7 and flux jump fields are found to be 1.70T and 1.56T
respectively. The decrease of B; is as expected at low T (Figure 8); B; initially
increases with decreasing T from 7, reaches a maximum, and decreases again.

The minor jumps which are observed in the 0.31Tmin hysteresis curves
show a marked effect with decreasing 7. At 4.5K the size of the jumps, AM?,
decreases exponentially with the field at which they occur, B. The decay is less
for 3.2K, and at 2.2K the minor jumps are of almost constant size. At the same
time, the number of minor jumps decreases with 7. This is illustrated in Figure 9
where although there is little pattern to the major jumps, the decreasing decay of
minor jumps is clear.

Figure 6: Virgin shielding curve at 2.2K and
0.31Tmin™%.
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Figure 7: Magnetisation hysteresis curves at 3.2K and 2.2K, 0.31Tmin™.
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To explain the disparity
between the flux jump field for
the major jumps and that at
which flux jumps are first
observed in the 4.5K and 2.2K
virgin curves, we suggest that
granular effects may again be
invoked. The flux jumping in
the virgin curves (Figures 2, 6)
corresponds to the minor jumps
in the hysteresis loops which
may therefore be identified with
the intergranular region. The
exponential decay of AM is not
altogether surprising since flux
jumping is a thermal process,
and a mechanism similar to the
exponential flux line hopping of
Anderson’s flux creep theory®
may be operating. As the
temperature is lowered flux
pinning becomes stronger, thus
reducing the exponential decay,
eventually tending to a constant
value at the lowest
temperatures. The major jumps
would then be associated with
bulk inter- plus intra-granular
properties.

Adiabatic flux jumping
theory? gives

B,

= [3p,

m

fj

3

-1
0.31Tmin

3.0

35
T(K)

4.0 45

Figure 8: Temperature dependence of flux

jump field B, at 0.31Tmin™".

.5

av L) 0.4
8 s
v a
@ s v o
9] b 7
0.3 . o "‘v‘ - Q.3 ~
- jol
o Pl
v T
e s ¢ gz <
a
- <
7 o B » 7 0.1
R V_:V FefeRos
. £ 0.0
- - - -1 3 2 3
f
8, (M
o 45K, e 32K, v 22K

Figure 9: Size of flux jumps at 2.2K, 3.2K and
4.5K vs. applied field at which jumps occur.

37 /8T

J,
C—-_T

3)

where C is the specific heat. The ratio of J, to d/./0T enters into (3) and may
explain the different flux jumping behaviours. The specific heat should be
practically the same for inter- and intra-granular regions, while it is known that J,
and dJ./06T are widely different. Thus unconventional flux jumping behaviour may
be expected. Further work is progressing to form a more quantitative basis for

these hypotheses.
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CONCLUSIONS

In summary, flux jumping has been examined in an HTS flux tube with
respect to applied field sweep rate and temperature dependencies. Flux jumping
behaviour is found to be in agreement with the empirical relations previously
observed in conventional superconductors, but novel effects are observed which are
attributed to the granular nature of HTS. Two regions of flux jumping behaviour
seem to be operating, the inter- and intra-granular. Flux jump fields are found to
be higher than those predicted for HTS.
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