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1 Introduction

Duration has proved a successful approach to making a rough assessment of the effect of
interest rate changes on single bonds and portfolios of bonds ( Bierwag 1987, Bierwag et al
1990). If one only could use two numbers to describe the characteristics of a bond the obvious
ones are its price and its duration. Duration has also proved effective in matching asset
portfolios and liability portfolios by matching their durations, though recent developments in
decomposition and sampling aspects of stochastic programming means that this more precise
approach is becoming more viable for realistic problems ( Birge and Louveaux, 1998)

However there are difficulties with the original Macaulay duration approach. It requires that
the yield curve for the bond is flat even though the gilt market is usually suggesting
something different and it does not deal with default risk explicitly. This paper reviews both
these issues. In the case if default risk it shows how the idea of using the credit ratings of
bonds produced by the credit rating agencies to be a measure of the default risk leads to an
easy modification of the definition of duration which allows for default risk. In the case of
non-flat yield curves  we give  a general description of the process undertaken which includes
almost all of the specific forms of partial duration that have been introduced into the
literature. We also introduce the idea of an approximate duration which is closer to the
Macaulay duration idea of one number that describes the properties of an asset, liability or
portfolio of such. Unlike the Macaulay duration though this can be thought of as the median
of the cash flow of the bond rather than the mean and hence cannot be obtained for a portfolio
of bonds directly form the durations of the separate bonds. However we are to describes an
integer programming method of calculating this duration measure.

The effectiveness of these duration measures is investigated by describing a simulation
experiment using real data to see how well these duration measures choose a portfolio of
assets to match a given cash flow of liabilities. We compare five duration measures in this
experiment. The first is the Macaulay duration. Two are partial durations, - one applied to a
continuously compounded model with a given form of the yield curve and the other to a
forward rate based discretely compounded model. The other two durations are the
approximate duration applied in these two cases.

2.Risky-debt duration

One way of thinking about the Macaulay duration of a bond is to ask what is the maturity of a
zero-coupon risk free bond which has the same value and the same response to a small change
in interest rates. Thus if a bond has an income stream c(t), t=1,…,T, to its maturity at T, and r



is the implied interest rate or yield to maturity of the bond, the value of the bond  V(r)
satisfies

V(r) = V = ∑t  c(t) /(1+r)t  =  ∑t  c(t) (1+r)-t (1)

If one matches this by a zero-coupon bond which pays out R at time D so that its value V0 (r)
= R/(1+r)D one would require

V(r) = V0(r)  and dV(r)/dr = dV0(r)/dr = -DR/(1+r)D+1 = -DV(r)/(1+r) (2)

This leads to the standard definition of Macaulay duration that

D = ∑t  tc(t) (1+r)-t  /( ∑t  c(t) (1+r)-t ) = ∑t  tc(t) (1+r)-t/ V(r). (3)

A modified form of Macaulay’s duration measure, the modified duration D*, provides an
exact expression for the percentage in bond values resulting from a small change in the yield r

D* = -(dV0( r)/dr)/V0(r) = D/(1+r) (4)

One of the difficulties with this derivation is that the same interest rate r is being used for the
two types of bonds being matched and it is not clear that they have the same credit risk. The
difficulty arises because there is nothing explicit in this definition which allows for the default
risk that the bond might default before it is due to be paid.

The models of default risk of bonds divide into three types. see Duffee (1996). The first type
of model views the firm’s liabilities as contingent claims against the underlying assets and
assumes that bankruptcy and bond non-payment occurs when the firm’s assets are exhausted.
This was the model introduced by Merton (1974), but it leads to smaller credit spreads than
those that actually occur. Black and Cox (1976) adjusted the model by defining bankruptcy to
occur where liabilities are some fixed proportion of the assets and this leads to more realistic
credit spreads.  Leland (1994) and Leland and Toft (1996) used this type of model, but with
endogoneous conditions to define when bankruptcy is declared, to examine how important is
the maturity of the debt as well as the amount. The difficulty with this approach is that it
depends on knowledge of the firm’s assets, which are not tradable and are only partially
observable. Also it has to deal with the often complex priority structure of a firm’s liabilities.
The second type of model first developed by Hull and White (1991) assumes that on
bankruptcy, the firm will pay off a pre-specified fraction of the risk-free value of the
instrument where bankruptcy is again triggered when the firm’s assets first reach some
specified limit. This enables one to ignore the debt priority problem but still assumes
knowledge of the asset value stochastic process.

The third approach ignores the asset value completely and again overcomes the debt liability
structure by assuming that on bankruptcy a given fraction of each promised dollar is paid off.
This approach assumes the bankruptcy process is specified exogenously and does not depend
on the firm’s underlying assets. (e.g. Jarrow and Turnbull (1995), Litterman and Iben (1991)).
Lando’s thesis (1994) and the paper by Jarrow et al (1997) were the first to use a Markov
chain evolution of the firm’s credit rating as a model for the bankruptcy process. This is the
approach that motivates this generalisation of duration.

The bond has a credit rating of between 0 ( default free) to M (defaulted). These correspond
to the Moody or Standard and Poor’s ratings.  There is a transition matrix P(t) whose i,j th
entry p(t)ij  is the probability that the bond’s rating  will  change from i to j during period t.
Define
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and let q(t)iM  be the corresponding i,M  th entry. Then  let di(t) =1- q(t)iM, is the probability
that the bond has not defaulted by time t. The choice of the matrices P(t) could be done using
historic information or including various adjustments ( see Jarrow et al (1997), Thomas et al
(1998), Kijima and Komoribayashi (1998)) to the historic transitions to reflect possible views
of the future. If this credit risk factor is introduced into the formula for the value of the bond
then the interest rate r now considered should be the risk free interest rate.

It is possible that even if the bond defaults some proportion of the future income stream may
be returned to the bond holder. Fooladi, Roberts and Skinner [ ] investigated how this can be
introduced into the standard form of the bond price. We assume that if the default occurs at
time t then only a fraction α(t) of the value of the remaining income stream of the bond will
be returned to the bond holders. This would give the value of a risky bond with credit rating i
where the risk free interest rate is r as
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Using the same argument that led to (3), the duration D(i) for such a bond would be the
maturity D of a risk free bond which pays out R at its maturity so that  its initial value and the
effect of small changes in the risk free rate are the same for both bonds. This requires that we
define V0 (r) = R/(1+r)D  and require

V(r,i) = V0(r)  and dV(r,i)/dr = dV0(r)/dr = -DV0 (r)/(1+r) =-DV(r,i)/(1+r) (6)

So
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In this case when α(t) = 0 for all t and di(t) is non-increasing in i, the definition puts more
weight on the earlier cost terms as i increases and hence the duration will be lower.
lower.  This confirms Fons ( 1990) empirical work that the effective duration of corporate
bonds is always less than their Macaulay duration.

If this analysis is extended to the duration of a portfolio of bonds, the duration of the portfolio
is the weighted average of the individual durations as follows. Let the portfolio consist of xj
units of bond j, j=1,….M where bond j has income stream cj(t) and rating i(j). Then the value
of the portfolio is
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Using the definition of duration given in (7) this gives that the duration of the portfolio is
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 where Dj(i(j)) is the duration of bond j given by (7) and wj  is the current price weighted
proportion of bond j in the portfolio.

3. Non-flat yield curves: partial durations and approximate durations.

The definitions of Macaulay duration and the extension proposed in section two are based on
the idea that the yield curve is flat.  By explicitly estimating the default risk, the yield
parameter in section two can be thought of as the risk-free interest rate, which the market
rarely considers to be flat. There are two ways the market describes non-constant yields over
time – often called the term structure of interest rates. The first is to assume that the yield or
spot rate y(t) is continuously compounded, so the value of a bond with income stream c(t) and
rating i is

V(y,i) = ∑t  e-ty(t) c(t)di (t) (10)

[For ease of notation we will assume from now on that α(t) =0 so there is no partial payment
on default. The results still hold in the general case when α(t) ≠ 0.]

The second way is to have discretely compounded rates at appropriate intervals ( annual
compounding is used in the Eurodollar market and semi-annual compounding in the US
Treasury market). In that case if the spot rates are given by a vector r = ( r1 , r2 ,….,rT) then the
value of a bond with income stream c(t) and rating i is

V(r , i) = ∑t c(t)di (t)/(1+rt)t (11)

Instead of using risk free spot rates one could use risk-free forward rates. If f = (f1, f2, …,fT) is
the vector of forward rates then the value of the bond with income stream c(t) and rating i is

 V(f , i) = ∑t c(t)di (t)/∏s≤t(1+fs) (12)

Whichever formulation is used, one has to model the term structure or equivalently the
discount factor b(t) where

V(b , i) = ∑t  b(t)c(t)di (t) (13)

 and b(t) = e -ty(t)  in (10); b(t) = (1+rt)-t 
 in (11); and b(t) =1/∏s≤t(1+fs)  in (12). There are two

main approaches to modelling the term structure. The first is to choose a specific form of the
yield curve and use the market data to estimate its parameters. Thus [Harry who??] suggested
a yield curve of the form
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so b(t) = e-y(t)t. This has the advantage that the parameters have an obvious interpretation. a1 =
y(0) is the short rate level; a2 = y(∞) is the long rate level; a3 = y′(0) is the slope at the short
rate and a 4= -y′′ (∞) / y′(∞) describes the ratio of curvature to slope in the long run but is also
the rate of convergence to the steady state long run rate. ( Note that a4  must be positive).
Other forms of the yield curve that have been used include y(t) = a1+a2 t+a3 t2  [britten-jones]

The second approach is to describe the movements in the term structure by a set of factors. In
this case it is assumed that

y(t) = ∑i  ai Fi (t) + w(t) (15)
where w(t) is a stochastic process with zero mean. The factors F(.) are determined empirically
( see Dahl( 1993) , Litterman and Scheinkman ( 1988)) using factor analysis on the historical
returns of pure discount bonds or the historical estimated term structures. In both cases one
ends up with a discount function b(t) which is a function of a few critical parameters , i.e. b(t)
= b(t, a1 , a2 , …,an )

If one looks at the discretely compounded models, it is clear that the discount factor is again a
function of a discrete number of parameters, i.e.

b(t, r1 , r2 , …, rT ) = (1+rt) –t or b(t, f1 , f2 ,…., fT ) = ∏s≤t (1+fs )-1

One need not require the discount be a function of all the rates. It is usual to pick a few key
rates and make the discount factor a function of these. Suppose for example one chose the
second, fifth and tenth period rates as key rates, then one can define the discount factor by
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Thus whichever model of compounding of the “yield curve one chooses, one arrives at a
model for the value of a risky bond which depend on its rating i and a vector of parameter a =
( a1 , a2 ,…,an ) which describe the yield curve, spot rates or forward rates, so that

V(a , i) = ∑t  b(t, a)c(t)di (t) (17)

Following the analogy with the derivation of duration in (1)-(3), one would ask what is the
maturity of a zero coupon risk-free bond ( paying out R so its value is V0(r) = Rb(D,a)) that
has the same value as the previous bond and the same response to small changes in the risk-
free rates.

The problem is that there are now a number of ways the risk free rate can change, not just the
parallel shifts in the term structure that is implicit in the Macaulay duration. What is normally
suggested in the literature is to calculate the duration for each of the ways that this rate can
change and seek to match asset and liability portfolios in each of these durations. One
assumes that each change in the risk free rate corresponds to a change in one of the
parameters that make up the risk free interest rate term structure and hence the discount
factors b(t,a). Thus approach was first suggested by {Cooper 1997}}and subsequently these



durations became called partial durations as they are extensions of the basic modified
duration. Given the bond price model of (17), then the ith partial duration is

Dj* = -(dV( a,i)/daj )/V(a, i) (18)

As examples, consider using the yield curve formulation of (14) in the continuously
compounded case. This leads to partial durations of the form.
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Similarly in the discretely compounded case using all the forward rates as the parameters of
the interest rate term structure, the partial durations are of the form
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Given one is seeking to allow for all the possible changes in the term structure that one has
identified one would expect fitting portfolios by matching all their partial durations would be
much more successful than  just matching on the one Macaulay duration. This is what
Chambers et al [] investigated and they did find an improvement  in immunizing the terminal
values of the portfolio, while transaction costs are ignored.

There is though an alternative one duration measure that may be even more robust than the
Macaulay duration and which has the advantage that the user can specify which types of
change to the interest rate term structure are of most concern to him. This approach is to find
what duration measure minimises the weighted sum of the errors in the sensitivity of the bond
to changes to each of the possible parameter changes in the discount factor. This duration
which we call the approximate duration is obtained as follows for a bond whose price V(b, i)
is given by (17). As is the case with the Macaulay duration, we wish to find the maturity, D,
of the zero-coupon risk free bond which most closely matches the weighted sum of the
individual changes in the yield curve. The price of such a bond is Vo(a) = Rb(D,a). The
weighting put on the individual changes is given by the weights vector w. So the approximate
duration is defined by finding the D(w) where

If w(s)t = δst , D(w) is the partial duration corresponding to at.

One can define the approximate duration for any of the types of interest rate model described
above. We will describe its calulcation in the case of the discretely  compounded model
where the parameters are all the forward interest rates. In this case D(w) is the value where
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If w(s)t = δst , D(w) is the partial duration when there are only changes in the t-period forward
rate. If  w(s)t = 1 for all t ( w= 1) one is seeking to cover changes in each forward rate equally.
The difference between the s-th partial derivatives in (20) is

if s ≤ D* while the second term disappears if s > D*.

One can find the integer D* that minimises this by solving the following integer programming
problem

Minimise ∑t w(s)(a(s)+b(s)) (22)

subject to the following for all s=1,2,..,T

integer are y(s) and T1,...., s allfor   0 y(s), b(s), a(s),                          
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Since the bonds are usually for an integer number of periods and this is a measure which is
minimising errors rather than matching exactly the effect of one particular change in the
forward rates it may be more appropriate to leave D* as an integer.

D* is a different measure of stability than the Macaulay duration family of measures which
concentrate on one dimensional changes in the forward rates. To see this consider the case
when the yield curve is again flat, i,e  f = (r,r,r,….., r).Then the error term given by (21)
become

(1+r)-1(∑t<s c(t)di(t)(1+r)-t) for s ≤ D*  and  (1+r)-1(∑t ≥s c(t)di(t)(1+r)-t) for s > D*.  (23)

If we define g(t) = c(t) di(t)(1+r)-t for t=1,…,T this duration D* is the D that minimises

E(D)=∑s≤Dw(s)∑u<sg(u) + ∑s>Dw(s)∑u≥sg(u) =

∑s<D(∑u:s+1≤u≤Dw(u))g(s) +∑s>D(∑u:D+1≤u≤sw(u))g(s)

Hence
E(D+1) – E(D) = w(D+1)(∑s≤Dg(s) - ∑s≥D+1g(s) )

and it follows that the minimum occurs at

D* = max{ D   ∑s≤Dg(s) < ∑s≥D+1g(s)  } (24)

This is the median of the discounted expected cost whereas the Macaulay duration is the mean
( ∑sg(s) ). Note that this result holds no matter what the weighting w of the importance of the
different periods sensitivities, provided they are non-zero. So if one assumes the forward rates
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are able to move independently rather than together in a one dimensional family, medians of
the cashflow may be more appropriate than the means as measures of duration.

Unlike the mean, the median of a linear combination of measures need not be the linear
combination of the individual medians and hence the value D* of a portfolio of bonds has to
be calculated by considering the total cash flow from the portfolio rather than by combining
the durations of the individual bonds.

4. Data for the simulation experiment between the various duration types
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