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Doctor of Philosophy

Colour Object Recognition Using Shape-based Aspects

by Richard Ian Taylor

One of the main aims of Computer Vision research is the recognition of three-dimensional
objects in two-dimensional images. Object recognition can only be achieved if the system has
some knowledge, or a model, of the objects that may appear in the scene.

This thesis is concerned with the development of a model for three-dimensional objects which
is amenable to the identification of objects in real, full-colour, images. The model presented is
viewer-centred, representing the object as a list of unique two-dimensional views, or Aspects.
Each Aspect represents all the views in which a given set of object surfaces are visible, either
fully or partially. An Aspect is thus described primarily in terms of the two-dimensional shapes
which correspond to the projections of the object surfaces. Additional surface information, such
as colour and texture, can easily be attached to the representation since it is face-based rather
than edge-based. The decomposition of complex objects into simpler parts is also addressed.

The recognition of objects in real images is demonstrated by first segmenting the colour image
into consistent regions using a novel combination of region-growing and the TekHVC colour
space. Regions which potentially correspond to the same object surface are then grouped
together and the shape of the boundary is examined using a new two-dimensional shape
descriptor called the Fractal Shape Signature. Identified shapes are then compiled into a data-
structure called the Shape Association Graph which has the same form as an object Aspect and
can therefore be matched without any complex transformations.
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1 Introduction

Vision is something we all take for granted but this one sense is so useful that we would
be completely lost without it. Over the last few decades many researchers have been
working towards the goal of giving computers sight: the field of Computer Vision has
come a long way from the early experiments with poor quality images but it still has
a long way to go to achieve even a small fraction of the performance of the human

visual system.

One of the problems in Computer Vision which has attracted a lot of attention is
the recognition of three-dimensional objects in images. There are many applications
where this ability is desirable and of course it is essential for general-purpose vision.
As a step toward general object recognition, the aim of the work described in this thesis
is to develop a compact model of three-dimensional objects and to show how objects

described by such models can be identified in real images.

Over the last few years there has been significant improvement in the performance
(and a reduction in cost) of imaging hardware. We now have access to good quality,
full colour, images which are believed to be optically superior to those captured by the
human visual system. Although colour cannotsolveall our problems, it can often make
things much easier. In a very tightly constrained system we can often recognise objects
solely by their colour (eg. the balls in snooker): in a less constrained system colour is
more likely to be used as well as other features like shape and texture. Consider the
two images in figure 1.1, both show the same view of the same car. It is quite easy to
see that both images contain a racing car but in the colour image, if we know that a
Williams is blue and yellow with bold red letters on the wings, then we can tell very

quickly what type of racing car is in the picture.



(b) Colour image of racing car

Figure 1.1: Monochrome vs Colour



A digital image is just a huge array of thousands of pixels. In order to get a
more manageable representation, the first step in most Computer Vision systems is to
segment the image into consistent parts. By consistent we mean areas which share
some common feature such as colour or texture. This thesis will concentrate on the
use of colour as the feature for segmentation but will bear in mind the extension of the

techniques described to the handling of textured surfaces.

Image segmentation usually involves looking for groups of pixels where the features
are changing (ie. edges) or where the features are similar (ie. regions). Therefore, in
order to segment an image on the basis of colour we need a model of colour which
will enable the consistent measurement of differences in colour between pixels. This
thesis is therefore initially concerned with the problems of colour measurement and
the application of colour metrics to image segmentation. A novel approach to colour

measurement is proposed and algorithms for colour segmentation are evaluated.

Given a segmented image there is little agreement on the best way forward to
recognising objects. Any approach to object recognition is greatly influenced, if
not completely determined, by the way in which objects are modelled. We have
already noted that in the general case colour or texture is not enough and that some
characterisation of an object’s shape is likely to be required. Since recognition is
the process of finding instances of models in images, it is logical that models which
use features that appear directly in images (ie. two-dimensional features) will be
easier to identify than models which require complicated transformations between

two-dimensional (2D) image features and three-dimensional (3D) model features.

The approach proposed in this thesis is therefore to model 3D objects as a number
of 2D views, or Aspects, which fully describe the object in a manner which is amenable
to locating it in an image. The 2D features chosen are the outlines of the segmented
image regions, which correspond to the projections of object surfaces. The second part
of this thesis will deal with the description of these 2D boundaries, bearing in mind
that they are the projections of 3D surfaces, and a new 2D shape description based on
the principles of Fractal Geometry will be presented. The third part of the thesis will

then use this description to develop image and object representations with the same



form and will demonstrate how they can be matched to achieve object recognition.

Using these representations we can think of a scene as being described by four
layers as illustrated in figure 1.2. The bottom layer (pixels) is the starting point and
the top layer (objects) is the final objective: in between we have regions (dotted lines)
and shapes (dashed lines). How we move from one layer to the next is discussed in
the following chapters but we should not limit ourselves to thinking of this as four
separate stages. There is no fundamental reason why the image should be completely
segmented into regions, just as there is no reason why all the regions should be tested

for all shapes or why all shapes should be tested for all objects.

There is a tendency for Computer Vision systems to slip into a pipeline approach
simply because processes like segmentation and shape analysis are thought of in
isolation without consideration of a global visual process. Although the following
chapters consider the transitions between layers in sequence, we should bear in mind
that all the layers can interact and in the final chapter we will discuss this interaction

in more detail.
The remainder of this thesis is divided up as follows,

Chapter 2, a review of the currently available colour models and some of the

algorithms which have employed them for segmenting colour images.

Chapter 3, two new colour segmentation algorithms are presented and demon-
strated using three different colour models. A full comparison is made and the best

combination is selected for this application.

Chapter 4, a review of existing approaches to the description of two-dimensional
shapes. The problems of consistent representation are discussed and the specifications

of an ideal shape description are drawn up.

Chapter 5, a new shape description, the fractal signature, is described and compared
toan established method. Results are also given for the recognition of two-dimensional
shapes from three-dimensional viewpoints to facilitate the extension of the technique

to identifying the 2D projections of general 3D surfaces.
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Chapter 6, a review of the literature on previous three-dimensional object recogni-
tion systems. Both object-centred and viewer-centred paradigms are discussed and

compared.

Chapter 7, a new object recognition system is described which uses viewer-centred
object models. Multiple views, or aspects, are used to describe objects in a manner
similar to the description extracted from the image. Matching of object models to

extracted image features is discussed and demonstrated.

Chapter 8, the previous chapters are summarised and applications of the newly

presented algorithms are discussed.



2 Colour Image Segmentation

Early computer vision systems were restricted to the use of monochrome or so-called
grey-level images. Now that hardware that can handle colour images is readily
available, researchers have begun to take advantage of the strong visual cues provided
by colour. Indeed, colour is the main cue in Ballard’s renowned Animate Vision [4]

system where objects are represented by their colour histograms.

In chapter 1 we discussed the need for defining exactly what colour is so that we can
segment parts of an image which are “uniformly” coloured. In the following sections
we will first look at how colour has been defined in the past and then go on to see how

these definitions have been used in the segmentation of colour images.

2.1 Colour Spaces

A colour space is basically a coordinate system for specifying a set of colours. In a
monochrome system our colour space is simply a straight line representing a range of
intensities ie. a 1-dimensional space. In a colour system we have a chromatic content
as well as an intensity content, this chromatic content is itself two-dimensional since
colours have the two independent properties of hue and purity. Hence, a colour space
will be 3-dimensional to allow colours to vary independently in intensity (light-dark),

hue (red, yellow, green, cyan, blue, magenta) and purity (pale-bright).

Colour is a subjective feature and much work has been done on colour theory and
perceptual models [22, 63, 64]. Many colour spaces have been developed but here we
will concentrate on those spaces which have been used, or show promise for use, in

computer vision systems.



2.1.1 CIE Colour Standard

For the purpose of standardisation the Commission Internationale de I’Eclairage (CIE)
defined, in 1931, the wavelengths of the so-called primary colours: red at 700nm, green
at 546.1nm and blue at 435.8nm. However, these are not true primaries since they
cannot be combined additively to produce all the spectral colours. Hence, the CIE
also defined three primary colours (X,Y,Z) which could be combined, all with positive
weights, to produce all visible colours (the weights to produce all the visible spectral
colours were tabulated in 1nm steps). These primaries have become an international

standard for specifying colour.

The CIE colour space is shown in figure 2.1. Planes X +Y + Z = k contain colours of
equal intensity k. The three primaries are themselves invisible, all visible colours are
contained within the horseshoe-base-pyramid shown. The bright, saturated, colours
run around the edge of the base of the pyramid and get paler towards the white-point
in the “centre”. Greys run from the white-point to the origin ie. the grey-scale is a

simple projection of the three dimensional colour space onto a one dimensional line.

By normalising colours for intensity we can produce chromaticity values which are

independent of the amount of luminous energy,

__ X Y L Z
" Xx+v+z2 VT xX1Yy+2 T XY 12

.1)

ie. we project all colours onto the plane z + y + z = 1. Given z and y we can determine
zsince z = 1 — z — y, therefore z is really redundant. If we project this plane onto the

plane z = 0 then we obtain the CIE chromaticity diagram show in figure 2.2.

The curved part of the horse-shoe boundary contains all the spectrally pure colours
(wavelengths given in nanometres) and the interior (plus the straight part of the
boundary) contains combinations of them. The whole region represents all visible
colours, discounting luminance-related effects eg. brown is “dark orange” just as

black is “dark white”.

A useful property of the CIE chromaticity diagram is the way colours combine.



Figure 2.1: CIE Colour Space

Given a pair of colours, any colour on the line between them can be generated by
combining them with some positive weights. This means that given three “primary”
colours, the gamut of colours that can be generated from them (with positive weights)
are those colours lying in the triangle with vertices at those primary colours. Since
the base of the CIE space is convex and not triangular, it follows that there is no set
of three visible primaries which can generate all visible colours. This is not generally
a problem since a reasonable choice of primaries can cover most of the visible colours.
To illustrate this, figure 2.3 shows the part of the diagram obtained from a typical set

of red, green and blue primaries.

Whilst CIE space is a useful reference, there is a problem in that equal geometric
distances within the space do not, in general, correspond to equal perceptual changes
in colour. In 1976 the CIE developed the CIELUV space [30] to meet this need. If
the position of white is defined as (X,,,Y,, Z,) then the space is defined for X < X,



0 0.1 02 03 04 05 06 07

Figure 2.2: CIE Chromaticity Diagram

Figure 2.3: RGB Gamut

10
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Y <Y,and Z < Z, as

1
3

116 (L) -16 X >0.01
rr = (”w) Yu = 2.2
903 (£) L <0.01
v = 13(w' —ul)L* (2.3)
v* = 13(v' - v),)L* (2.4)
where,
, 4X . )%
YT Xty +3z ' T X+15Y 132 25)
) 4X, ) 9Y,, 26

Yo T X TV 15Y, +3Z, * " X, +15Y, + 37,

This CIELUV space is based on the same opponent-colour theory that has been used
to describe human colour vision [50]. The principle behind opponent-colour theory is
that colours are encoded as light-dark, red-green and yellow-blue ie. a colour cannot
be light and dark, or red and green, or yellow and blue, but a colour can be red and
yellow, or light and blue. In CIELUV, L* represents lightness, zero means black and
the more positive the value the lighter the colour, up to 100 which is white; positive
values of u* represent reds and negative values represent greens; similarly, positive v*

corresponds to the yellows and negative values correspond to the blues.

The shape of the CIELUV space is an irregular spheroid which is a rounded version
of the CIE space (figure 2.1). Corresponding to the CIELUV space is the Uniform
Chromaticity Scales (UCS) diagram: this is a plot of u’ against v’ and is a linear
transformation of the xy Chromaticity diagram. Standard colours (independent of

intensity) can therefore be described as a (u’, v’) point or an (z, y) point.

The deviations from uniformity in the UCS diagram occur mostly at the limits of the
spectral locus (ie. the boundary between visible and invisible colours). Fortunately,
the colour gamut used by most computer vision hardware lies in the most uniform

part of the diagram.

As well as the LUV space (of which there are several variations), the CIE also defined
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b* red
)
green 100
T T *
-100 100 4
-100]
blue

Figure 2.4: CIELAB Colour Space

a colour space called CIELAB. This has similar properties to CIELUV but was designed

to correspond to the empirical Munsell Colour System [73], it is defined as

o = ) ()]
() - (2]

L* is the same as in CIELUV. This is clearly a non-linear transformation of the

(&

b*

chromaticity diagram, as illustrated by figure 2.4 which shows the transformation
into the a*b* plane of the RGB triangle in figure 2.3 for Y = 50. The CIELAB space is
believed to be a slightly less uniform than CIELUV but, never the less, is often used

because the Munsell system has been widely used in industry.

2.1.2 RGB Colour Model

Most commercial colour imaging systems mimic a colour image by using three filters
which respond to the red, green and blue components of the incident light, producing

three images. The three (R,G,B) images appear as a single image when displayed on



13

blue cyan

-"| white

,»7 black green

red yellow

Figure 2.5: RGB Colour Cube

a monitor which adds the component images together. This is therefore the starting

point of most colour image processing systems.

The Red, Green, Blue model is shown in figure 2.5. Each colour is specified by an
(R,G,B) triple which is a vector to a point in the cube. The greys lie on the dotted line

shown.

This is a hardware model. The primaries red, green and blue are chosen because
they lie in the “corners” of the CIE space and therefore cover the great majority of the
visible colours. Whilst the (R,G,B) triple describes the colour completely (and in an
easily implementable fashion) it does not carry direct semantic information about the
colour ie. a person cannot visualise a colour given its (R,G,B) triple, they can only tell
how red, green or blue it is. Additionally, the RGB space is not perceptually linear so

it is not useful for colour comparison based on geometric separation within the cube.

Given the positions of each of the primaries in CIE space, the RGB values [0 . ..1] can
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be converted into CIE coordinates.

X X, X, X, || R
Y| =|v v vl||la @7)
Z Z, 2, 7, || B

For the NTSC ' primaries used by our camera we have the following chromaticities

I Red Green Blue White
x | 0.67 0.21 0.14 0.31
y|033 071 008 032

Remembering equation 2.1 we know that for the red primary

X Y, Z,

"X I +Z2 0V TX, V.12 " T X, 1Y, 1 2,

and defining S, = X, + Y, + Z, we can write
X, = wrsry Y; = yrSr ’ Zr = err

with similar definitions for the other two primaries.
Equation 2.7 now becomes

r

X z.5, .8, 7,5 R
Y = UrSr Yg Sy USh G 2.8
zZ | zS. 25, 28 B
[ T, T, Ty SR
= | ¥ Y % || 5G @9)
K7 SyB

The unknowns S;, 5, 5, can be found by considering the white-point, which results

'The American “National Television System Committee”.
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fromR=G=B=1.

Xu T, T, Ty S,
Yw = Yr Yy U Sg (2'10)
Zw 2z % S

We can arbitrarily select the luminance of the white-point, Y,,, and hence it follows

that
Xy = 'x_w'Yw 3 Zy = 'zLD'Yw

w yw
Choosing Y,, = 1 we get X,, = 0.98and Z,, = 1.18. If we substitute the values given

into equation 2.10 and solve for 5., .5,, S, then we can substitute into equation 2.8 and

finally we get
X 0.61 0.17 0.20 R
Y = 0.30 0.59 0.11 G
Z 0.00 0.07 1.12 B

Hence, we can convert the RGB values produced by our hardware to CIEXYZ
coordinates and therefore into any of the perceptually uniform colour spaces defined

in those terms.

2.1.3 YIQ Colour Model

This is the model used for colour TV. broadcasting. It is a simple transformation of the

(standard NTSC) RGB space.

Y 0.30 0.59 0.11 R
I| = | 060 —028 —0.32 G
Q 0.21 —-0.52 0.31 B

The Y component (same as CIE Y) carries the intensity information and is used

by black and white TV. The I and @ components carry the remainder of the colour
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black s

Figure 2.6: HSI Colour Hexcone

information. Like RGB this model is for hardware use and is primarily designed for

efficient transmission of colour signals rather than their interpretation.

2.1.4 HSI Colour Model

The Hue, Saturation and Intensity colour model due to Smith [92] (also known as HSV
or HSB - V for value, B for brightness) is based on the hexcone shown in figure 2.6.
In this colour space, intensity is a rectangular coordinate and hue and saturation are

polar coordinates.

Hue represents the colour name eg. red, yellow, green, cyan, blue, magenta.
Saturation is a measure of the purity of the colour ie. how much white is in it, a low
saturation means a pale colour (lots of white) and a high saturation a pure or bright
colour (very little white). Intensity is the analogue of grey-level from monochrome
images, it is a measure of how light or dark the colour is. The advantage of the
HSI system is that it is a user based model, in which the axes all have some semantic

meaning.

The HSI space is derived directly from the RGB cube and hence there is no calibration
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Figure 2.7: TekHVC Colour Space

of the primaries. The hexagon of intensity 7 is obtained by projecting the planes R = ¢,
G = iand B = ionto the plane perpendicular to the white-blackline eg. theintensity=1

hexagon is what you see if you look at the whole RGB cube along the white-black line.

2.1.5 HLS Colour Model

The Hue, Lightness and Saturation model is very similar to the HSI model. It is based
on a double hexcone obtained by stretching the white point of HSI upwards to twice
the original height. This is an attempt to improve on the intensity/value/brightness
coordinate. In HSI all the most intense colours eg. white, red, green, blue, are not
perceived to be equally bright, white is clearly brighter than all the others which,
themselves, are not equally bright. In HLS, white is made twice as light as red, green,
blue etc. In some ways this is just as bad, if not worse, than the HSI intensity since the
colours red, green, blue etc. still have the same lightness and additionally are equally

as light as 50% grey.

2.1.6 HVC Colour Model

The Hue, Value and Chroma colour model has recently (1988) been developed by

Tektronix Laboratories [97]. Known as TekHVC™, or more simply HVC, it is a
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Figure 2.8: CIE UCS Diagram

linear transformation of the CIELUV space with a semantically meaningful coordinate
system. Hue is an angle (0. ..360°) representing the name of the colour (red, yellow
etc.); Value is the equivalent of CIELUV’s lightness L* (0...100); Chroma is roughly
equivalent to saturation or purity except that it is an absolute measure which allows
some colours to exhibit a larger range of Chroma than others eg. red~(0...130) and

green~(0...105) and blue ~(0. . . 80).

An approximation of the space is shown in figure 2.7. The HVC system is patented

but is offered as an open standard. The definition is

= tan~' L — 2.11)
u*

V = L* 2.12)

C = (7.50725)Va? + v°2 (2.13)

The hue offset, 1, in equation 2.11 is chosen such that H = 0 represents the “best”
achievable red. Tektronix have conducted psychophysical experiments which determ-
ine the average position of the best red to be v’ = 0.7127, ' = 0.4931. This is not
actually a visible colour but the intersection of a line joining the white-point to the

“best perceived red” and the extension of the UCS curve as shown in figure 2.8.

Given the position of the best red, the value of the hue offset is the angle between
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the line joining (0.7127, 0.4931) to the white-point and the «’ axis in the UCS diagram.

0.4931 — ¢/
= tan~ ! ————— %
V=t T
For the standard C illuminant (v’ = 0.2009, v' = 0.4608) the value of the hue offset is
3.6112°.

In equation 2.13 the constant 7.50725 is also the result of Tektronix’s psychophysical
experiments and is believed to make the perceptual impact of a numeric change in
Value and Chroma equal. This is the major difference between HVC and CIELUV
since it actually alters the distances between colours in the space, effectively widening
it by a factor of 7.50725. Without conducting our own psychophysical experiments we

must assume that HVC is now the most perceptually uniform colour space available.

Figures 2.9 and 2.10 show a series of sections through the part of the HVC space
obtainable from the NTSC RGB primaries using the C illuminant as the white-point
(ie. the colours contained within the triangle in figure 2.8). In figure 2.9 we have (from
left-right and top-bottom) the planes H = 0°,180° to H = 169°,349° and in figure 2.10
we have the planes V = 10to V = 99.

Clearly, the great advantage of HVC over the previously discussed colour spaces
is that it is both perceptually uniform and has a semantically meaningful coordinate

system.

2.2 Colour Segmentation Techniques

Early attempts at colour image segmentation simply applied the techniques that had
been successful in monochrome images to each of the RGB images separately and
then combined the responses. This was almost invariably found to give unsatisfactory
results. Tajima [95] pointed out that since many operations on images are based on
colour differences it is to be expected that using uniform colour spaces will produce

results closer to human expectation than using the RGB space.

Some researchers have employed the RGB model more successfully in statistical



Figure 2.9: TekHVC Space (Vertical Sections)

Figure 2.10: TekHVC Space (Horizontal Sections)
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techniques where the segmentation task is modelled as data fusion from different, but
related, sources. Wright [110] proposed the use of a Markov random field approach to
maximise the conditional probabilities of region labels and boundaries, assuming that
the boundaries within a colour plane are related to those in other planes. The process is
computationally intensive since it involves a simulated annealing process to optimise
a cost function. Since the results, even on artificial images, are not outstanding we

must conclude that the initial assumptions are flawed.

Early research by Feldman and Yakimovsky [39] into knowledge-guided segmenta-
tion used a statistical approach to partitioning a colour image into meaningful regions.
The region properties used included colour hue, saturation and intensity as well as
several geometric properties. The colour analysis is quite crude because the colour
space is coarsely quantised with only eight values of hue and four each of saturation

and intensity.

A later knowledge-guided segmentation technique due to Nazif and Levine [74]
also utilised colour information. This is a rule-based approach so the knowledge
is expressed explicitly and is intended to embody the in-built knowledge of many
segmentation heuristics in a controllable manner. Little colour knowledge is actually
used and the reasonably good performance of the system as a whole is a credit to
the other knowledge employed. The RGB model is used to compare the colours of
regions and they are merged if the differences in each of the components is less than
some threshold. The large amount of other low-level knowledge is required because,
as the authors say, “Analysing an image using only this rule as the merging criterion

produces many incorrect data configurations.”

2.2.1 Colour Clustering

A frequently referenced early colour image segmentation technique is that due to
Ohlander, Price and Reddy [76]. They used a recursive region splitting method based
on histograms in three different colour spaces ie. RGB, HSI and YIQ. The technique

basically takes a region and calculates nine histograms, one for each plane of each



22

colour space, from these histograms the best 2 of all the peaks in all the histograms
is used to threshold the region. After thresholding, connected pixels which have the

same label (ie. 0 or 1) are grouped into new regions which can then be split further.

Ohlander, Price and Reddy’s technique is an example of segmentation based on
colour clustering. Three colour spaces are used to try and avoid the problem of clusters
which are easily separable in 3D but are not separable in any of the three individual
colour planes. Colour clustering in 3D has been performed by Sarabi and Aggarwal

[88] using one colour space (zyY) but at great computational expense.

More recently, Celenk [23] has proposed a clustering technique based on the per-
ceptually uniform CIELAB space (except he uses the polar form of a*,b*). In order to
avoid the immense computational cost of three-dimensional clustering without simply
thresholding in each colour plane separately (as Ohlander et al. do) Celenk first uses
the 1D histograms to determine a set of decision volumes and then projects the volumes
onto a minimume-error line for 1D thresholding. This enables all the colour information

to be used at once in the thresholding process.

The results of Ohlander et al., and later of Celenk, depend very much on the type
of image under consideration. For images containing a few distinctly coloured areas
the results are generally very good but less evenly coloured regions tend to be split or
merged arbitrarily. The major drawback with clustering type segmentation techniques
is that they do not use any spatial information when deriving the clusters. Only when
a cluster has been determined are the pixels with an appropriate colour linked together
to form regions. This can lead to attempts to form regions from pixels which are not

connected.

2.2.2 Colour Edge Detection

Nevatia [75] developed an early colour edge detector based on a Y T) T colour model.

Y is the luminance (the implication is that it is the same Y as in YIQ) and 7} and T are

*The best peak is determined by a combination of seven criteria which relate to the position, height
and width of the peaks.
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W(1/3,1/3)

B(0,0) R(1,0)
Figure 2.11: YT'T, Colour Triangle

defined as
R
L= ®yevs
G
2 = g5¥ctB

This colour triangle is shown in figure 2.11. Hue and saturation are defined as the
polar position relative to the white point (1/3,1/3). Colour edges are detected by
applying the Hueckel edge detector to the YT, T, components with the constraint that
the response to each component must have the same orientation. Edges in the hue and
saturation components are inferred from the T3 T, edges (although Nevatia states that

there is little point in this).

Nevatia concluded that most of the edge information lay in the intensity image
except for scenes with low contrast or poor illumination. Furthermore, he suggests
that colour is useful as a description for edges rather than a source of new edges. To
some extent Nevatia’s results are prejudiced by his colour model since the strengths of
his chromatic edges are unreliable because of the non-uniformity of the Y7 T; colour

triangle.
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Colour has been utilised successfully in edge detection by several other researchers,
the main problem being to produce a reliable definition of colour difference. Claxton
and Kwok [31] defined colour difference in terms of separation in the HSI colour space
with various modifications: for two colours (h,, s1,7;) and (h,, s3, i5) they define the

colour difference AD as

AD = \/(11 it (et 221) (52 + 82 — 25y s5c08[hy — ha])C

where, C is the saturation index. The logarithmic term is an attempt to reduce the
quasi-random effect of the chrominance term at low luminance. What this really means
is that the authors are trying to make their colour space more perceptually uniform!
By combining their colour difference with a Laplacian operator Claxton and Kwok
produce a colour edge detector which gives quite good results in their sample outdoor

scene.

Forsyth [40] proposed that the principles of human colour vision could be used
to detect changes in colour. Whilst arguing that a considerable part of a colour
signal is due to the illumination, Forsyth concludes that a sharp change in the colour
signal is much more likely to be due to a sharp change in the reflected signal than
a sharp change in the illumination. For his colour edge detector he combines the
Fleck edge detector with the double-opponent cell believed to exist in humans. This
cell responds to normalised Blue-Yellow and Red-Green signals and can thus detect
spectral crosspoints. The results given are good although the images used are of

coloured squares on a constant background and are therefore quite artificial.

2.2.3 Colour Region Analysis

Region-based techniques have also been developed to use colour. Chassery and
Garbay [25] developed an iterative region growing technique for the segmentation
of images of cells. In this constrained environment it is easy to find starting points
by simple thresholding since cell nuclei are quite distinct from the rest of the cell and

the background. The approach then proceeds to grow regions around the nuclei by
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adding pixels which have a similar colour (defined by Euclidean distances in a variant
of HSI space) to the present mean colour. Since the cells may touch, Chassery and

Garbay also use a convexity criterion to prevent cell merging.

Meyer [71] has used a flooding process which grows regions at a constant rate from a
set of marker points until they meet. This effectively means that pixels adjacent to the
edge of a current region are added to the “nearest” region in distance order, “closest”
first. Here, closest and nearest are defined as the smallest Euclidean distance, in the
HLS colour space, between the pixel in question and its neighbour in the region. Meyer
applies his technique successfully to the segmentation of paintings but the success of
the method is very dependent on the selection of the initial markers (or seed points)

and at present this must be done manually.

Vlachos and Constantinides [104] have recently proposed a graph-based region
merging approach using the CIELAB colour model. Initially, each pixel is a separate
node in the graph, linked to its (4-connected) neighbours by arcs which have a
“strength” of half the Euclidean colour distance between the pixels. Nodes are then
merged by sequentially removing the “weakest” arc and updating the node colours
and the strengths of all the arcs connected to either of the merging nodes ie. if nodes :

and j are merged and node £ is connected to one of them then

Ni(t)Ci(¥) + N;(1)C; ()

G+ (o) + N;(0)
Nit+1) = Ni()+ Ny(0)
Sialt+1) = —UEDNCAD o) et 1P

N(t+1)+ Ne(t+ 1)

where C; is the colour (L*, a*,b*) of node i; N; is the area of region i and 5; ;. is the

strength of the arc between nodes 7 and £.

Hence, the representative colour for a region is the mean position of all the pixels
in the colour space. The arc strength S, ; is actually the total increase in the Square
Euclidean Distance (SED) between the segmentation and the original image which
would result from merging nodes ¢ and k. Thus, by removing the weakest arc, Vlachos

and Constantinides always perform the merge which increases the SED by the least
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amount (at that point in the segmentation). This clearly favours the merging of small

regions before larger regions with the same colour difference.

The results given by Vlachos and Constantinides show an image segmented into
exactly 4000 regions, this is not bad but appears over-segmented (ie. still too many
regions). It is not clear whether or not they are proposing a fixed number of merges
but it would clearly be better to merge regions until either the total SED reaches
some limit or the weakest arc exceeds some minimum strength. The computational
issues are also unaddressed since this approach, though appealing, is presumably
highly computationally intensive due to the potentially huge size of the graph under

consideration.

2.3 Conclusions

Of all the colour models available, the RGB model has probably received the most
attention since it is “forced” on us by our hardware. Convenience is a poor substitute
for good results and researchers soon realised that other colour spaces were worth
exploring. The popular colour spaces are either user-based, with semantically mean-
ingful co-ordinate systems, or close approximations to a perceptually uniform space.
Until recently there were no colour spaces which had both of these properties. As such

a space, TekHVC is likely to be widely used in the future.

One problem that was mentioned by Forsyth [40] is the dependence of the colour
signal on theilluminationie. the colour weseeisdue toa combination of the reflectance
properties of the object surface and the light shining on it. With regards to segmentation
this is not generally a problem since (as Forsyth concludes) changes in colour are nearly
always due to changing object properties rather than changing illumination except for
effects like shadows. Problems arise when we try to compare the colour of a segmented
region to some value stored in a database. Unless the illumination is the same then
the two colours may be very different, even if they correspond to the same surface of
the same object viewed from the same position. This problem of colour constancy has

recently been addressed by several researchers; work by Tsukada and Ohta [102] and
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Ho, Funt and Drew [47] has made significant progress in this difficult area.

Even given the limitations of the colour spaces used there has been no definitive
general-purpose segmentation algorithm produced. This reflects the experience with
monochrome images, the requirements of the ideal segmentation are image and applic-
ation dependent, the desired edge or region properties being largely contradictory. As
such it is very difficult to compare segmentation algorithms. Even if all the algorithms
described in the previous section were applied to the same image then we would

require some well defined criteria to compare them directly.

Since no standard images or comparison criteria can be agreed among researchers, we
must compare results in a purely subjective manner. Some algorithms can of course be
criticised on grounds other than segmentation quality, for instance the computational

complexity of some algorithms makes them impractical for use in present-day systems.

Ohta, Kanade and Sakai [77] encountered the above problems when they attempted
to evaluate colour spaces for region segmentation. Firstly, they used the Ohlander
region splitting algorithm on eight different types of images with the Karhunen Loeve
transformation of R, G and B as the features. Since these features are decorrelated
(but very expensive to calculate) they are assumed to be ideal for the algorithm. The
segmentations are then repeated using RGB, XY Z, YIQ, Lab, U*"V*W*(®), YT'T>,
H STand I, I} I5(*) colour spaces. The results are then compared in a subjective manner
since, as the authors state, “No quantitative evaluation procedure has been established
for segmentation of natural scenes. We adopted eyeballs as the most reliable tool at

present.”

Using their visual comparison (which rightly, in my view, criticised undersegment-
ation more severely than oversegmentation) Ohta et al. concluded that their own
I, I} I space and the Lab space were the most suited to region segmentation using the
Ohlander algorithm. This is not surprising since histogram-based techniques require
features that are significantly decorrelated; as such, highly correlated spaces such as

RGB and XY Z will do very poorly indeed. Other spaces are simply not suited to

®This colour space is similar to the CIELUV space.
*Defined by Ohtaetal. as Iy = (R+ G + B)/3,1 = (R— B), I} = (2G — R - B)/2.
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histogramming at all, for instance, any notion of hue will not be usable in very light or
dark areas since hue can vary through its whole range without producing a significant

change in colour.

The graph-based approach of Vlachos and Constantinides, if computationally feas-
ible, would initially appear quite appealing. On further inspection the use of the SED
seems less wise because it means that in the later stages of the process small regions
with large colour differences will be merged ahead of much larger regions with much
smaller colour differences. This would explain why the segmentation appears to be
stopped “early” by the authors, since further segmentation would start merging in this
unwanted fashion. This is clearly undesirable so the algorithm should be altered so
that no pair of regions will be merged if the difference in colour is greater than some

threshold.

Of the algorithms considered, Meyer’s region grower gives the most appealing
results. However, the manual selection of the marker points is a serious drawback.
What is needed is either a means of automatically selecting the optimal marker points
or a stopping criteria for growing regions from non-optimal marker points. These

issues are discussed in the following chapter.



3 New Colour Segmentation Techniques

In the previous chapter I introduced several colour spaces and described how some of
them have been used by other researchers to implement colour image segmentation
techniques. We saw how the choice of colour space was, to a large extent, just as
important as the choice of segmentation algorithm; this is caused by most segmentation

algorithms being defined in terms of differences in colour between pixels.

The following sections of this chapter define exactly what we mean by terms like
colour difference and average colour, with respect to the HVC colour space. We
then use these definitions to describe two segmentation algorithms which have been
developed by extending existing monochrome techniques. These extensions involve

both changes to the basic algorithms as well as the change from monochrome to colour.

Both algorithms have been implemented using the RGB, HSI and HVC colour spaces
so that they can be fully compared and their performance discussed with respect to
the criteria introduced in chapter 2. The results of this work were presented at the 11th

IAPR Conference 1992 [99].

3.1 Colour Metrics

Since the HVC space is perceptually uniform, we can define the scalar difference
between two colours as being the Euclidean distance between their positions in the
space ie. for two colours (h;,v1,¢1) and (hg, v2, ¢2) the colour difference AC is given

by

AC = \/(vl — )2 + ¢ + ¢ — 2¢1¢3 cos(hy — hy) 3.1)

29
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This metric can now be used in a similar manner to the comparison of grey-levels in
monochrome image processing: for instance, we could perform simple edge detection
by calculating colour differences between pixels; or we could do simple region growing

by linking pixels with small enough colour differences.

Using a perceptually uniform colour space also means that we can define theaverage
colour (iz, b, ) of a set of N colours (h;, v;, ;) to be the centroid of the positions in the -

colour space ie.

h = tan™! 2_ (3.2)
p
53
= — v; (3.3)
N i=1
¢ = ﬁQ + q2 (3.4)
where,
1N
= — ) c¢icosh; (3.5
P>
1 N
qg = v Z ¢; sin h; (3.6)
i=1

A logical progression from the colour difference and average colour is a metric to
define the colour spread throughout a region: the most intuitive definition of colour

spread is the RMS colour difference from the average colour ie.
1N
= 3 hoi. é])2
D= \/ (YV— 2 AC([hi,’Ui,Ci],{h, ’U,C]) ) (37)

These simple metrics give us a consistent means of comparing individual coloursand
groups of colours as we shall see in the following sections. One question which we will
repeatedly encounter is “how far apart can two colours get before they look different?”.
Using a perceptually uniform colour space we have the advantage of knowing that
this distance will be the same (or very nearly the same) throughout the colour space.

To illustrate the probable range of this “just different” distance figures 3.1 and 3.2



Figure 3.2: Constant Hue Discs, Radius 5-40
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575 1 D75 [ o(5)
0 0.77 | 1.00
1 0.75 | 0.61
2 068 | 0.14
3 0.55 | 0.01
4 043 | 0.00

Table 3.1: Colour Spread with Gaussian Distribution

show various colour “discs” which are all centred on the HVC colour (60°, 60, 40). The
radii of the top row of discs are 5,10,15,20 and the bottom row are 25,30,35,40. In both
the constant-value discs and constant-hue discs of radius 5 there is no distinguishable
difference in colour across the disc: in the radius 10 discs the colour at the edges of the
discs are just differentiable, hence we can make the assertion that colours separated by

a distance of less than 20 will appear the same.

Relating colour spread to uniformity of colour obviously depends on the actual
distribution of the set of colours. If the colours are distributed in a normal manner
around the average, ie. the density p(r) of colours at a distance r from the mean is
given by

,,,2
p(r) o exp(—2)

where o is the standard deviation, then if the maximum distance is S, table 3.1 shows
the spreads resulting from different values of 5/¢. Exactly how we choose a maximum
spread depends on the segmentation algorithm we are using and will be explained in

the following sections.

3.1.1 Implementation of Colour Metrics

All the images used in this thesis were captured using a colour CCD camera. The
images obtained contain 24bits of colour information per pixel (8bits for each of red,
green and blue). These RGB values are first converted to floating point numbers (
scaled to the range [0...1] ) and then the triple is transformed into a CIEXYZ triple

using equation 2.11.

Once we have a CIEXYZ triple we can convert it easily to a CIELUV triple using
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equations 2.2 to 2.6 with the standard C illuminant (X, = 0.98,Y,, = 1.00, Z,, = 1.18).

Given CIELUV values the obvious next step would be to convert to HVC and then
use directly the colour metrics defined above. However, the polar nature of the HVC
coordinate system makes the calculations of colour difference, average colour and
colour spread quite expensive. Since these are measurements that will be performed
many times in low-level segmentation routines it is desirable to use an intermediate

colour space for these purposes.

We define this intermediate space as a triple pgV’ where (p, ¢) is basically the cartesian

equivalent of [H, C]. In terms of the CIELUV triple we define

p = 7.50725u* (3.8)
g = 7.50725 0" (3.9
V = L* (3.10)

H = tan™! % — 3.11)
C = Vp*+¢ (3.12)

Since all colour distances are the same in pgV space as HVC space we can do our
repetitive calculations using the pgV values. The only times we will need to convert to
HVC values are when we need to refer to the colours themselves rather than just the

differences between them or their spread.

Our colour difference equation now becomes

AC = \/(pl —p2)?+ (@~ @)+ (Vi — Va)? (3.13)

which is much more simple than equation 3.1.
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Our average colour (3, §, V) is now simply

1 N
P = N;pi (3.14)
1 N
q = ﬁ;%‘ (3.15)
. 1Y
vV = W_ZV,- (3.16)

-
1]
-

And our colour spread D is given by
1 1
D=+ 2+ V) - m I+ P+ V)T B1)

The advantage of equations 3.14 to 3.17 is that they express the average colour and
colour spread only in terms of the number of colours N and the sums and sums of
squares of p,q and V. This means that if we only store NV and the six sums for each set
of colours in which we are interested, then we can easily calculate the average colour
and colour spread for a combined set of colours by simply adding each of the seven

terms and inserting the values into equations 3.14 to 3.17.

Using this intermediate colour space we can significantly speed up our low-level
segmentation routines and can then easily convert our colours to HVC values as we

require.

3.2 Split and Merge Segmentation

Given our colour model and our colour metrics we can make an initial attempt at colour
image segmentation using the standard split and merge (SAM) method (originally due
to Horowitz and Pavlidis [49]) as defined in Ballard and Brown [5].

1. Start with the whole image as one region

2. If any region does not satisfy a particular homogeneity function then split the

region into four quarters
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3. If any pair of adjacent regions can satisfy the homogeneity function as a single

region then merge those two regions

4. Repeat from step 2 until no more splits or merges can be performed

The key to this method is the choice of an appropriate homogeneity function. We have
to apply the function to each pair of regions we are trying to merge and therefore it
is desirable for the function to be defined in terms of region attributes which can be

quickly calculated for the combined region.

To calculate the average colour of a region we require only the number of pixels
and three sums; to calculate the colour spread we need a further three sums. Hence,
by storing seven parameters for each region we can calculate the average colour and

colour spread of any combination of regions using those parameters alone.

If we were dealing with a monochrome image then we could also determine the
furthest value from the average by simply storing the maximum and minimum grey-
levels included: for a combined region the new maximum is clearly the greatest of the
old maxima and the minimum is the smallest of the minima. For a colour image though
we are working in three dimensions so we would require the maximum distance in
all directions for two regions in order to determine the furthest value from the average
for the combined region. This is clearly not practical without making some drastic
approximations so the only way to determine the furthest value would be to search

the whole of both regions, this is equally impractical.

Therefore, in order to produce an algorithm which will work in reasonable time
we must construct a homogeneity function in terms of colour spread alone. We thus

define our homogeneity function H(R;) for region R; as

true if D(R;) < Dpax

false otherwise

H(R;) =

where D(R;)is the colour spread of region R, (see equation 3.7) and D, is a constant.
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One of our conclusions in section 3.1 was that colours in HVC space are similar as
long as they are separated by a distance of less than 20. To ensure that our region
R; is uniformly coloured using H(R;) alone we must find a suitable value of D,,,,
which will give a high probability that all the colours lie within a distance of 10 from
the average colour. Returning to table 3.1 we note that a set of colours uniformly
distributed in a sphere around an average colour will have a spread of 0.775 ie. 7.7
so we might think this would be a reasonable value for D,,,,. However, it is obvious
that deforming such a “colour sphere” (moving some colours towards the averageand
others away) could give the same spread but with many colours further than 10 from
the average. It is preferable at this stage to over-segment rather than under-segment
so the important consideration is therefore the density of colours at the extreme of the
distribution, p(5). From table 3.1 we can see that p(.5) becomes negligible for D ~ 0.55
and thus we can be reasonably confident that using D,,,. = 5 will give perceptually

uniform coloured regions.

3.2.1 Relaxing the Split and Merge

One problem with the standard split and merge is that the segmentation can be blocky
ie. we get straight edged regions with sharp corners in gradually changing areas. This
is clearly undesirable since these edges and corners are artifacts of the segmentation
method and not properties of the image. The cause is the non-ideal nature of our
compromise homogeneity function which pronounces regions as homogeneous when,
in fact, small areas are clearly a different colour to the rest of the region ie. where we

have a systematic error in colour rather than a random error.

In order to overcome, or at least reduce, the problem we can apply a relaxation
technique to the initial segmentation. This situation is suited to a relaxation approach
[54] since we have an initial estimate (the split and merge) and a means for iteratively
updating the estimate (moving pixels from one region to another). For each iteration
the relaxation technique looks at each pixel in turn, if the pixel is in region R,
and adjacent to region R, and moving the pixel from R, to R, reduces the sum

D(R,) + D(R;) and maintains both D(R,) < Dy, and D(Ry) < Dyye. then the pixel
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is moved. If there is more than one possible move then the one giving the lowest }_ D,
across all regions involved, is performed. This boundary relaxation has the effect of

smoothing out the undesirable artifacts.

To allow boundaries to move equally well in all directions during the relaxation,
pixels are examined left to right and top to bottom for odd numbered iterations and in

the opposite direction for even numbered iterations.

A potential problem with the current implementation is that of hidden splitting.
By this we mean the situation where a region gets thinner and thinner at some point
until it breaks into two. If this were to happen successively to many regions then we
might find that some ares of the image regressed back toward single pixel regions. In
the results presented later we shall see that this does not happen and indeed has not

happened with any of the images I have tested.

One further problem is how many iterations of the relaxation to perform. In some
cases the segmentation will “settle down” quite quickly and no pixels will subsequently
move, in other cases the segmentation may oscillate between two or more different
states. Since we cannot determine quantitatively whether one segmentation is better
than another, without knowing the ideal, it is very difficult to determine when to stop

processing.

As an example, we can consider figure 3.3(a) which shows a single object on a plain
background (256 x 256). The initial split and merge of this image (figure 3.3(b)) shows
the tendency for boundaries to be horizontal or vertical as well as a large “missing”
area at the top of the triangle. In some senses this a worst case because none of the true
boundaries match the splitting lines (horizontal and vertical) and the object is big, but

small enough to lose a large area to the background.

In figures 3.3(c)-(f) we can see the improvement to the initial segmentation after 2, 4,
6 and 8 iterations of the relaxation process. After just 2 iterations 3.3(c) the background
has retreated into the correct place but some of the small noise regions have spread

across the triangle near the top. Over the next few iterations the noise regions dissipate

into the main triangle region, after 8 iterations the segmentation is stable and further



(a) Original Image (b) Initial SAM
(c) 2 iterations (d) 4 iterations
(e) 6 iterations (f) 8 iterations

Figure 3.3: Relaxation Steps
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iterations produce no change.

The example shows that when the objects are distinct the relaxation process produces
improved boundaries very quickly and further iterations serve only to merge away
noise. Where the objects are less distinct, as we shall see later, the boundaries tend
to wander much more subtly as many regions “compete” for pixels. Obviously, if no
pixels move then we stop relaxing immediately but the number of pixels moving, in
general, is not a good indicator of the progress of the segmentation because of the
complex swapping back and forth of pixels between regions. Experience has shown
that performing a fixed number of iterations (20 in the results in section 3.4) gives
significant improvement on the initial segmentation and that any further iterations

will not generally provide any substantial changes.

3.3 Optimal Region Grower

As an alternative to the split and merge segmentation I have also implemented a colour
region grower. Region growing in monochrome images has been widely used [46] but,
as with the split and merge, we will attempt to improve upon the basic algorithm
as well as extending the technique to colour images. The basic algorithm involves
selecting a seed point and then extending the region by adding neighbouring pixels
which are similar enough: when the region cannot be extended any further a new seed

is selected and the procedure repeated until the whole image has been segmented.

In many cases the segmentation is not performed on a region-by-region basis but
by scanning sequentially through the image, row by row. This scanning can produce
a poor segmentation if many pixels, which just meet the similarity criteria, are joined
early on and are thus prevented from later being added to regions in which they would

be more suitable.

Clearly the major issues to be addressed when constructing a region grower are -

¢ How to select a seed point;

e How to go about adding pixels to the region;



e What do we mean by similar enough.

To produce a coherently coloured region it seems sensible to start with a coherently
coloured seed point. Rather than using a single pixel as a seed we will use a 2 x 2
region (This precludes regions with areas less than four and lines which are only one
pixel wide from our segmentation but this is not seen as a problem) which has the
lowest colour spread, provided this is less than D,,,, (the value of which we will come
to in a moment). From our seed region we will add the neighbouring pixel which has
the nearest colour to the present average colour of the region, provided that the colour
spread remains less than D,,,, and the colour of the pixel is less than 10 from the
average colour. The region growing process, starting from a seed region R, is therefore

defined as,

1. Find the set of pixels P = {p1, p. ..., p.} which are 4-connected to region R;

2. If the average colour of the pixels in region R is (%, ,¢) and the colours of
the pixels in P are {(h,v1,¢1),(h2,v2,¢3),..., (hn,v,,¢,)} then determine
the colour differences AC; = AC([hs, v, ¢), [R, D, €]);

3. Find k such that AC), = min(AC;);

4. If ACy, < 10 and D(R + pi) < Dyq. then add pixel p; to the region R,
update the average colour (A, #, &) and return to step 1; otherwise terminate

the growing process.

Since we are always starting at the most coherent point and extend outward along
the “path of least resistance” we will get coherent regions as long as our similarity
constraints are suitable. Unlike the split and merge we are not testing a set of pixels
for similarity, we are starting with four similar pixels and then adding other similar
pixels in order. As a result we can be much more confident in our average colour
actually being a true representation of the whole region. By adding pixels which are
most similar first we can also be confident that the average colour will not change very

much as the region grows.

The increased confidence in the average colour might suggest that testing candidates

for being within 10 of the average colour might be sufficient to ensure a coherent region.



Colour Model | black-white | spread (SAM) | spread (RG) | max distance
HVC 100.0 5.0 7.7 10.0
HSI 255.0 12.8 19.6 25.5
RGB 4417 22.1 34.0 44.2
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Table 3.2: Segmentation Parameters for Different Colour Models

However, there may still be cases where the average colour “wanders” and so we will
continue to use the colour spread but in a less restrictive manner than in the split and
merge: referring again to table 3.1 we see that an even distribution of colours (¢ — o)

gives a spread of 0.77.5 or 7.7 and this is the value we shall use for D, ..

Clearly, we have approached the implementation of the colour region grower as a
direct comparison with the split and merge, hence the choice of seed region as the most
coherent 2 x 2 area and the repeated application until as much of the image has been
segmented as possible. Since we have a region-by-region approach we can be more
flexible if we wish, in both the selection of seed region and the number of regions we

segment. These issues will be discussed in detail in later sections.

3.4 Comparison of Algorithms and Colour Models

Both the region grower and split and merge algorithms have been implemented with
three different colour models, RGB, HSI and HVC. For the RGB and HSI colour models

we define colour metrics in the same way as we did for HVC in section 3.1 ie.
o Colour difference - Euclidean separation in the colour space;
e Average colour - the mean position in the colour space;
¢ Colour spread - the RMS distance from the average colour.
With regard to the parameters used, we will simply scale those used for the HVC
space in proportion to the relative “sizes” of the other spaces. Since all the spaces are

obviously different shapes, we will use the black-white distance as a measure of this

“size”. Using this approach we obtain the values in table 3.2 for our parameters.



(a) Original Image

(d) HVC Model
Figure 3.4: Region Growing using Different Colour Models
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(a) RGB Model

(e) HVC Model (6 HVC Model (20 iterations)
Figure 3.5: Split and 'Merge using Different Colour Models
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3.4.1 Region Growing Results

Figure 3.4 shows the original image of a coloured cube (128 x 128) along with
segmentation images ' produced by the region growing algorithm. Of the three visible
faces in the original image, the green and blue faces appear to be uniformly coloured
but the yellow face has a distinctly brighter patch in the left-hand corner. There are

clearly some distinct differences in the performance of the different colour models,

¢ Blue face - RGB and HVC almost extract a single region (with some small holes),
HSI divides the face into two regions even though there is no visible difference

in their colours;

e Yellow face - all three models separate the face into bright and normal patches

with a small region in the far corner;

e Green face - RGB and HSI models have merged the green face and part of the
shadow at the base of the cube (with HSI the gap is only 2 pixels wide), the HVC

model has successfully separated the green face and shadow;

¢ Shadows - there are no easily determinable locations for the shadows since the
background is gradually changing in these areas. The results produced by all
the models are quite acceptable but the HVC model has produced the simplest
result since the shadow is divided into only two regions, one clearly darker than

the other.

Clearly the major fault with the RGB and HSI models is that they cannot separate the
green face of the cube and the adjacent shadow. It is possible to “tweak” the parameters
in order to achieve a separation but then we would find other regions divided where
they should not be. These results therefore show that this segmentation algorithm is
only suited to the HVC model since the other two spaces are not uniform enough to

uphold the basic assumptions of colour similarity.

'Inall the segmentation images presented, region boundaries are brightly coloured and region interiors
are white: pixels which have not been labelled by the algorithm appear in black.
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The algorithm itself (working with the HVC model as intended) performs well. All

the distinct parts of the image have been segmented out much as expected.

3.4.2 Split and Merge Results

Using the same image as in the previous section we can see the results of the split
and merge algorithm in figure 3.5. The left-hand column of results show the initial
split and merge and the right-hand column shows the same segmentations after 20
iterations of the relaxation process. The profusion of straight boundary sections and
sharp corners in the initial split and merge segmentations is obvious. Note also how
some of the bright part of the yellow face has been merged with the background and
some of the shadow merged with the green face with all of the colour models. Taking
the initial segmentations alone we would have to say that the results with all three
models were equally bad! The differences, and the potential of the algorithm, become

apparent when we apply the relaxation process,

e Blue face - as with the region growing, the RGB and HVC models produce a
reasonable segmentation on the blue face but the HSI model has problems at the

bottom Ieft edge;

e Yellow face - RGB and HSI models have failed to regain all of the bright patch
from the background, the HSI model has merged most of the yellow region into
one and the RGB model has produced a boundary between bright and normal
whichis arguably in the wrong place. Interestingly, the HVC model has separated
the patch into two small regions but one of the noise regions (orange border) has

gained pixels from the main region rather than being swallowed up;

e Green face - RGB and HSI models have again merged the green face with part
of the shadow; the HVC model has separated the green face and the shadow by

returning pixels from the initial “green face region” to the “shadow region”;

e Shadows - again, the shadows are covered reasonably well by all three models

after the relaxation process.
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The relaxation process clearly improves the initial segmentations significantly. The
handling of the yellow face using the HVC model is not ideal but, as stated previously,
it is better to oversegment than undersegment since regions can always be combined

at a later stage of processing.

The relative performance of the different colour models is much the same as with
the region grower. The RGB and HSI models perform less well than the HVC model
because in these spaces a constant colour spread encompasses a larger or smaller range

of colours depending on the actual colours under consideration.

These results also show the major pitfalls of the split and merge algorithm. By using
colour spread alone we have allowed some large regions to merge in small regions
of a significantly different colour. In most cases though this deficiency is rectified by
the relaxation process as it returns many of the wrongly placed pixels to their correct
regions. Of course this can only happen if there is some part of the “correct region” to
return the pixels to: if a large region were to completely swallow up a distinct region
then there would be no boundary between the two “regions” across which to move

pixels.

3.4.3 Region Growing vs Split and Merge

3.4.3.1 Segmentation Quality

In the previous two sections we have seen that both of the segmentation algorithms
described perform best using the HVC colour model. Comparison of figures 3.4(d)
and 3.5(f) suggests that the Region Grower is superior to the Split and Merge since all

the faces of the cube are segmented out correctly.

Two, more varied, examples of the two algorithms’ performance with the HVC
colour model are given in figures 3.6 and 3.7. The drink-can image 3.6(a) (227 x 425) is
a complex object (with some smoothly coloured and some textured areas) on a smooth
background. The outdoor scene 3.7(a) (256 x 384) has few smoothly coloured areas

and has poor contrast.



(b) Region Grower (c) Split and Merge
Figure 3.6: Region Grower vs Split and Merge
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(b) Region Grower (c) Split and Merge
Figure 3.7: Region Grower vs Split and Merge
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One obvious difference in the handling of the difficult regions is that the region
grower tends to produce large regions which have lots of “holes” whereas the split
and merge produces more compact, less perforated, regions. For our purposes, the
former behaviour is more desirable since it is easier to trace the outline of a region
(ignoring the holes) than to stick together many regions and trace the outline of the

combined region.

In the highly textured areas (eg. the tiny writing on the can) the region grower
gives no label (coloured black) but the split and merge produces a large number of
single-pixel regions. Again, the former is more desirable since unlabelled areas can be

subsequently examined by other techniques but single-pixel regions are of little use.

Other areas where the split and merge does badly are (i) the highlight on the yellow
balloon - we may indeed wish to ignore this region but it is the job of higher-level
parts of the system to do this, the region is a different colour from its surroundings
and should be segmented out; (ii) some of the large letters on the can have been split -
most notable is the capital “C” at the bottom which has been successfully segmented

by the region grower but has lost its tail in the split and merge.

Based on the above observations we can say that, for our purposes, the colour region

grower produces better overall results than the split and merge.

3.4.3.2 Flexibility

As well as producing preferable results for a “complete” segmentation, the region
grower has the advantage of greater flexibility. Since the process is defined on a
region-by-region basis we can be very selective in our choice of seed region and in
the number/area of regions segmented, unlike the split and merge which is limited to

segmenting the whole image in one go.

There are many approaches we might take to selecting a seed region, depending on

our knowledge of the image content at the time eg.

¢ Position - it may be sensible, initially, to segment regions which are in the centre
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of the image rather than at the extremes. Once some regions have been extracted

we might want to find other regions in the same neighbourhood;

e Colour-atsome stage of the segmentation we may decide to segment particularly

light or dark regions, bright or pale regions or regions with a specific hue.

This flexibility is an important advantage since it enables us to get away from the
restrictions of treating segmentation as an isolated process, enabling us to use partial

segmentations in an intelligent and efficient manner.

3.5 Conclusions

Using segmentation algorithms which employ the concepts of colour difference,
average colour and colour spread, we have seen that the perceptually uniform TekHVC
colour space performs better than the non-uniform HSI and RGB colour spaces. This
is due to the definitions of the colour metrics being consistent throughout the whole
colour space. The performance of the HSI and RGB models could be improved by
modifying the colour metrics (eg. Claxton and Kwok [31]) but this would be equivalent
to transforming the colour space into a more uniform one, hence we might as well start

with a uniform space and use the more simple metrics.

As previously stated by myself, and other researchers, there is no generally accepted
procedure for comparing segmentation algorithms on the same platform, let alone
via published results. Hence, it is very difficult to justify claims that one algorithm
performs better than another, for some class of image, without testing both on the
same image. However, general comparisons can be made on the assumptions which
underly the algorithms; for instance, as indicated in the previous paragraph, we can
assume that any algorithm which employs a colour metric will be improved if that

metric is made more consistent.

In this chapter we focussed on the need to produce regions which were coherently
coloured, even if this means that we are left with regions that contain many small

holes. Algorithms which try to avoid holes often end up producing undesirable
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results because they allow the merging of small regions with relatively large colour

differences eg. the approach of Vlachos and Constantinides [104].

The region splitting method due to Ohlander et al. [76] was improved to some
extent by Ohta et al. [77] and their I, I} colour features. However, the drawback
with clustering techniques remains that they do not necessarily produce coherently
coloured regions because they are primarily concerned with detecting conspicuous
peaks in histograms, which is often unreliable eg. for a region with a gradual change
from one distinct colour to another we would expect to be able to divide it into two or

more parts, but we will be unable to if the histograms are all “flat”.

Meyer’s region grower [71] produces good results if given a good enough set
of marker points. Unfortunately there is no scope for partial segmentation since
boundaries are only determined when regions “collide”. Both of these problems are
avoided by the region grower presented here since the marker points are determined
automatically and regions only grow if there are pixels of a similar enough colour to

be added.

The two algorithms presented in this chapter both improve on their more “standard”
monochrome definitions as well as being extended to colour images. The split and
merge algorithm is substantially improved by the addition of a boundary relaxation
step and the region grower is made more flexible and consistent by using the region-
by-region and nearest colour first approaches. The results given show that the region
grower is most suited to our requirements and therefore will be used in the following

chapters.



4 Plane Shape Analysis

In chapter 3 I described how a colour image could be segmented into a number of
consistently coloured regions. Once we have a set of regions, we require a means of
identifying their shapes in terms of previously stored (or learned) shapes. By tracing
the boundary of a region we can obtain a closed 2D curve that is not self-intersecting.

Hence, we require a means of characterising 2D plane shapes.

There have been several surveys of shape represenjatlon and matchmg N otably by

Pavlidis [80, 81] and later by Marshall [68] and Dav1s [113].

e - /

The prime objective of shape matching is to derive a measure of similarity between
shapes, enabling unknown shapes to be compared to a set of knowns (either specific
examples or class representatives). This is obviously heavily dependent on the shape

representation employed.

Shape Matching can be achieved using Neural Networks which are taught shapes
and can then recognise them. This is a subject in itself and will not be covered here

but it is an important research area.

Whilst the concept of shape is easy to understand, it is very difficult to define and
describe. As a result, there are a very large number of shape representation schemes

in the literature. Pavlidis suggests several criteria for classifying different techniques
¢ Internal or External - internal methods examine the whole of the object but
external methods only trace the boundary of the object.

e Scalar Transform or Space Domain - scalar transforms produce a set of scalar
features from the object but space domain techniques produce another 2D

picture. Scalar transforms are suited for input to statistical pattern recognisers
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whereas space domain results are generally used in structural or syntactic pattern

recognition.

e Information preserving and non-preserving - whether the original shape can
be reconstructed (to arbitrary accuracy) from its description or not. If the
representation is to be used for data compression then it must be information
preserving, but if we are only interested in recognition then the representation
need only hold enough information to distinguish the shape from similar shapes

that may be encountered.

A further criterion, concerned with recognition, is whether the representation is scale,
rotation and translation invariant ie. whether the representation of a shape remains the
same irrespective of its size, orientation and position within an image. This invariance
may be inherent within the representation but is more usually designed in using some
form of normalisation (eg. Fourier Transform techniques) or even obtained by using a

fusion of two or more techniques (eg. the work of Wu and Stark [111]).

4.1 Internal Scalar Transform Techniques

The best known of these methods is that of moments. The 2D central moments of an

image function f(z,y) are defined as
m(uo)= [ [ fe,0)@-2) (- 7)" do dy

These moments are position invariant but not rotation and scale invariant. Dudani,
Breeding and McGhee [35] have used seven combinations of the second and third
order moments for identifying aircraft. These moment invariants are position, rotation,
scale and reflection invariant. Dudani et al. found that an additional set of moments
could be calculated using just the boundary of the shape. These two pairs of seven
invariants contain different information about the shape, the boundary giving finer
detail information and the silhouette giving structural information. All fourteen

invariants were then used as a feature vector in a statistical classifier.
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Whilst the results of Dudani et al. are good, they only used six different types of
aircraft. Also, the shape of an aircraft in a 256 x 180 image is not very complex since
much of the fine detail is lost. In general, techniques of moments are not believed to

perform well with more complicated shapes.

A novel description developed by Skliar and Loew [91] uses a diffusion-type
procedure. Initially each boundary pixel is assigned an equal number of particles;
then the diffusion of those particles into the region is modelled assuming isotropic
diffusion (equal in all directions and parts of the region). If N (i, j, ) is the number of

particles at pixel (4, j) at time ¢ then

N(Zajvt-l'l) = N(Z,],t)—I(C(Z,])N(Z,_],t)
+IX’[N(1—1,],t)+N(l+1,],t)+N(l,]+1,t)+N(l,]—].,t)]

where C(i, ) is the number of 4-neighbours of pixel (7, j) within the region (ie. no
particles diffuse in or out of the region) and K is the diffusion constant (0 < K < 1).
The value of K determines the detail and computation time of the process and is set

to 0.01 which gives a reasonable compromise.

The diffusion consists of an initial transient response followed by a steady- state
condition. During the transient stage, the number of particles at each boundary pixel
depends on the shape of the boundary: the concentration is higher in concavities than
convexities. The variation in concentration around the boundary can thus be used as a
shape signature. The time at which the signature is taken is when the largest difference

between the maximum and minimum concentration on the boundary exists.

Few results are given and it is unclear as to whether the descriptor can be made
invariant under rotation. The authors claim that the descriptor is not sensitive to noise

and that it has potential for handling partial occlusion.

Even if this method cannot be used directly as a shape descriptor, it does seem to
have a great deal of potential for finding the curvature maxima of a boundary and

therefore may be of use in curve fitting or boundary segmentation.
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4.2 External Scalar Transform Techniques

4.2.1 Fourier Transform Techniques

The FT of the shape boundary has been used by many authors. Zahn and Roskies [115]
define their Fourier Descriptors (FDs) in terms of the fourier series of the cumulative
angular bend versus arc length. For a polygonal curve of length L, with m vertices at
Vo...Vm-1 and edge lengths (V;_,, V;) = Al; if the change in angular direction at vertex
V; is A¢; then Zahn and Roskies define the cumulative angular change ¢(!) at length /

as
Zf:l A¢i fOT Ef:l Al’ S l < Zf:ll Ali

o(l) =
for 0< I <AL

Then, the normalised form ¢* is defined as
R 7
#(t) = S(p) +1

so that the domain of ¢* is [0, 27] and ¢*(0) = ¢*(27) = 0. ¢* is then expanded as a
Fourier series

() = po + E(an cos nt + b, sin nt)

n=1

After lengthy calculation the coefficients are determined to be

1 m
Ho = —T — Z Z lkA¢k (41)
k=1
1 & . 2mnl,
a, = —EI;A@ sin — 4.2
1 & 2rnl,,
b, = E’;Am cos = 4.3)

where, [, = ZZ—C:l Al;.

The amplitude/phase form of the series is given by

¢ (t) = po + Z A, cos(nt — ay,)

n=1
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where (A,, a,) is the polar form of (a,, b,.).

Zahn and Roskies show that the harmonics’ amplitudes A, are invariant under
changes in size, orientation, position and starting point. The harmonic phase angles
o, are, however, variant under change in starting point. Whilst the amplitudes alone
would be very useful as shape features, Zahn and Roskies define a form-invariant,
based on the phase angles, unaffected by changes in starting point.

j k
B = GG ™ el

They then go on to show how a curve can be reconstructed from its descriptors. It
is interesting to note that the reconstructed curve is generally not closed, since the
original function has discontinuities. The number of harmonics used is ten in the

examples given.

Whilst the FDs are good shape discriminators, in many cases, they are very expensive
to calculate and using this method you have the additional problem of first fitting a
polygonal approximation to the curve (a useful shape description in itself!). Since the
digital image is already an approximation, the additional errors are compounded but

the computational effort saved in reducing the number of vertices is substantial.

Persoon and Fu [86] define FDs in terms of the boundary as a complex function
u(l) = z(I) + jy(I) which has period L. Using the same notation as Zahn and Roskies,
the complex FDs a,, for a polygonal curve are given by

Vi — Vi
n = (2n7r)2 Z Vi = Vi 1|

fexp(~jn27) — exp(~jn L))

These FDs are normalised for scale, rotation, position and starting point by making
ag = 0 and multiplying the other a,, by se/(#*"*). Where s,¢ and o are chosen such that
a; and a_; become pure imaginary numbers and the modulus of their sum is unity.
Alternatively, the FDs can be left as they are (except a; = 0) and normalisation can be
built into the matching process by varying s,¢ and « to produce the best match. This

has the advantage that errors in a; and a_; will not produce “faulty” normalisation
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Figure 4.1: O’'Rourke’s Shape Signature

but the disadvantage that comparing FDs will take a lot longer.

Curves reproduced from this formulation of the FDs are always closed. This is an
advantage over the previous formulation but with the added disadvantage of a much

more complicated normalisation process.

In his review, Pavlidis [81] states that the advantage of FDs is that they are backed by
the well developed theory of Fourier Transforms. The disadvantages are their inability

to describe local information and to handle partially hidden objects.

Recent work by Arbter et al. [1] used normalisation in the Fourier domain to
produce FDs which are constant under any affine transform. These FDs were then
used to match aircraft silhouettes from 3D models. The technique was found to be
more robust than ordinary FDs since 3D motion produces nearly affine transformations

rather than similarity transformations (changes in position, orientation and size only).

4.2.2 Shape Signatures

In general, a shape signature is a 1D curve which is derived from a 2D boundary.
Signatures are usually parametrised by a length or an angle and therefore can be

considered to be continuous (unlike a sequence of FDs).

O'Rourke [78] proposed a shape signature which can be applied to both open and
closed curves. Given some starting point S on a curve of length L (see figure 4.1) the
value of the signature X(s) corresponding to a point P (which is a distance / along the

curve) is the fraction of the length of the curve which lies to the left of the directed
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tangent at point P, where s is given by s = {/ L. The length to the left of the tangent is
shown in bold in the figure.

This representation is translation, rotation and scale invariant although care must
be taken in defining the starting point and the direction of travel around the curve.
The immediately obvious disadvantage of this representation is that all convex closed

curves will have the same 51gnature since ¥(s) = 0, Vs.

O'Rourke’s main application IS the analysis of joined handwriting and his repres-

entation is useful in this domam, 1tfdoes not apply well to general shapes though.

Wolfson [108] has used a translation and rotation invariant shape signature in order
to find the longest common sub-curve between a model curve and an occluded image
curve. From some arbitrary starting point, Wolfson first calculates a graph of arclength,
s, versus total turning angle, 6(s) (called the cumulative angular bend by Zahn and
Roskies in section 4.2.1). The graph is then sampled at n equally spaced points s; .. .s,
and the shape signature is defined as an averaged difference over these samples,

1 k\; [0(s; + mb + As) — 0(s; + mé)]

m=0

¢ =7
where As, k, 6 are determined experimentally depending on the nature of the curve.

Using this signature Wolfson demonstrates algorithms for finding the longest com-
mon sequences between two signatures and hence matching models to occluded
shapes in images. The signature itself could be made scale invariant by normalising
the length but this would make the matching of common substrings very difficult so
the method is best suited to applications where the scale is known eg. objects on a

conveyor belt a known distance from the camera.

4.3 Internal Space Domain Techniques

The Medial Axis Transform (MAT) proposed by Blum [18] is the most widely used

technique in this class. If S is a set of points in the plane and B is its boundary, then for
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each point X in S, it is possible to find its closest neighbour in B: if there exists more
than one such neighbour then X lies on the medial axis of S. The MAT can be used to
derive shape information but its computation with discrete data can be difficult and
time consuming and it is very sensitive to noise: a small change in the shape can
produce a very large change in the MAT representation. It is usually necessary to fit a

polygonal approximation to the curve first.

The MAT is an example of skeletonisation ie. reducing a 2D shape to an axial
representation. Recently Wright [109] has proposed a method of skeletonisation
based on the Euclidean distance transform. Each pixel within the shape is assigned
a value which is equal to the distance from that point to the nearest point on the
boundary. Extracting the skeleton is then a matter of finding local maxima in the
distance map, a process which Wright compares to edge detection in grey-level images

and demonstrates using the Marr-Hildreth operator and the Petrou operator.

What is not clear with all skeletonisation techniques is how skeletons can be matched
efficiently. Difficult graph matching problems arise in which there is little extra

information to constrain the matching process.

4.4 External Space Domain Techniques

Early examples of this class are the Freeman chain-code [42] and Davis’s polygonal
approximation [32]. These techniques, and related curve parsing methods, all suffer

greatly from problems of scale in the definition of boundary curvature (see section 4.5).

A common approach is to first smooth the boundary and then try and segment it
into sections by finding maxima and minima of curvature. This is the approach taken
by Liu and Srinath [60] and Li, Ireton and Xydeas [59], both groups report that the

number of segments depends on the amount of smoothing.

In cases where the boundary can be segmented reliably the breakpoints provide
a very useful description of the shape. Because there are relatively few points it is

possible to match shapes when some of the points are missing due to occlusion [58, 60]
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or when one of the shapes undergoes an arbitrary affine transform [57].

44.1 Hough Transform Methods

Nlingworth and Kittler [51] survey Hough techniques and state that their major

advantage is the ability to recognise shapes in the presence of noise and occlusions.

The Generalised Hough Transform (GHT) [3] is an evidence gathering or voting
procedure. A shape is described by a list of template vectors from the centroid of the
template shape to its boundary. Translated instances of the shape can be characterised
by the position of their centroid. Each image point is compared to every entry of
the template list and votes for the corresponding centroid by incrementing a cell in
a two-dimensional accumulator array. When all image points have been processed,
the accumulator cells with the highest values give the most likely positions of the
shape within the image. The method can also be used to search for scaled and rotated

versions of the shape by adding a further two dimensions to the accumulator array.

Each image point generates or votes for all parameter instances that could have
produced it. Only sets of image points which belong to a shape will vote coherently
and produce peaks in the accumulator array. Thus extraneous data only adds to
the distributed background votes and missing data leads only to a reduction in the
height of a peak. The GHT is also inherently parallel since each image point votes
independently. The main disadvantages of the GHT are the large computation and

storage requirements.

The GHT is useful where a single object must be found since it is a model driven
approach. When there is a large number of possible objects the amount of computation
required is prohibitive since we must search the whole image for all possible instances

of all possible objects.
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Figure 4.2: Chord Length Distribution

4.4.2 Probabilistic Techniques

Taylor and Cooper [96] have developed a shape representation scheme for naturally
variable shapes. The chord length distribution (CLD) is defined in terms of probab-

ilities rather than absolute measures and its application has some similarities to the

GHT.

A shape is first defined in terms of a reference point z, and » boundary points
; ...z, the only constraint is that there must be a consistent way of finding the points.
Given a set of points the CLD is then defined as the set of probability distributions
P(ri;):4,5=0...n,i# j where r;; is the distance between points z; and z; as shown

in figure 4.2.

The probability distributions are estimated from a set of training images which
display all the likely variations in the shape. At runtime the probabilities are used to
iteratively update the hypothesis that the shape is present at a particular position. The
examples given show that the system does converge quickly to the correct solution for

simple shapes but the conditions for convergence are not understood.

4.5 Multi-Scale Techniques

The problems of scale have always been a source of difficulty in shape analysis. Witkin
[107] states that any non-trivial local measurement has to depend on the value of the

signal at two or more points, situated on some neighbourhood around the nominal
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point of measurement. This means that to calculate say the curvature of a contour at a
point, we have to select an arbitrary scale at which to perform the calculation. Different
scales will, in general, yield different results and there is no single scale which can be

said to be correct.

The proposal of Witkin is a scale-space which represents an image over a broad range
of scales. The scale-space is obtained by convolving the image with a Gaussian, the

standard deviation of which is used as the scale parameter.

The concept of a scale-space has been used by Mokhtarian and Mackworth [72] to
describe and match planar curves. They first define the curve as C = {x(t),y(t)}

where t is the normalised path length [0...1] from some arbitrary starting point. The

curvature x(t) is then given by

k(1) = (;2?/;;/23)7 4.4

In order to calculate the curvature at different scales, z(¢) and y(t) are convolved with

the Gaussian ¢(t, o)

X(t,0) = z(t)Qy(t,0)

oo 1 2 2

— =(i-u)*/20% 4

= (U ex u
/—oo ( )0v27l' P

and hence,

0X(t,0)
ot

- 0@ (*57)

X(t,0) =

9?’X(t,0)
ot?

= z(t) ® ('—“‘““62%(;27 0))

X(t,o) =
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Figure 4.3: Generalised Scale-Space Image

and similarly for Y, Y and Y. Substituting X for # etc. in equation 4.4 gives

XY -vX

I((t, 0') = m

The zero-crossings of the function K (¢, o) on the t-axis correspond to the positions of
the points of inflexion of the curve at the scale 0. The generalised scale-space image
is then defined as a binary image I(¢,0) which is unity if (¢, o) is a zero-crossing of
K (t,0)and zero otherwise. An example image I(¢, o) is shown in figure 4.3. Clearly,
this representation cannot distinguish between convex curves since they all have no

points of inflexion at all.

Mokhtarian and Mackworth then go on to use the Uniform Cost Algorithm to
match pairs of scale-space images. Using a VAX 11/780 with 4MBytes of memory
the matching of 2 images with 4 or 5 contours takes about 20 seconds but a more
realistic pair of 20 contours takes about 300 seconds. Hence the matching time is
between O(n?) and O(n3). On top of this, the generation of the scale-space image
is also computationally intensive, although certain assumptions can be made which

reduce the computation time from hours to minutes!
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Bengtsson and Eklundh [10] have used the ideas behind scale-space to produce
a multi-scale contour approximation. They begin with a polygon P, = {(z:, ) :
¢ = 1,..., N} which has a vertex for every point on the digital boundary; then they

calculate a series of polygons P, ... Ps such that
Ph2OPD...2Ps_; 2 PFs 4.5)

and P, is a polygon which approximates P, to within a tolerance of ke. Hence, k can
be thought of as the scale of the approximation and equation 4.5 means that as we
increase the scale no new features (vertices) appear and small-scale features disappear

before large-scale features.

Given a multi-scale polygonal approximation Bengtsson and Eklundh then classify
all the points and segments of the polygons P, as corners, points of inflexion, straight
segments or segments with positive or negative curvature. Significant features are
those which are stable over a wide range of scales so Bengtsson and Eklundh plot
occurrences of feature vs k and look for plateaus. They then rank the approximations P

according to their life-length (width of plateau) of various features.

The approach is demonstrated on test polygons and the most stable polygon is
clearly a very intuitive fit to the original data. It is not clear whether the approach will
be as successful with real edges from images where there are likely to be structures at

many different salient scales.

4.6 Fractal Shape Description

Fractal Geometry [65, 66] has been used to model image functions as 3D fractal surfaces.
The principle described by Pentland [84] is that fractal functions provide a good model
for describing the 3D surfaces typical of natural scenes. Pentland’s qualitative claim is
that the imaging process produces an image surface which is also fractal. Given that
the image (grey-level) surface contains areas which are fractal, authors have used the

fractal dimension as a measure of texture [28, 70, 112]. Whilst the texture of a region is
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useful for segmentation, it does not provide a means of shape description that is useful
for matching.

A fractal related system that is useful for 2D shape representation is described by
Giles et al. [44]. The Iterated Function System (IFS) is a recursive description of shape
in which contractive affine transformations of the original shape are used as primitives
in its decomposition. This means that primitives are not arbitrarily selected prior to
encoding.

The reconstruction of the shape from the IFS is known as the attractor of the IFS.
The IFS consists of a set of mappings w, and an associated set of probabilities p,. The

attractor is then generated using the following algorithm:

1. Take an initial point in the plane z,.

2. Choose a transformation from the IFS at random. The probability of
choosing w, is p,.

3. Apply the transformation to get point z;.

4. Choose another transformation to get from z; to z, and so on for a large

number of points N.

The resultant set of points (zg, 1, ..., zx) is an approximation to the attractor of the

IFS and tends to the attractor as IV tends to infinity.

The method described by Giles et al. for determining the mappings w, is as follows:

1. Given a list of boundary points, calculate the distance r of each point from

the centroid and the arc length s from the start point.

2. For each point calculate 4 and then smooth with a Gaussian with zero mean

and standard deviation 1.7

3. Segment the boundary into arcs whose endpoints correspond to the zero

crossings of the smoothed 4 curve.

4. Classify arcs as linear, concave or convex by fitting quadratic functions in s

using a least squares method.
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5. Calculate contractive transformations to match arcs to the same type of arc.
Consider only transformations with a contractivity of less than 0.8 in order

to get fast convergence.

6. If the best fit for a given arc is better than a given threshold then accept the
transformation and remove the arc from the segment queue. If the fit is not
good enough then halve the arc and add the new segments to the end of the

segment queue. Continue until the queue is empty.

By choosing the centroid of the shape as the origin of the coordinate system, it is
very likely that the point (0,0) will lie on the attractor so this is used as the starting

pomt Zg.

The probabilities p, are determined by restricting the choice of transformations to
affine transformations for which the determinant of the transform matrix is equal to
the ratio of the area of the transformed region to the area of the original. Choosing
probabilities to be proportional to the determinant of the transform matrix leads to an

even spread of points over the attractor.

The results given by Giles et al. are not very impressive but do show that a 2D
shape can be coded as an IFS. Since the IFS codes generated are not scale or orientation
invariant, the present scheme cannot be used for shape matching. In addition, the code
generation is rather crude and slow and occasionally produces regenerated boundaries

that have large gaps. These problems are currently being investigated by the authors.

IFS have been used for image compression by Barnsley [8]. Barnsley has not fully
published his algorithms (for commercial reasons) and his early claims were treated
with suspicion by many people in the field. The hardware produced by Barnsley’s
company has since demonstrated that large compression ratios can be achieved using
IFS techniques. The quality of the reconstructed images suggests that the heart of the
system consists of a very good algorithm for finding the optimal IFS codes for general

images.

Scott [89] states that IFS are a special case of the search for natural basis functions

and transformation between and within shapes. The general parametric form used by
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Scott to describe closed continuous 2D curves is

r = aoGo(O) + 0.1G1(0) + a2G2(9) + -
¥y = boGo(8)+b6.G1(8) + b:Go(6) + - -

where 6 is a continuous parameter and the number of terms is finite. Without loss of

generality the functions G; may be required to be orthogonal over 6.

Given a set of training shapes, Scott derives a set of natural basis functions which
can expand them all. It is assumed that the shapes are affine sets and that the
correspondence problem can be solved. For such a case with N curves there are
N vectors a for which a.p = 0, where p is the vector (1, 1, y1,Z2,¥2,.-.,Zn,Yn). The
values of a may be generated by determining the eigenvalues and eigenvectors of the
matrix 3 pp” where the sum is over sets of corresponding points. Scott calls the values
associated with zero eigenvalues, invariant vectors and those associated with non-zero
eigenvalues basis vectors. For these basis vectors the dot product a.p is generally non-
zero and varies from one set of corresponding points to another. These are the values

that Scott uses for Gy(6), G1(#), . . . in descending order of eigenvalues.

Unfortunately Scott, like Giles et al. above, only gives results of reconstruction.

There is no indication as to whether the description is useful for shape matching.

4.7 Conclusions

In this chapter we have seen many different approaches to the description and
matching of 2D shapes. What all these techniques attempt to produce is a consistent
and readily computable representation of shape. Unfortunately, it is often the case that
the most consistent representations are the least readily computable and/or applicable

to matching.

Since the basic shape of a region is independent of its position and size, it is desirable
fora shape representation to be translation and scale invariant. In most applications we

also requirea rotation invariant descriptor, an exception would be character recognition
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where it is important to be able to distinguish an “M” froma “W” and a “6” froma “9”.
In other applications we may require further invariances, such as reflection invariance
for recognising mirror images of shapes or affine invariance for recognising shapes

that have undergone general linear transformations.

External techniques (those which examine the boundary only) are more common
than Internal techniques (those which consider the whole area) because in most
applications the shape is characterised completely by its boundary and any internal
detail is either irrelevant or misleading. Character recognition again provides a
counter-example, it is much easier to distinguish a “0” from an “8” using internal
techniques. It is interesting to note though that Dudani et al. [35] chose to use a
combination of internal and external moments because the internal moments alone
could only capture the large scale structure of the shape and not its detail. Internal
Space Domain techniques such as skeletonisation [18, 109] are quite appealing in theory
but their implementation for real shapes in digital images reveals many problems due

to their excessive sensitivity to noise.

Fourier Transform techniques have received a lot of attention as an extension of the
large body of knowledge which has been built up from analysing 1D signals. Indeed,
the approach of Zahn and Roskies [115] is to first describe a boundary as a 1D signal
(the cumulative angular bend function) and then determine the FDs for that. Problems
arise with boundaries which have corners because this produces discontinuities in the
bend function which are not handled well by Fourier Theory. Perhaps a more intuitive
strategy is that used by Persoon and Fu [86] where the boundary is modelled as a
complex function (therefore 2D) rather than a real function. Although this produces
FDs which better describe the original 2D shape they are unfortunately much more

difficult to normalise for scale, rotation and starting point.

One criticism of many shape representations is that they are global ie. they describe
the shape as a whole. Global representations are not useful if we need to identify
shapes which may be partially obscured since the representation of the original shape

and the obscured shape will generally be completely different.
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Hough Transform type techniques overcome (or at least greatly reduce) the occlusion
problem by effectively using all the boundary points independently. Whilst Hough
techniques often produce good results there are serious drawbacks in the large amounts
of memory required for the accumulator array and the large amount of processing

required to calculate the “votes” and find the peaks.

A common approach to local shape description has been to segment the boundary
into sections which can be described separately. The idea is that if some of the sections
are obscured then the shape may still be identified from the remaining sections. Whilst
this is a good idea in principle, all these techniques suffer from scale problems in the
definition of curvature. Problems w%curvature arise because the boundary must
be segmented in a consistent m@nnel}% i}}yariab};y this leads to attempts to find points
which are minima/maxima/ inf:l'gxions of the curvature function. Since the number
and position of such points varie;%W“ith”"’“é%cale then the selection of an arbitrary scale

produces an inconsistent representation.

Witkin’s scale-space [107] goes a long way to producing a consistent shape repres-
entation by capturing curvature information across all scales. As used by Mokhtarian
and Mackworth [72] the generalised scale-space image is of limited use because it
only tracks inflexions in the curvature function rather than maxima and minima.
This is presumably because it is much easier to find zero-crossings than maxima and
minima. Even given this simplification, scale-space representations are very expensive

to calculate and match.

Finally, the approach with perhaps the most potential for consistent shape descrip-
tion is that of Fractal Geometry. The basic principles of fractals embody the need to
describe shape at all scales and yet yield expressions which are inherently simple.
Much work to date has concentrated on using fractals to describe the shape of 3D sur-
faces as a measure of texture or, on the 2D front, IFS and Scott’s natural basis functions
[89] have largely sought to represent shape for compression and reconstruction rather
than matching. What is required is a fractal-based 2D shape description which can be

used for matching and this is discussed in the next chapter.



5 The Fractal Shape Signature

As we saw in chapter 4, there are many 2D shape analysis methods in the literature. In
this chapter I will describe a novel method of shape analysis based on the principles
of Fractal Geometry. The preliminary results of this work were presented at the British

Machine Vision Conference 1991 [98].

In the following sections we will see how the Fractal Shape Signature is constructed by
modelling a shape’s boundary as a fractional Brownian function (FBF) [65, 66]. We will
then go on to examine the properties of the signature and demonstrate its application

to 2D shape matching,.

5.1 Fractional Brownian Model

The science of fractals was developed by Mandelbrot [65, 66] to enable complex natural
shapes such as mountains, trees and clouds to be described mathematically. Although
the shapes are very complicated, Mandelbrot found that they could be generated from
very simple functions. The important properties of fractals, which enable them to be
modelled so simply, are self-similarity and statistical invariance over wide ranges of

scale.

One example of a physical system which exhibits fractal behaviour is Brownian
motion, the apparently random motion of a particle bombarded by other particles.
Whilst the motion is random (in that it cannot be predicted) it is statistically invariant
over wide ranges of scale. This invariance is modelled using a fractional Brownian

function (FBPF).

70
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A function f(z)is an FBF if for all vectors z and Az,

flz + Az) - f(z) _
Pr ( Azl? < t) = F(t) (5.1)

where F(t) is a cumulative distribution function [65, 66] and H is a constant. The
function f is some measurement of the system and z is some parameter such as time
or position, the term Az is the scale over which the change in the measure is being
considered. What equation 5.1 says is that the change in the measure divided by
the scale at which the measure is made (to the power H) has the same probability

distribution for all scales.

Clearly, the constant H is an important property of the system we are modelling.
Mandelbrot introduced the concept of a fractional dimension ! as an extension of the
notion of integral dimension to allow the consistent measurement of features over
different scales. The constant H makes our measurement in equation 5.1 consistent

over different scales and is therefore related to the fractional dimension of the system.

If the vector = represents a point in E-dimensional Euclidean space %¥ then the
constant H is related to the fractional dimension D of the systemby, D = E+1 - H.

Hence, if x is a scalar then D = 2 — H.

From equation 5.1 it follows that for a given scale Az,

E[|f(z 4+ Az) - f(2)]]-|Az]" " = K (5.2)

where E[z] is the expected value of z and the constant K is the expected value of the
modulus of the random variable ¢ eg. for a zero-mean Gaussian distribution N (0,0?)

where,
2

1
1 —
F(t) = SE— e ],
) /_oo Vero P 202 s

then,

K = E[Y]

1Often known as the fractal dimension.
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Figure 5.1: Continuous Plane Shape
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We can now see how we might model a 2D shape boundary as an FBE. If we consider

the boundary B in figure 5.1 then we can define a function ¢(B, Af) as

e(B,A0) = E[|r(6 + A8) - r(6)| ]

where E[ [r(6 + Af) — r(8)| ] is the expected value of the difference in radius (from
centroid C) for any two points separated by an angle Af. Note that r(8) may be

multi-valued. Substituting into equation 5.2 gives,

«(B,AO).AGH = K (5.3)

and equation 5.3 is equivalent to

I
{
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loge(B,Af) — Hlog A6 =log K (5.4)

For a true FBF, if we plot log (B, Af) against log Ad then (from equation 5.4) we
expect to get a straight line with a gradient # and intercept log K. However, the
log — log graph for any shape is a useful measure of the shape since we can think of

our shape as being represented by different FBFs for different ranges of scales.

Other researchers (eg. [84, 112]) have tried to characterise shape by extracting a
single fractal dimension D which is representative over a large range of scales. In the
real world, some shapes will fit into this scheme better than others. To some extent
a deviation from the model tells us as much about the shape as an agreement with
the model. Therefore, I propose that the whole log — log graph can be used as a shape
signature ie. a sequence of ¢ values are used to represent the shape rather than the
gradient of any one section. In the following sections we will see how this idea can be

applied to the description and matching of plane shapes in images.

5.2 Shapes in Digital Images

The theory of the preceding section was derived in terms of a continuous boundary.
When a region is extracted from an image we get a boundary that is made up of a

list of discrete points. If we assume that the boundary is straight between points (see
figure 5.2) then we can scan the list and generate, by interpolating where necessary,
a list of polar coordinates (7;, 7;0mi,) ¢ = 1,2,..., N where n; is an integer and 6,
is a constant. The value of N will be 27 /0,,;,, if the boundary function is single valued
but greater if it is multi-valued. Note that for a fractal boundary it is strictly invalid to
interpolate linearly between points: however, since our boundary is the border of a

segmented region, the interpolation is simply a re-sampling of the observed data.

We can then calculate ¢( B, Af) for integral multiples k of 8,,.;, by scanning the polar

list. As we are comparing all pairs of points this takes a time of O(N?).
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Figure 5.2: Digital Plane Shape

Zz',j P(i, j)|r: — le

U Mmin) = =5 TP )

where,
L. 1 if n; —n; = k
P(i,j) =
0 otherwise
Clearly (B, A8) will have period 27 and (B, Af) = ¢(B, ™ — Af) so we only need

to look at values of Afl between 0 and 7 to get a “complete” signature.

Figure 5.3 shows the signatures of three simple shapes obtained using 8,,;, = 7/180
and k = 1...180ie. we have a sequence of 180 ¢ values. These three curves are clearly
distinct and yet the longest straight section for each of them has very nearly the same
slope. We can therefore see that using the whole of the log — log graph gives us a better

characterisation of the shape than the gradient of any one part.
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Figure 5.3: Simple Shapes and their Signatures

5.3 Invariance of Fractal Signatures

As discussed in chapter 4 we require our shape measure to be invariant under
certain simple transformations of the shape. In particular we require invariance
under translation, rotation and scale ie. we want a shape to have the same signature

irrespective of its position and orientation in the image as well as its size.

Since €(B, Af) is measured relative to the centroid of the shape, the fractal signature
is invariant under translation. The measure used involves the difference of radii so the
signature is both rotation and reflection invariant.

Scaling the shape would result in a similar scaling of the € values and thus a constant
offset on the log graph. In order to overcome this, the signature can be normalised by

dividing by the mean radius ie.
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E[|r(6+ A8) — r(60)] ]

Er(0) o

€(B,Af) =

This normalisation also cures the problem that the signatures of r; = f(f) and

Ty = f(8) + constant would have been the same.

From here on, when we refer to the fractal signature of a shape we will mean the

normalised signature defined above in equation 5.5.

5.3.1 Effects of Perspective Transformation

If we are viewing a 2D plane shape from a point which can move in 3D then we would
like to know how the signature is affected by changes in that viewpoint. To examine
this we will consider a viewing scheme such as that shown in figure 5.4. The point O is
the centroid of the shape and the “lens” is at position L so we will call the distance O L
the viewing distance. The viewing plane has its origin at point P and is perpendicular
to the line OL, the focal length of the lens is therefore the distance LP. The figure
shows an overhead view and a general viewing position which is identified by the
viewing distance O L’ and the two angles o and 3. Altering the focal length of the lens

simply scales the projected shape so this is fixed at unity (L'P’ = 1).

To illustrate the effects of changes in viewing position we will use a unit square.
Figures 5.5 and 5.6 show how the signature of the square changes when viewed from
a position (a0 = 45°, 8 = 0) at distances of 1 to 1024. There is a gradual change in
signature as the viewing distance increases from 1-8 but then there is very little change
as the viewing distance increases further. Therefore, if we discount “very close” views
we can assume that viewing distance will have no effect on the signature of the viewed
shape and we will be effectively considering orthographic projection. Additionally,
from a far viewpoint any changes in the signature due to translations of the viewpoint
will also be negligible. This “distant viewing constraint” is a common assumption

since it is unlikely that the camera will be very close up to an object.

Using the same square we can see the effects of varying the viewing angles o
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Figure 5.4: Perspective Transformation

(figure 5.7) and f3 (figure 5.8) with a constant viewing distance of 1000.

If we think of our original signature as a point in a 180-dimensional hyper-space
then we can think of changing the viewpoint as moving the signature-point along a
hyper-surface 2. We can see that this surface is smooth because the signature changes

gradually as the viewpoint moves.

Ideally we would like to be able to calculate the hyper—éurface from the original
signature and the viewpoint. This would allow us to decide whether an unknown
signature was due to viewing a known shape from any arbitrary viewpoint. As we

will see later, such calculations are extremely difficult, if not impossible, to perform.

As an alternative, I propose a type of property sphere scheme (see chapter 6,section 6.2)
for encapsulating the viewpoint variability of the signature. We can view each known

shape from a grid of equally spaced points on the viewing hemisphere and calculate

?If we allowed different viewing distances then we would get a volume, effectively the hyper-surface
would have some “thickness”.
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its signature, labelling it with the viewpoint. Given some unknown signature we can
search the stored signatures for the closest match (we will discuss how signatures can
be matched in the following section). Since the signature hyper-surface is smooth we
can be confident that we are in the right part of the hemisphere as long as the sampling
is fine enough.

Given an approximate match we can “zoom in” on the correct viewpoint by pro-
jecting the stored shape from a small neighbourhood around the current estimate of
the viewpoint at a finer resolution. For these new projections we can compare their
signatures to the unknown and get a new estimate of the viewpoint. This process can
be repeated recursively until we are satisfied that the unknown shape is or is not the

stored shape.

5.4 Matching Fractal Signatures

Unknown shapes can be matched against a library of known shapes by comparing
fractal signatures. Whilst the comparison of signatures is not trivial it should be much
simpler than direct comparison of the boundaries since we have removed the effects

of scaling, rotation, reflection and translation.

I have used two different methods for comparing signatures

1. Euclidean Distance - treating the signatures as 180-dimensional vectors and

calculating their separation.

180
E= \/ZUOg GI(Bl,kain) — 10g €I(Bz, kBmin)]z

k=1
2. Bounded Area - treating the signatures as continuous curves and calculating

the (absolute) area between them.

A= |log €'(B;, 8) -—loge'(Bz,O)]%—e—

log 8 min

Tables 5.1 and 5.2 show the values of the two metrics for the signatures of the outlines
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Figure 5.9: Signatures of Letters E-J

of the letters in figure 5.9.
The Euclidean metric appears to be more appropriate, since the bounded area does
not handle the I-] case very well: the two signatures are quite different near Af = =

but this adds very little to the area. The Euclidean metric though appears to have a

reasonable value for all the letter outlines. We shall therefore use the Euclidean metric

as a measure of the distance between two signatures.

5.4.1 Shape Confidence

Since it is often more convenient to have a measure of similarity rather than a measure

of dissimilarity, we will define an additional metric. I define the confidence C; that an
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E F G H I J
E| 0 085 1869 1.460 3511 3418
F 0 2387 1599 3.072 3.032
G 0 2889 3.424 3.098
H 0 3.840 4.015
I 0 0.958
J 0

Table 5.1: Euclidean Distance

E F G H I J
E| 0 0606 0950 0279 1478 1.578
F 0 1523 0.743 0947 1.053
G 0 1.101 1973 2.035
H 0 1568 1.664
I 0 0.142
J 0

Table 5.2: Bounded Area

unknown shape S corresponds to a library shape L; as

1

= 1Y% E E, (5.6)

Ci
where E; is the Euclidean Distance between the signatures of S and L;. The positive
constant & is chosen such that C; = 0.5 represents a sensible intermediate between
1.0 which represents complete confidence in the match and 0.0 which represents no

confidence in the match at all.

To determine the value of £ we will make an arbitrary decision, based on table 5.1,
that a Euclidean distance of 1.0 will correspond to a confidence of 0.5 ie. we are just
more than 50% confident that an “E” is an “F” and an “I” is a “J”. From equation 5.6 it

follows that & = 1.

Considering a more complicated shape, we can see that this value of £ does give
us a sensible value for our confidence measure. The two outlines in figure 5.10 are
identical apart from the rear spoiler, the confidence that both signatures represent the
same shape is 0.60. Since the difference in shape is less than that between the letters

E and F this seems a reasonable value. If we now also consider the signatures of the
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Figure 5.10: Signatures of Car with and without Spoiler

clearly different shapes in figure 5.3 then we get the following confidences that any

pair of signatures represents the same shape

Triangle Arrow Car
Square 0.06 0.04 0.04
Triangle 0.11  0.08
Arrow 0.18

As expected, all these values are low since the shapes (and their signatures) are very

different. Hence, we appear to have a reasonable measure of shape similarity.

5.4.2 Matching From Unknown Viewpoints

We can now use the confidence measure defined above to examine the algorithm

proposed in section 5.3.1 for handling perspective transformations. For simplicity
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Figure 5.11: Aeroplane Shape and Signature

I shall only consider a single viewing distance (far from the object) although the
algorithm as described can be generalised to handle all possible viewpoints.

‘Figure 5.11 shows a simple outline of an aeroplane and figures 5.12 and 5.13
shows the same outline viewed from four different points. The fractal signature is
reflection invariant so we will only get unique signatures for viewpoints 0° < o < 90°,
—180° < B < 0°. If we choose an initial resolution of 10° in each direction then we
need to store 1 4 8 x 19 = 153 signatures (if the shape has no axis of symmetry we
need 289).

Given an unknown view we perform the following steps,
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View | Step | (a,f) | Confidence
1 10 | 10,90 0.77
5 5,90 0.78
2 5,90 0.78
1 5,90 0.78
2 10 | 10,-160 0.67
5 |10,-160 0.67
2 110,160 0.67
1 9,-159 0.68
3 10 | 50,-140 0.50
5 |50,-135 0.55
2 |52,-133 0.56
1 52,-133 0.56
4 10 50,0 0.50
5 55,0 0.53
2 53,0 0.55
1 53,-1 0.62

Table 5.3: Viewpoint Determination for Aeroplane Shapes
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1. Extract the shape boundary and calculate its signature S;

2. Compare § with the stored signatures and select the nearest, ie. highest

confidence, match;

3. Given the best viewpoint, re-project the original outline from the 8 sur-

rounding viewpoints 5° away in « or # or both and calculate the signatures;

4. From these 8 signatures and the central one, select the nearest to S;

5. Repeat steps 3 and 4 with increments of 2° and 1°.

Table 5.3 summarises the results of applying the above procedure to each of the four

views in figures 5.12 and 5.13.

All four views appear to have been pinpointed to approximately the correct view-

points. Physical estimates of the actual viewpoint could only be made crudely to within

about +5° but these estimates agree with table 5.3. More precise experiments have not

been carried out because the accurate determination of viewpoint is not the objective

here: what is important is the confidence that the unknown shape corresponds to a

view of the known shape from some viewpoint.

All the confidences in table 5.3 are high but perhaps not as high as we might like. One
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problem that was encountered in these experiments was that of the camera’s aspect
ratio. The quoted figure for our hardware is 5:6 but a quick experiment revealed
that it was actually closer to 2:3. Additionally, this aspect ratio is not constant across
the whole image, resulting in some camera distortion. In the above experiments the

average aspect ratio was assumed to be 2:3.

Note that views 3 and 4 have less confident matches than views 1 and 2. The most
likely explanation for this is that any errors in the boundary location (due to noise,
non-optimal segmentation or camera distortion) are more significant for “lower” views
(ie. greater a) because the same distance in the image plane corresponds to a larger

distance in the object plane.

The major disadvantage of using the signature in this manner, rather than trying
to produce some sort of invariant, is the large number of signatures required for the
initial viewpoint estimate. In the following section we will investigate the possibility

of calculating invariant properties from a single signature.

5.5 Uniqueness of the Fractal Signature

After examining many examples the normalised signature appears to be unique ie. no
two clearly different shapes have been found which have very similar signatures. A
more precise mathematical analysis of the fractal signature’s properties is extremely
difficult due to the presence of the modulus term (equation 5.5). In this section we will
investigate the possibility of predicting certain properties of the fractal signature by

replacing this term with a square.

5.5.1 Simplifying The Problem

If we have a simple, single-valued, shape 7(#) then we can write it as a Fourier Series
in @ ie.
1 e .
r(d) = 5(10 + Z d, cos nd + b, sin nd

n=1
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where,

27
a, = —1-/ 7(8) cosnd d8
T Jo

1 27
by = = / 7(8) sin nd df
T Jo

Our fractal signature ¢'(A#) is defined as

, E{|l]
“(89) = B0

where,
p=r1(8)~-7(0+ Af)

It is difficult, if not impossible, to calculate E| |p| ] in terms of A#, a,, and b, but it is
possible for E[ p* ], and E[r(6)] is simply a,/2. Hence, we can analyse the properties
of the mean of the square and then see if they hold for the mean of the absolute value.
We can define a new signature S(A#f) as

Elp*]
Elr(9))?
4 1 &
= —- -2—*/ ( Z;an[cosnﬁ —cosn(f + A9)] +

ag

S(A8) =

b,[sin nd — sinn(8 + AF)] ) db
= —52 al +b)[1 — cosnAf) (5.7)
0 =

Hence, we can calculate the function S(A#6) for any simple shape given its Fourier
coefficients. Conversely, we can reconstruct any shapes which may have identical

functions $(Af) and test them to see if they also have similar fractal signatures.

5.5.2 Implications

If the Fourier coefficient pairs are considered as cartesian points (a,,b,) then equation

5.7 means that S(A#) will be unchanged if any of the points (a,,b,) are rotated about
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(a) Square and Approximation

RSO

(b) Approximation with 4th harmonic rotated by = /4, 7 /2,3r /4 and

(c) Approximation with 8th harmonic rotated by = /4, 7 /2,37 /4 and =

Figure 5.14: Harmonic Variations on a Square

the origin by any angle, since a2 + b2 is the square of the distance from the point
to the origin. Examples of this are shown in figure 5.14:" the approximation to the
square shape in 5.14(a) is made from the Fourier Series up to » = 32 (only every fourth
coefficient is non-zero). In 5.14(b) the pair (a4,b,) has been rotated by multiples of
7/4 and in 5.14(c) the pair (as,bs) was rotated. Note that the higher the harmonic, the

smaller the effect of the rotation on the shape.

All the shapes in figure 5.14 have the same value of S(A#) for all Af so this suggests
that our signature ¢ (Af) may be unable to distinguish between them. However, this
is not the case: when we calculate the signatures of the shapes in figure 5.14 we get
the graphs in figure 5.15. These curves are close, but by no means indistinguishable.
The Euclidean separations of the signatures in 5.15(a) range from 0.62 to 0.90 and for
those in 5.15(b) the range is 0.36 to 0.84. For all the signatures, the separation from the

signature of the approximate square ranges from 0.67 to 1.14.

The variations in the Fractal Signatures of the given class of shapes are completely

compatible with the other results in this chapter. It is therefore clear that the prediction
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Figure 5.15: Signatures of Approximate Square and Harmonic Variations
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made, as a result of analysing S(A#), is not true, or even approximately true, for ¢/(A§).

5.5.3 Summary

We have seen that replacing the modulus in the Fractal Signature definition by a square
enables predictions to be made but that these prédictions may not necessarily hold.
Since the prediction was that a given class of shapes would have the same Fractal
Signature it is encouraging to find that in this case the prediction is incorrect: however,
we have still not proved that the Fractal Signature is unique. On the one hand we have
shown that the Fractal Signature is better than first thought, but on the other hand we

are left with no firm predictions about its properties.

5.6 Shape Reconstruction from Fractal Signature

Since the primary use of our fractal signature is for shape matching it is not necessary
for us to be able to reconstruct a shape’s boundary from its fractal signature. For

completeness, though, it would be nice if this could be done.

In the previous section we saw that an approximation to the signature could be
expressed in terms of the Fourier series of the shape. Unfortunately, we also saw
that this approximation was not valid and therefore unlikely to be useful. Given the
presence of the modulus term in the definition of the fractal signature it is unlikely

that the signature itself can be expressed in terms of a series.

Work on the simulation of fractals by other researchers (eg. Fournier [41]) has shown
that it is possible, given a fractal dimension, to compute examples of boundaries or
surfaces which have approximately that fractal dimension. Iam not aware of any work

on the reconstruction of multi-fractals given a set of fractal dimensions for different
scales.

I believe that it will be possible, at some stage, to reconstruct shapes to some degree
of accuracy from their fractal signatures: however, this will not be pursued further in

this thesis.
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5.7 Effects of Noise and Occlusion

Due to imperfections in the image capture process and the limitations of our segment-
ation algorithms, it is very likely that a shape extracted from an image will be distorted
somewhat by noise. In addition, our shape may be partially occluded by some other

object in the scene.

Aseach ¢ valueisan average over the whole shape, minor occlusions and deformities
are smoothed out to some extent. Therefore the signature will change gradually as
a shape is occluded or becomes deformed by noise. However, we would expect the
change in the signature to be smaller for some random variation (ie. noise), which
may cancel out to some extent, than for a systematic variation (ie. occlusion) which

will not cancel.

Figure 5.16 shows the E boundary (originally 65 x 130 pixels) with noise added to
the x and y positions of all the points. The noise is zero-mean Gaussian with the given
standard deviation and the coordinates rounded to the nearest integer. The noisy
boundary is then considered to be the polygon joining the points in the same order in

which they originally existed.

In figure 5.17 we can see the Euclidean distance between the signature of the noisy
boundary and the signatures of the original shapes. Since the noise is random we will
obviously have some variation in the distances, the values plotted are an average for

10 examples.

Note that for all the noisy E boundaries the closest signature is that of the original E.
However, for noise with a standard deviation of more than 0.6 pixels the distance to

the E is greater than the distance between the original E and F.

It is also the case for the other five letters that the signature of a noisy example is
always closer to the signature of the same letter than to any of the others. These results
show that for this test set there would be no classification errors due to noise of the

magnitudes considered.

Figure 5.19 shows the greater degradation caused by occlusion. The signature of the
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Figure 5.17: Euclidean metric on E’s with noise

occluded E becomes closer to the original F than the original E after just over 25% of
the lower stroke is occluded. When the shape is occluded in other ways the effects will

be equally unpredictable.

Since our shape measure is global (ie. measured over the whole shape) we cannot
expect it to be unchanged when the shape is occluded by any significant amount.
Indeed, we would not want it to since we want different shapes to have different
signatures. The/best that we can manage is that the signature changes gradually as the

shape is occluded by larger amounts.
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Figure 5.18: E occluded 0,1,2,3,4
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Figure 5.19: Euclidean metric on occluded E’s

5.8 Comparison of Fractal Signature and Fourier Descriptors

In the previous section we added moderate amounts of noise to shapes from a small
test set and found that no classification errors were made. In order to compare the
performance to that of an established technique (the FDs of Persoon and Fu [86]

described in section 4.2.1) I chose a larger test set and a higher noise limit.

The test set is shown in figure 5.20 and their signatures are shown in figures 5.21 and
5.22. The digits shown are from the Courier Bold font and are approximately 32 x 32

pixels in size. As a demonstration of the amount of noise used, figure 5.23 shows the
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0123456789

Figure 5.20: Sample shapes of digits

digit 3 with noise at standard deviations 0.2 to 1.0 pixels. Since the shape is roughly a
quarter of the size of the previous example, this represents a signal-noise ratio of four

times less.

All of these noisy threes are recognisable by a human being since we can selectively
ignore points which are clearly in the wrong place. Figure 5.23 shows the original
digit 3 and an example of one with noise of standard deviation 0.6 added. Clearly,
the process of connecting the boundary points in the same order as the noise-free case
makes recognition more difficult since this order is often unnatural. However, this is
the simplest definition of a boundary with a given amount of noise and we have a fair

comparison since both methods will use the same boundaries.

For the FDs 16 harmonics were calculated and normalised for starting point, position,
rotation and scale as described in section 4.2.1. In Persoon and Fu'’s experiments (which
also used digits 0-9) they used only 8 harmonics but we have used more here for a
fairer comparison because the fractal signature has a much larger amount of data:
harmonics higher than 16 would be useless because their magnitudes are very small

and they are difficult to calculate reliably.

Given two sets of 16 complex coefficients a, . . .a;sand ay . . . a5 the distance between

them is defined as
15
d= \/Z la, — an]?
n=0
which is conveniently similar to the distance measure for fractal signatures.
The following procedure was used to compare the robustness of the Fractal Signature

and the Fourier Descriptors -

1. For each digit ?, calculate its fractal signature and store it as a reference;

®The bitmaps for the digits 6 and 9 were found to be 180° rotations of each other and were thus
considered to be a single shape.
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Figure 5.22: Signatures of digits 1-7

o - digit-0
o - digit—1
A ~ digit-2
¢ ~ digit-3
¥ ~ digit-4
& - digit-5
+ - digit-6
x — digit-7
% - digit-8
s - digit-9

0 - digit-1
o - digit-2
& - digit-3
§ - digit-4
* - digit~5
¢ — digit-8
+ - digit-7
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Figure 5.23: Effect of noise on digit 3
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Figure 5.24: Robustness of Signature and Fourier Descriptors

2. For each noise level, add noise to each digit ten times to produce a large
number of noisy shapes;

3. For each noisy shape, calculate its fractal signature and classify the shape
as being the digit whose reference signature is closest to the calculated

signature;
4. Calculate the percentage of incorrect classifications;

5. Repeat for the Fourier Descriptors.

The results of the above analysis can be seen in figure 5.24. It is interesting to note
~ that both methods produce a classification error of 21% for noise of standard deviation
0.5 pixels: below that level the fractal signature produces less classification errors than

the FDs but for higher noise levels the performances are reversed.

Adding increasing amounts of noise to a shape affects the smaller scale (or higher
frequency) appearance of the shape much more significantly than the larger scale
(lower frequency) appearance. Because the FDs decrease in magnitude rapidly

with frequency a large proportional change in the high frequency coefficients only
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contributes a small numerical increase in distance from the original. On the other
hand, the fractal signature represents all scales evenly so a large proportional change

in any value will produce a large change in the distance from the original.

If we examine the distances between all the original digits in feature space for both

representations then we find the following

Signature FD

mean 11.0 0.50
sd 21.2 0.12
max 32.7 0.78

These figures become significant when we note that the average effect of noise at
s.d. 0.25 pixels on the digits is of the order of 0.5 for the fractal signature and 0.05 for
the FD. Thus, this level of noise represents about 5% of the average separation for the

fractal signature but 10% for the FDs.

I conclude that the fractal signature itself is better at discriminating between the
shapes in the test set than the FDs. However, its performance degrades more rapidly
with noise because the simple matching process used does not take into account the
fact that noise will affect the smaller scale values more significantly than the larger

scale values.

5.9 Conclusions

In this chapter I have presented a new shape descriptor based on Fractal Geometry.
By modelling the boundary as a Fractional Brownian Function (FBF) the fractal shape
signature captures the statistical variations of a shape across all scales. By using the
information from all scales, rather than trying to extract a single “characteristic fractal
dimension” for the shape, the fractal signature can easily distinguish between shapes
which have the same dimension. This means that the fractal signature is equally
applicable to all types of shapes since those with a “clear” fractal dimension (ie. a

largely linear signature) are modelled equally as well as those without.
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From its definition the fractal signature is invariant under translations, rotations
and reflections of the shape boundary. Whilst translation and rotation invariance are
essential for our application, reflection invariance is neither essential nor a problem
(although it could be in some cases). The fractal signature is also easily made invariant
to the size of the shape: in circumstances when we require absolute size information

this can easily be inferred from the length of the boundary.

In the previous chapter Imentioned techniques which were invariant under perspect-
ive transformation. The fractal signature is not invariant under such transformations
and probably cannot be made so. To capture the viewpoint variance of the signature it
is necessary to use a set of signatures from a large number of viewpoints. This initially
seems a major disadvantage in comparison with projective invariant descriptions.
However, we must remember that the 2D shapes we are describing are the projections
intoanimage of 3D surfaces: if those surfaces are flat then the projections from different
views will indeed be related by perspective transformations; if the surfaces are not flat
then their projections will not be projectively invariant. Therefore, for describing the
projections of general surfaces we will need to use multiple signatures anyway (as will

be demonstrated in chapter 7).

The major criticism of fractal-based techniques such as the IFS was that they did
not lend themselves easily to shape matching. The fractal signature presented here
has been specifically designed for matching, the premise being that matching two 1D
translation, rotation and scale independent signals is easier than matching two 2D
boundaries with different positions, orientations and sizes. The matching strategy
described in section 5.4, based on the Euclidean separation of the signatures, was
chosen mainly for its simplicity. It is intended only to demonstrate the potential of the
fractal signature. Whilst the derived shape confidence measure is useful in determining
whether shapes are similar or dissimilar it is not so useful where the choice is less clear
cut.

A major setback in making firm predictions about properties of the fractal signature

has been the difficulty in performing a precise mathematical analysis. This has meant

thatThave been unable to prove whether the fractal signature is unique or notand have
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also been unable to analyse the effects of affine transformations. It has been suggested
that such problems would be solved by redefining the signature in terms of a squared
difference rather than a plain difference. Unfortunately, we saw in section 5.5 that this

was a blind alley.

Whilst the signature is a consistent representation of shape it is a global descrip-
tion and therefore cannot handle large amounts of noise and occlusion. I have
demonstrated that the fractal signature can perform better than a comparable global
shape descriptor (ie. Fourier Descriptors) for moderate amounts of noise and have
suggested that the performance for larger amounts of noise could be improved by a
more sophisticated matching technique. The same cannot be said for occlusion, the
global nature of the fractal signature means that significant occlusions will render it
unrecognisable. Therefore, other means of handling occlusion are required and some

possibilities will be discussed in chapter 7.



6 Three-dimensional Object Recognition

The problems of modelling 3D objects and finding instances of those models in
images have received much attention, particularly over the last decade. Several
comprehensive surveys have been published, notably by Binford [17], Besl and Jain
[12], Besl [11], Chin and Dyer [29]. In this chapter we will see some of the more
popular, and practical, approaches to 3D modelling and matching. Some researchers
[26,37,52,79] have used range images to some degree of success but we will concentrate

here on approaches that are applied to ordinary chromatic images.

6.1 Object-centred Approaches to 3D Modelling

An object-centred representation is one in which no (or little) account is taken of the
way that the object may be viewed. The object is specified in terms of 3D points, lines,

surfaces or volumes which are all defined using some internal co-ordinate system.

Common examples of object-centred representations are those which are closely tied
to Computer Aided Design (CAD) systems. Perhaps the most obvious CAD-based
representation for polyhedral objects is the wire-frame, illustrated in figure 6.1. The
object is defined as a simple list of edges, but this has the problem of ambiguity, as

shown.

Other, non-ambiguous, CAD-based representation schemes are reviewed by Bhanu

and Ho [13] including

e surface points and normals;

e surface curvatures;

103
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Figure 6.1: Ambiguity of Wire-Frame Representation

e generalised sweep;
e extended Gaussian image;

e object decomposition (eg. Constructive Solid Geometry).

They assess the different schemes according to Marr’s [67] shape representation criteria
- scope, accessibility, conciseness, uniqueness, stability and sensitivity. The favoured
representation is surface points and normals which scores well in all respects except
conciseness. In a further paper, Bhanu, Ho and Henderson [14] expand on their
approach and describe how to produce a 3D point-normal model from a standard

CAD-model to a given resolution.

A related approach by Falcidieno and Giannini [36] produced a face-based represent-
ation of solid objects from CAD models. Here an object is decomposed into a hierarchy
of components such as slots, pockets, holes and protrusions, which are described by
face adjacency hyper-graphs (FAHs). A FAH is a graph in which nodes represent faces,
arcs connect nodes which share a common edge and hyper-arcs connect nodes which

share a common vertex.

The motivation for Falcidieno and Giannini’s work is that a face-based representation
of objects is required in order to integrate information about surface finish. This idea

also applies to Vision applications where we need to describe the colour and texture



105

of parts of objects.

For the purposes of object recognition an object-centred modelling system requires
an algorithm for detecting the 3D translation, 3D orientation and the scale which allows
the model to be projected correctly into the image. This involves the determination
of seven parameters. Ballard and Sabbah [6] have extended the Generalised Hough
Transform (section 4.4.1) to 3D to solve for six parameters (they assume orthographic
projection so the absolute depth is lost). The process is divided into two stages, the
orientation parameters (three) are determined in the first step and then the translation
parameters (two) and the scale parameter are determined by the second step. Like the
2D GHT, this method has the advantage of insensitivity to noise and occlusion but the
disadvantage of large computation and storage requirements. Stockman [94] describes
a system which utilises a similar approach (although he calls it “pose clustering”) to
determine pose from both 2D and 3D data to within 1mm for 400 x 400 x 200mm objects
but states that the approach is only suitable when the number of models is small and

that hardware development is required to speed up the computations.

Brooks has produced an object recognition system called ACRONYM [21] which has
been used to interpret aerial images of airfields. Objects (eg. aircraft) are modelled as
subpart hierarchies of generalised cones. A generalised cone is a 3D curve (the spine)
along which a plane shape (the cross section) is swept: the cross section is kept at a
constant angle to the tangent of the spine and is deformed according to a deformation
function known as the sweeping rule. An example of a generalised cone, representing
a wing section, is shown in figure 6.2, here the spine is a straight line and the cross-
section is a spline function, the sweeping rule moves one of the control points of the

spline away from the spine in a linear manner.

Each generalised cone therefore has its own local coordinate system which must
be related to the object’s coordinate system. Additionally, cameras are modelled
as coordinate systems and are placed in the world with the modelled objects by
constraining the transforms between their local coordinate systems and the world

coordinate system.



106

Figure 6.2: Generalised Cone Representation

Given this model of the world, ACRONYM first extracts a description of the image in
terms of ribbons (the 2D projection of generalised cones, restricted to having straight
spines and linear sweeping rules) and ellipses. Using these primitives, predictions
are made as to the appearance of object components in the image. The predictions
are initially constrained by rules derived from the 3D parts of the model, matched
primitives are then used to further constrain the size and orientation of the 3D parts,

matched parts are then grouped into objects to further constrain the pose of the object.

Unlike ACRONYM, which matches 2D image features to predicted 2D features, the
3D MOSAIC system described by Walker and Herman [105] performs matching of
3D structures. The application area here is the extraction of 3D wire-frame models
from aerial images of complex urban scenes. Once 2D lines and junctions have been
extracted from an image the system uses geometric reasoning to extract 3D structures

such as edges and vertices.

The geometric reasoning employed by MOSAIC stems from the assumption that

all surfaces are either horizontal or vertical. Once lines have been labelled as either
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horizontal or vertical then the positions of their endpoints are determined by assuming
that one end of certain vertical lines must lie on the (known) ground plane. Objects
are then completed using knowledge about the type of objects that will appear. This
knowledge is implicit and some user interaction is required; however, the authors state

that the system could be improved by using explicit domain knowledge.

Lowe [61, 62] proposes object recognition based on the process of perceptual organisa-
tion which detects groupings and structures in the image that are likely to be invariant
over wide ranges of viewpoint. The approach presented is limited to straight line
segments but can theoretically be extended to arbitrary curves (some progress in this

area has been made by Horaud et al. [48)]).

The suggestion is that recognition of 3D objects need not proceed via explicit
derivation of depth information. This is supported by psychological evidence which
shows almost identical reaction times for humans recognising line drawings and full-
colour slides of the same objects from the same viewpoints. In addition Lowe states
that recognition of objects from complete depth images has not been shown to be easier

than for systems using only two-dimensional images.

The model (only one object!) used is a set of 3D line segments (wire-frame) with a

simple hidden-line marking scheme. The basic procedure is as follows

1. Find lines in the image
2. Group lines on the basis of
— Proximity
~ Parallelism
— Collinearity
3. Rank the groupings in order of probability that they are non-accidental
4. Compare the groupings to the model
5. Determine the viewpoint

6. Project the model into the image and check that all the model parts are

consistent with the viewpoint
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7. Accept or reject the match

The key operations are the perceptual grouping and the viewpoint consistency
constraint. By only using groupings of three or more line segments a significant speed
up is achieved since such groupings will contain enough information to completely

solve for viewpoint based on the initial match.

The operations described are far too expensive (a few minutes per ~ 20 line model)
to perform in a serial fashion, model by model. Lowe suggests that the ranking
mechanism employed to aid the search be used to control the distribution of processing

to a parallel processing system.

A related approach is the work of Goad [45] which also involves matching between
edges in a 3D model and edges in the image to constrain the viewpoint. However,
Goad produced high runtime speed by “compiling” the object model to produce a
fast program. This involves precalculating, for each position and orientation * of each
model line, the relative position in the image of every other model line. In addition, a
depth-first search tree is also precompiled and optimised so that the edges most likely

to be present are examined first.

At runtime, Goad'’s system predicts an initial match between an image and model
edge and then uses the search tree to predict the position of other edges in the image
relative to the first edge. As model edges are matched to image edges the position of
the image edge is used (back-projected) to refine the current estimate of the camera

position (and therefore the object position).

Exact viewpoint determination for images of known polyhedra has also been demon-
strated by Yu et al. [114]. Although an unknown view of a known triangle can only
be solved to within twelve possible viewpoints, two adjoining triangles with a known
angle between their normals yield a single solution. The method is only demonstrated
with triangle pairs but generalises to polyhedra since any polyhedral object can be

decomposed into a collection of triangles. Like all precise geometric solutions, it is

!More precisely, the model is assumed fixed in space and edges are viewed from 218 different positions
on the viewing sphere.
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not clear whether lines extracted from images will be accurate enough to achieve a

consistent solution.

A completely new approach has recently been demonstrated by Terzopoulos, Witkin
and Kass [100]. They have moved away from thinking of models as being rigid and
trying to match them to image data by simply scaling and re-orientating them in 3D.
Instead their models can be though of as being made of an elastic material which can
be deformed. From an initial guess the model is acted upon by external forces which
are derived from the image. These forces deform the model so that its projection into

the image plane is consistent with the object.

The models presented have a natural “preference” for axial symmetry and are
initialised by a user manually placing a spine on the image. The model starts off
as a thin tube around the spine and then “inflates” to fit the object. The forces which
inflate the model are defined in terms of the intensity gradients in the image, such that

they pull the edges of the tube out towards occluding contours in the image.

The examples given are quite simple but the general approach of deformable models
is quite appealing because it allows the modelling of objects with quite a complex
geometry (eg. the potato and squash demonstrated) without explicitly stating their

geometry in the model.

6.2 Viewer-centred Approaches to 3D Modelling

The motivation behind a viewer-centred, essentially 2D, representation of 3D objects
is the ability of the human visual system to recognise objects from simple 2D line
drawings. Since there is no direct 3D information (in the form of shading or texture)
in a line drawing we must be able to infer 3D information from properties of the lines
themselves. Barrow and Tennenbaum [9], Kanade [53] and later Barnard and Pentland
[7] have all investigated ways of deriving 3D shape from single line drawings. Other
researchers believe that such 3D inferences are achieved using high-level knowledge

and that initial object recognition is achieved by comparing the image to a number of
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stored representative views of the object. Experiments performed by Koenderink and
van Doorn [55] support this view and they suggested that the human visual system

uses some enumeration of all the fundamentally different views for object recognition.

The basis of viewer-centred 3D modelling is therefore that we represent objects in
terms of 2D image features rather than 3D object features, using a set of different views,
or aspects, in order to describe the object fully. In an object-centred system we either
project a 3D model into a 2D image and match 2D features or extract 3D information
from the image and match with 3D model features: hence, by storing a set of 2D
features as our model and matching directly with 2D image features, a viewer-centred

approach avoids the difficult problems inherent in the 2D+« 3D transformations.

Early work by Underwood and Coates [103] yielded a system which could learn
graphical descriptions of convex polyhedra when shown a series of views and then
recognise objects from unknown views. Faces are represented by simple geometric
invariants so that a view can simply be represented by a graph in which the nodes
represent the faces and the arcs represent face adjacency. As the system is shown a
series of views (which contain each face at least once) it builds up a representation
of which faces are connected to which. Given an unknown view, the system simply
generates the representative graph and compares it to its learned representation of the

object.

Thorpe and Shafer [101] analysed the topological changes in line drawings of
trihedral polyhedra with changing viewpoint. They developed a set of transition
tables which show the allowable changes in junction appearance as the viewpoint
moves. Using this information they demonstrate an algorithm which tracks vertices
from one view to the next. Although restricted to simple trihedral polyhedra this work

is important because it leads the way to generating all the distinct views of an object.

Wang and Freeman [106] have built on this and the work by Chakravarty and
Freeman [24] on the recognition of planar-faced solids (PFS) using characteristic views.
Given a PFS there are an infinite number of views. These views can, however, be

partitioned into a finite number of regions called characteristic view domains (CVDs)
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where views in the same domain are topologically equivalent and views in adjacent

domains are topologically distinct.

Each model is represented as a graph of all its CVDs where branches correspond to
the number of visible faces, the numbers of visible vertices and the various junction
types. The CVs themselves are represented as graphs with nodes storing junction
types and arcs representing the line segments. This representation reduces the number
of graph matching operations that are required but means that occlusion cannot be

handled.

Since all possible viewing positions are considered, there are a very large number
of CVDs for even a simple object (eg. solid “L” has 37). Many of these views are
due to very close positions and should really be discounted since they are (i) unlikely
and (ii) not readily identifiable by a human being. In order to try and provide better
model indexing, Chen and Freeman [27] recently defined a subset of the CVDs (called
the dominant views, DVs) which encompasses maximal visual information about the
solid. This basically means that the DVs are the minimum set of views in which each

surface appears at least once.

The concept of multiple views has also been suggested by Fekete and Davis [38]
and is embodied in their property sphere representation. A property sphere is basically
a viewing sphere which is sampled in some regular fashion (Fekete and Davis use
triangular subdivision of an icosahedron to give 320 viewpoints) and at each viewing
point considered some object properties viewable from that point are stored. Fekete
and Davis use two properties per viewpoint, the first and second moments of the sil-
houette. Given an unknown silhouette the property sphere is searched for viewpoints

which give similar property values to the unknown.

The idea of property spheres was extended by Korn and Dyer [56] to use more
qualitative properties which do not vary continuously across the view sphere. This
means that viewpoints on the sphere can be grouped together into regions (like CVDs)
and Korn and Dyer define a region growing process on the property sphere which can

achieve this. As an example, the property of visible faces of a cube is used to produce
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Figure 6.3: Visible-Face Aspect Graph of a Cube

a “segmented” property sphere which can be represented as an aspect graph. Figure 6.3
shows the derived graph, each node represents an area of the property sphere over
which the given faces are visible and each arc represents a boundary between two

adjacent areas.

Using this approach the number of different views is effectively reduced from 320 to
just 26, although the number of views is obviously dependent on the object. We have
traded accuracy of viewpoint determination (now a large region instead of a small

region which approximated a point) for compactness of representation.

Plantigna and Dyer [87] investigated the aspect graphs of polyhedral objects under
orthographic projection and perspective projection. By listing the ways in which aspect
can change they show how to calculate the boundaries of visibility for each face of the
object. They call the areas within these boundaries the regions of constant aspect
and these form the nodes of the aspect graph. For a non-convex polyhedron with n
faces they show that the upper bound on the size of the aspect graph is O(n°) under

orthographic projection and O(n?) under perspective projection. This is extremely
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large and they conclude that for general objects it would be necessary to construct
some approximation of the aspect graph which contained the most important changes
in visibility.

A different analysis of the same problem by Gigus and Malik [43] produced the same
predictions for the upper bound although they claim that their algorithm would be
faster in the average case. Another theoretical paper by Sripradisvarakul and Jain [93]
carries out an analysis of the additional visual events which may occur with curved

objects.

Some real systems using aspect graphs have been implemented. Bowyer et al. [20]
have produced a system which attempts to identify convex polyhedra and give some
estimate of their position and orientation. In their formulation, each node of the aspect

graph has the following attributes,

e A definition of the corresponding 3D cell of viewing space;
¢ A definition of which faces are visible from that cell;

e The coordinates of a “central viewpoint” in the cell.

After processing the image to obtain a line drawing of the object, the system calculates
the Fourier Descriptors (FDs) of all the unique closed loops (those which correspond
to faces of the polyhedron. Bowyer et al. then use an optimisation technique to match

the observed set of faces to aspect graphs which contain the same number of faces.

In their experiments, Bowyer etal. report only 3 classification errors from a set of 100
randomly generated views (25 views of each of 4 objects). They state that algorithms
are required for non-convex polyhedra and for curved objects. Given that the aspect
graphs tend to be large, they also state that some concept of node equivalence will be

required to reduce the size of the representation.

Dickinson, Pentland and Rosenfeld [34, 33] have recently moved even further away
from accurate viewpoint determination in their gqualitative 3D shape reconstruction

system. No attempt is made to find the exact pose of the object in 3D; it is assumed
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Figure 6.4: A Subset of the Aspect Hierarchy

that when an object is recognised in the image its pose can then be calculated by other

means.

Dickinson et al. also state that the general approach of aspect graphs would require
a prohibitively large number of aspects to model a large database of objects. In order
to overcome this problem, objects are first decomposed into 3D volumetric primitives

and then these primitives are represented by aspects.

The advantage of this approach is that, once a suitable set of primitives has been
selected to model all the objects required, the number of aspects required to model all
objects is then fixed. Since it is highly unlikely that a given primitive will always appear
unoccluded in the scene, the aspects for each primitive are defined in a hierarchical
manner as illustrated in figure 6.4. This sample of the hierarchy shows that aspects
are constructed from faces which in turn are constructed from boundary groups. If
an aspect is occluded then it may still be identifiable from the faces that are present;

if a face is occluded then it may still be identifiable from the boundary groups that
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are present. Thus, the problem of occlusion is tackled, by necessity, head on; most

aspect, or multiview, approaches so far have ignored the problem of object occlusion

completely.

Using a set of 10 volumetric primitives Dickinson et al. produce 648 views per prim-
itive but then they exploit the symmetry of the primitives to throw away equivalent
views (in terms of faces and boundary groups) and reduce the total number of views
for all 10 primitives to 688. This is actually more like Chakravarty and Freeman'’s [24]
characteristic views than a traditional aspect graph since we are throwing away the
visual events and just keeping the unique aspects (nodes). As an example, the block
primitive would have an aspect graph like that shown in figure 6.3 but only three of
the nodes are qualitatively distinct, therefore the whole graph is reduced to a set of

three aspects ie. one, two or three faces showing.

Associated with each link in the aspect hierarchy is a conditional probability which
is an estimate of the likelihood that one item is a child of the other eg. the probability
that we have a cylinder given that we have found a rectangle. These probabilities are
generated from all the views of all the primitives and assumes that all primitives occur
with the same frequency and that all orientations of the primitives are also equally
likely. This clearly produces only an estimate of the true probabilities since these

assumptions are not likely to be true.

Given an aspect hierarchy and a set of objects modelled by a connection of primitives,

the recognition of objects in an image is a matter of,

1. Extracting a set of contours from the image;

2. Grouping contours into faces;

3. Classifying faces;

4. Grouping classified faces into aspects;

5. Matching aspects to primitives;

6. Grouping apparently connected primitives into object parts;

7. Matching parts to objects.
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The conditional probabilities are used to constrain the classification, grouping and
matching processes in all but the last step. The matching of parts to objects is done
using a hash table to avoid a linear search through the whole of the object database:
unfortunately this means that if some of the primitives are unrecoverable then the

parts constructed will not index to the correct model (if any).

The approach is demonstrated on images of objects which are conveniently con-

structed of two or three of the primitives with limited occlusion.

In response to the increasing interest in techniques involving aspect graphs, in one
guise or another, Bowyer [19] set up a workshop to examine the practicalities of the
approach. The technique is criticised by Faugeras, Mundy and Ahuja but defended by
Dyer, Pentland, Jain and Ikeuchi. The major criticisms of the aspect graph approach

are,

o Computing the aspect graph has a high complexity and much of the work to date

has been theoretical or limited to simple objects;

o The number of aspects is generally very large so matching an unknown view to

one of the aspects produces a very difficult indexing problem;

e Many of the approaches rely on edges and junctions but these often cannot be

recovered reliably from images;
e Most approaches do not return the 3D pose of the object;

e Most approaches produce impoverished representations with topological data

only and no grey-level or relative size information.
In response, the following defences are fielded,

o Aspects based on edges and vertices were an important first step, now researchers
are beginning to redefine the aspect graph in terms of other features which are

more detectable and result in smaller numbers of aspects;

o Complexity and size can be reduced by applying the aspect graph approach to

the component parts of the object rather than the object as a whole;
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e Representations can be made richer by moving from edge-based aspects to face-

based aspects;

e Generation of aspect graphs is done off-line so it does not matter if it is slow.
What is important is that recognition is fast, aspect graphs have potential to
achieve this because we are matching 2D views to 2D images, unlike traditional
object-centred approaches which attempt to match 3D models to 2D images at

runtime;

e Using recoverable features that are also effective in indexing will also result in

features that are accurate in pose recovery.

The conclusions to be drawn from the workshop appear to be that the early research
into aspect graph approaches has shown the potential and some of the problems.
Current and future work will determine whether the full potential can be realised or

not.

6.3 Recognition by Components

With the notable exception of Dickinson et al. [33], most of the approaches to object
recognition considered so far have attempted to model objects as single indivisible
entities. However, there is evidence that suggests it may be beneficial to represent

objects as a collection of connected components.

Biederman [15, 16] has claimed that all objects recognisable from line drawings can
be encoded using a set of only 36 generalised cone components (geons). This limited
number arises because humans (in primary recognition) only use simple qualitative
measures such as “straight” and “curved”. He also proposes that object recognition
is a matter of recognising these geons and then relating the componential description
to complete objects. (Distinction is made between count nouns such as chair and table
which are recognised on the basis of shape and mass nouns such as sky and water

that are recognised on the basis of colour and texture.) The key phrase behind this
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approach is “Although objects can be highly complex and irregular, the units by which

objects are identified are simple and regular.”

An interesting question is whether geon identification is 2D or 3D. Biederman states
that although all 36 geons have a clear subjective volumetric identification they can
often be uniquely specified from their 2D image properties. Consequently, recognition
need not follow the construction of an object-centred 3D interpretation of each volume.
The possibility is also noted that “despite the subjective componential interpretation
given to the arrangement of image features as simple volumes, it is the image features

themselves, in specified relationships, that mediate perception.”

On the total number of distinguishable objects, Biederman estimates (liberally)
that adult humans can distinguish 3,000 basic-level categories with an average of
10 varieties per category ie. a total of 30,000 readily discriminable objects. Given that
the average number of objects available from two geons is 36 x 36 x 57.6 = 74,649
(where 57.6 is the average number of ways that two geons can be connected) there are
easily enough representations available and object space is sparse enough to enable

most objects to be recognised on the basis of only a few geons.

The subject of unusual views is also discussed and examples are given. It is suggested
that primary recognition cannot identify objects seen from unfamiliar viewpoints - in
these cases recognition is achieved only by resorting to scene context or guesswork.
It is therefore reasonable to assume that humans only store a limited description of

objects and rely heavily on context.

Experimental systems for extracting 3D parts from range images have been demon-
strated by Bajcsy and Solina [2] and Pentland [82, 83]. In each case, the parts are
approximated by deformations of superquadrics. Superquadrics are a family of 3D

shapes which are defined parametrically as

cos®!(n) cos®(w)
X(mw)= | cos(n)sin(w)
sin“*(7n)
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The basic shape is determined by the two parameters ¢; and ¢, (hence quadric), for
example €; = ¢, = 1 gives an ellipsoid. All the basic primitive shapes commonly used
for object modelling can be produced eg. blocks, cylinders, spheres, diamonds and
pyramids. These basic shapes are then deformed by stretching, bending, twisting or
tapering.

Pentland [85] has also demonstrated that simple superquadrics can be recovered
from chromatic images using 3D shape from shading techniques. However, these
techniques are notoriously unreliable when applied to real images due to complex

illumination effects and the variable texture of surfaces.

- Since extraction of parts has not been shown to be simple from 3D data it would
appear that the 2D aspect approach due to Dickinson, Pentland and Rosenfeld [34, 33]

(described in the previous section) is the best way forward.

6.4 Conclusions

Of the large number of 3D object recognition schemes reported in the literature the
majority have been object-centred. This is largely a consequence of the development
of CAD and graphics systems, where the models are used to generate pictures of the
object from any desired viewpoint. The use of such models in the inverse problem (ie.

pictures to models) has not been as successful!

A major failing in simple object-centred modelling systems is their inability to carry
surface information such as colour and texture. Indeed, in some schemes it is difficult

enough to work out where the surfaces are let alone what specific properties they have.

The fact that an image is two-dimensional and an object-centred model is three-
dimensional means that at some stage some transformation has to be made. Either
the 3D model is projected into the image or 3D information is derived from the image;
there are significant problems with both approaches (i) there are an infinite number of
ways to project an object into an image and a 3D object has seven degrees of freedom

(i) deriving 3D information from an image can only be achieved using assumptions
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about the scene and is often unreliable.

Due to the complexities of the 2D«3D transformation most systems using object-
centred models have been limited to objects which were mainly polyhedral or cyl-
indrical. Additionally, the exact geometry of the object must be known in order
to construct the model; although, Martin and Aggarwal [69] have shown that for a
large class of objects an object-centred representation can be derived from an object’s
occluding contours in a number of views if the viewpoints are known. The recent work
of Terzopoulos et al. [100] with deformable models has addressed both problems by
creating models which can assume a complex geometry as a result of forces derived
from the image: problems still remain in the selection and initialisation of such models

but the basic idea has great potential.

Given the problems of matching 3D object-centred models to 2D images, it is not
surprising that there is increasing interest in viewer-centred models. Clearly, the main
advantage of a viewer-centred modelling system is that the model is a description of
the object which is similar to the image, both are two-dimensional and therefore no
2D+3D transformations are required. The drawback is, that to capture the three-
dimensionality of an object we need to store a potentially very large number of 2D

views.

The earlier viewer-centred approaches based on lines and junctions were as im-
poverished as the early object-centred models and often required hundreds of views.
Much more promising are face-based approaches which provide richer descriptions,

may require fewer stored views and are more reliably recovered from images.

Aspect graphs have received a lot of attention because they not only contain the views
of an object but how the view changes as the viewpoint changes. This information
could be very useful in an active vision scenario. For purely passive vision systems
Dickinson et al. [33] quite rightly point out that the visual events are of no consequence
and that the size of the representation can quite drastically be reduced by omitting them

and retaining only the distinct aspects.

Another feature of the Dickinson et al. approach is that they describe objects as
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a collection of parts rather than as complete, indivisible, entities. This builds on
Biederman'’s [16] theory of recognition by components (RBC) in which all objects are
described by only 36 different primitives. The appeal of this approach is obviously
that the aspects of the primitives can be calculated initially and then no more aspects
are required: this means that the total number of aspects required to model all objects
is fixed and much smaller than the number of aspects which would be required to

model whole objects.

Where RBC approaches fall down is in situations where the objects cannot be
conveniently decomposed into the chosen primitives. What is required is a more
general approach in which objects can be described in a compact viewer-centred
manner, using decomposition into primitives only when appropriate. This is the

approach taken in the following chapter.



7 New Aspects of Aspect Graphs

In chapter 6 we saw a myriad of techniques for 3D object recognition and came to
the conclusion that the most promising approaches were the viewer-centred methods

using Aspect Graphs.

In this chapter I will show how the colour and shape analysis techniques described
in chapters 3 and 5 can be combined with the principle of aspects to achieve object
recognition. We shall describe each view of an object, or sub-component, in terms of
the shapes of the 2D image projections of its visible surfaces. This will allow us to
easily attach colour information to our representation where it may be useful. The

ideas presented have been partially implemented to demonstrate the feasibility of the

approach.

7.1 Shape-based Aspects

Initially we will not concern ourselves about the type of objects that we are trying to
represent ie. whether they are complete objects or components of larger objects. For

the time being an object is simply some three-dimensional volume.

For our purposes we define an aspect of an object to be a unique view of the object
in terms of the shapes present. Here, by shape we mean the 2D projection of a surface.
With this definition we get just three distinct aspects for a simple cubic block object,
as illustrated in figure 7.1. In our aspect graph the nodes represent the constituent
shapes and the arcs represent adjacency of shapes. In the block example all the nodes

represent the same shape ie. a perspective projection of a square.

We can immediately see that this representation is far more compact than the “full”
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Block

Figure 7.1: Shape-based Aspects of a Block

aspect graph for the cube that we saw in figure 6.3. What we have thrown away is
the information contained in the arcs of figure 6.3 ie. the visual events which indicate
how the views change as our viewpoint moves around the object. In an active vision
system the visual events could be very useful but we are concerned with recognising
an object from a single view so the visual events are of no use to us since we will not

experience any.

In our scheme each aspect, or view, is represented by a graph and the object is
represented by a list of aspects, in contrast to the normal aspect graph approach where
the object is represented by a graph of aspects. Henceforth I shall use the term aspect

to refer to a graph which represents a single representative view of an object.

There is no reason why each of the nodes of our aspect should contain only a
single attribute (so far just the shape of the surface). We can easily attach additional
information to the nodes such as colour, texture or relative size. These features may
be single or multi-valued eg. an orange will always be orange but an apple may be
red or green or both. We can also attach information to the aspect as a whole to tell

us something about the particular view. For objects with strong orientation, eg. a car,



124

we may label an aspect as viewing from the side/front/rear/above/below to give us

information about the 3D pose.

7.2 Extracting Shapes from Images

If we are to match imaged objects to our stored shape-based aspects then we must
first be able to extract shapes reliably from an image. In the simplest case, where
the shape corresponds to a single region of our segmentation, the identification of the
shape merely involves calculating the fractal signature of the region boundary and
comparing it to our library of signatures as described in chapter 5. We then assign to
the shape a list of all the shape names (in descending order of confidence) that have a

match confidence above some lower limit.

7.2.1 Handling Shadows and Specularities

In a real scene, it is likely that aspect shapes will not correspond directly to a single
region in the segmentation because of lighting effects such as shadow and specularity
or highlight. Since our segmentation method is completely data-driven and designed
to over-segment the image, we expect shapes which exhibit such lighting effects to
comprise more than one region. An example of this is shown in figure 7.2: the square
shape has been over-segmented into three regions, a main part R a shadow §; and a
specularity S,. If all of these regions belong to the same, equally coloured, surface then
they will have similar colour hue but may differ quite significantly in colour value and
chroma. In general a shadow region will have a lower colour value because it is darker
and a highlight region will have a larger colour value and a lower chroma because it

is brighter and less saturated.

In a situation such as that shown in our example (figure 7.2) it is obvious that we
should simply group regions R and 5 together into one region and examine the shape
of the combined region. The highlight region 5, is irrelevant, unless it is recognised

as a shape itself, because it is totally enclosed within region R and thus does not affect
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S

Figure 7.2: Region Group Example

the shape of any combined region by its inclusion or omission. This is often the case
with highlights although we did see a counter example in figure 3.4 during our colour
image segmentation experiments.

Given the assumptions outlined above on the effects of lighting on the colour of
regions, I have used the following algorithm to group regions in a given locality into

shapes

1. Produce a Region Adjacency Graph (RAG) in which the nodes represent

image regions and arcs connect adjacent regions;
2. Select a seed region R (usually the largest);

3. Find all the connected ' regions S such that

IHR - HS, S A];{ma:c (71)
IVR - VSI S AV'ma:c (72)
|CR - CSI S ACmam (73)

where (Hpg, Vg, Cr) is the average colour of region R and (Hs, Vs, Cs) is the

'A region S; is connected to R if it is adjacent to R or if it is adjacent to another region 5; which is
connected to R.
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adjoins

............... overlaps

Figure 7.3: Shape Association Graph

average colour of region .5 as defined in section 3.1.

4. For each of the groupings involving R for which no region is completely
enclosed (eg. for figure 7.2 these are { R,R + S; } ) calculate the best shape

confidences of all the boundaries;

5. If any confidence C; > Cpn then add the boundary to the shapes data-

structure (see below).

The constants AH,,,., AV,,4, and AC,,,, are set to 30°, 50 and 65 respectively. This
gives a relatively narrow hue band and large value and chroma bands as required. As
with any magic parameters the values are somewhat arbitrary, if the range is too small
then some regions will be left out but if it is too large then we may group regions which
are unrelated. Excessive grouping is less of a problem than failing to group (because
unrelated regions are unlikely to produce coherent shapes) so the given values are

“generous”.
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The value of C,,;, is also set on the generous side (at 0.30) so that we record shapes
which even vaguely match one of the known shapes. In section 5.4 we saw that very
different shapes matched with confidences of the order of 0.10 whereas moderately
similar shapes matched with confidences of 0.50 upwards. Hence, a confidence of 0.30

can be thought of as being in the middle of the “grey area”.

In the majority of cases we could store the identified shapes in a graph with the
nodes representing the shape and the arcs representing adjacency. However, for cases
such as that shown in figure 7.3 we need a slightly more complicated data structure.
In this case, excluding the background, there are three regions but these are shown
to potentially make up four different shapes. Shape 1is a square, shapes 2 and 3 are
3/4/5 triangles and shape 4 is a 6/5/5 triangle. Clearly, the representation of such an
arrangement must make clear which shapes overlap and which are entirely contained
within other shapes. The graph in figure 7.3 accomplishes this by joining the nodes,

which represent the shapes, by three different types of arc

1. Adjoins  (bi-directional) - the two shapes touch;
2. Overlaps (bi-directional) - the two shapes overlap;
3. Contains (uni-directional) - the first shape entirely contains the second.

I call this data structure a Shape Association Graph (SAG) since it contains information
about the known shapes present in the image and how their appearance is inter-related.
The SAG can be thought of as being built upon the underlying Region Adjacency Graph
(RAG), since each node of the SAG corresponds to one or more nodes of the RAG: this

relation will be utilised in later sections.

7.2.2 Handling Occlusion

Another reason why a shape may not correspond directly to a region in our seg-
mentation is that it may be occluded by some other object in the scene (or even by
part of the same object). Occlusion is a major problem in object recognition and
many researchers state quite openly that their algorithms cannot cope with it. Since

occlusion is effectively hiding information from us, we need to employ some higher-
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Figure 7.4: Types of Occlusion

level knowledge (or heuristics) to overcome the problem, as we did with the handling
of shadows and highlights. In general we rely on the fact that humans tend to interpret

occluded shapes so that the simplest possible arrangement results.

Some examples of the different ways in which a shape can be occluded are shown in
figure 7.4. In the first example 7.4 (a) if regions A and B have the “same” colour then,
in the absence of any other information, a human observer would assume that they
were part of the same shape. In this case we can join the two regions by extending
the tangents to the boundary at the region intersections (dotted lines). If the resulting

boundary can be confidently matched to a library shape then it is very likely that we
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have an occluded shape. Similarly, in the second example 7.4 (b), region C can be

extended under region D to form a known shape.

The middle example (7.4 (c)) differs from the other two in that a whole side of
the shape has been occluded. Hence, it is not immediately obvious, even to a human
observer, what the exact shape of region E should be. In conjunction with the previous
two examples we would tend to think that E was the same rectangle as AB and C.
Interestingly, in isolation there is a stronger suggestion that F is a square, even though
there is not room for a square to fit under the occluding shape. Here we are using the

appeal of symmetry to produce a “simple” interpretation of the occluded scene.

In the final example (7.4 (d)) we have a case where we can do nothing simple to
recover the occluded boundary. You and I can see that we have something like an
aircraft under the rectangle because we can see two wings and two tail fins joined
by a fuselage. What we are doing is partitioning the shape into sub-shapes which
have some functional meaning. In cases like this it is not necessary to determine the

occluded boundary since the visible part contains enough information for recognition.

My basic claim is that for a large number of cases it is not necessary to store any
partial shape representation (equivalent to the boundary groups used by Dickinson
et al. [34, 33])) because the “complete” boundary (or at least the most likely) can
be reconstructed using some simple heuristics/knowledge. Such an approach has

recently been demonstrated by Shimaya et al. [90].

7.3 Shape-based Aspects Revisited

In section 7.1 we defined an aspect as a graph in which the nodes represented a shape
and the arcs represented adjacency. For convex objects this approach is satisfactory

since one part of the object cannot occlude another.

When we are dealing with non-convex objects we must address the problem of self-
occlusion. In figure 7.5 we see two slightly different views of an L-shaped block. The

projections of the faces G and H are not the same shape viewed from different angles
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Figure 7.5: Self-Occlusion in Shape-based Aspects

because of the occlusion, even though both views are topologically identical.

Just as we saw that we needed the SAG for representing shapes extracted from
images, we also need the SAG to describe the shapes in our aspects. The lower part of
figure 7.5 shows the SAG form of the aspect which encompasses both of these views.
The bold nodes represent shapes which are normally (in the absence of other occluding
objects) fully visible and the non-bold node represents a shape which is occluded by the
object itself and therefore cannot be fully visible. The arc types have the same meaning
as in the SAG, solid arcs represent adjacency and dotted arcs represent overlaps. Note
that, unlike the image extracted SAG, overlap arcs are uni-directional ie. shapes GH

are overlapped by other faces but do not overlap those faces.

We now have a slightly more complicated graph structure to represent our aspects
although it is still compact, the number of aspects required to fully describe the L-block
is as low as 11 (if all the rectangles have the same aspect ratio, see figure 7.6) compared

to the 37 used by Wang and Freeman [106].
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Figure 7.6: All Possible Aspects of a Simple L-Block
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7.4 Matching SAGs to Aspects

We now havea scheme in which we can describe views of objects and images containing

those views in an almost identical manner.

For simple cases the aspect and the SAG will be identical, as in the example of
figure 7.7. This view of an L-shaped block is represented by a simple five shape aspect
7.7(b) with adjoins arcs only. Figure 7.7(c) shows the SAG (bold shapes) extracted from
an ideal image laid over the corresponding RAG (circles). As in the aspect, all the arcs
of the SAG are of the adjoins type. To match the SAG to the aspect we only have to

prove that the two graphs are isomorphic.

When we have non-convex objects, recognition can be complicated by self-occlusion.
Figure 7.8(a) shows a slightly different view of the previous L-block in which one of
the faces is occluded by two of the others. The aspect for this view (as discussed in
the previous section) is shown in 7.8(b). Figure 7.8(c) shows the SAG laid over the
ideal RAG; this time there is not a one to one correspondence between SAG and RAG

nodes/arcs so SAG arcs are shown in bold.

In order to match this SAG and aspect we first note that the SAG is isomorphic to the
subgraph of the aspect consisting of adjoins arcs only. In other words, the recovered
faces in the SAG correspond directly to the fully visible faces in the aspect. Given this
initial match we can see from the aspect that nodes 1 and 2 are each connected by an
overlaps arc to node 3. By descending to the RAG we can also see that the corresponding
nodes A and B are connected to node C whose shape has not been identified. We can
therefore match the SAG to the aspect if we can be convinced that nodes 3 and C

represent the same surface: there are several ways that this might be done

1. Blindly assume that since the region C is connected to the correct regions A

and B it must represent the occluded shape;
2. Try and complete the occluded shape using high-level knowledge;

3. Compare the colour/texture of region C to that specified in aspect node 3.

The approach chosen will depend to some extent on both the complexity of the
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Figure 7.7: An Unoccluded Object, Model and Image Representation
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Figure 7.8: A Self-Occluded Object, Model and Image Representation
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Figure 7.9: Self-Occluded Object, Alternative Image Representations
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object and its description. Obviously, colour and texture information can only be
used if it is supplied; similarly, shape completion is not generally possible without
some “hints” in the description. If the object is sufficiently complex such that many
surfaces are positively identified and few remain occluded then the first option may

be satisfactory.

Unfortunately, it is likely that the SAG for this object will be more complicated than
that illustrated by figure 7.8(c). Three likely alternatives are shown in figure 7.9: (a)
region C is identified as some known shape, (b) and (c) the occluded face is divided

into two regions.

In the case of 7.9(a) we can immediately match to the aspect if we consider node 3
to be a “wildcard” shape which may match with any known shape satisfying node 3's
other criteria (eg. colour/texture). This is a necessary extension because as the number
of shapes increases so does the probability that an occluded surface will appear to have

a known (but incorrect) shape.

Finally, examples 7.9(b) and 7.9(c) require an extension of the region grouping
algorithm discussed in section 7.2.1. Given the initial aspect-SAG match we expect
there to be a single region (corresponding to the occluded face) connected to regions
A and B; where we find more than one region, ie. C and D, we can attempt to group
them using the criteria in section 7.2.1. Once the regions are grouped then we are back

to the “simple” situation illustrated in figure 7.8(c).

Clearly, a simple graph-matching algorithm may well be unable to match aspects to
SAGs efficiently. What is required to perform these operations is an intelligent graph

matcher which can use all the information available to guide the matching process.

7.5 Results

In this section I will demonstrate the feasibility of the approach described above. The
mechanisms which are intended for implementation as a knowledge-based system

(eg. restoration of occluded shapes, intelligent graph matching) have not as yet been
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implemented. The aim here is to demonstrate that shapes can be extracted from real

images and that the derived SAGs potentially match object aspects.

The library of shapes used in the following experiments consisted of all the shapes
required to describe all the objects as well as some of the simple shapes used in
chapter 5 (ie. projection of a square, triangle, arrow). Since there can be several
hundred signatures per shape (for a 10° sampling of the viewing sphere) a serial
search through all signatures takes some time so the number of shapes has been kept
deliberately small. In chapter 8 I will suggest how this restriction may be removed to

allow the development of a more practical system.

7.51 Obijectl - cup

The first object chosen was the cup shown in figure 7.10(a). This is a very simple object
since it appears as a simple cylinder from most viewpoints. The inside of the cup is all
the “same” colour and the outside is almost all the same apart from a dark patch at the

bottom-left. This colouring is reflected correctly in the segmentation image 7.10(b).

In the segmentation image it can be seen quite clearly that there are several small
dark regions adjoining the large dark region which is part of the side of the cup. The
simple region grouping algorithm described in section 7.2.1 examines a large fraction of
all the possible combinations of a set of similarly coloured regions; hence, the number
of boundaries tested increases almost exponentially with the number of regions. It is
therefore highly desirable to reduce the number of regions which may be considered
for region grouping. This has been achieved by applying two additional constraints

to the region grouping algorithm

1. Regions connected to the edge of the image are ignored since they are

unlikely to represent surfaces which are fully contained within the image;

2. Regions whose area is less than 100 are ignored since they are unlikely to

make much difference to the shape of a combined region.

The second constraint is slightly less robust because a large number of small regions
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(b) Segmentation of Cup image

Figure 7.10: Cup



(a) Cup regions (area > 100)

p_cupmide(d2%)

(b) Cup shapes (confidence > 0.30)
Figure 7.11: Cup (cont.)
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Figure 7.12: Unique Viewpoints for Cylinder Model

taken together would make a significant difference to the shape of a combined
region. This problem can only be handled properly by an intelligent system since

it is impossible to tell a priori whether a group of small regions is significant or not.

Figure 7.11(a) shows the outlines of regions which have an area greater than 100:
of the discarded regions most are unwanted but some are part of the cup, obvious
examples are the small regions at the top-left of the cup’s side and the regions due to

the reflection of the white line at the bottom-left of the cup.

7.5.1.1 The Model

The cup was modelled as a simple cylinder with a circular top and straight sides. The
two shapes seen in the given view are therefore a flat circle and a curved side, both seen
from some unknown viewpoint. The fractal signatures required to describe the shapes
were generated by a script which was given the 3D boundary of each surface and the
unique viewpoints from which to consider them. Hence the circle and curved side
were only viewed from nine different viewpoints ([0°, 0°],[10°,0°],{20°,0°] . . .[80°,0°])
since the signature is independent of the viewing angle 3 because of the symmetry of

the object (see figure 7.12).

7.5.1.2 Identified Shapes

The shapes found amongst the regions of figure 7.11 which have a confidence greater

than 0.30 are shown in figure 7.11(b). For each particular region group only the most
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confident match is shown.

Both shapes have been correctly identified and therefore the SAG and aspect are
identical ie. an adjoining circle and cup-side. Both confidences are quite low; the
cup-side (0.42) is largely due to the raggedness of the boundary caused by leaving out
small regions; the circle (0.40) is partly due to the viewpoint lying in the middle of two
sampling points and partly due to the extracted region not being as symmetrical as the

modelled shape, this results in a larger signature difference than expected.

7.5.2 Object2 - padlock

The second object considered is the padlock pictured in two different poses in fig-
ures 7.13 (a) and 7.15 (a). This is a more complicated object than the cup since there

are seven different surfaces and two distinct parts.

Segmentation images 7.13 (b) and 7.15 (b) clearly show that the shiny loop of
the lock is segmented into a large number of regions. Even worse, there are some
areas where the loop and background have been merged because there is no visible
boundary between them. From these segmentations we can see that we should not
expect to identify the loop by simple region grouping: this is a classic example of the
interdependence of image layers mentioned in chapter 1, we should first identify the
body of the lock and then use other techniques to identify the loop given that we expect
to find it joined to the top of the body.

7.5.21 The Model

The padlock was modelled as five flat surfaces (base, barrel, edge, chamfer and top)
and two curved surfaces (side and loop). The barrel of the lock was simply modelled
as a circle since the keyhole was felt to be too small to be recognised by its shape. The
other surfaces were physically measured and their signatures calculated in 10° steps

as previously described.

The manually generated aspects for the two poses are shown in figures 7.17(b) and
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(b) Segmentation of Padlock image
Figure 7.13: Padlock (lower view)
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(a) Padlock regions (area > 100)

p_lockside{B56Y%)

ockedge( 98]

(b) Padlock shapes (confidence > 0.30)

Figure 7.14: Padlock (lower view cont.)
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" (b) Segmentation of Padlock image

Figure 7.15: Padlock (front view)



(a) Padlock regions (area > 150)

g-toshpide By

(b) Padlock shapes (confidence > 0.40)

Figure 7.16: Padlock (front view cont.)
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7.18(b). Note that the body of the lock and the loop of the lock are divided into separate
parts as indicated by the dotted boxes. This is more of a functional decomposition than
a structural decomposition; meaning the two parts are naturally separate because, for
example, they are made of different materials and can move apart, rather than being
separate because their shapes approximate some predefined volumetric primitives.
This more natural decomposition has the advantage over the approach of Dickinson et
al. [33] that real objects can be modelled more accurately. For instance, the lock used
by Dickinson et al. was simply a block connected to a bent cylinder, the base of the lock

used here is more complicated and does not conveniently fit any simple primitives.

Additionally, this formulation of the notion of parts allows the connections between
parts to be made explicit. Most part-based approaches simply indicate that two parts
are adjacent but here we have indicated which nodes of which aspects are connected

and how.

7.5.2.2 Identified Shapes

For the first view of the padlock the identified shapes are shown in figure 7.14(b). For
the reasons described above, the shiny loop of the lock has not been identified. The
three main visible shapes of the body have been correctly identified but the barrel has

not because its boundary is not clear in the image and it has been merged with the

base.

The shape confidences are reasonably high for the base (0.63) and the side (0.55) but
the edge (0.40) is quite low. This is again due to the over simple matching technique
since the boundary of the extracted lockedge shape is significantly more jagged than
the training shape and therefore their signatures have quite a large difference at the

smallest scales even though they are very similar for all other scales.

The three extracted shapes form the SAG shown in figure 7.17(a) next to the
corresponding aspect 7.17(b). The subgraphs of SAG and aspect which contain only
adjoins arcs are clearly isomorphic. The circle contained within the base has not been

matched but there are a number of small regions contained within the “lockbase
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Figure 7.17: Image and Model, Padlock (lower view)

region” which lend evidence of its presence. Given that the body of the lock has been

identified we know where to look for the loop part using other techniques.

For the second view of the padlock I have used regions with areas greater than 150
rather than 100. This is because there are several regions connected to the large central
region which have an area just over 100, resulting in an explosion in the number
of shape combinations. Additionally, the shapes shown in figure 7.16(b) are those
found with confidence greater than 0.40 rather than 0.30 because there were five other
region combinations which resulted in lockside matches with confidences between these
values. These extra matches are discarded simply to make the following pictures easier
to follow, where two overlapping locksides are shown we should remember that there

are actually seven!

The extracted shapes form the SAG shown in figure 7.18(a) next to the corresponding

aspect 7.18(b). Clearly an overlaps arc in the SAG must be considered as an “either
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Figure 7.18: Image and Model, Padlock (front view)

or” operator since only one of the overlapping shapes can be matched to an aspect
shape. Since the overlapping shapes are actually the same shape, the SAG immediately
reduces to a two node graph of adjoining lockcham and lockside nodes. Given this
reduction we again have an isomorphism between the subgraphs of SAG and aspect

made up of fully visible nodes connected by adjoins arcs.

Note though that there is a node in the aspect (corresponding to the locktop shape)
which is joined to nodes in the same part of the aspect but is overlapped by a shape
in the aspect of the connected part (the loop). The presence or absence of this shape is
therefore an indication of the presence or absence of the other part. Since the locktop
has not been found but there are candidate regions adjacent to the “lockcham region”

this is a strong indication that the loop is present.

7.5.3 Summary

Overall we can see that in each of the examples above, the object description derived

from the image (SAG) and the viewer-centred model (aspect) can be matched. In
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simple cases, matching involves proving that the two graphs are isomorphic but more
complex arrangements require a more sophisticated approach which lends itself to

knowledge-based methods.

7.6 Conclusions

In this chapter I have presented a new approach to the representation of three-
dimensional objects which uses Shape-based Aspects (SBAs). By using a list of
SBAs rather than an Aspect Graph we have the advantage of a much more compact
representation: the information we have discarded (ie. the visual events) is of no real
use to us since we are concerned with how an object appears in a particular image

rather than how its appearance changes as our viewpoint moves.

Describing aspects in terms of shapes (surface projections) rather than lines and
junctions (edge projections) means that it is easier to attach additional information to
the representation. For instance, features such as colour and texture are properties of
the surfaces of an object rather than its edges. Another important reason for using
shapes is that they can generally be extracted more reliably from real images than lines

and junctions.

A further advantage of the SBA approach is that it lends itself quite easily to the
decomposition of objects into parts. Most contemporary Aspect Graph approaches
treat an object as an indivisible entity, producing a very large number of aspects for a
modest number of objects. Dickinson et al. [33] avoided this problem by describing
objects in terms of a fixed number of volumetric primitives; although this gives a
fixed number of aspects the approach cannot be easily extended beyond objects which
can be conveniently described in terms of the chosen primitives. The representation
described in this chapter combines the generality of a complete description with the
compactness of a part description: there is no fixed set of primitives so new objects
can be modelled accurately but distinct parts can be treated distinctly and re-used (like

primitives) where possible to reduce the total number of aspects across all objects.
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The motivation behind developing a viewer-centred representation was that object
models and image models could be matched without performing any 2D«+3D trans-
formations. Using the colour segmentation algorithm (chapter 3) and the Fractal Shape
Signature (chapter 5) we saw how an image could be described by a Shape Association

Graph (SAG) which has the same form as the graph used to describe SBAs.

In order to recognise objects in images it is therefore necessary to match the SAG
extracted from the image to the SBA models of the objects. The matching process for
real examples is ideally suited to a knowledge-based approach since several rules are
required to determine which nodes and types of arcs may be compared at any one
stage of the process. Such a system has not been implemented here but the types of

operations required have been illustrated using real examples.

As indicated in chapter 1, the representations developed in this chapter should be
considered as part of a global visual process. In order to co-ordinate all the processes
discussed so far in a coherent and efficient manner, some form of intelligence will
inevitably berequired. Therequirements of suchan intelligent system will be discussed

in the final chapter of this thesis.



8 Conclusions and Future Work

8.1 Conclusions

The aim of this work was to develop a compact model for three-dimensional objects
and show how objects described by such models could be identified in real images.
The three processes identified in chapter 1 and developed in chapters 3, 5and 7 will be
summarised in the following sections and a final section will identify areas for further

research.

8.1.1 Colour Image Segmentation

The majority of segmentation algorithms require some definition of colour difference
and many also need some notion of an average colour or a colour spread. We therefore
began by defining colour metrics in terms of the most perceptually uniform colour
space available, TekHVC. Since HVC space is perceptually uniform we expect these
metrics to be more consistent than non-uniform spaces such as RGB and HSI: this was

demonstrated in chapter 3.

Two segmentation algorithms were presented and compared: (i) a split and merge
algorithm using colour spread as its homogeneity measure, followed by a relaxation
process to remove unwanted artifacts; (ii) a region-grower which adds adjacent pixels
in an order determined by the closeness of their colour to the present average.
The region-growing technique was considered to be superior on the grounds of

segmentation quality and flexibility.

Unlike many segmentation algorithms, the region-grower presented in this thesis

places most emphasis on producing coherently coloured regions. This can lead to the
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production of many small regions in noisy areas or where boundaries are indistinct
rather than sharp. Since it is easier to subsequently merge regions than split them,
over-segmentation is preferable to under-segmentation, particularly since many of the
small regions are completely contained within larger regions and therefore have no

effect on the shape of the boundary.

In general, I do not believe that a segmentation algorithm which has no knowledge
of the objects in the scene can ever produce an ideal segmentation. However, it is highly
unlikely that adjacent pixels which appear to have the same colour, should belong to
different regions. The output of the region-grower is therefore a good starting point

for higher-level processing.

8.1.2 Plane Shape Analysis

The Fractal Shape Signature was presented as a new method of representing and
matching 2D shapes. By modelling a digital boundary as a fractional Brownian
function and using information from all scales we obtain a description which is
consistent and yet inherently simple. As required, the signature is invariant to changes
in a shape’s position, orientation and size; additionally, it is invariant under reflection,

so mirror images are considered to be the same shape.

A simple matching technique was developed to provide numeric values for the
difference and similarity between two signatures. Using this technique the signature
was shown to be more robust than a competing method for moderate amounts of

noise.

Since the 2D shapes considered are the projections of 3D surfaces, the changes in
signature due to varying 3D viewpoint were examined. Rather than seek to develop a
projective invariant (which would only work for flat surfaces) a more general approach
based on the notion of a property sphere was proposed. The disadvantage of this method

is the large number of signatures that are required to describe a general surface.

As a global shape descriptor, the main drawback of the fractal signature is its

inability to cope with partially occluded shapes. However, other researchers have
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not demonstrated that partial shape descriptions can be extracted reliably from real
images of general shapes. A promising alternative, discussed in chapter 7, is to use
high-level knowledge to “complete” the occluded shape so that a global descriptor can

be used.

8.1.3 Object Modelling and Recognition

A new viewer-centred model for three-dimensional objects was presented. In contrast
to existing Aspect Graph techniques, the visual events have been discarded, leaving a
list of unique aspects. This results in a much more compact representation for many
objects. A further difference between this and most previous approaches is that the
aspects are face-based rather edge-based. This allows properties which are associated
with surfaces (eg. colour) to be easily attached to the representation as well as the

shape information.

Modelling each object as a single, indivisible, entity would produce a huge number
of aspects for even a modest number of different objects. On the other hand, approx-
imating objects as a conjunction of volumetric primitives will not always give good
results; particularly when the objects cannot be decomposed easily or uniquely into
the chosen primitives. The approach suggested in this thesis is a compromise between
these extremes: objects are separated into re-usable parts when appropriate without

limiting the total number of different parts.

Using a region grouping algorithm based on the colour metrics of chapter 3 and
the shape analysis of chapter 5, a structure called a Shape Association Graph (SAG) was
extracted from real images. This SAG was designed to have the same form as the
graph used to describe object aspects, enabling matching to be performed without any

complex transformations.

Matching between SAGs and aspects has been performed manually as a demonstra-
tion of the types of rules that are required. In the following section I will discuss how

the matching process may be automated.
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8.2 Future Work

The three processes summarised above, successfully achieve the transitions between
theimage layers that were described in chapter 1, ie. pixels—regions, regions—shapes
and shapes— objects. Object recognition can be achieved by applying these processes

sequentially to all the data available, as demonstrated in this thesis.

Improvements could be made to each of the stages to make them more general. As
indicated in the text, texture is an important surface feature that could be combined
with colour to give better image segmentation. Fractal signatures would be more useful
if an affine invariant could be derived; this would enable shapes to be described more
qualitatively since all rectangles, ellipses, triangles etc. would have single descriptions.
Aspects were compared solely on the basis of shape; in general, colour, texture and

relative size would also be very useful for matching.

To take this work forward, a more intelligent control strategy is required. At the
simplest level, this system would contain the knowledge required to perform region
grouping, signature matching and SAG-Aspect matching more generally, rather than using

arbitrary heuristics.

At a higher level, an organisational layer will be required to apply the lower-
level operations efficiently as the number of shapes and objects increases. Here,
knowledge about how objects appear in scenes and how they interact with each other
will be required. The completion of occluded shapes and the construction of partial

segmentations are examples mentioned in previous chapters.

A general-purpose vision system will require a large amount of general knowledge
about the world. However, I believe that the major failing in Computer Vision and
Artificial Intelligence is not the amount of knowledge that can be incorporated but
the way in which knowledge is organised and applied. Much progress in this area is

required before a machine can truly see the world.
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