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Abstract

This paper introduces the Twin Robots Scheduling Problem (TRSP), in which two

robots positioned at the opposite ends of a rail are required to deliver items to positions

along the rail, and the objective is to minimize the makespan. A proof of NP-hardness

of the TRSP is presented, along with exact and heuristic algorithms. Computational

results on challenging instances are provided.
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1 Introduction

We study the problem of scheduling two robots, denoted as the black robot and the white

robot. Each robot is assigned to a depot located at one of the ends of a rail; the depot of

the black robot is called the black depot and that of the white robot is the white depot.

The robots are responsible for a number of tasks, each of which consists of picking up an

item at its depot, delivering the item to a predefined location along the rail, and returning

to its depot. The objective is to minimize the makespan, while avoiding collisions between

robots. To the best of our knowledge, this problem has not yet been studied. We call it

the Twin Robots Scheduling Problem (TRSP).

An instance of TRSP has a trivial solution if the tasks of the black and white robots

never obstruct each other. On the other hand, if the locations of the tasks are intertwined

(i.e., the white robot has to cross over at least one item of the black robot and vice versa),
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the schedule of the robots have to be synchronized and the optimal solution may include

idle times.

The TRSP finds applications in the robotic industry where gantry robots are em-

ployed in the context of pick-and-place, assembly, and palletising or depalletising opera-

tions (Ranky 2003). A real-world example of the TRSP is depicted in Figure 1, where

twin robots mounted on a rail are used to palletize boxes (All Glass s.r.l. 2013). Note that

rail mounted gantry cranes are also employed in the loading and unloading operations

of containers in maritime terminals (Gharehgozli et al. 2013). Similar scheduling issues

arise in the context of automated parking garages (Mathijssen and Pretorius 2007), au-

tomated libraries (Dimitri et al. 2000) and narrow-aisle picking and retrieving operations

(Lee et al. 1996, Dotoli and Fanti 2005), where the TRSP naturally extends to a multidi-

mensional problem (i.e., robots are working on shelves or piles). As far as we are aware,

the novel aspects of the TRSP are that two robots operate simultaneously, the operations

are performed on a rail, and the tasks originate at a distinct depot for each robot.

Figure 1: Palletizing boxes with twin robots on a rail

An illustration of the problem is provided in Figure 2, where the white robot performs

the task at a distance 4 from its depot, the black robot performs the task at a distance 4

from its depot. Note that these two tasks do not obstruct each other.
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Figure 2: Illustration of TRSP.

The collision constraint is well known within the crane scheduling literature, and is

referred to as a “spatial constraint” (Lim et al. 2004), “inter-crane interference” (Ng 2005),

or more commonly “non-crossing” constraint (Zhu and Lim 2006, Lim et al. 2007, Meisel

2011, Boysen et al. 2012). However, these problems involve many other features such as

workload allocation among the cranes, release times for the jobs, and sets of cranes that do

not interact. We believe that the results of this study can be used for solving subproblems

arising in some crane scheduling problems.

Robotic cells have been widely studied (we refer interested readers to Wilhelm 1987

and Dawande et al. 2005), but most of the studies refer to flow shop architectures (Chen

and Su 1995) where a product has to be processed by a sequence of machines, and robots

are required to transfer the product among work stations. Problems with a single or a

double-grip gantry robot (Su and Chen 1996) have been studied in this context. Problems

in which a single robot performs operations on a line have also been investigated (Dror

et al. 1991, Stulman 1989), but we have not encountered any problem presenting the same

characteristics as the TRSP.

We now proceed with a formal description of the problem. The black robot must

perform the set of tasks B = {1, . . . ,m}, whereas the white robot is assigned the tasks

W = {m+ 1, . . . , n}. We assume that the positions of the tasks on the rail, are discrete,

the two robots have the same speed, and the pickup and delivery times are negligible.

Each task i ∈ B is located at a distance bi from the black depot, and each task j ∈ W

is located at a distance wj from the white depot. The distance between the two depots

is L. Without loss of generality, we assume that the tasks are indexed with respect to

decreasing distances from their depot, i.e. bi > bi+1 and wj > wj+1. If this assumption is

violated, the task lists may be sorted in O(n+L) time using the counting sort algorithm,

or O(n log n) time using the heapsort algorithm. The two robots are also expected to

respect a security distance of one unit from each other to avoid collisions. Finally, no

more than one task is associated with a position on the rail.

The remainder of this paper is organized as follows. In the following section, we derive

some properties of the problem and of its solution, and we prove that the TRSP is NP-

hard. In Section 3, we present two alternative integer linear programming formulations
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for the TRSP as well as a branch-and-bound algorithm based on an additive lower bound.

In Section 4, we present two constructive heuristics, one of which has a worst-case perfor-

mance guarantee of 3/2. In Section 5, we describe a set of benchmark instances and we

compare the performance of the three exact algorithms and of two heuristic algorithms.

Conclusions follow in Section 6.

2 Properties

Before proving that the TRSP is NP-hard, we introduce an effective way of representing

TRSP solutions and we show how to reduce the solution space by removing equivalent

solutions. We will employ a space-time Gantt chart, in which the x-axis represents the

time line and the y-axis represents the position of the robots on the rail. The black depot

is assumed to be located at (0, 0) and the white depot at (0, L). A solution is depicted

in Figure 3(a). Collisions between the robots can be detected by checking whether the

vertical distance between the two lines is less than 1.

The first result we present allows us to restrict the search space to solutions in which

both robots can only wait at their respective depots and never at intermediate positions

on the rail, because a solution of type 3(a) has an equivalent solution of type 3(b).

Proposition 1 Any optimal solution for the TRSP can be converted into an alternative

optimal solution in which both robots only wait at their depot.

Proof. Consider an optimal solution in which one of the robots does not wait at its

depot. If the wait occurs after the delivery location or at the delivery location, it can be

eliminated since there is no obstruction on the way back to the depot. If the wait is before

the delivery, the departure of the robot can be postponed to guarantee that there will be

no waiting, and the completion time of the task will not be affected. An example of such

a rescheduling is depicted in Figure 3(b). Applying the rescheduling to all tasks with a

wait at an intermediate location along the rail results in an optimal solution in which the

robots only wait at their respective depots. �

In order to prove that the TRSP is NP-hard we first introduce another combinatorial

problem and prove that it is also NP-hard. The PARTITION with Distinct Weights

(PARTITION-DW) is a search problem that returns an affirmative answer when, given

a set of positive integers bi, i ∈ S = {1, . . . , n} and a positive integer K, there exists a

partition P ⊂ S : |
∑

i∈P bi −
∑

j∈S\P bj| ≤ K.

Proposition 2 The PARTITION-DW is NP-hard.
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1 1

Figure 3: Waiting time at the depot.

Proof. We use a reduction from PARTITION. Given an instance of PARTITION with

ai, i ∈ S = {1, . . . , n}, we define M = n(n + 1), bi = (ai ×M) + i, for all i = {1, . . . , n},

and finally, K = n(n+1)/2. The PARTITION-DW instance has a feasible solution if and

only if the corresponding PARTITION instance has a feasible solution.

A PARTITION solution P ⊂ S is feasible if
∑

i∈P ai =
∑

j∈S\P aj . Therefore the

corresponding PARTITION-DW solution is feasible because |
∑

i∈P bi−
∑

j∈S\P bj | < n(n+

1)/2 = K. Assume that a PARTITION-DW solution P ⊂ S is feasible, i.e. |
∑

i∈P bi −∑
j∈S\P bj | ≤ K but

∑
i∈P ai 6=

∑
j∈S\P aj. Without loss of generality, we assume that

∑
i∈P ai >

∑
j∈S\P aj . The minimum value of

∑
i∈P bi −

∑
j∈S\P bj is attained when

∑
i∈P ai =

∑
j∈S\P aj +1 and P = {1}. In this case,

∑
i∈P bi−

∑
j∈S\P bj = M

∑
i∈P ai+

1− (M
∑

j∈S\P aj +K − 1) = M −K + 2 = K + 2 > K, resulting in a contradiction.

�

Proposition 3 TRSP is NP-hard.

Proof. We use a reduction from PARTITION-DW. Given a PARTITION-DW instance,

we construct a TRSP instance in which the white robot has to perform a task i at a

distance wi = 2ai from the white depot for each ai, i ∈ S and the black robot is assigned

a single task at a distance b1 = 2
∑

i∈S ai = 2A from the black depot. The value of L

is set to 2A + 1. The instance of PARTITION-DW has a feasible solution if and only if

the corresponding instance of TRSP has a makespan of 4A + 2K or less. An example

of transformation of an instance of PARTITION-DW with data {1, 2, 4} and K = 1 is

depicted in Figures 4 and 5.

Necessity: Assume that a partition exists such that |
∑

i∈P ai −
∑

j∈S\P aj | ≤ K.

Without loss of generality, assume that
∑

i∈P ai ≥
∑

j∈S\P aj , and hence
∑

i∈P ai ∈

[A/2, A/2 + K/2]. If the tasks in the first partition are assigned to be completed before

the pickup for the black robot, they will shift the makespan of this robot by 4
∑

i∈P ai −

2A ≤ 2A + 2K − 2A = 2K units, which will yield a makespan of 4A + 2K. If they are
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assigned to be completed after the pickup of the black robot, they will yield a makespan

of 2A+ 4
∑

i∈P ai ≤ 2A+ 2A+ 2K = 4A+ 2K.

Sufficiency: Assume that there exists a schedule with a makespan of 4A+ 2K or less.

Denote the set of tasks for the white robots scheduled before the pickup of the black robot

as P . Then the makespan is computed as max{4
∑

i∈P ai − 2A+ 4A, 2A + 4
∑

j∈S\P aj},

where the first term is the makespan determined by the black robot due to the shift of

its only task by tasks of the white robot in the first partition, and the second term is the

white robot’s makespan resulting from tasks in the second partition.

If the first term is the maximum, then 4
∑

i∈P ai − 2A + 4A ≥ 2A + 4
∑

j∈S\P aj ,

yielding
∑

i∈P ai ≥
∑

j∈S\P aj , and hence
∑

i∈P ai ≥ A/2. We also have 4
∑

i∈P ai −

2A+ 4A ≤ 4A+ 2K, reorganizing the terms of which gives
∑

i∈P ai ≤ A/2 +K/2. Then,
∑

i∈P ai ∈ [A/2, A/2 +K/2], which yields a feasible solution for PARTITION-DW.

If the second term is the maximum, then 4
∑

i∈P ai−2A+4A ≤ 2A+4
∑

j∈S\P aj, yield-

ing
∑

i∈P ai ≤
∑

j∈S\P aj , and hence
∑

j∈S\P aj ≥ A/2. We also have 2A+4
∑

j∈S\P aj ≤

4A + 2K, which yields
∑

j∈S\P aj ≤ A/2 +K/2 after reorganization of the terms. Then,
∑

j∈S\P aj ∈ [A/2, A/2 +K/2], which yields a feasible solution for PARTITION-DW. �

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

L = 2A+ 1=15
White depotBlack depot

Figure 4: An instance of PARTITION-DW with data {1, 2, 4}, converted into an instance
of TRSP.

L = 2A+ 1

Figure 5: Space-time Gantt chart of the converted instance.

We can also prove the following more general result:

Proposition 4 The generalization of TRSP which allows multiple items to be located at

each location is NP-hard in the strong sense.
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Proof. The proof follows from the fact that TRSP is a special case of the mentioned

problem in which all data are restricted to be less than or equal to L. �

Although the TRSP is NP-hard, it admits a straightforward lower bound as well as a

trivial solution, which in conjunction yield a general performance guarantee.

Proposition 5 Any heuristic for the TRSP which does not involve both robots waiting at

intersecting time slots have a performance guarantee of 2.

Proof. Given an instance of the TRSP with wi, i ∈ W and bi, i ∈ B, a lower bound on the

optimal solution value is max{
∑

i∈W 2wi,
∑

i∈B 2bi}. In the worst case, all tasks of one

robot can be performed in succession, yielding an upper bound of
∑

i∈W 2wi +
∑

i∈B 2bi.

The ratio of the upper bound to the lower bound is

ρ̄ = (
∑

i∈W

2wi +
∑

i∈B

2bi)/max{
∑

i∈W

2wi,
∑

i∈B

2bi} (1)

≤ 2max{
∑

i∈W

2wi,
∑

i∈B

2bi}/max{
∑

i∈W

2wi,
∑

i∈B

2bi} = 2. (2)

�

On the other hand, it can be proved that optimal solutions may require both robots

to wait, therefore it is not possible to restrict the search space to solutions in which one

of the robots never waits.

Proposition 6 An optimal solution may involve both robots waiting at non-intersecting

time slots.

Proof. Consider the instance in Figure 6, where the white robot is assigned to 2 tasks

at a distance of 10 and 11 from the depot, and black robot 3 tasks at distances 6, 7, and

8. The total distance between the robots is equal to 12. Note that the white robot has

a workload of 20 + 22 = 42, equal to that of the black robot (12 + 14 + 16 = 42). The

construction of the instance forces two conflicts between the robots, and allowing each

robot to wait once results in an optimal solution, rather than having the same robot wait

in both conflicts. The space-time Gantt chart for an optimal solution is given in Figure 6.

The optimal solution value is 46. �
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L = 12

Figure 6: Space-time Gantt chart for the example in Proposition 6.

3 Exact algorithms

We now present two integer programming formulations and a branch-and-bound algorithm

based on an additive lower bound. The first formulation is based on variables with time

indices, whereas the second formulation uses precedence variables. The two formulations

are solved by CPLEX 12.5 using as an initial upper bound the solution provided by the

First Fit Decreasing heuristic of Section 4.2. This solution is also used to initialize the

branch-and-bound algorithm.

3.1 Formulation with time indices

Our first formulation is based on two sets of binary variables, which are of pseudo-

polynomial number, as well as an auxiliary variable u equal tothe makespan. Let xti ∈

{0, 1} be equal to 1 if and only if the black robot starts performing task i ∈ B at time

t, and let ytj ∈ {0, 1} be equal to 1 if and only if the white robot starts performing task

j ∈ W at time t. Define Itij as the set of incompatible time indices, such as the instants

in which task j cannot start if task i started at time t. These sets can easily be defined a

priori. The resulting formulation is:

(TRSP 1) minimize u (3)

subject to t xti + 2bi ≤ u i ∈ B, t ∈ {0, . . . , T} (4)

t ytj + 2wj ≤ u j ∈ W, t ∈ {0, . . . , T} (5)

T−2bi∑

t=0

xti = 1 i ∈ B (6)

T−2wj∑

t=0

ytj = 1 j ∈ W (7)
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xti +
∑

q∈Itij

xqk ≤ 1 i, k ∈ B : i 6= k; t ∈ {0, . . . , T} (8)

ytj +
∑

q∈Itij

yqk ≤ 1 j, k ∈ W : j 6= k; t ∈ {0, . . . , T} (9)

xti +
∑

q∈Itij

yqj ≤ 1 i ∈ B, j ∈ W, t ∈ {0, . . . , T} (10)

ytj +
∑

q∈Itij

xqi ≤ 1 i ∈ B, j ∈ W, t ∈ {0, . . . , T} (11)

xti ∈ {0, 1} i ∈ B, t = {0, . . . , T} (12)

ytj ∈ {0, 1} j ∈ W, t = {0, . . . , T}. (13)

The objective function minimizes the makespan. Constraints (4) and (5) impose that any

black and white task must finish before the makespan is attained. Constraints (6) and (7)

state that each task has to be performed once. Constraints (8)–(11) forbid incompatible

pairs of tasks. Finally, (12) and (13) are the integrality constraints.

3.2 Formulation with precedence variables

A more compact formulation is obtained by using precedence variables. Let binary variable

zij ∈ {0, 1} be equal to 1 if and only if task i ∈ B ∪W starts before task j ∈ B ∪W , and

let variable si represent the time at which task i ∈ B ∪ W is reached by the robot (the

peak of the triangle associated with task i in the space-time Gantt chart). We also define

M as a large positive constant and tij, i ∈ B, j ∈ W , as the minimum time between the

white robot reaches location i and the black robot reaches location j in order to avoid a

collision, or vice versa. The value of tij is zero whenever the two tasks are not conflicting,

i.e. bi + wj ≤ L− 1. If the tasks are conflicting, then tij = |bi − wj + L− 1|. The TRSP

can be formulated as follows:

(TRSP 2) minimize u (14)

subject to si + bi ≤ u i ∈ B (15)

sj + wj ≤ u j ∈ W (16)

si ≥ bi i ∈ B (17)

sj ≥ wj j ∈ W (18)

zij + zji = 1 i, j ∈ B ∪W (19)

si − sj ≥ (wi + wj)zij −Mzji i, j ∈ W : i 6= j (20)
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si − sj ≥ (bi + bj)zij −Mzji i, j ∈ B : i 6= j (21)

si − sj ≥ tij −Mzji i ∈ B, j ∈ W (22)

si − sj ≤ tij +Mzij i ∈ B, j ∈ W (23)

zij ∈ {0, 1} i, j ∈ B ∪W. (24)

The objective function minimizes the makespan, and constraints (15) and (16) ensure

that all tasks are completed before the makespan. Constraints (17) and (18) set the

earliest start time for a task as the time to reach the task location, whereas (20)–(23)

avoid collisions among tasks. Constraints (24) force the precedence variables to be binary.

3.3 Additive lower bound

Formulation TRSP 1 involves a large number of variables, which limits its computational

reach. Formulation TRSP 2 is more compact than TRSP 1, but a big-M term is necessary

to linearize constraints (20)–(23), resulting in a weaker lower bound. Therefore, we have

devised an additive lower bound as an alternative.

Denote a partial solution for the TRSP by the set S = {(r, i, ui) : r ∈ {B,W}, j ∈

B ∪W}, where r specifies the robot, i specifies the task, and ui specifies the start time of

task i. Furthermore, B(S) ⊆ B and W (S) ⊆ W denote the set of tasks already assigned

within the partial solution S, respectively. The individual makespans for the robots are

denoted as CB(S), and CW (S). A lower bound for this partial solution is then

Clb(S) = max{CB(S) +
∑

i∈B\B(S)

2bi, CW (S) +
∑

j∈W\W (S)

2wj}. (25)

The resulting branch-and-bound algorithm is given below.
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Branch-and-bound

S = ∅;

List = {S}; // Insert the empty partial solution in the List

SBest = SFFD; // The result of the First Fit Decreasing heuristic

CBest = zFFD; // Best known solution value

While (List 6= ∅)

Select a partial solution S from the List;

If (Clb(S) < CBest)

If(B(S) = B and W (S) = W ) // Feasible solution

CBest=Clb(S);

SBest=S;

Else

For (i ∈ B \B(S))

Determine ui as the earliest possible start time of task i

List = List ∪ {S ∪ {(B, i, ui)} };

For (j ∈ W \W (S))

Determine uj as the earliest possible start time of task j

List = List ∪ {S ∪ {(W, j, uj)} };

Observe that for the branching step, the earliest start times of all possible candidate

tasks (O(n)) should be determined by checking against collisions with the tasks that have

already started or are scheduled to start later on the other robot (O(n)). This results in a

complexity of O(n2) per node. To alleviate this complexity, we have observed that a good

strategy is to branch first on the tasks of the robot with the lower individual makespan.

4 Constructive heuristics

We have also developed two constructive heuristics for the TRSP.

4.1 PairMatch algorithm

We now present a constructive heuristic algorithm, and prove that it has a worst-case

performance guarantee of ρ = 3/2. We first prove three lemmas to help us with the

overall proof.

Lemma 1 Given an instance with two tasks having distances bi and bj such that bi+bj ≤

L − 1, removing them from the task list of the black robot and adding a single task at a
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distance bk = bi+ bj to the task list B results in an instance, any feasible solution of which

can be converted into a feasible solution for the original instance. A symmetric argument

is also valid for the white robot and any pair of tasks.

Proof. Any feasible solution of the modified instance is still feasible if task bk is decom-

posed into tasks bi and bj . �

Lemma 2 Given an instance of TRSP with two tasks b1 ≥ ⌈L/2⌉, w1 ≥ ⌈L/2⌉, and

b1 + w1 ≥ L+ 1, the optimal makespan is Cmax = 2b1 + 2w1 − (L− 1).

Proof. We will analyze the makespan in two cases.

1. Assume that the white robot is scheduled to start immediately. For the optimal

solution, the black robot must be at a distance of one unit from the white robot at

time w1, which is consequently at a distance of L− 1−w1 from the black depot. To

reach this point, the black robot should start moving at time w1 − (L − 1 − w1) =

2w1−(L−1). Finally, the black robot will be back at its depot at 2b1+2w1−(L−1),

determining the makespan.

2. Assume that the black robot is scheduled to start immediately. For the optimal

solution, the white robot has to be at a distance of 1 unit from the black robot at

time b1, which is at a distance of L−1−b1 from the white depot. To reach this point,

the white robot should leave the depot at time b1−(L−1−b1) = 2b1−(L−1). Finally,

the white robot will be back at its depot at time 2b1 + 2w1 − (L − 1), determining

the makespan.

�

Lemma 3 Given an instance of TRSP with two tasks b1 ≥ w1 and w1 < ⌈L/2⌉, the

optimal solution value is Cmax = 2b1. Symmetrically, if b1 ≤ w1 and b1 < ⌈L/2⌉, the

optimal solution value is Cmax = 2w1.

Proof. In the first case, if both tasks start at time 0, the white robot arrives at its pickup

point before the black robot, and the makespan is determined by the black robot. The

proof of the second case is similar. �

The heuristic algorithm starts by aggregating tasks of the black and white robots as

follows. If the distance of a task from its depot is less than ⌈L/2⌉, it is combined with
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the next task of the same robot in the ordered list, while the resulting task has an overall

processing time lower than ⌈L/2⌉. This process results in a new instance in which all

tasks have a distance that is greater or equal than ⌈L/2⌉, with at most one task shorter

than ⌊L/2⌋ for each robot. Lemma 1 guarantees that a solution for this instance (which

may involve multiple items at the same location) can be translated into a feasible solution

for the original instance. Denote the aggregated task lists as B′ and W ′. For simplicity,

we reindex the two new task lists starting from 1, and we denote the distances associated

with tasks in B′ and W ′ as b′i and w′
i, respectively.

Next, the tasks of the black and white robots with matching indices are paired (as

long as both robots have an available task). If the tasks in the pair both have distances

b′i and w′
i greater than ⌈L/2⌉, they are scheduled according to Lemma 2, which leads to

a makespan increase equal to 2b′i + 2w′
i − (L − 1). If, on the other hand, b′i + w′

i ≥ L

and bi < ⌈L/2⌉ or wi < ⌈L/2⌉, the pair of tasks can be scheduled according to Lemma

3 and the makespan increases by max{2b′i, 2w
′
i}. Finally, if b′i + w′

i ≤ L − 1, both tasks

can be appended to the end of the schedules of the associated robots without creating any

conflict. The tasks that could not be paired because either |B′| > |W ′| or |W ′| > |B′|

are performed at the end of the sequence of paired tasks, leading to an increase of the

makespan equal to the sum of their processing times. We call this algorithm PairMatch,

and provide the formal description below.
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PairMatch

Cmax = 0;

For(i = 1, . . . , B − 1)

If (bi + bi+1 ≤ L− 1)

bi+1 = bi+1 + bi;

bi = 0;

For(j = 1, . . . ,W − 1)

If (wj + wj+1 ≤ ⌈L− 1⌉)

wj+1 = wj+1 + wj ;

wj = 0;

// Remove jobs with bi = 0 and wj = 0 from B and W to obtain B′ and W ′

B′,W ′;

For (i = 1, . . . ,min{|B′|, |W ′|})

If ((b′i ≥ ⌈L/2⌉) and (w′
i ≥ ⌈L/2⌉)) // Lemma 2

Cmax = Cmax + 2b′i + 2w′
i − (L− 1);

Else If (b′i +w′
i ≥ L) // Lemma 3

If (b′i < ⌈L/2⌉) C = C + 2b′i;

Else Cmax = Cmax + 2w′
i;

Else

Cmax = Cmax +max{2b′i, 2w
′
i};

// Append remaining jobs

If (|B′| > |W ′|)

For(i = |W ′|+ 1, . . . , |B′|) Cmax = Cmax + 2b′i;

If (|W ′| > |B′|)

For(j = |B′|+ 1, . . . , |W ′|) Cmax = Cmax + 2w′
j ;

The aggregation operation, reordering, and scheduling steps all take O(n) time, deter-

mining the complexity of the PairMatch algorithm as O(n).

Proposition 7 The PairMatch algorithm has a performance guarantee of ρ = 3/2.

Proof. Without loss of generality, we assume that
∑

i∈B′ bi ≥
∑

j∈W ′ wj. A valid lower

bound on the solution value under this assumptions is Clb =
∑

i∈B′ 2bi.

Case 1: |B′| > |W ′|.

Subcase 1a: w|W ′| ≥ ⌈L/2⌉.

The makespan is then
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Cmax =

|W ′|∑

i=1

[2bi + 2wi − (L− 1)] +

|B′|∑

i=|W ′|+1

2bi =

|W ′|∑

i=1

[2wi − (L− 1)] +

|B′|∑

i=1

2bi. (26)

Since wi ≤ (L− 1) and
∑|B′|

i=1 bi ≥
∑|W ′|

i=1 wi:

Cmax ≤

|W ′|∑

i=1

wi +

|B′|∑

i=1

2bi ≤

|B′|∑

i=1

3bi. (27)

Therefore the ratio is ρ = Cmax/Clb = 3/2. In each of the following subcases, we show

that the ratio remains the same.

Subcase 1b: w|W ′| < ⌈L/2⌉. The makespan is:

Cmax =

|W ′|−1∑

i=1

[2bi + 2wi − (L− 1)] +

|B′|∑

i=|W ′|

2b1 (28)

=

|W ′|−1∑

i=1

[2wi − (L− 1)] +

|B′|∑

i=1

2bi ≤

|W ′|∑

i=1

wi +

|B′|∑

i=1

2bi ≤

|B′|∑

i=1

3bi. (29)

Case 2: |B′| = |W ′|.

Subcase 2a: b|B′| ≥ ⌈L/2⌉, w|W ′| ≥ ⌈L/2⌉. The makespan is

Cmax =

|B′|∑

i=1

[2bi + 2wi − (L− 1)] ≤

|B′|∑

i=1

[2b1 + wi] ≤

|B′|∑

i=1

3bi. (30)

Subcase 2b: b|B′| ≥ ⌈L/2⌉, w|W ′| < ⌈L/2⌉. The makespan is

Cmax =

|B′|−1∑

i=1

[2bi+2wi− (L−1)]+2b|B′| ≤

|B′|−1∑

i=1

[2bi+wi]+2b|B′|+w|B′| ≤

|B′|∑

i=1

3bi. (31)

Subcase 2c: b|B′| < ⌈L/2⌉, w|B′ | ≥ ⌈L/2⌉. The makespan is

Cmax =

|B′|−1∑

i=1

[2bi+2wi− (L−1)]+2w|B′ | ≤

|B′|−1∑

i=1

[bi+2wi]+b|B′|+2w|B′| ≤

|B′|∑

i=1

3bi. (32)

Subcase 2d: b|B′| < ⌈L/2⌉, w|B′| < ⌈L/2⌉. If b|B′| ≥ w|B′|, the makespan is
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Cmax =

|B′|−1∑

i=1

[2bi+2wi− (L−1)]+2b|B′| ≤

|B′|−1∑

i=1

[2bi+wi]+2b|B′|+w|B′| ≤

|B′|∑

i=1

3bi. (33)

Otherwise it is equal to

Cmax =

|B′|−1∑

i=1

[2bi+2wi− (L−1)]+2w|B′ | ≤

|B′|−1∑

i=1

[bi+2wi]+b|B′|+2w|B′| ≤

|B′|∑

i=1

3bi. (34)

Case 3: |B′| < |W ′|.

Subcase 3a: b|B′| ≥ ⌈L/2⌉. The makespan is

Cmax =

|B′|∑

i=1

[2bi + 2wi − (L− 1)] +

|W ′|∑

i=|B′|+1

2wi =

|B′|∑

i=1

[2bi − (L− 1)] +

|W ′|∑

i=1

2wi (35)

≤

|B′|∑

i=1

bi +

|W ′|∑

i=1

2wi ≤

|B′|∑

i=1

3bi. (36)

Subcase 3b: b|B′| < ⌈L/2⌉. The makespan is

Cmax =

|B′|−1∑

i=1

[2bi + 2wi − (L− 1)] +

|W ′|∑

i=|B′|

2wi =

|B′|−1∑

i=1

[2bi − (L− 1)] +

|W ′|∑

i=1

2wi (37)

≤

|B′|∑

i=1

bi +

|W ′|∑

i=1

2wi ≤

|B′|∑

i=1

3bi. (38)

�

As the final result, we now prove that the performance guarantee is tight.

Proposition 8 The performance guarantee of the PairMatch algorithm is tight.

Proof. Consider an instance of the TRSP with L = 11, b1 = 10, w1 = 5, w2 = 3, w3 = 2.

The optimal solution value is 20, which is equal to the workload of both robots. The

PairMatch algorithm will aggregate the tasks of the white robot, resulting a single task

with w′
1 = 10. The two tasks will be scheduled according to Lemma 2 to yield a makespan

of 30, and hence the performance ratio of 3/2 will be attained. Figure 7a depicts the
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optimal solution and Figure 7b depicts the solution of the PairMatch algorithm for the in-

stance. Consequently, Lemma 2 will schedule the two tasks with a total makespan of 30. �

L = 11(a) (b)

Figure 7: Instance described in Proposition 8.

4.2 First Fit Decreasing algorithm

We now present a second constructive heuristic which performs very well despite its sim-

plicity. The idea of the heuristic is to schedule a single task at a time, on the robot with

the shorter makespan. The task to be scheduled is selected as the one with the largest

distance time among the tasks that can start the earliest. We call this algorithm as First

Fit Decreasing (FFD), and provide the formal description below. In the pseudo-code be-

low, we write uk to denote the earliest possible start time of task k ∈ B ∪W . We denote

the set of tasks already assigned as B and W .

FFD

S = ∅;

While (B(S) 6= B) or (W (S) 6= W )

If (CB(S) < CW (S)) or (W (S) = W )

Determine umin = mink∈B\B(S){uk};

Select i ∈ B \B(S) such that bi = maxk∈B\B(S):uk=umin
{bk};

S = S ∪ {(B, i, umin)};

Else

Determine umin = mink∈W\W (S){uk};

Select j ∈ W \W (S) such that wj = maxk∈W\W (S):uk=umin
{wk};

S = S ∪ {(W, j, umin)};

Every time a new task is to be appended (O(n) times), all possible candidate tasks

(O(n)), should be checked for collisions against the tasks that have already started or are

17



scheduled to start later on the other robot. Since we select the robot with the shortest

makespan at every iteration, there can be at most one such task. Consequently, the

complexity of the FFD algorithm is O(n2).

5 Computational Results

The algorithms presented in the two previous sections have been implemented using C++

and CPLEX 12.5, and computational experiments were performed on the IRIDIS 4 com-

puting cluster having 2.6 GHz cores with 4GB of memory per core.

Our first test instances were generated randomly, with each position having a 40%

probability of housing a task for the black robot, 40% probability of housing a task for

the black robot, and 20% probability to be empty. Initial experiments have shown that

instances having an uneven workload between the two robots are extremely easy, and are

solved to optimality within less than a second, even for hundreds of tasks for each robot.

Consequently, we have focused our search on instances with a performance guarantee of

ρ̄ ≥ 1.99. Surprisingly, many of these instances also turned out to be very easy, and

varying the sparsity of jobs did not seem to have an effect on the difficulty of the instance.

In order to generate difficult instances, we have linked the random instance generator

with the solver, and we have specifically looked for instances that would take more than

one CPU second to be solved. Our search resulted in 50 such instances, each of which

required a few CPU seconds to be generated. Although having no more than 27 tasks in

total, the instances force all three exact algorithms to struggle in order to prove optimality.

The results of the exact algorithms and the heuristic algorithms on the difficult in-

stances are presented in in Tables 1 and 2, respectively. Table 1 also includes the details

about the number of tasks each instance involves. The worst performance belongs to

TRSP1, the root node relaxation of which could not be solved within two hours of CPU

time for 11 out of the 50 instances. It successfully solves two instances to optimality,

and the average gap for the remaining 37 instances is 57%. TRSP2 successfully solves

34 instances, and the average gap for the remaining 16 instances is 0.5%, with an overall

average computing time of 2767 seconds. The branch-and-bound algorithm has the best

performance. It successfully solves 40 instances, with an average gap of 0.6% for the re-

maining 10, and an overall average computing time of 1897 seconds. It should be noted

that the unsolved instances for TRSP2 and the branch-and-bound algorithm do not co-

incide, i.e. TRSP2 can solve four instances that the branch-and-bound algorithm cannot

solve, and the branch-and-bound algorithm can solve 10 instances that TRSP2 cannot

solve. The optimal solution values proved are denoted in boldface in Table 2.

Regarding the heuristic algorithms, the PairMatch algorithm has a consistent perfor-
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mance, with minimum, average, and maximum deviations of 31.9%, 39.7%, and 46.8%

from the best known or optimal solution value, respectively. Evidently, the scheduling

approaches described in Lemmas 2 and 3 restrict one of the robots to wait, which results

in a performance that is quite close to the performance guarantee. The FFD algorithm

has a much better performance, finding the optimal solution in eight out of 50 instances,

and having an average deviation of 1.8% and a maximum deviation of 10.8% from the best

known or optimal solution value. Both heuristics take less than 0.01 second, so no CPU

times are reported for these algorithms.

6 Conclusions

We have introduced, modeled, and solved the problem of scheduling twin robots on a

line. A proof of NP-hardness was presented, along with some useful problem properties.

Three exact algorithms and two heuristic algorithms were developed, one with a perfor-

mance guarantee of 3/2. The results show that the problem can be solved efficiently for

large size instances with uneven workload for the robots, can be rather challenging for

some rare instances with equal workload. Among the three exact algorithms presented,

the branch-and-bound algorithm exhibits the best computational performance. The Pair-

Match heuristic, which has a worst-case ratio of 3/2, has an empirical performance that

almost matches this ratio and is overwhelmingly overperformed by the FFD heuristic. A

meaningful extension of this problem is the on-line version in which the tasks are revealed

dynamically. For related problems, see Jaillet and Wagner (2008, 2010).
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Table 1: Results of the exact algorithms on the difficult instances
TRSP1 TRSP2 Branch-and-bound

Final Gap CPU time Final Gap CPU time Final Gap CPU time
Inst. n L |B| |W | (%) (sec.) (%) (sec.) (%) (sec.)

1 13 20 7 6 1.4 7200.0 0.0 20.2 0.0 14.8
2 16 20 8 8 19.0 7200.0 0.0 2668.2 0.0 5964.6
3 13 20 6 7 1.3 7200.0 0.0 15.4 0.0 2.9
4 15 20 8 7 9.8 7200.0 0.0 771.1 0.0 325.5
5 14 20 7 7 7.8 7200.0 0.0 76.2 0.0 25.9
6 13 20 7 6 0.8 7200.0 0.0 16.8 0.0 16.7
7 16 20 8 8 N/A 7200.0 0.0 3498.8 0.7 7200.0
8 12 20 5 7 N/A 7200.0 0.0 2.9 0.0 1.3
9 12 20 6 6 0.0 1918.1 0.0 4.4 0.0 3.5

10 14 20 7 7 0.0 6968.4 0.0 87.2 0.0 214.0
11 19 25 9 10 83.3 7200.0 0.7 7200.0 0.0 79.2
12 18 25 9 9 81.5 7200.0 0.0 0.1 0.0 5.4
13 20 25 11 9 89.3 7200.0 0.7 7200.0 0.0 2.4
14 21 25 11 10 91.0 7200.0 0.0 3.9 0.0 2.6
15 12 25 6 6 N/A 7200.0 0.0 4.8 0.0 1.3
16 13 25 6 7 3.6 7200.0 0.0 5.2 0.0 8.2
17 16 25 8 8 22.2 7200.0 0.0 0.0 0.0 1.4
18 13 25 5 8 N/A 7200.0 0.0 2.0 0.0 9.7
19 18 25 9 9 29.2 7200.0 0.0 0.0 0.0 18.6
20 17 25 9 8 27.7 7200.0 0.0 0.1 0.0 4.8
21 18 30 8 10 79.6 7200.0 0.4 7200.0 0.4 7200.0
22 19 30 10 9 87.8 7200.0 0.4 7200.0 0.4 7200.0
23 18 30 10 8 86.9 7200.0 0.0 4573.9 0.0 7.6
24 17 30 7 10 79.7 7200.0 0.7 7200.0 0.0 3.1
25 19 30 9 10 84.5 7200.0 0.6 7200.0 0.0 431.1
26 16 30 8 8 15.5 7200.0 0.0 5892.1 0.5 7200.0
27 14 30 7 7 5.3 7200.0 0.0 99.6 0.0 642.0
28 15 30 9 6 58.0 7200.0 0.0 432.3 0.0 1130.4
29 19 30 10 9 84.6 7200.0 0.3 7200.0 0.3 7200.0
30 15 30 8 7 12.2 7200.0 0.0 755.0 0.0 6120.6
31 19 35 9 10 91.5 7200.0 0.0 468.9 0.0 6.2
32 20 35 11 9 91.0 7200.0 0.0 2.2 0.0 522.1
33 24 35 13 11 91.8 7200.0 0.5 7200.0 0.0 104.8
34 19 35 11 8 82.2 7200.0 0.0 0.1 0.0 43.7
35 21 35 12 9 78.2 7200.0 0.0 0.1 2.6 7200.0
36 20 35 9 11 91.0 7200.0 0.5 7200.0 0.0 2.1
37 23 35 11 12 91.5 7200.0 0.5 7200.0 0.0 3.0
38 23 35 12 11 91.9 7200.0 0.0 0.5 0.0 3.0
39 23 35 11 12 N/A 7200.0 0.5 7200.0 0.0 2.9
40 24 35 12 12 92.2 7200.0 0.9 7200.0 0.0 34.3
41 22 40 10 12 N/A 7200.0 0.0 3742.7 0.0 2.8
42 26 40 12 14 90.6 7200.0 0.0 4.4 0.0 432.7
43 27 40 13 14 N/A 7200.0 0.0 0.2 0.0 5653.9
44 24 40 11 13 N/A 7200.0 0.2 7200.0 0.2 7200.0
45 27 40 13 14 N/A 7200.0 0.4 7200.0 0.0 3.5
46 24 40 12 12 91.0 7200.0 0.0 4.2 0.0 2.5
47 25 40 12 13 N/A 7200.0 0.4 7200.0 0.2 7200.0
48 21 40 11 10 90.0 7200.0 0.0 0.1 0.8 7200.0
49 20 40 11 9 87.7 7200.0 0.0 0.0 0.0 998.3
50 25 40 12 13 N/A 7200.0 0.2 7200.0 0.2 7200.0

Avg. 57.0 7089.7 0.2 2767.1 0.1 1897.1
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Table 2: Results of the heuristic algorithms on the difficult instances
PairMatch FFD Best known

Inst. Value Deviation (%) Value Deviation (%) or Optimal
1 186 31.9 145 2.8 141

2 251 41.8 181 2.3 177

3 218 38.9 159 1.3 157

4 235 37.4 175 2.3 171

5 233 41.2 169 2.4 165

6 171 46.2 117 0.0 117

7 200 37.9 145 0.0 145

8 192 42.2 137 1.5 135

9 165 43.5 121 5.2 115

10 177 39.4 127 0.0 127

11 382 38.4 286 3.6 276

12 348 41.5 248 0.8 246

13 374 37.5 274 0.7 272

14 404 41.3 288 0.7 286

15 290 36.8 228 7.5 212

16 318 43.2 246 10.8 222

17 300 42.9 216 2.9 210

18 282 36.9 208 1.0 206

19 304 35.7 228 1.8 224

20 276 46.8 194 3.2 188

21 379 38.8 273 0.0 273
22 369 40.3 263 0.0 263
23 434 40.0 313 1.0 310

24 392 38.0 289 1.8 284

25 484 46.7 351 6.4 330

26 284 41.3 201 0.0 201

27 225 34.7 169 1.2 167

28 314 40.8 227 1.8 223

29 406 39.5 301 3.4 291
30 256 36.9 187 0.0 187

31 568 40.6 406 0.5 404

32 526 37.7 386 1.0 382

33 588 39.3 436 3.3 422

34 468 39.3 348 3.6 336

35 436 43.4 316 3.9 304

36 546 43.7 384 1.1 380

37 568 40.6 406 0.5 404

38 606 43.6 428 1.4 422

39 624 40.5 450 1.4 444

40 604 37.3 442 0.5 440

41 694 37.7 505 0.2 504

42 542 33.5 411 1.2 406

43 710 37.6 517 0.2 516

44 704 38.3 514 1.0 509
45 776 38.1 563 0.2 562

46 606 40.3 433 0.2 432

47 775 37.4 573 1.6 564
48 530 38.7 385 0.8 382

49 461 40.5 329 0.3 328

50 716 39.0 517 0.4 515
Avg. 39.7 1.8
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