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Abstract 

 

Loss Given Default (LGD) is the loss borne by the bank when a customer defaults on a loan. 

LGD for unsecured retail loans is often found difficult to model. In the frequentist (non-

Bayesian) two-step approach, two separate regression models are estimated independently, 

which can be considered potentially problematic when trying to combine them to make 

predictions about LGD. The result is a point estimate of LGD for each loan. Alternatively, 

LGD can be modelled using Bayesian methods. In the Bayesian framework, one can build a 

single, hierarchical model instead of two separate ones, which makes this a more coherent 

approach. In this paper, Bayesian methods as well as the frequentist approach are applied to 

the data on personal loans provided by a large UK bank. As expected, the posterior means of 

parameters which have been produced using Bayesian methods are very similar to the 

frequentist estimates. The most important advantage of the Bayesian model is that it generates 

an individual predictive distribution of LGD for each loan. Potential applications of such 

distributions include the downturn LGD and the stressed LGD under Basel II. 
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Introduction 

 

Loss Given Default (LGD) is the loss borne by the bank when a customer defaults on a loan. 

The Directive 2006/48/EC defines LGD as “the ratio of the loss on an exposure due to the 

default of a counterparty to the amount outstanding at default” (European Union, 2006, 

Article 4(27)), where ‘loss’ means “economic loss, including material discount effects, and 

material direct and indirect costs associated with collecting on the instrument” (European 

Union, 2006, Article 4(26)). According to the European Banking Authority guidelines, “the 

data used to calculate the realised LGD of an exposure should include all relevant 

information” (European Banking Authority, n.d., section 3.3.2.2). Among the relevant 
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information, the guidelines mention: outstanding amount of the exposure at default (including 

principal as well as interests and fees), recoveries (e.g. proceeds from the sale of collateral or 

the loan) and work-out costs (including the costs of both in-house and outsourced collection). 

 

Under the Basel II Advanced Internal Ratings-Based (AIRB) approach, banks are required to 

use their own estimates of LGD, PD (Probability of Default) and EAD (Exposure at Default). 

One of the requirements is that “credit institutions shall use LGD estimates that are 

appropriate for an economic downturn if those are more conservative than the long-run 

average” (European Union, 2006, Annex VII, Part 4, point 74). This is referred to as the 

‘downturn LGD’. The estimation of the downturn LGD can be challenging, since there is no 

Basel formula for it but only a principles-based approach was suggested (Basel Committee on 

Banking Supervision, 2005). Under the AIRB approach, banks are also expected to stress test 

the risk parameters, including LGD. More on LGD in Basel II can be found in books by 

Thomas (2009) and van Gestel and Baesens (2009). 

 

LGD for corporate loans has been assessed for a much longer time than for retail loans, first 

with a fixed value based on historical data, and then using more complicated models 

(Thomas, 2009). Various approaches to modelling corporate LGD were presented e.g. by 

Altman et al (2005). Since the sale of collateral can have a large impact on LGD, there are 

separate models for secured and unsecured loans. In particular, mortgage LGD can be 

modelled either directly or as a combination of repossession and haircut models, where a 

‘haircut’ is the ratio of the sale price to the estimated value of a property. Examples include 

models by Somers and Whittaker (2007), Qi and Yang (2009), Leow et al (2009 and 2010), 

Zhang et al (2010) and Tong et al (2011). 

 

This paper is on modelling LGD for unsecured retail loans. Because of the LGD distribution 

shape, it is often difficult to fit a model to the data. Therefore, multi-stage models were 

proposed, such as the two-step approach presented by Matuszyk et al (2010). In this 

frequentist (non-Bayesian) approach, two separate models are estimated independently, which 

can be considered potentially problematic when trying to combine them to predict LGD. The 

first model (logistic regression) separates positive values from zeroes, whereas the second 

model (e.g. linear regression) allows for the estimation of the positive values. The result is a 

point estimate of LGD for each loan. In order to apply this approach, one has either to set a 

cut-off for the first model or to calculate a product of the estimated value and probability that 
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this value is greater than zero. One can also draw a number from a Bernoulli distribution with 

the estimated probability, whether to assign the value or zero, which is equivalent to using a 

random cut-off. 

 

Alternatively, LGD can be modelled using Bayesian methods. The Bayesian framework offers 

a more coherent approach, since there is a single, hierarchical model instead of two separate 

ones. The result is an individual predictive distribution of LGD for each loan, rather than just 

a single number. Having a distribution, one can use its characteristics such as quantiles. The 

predictive distributions can be used, for example, in the LGD stress testing process or to 

approximate the downturn LGD. In this paper, Bayesian methods as well as the frequentist 

approach are applied to the data on personal loans that were provided by a large UK bank. 

The data are such that the empirical distribution of LGD has a high peak at zero, which 

justifies the use of multi-stage approaches. With regard to Bayesian methods, they are argued 

to be an appropriate choice here, because they allow for an integrated estimation of 

hierarchical models. 

 

The paper is structured as follows. The next section is on the research background that covers 

various techniques of LGD modelling as well as a short introduction to Bayesian statistics. In 

the third section, the frequentist and Bayesian approaches to LGD modelling are described. In 

the fourth section, the data and the empirical results are presented. The fifth section is a 

discussion on the possible uses of the results, whereas the last section includes conclusions. 

 

Background 

 

LGD modelling for unsecured retail loans 

 

LGD usually takes values from the interval [0,1] and some models cannot cope with values 

outside this interval. However, LGD can exceed one, if a bank hardly manages to recover any 

of the loan and adds in its collection costs. LGD can also be negative, if the principal, 

interests, fees and penalties which have been paid sum up to more than the outstanding 

amount plus work-out costs. The LGD distribution often has a high peak at zero, since there 

are many customers who default but finally pay in full. This peak can be partly due to ‘cures’, 

i.e. defaulters who get back on track before the bank takes any action against them. There is 



4 

 

sometimes another peak at one when many customers pay nothing. In consequence, LGD is 

generally found difficult to model. 

 

LGD is typically modelled for recovery periods that are longer than typical outcome periods 

in PD models. Under the IRB approach, the observation period for retail LGD must cover at 

least five years. LGD models for unsecured retail loans can be classified as either one-stage or 

multi-stage approaches. As far as the former are concerned, a number of regression models 

were suggested: Ordinary Least Squares (OLS) regression (e.g. Querci, 2005, Bellotti and 

Crook, 2008 and 2009, Loterman et al, 2009), Least Absolute Value (LAV) regression 

(Bellotti and Crook, 2008 and 2009), robust and ridge regression (Loterman et al, 2009), beta 

regression (Loterman et al, 2009, Arsova et al, 2011) and fractional regression (Arsova et al, 

2011). Other one-stage models include tobit (Bellotti and Crook, 2008) and two-tailed tobit 

(Bellotti and Crook, 2009). Moreover, Zhang and Thomas (2012) used survival analysis, 

whereas Loterman et al (2009) applied such techniques as Classification and Regression 

Trees (CART), neural networks (NN), Multivariate Adaptive Regression Splines (MARS) and 

Least Squares Support Vector Machines (LSSVM). 

 

As far as the multi-stage approach is concerned, there are two and sometimes three stages, in 

which separate models are estimated. The first model usually discriminates positives from 

zeroes (and negatives, if any). In the two-stage approach, the second model allows for the 

estimation of the positive values. In the three-stage approach, the second model separates 

ones-or-greater from the rest, whereas the third model is built for the estimation of the 

remaining values, i.e. those from the interval (0,1). 

 

In the first two stages, logistic regression and decision trees can serve as the discrimination 

models (e.g. Bellotti and Crook, 2008 and 2009, Matuszyk et al, 2010, Zhang and Thomas, 

2012). One can also combine two discrimination tasks into one using ordinal logistic 

regression (Arsova et al, 2011). In the last stage, the following models were tried out: OLS 

and LAV (Bellotti and Crook, 2008), robust, ridge and beta regression, CART, NN, MARS 

and LSSVM (Loterman et al, 2009) as well as survival analysis (Zhang and Thomas, 2012). 

Another multi-stage approach was presented by Loterman et al (2009): one can estimate a 

linear regression in the first stage and correct it using a non-linear model in the second stage. 

The nonlinear model is applied to estimate the error of the linear regression. 
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Linear regression is usually better than survival analysis (Zhang and Thomas, 2012), tobit 

models and simple decision trees (Bellotti and Crook, 2008), but it tends to be outperformed 

by nonlinear models such as NN and MARS (Loterman et al, 2009). However, such findings 

may depend on the performance measures used. For example, in one research, OLS was better 

than LAV for MSE, while for MAE the opposite was true (Bellotti and Crook, 2008). 

 

Apart from Mean Square Error (MSE) and Mean Absolute Error (MAE), the following 

performance measures are used for LGD models: Root Mean Square Error (RMSE), 

coefficient of determination (R-squared), Pearson’s, Spearman’s and Kendall’s correlation 

coefficients as well as area over the Regression Error Characteristic curve (AOC) and area 

under the Receiver Operating Characteristic curve (AUC) (Loterman et al, 2009). The 

correlation coefficients measure correlation between the observed and predicted LGD. The 

AOC estimates the expected error. The AUC requires a binary variable such as the observed 

LGD classified into below-the-mean and over-the-mean. Thus, the AUC measures how well 

the model separates lower and higher values of LGD. However, Somers’ D would be more 

suitable for this purpose, since it does not need any arbitrary classification of the dependent 

variable. Regardless of the measure used, most LGD models perform rather weakly. 

 

In order to improve model performance and/or produce a more normal-shaped distribution, 

transformations of the original LGD are introduced. In particular, Beta transformation is often 

applied (e.g. Gupton and Stein, 2005, Loterman et al, 2009, Matuszyk et al, 2010). Other 

possible transformations include: log, fractional logit and probit (Bellotti and Crook, 2008) as 

well as the Box-Cox transformation (Loterman et al, 2009, Matuszyk et al, 2010). However, 

transformations do not necessarily lead to a better model performance (Loterman et al, 2009). 

 

Ideally, an LGD model should be characterised by good performance (low errors and high 

correlation coefficients), stability and intuitive covariates. The covariates can be classified 

into five groups: socio-demographic variables (e.g. customer’s age), customer’s financial 

situation (e.g. income), account details (e.g. loan amount), payment history (e.g. outstanding 

balance) and macroeconomic variables. A similar, yet not identical, classification was 

suggested by Bellotti and Crook (2008). Using macroeconomic variables is one way to assess 

the downturn LGD (Caselli et al, 2008, Bellotti and Crook, 2009). 
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Bayesian statistics 

 

So far, LGD modelling has been based on frequentist (classical) statistics, in which inference 

is made using sample data as the only source of information. Bayesian statistics, in turn, 

allows for the incorporation of other sources of information (e.g. expert knowledge). This 

extra knowledge is called the ‘prior information’, and is described with the prior probability 

distributions of the model parameters. The prior distributions are then updated using data, 

which yields the posterior distributions of the parameters, conditional on the observations. 

Providing a full distributional profile of the parameters is one of the advantages of Bayesian 

statistics. Other advantages include a coherent description of uncertainty in the model and 

direct interpretation of confidence (‘credible’) intervals. Bayesian statistics also enables an 

integrated estimation of complex and multilevel models (Lynch, 2007). 

 

Since data and the prior information can to some extent compensate for each other, Bayesian 

methods can be successfully applied even if there is little data or no additional knowledge. 

The relationship between the prior and posterior distributions of the parameters can be 

described using Bayes’ theorem (e.g. Bernardo and Smith, 2003, Congdon, 2004). In order to 

generate samples from the posterior distributions, stochastic simulation methods are usually 

employed with Markov chain Monte Carlo (MCMC) being the most popular ones (e.g. Lynch, 

2007, Ntzoufras, 2009). For more details on Bayesian statistics, it is recommended to refer to 

the literature cited above. 

 

Bayesian methods have been successfully applied in credit scoring for at least 10 years. Since 

Bayesian statistics can effectively deal with data scarcity, it is found a useful tool for low 

default portfolios, LDPs (Dwyer, 2007, Kiefer, 2009, Fernandes and Rocha, 2011). It can also 

be employed in the stress testing process (Park et al, 2010). Bayesian statistics allows for the 

incorporation of expert knowledge or some extra information into a model, e.g. for risk-based 

pricing (Konstantinos et al, 2003). It also offers a way to update an old scorecard with new 

data that are not sufficient to build a new model (Ziemba, 2005). If there are no data on 

performance of the rejected applicants, one can use a Bayesian reject inference technique 

(Chen and Åstebro, 2003). Finally, Bayesian methods can be applied as an alternative to the 

frequentist ones, e.g. to estimate PD (Miguéis et al, 2012) or to find the best scorecard 

(Giudici, 2001). 
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Methodology 

 

Frequentist approach 

 

In this paper, Bayesian methods are compared with the frequentist approach. The latter is 

similar to the two-step approach presented by Matuszyk et al (2010). Let yi denote LGD of 

the ith loan (i = 1, …, N). The first of the two models separates positives from zeroes and 

negatives. It takes the form of a logistic regression: 

 

 (    )  
 

        
 

 

where    are the parameters and xi are the covariates. The second model allows for the 

estimation of the positive values. It is a linear regression with parameters    and covariates zi: 

 

 (       )       

 

The logistic regression predicts, whether there will be a (positive) loss or not. Here, its result 

will be referred to as the ‘probability of loss’. The linear model yields the estimated LGD, 

provided that there is a loss. In this application, the estimation has been performed using SAS. 

The models have been developed on the training sample and tested on the validation sample. 

Based on the findings of Loterman et al (2009), no transformations have been applied to the 

original LGD. The covariates of both regressions have been chosen using the stepwise 

selection (they have been selected because of their statistically significant relationship with 

the dependent variable and not because of their role in the recovery process).   

 

There are two problems inherent in this approach. Firstly, the two models are estimated 

independently, although the use of the second model is conditional on the outcome of the first 

one. In this situation, their independent estimation can be considered potentially problematic 

when trying to combine them to predict LGD: the approach is incoherent in terms of handling 

uncertainty. Since there is no joint probability framework, uncertainty is not propagated from 

the first to the second model and then into the output. Thus, a part of uncertainty about the 

LGD estimates is ignored. In particular, this may lead to confidence intervals that are too 

narrow and give a false impression of accuracy. 
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Secondly, it is not clear how to use the frequentist approach, once the models have been built, 

i.e. which value should be taken as the predicted LGD for a given loan. One option is to set a 

cut-off for the first model. Then zero is taken, if the probability of loss is less than the cut-off, 

and the estimated LGD is taken otherwise (‘cut-off approach’). This raises another question, 

though, which is how to set the cut-off. Alternatively, it is possible to randomly decide, 

whether there will be a loss or not. One can draw a number from a Bernoulli distribution with 

parameter equal to the probability of loss. If the result is zero, zero is taken, and if the result is 

one, the estimated LGD is taken. Equivalently, one can draw a cut-off from a standard 

uniform distribution for each loan separately (‘random cut-off approach’). 

 

Yet another option is to calculate the predicted LGD as a product of the probability of loss 

and the estimated LGD (‘probability times value approach’). This product can be viewed as a 

mean of the discrete distribution, in which a random variable takes a value of the estimated 

LGD with the probability of loss, and zero with the complement probability. Regardless of the 

approach, the result is a point estimate of LGD for each loan. Instead, one can use the above-

mentioned simple distribution with only two possible values. 

 

Bayesian approach 

 

In this research, Bayesian methods have been chosen, since they allow for an integrated 

estimation of hierarchical models. In consequence, the Bayesian approach is free from the 

problems that are discussed in the previous section. In this approach, there is a single, 

hierarchical model instead of two separate ones. The structure of the model, which resembles 

the random cut-off approach, is illustrated in Figure 1. Implementing the same hierarchical 

structure, including the same covariates, in both the Bayesian and frequentist approaches 

makes these approaches directly comparable. 
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Figure 1 Bayesian hierarchical model 

 

For each loan from the training sample, the probability of loss pi is calculated using the 

logistic regression formula with parameters    and variables xi. Subsequently, a number bi is 

drawn from a Bernoulli distribution with parameter pi. If bi equals zero, then yi follows a 

normal distribution with zero mean and precision   . If bi equals one, then yi follows a normal 

distribution with mean computed using the linear regression formula with parameters    and 

variables zi, and precision   . Then the observed value of yi is used to update the parameters 

  ,   ,    and   . This is the only place where it is fed into the model. The upper part of the 

model is not provided with additional information, whether there was a loss or not. 

 

For each loan from the validation sample, the same operations are performed as described 

above, except for disclosing the observed value of yi and updating the parameters. As a result, 

for each loan there is an individual predictive distribution of LGD that is a mixture of the two 

normal distributions mentioned above:  (    
  ) and  (       

  ). The resulting predictive 

distributions are bimodal. The adopted approach is similar to the (non-Bayesian) model 

suggested by Hlawatsch and Ostrowski (2011) who employed a mixture of two Beta 

distributions to account for the bimodality of LGD for corporate loans. For comparison 

purposes, the probability times value approach is also applied in this paper, which produces 

the predictive distributions of LGD calculated as LGD* =       . 
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As far as the prior distributions are concerned, weakly informative priors are adopted for all 

model parameters. More informative priors are not necessary, since there is a large training 

sample. For each element of    and   , the prior is a normal distribution with zero mean and 

small precision (large variance). The parameter    is assumed to follow a Gamma distribution 

with shape parameter 10 and inverse scale parameter 0.00001. Thus,    has a very large 

expected value (10
6
) and an even larger variance (10

11
). In the model,    serves as precision 

of the normal distribution with zero mean, so the larger the   , the smaller the variance of this 

distribution. This is designed to model the peak of the LGD distribution at zero. 

 

The parameter    is assumed to follow a Gamma distribution with parameters 0.01 and 0.01. 

Hence, the expected value of    is one and its variance equals 100, which gives relatively 

small precision (large variance) of the normal distribution with mean based on the linear 

regression formula. This aims to model the rest of the LGD distribution. The initial values of 

all model parameters are set to be equal to the expected values of their prior distributions. 

 

The model has been developed using OpenBUGS. The first 10000 iterations have been 

discarded as the burn-in period, and the next 100000 iterations have provided the MCMC 

output. Since relatively high autocorrelations up to lag four have been observed, a sampling 

lag (thinning interval) L = 5 has been used to obtain an independent sample. 

 

Empirical results 

 

Data 

 

The methods presented above have been applied to the data on personal loans that were 

granted by a large UK bank between 1987 and 1998 and defaulted between 1988 and 1999 

(see Table 1). The data cover the recovery periods until 2004, when some loans were still 

being paid. There have been ca. 50000 records in the dataset. After the removal of outliers and 

missing values of LGD, ca. 48000 records have remained. Subsequently, the training and 

validation samples of 10000 loans each have been randomly selected from the dataset. Since 

the period covered by the data is long enough to include the whole economic cycle, “out of 

time” validation does not seem necessary here. 
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Characteristics Values 

Original dataset size 49943 

Dataset size w/o outliers and missing values 47853 

Training sample size 10000 

Validation sample size 10000 

Loan open dates 1987-1998 

Default dates 1988-1999 

Recovery periods Until 2004 

Loan amounts at opening (in £) 500-16000 

Loan terms (in months) 12-60 

LGD –0.04-1.23 

Table 1 Data characteristics 

 

The empirical distribution of LGD is demonstrated in Figure 2. Since ca. 30% of the loans 

were paid in full, it has a high peak at zero. There is no information on which customers were 

‘cures’. Less than 10% of the loans were not repaid at all. There are many cases of LGD 

greater than one and few cases of LGD less than zero. They have been kept unchanged, since 

the models which are used in this application can cope with such values. The mean and 

median are equal to 0.5 and 0.59, respectively. The standard deviation equals 0.39. 

 

Figure 2 Empirical distribution of LGD 
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In the dataset, there are variables from four out of five groups mentioned in the section on 

LGD modelling. Macroeconomic variables have not been used in this application. Socio-

demographic variables have been collected at application. Some account details reflect the 

situation at opening and some at default. The payment histories cover the period until default. 

Thus, the life of the loan means the time from opening to default, whereas the last 12 months 

mean the last year before default etc. The variables have been standardised. 

 

Model convergence and performance 

 

In the frequentist approach, the quality of each of the two models has been assessed separately 

before measuring the performance of the entire LGD model. The logistic regression 

discriminatory power has been measured with the Gini coefficient and the KS statistic, 

whereas the linear regression goodness of fit has been assessed using the R-squared. In the 

training sample, the Gini coefficient and the KS statistic equal 0.42 and 0.31, respectively. 

Almost the same values of these measures have been obtained on the validation sample, 

which means that the discriminatory power of the first model is good and stable. The R-

squared of the linear regression is equal to 0.16 on both the training and validation samples. 

Thus, the goodness of fit of the second model is rather poor but stable. This is in line with the 

findings of Matuszyk et al (2010). 

 

In the Bayesian approach, the monitoring of the MCMC algorithm convergence has been 

based on autocorrelations, quantiles and (‘trace’) plots of the generated values as well as the 

Monte Carlo (MC) errors that measure variability of the parameter estimates due to the 

simulation (Ntzoufras, 2009). The autocorrelations are low due to the use of a sampling lag. 

In the successive iterations, the quantiles and generated values of each parameter have been 

remaining within their zones with no visible tendencies, which demonstrates that the 

algorithm has converged. The MC errors are relatively low, since they do not exceed 1.6% of 

the posterior standard deviations of the parameters (see Table 2). This shows that the posterior 

means of the parameters have been estimated with high precision. 
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Parameter Frequentist Bayesian 

Estimate 

(std. error) 

Posterior 

mean 

Posterior 

std. dev. 

MC 

error 

MC

% 

        

Intercept 1.084 

(0.026) 

1.087 0.026 1.19E-04 0.45 

Age of exposure (months) –0.545 

(0.061) 

–0.545 0.062 8.93E-04 1.45 

Amount of loan at opening 0.338 

(0.025) 

0.339 0.025 9.93E-05 0.39 

Total number of advances/ arrears 

within the whole life of the loan 

–1.478 

(0.062) 

–1.481 0.062 5.25E-04 0.84 

Number of months with arrears 

>0 within the life of the loan 

0.073 

(0.078) 

0.076 0.078 1.23E-03 1.57 

Number of months with arrears 

>1 within the last 12 months 

–0.529 

(0.040) 

–0.531 0.040 3.08E-04 0.76 

        

Intercept 0.719 

(0.003) 

0.718 0.003 9.14E-06 0.32 

Joint applicant present –0.012 

(0.003) 

–0.012 0.003 8.53E-06 0.29 

Total number of advances/ arrears 

within the whole life of the loan 

–0.143 

(0.016) 

–0.146 0.015 1.89E-04 1.23 

Term of loan (months) –0.037 

(0.003) 

–0.037 0.003 1.01E-05 0.32 

Worst arrears within the life of 

the loan 

0.178 

(0.016) 

0.180 0.016 1.91E-04 1.22 

Number of months with arrears 

>2 within the last 12 months 

–0.053 

(0.004) 

–0.053 0.004 1.36E-05 0.31 

   - 1.46·108 3.83·106 12600 0.33 

   - 17.580 0.294 9.37E-04 0.32 

Table 2 Estimation results 

 

In the frequentist and Bayesian approaches, the LGD model performance has been measured 

and compared using MSE and MAE as well as Pearson’s, Spearman’s and Kendall’s 

correlation coefficients. As mentioned earlier, it is not clear how to use the frequentist LGD 

model. Therefore, its performance has been assessed using three approaches (cut-off, random 

cut-off and probability times value). In the cut-off approach, the performance measures have 

been calculated for a number of cut-offs. Figure 3 shows that the results strongly depend on 

the cut-off level. 



14 

 

 

Figure 3 Performance of the frequentist LGD model (cut-off approach, validation sample) 

 

The random cut-off approach has been implemented in the Bayesian framework. Thus, there 

are the posterior distributions of the performance measures applied. The posterior means and 

standard deviations are presented in Table 3. The results of the frequentist random cut-off 

approach vary from one use to another, since there is random drawing involved. Therefore, 

the bootstrap has been performed in order to produce the distributions of MSE, MAE and the 

correlation coefficients. In the bootstrap algorithm, the frequentist random cut-off approach 

has been applied to 10000 generated samples. The bootstrap estimates of means and standard 

deviations of the performance measures are almost identical as those produced in the 

Bayesian approach (the differences are only in the fourth decimal place). The model 

performance is stable. Similar values of the errors and the correlation coefficients were 

obtained on some datasets by Loterman et al (2009). 

 

Performance measure 

 

Training sample Validation sample 

Mean Std. dev. Mean Std. dev. 

MSE 0.244 0.003 0.245 0.003 

MAE 0.364 0.003 0.365 0.003 

Pearson’s correlation 0.081 0.010 0.085 0.010 

Spearman’s correlation 0.107 0.010 0.115 0.010 

Kendall’s correlation 0.084 0.007 0.090 0.007 

Table 3 Model performance measures (random cut-off approach) 
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In addition, the probability times value approach has been applied. It has also been 

implemented in the Bayesian framework. The values of the performance measures which have 

been calculated in the frequentist probability times value approach are almost exactly the 

same as the corresponding posterior means presented in Table 4. The posterior standard 

deviations of the performance measures are not shown in this paper since they are very small. 

The results are stable and slightly better than those yielded in the random cut-off approach. 

The individual predictive distributions of LGD* are unimodal and extremely concentrated. 

 

Performance measure Training sample Validation sample 

MSE 0.142 0.143 

MAE 0.328 0.329 

Pearson’s correlation 0.256 0.268 

Spearman’s correlation 0.241 0.255 

Kendall’s correlation 0.169 0.179 

Table 4 Model performance measures (probability times value approach) 

 

Parameter estimates 

 

As expected, the posterior means of the parameters which have been produced in the Bayesian 

approach are very similar to the estimates obtained in the frequentist approach, and so are the 

posterior standard deviations and the standard errors (see Table 2). The similarity of the 

posterior means and the corresponding frequentist estimates was also observed e.g. by 

Fernandes and Rocha (2011). These similarities are likely to result from the large sample 

sizes. They may also be related to using non-informative (as in Fernandes and Rocha, 2011) 

or weakly informative priors (as in this application): when informative priors are not used, 

data remain the only source of information for inference, as in frequentist statistics. 

 

In this paper, the following interpretation of the posterior means (or the frequentist estimates) 

of the parameters    is suggested. The newer the exposure and the larger the loan amount, the 

higher is the probability that there will be a loss. However, the larger the number of arrears 

within the loan life and the larger the number of months with arrears >1 within the last year, 

the lower is the probability that there will be a loss. Matuszyk et al (2010) explained similarly 

surprising findings using the metaphor of ‘falling off a cliff’. The customers who tend to be in 

arrears (‘to keep their heads above water’) are more likely to succeed than those who have no 
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delinquencies prior to default (‘going underwater’). The explanation is that the latter default 

because of some sudden changes in their lives (‘falling off a cliff’) which may affect their 

ability to pay forever. 

 

The posterior means (or the frequentist estimates) of the parameters    can be interpreted as 

follows. The longer the term of a loan, the lower is the LGD. The presence of a joint applicant 

has a negative impact on LGD. Moreover, the larger the number of arrears within the loan life 

and the larger the number of months with arrears >2 within the last year, the lower is the 

LGD. The posterior means of    and    are larger than their prior means. Thus, the variances 

of the normal distributions are smaller than initially assumed. This is especially true of the 

distribution that is designed to model the peak at zero. 

 

Predictive distributions of LGD 

 

In the Bayesian approach, there is an individual predictive distribution of LGD for each loan, 

rather than just a point estimate as in the frequentist approach. Examples of such distributions 

for three selected loans from the validation sample are shown in Figures 4a, 4b and 4c. Each 

of them is a mixture of two normal distributions that are mixed in various proportions. Thus, 

the predictive distributions are bimodal. In fact, they have much narrower peaks at zero, but a 

smoothing method (kernel density estimation with a Gaussian kernel) has been used here for 

visualisation purposes. The dashed lines mark the observed values of LGD. 

 

Having the predictive distributions, one can use their characteristics such as means and 

quantiles. If the predictive mean of LGD is treated as a point estimate for each loan, then the 

performance measures take the same values as presented in Table 4. Using the predictive 

median or other quantiles instead of the mean does not considerably improve the model 

performance. For the median, only MAE is slightly lower than for the mean, with values of 

0.316 and 0.319 on the training and validation samples, respectively. 
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Figure 4a Predictive distribution of LGD for the loan (1) 

 

Figure 4b Predictive distribution of LGD for the loan (2) 

 

Figure 4c Predictive distribution of LGD for the loan (3) 
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Discussion 

 

The individual predictive distributions provide much more information and offer more 

possibilities than the point estimates of LGD. 

 

Kim (2006) proposed using the theoretical distributions to produce various LGD estimates, 

including the downturn LGD, for corporate exposures, in a non-Bayesian framework. In the 

Bayesian framework, one could approximate the downturn LGD with a certain quantile of the 

predictive distribution for each loan. The posterior distributions of the parameters reflect all 

reasonable sources of uncertainty in a Bayesian model (Gelman et al, 2004); what is usually 

not reflected is the model uncertainty. Thus, all reasonable sources of uncertainty are handled 

and – explicitly or implicitly – incorporated in the model, including uncertainty arising from 

inability to capture each and every influence on the dependent variable in the model (e.g. 

uncertainty related to such omitted factors as the changing macroeconomic conditions or 

systematic risk). Kim (2006) defined the economic downturn as “the state that the systematic 

risk factor takes on value at the 99.9% quantile”. From the equivariance of quantiles under 

monotonic transformations (e.g. Hao and Naiman, 2007), it follows that if LGD is assumed to 

be a monotonic function of the systematic risk factor, then the selected quantile of the LGD 

distribution will correspond to the quantile of the same order of the underlying systematic risk 

factor distribution. Hence, e.g. the 0.999th quantiles will reflect both the downturn conditions 

and the downturn LGD. According to Kim (2006), the choice of the quantile depends on the 

user’s perception of the severity of downturns and the 0.999th quantile can be used for 

extremely severe downturns. In the validation sample, choosing the 0.9th and 0.95th quantiles 

results in the average predicted downturn LGD of 0.97 and 1.06, respectively (while the 

average observed LGD of these loans was equal to 0.5 in the changing economic conditions 

of over a decade). Choosing the 0.75th quantile leads to the average predicted downturn LGD 

of 0.8, which means that such a quantile may reflect moderate downturn conditions. 

 

In the presented example, the data cover the whole economic cycle. Had the data been 

collected over a shorter period of time, it could be argued that the predictive distributions 

would change in the downturn conditions. In particular, one could then expect them to have 

heavier tails. Therefore, a conservative approach would be to choose a higher quantile than if 

the data had covered a longer time period (e.g. the 0.99th instead of the 0.95th). Alternatively, 

one could correct    by incorporating a variable that represents the state of the economy in the 
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Bayesian model. After deriving the distribution of this variable from long series of historical 

data, such a model could be used to assess the downturn LGD. 

 

In addition, selected quantiles of the predictive distributions can be used as the stressed LGD. 

One can also apply the methodology proposed by Park et al (2010), who stressed the 

coefficients instead of the corresponding financial variables in the PD model where PD was a 

symmetric function of the variables and their coefficients. They used the 75th percentiles of 

the posterior distributions of the coefficients as reflecting a stress situation. Within the 

approach suggested in this paper, one can stress the model parameters instead of such 

variables as the number of months with arrears >2 within the last 12 months. Then the 

appropriate quantiles of the posterior distributions of these parameters can be used to generate 

the stressed LGD. 

 

Moreover, the predictive distributions of LGD can be a useful tool in the collection process. 

For example, a bank may wish to identify and try to recover only those loans that are likely to 

be paid at least partially, if not in full. Based on the predictive distributions, the bank can 

select the loans, for which 90% credible intervals do not include one: P(LGD < 1) ≥ 0.9. In 

this application, such loans make up ca. 60% of the validation sample (in fact, 96% of them 

were paid at least partially). Another bank may be able to try to recover e.g. only 25% of the 

defaulted loans. The bank can order the loans by P(LGD < 1) and take actions against the one-

fourth with the highest probabilities. Yet another bank refrains from punitive actions once half 

of the debt has been recovered. Thus, that bank may wish to know which loans are likely to be 

paid in more than 50%, e.g. P(LGD < 0.5) ≥ 0.9. Generally, the predictive distributions can be 

used to diversify collection strategies in order to improve the work-out process. 

Understandably, changing the collection process will generate the need to update the LGD 

model. In order to test effectiveness of the new model based strategies, a champion/challenger 

approach can be used. 

 

Furthermore, the predictive distributions of LGD can help set a cut-off for the score used to 

accept and reject applicants. This should be based on a sample of similar loans that have 

already been granted. The loans need to be ranked according to the scores at application. 

Having the estimates of PD, LGD and EAD, one can compute the expected loss for each loan 

from the sample (this 12-month estimate would need to be adjusted for the loan lifetime 

expected loss to take a long term perspective). One can also calculate the expected profit 
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made with the complement probability (1 – PD). Then the probability-weighted sum of the 

expected profit and loss can be computed for each loan. As a result, there can be an estimate 

of profit/loss on the entire portfolio for each level of the cut-off. The above calculations can 

involve the LGD quantile which reflects possible worsening of the economic situation (in 

particular, the downturn LGD can be used along with the downturn PD). Then a cut-off can 

be chosen that corresponds to the break-even point, i.e. neither profit nor loss on the portfolio. 

With such a cut-off, normally there should be a profit, but even in adverse economic 

conditions, loss is unlikely. 

 

Finally, the individual predictive distributions, and credible intervals in particular, offer the 

benchmarks which can help confirm that the selected LGD estimates are sufficiently 

conservative. 

 

Conclusions 

 

In this paper, Bayesian methods have been compared and contrasted with the frequentist two-

step approach to modelling LGD for unsecured retail loans. Two ways of combining the two 

steps (random cut-off and probability times value) have been implemented in the Bayesian 

framework. Then both approaches have been applied to the data on personal loans granted by 

a large UK bank. 

 

As expected, the posterior means of the parameters which have been produced in the Bayesian 

framework are very similar to the frequentist estimates. The posterior means and standard 

deviations of the model performance measures are also almost identical as the corresponding 

bootstrap estimates that have been generated in the frequentist random cut-off approach. In 

comparison with the random cut-off approach, the probability times value approach has 

yielded slightly better posterior means of the performance measures. 

 

In spite of the similar performance, the Bayesian model is free from the drawbacks of the 

frequentist approach. It is more coherent and allows for a much better description of 

uncertainty. The most important advantage of the Bayesian model is that it generates an 

individual predictive distribution of LGD for each loan, whereas the frequentist approach only 

produces a point estimate. The predictive distributions provide a lot of information (including 
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benchmarks for LGD estimates) and can be used, among other purposes, for stress testing and 

approximating the downturn LGD. 

 

Obviously, it is possible to generate some distributions of LGD within the frequentist 

framework. One way is taking into account the standard error of the predicted LGD from the 

second model (linear regression). This allows for the determination of confidence intervals 

after the adoption of the normality assumption (e.g. Maddala, 2001). If the error term is 

assumed to follow a normal distribution, then the predicted LGD follows a normal 

distribution, too. That approach has serious drawbacks. It assumes normality of the error term 

and – in consequence – also of the LGD distribution, whereas empirical LGD distributions are 

known for being far from normal-shaped. Furthermore, it ignores uncertainty from the first 

model (logistic regression), which may lead to confidence intervals being too narrow. 

 

Another way to generate LGD distributions is using bootstrap methods. If the sample is large, 

the results may be numerically similar. However, if the sample is small, the Bayesian 

approach offers the advantage of utilising the prior information, which can be useful e.g. in 

case of LDPs. It is also worth remembering that Bayesian methods yield distributions of the 

model parameters, whereas the bootstrap only produces distributions of their estimators 

(Rubin, 1981). As a result, Bayesian credible intervals have much more natural and 

straightforward interpretation than bootstrap-based confidence intervals (Jaynes, 1976). 

Differences between the two approaches are both technical and philosophical, and the choice 

is up to the potential user. 

 

Yet another way to obtain LGD distributions is using survival analysis (Zhang and Thomas, 

2012). In survival analysis, the time until an event occurs is usually modelled. Zhang and 

Thomas (2012) applied the Cox proportional hazards model, but instead of the time, they 

estimated how much is recovered until the end of the collection process (or – in case of 

censored observations – the end of the period covered by data). As a result, they obtained a 

probability of being in the collection process for each value of the Recovery Rate (RR = 1 – 

LGD), which gives the RR distribution for each loan. However, the distributions derived from 

the Cox proportional hazards model have a major drawback. Since hazard function lines of 

different loans never cross one another, the ranking of loans is the same for each quantile of 

the distributions. The Bayesian approach which has been proposed in this paper is free from 

such limitations and thus much more flexible. 
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Further modifications of this approach could include using more informative priors, which 

might be beneficial in case of smaller samples than in this application. Moreover, one could 

apply more complex Bayesian graphical models and/or Bayesian model selection to find the 

best covariates of the logistic and linear regressions. In the Bayesian framework, one could 

also use more sophisticated models than the regressions and employ some transformations of 

LGD, as it could be done in the frequentist framework. 
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