The University of Southampton
University of Southampton Institutional Repository

Optimum high temperature strength of two-dimensional nanocomposites

Optimum high temperature strength of two-dimensional nanocomposites
Optimum high temperature strength of two-dimensional nanocomposites
High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glidewithin the layers to dislocation transmission across the layers.We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.
2166-532X
1-7
Moclus, M.A.
dfd90f67-b471-44e4-85a6-caf934d2fa67
Zheng, S.J.
b01bac68-e7c6-4c9e-8c7a-9255c942ae40
Mayeur, J.R.
5d0e2c11-eb7d-4fd1-9da0-c9646e153335
Beyerlein, I.J.
354ad57b-d5d9-416d-9982-24c47f6116e7
Mara, N.A.
d37b11bb-de95-4203-a939-acc1868e9df3
Polcar, T.
c669b663-3ba9-4e7b-9f97-8ef5655ac6d2
Llorca, J
339c8796-ee69-4f3c-ac5f-8e56177e4882
Molina-Aldareguía, J.M.
45f43d07-9207-44e8-bf48-c61604aa1e70
Moclus, M.A.
dfd90f67-b471-44e4-85a6-caf934d2fa67
Zheng, S.J.
b01bac68-e7c6-4c9e-8c7a-9255c942ae40
Mayeur, J.R.
5d0e2c11-eb7d-4fd1-9da0-c9646e153335
Beyerlein, I.J.
354ad57b-d5d9-416d-9982-24c47f6116e7
Mara, N.A.
d37b11bb-de95-4203-a939-acc1868e9df3
Polcar, T.
c669b663-3ba9-4e7b-9f97-8ef5655ac6d2
Llorca, J
339c8796-ee69-4f3c-ac5f-8e56177e4882
Molina-Aldareguía, J.M.
45f43d07-9207-44e8-bf48-c61604aa1e70

Moclus, M.A., Zheng, S.J., Mayeur, J.R., Beyerlein, I.J., Mara, N.A., Polcar, T., Llorca, J and Molina-Aldareguía, J.M. (2013) Optimum high temperature strength of two-dimensional nanocomposites. APL Materials, 1 (5), 1-7. (doi:10.1063/1.4828757).

Record type: Article

Abstract

High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glidewithin the layers to dislocation transmission across the layers.We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.

This record has no associated files available for download.

More information

e-pub ahead of print date: 7 November 2013
Published date: November 2013
Organisations: Engineering Mats & Surface Engineerg Gp

Identifiers

Local EPrints ID: 361290
URI: http://eprints.soton.ac.uk/id/eprint/361290
ISSN: 2166-532X
PURE UUID: 5cf5346b-7284-492c-a9cd-c34692e1f5f6
ORCID for T. Polcar: ORCID iD orcid.org/0000-0002-0863-6287

Catalogue record

Date deposited: 17 Jan 2014 16:44
Last modified: 15 Mar 2024 03:40

Export record

Altmetrics

Contributors

Author: M.A. Moclus
Author: S.J. Zheng
Author: J.R. Mayeur
Author: I.J. Beyerlein
Author: N.A. Mara
Author: T. Polcar ORCID iD
Author: J Llorca
Author: J.M. Molina-Aldareguía

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×