Optimum high temperature strength of two-dimensional nanocomposites
Optimum high temperature strength of two-dimensional nanocomposites
High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glidewithin the layers to dislocation transmission across the layers.We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.
1-7
Moclus, M.A.
dfd90f67-b471-44e4-85a6-caf934d2fa67
Zheng, S.J.
b01bac68-e7c6-4c9e-8c7a-9255c942ae40
Mayeur, J.R.
5d0e2c11-eb7d-4fd1-9da0-c9646e153335
Beyerlein, I.J.
354ad57b-d5d9-416d-9982-24c47f6116e7
Mara, N.A.
d37b11bb-de95-4203-a939-acc1868e9df3
Polcar, T.
c669b663-3ba9-4e7b-9f97-8ef5655ac6d2
Llorca, J
339c8796-ee69-4f3c-ac5f-8e56177e4882
Molina-Aldareguía, J.M.
45f43d07-9207-44e8-bf48-c61604aa1e70
November 2013
Moclus, M.A.
dfd90f67-b471-44e4-85a6-caf934d2fa67
Zheng, S.J.
b01bac68-e7c6-4c9e-8c7a-9255c942ae40
Mayeur, J.R.
5d0e2c11-eb7d-4fd1-9da0-c9646e153335
Beyerlein, I.J.
354ad57b-d5d9-416d-9982-24c47f6116e7
Mara, N.A.
d37b11bb-de95-4203-a939-acc1868e9df3
Polcar, T.
c669b663-3ba9-4e7b-9f97-8ef5655ac6d2
Llorca, J
339c8796-ee69-4f3c-ac5f-8e56177e4882
Molina-Aldareguía, J.M.
45f43d07-9207-44e8-bf48-c61604aa1e70
Moclus, M.A., Zheng, S.J., Mayeur, J.R., Beyerlein, I.J., Mara, N.A., Polcar, T., Llorca, J and Molina-Aldareguía, J.M.
(2013)
Optimum high temperature strength of two-dimensional nanocomposites.
APL Materials, 1 (5), .
(doi:10.1063/1.4828757).
Abstract
High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glidewithin the layers to dislocation transmission across the layers.We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.
This record has no associated files available for download.
More information
e-pub ahead of print date: 7 November 2013
Published date: November 2013
Organisations:
Engineering Mats & Surface Engineerg Gp
Identifiers
Local EPrints ID: 361290
URI: http://eprints.soton.ac.uk/id/eprint/361290
ISSN: 2166-532X
PURE UUID: 5cf5346b-7284-492c-a9cd-c34692e1f5f6
Catalogue record
Date deposited: 17 Jan 2014 16:44
Last modified: 15 Mar 2024 03:40
Export record
Altmetrics
Contributors
Author:
M.A. Moclus
Author:
S.J. Zheng
Author:
J.R. Mayeur
Author:
I.J. Beyerlein
Author:
N.A. Mara
Author:
J Llorca
Author:
J.M. Molina-Aldareguía
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics