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Survival experiments are conducted in many industrial and biomedical applications

to evaluate the effect of a method or treatment on the time until the occurrence of an

event. Thus the survival models used are often two-parameter models and involve data

that are subject to censoring, that is, the event of interest is not observed for all the

subjects in the experiment. Finding efficient designs for survival experiments is vital in

order to minimise their running costs and maximise the precision of their conclusions.

The current research incorporates censoring in the well established methodology of

Design of Experiments to produce novel methods for planning such experiments.

We provide analytical characterisations of locally D- and c-optimal designs for

a wide class of two-parameter nonlinear models that includes many commonly used

survival models, based on easily verifiable assumptions. These reduce the numerical

effort for design search substantially and can be interpreted directly by practitioners.

In order to overcome the parameter dependence of locally optimal designs we in-

vestigate the construction of standardised maximin D- and c-optimal designs and of

cluster designs and illustrate our results using the exponential-based proportional haz-

ards model. Different censoring mechanisms are incorporated and the robustness of

our designs against parameter misspecifications is verified.

A general framework is set up for the construction of optimal designs for partial

likelihood estimation for Cox’s proportional hazards model. We show that under Type-

I censoring, the designs derived assuming the exponential distribution are optimal for

any baseline hazard. We also demonstrate that c-optimal designs for the exponential

regression model based on full likelihood, are efficient for partial likelihood estimation.

We also provide analytical characterisations of minimax D- and c-optimal designs

that are robust to deviations from the exponential-based proportional hazards model.

The latter results coincide with the locally c-optimal designs which can therefore be

used even if the exponential distribution assumption is incorrect

Throughout this project we show that traditional designs currently in use are not

the best choice in many practical scenarios and we provide efficient alternatives that

can be directly implemented by practitioners. These alternatives have the potential to

influence the design of future survival experiments.
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Chapter 1

Introduction

The motivation for this project comes from survival experiments which are of great

importance mainly due to their wide range of applications. The models involved in

such experiments called survival models arise in almost all areas of scientific research,

for example, in medicine, biostatistics, engineering and social sciences. Survival ex-

periments are also vital since they are conducted in order to evaluate the efficacy, the

benefits and the safety of existing and new methods used in each of their applications.

Designing these experiments in a more efficient way is both interesting and beneficial

as this will reduce the amount of resources required for their execution and also im-

prove inference and hence the accuracy of the conclusions drawn at the end of the

experiments. Therefore, our work is on the interface of two major areas of statistical

research, namely Design of Experiments (DoE) and Survival Analysis, and it combines

the well established methodology of the former area with the most important features

of the latter.

Survival models which are considered in Survival Analysis are usually nonlinear and

their response variable is the time until the occurrence of a particular event, such as

the death of a patient or the failure of a machine. The event of interest may also be

a non fatal outcome but could be, for example, the cure of a patient. The resulting

data are thus often referred to as time to event data or survival data. Their main

characteristic is censoring which occurs when the event is not observed for some of

the subjects under investigation. This phenomenon results in the standard methods of

modelling and analysis to be unsuitable for survival data.

The area of DoE provides us with powerful analytical methods for determining the

experimental conditions where measurements must be taken in order for the goal of the

experiment to be accomplished. The designs arising from DoE theory are optimal in

the sense that they require fewer numbers of subjects to be utilised in the experiment

to achieve the same accuracy of conclusions as with a suboptimal design. Hence the

use of an optimal design reduces both the experimentation time and cost. Moreover,

optimal designs maximise the information contained in the data, which is extremely
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important since no statistical analysis or modelling technique can extract information

the data do not have.

To further stress the importance of optimal experimental design for survival exper-

iments let us consider the example of a clinical trial to compare two treatments. If

an optimal design is used, then we hope fewer patients will be required in order to

establish the superiority of one of the two treatments and therefore the recruitment

and running cost of the trial will be reduced. Furthermore, the most effective treat-

ment can be identified more quickly and reach the population faster, thus improving

the quality of life for patients and their carers.

At the moment there is little guidance on how to plan experiments involving pos-

sibly censored data. The aim of our work is to fill this gap by incorporating survival

models that include censoring in the existing optimal design theory. Novel methods are

therefore produced for the construction of optimal designs for many commonly used

survival models based on analytical rather than the empirical arguments currently

available. Another of our objectives is to provide easily interpreted results that corre-

spond to several scenarios arising in practice. Our results can thus be used directly by

practitioners in many relevant situations. This has a potential impact on the planning

of survival experiments in the future.

To meet our goals we define a large class of two-parameter nonlinear models that

includes some of the most widely used models in practice and which is based on some

easily verifiable assumptions. For models in this class we find designs based on two clas-

sical optimality criteria, namely D- and c-optimality. As with all optimal experimental

designs for nonlinear models, our designs depend on the unknown model parameter

values and are referred to as locally optimal designs.

Following this we also investigate the construction of parameter robust designs in

a situation where an uncertainty space for the parameter values is provided by the

experimenter. These designs can be used if the parameter values are misspecified and

so locally optimal designs are not appropriate.

One of the most important survival models is Cox’s proportional hazards model for

which parameter estimation, and hence the construction of optimal designs, requires

a different approach from the one used for parametric models. We therefore study

optimal designs for this model separately to further increase the impact of our work

on survival experiments.

Another scenario often arising in practice is that of the assumed model to be only

an approximation to the true model which leads to the need for model robust designs

to be found. We consider a parametric proportional hazards model, the exponential

regression model, and construct designs which are robust to small deviations from

that model. This is the simplest survival model and is frequently used in survival

experiments since an exponential distribution for the times to event can naturally be

2



assumed.

The present thesis is organised as follows. Chapter 2 illustrates the basic concepts

of optimal design theory and of Survival Analysis and we also briefly discuss the frame-

work under which these two branches of statistics can be reconciled. The literature on

locally optimal, parameter- and model-robust designs for nonlinear models is presented

in Chapter 3 together with some methods available for designing survival experiments

with censored data. In Chapter 4 we provide analytical characterisations of locally

optimal designs based on the D- and c-optimality criteria for the class of nonlinear

models we define. Parameter-robust design strategies for the same class of models are

discussed in Chapter 5 and used to provide analytical results. Our findings in both

Chapters 4 and 5 are illustrated through an application to the exponential regression

model under two censoring mechanisms. In Chapter 6 we set up a general framework

for the construction of optimal designs for Cox’s proportional hazards model and com-

pare the resulting designs with corresponding designs for parametric models. A new

class of models in a neighbourhood of the exponential regression model is defined in

Chapter 7. This class includes other commonly used survival models. We find designs

which are robust to misspecifications of the assumed model within this class. Finally,

the conclusions and benefits of our work and possible future directions that can be

explored are discussed in Chapter 8.
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Chapter 2

Basics

Here we provide a brief introduction to the theory of optimal experimental planning and

to the modelling of survival data. For a more detailed presentation of these concepts

see, for example, Atkinson, Donev and Tobias (2007) and Collett (2003) respectively.

Moreover, we discuss how these two areas of statistical research can come together

to produce optimal designs appropriate for survival models which incorporates several

censoring mechanisms.

2.1 Optimal experimental planning for parameter

estimation

Throughout this project we consider experiments where one is interested in estimating

the unknown model parameters. Therefore, we are dealing with an estimation problem

and optimal planning of such experiments is concerned with finding the experimental

points and the number of subjects that should be assigned to each point so that the

parameters are estimated with high precision. This is formulated through an optimal

experimental design.

2.1.1 Exact and approximate designs

There are two possible definitions of experimental designs. If m is the number of

distinct experimental points in the design then an exact design is defined as

ξexact =

{
x1, . . . , xm

r1, . . . , rm

}
,

where 0 < ri ≤ n, i = 1, . . . ,m, is the integer number of observations to be taken

at the ith experimental point xi and n is the total number of subjects utilised in the

experiment and therefore the total number of observations. Hence
∑m

i=1 ri = n.

5



The second definition can be derived using

r∗i = ri/n,
∑
i

r∗i = 1.

By relaxing the assumption that nr∗i = ri must be an integer, we define an approximate

design, alternatively known as a continuous design, as

ξ =

{
x1, . . . , xm

ω1, . . . , ωm

}
. (2.1)

The points xi, i = 1, . . . ,m, are called the support points of the design and corre-

spond to the distinct experimental points where observations must be taken and the

weights ωi, i = 1, . . . ,m represent the proportion of observations to be taken at the

corresponding support point.

The set X of all possible values for the support points is called the design space.

The weights take values 0 ≤ ωi ≤ 1, i = 1, . . . ,m and
∑m

i=1 ωi = 1. Therefore an

approximate design ξ is a probability measure on the design space X .

Approximate designs are preferred to exact designs since they are independent of the

total number of observations n and their computation avoids the discrete optimisation

that is required to find exact designs. However, as pointed out by Atkinson, Donev

and Tobias (2007), all designs in practice are exact. Hence if an approximate design is

constructed, then for given number of subjects n, the quantity nωi must be rounded

to an integer in order for the design to be used. This may result in suboptimal designs

for small values of n.

Pukelsheim and Rieder (1992) tackle this problem by introducing a discretisation

method called efficient rounding which produces good exact designs for moderate n by

rounding the corresponding continuous design. Therefore, in what follows we consider

approximate designs of the form (2.1). This provides us with some useful theoretical

tools which we discuss in section 2.1.3.

2.1.2 Optimality criteria

The choice of the design to be used is based on optimality criteria which reflect the aim

of the experiment to be conducted. In the concept we consider here, estimating the

model parameters with high precision means that the asymptotic variance-covariance

matrix of the maximum likelihood estimator for the parameters must be minimised.

In terms of an approximate design ξ this is equivalent to maximising the information

matrix M(ξ,λ) defined as

M(ξ,λ) =

∫
X
I(x,λ)ξ(dx) =

m∑
i=1

ωiI(xi,λ),
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where λ is the parameter vector and I(x,λ) is the Fisher information matrix. That is,

the expectation of the observed information and is given by

I(x,λ) = E

[
−∂

2 logL(x,λ)

∂λ∂λT

]
, (2.2)

where logL(x,λ) is the log-likelihood function at point x for the assumed nonlinear

model.

Since we cannot directly optimise a matrix what we actually optimise is a statisti-

cally meaningful functional, usually involving only the information matrix, that maps

the information matrices onto the real line. This functional, Φ{M(ξ,λ)}, is called the

objective function of the criterion and it differs according to the combination of model

parameters we are interested in estimating. The aim is then to minimise the objective

function with respect to the design ξ to construct the corresponding optimal design.

We note here the dependence of the information and the Fisher information matrices

on the vector of unknown model parameters λ. This is a typical feature that applies

only for nonlinear models and not for linear models. Therefore, the optimal designs

arising for nonlinear models depend on the values of the parameters and, following

Chernoff (1953), they are referred to as locally optimal designs.

Optimality criteria are often symbolised by a letter of the alphabet and hence

are sometimes called alphabetical optimality criteria (Atkinson, Donev and Tobias

(2007)). Two of the most popular ones which we consider throughout this project are

D- and c-optimality. These are used when one is interested in estimating all the model

parameters or a linear combination of them respectively and are explicitly defined in

Chapter 4.

2.1.3 General equivalence and Caratheodory’s theorems

The general equivalence theorem is a very useful tool for the characterisation and

checking of optimal designs. This does not hold in general for exact designs but only

for approximate designs. If ξ∗ is the optimal design, the general equivalence theorem

states that the following three statements are equivalent (Atkinson, Donev and Tobias

(2007)).

(i) The design ξ∗ minimises Φ{M(ξ,λ)}.

(ii) Let φ(x, ξ,λ) be the derivative of Φ in the direction ξ̃ given by

φ(x, ξ,λ) = lim
ε→0+

1

ε

[
Φ
{

(1− ε)M(ξ,λ) + εM(ξ̃,λ)
}
− Φ {M(ξ,λ)}

]
,

where ξ̃ is the design putting all the observations at point x. The design ξ∗

maximises the minimum over X of φ(x, ξ,λ).
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(iii) The minimum over X of φ(x, ξ∗,λ) is equal to zero and this minimum is achieved

at the support points of the design.

Statement (iii) results in the further statement

(iv) The minimum over X of φ(x, ξ,λ) is strictly negative for any suboptimal design

ξ.

The special cases of the general equivalence theorem for D- and c-optimality respec-

tively, are provided in Chapter 4. An upper bound for the number of support points

of the optimal design can be obtained due to the additive nature of the information

matrix (see, for example, Atkinson, Donev and Tobias (2007) or Silvey (1980)). This

is Caratheodory’s theorem, which states that the optimal design must be supported at

most at p(p + 1)/2 points where p is the total number of model parameters. When a

design has exactly p support points it is said to be minimally supported. In Chapter

4, we use the general equivalence theorem to establish that the D-optimal designs for

the class of models considered, are minimally supported.

2.1.4 Bayesian designs

The Bayesian approach for the construction of optimal designs takes into account

any prior information available for the parameter vector λ. Let y be the vector of

n observations indicating the data and π(λ) the prior distribution for the parameter

vector. The Bayesian optimal design maximises

U(ξ) =

∫
log {π(λ|y, ξ)} π(y,λ|ξ) dλ dy,

which is the expected Shannon information of the posterior distribution of λ. A detailed

presentation of optimal Bayesian designs is given in Chaloner and Verdinelli (1995).

In the context of this project we do not use Bayesian optimal designs as there

are several references in the literature of other designs that are simpler to find and

equally efficient for parameter estimation as Bayesian designs (see, for example, Dror

and Steinberg (2006) or Biedermann and Woods (2011)). In particular, we will focus

on the construction of standardised maximin optimal and cluster designs when a set of

parameter values is provided by the experimenter with no preference for specific values

and therefore a Bayesian framework is unnecessary (see Chapter 5).

2.2 Modelling time to event data

As mentioned in the introduction, the response variable arising in survival experiments

is the time until the event of interest occurs. However, the event of interest may not
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be observed for some of the subjects utilised in the experiment, leading to censored

survival data. In what follows we present the two censoring mechanisms we shall

consider and two classes of survival models widely used for fitting time to event data.

2.2.1 Censoring mechanisms

The most common form of censoring arising in practice is right-censoring. In this case

the time until the occurrence of the event of interest is above a certain value called the

censoring time, but it is unknown by how much (Collett (2003)). Therefore, for each

subject, if the event of interest is not observed by the censoring time for that subject,

its observation is said to be right-censored.

Let us consider the case of a clinical trial with death as the event of interest, where

a patient drops out from the trial due to worsening of their health. The time of death

of this person is therefore censored since the death is not observed. However, it is

clear in this case that the death time and censoring time are associated. This is an

example of informative censoring and the methods for analysing survival data subject

to this mechanism are different from the ones discussed here. In particular, we assume

non-informative censoring, that is, for each subject the time until the occurrence of the

event of interest is statistically independent of its censoring time.

There are several mechanisms that result in right-censored data. The two most

usual ones that we consider throughout this project are Type-I censoring where the

censoring time is fixed and common for all the subjects in the experiment and random

censoring in which case the censoring time is possibly different for each subject.

2.2.2 Survivor and hazard functions

Time to event data are summarised mainly using the survivor and hazard functions

(see Collett (2003)). Let T be the random variable indicating the time to event with t

being its observed value. The survivor function evaluated at point t, S(t), is defined as

the probability that the event of interest will occur at some time greater than or equal

to t. That is

S(t) = P (T ≥ t) = 1− F (t), t > 0,

where F (t) is the distribution function of the random variable T .

The hazard function h(t) expresses the risk of the event occurring at any time t

after the commencement of the experiment. It is defined as the event rate at time t

conditional on the event occurring at or before t. Hence

h(t) = lim
δt

P (t ≤ T < t+ δt|T ≥ t)

δt
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= lim
δt

F (t+ δt)− F (t)

S(t)δt
=
f(t)

S(t)
, t > 0,

where f(t) is the probability density function of T .

In survival experiments one is interested in exploring how the risk of occurrence

of the event of interest changes with respect to various factors. Therefore, the haz-

ard function is modelled directly and these factors are referred to as the explanatory

variables or the covariates of the model.

2.2.3 Proportional hazards models

One of the most popular classes of survival models is that of proportional hazards

models. The main assumption governing all survival models included in this class

is the proportional hazards assumption which states that the explanatory variables

involved in the model have a multiplicative effect on the hazard. In other words at any

time t(> 0) the hazard function of a subject with a certain vector of covariate values is

proportional to the hazard function of another subject and therefore their hazard ratio

is constant over time. The general form of proportional hazards models is given by

h(t) = h0(t)e
βTx, t > 0, (2.3)

where x is the vector of explanatory variable values, β is the corresponding covariate

coefficients vector and h0(t) is the hazard function for a subject with x = 0 and is

called the baseline hazard function.

When a specific form is assumed for the baseline hazard function the resulting

models are referred to as parametric proportional hazards models. The most frequently

used distributions for the specification of such models are the exponential, Weibull

and Gompertz distributions. If no particular form for the baseline hazard function is

specified then model (2.3) is Cox’s proportional hazards model which is often preferred

to parametric proportional hazards models because fewer assumptions are required.

When introducing this model, Cox (1972) showed that inferences on the β-coefficients

can still be done independently of h0(t) and based only on the order of occurrence of the

events corresponding to the various subjects. The main assumption he uses, apart from

that of proportional hazards, is that the baseline hazard and so the hazard function

is zero in time intervals in which the event of interest has not occurred for any of the

subjects. Therefore, these intervals provide no information about the β-coefficients.

Let t(1) < . . . < t(ñ) be the ordered distinct event times independent of one another

and the rest of the available data, n − ñ, are right-censored observations. Let us also

assume that each event time t(j), j = 1, . . . , ñ corresponds to exactly one subject in

the experiment, that is, there are no ties in the data. The probability of the event
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occurring at some time t(j) for a subject with covariate values vector x(j) conditional

on t(j) being one of the distinct event times is given by

P (event occurs at t(j) for subject with covariates x(j)|one event at t(j))

=
P (event occurs at t(j) for subject with covariates x(j))

P (one event at t(j))

=
P (event occurs at t(j) for subject with covariates x(j))∑

l∈R(t(j))
P (event occurs for subject l at t(j))

,

since the event times are independent. The set R(t(j)), referred to as the risk set,

denotes the set of all subjects that are at risk at time t(j); that is, the subjects for

which neither the event of interest nor censoring has occurred at a time just prior to

t(j). Furthermore, the above expression is equal to

lim
δt→0

P (event occurs at (t(j), t(j) + δt) for subject with covariates x(j))/δt∑
l∈R(t(j))

P (event occurs for subject l at (t(j), t(j) + δt))/δt

=
hj(t(j))∑

l∈R(t(j))
hl(t(j))

,

using the definition of the hazard function given in section 2.2.2. Here hj(t(j)) and

hl(t(j)) are the hazard functions at time t(j) for a subject with covariate values vector

x(j) and x(l) respectively. Now using equation (2.3) and taking the product of these

conditional probabilities over the distinct event times, we obtain

L(β) =
ñ∏
j=1

eβ
Tx(j)∑

l∈R(t(j))
eβ

Txl
. (2.4)

This is the likelihood function to be used for the estimation of the β-coefficients and

is called the partial likelihood function.

Kalbfleisch and Prentice (2002) derive the exact form of the partial likelihood func-

tion in the case of ties in the data which, however, is extremely complicated. Some

approximations of the partial likelihood function given in (2.4) are suggested by Cox

(1972), Breslow (1974) and Efron (1977) which are easier to compute.

2.2.4 Accelerated failure time models

An alternative to the proportional hazards models is the class of accelerated failure time

models (see, for example, Collett (2003)) which are specified by the hazard function

h(t) = h0(t/e
βTx)e−β

Tx, t > 0,
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or equivalently by the survivor function

S(t) = S0(t/e
βTx), t > 0.

The quantity e−β
Tx is called the acceleration factor and h0(t), S0(t) are the baseline

hazard and survivor functions respectively. As for the proportional hazards models,

these can be regarded as the hazard and survivor functions for a subject for which all

covariate values are equal to zero.

Under an accelerated failure time model the explanatory variables have a multi-

plicative effect on the survivor times but the assumption of constant hazard ratio over

time is not satisfied.

Accelerated failure time models are met, for example, in survival experiments where

the subjects utilised are put under extreme conditions so that the event of interest will

occur sooner than under normal circumstances. Such models are not commonly used

for data arising in clinical trials but are frequently used in industrial applications.

2.3 Optimal designs for survival models

Let us now consider that an experimental design is required before the commencement

of a survival experiment with predetermined total duration c. The design must be

optimal in terms of estimating the unknown parameters of the assumed survival model.

Throughout this project we consider two cases: a binary design space, that is X =

{0, 1}, corresponding to a covariate indicating, for example, two different treatments;

and the case of a continuous design space X = [u, v] corresponding to a covariate

representing, for example, the doses of a drug.

Also let y1, . . . , yn be the possibly right-censored data that will arise from the sur-

vival experiment utilising a total number of n subjects. These are the observed values

of the random variables Yj = min{Tj, Cj}, j = 1, . . . , n, where Tj, j = 1, . . . , n, in-

dicate the time until the occurrence of the event of interest for each subject and are

distributed according to the assumed model. The variable Cj represents the censoring

time corresponding to the jth subject (Collett (2003)). Hence if the event of interest

has not occurred for the jth subject before its corresponding censoring time value cj,

then the observation is considered to be right-censored and is equal to cj. This is

formulated using an indicator variable δj that is equal to unity if the observation is a

distinct event time and zero if it is right-censored. That is

δj =

1, if Yj = Tj

0, if Yj = Cj
.

Unlike data arising in the absence of censoring where the likelihood function is given
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as the product of the probability density function evaluated at each data point, the

likelihood function for censored data is

L(λ) =
n∏
j=1

{f(yj)}δj {S(yj)}1−δj , (2.5)

where λ is the vector of the unknown model parameters, f(yj) is the probability density

function of the assumed distribution for the times to event and S(yj) the corresponding

survivor function.

Therefore, the Fisher information matrix defined in (2.2) will differ for censored

data, not only because of the different form of the likelihood function described above

but it will also depend on the censoring mechanism giving rise to such data through

the expectations involved in (2.2). Hence the assumed type of right-censoring affects

the information matrix and thus the resulting optimal design.

2.3.1 Type-I censoring

As mentioned in section 2.2.1, under this mechanism the censoring time must be the

same for all the subjects in the experiment (Collett (2003)). In the scenario we consider

here this corresponds to the case of all the subjects being recruited to the experiment

at the same time and so the common censoring time will be equal to c, that is, the

duration of the experiment.

Therefore, the random variable Yj will follow the assumed distribution for the times

to event until time c at which point if the event of interest has not occurred, Yj = c.

The probability of this happening is equal to the probability that the corresponding

time to event variable Tj will be greater than or equal to c. That is, P (Tj ≥ c) = S(c)

from the definition of the survivor function given in section 2.2.2. Hence

E(Yj) =

∫ c

0

yjf(yi) dyj + cP (Yj = c) =

∫ c

0

yjf(yi) dyj + cS(c).

2.3.2 Random censoring

For the case of random censoring we consider the situation where the subjects enter

the experiment at random times Zj, j = 1, . . . , n uniformly distributed in the time

interval [0, c]. Hence the censoring times Cj = c − Zj, j = 1, . . . , n will possibly

be different for each subject and Cj ∼ U [0, c], j = 1, . . . , n with probability density

function fC(cj) = 1/c.

The probability density function function that must be used for the likelihood func-

tion given in (2.5) is now f(yj|cj) = 1
c
f(yj) since we assume non-informative censoring,

that is, the event times are independent of the censoring times. Furthermore,
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E(Yj) = E (E(Yj|Cj = cj)) =

∫ c

0

E(Yj|Cj = cj) dcj,

where

E(Yj|Cj = cj) =

∫ cj

0

yjf(yi) dyj + cjS(cj).
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Chapter 3

Literature review

In this chapter we provide a review on the available literature relevant to this project.

The biggest part of this literature is concerned with the optimal planning of experiments

involving nonlinear models with complete data, that is, data that are not subject

to censoring. We first discuss the construction of locally optimal designs based on

criteria that include D- and c-optimality which are of primary interest in this thesis, for

several classes of nonlinear models. Various techniques for overcoming the parameter

dependence of the locally optimal designs are then presented. These can be used for the

construction of parameter robust designs when an uncertainty space can be specified

for the model parameter values. Finally, we present model robust designs that are

appropriate for use when the assumed nonlinear model only holds approximately.

Little research has been done, however, on designing experiments using the optimal

design theory for possibly censored data. The literature is mainly focused on exper-

iments involving accelerated failure time models and particularly on finding designs

which are robust to misspecifications in the underlying distribution of these models.

Fewer authors study the construction of optimal designs using the classical optimal-

ity criteria for proportional hazards models. We review the limited number of avail-

able papers that consider the exponential regression model in its proportional hazards

parametrisation and papers that use the general proportional hazards model. In the

latter case the designs are constructed using the partial likelihood function.

3.1 Locally optimal designs

One of the most important general results available for locally optimal designs is given

in Pukelsheim and Torsney (1991) who derive explicit formulas for the optimal weights

of designs constructed based on a broad class of criteria called Φp-optimality criteria.

This class is introduced by Kiefer (1974) and includes the popular D-optimality crite-

rion. Although Pukelsheim and Torsney (1991) consider the classical linear regression

model many authors, including ourselves, use their result to find the corresponding
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formulas for the Φp-optimal weights when the models involved are nonlinear.

Ford, Torsney and Wu (1992) consider the construction of locally D- and c-optimal

designs for nonlinear models where the distribution of their response variable is a

member of the exponential family. They propose the transformation of the design space

which leads to a simpler design problem in a canonical form. Using Elfving (1952) and

Sibson (1972) geometrical characterisations they find locally D- and c-optimal designs

for various two-parameter regression models involving one explanatory variable.

These results on locally D-optimal designs are then extended by Sitter and Torsney

(1995a) who consider generalised linear models involving several explanatory variables.

They show that, based on the geometry of the transformed design space, the design

problem can be reduced in terms of complexity to that of only one explanatory variable.

The transformed design space proposed by Ford, Torsney and Wu (1992) is also used by

Sitter and Torsney (1995b), who focus on binary response models and construct locally

D- and c-optimal designs for the case of two design variables by using geometrical

arguments.

Sebastiani and Settimi (1997) consider the two-parameter logistic regression model

and prove that the two-point design suggested by Ford, Torsney and Wu (1992) is

D-optimal for this model. The cases of a design space bounded at one end and at both

ends are investigated separately. Moreover, using approximations they find designs

that do not require exact knowledge of the model parameter values, unlike the locally

optimal designs, and show that even though these designs are not optimal, they are

efficient alternatives to the locally D-optimal designs.

A new geometrical interpretation of Φp-optimal designs is provided by Biedermann,

Dette and Zhu (2006) for two-parameter regression models based on the idea of the

minimum confidence ellipsoid used for the classical D-optimality criterion. This result

also offers some intuition on both the position and the number of support points of the

optimal designs. They apply this method to binary response models for a wide class of

link functions and construct Φp-optimal designs for both a bounded and an unbounded

design space. Finally, they show that the Φp-optimal designs are minimally supported

if a condition involving the link function of the corresponding model is satisfied. We

have used a modification of the idea used in the proof of this latter result to show

that the locally D-optimal designs for the class of nonlinear models we consider are

minimally supported (see Lemma 1 in section 4.2.3).

Russell et al. (2009) focus on Poisson regression models involving one or more ex-

planatory variables and having a log-linear link function. Using the Ford, Torsney and

Wu (1992) canonical form for the design problem, they provide a theoretical result on

locally D-optimal designs for such models. In section 4.2.3 we show that our analytical

characterisation of locally D-optimal designs generalises their result in the case of one

explanatory variable.
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In recent years, producing general results for a class of models has become popular

in the optimal design literature. Hedayat, Zhong and Nie (2004) define a class of

two-parameter nonlinear models based on some assumptions on the Fisher information

matrix and show that for these models the locally D-optimal designs are minimally

supported. They also provide analytical and geometrical methods for the construction

of designs which are efficient for parameter estimation, although not optimal. However,

their assumptions on the Fisher information matrix are not generally satisfied. For

example, these results are not applicable to the exponential-based proportional hazards

model for censored data which we consider in section 4.4.

An even more general class of nonlinear models is considered by Yang and Stufken

(2009) who find optimal designs using Loewner optimality. They obtain a series of

excellent results that show, depending on some conditions, for each given design there

is always another design from a simple class which is better in the Loewner sense and

hence it is also better under commonly used criteria such as Φp-optimality criteria.

These results are then generalised to nonlinear models with more than two unknown

model parameters by Yang (2010), Dette and Melas (2011), Yang and Stufken (2012)

and Dette and Schorning (2013). However, the conditions necessary for the derivation

of the results in these papers can be difficult to verify even using symbolic computa-

tional software.

3.2 Parameter-robust designs

As mentioned above, optimal experimental designs for nonlinear models depend on

the true values of the model parameters. In many practical situations an uncertainty

space for the parameter values can be specified. Therefore, many authors consider the

construction of designs that are robust to misspecifications of the parameter values

and hence perform well across the specified uncertainty space. Such design strategies

are the construction of maximin, Bayesian and cluster designs which are discussed

separately in the following sections.

3.2.1 Maximin designs

A maximin design maximises the corresponding optimality criterion function with re-

spect to the design for those parameter values in the uncertainty space for which the

function is minimised. Haines (1995) considers nonlinear models that involve only one

unknown parameter and presents a geometrical method for constructing maximin de-

signs when a range of parameter values is specified. The extension of this approach to

models with more than one unknown parameter is not, however, straightforward.
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Dette (1997) introduces a class of standardised maximin optimality criteria that are

invariant under linear transformations of the design space. The designs constructed

using these criteria maximise the minimum of the ratio of the criterion function eval-

uated at the locally optimal design over the criterion function for an arbitrary design

across the uncertainty parameter space. Due to the useful invariance property which,

for the classical criteria only holds for D-optimality, this standardised approach has

become very popular.

Minimax designs, introduced by Elfving (1959), that minimise the maximum vari-

ance are considered by Dette and Sahm (1998) for binary response models. They

compare the designs found based on this classical criterion with designs for the stan-

dardised version of the criterion following Dette (1997), and find that the former de-

signs should not be preferred since the number of their support points is found to be

less than the number of model parameters. Imhof and Wong (2000) propose a gen-

eral graphical method for finding maximin designs which can be used, however, only

to determine candidate designs since they provide no theoretical characterisations of

these designs. Some analytical results on maximin designs for various heteroscedastic

polynomial models are given in Imhof (2001).

Dette and Biedermann (2003) consider the construction of standardised maximin

D-optimal designs for the Michaelis-Mentel model which is often encountered in biology

studies. Given a range of reasonable parameter values and following Dette (1997), the

designs are found by maximising the minimum efficiencies over the range of parameter

values. Closed form expressions for the locally D-optimal designs are first derived and

then Dette and Biedermann (2003) provide analytical characterisations of the stan-

dardised maximin D-optimal designs supported at exactly two points. Moreover, they

assess the performance of their designs through a real data example and illustrate that

these designs are highly efficient in the case of the parameter values being misspecified.

3.2.2 Bayesian designs

The Bayesian analogues of alphabetical criteria and other design criteria within the

Bayesian framework for nonlinear models are presented in Chaloner and Verdinelli

(1995). They show that number of support points of the Bayesian optimal designs

depend on the prior distribution assumed for the unknown model parameters. Bayesian

optimal designs for nonlinear models are also constructed using a geometrical approach

in Haines (1995) when only one unknown parameter is involved.

Throughout this project we assume that there is no preference for specific values in

the given parameter space and therefore a Bayesian approach requiring the specification

of a prior distribution for the parameters is not necessary. Moreover, as will be discussed

in the next section, Bayesian optimal designs are found to have similar performance as
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other parameter robust designs available in the literature, which are easier to find.

3.2.3 Cluster designs

The cluster design strategy was introduced by Dror and Steinberg (2006) for gener-

alised linear models involving several explanatory variables. Considering D-optimality,

they first compute the locally optimal designs corresponding to several parameter val-

ues drawn from the specified uncertainty space which they then combine into position

vectors and apply a K-means clustering procedure to obtain the resulting cluster de-

sign. The robustness of their designs is assessed through a simulation study for possibly

misspecified parameter values, linear predictors and link functions. Among other com-

parisons, Dror and Steinberg (2006) compare cluster designs to Bayesian designs and

find that they perform similarly. Also taking into account that the former designs are

more easily computed, they conclude that cluster designs are good alternatives to the

more sophisticated method of the construction of Bayesian optimal designs.

The method proposed by Dror and Steinberg (2006) is used by Russell et al. (2009)

for the construction of cluster designs for multivariate Poisson regression models. More

recently, Biedermann and Woods (2011) modify this algorithm so that the weights

of the cluster designs are allowed to be unequal. Through an application to second

harmonic generation experiments, Biedermann and Woods (2011) illustrate that cluster

designs are effective and more easily computed alternatives to Bayesian optimal designs.

3.3 Model-robust designs

One of the first references about criteria that can be used for the construction of

optimal designs when the assumed model is incorrect is Wiens (1992). He considers the

problem of precise estimation of model parameters when the assumed linear regression

model holds only approximately. The optimality criteria he proposes correspond to

various classical alphabetical criteria but are based on the mean squared error matrix.

Minimax designs are constructed such that they minimise the criteria functions for the

worst possible deviation from the linear regression model. In Chapter 7 we extend this

method to the exponential regression model.

Sinha and Wiens (2002) consider the construction of sequential designs for approx-

imately specified nonlinear regression models. That is, given a prior estimate for the

model parameter values, the design takes into account any information obtained during

the course of the experiment. The vector of parameter estimates is then updated and

this procedure continues until the desired estimation accuracy is achieved or until the

available resources are exhausted. We are concerned with designing experiments prior

to their commencement and in this context the construction of such sequential designs
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is not realistic.

Possibly misspecified nonlinear regression models are also studied by Wiens and Xu

(2008a). They find minimax designs for the extrapolation of the response to a point

outside the design space. Extrapolation problems are usually considered in accelerated

failure time tests where an extrapolation to lower values of the explanatory variables is

required. The results of Wiens and Xu (2008a) are extended by Wiens and Xu (2008b)

for both extrapolation and prediction problems, the latter corresponding to the case in

which one is interested in the response. Xu (2009a) studies the construction of maximin

designs for approximate exponential regression models. He considers both the cases of

homoscedacity and heteroscedacity for prediction problems. However, neither of the

papers discussed here, refers to the problem of estimating the model parameters which

we are interested in.

Woods et al. (2006) consider generalised linear models and propose a method for

the construction of exact designs based on what they call compromise design selection

criteria. The resulting exact designs are robust to misspecifications of the link function,

the linear predictor and of the model parameter values. A comparison of compromise

designs and cluster designs is performed by Dror and Steinberg (2006) who show that

cluster designs constitute a better robust design strategy due to their simplicity and

the short computational time of their construction.

3.4 Optimal designs for survival models

We now present the available literature on the construction of optimal designs for the

most popular survival models fitted to possibly censored data. Accelerated failure

time models are considered first followed by the exponential regression model in its

proportional hazards parametrisation and finally we discuss the construction of optimal

designs for Cox’s proportional hazards model.

3.4.1 Accelerated failure time models

Pascual and Montepiedra (2003) define a criterion for the construction of designs which

are robust to model uncertainty when interest is in estimating quantiles. An equiva-

lence theorem is also presented that can be used to check the optimality of candidate

designs based on this criterion. They illustrate their results through an application to

a practical accelerated time test for which uncertainty lies in using the Weibull or the

log-normal based accelerated failure time model.

A Bayesian approach is considered by Zhang and Meeker (2006) for censored data

arising in an accelerated failure time framework. In their application they use a Weibull

distribution and Type-I censoring. Wu, Lin and Chen (2006) assume an exponential
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distribution for the failure times and a step-stress experiments with progressive Type-I

censoring mechanism. That is, the subjects are studied in discrete rather than in con-

tinuous time intervals and if failure does not occur in that interval the stress level, that

is, the value of the explanatory variable, is increased. They consider maximum likeli-

hood estimation using both a minimum variance criterion and D-optimality. However,

their designs are not overall optimal but provide only an initial guideline as to how to

plan such experiments.

Generalised linear models with normal underlying distribution for censored data are

considered by Xu (2009b). He defines criteria for the construction of designs which are

robust to misspecifications in the regression function for prediction and extrapolation

problems. Although we focus on estimation problems, in Chapter 7 we follow the

method used in Xu (2009b) for the derivation of the asymptotic distribution of the

maximum likelihood estimator for the parameter vector.

McGree and Eccleston (2010) propose the use of compound optimality criteria that

ensure precise estimation of the model parameters and at the same time minimise

the time to failure which therefore reduces the experimentation time. They mainly

focus on the Weibull-based accelerated failure time model with one parameter and

they construct optimal designs that are based on the compound optimality criteria

they propose and the compromise criterion introduced in Woods et al. (2006).

The design problem of allocating patients to two treatments in two stages is con-

sidered by Bandyopadhyay, Biswas and Bhattacharya (2010). Under this scenario, a

few patients are first randomised to the treatments and the information accumulated

and the patients’ prognostic factors are then taken into account for the allocation of

future patients.

3.4.2 Exponential regression model

Locally D-optimal designs for one and two-parameter exponential regression models are

studied by Becker, McDonald and Khoo (1989). They investigate the effect of censoring

on the locally optimal designs using geometrical arguments and empirical values of the

parameters. For the two-parameter model they also discuss the effect of censoring for

different shapes of the design space. However, their statements are supported only

empirically and the uniqueness of their designs is not proved in general.

López-Fidalgo, Rivas-López and Del Campo (2009) consider a two-parameter expo-

nential regression model which due to its parametrisation requires some constraints on

the parameters. They propose an algorithm for the construction of D-optimal designs

that depends on the arrival times of the subjects utilised in the experiment. There-

fore, whenever a subject enters the experiment a new design has to be found. They

study the simple case of allocating subjects, for example, to two treatments, and ap-
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ply their algorithm by assuming uniform discrete and continuous distributions for the

arrival times separately. In the framework considered in this project the experiment is

designed beforehand and so designs conditional on arrival times are not appropriate.

3.4.3 Cox’s proportional hazards model

The Cox proportional hazards model was introduced by Cox (1972) and since the

baseline hazard is of arbitrary form estimation of the model parameters must be done

using the partial likelihood function. Cox (1975) shows that the partial likelihood

estimators satisfy the same type of asymptotic properties as those for the parameter

estimators found using the full likelihood approach. The efficiency of partial likelihood

estimation is assessed by Efron (1977). He shows that the Fisher information matrices

for the full and partial likelihood methods coincide except for an extra term in the

Fisher information for the full likelihood, which, however, will usually be small in

practice. Therefore inferences based on the partial likelihood function are similar to

the ordinary likelihood approach. Moreover, Andersen and Gill (1982) derive an explicit

characterisation of the asymptotic distribution of the partial likelihood estimators for

the parameters using a counting process framework for Cox’s model.

Despite the results discussed above on inferences based on the partial likelihood

approach, little research has been done on how to design experiments for censored

data when Cox’s proportional hazards model is assumed. To the best of our knowledge

the available literature is restricted to two papers.

Kalish and Harrington (1988) consider the problem of allocating patients to two

treatments and find optimal designs by minimising the asymptotic variance of the

partial likelihood estimate using the results by Andersen and Gill (1982). Assuming

a constant baseline hazard, which corresponds to the exponential based proportional

hazards model, they find the balanced design that allocates equal proportions of pa-

tients to the two treatments to be very efficient for both full and partial likelihood

estimation. Their most important result is, however, that the form of the baseline

hazard function does not affect the optimal choice of design when the data are subject

to Type-I censoring. In Chapter 6 we extend this result to the case of a continuous

design space.

An approximation of the partial likelihood Fisher information matrix is proposed by

López-Fidalgo and Rivas-López (2012). They use this approximate matrix to construct

optimal designs on a binary design space for an exponential regression model and

then compare these designs to the ones constructed using the full likelihood approach.

However, we found the quality of their approximation to be unsatisfactory when we

compared their result on the information matrix to the asymptotic variance matrix

provided by Andersen and Gill (1982).
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Chapter 4

Locally optimal designs

In this chapter we construct optimal designs for a general class of nonlinear models

involving one explanatory variable and therefore having only two parameters. This

class is identified by the form and some extra conditions on the information matrix,

thus the design problem is solved in more generality. We focus on two-parameter

nonlinear models because the experiments of our interest are usually conducted in

order to evaluate a particular method or treatment and therefore, the models used

involve only one design variable. Moreover, these are the most frequently considered

nonlinear models in the literature and our results extend some of the available ones to

include models subject to several censoring mechanisms. This enables us to identify

how censoring affects the optimal choice of design.

For the construction of the optimal designs, we consider the widely used criteria

of D- and c-optimality which correspond to the cases where we are interested in es-

timating both and one of the two model parameters respectively. As mentioned in

the introduction, optimal designs for nonlinear models depend on the unknown model

parameters. Hence, they cannot be evaluated in practice and are referred to as locally

optimal designs. However, analytical characterisations of locally optimal designs such

as the ones we provide here are very important since, as Ford, Torsney and Wu (1992)

noted, these designs are vital for the construction of sequential as well as non-sequential

designs.

We first introduce the class of nonlinear models to be considered and present ex-

amples of models included in this class. The construction of locally D- and c-optimal

designs is then examined separately and the cases of a binary and of a continuous

design space are explored. We provide analytical characterisations of locally optimal

designs for models within the class, thus reducing the numerical effort for design search

substantially. Finally, we apply our results to the exponential regression model in its

proportional hazards parametrisation and discuss how the optimal designs change in

the presence of Type-I and random censoring.
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4.1 Class of models

The class of two-parameter nonlinear models is now defined based on the form of and

some extra assumptions on the information matrix for an arbitrary design ξ. We briefly

discuss models studied in the literature that share the same form of information matrix

but satisfy different conditions than the ones we define and give examples of models

that are are included in the class we consider.

4.1.1 Information matrix assumptions

Let ξ be an approximate design with support points xi, i = 1, . . . ,m taking values in

the design space X and corresponding weights ωi, where 0 < ωi ≤ 1, i = 1, . . . ,m and∑m
i=1 ωi = 1. We consider two-parameter nonlinear models with information matrix of

the form

M(ξ, α, β) =
m∑
i=1

ωiI(xi, α, β) =
m∑
i=1

ωiQ(θi)

(
1 xi

xi x2i

)
, (4.1)

where I(xi, α, β) is the Fisher information matrix at the point xi, α and β are the

unknown model parameters and θi = α + βxi.

Many authors have studied models with the same type of information matrix as

the one defined in (4.1). Ford, Torsney and Wu (1992) focus on generalised linear

models where the response variable is distributed as a member of the exponential

family. They consider three different forms for their corresponding Q-function but

none of these forms is applicable for proportional hazards models subject to censoring

(see, for example, section 4.4.3). Two-parameter nonlinear models with information

matrix of the form (4.1) are also studied by Hedayat, Zhong and Nie (2004). Their

key assumptions are that Q(θ) has exactly one stationary point and limθ→∞Q(θ)θ2

is bounded. However, for many relevant situations Q(θ) is strictly increasing and

limθ→∞Q(θ)θ2 is unbounded (see, for example, section 4.4.3). A more general class

of models and Loewner optimality are considered by Yang and Stufken (2009) who

obtained excellent results, showing that under some conditions, for each given design

there is always a design from a simple class which is better in the Loewner sense.

Depending on the model, however, the conditions can be difficult to verify, even with

symbolic computational software.

We focus on models with information matrix of the form (4.1) which also satisfy

conditions (a)-(d) and (d1) given below. Following Ford, Torsney and Wu (1992), for

the definition of these conditions we consider the transformed design space Θ = α+βX ,

where β 6= 0. The parameter dependence of the design problem thus enters only via

the transformed design space. We note that for β = 0 we have Q(θ) = Q(α) which

corresponds to the trivial case of a linear model. The conditions are given for θ ∈ R,

so they are valid for all possible ranges of Θ.
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(a) The function Q(θ) is positive for all θ ∈ R and twice continuously differentiable.

(b) The function Q(θ) is strictly increasing on R.

(c) The second derivative g′′1(θ) of the function g1(θ) = 2/Q(θ) is an injective func-

tion.

(d) For any s ∈ R, the function g2(θ) = Q(θ)(s − θ)2 satisfies g′2(θ) = 0 for exactly

two values of θ ∈ (−∞, s].

For the case of c-optimality we require the extra condition

(d1) : The function logQ(θ) is concave for θ ∈ R,

which implies condition (d) given that (a) and (b) are satisfied, the proof of which is

given in section A.1.1 of Appendix A.

Our aim throughout this project is to produce results that can be easily interpreted

and therefore implemented directly by practitioners, particularly working in exper-

iments involving survival models. We thus define easily verifiable conditions which

however are satisfied by many models widely used in practice also in the presence of

censoring.

4.1.2 Examples

The generalised linear model with response variable following a Poisson distribution is

included in the class of models considered. For example, if we assume a Pois(eα+βx)

distribution the corresponding log-likelihood function results in the Fisher information

matrix at point x given by

I(x, α, β) = eα+βx

(
1 x

x x2

)
,

which yields (4.1) with Q(θ) = eθ. This function is positive for all θ ∈ R with Q′(θ) =

Q′′(θ) = eθ and so conditions (a) and (b) are satisfied. Moreover, it is easy to see

that the function g′′1(θ) = 2/eθ defined in condition (c) is decreasing with θ and hence

injective. Finally, condition (d1) and therefore condition (d), holds as (logQ(θ))′′ = 0.

This form of Poisson regression with rate dependent on the explanatory variable in

a log-linear manner is an example of a model resulting in the second form for the

Q-function considered by Ford, Torsney and Wu (1992). It is also studied by Russell

et al. (2009) for possibly more than one independent variables.

Further examples of generalised linear models satisfying our assumptions on the

information matrix are the ones with response variable following a Gamma(γ, (k1 +

eα+βx)k2) or an Inv-Gamma(γ, (k1 + eα+βx)k2) distribution, where γ(> 0) is the shape

25



parameter of the distribution, k1 > 0 and k2 6= 0 are constants and all γ, k1 and k2 are

assumed known (see section A.1.2 in appendix A for a proof).

The class under our consideration also includes any parametric proportional hazards

model with hazard function of the form

h(t, x) = eαr(t)eβx, r(t), t > 0 (4.2)

and response variable subject to Type-I censoring. When the response variable is sub-

ject to random censoring we also require the extra condition of the function
∫ cj
0
r(s) ds

being log-concave in cj on R+ (see sections A.1.3 and A.1.4 respectively of Appendix

A for proofs). The expression eαr(t) is the assumed baseline hazard function and any

parameters involved in r(t), such as the shape parameter γ of the assumed distribu-

tion, are considered known. Examples of such models are the parametric proportional

hazards model based on the Exponential, Weibull and Gompertz distribution for which

r(t) is equal to 1, γtγ−1 and eγt respectively. These are the most widely and frequently

used survival models and their resulting Q-functions as defined in (4.1) are not included

in the classes considered by either Ford, Torsney and Wu (1992) or Hedayat, Zhong

and Nie (2004) (see, for example, section 4.4.3 for the exponential-based model).

Examples of models that do not satisfy our assumptions but are included in the

class defined by Yang and Stufken (2009) are the logistic, probit and double exponential

models. This is because Yang and Stufken (2009) assumptions on their Q-function are

somewhat more general, although not as easy to verify, than ours and therefore their

class includes more generalised linear models. For example, the corresponding Q-

functions for the logistic, probit and double exponential models are all even functions

whereas we concentrate only on strictly increasing functions on R.

However, our assumptions hold but those of Yang and Stufken (2009) do not for

certain accelerated failure time models with two failure modes. This corresponds to

a situation where the severity of the conditions that the subjects in the experiment

are put under changes at a certain point resulting in two different modes of failure.

Therefore the type of failure time distribution differs between modes. An example of

this is the case where the failure time distribution changes from a Gamma with shape

parameter 2 to an exponential distribution depending on the sign of θ. At θ = 0 the

resulting Q-function is not three times continuously differentiable as required by Yang

and Stufken (2009). This is proven in Appendix A section A.1.5.

4.2 Locally D-optimal designs

In what follows we give the definition of a D-optimal design and the general equivalence

theorem for D-optimality for models with information matrix (4.1). We then solve the
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design problem for binary and continuous design spaces, with Theorem 2 being the

main result of this section.

4.2.1 The criterion

If we are interested in estimating both of the model parameters α and β the optimality

criterion we should use for the construction of the designs is D-optimality. A D-optimal

design maximises the determinant of the information matrix M(ξ, α, β) with respect

to the design ξ. It therefore minimises the volume of the confidence ellipsoid for the

parameter estimators and so it makes the estimators as precise as possible. That is, a

design ξ∗ is D-optimal if

ξ∗ = arg max
ξ
|M(ξ, α, β)|.

A useful tool for characterising D-optimal designs and for checking the D-optimality

of a candidate design is the general equivalence theorem (see, for example, Silvey

(1980)). The following theorem presents the general equivalence theorem for models

in the class we consider.

Theorem 1. A design ξ∗ is locally D-optimal for a model with information matrix

(4.1) if the inequality

d(ξ∗, α, β) = tr{M−1(ξ∗, α, β)I(x, α, β)} ≤ 2,

holds for all x ∈ X , with equality in the support points of ξ∗.

4.2.2 Binary design space

To allow estimation of both parameters a design must have at least two support points.

In the case of a binary design space X = {0, 1} this means that both points, 0 and 1,

are support points of the locally D-optimal design. From Lemma 5.1.3 in Silvey (1980),

it follows that for any model with information matrix of the form (4.1) the D-optimal

design with as many support points as there are model parameters, has equal weights.

Therefore the locally D-optimal design ξ∗ on the design space X = {0, 1} is

ξ∗ =

{
0 1

0.5 0.5

}
.

4.2.3 Continuous design space

We now consider design spaces that are intervals, that is, X = [u, v]. For a continuous

explanatory variable the D-optimality criterion is invariant under linear transforma-

tions of the design space (see, for example, Silvey (1980)) and we can therefore without
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loss of generality consider the design space X = [0, 1]. The locally D-optimal design for

given α and β on an arbitrary interval [u, v] can be obtained from the locally D-optimal

design on the interval [0, 1] for parameter values α̃ = α + βu and β̃ = β(v − u) by

transforming its support points x̃i via xi = u+ (v − u)x̃i.

From Caratheodory’s theorem (see, for example, Silvey (1980)), there exists a D-

optimal design with at most three support points. Lemma 1 shows that this number

can be further reduced. Its proof is given in section A.1.6 of Appendix A and it modifies

an idea of Biedermann-Dette-Zhu.

Lemma 1. Let β 6= 0 and conditions (a)-(c) be satisfied. Then the locally D-optimal

design for a model with information matrix (4.1) is unique and has two equally weighted

support points.

We now present the main result of this section, that is, an analytical characterisation

of locally D-optimal designs for models included in the class under consideration.

Theorem 2. Let conditions (a)-(d) be satisfied.

(a) If β > 0, the design

ξ∗ =

{
x∗0 1

0.5 0.5

}
is locally D-optimal on X = [0, 1], where x∗0 = 0 if β < 2Q(α)/Q′(α). Otherwise, x∗0 is

the unique solution of the equation β(x0 − 1) + 2Q(α + βx0)/Q
′(α + βx0) = 0.

(b) If β < 0, the design

ξ∗ =

{
0 x∗1

0.5 0.5

}
is locally D-optimal on X = [0, 1], where x∗1 = 1 if β > −2Q(α + β)/Q′(α + β).

Otherwise, x∗1 is the unique solution of the equation βx1+2Q(α+βx1)/Q
′(α+βx1) = 0.

Proof. Here we only give a sketch of the proof for part (a). The proof of part (b)

follows along the same lines using symmetry arguments and is presented in detail in

section A.1.7. of Appendix A.

Let β > 0. Since conditions (a)-(c) are satisfied Lemma 1 can be used. For the

locally D-optimal design equally supported at points x∗0, x
∗
1 ∈ [0, 1], where x∗0 < x∗1, the

determinant of (4.1) is increasing with x∗1, regardless of the value of x∗0. Therefore it is

maximised for x∗1 = 1 and it remains to maximise the function

g2(α + βx0) = Q(α + βx0)(x0 − 1)2.

Using condition (d), g2(α+βx0) has exactly two turning points on (−∞, 1], one of which

is a minimum at x0 = 1, hence the other one must be a maximum. If this maximum

is attained outside the design space, g2(α + βx0) is maximised at x0 = 0, which will
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then be the second support point x∗0 of the locally D-optimal design. This occurs if

and only if (∂/∂x0)g2(α+βx0) < 0 at x0 = 0, which is equivalent to β < 2Q(α)/Q′(α).

Otherwise, the point at which the maximum is attained will be the smaller support

point x∗0. This is found by solving (∂/∂x0)g2(α + βx0) = 0, which is equivalent to

solving β(x0 − 1) + 2Q(α + βx0)/Q
′(α + βx0) = 0.

Theorem 2 provides a complete classification of locally D-optimal designs. Depend-

ing on the sign of β, one of the support points is always fixed at one of the boundaries

of the design space and according to some easily verifiable conditions on the parameters

the design problem has either been reduced to an optimisation problem in one variable

or been solved completely.

Russell et al. (2009) consider the construction of locally D-optimal designs for

Poisson regression with log-linear link which is included in our class of models for

Q(θ) = eθ as shown in section 4.1.2. Using Theorem 2 we have that for |β| ≥ 2 the

equally weighted D-optimal support points are {1− 2/β, 1} if β > 0 and {0,−2/β}
if β < 0, and therefore the parameter α does not affect the optimal choice of design.

This matches the results of the main theorem in Russell et al. (2009) for a design space

X = [0, 1] and one explanatory variable. The corresponding locally D-optimal design

on the transformed design space Θ = α+βX is equally supported at {α + β − 2, α + β}
if β > 0 and {α− 2, α} if β < 0 for |β| ≥ 2, whereas if |β| < 2 then the support

points are {α, α + β} and {α + β, α} for positive and negative β-values respectively.

Therefore, our designs are also in accordance with the results of Ford, Torsney and Wu

(1992) for models with information matrix (4.1) and Q-function of the form eθ (see

Table 3 in Ford, Torsney and Wu (1992)).

4.3 Locally c-optimal designs for estimating β

As in the previous section we first present the optimality criterion and the corre-

sponding general equivalence theorem and we also give the motivation for the use of

c-optimality for estimating the parameter β. Some general results are then discussed

and the cases of a binary and a continuous design space are again investigated sepa-

rately. A complete classification of locally c-optimal designs for estimating β is given

in Theorem 4.

4.3.1 The criterion

Often interest centres in estimating the parameter β while treating α as a nuisance pa-

rameter. The motivation for this choice of parameter comes from the parametrisation

of proportional hazards models given in (4.2). Under this parametrisation the param-
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eter α relates to the baseline hazard whereas β describes the effect of the explanatory

variable x and is therefore reasonable for β to be the main parameter of interest.

In this case the appropriate criterion to use is c-optimality for β which minimises

the asymptotic variance of the maximum likelihood estimator β̂. Thus a design ξ∗ is

c-optimal for β if the vector (0 1)T is in the range of M(ξ∗, α, β) and

ξ∗ = arg min
ξ

(0 1)M−(ξ, α, β)

(
0

1

)
, (4.3)

where M−(ξ, α, β) is a generalised inverse of the matrix M(ξ, α, β). The corresponding

general equivalence theorem for c-optimality for β and models in the class considered

is given below.

Theorem 3. A design ξ∗ is locally c-optimal for estimating β for a model with infor-

mation matrix (4.1) if the inequality

(√
Q(α + βx) x

√
Q(α + βx)

)
M−(ξ, α, β)

(
0

1

)
≤ (0 1)M−(ξ, α, β)

(
0

1

)
,

holds for all x ∈ X , with equality in the support points of ξ∗.

4.3.2 General results

We now present some results which are applicable to both a binary and a continuous

design space. From Caratheodory’s Theorem (see, for example, Silvey (1980)) applied

to the Elfving set (see Elfving (1952)), there exists a c-optimal design for β with at

most two support points. The following lemma shows that a locally c-optimal design

for β for models with information matrix of the form (4.1) is supported on exactly two

points.

Lemma 2. For any choice of α, β (β 6= 0) and any model with information matrix

(4.1) there exists a locally c-optimal design for estimating β with exactly two support

points.

Proof. We assume that there exists a locally c-optimal design for β with only one

support point x̃. For estimability we require that (0 1)T is in the range of M(ξ, α, β),

that is, there exists a vector η = (η1, η2)
T ∈ R2 such that

(
0

1

)
= Q(α + βx̃)

(
1 x̃

x̃ x̃2

)(
η1
η2

)
⇐⇒

(
0 = Q(α + βx̃)(η1 + η2x̃)

1 = Q(α + βx̃)x̃(η1 + η2x̃)

)

From the first equation we obtain that Q(α + βx̃)η1 = −Q(α + βx̃)η2x̃. Substituting

this into the second equation yields 1 = 0. Therefore no locally c-optimal design for β

with only one support point exists.
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From Pukelsheim and Torsney (1991) we obtain an expression for the c-optimal

weights. That is, for models with information matrix (4.1) a c-optimal design ξ∗ for β

with support points x∗0 and x∗1, where x∗0 < x∗1, is given by

ξ∗ =

 x∗0 x∗1√
Q(α+βx∗1)√

Q(α+βx∗0)+
√
Q(α+βx∗1)

√
Q(α+βx∗0)√

Q(α+βx∗0)+
√
Q(α+βx∗1)

 . (4.4)

Using condition (b) we have that for positive values of the parameter β the function

Q(α+βx) is increasing with x, whereas it is decreasing for negative β-values. Therefore,

from (4.4) we can observe that the c-optimal weight corresponding to the smaller

support point x∗0 is greater than the weight corresponding to x∗1 for β > 0 and smaller

for negative values of β.

4.3.3 Binary design space

From Lemma 2 we know that the c-optimal design for β is supported at exactly two

points which will be 0 and 1 in the case of a binary design space. The design problem

is thus solved completely by also using the expressions given in (4.4) and the c-optimal

design ξ∗ for estimating β on the design space X = {0, 1} is

ξ∗ =

 0 1√
Q(α+β)√

Q(α)+
√
Q(α+β)

√
Q(α)√

Q(α)+
√
Q(α+β)

 .

It is interesting to note that the popular equal allocation rule which is almost always

used in practice when comparing, for example, two methods or treatments leads to a

suboptimal design.

4.3.4 Continuous design space

Unlike D-optimality, the c-optimality criterion does not satisfy an invariance property

and therefore we find locally c-optimal designs for estimating β on an arbitrary design

space X = [u, v]. An analytical characterisation of the locally c-optimal designs for

β for models with information matrix of the form (4.1) is provided in Theorem 4. A

sketch proof of part (a) is given below and part (b) is proven in Appendix A, section

A.1.8.

Theorem 4. Let conditions (a), (b) and (d1) be satisfied.

(a) If β > 0, the design ξ∗ with support points x∗0 and v and the optimal weights given

in (4.4) is locally c-optimal for β on X = [u, v], where x∗0 = u if
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β(u− v) + 2
Q(α + βu)

Q′(α + βu)

(
1 +

√
Q(α + βu)√
Q(α + βv)

)
> 0. (4.5)

Otherwise, x∗0 is the unique solution of the equation

β(x0 − v) + 2
Q(α + βx0)

Q′(α + βx0)

(
1 +

√
Q(α + βx0)√
Q(α + βv)

)
= 0. (4.6)

(b) If β < 0, the design ξ∗ with support points u and x∗1 and the optimal weights given

in (4.4) is locally c-optimal for β on X = [u, v], where x∗1 = v if

β(u− v)− 2
Q(α + βv)

Q′(α + βv)

(
1 +

√
Q(α + βv)√
Q(α + βu)

)
< 0.

Otherwise, x∗1 is the unique solution of the equation

β(u− x1)− 2
Q(α + βx1)

Q′(α + βx1)

(
1 +

√
Q(α + βx1)√
Q(α + βu)

)
= 0.

Proof. Let β > 0 and also let ξ∗ be a locally c-optimal design for β which, following

Lemma 2, has exactly two support points x∗0, x
∗
1 ∈ [u, v], where x∗0 < x∗1. Substituting

the expressions for the c-optimal weights from (4.4), we obtain the objective function

to be minimised defined in (4.3), to be given by

d̃(x∗0, x
∗
1) :=

(
1√

Q(α + βx∗0)
+

1√
Q(α + βx∗1)

)2
1

(x∗0 − x∗1)2
.

Holding x∗0 fixed, d̃(x∗0, x
∗
1) is decreasing with x∗1 and therefore attains its minimum in

[u, v] at the upper bound v of the design space. Now using conditions (a), (b) and (d1)

it can be shown that d̃(x0, v) has exactly one turning point on (−∞, v) and so there is

at most one turning point in [u, v], which is a minimum since

lim
x0→−∞

d̃(x0, v) = lim
x0→v

d̃(x0, v) =∞.

If this minimum is attained outside [u, v) the lower bound u of the design space is

the smaller support point x∗0 of the locally c-optimal design for β. This occurs if

and only if (∂/∂x0)d̃(x0, v) > 0 at x0 = u, which is equivalent to condition (4.5).

Otherwise x∗0 is the unique point where d̃(x0, v) is minimised and can be found by

solving (∂/∂x0)d̃(x0, v) = 0, which is equivalent to solving (4.6).
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Using Theorem 4, the locally c-optimal designs for β can be found by minimising just

a one-variable function thus reducing the numerical effort substantially. We also note

that the optimal weights are always unequal. This contradicts the standard designs

used in practice which, as it is shown here, are suboptimal.

For the Poisson regression model with rate eα+βx, Q(θ) = eθ and if we apply the

results of Theorem 4 we have that for positive values of the parameter β the lo-

cally c-optimal design is supported at {u, v} if β(u − v) + 2(1 + eβ(u−v)/2) > 0 and

at {v − 2.56/β, v} otherwise. This matches the results in Ford, Torsney and Wu

(1992) for the transformed design space Θ = α + βX , which for β > 0 is equal to

[α + βu, α + βv], stating that the support points of the locally c-optimal designs are

{max(α + βu, α + βv − 2.56), α + βv} (see Table 2 in Ford, Torsney and Wu (1992)).

4.4 Application to the exponential regression model

Here we apply the previous results to the exponential regression model in its propor-

tional hazards parametrisation. We first introduce the model and also discuss the case

of no censoring. Two censoring mechanisms are considered and it is verified that the

model is included in the class we have defined under both scenarios. We then construct

locally D- and c-optimal designs for various vectors of parameter values using the an-

alytical characterisations given in Theorems 2 and 4 respectively and identify how the

optimal choice of design changes in the presence of censoring. Finally, based on these

conclusions we give recommendations to practitioners on which design to use in time

to event experiments.

4.4.1 The model

Let T1, . . . , Tn be independent random variables indicating the times to event of the n

subjects in an experiment of total duration c, with t1, . . . , tn the corresponding observed

values. The exponential regression model in its proportional hazards parametrisation

is specified by the probability density function

f(tj, xj) = eα+βxje−tje
α+βxj

, tj > 0 (4.7)

where xj ∈ X , j = 1, . . . , n is the value of the explanatory variable for the jth subject.

This application is motivated by the fact that model (4.7) is the simplest and one

of the most frequently used survival models in practice. An exponential distribution

along with the proportional hazards assumption is often assumed for the times until

the occurrence of the event of interest. Also the proportional hazards parametrisation

avoids the need to constrain the model parameters.
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4.4.2 No censoring

The special case of no censoring corresponds to a censoring time c = ∞. That is,

an experiment running for as long as necessary in order for all times to event to be

recorded. From (4.7), the log-likelihood at xj is

l(xj, α, β) = α + βxj − tjeα+βxj ,

and thus the Fisher information matrix at the point xj is given by

I(xj, α, β) =

 E
(
− ∂2l
∂α2

)
E
(
− ∂2l
∂α∂β

)
E
(
− ∂2l
∂α∂β

)
E
(
− ∂2l
∂β2

)  =

(
1 xj

xj x2j

)
,

using the fact that the times to event follow an exponential distribution with mean

E(Tj) = 1/eα+βxj . In this case the Fisher information is in fact the same as for the

homoscedastic linear model Tj = α + βxj + εj for independent identically distributed

errors εj ∼ N (0, σ2).

It is well known (see, for example, Atkinson, Donev and Tobias (2007)) that the

D-optimal design for the homoscedastic linear model is equally supported at the end-

points of the design space X . For the c-optimality case we observe that the Fisher

information matrix yields (4.1) with Q(θ) = 1. The objective function defined in (4.3)

for model (4.7) is then 1/(x1 − x2)
2, that is the inverse of the determinant of the

information matrix. Therefore, the locally D-optimal design allocating equal weight to

the end points of the design space X is also locally c-optimal for β in this case.

4.4.3 Right-censoring

We now assume that some of the observations are right-censored. That is, a subject’s

actual event time cannot be observed if it exceeds the subject’s censoring time.

The first mechanism we consider that can result in right-censored observations is

Type-I censoring under which the censoring time is common for all the subjects. This

occurs, for example, if all the subjects are recruited at the same time in an experi-

ment of predetermined total duration which will therefore be the fixed and common

censoring time. On the other hand, in the case of random censoring the censoring

time is possibly different for each subject and independent of the corresponding time

to event. We consider the following type of random censoring. Suppose the duration of

the experiment is fixed, but subjects are recruited randomly within that time interval.

Therefore, the time of entrance for each subject is uniformly distributed and if the

desired event has not been observed for a subject by the end of the experiment its

corresponding observation is right-censored.
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In the presence of Type-I censoring what we actually observe for each subject under

investigation is Yj = min{Tj, c}. Therefore, if the event of interest has not occurred

by the end of the experiment, that is, by time c, the observation is right-censored. Let

Tj follow model (4.7). Then

E(Yj) =

c∫
0

yeα+βxje−ye
α+βxj

dy + cP (Yj = c) = (1− e−ce
α+βxj

)/eα+βxj , (4.8)

and the log-likelihood at xj is l(α, β, xj) = δj(α+βxj)− yjeα+βxj , where δj is an event

indicator which is zero if yj is a right-censored observation and unity otherwise. Hence

the Fisher information at xj is

I(xj, α, β) = (1− e−ce
α+βxj

)

(
1 xj

xj x2j

)
.

This yields (4.1) with Q(θ) = (1 − e−ce
θ
) which satisfies conditions (a)-(d) and (d1)

since model (4.7) is a special case of parametric proportional hazards models of the

form (4.2) discussed in section 4.1.2.

For random censoring we assume that the subjects enter the experiment at random

times Zj ∈ [0, c], j = 1, . . . , n, where Zj is independent of the time to event Tj. Hence

the censoring times Cj = c−Zj, j = 1, . . . , n are also random. We further assume that

Z1, . . . , Zn follow a uniform distribution on [0, c], thus C1, . . . , Cn also have a uniform

distribution on [0, c] with probability density function fc(cj) = 1/c. Here we observe

Yj = min{Tj, Cj} where E(Yj|Cj = cj) is given by the right hand side of (4.8) with c

replaced by cj. Thus

E(Yj) = E(E(Yj|Cj = cj)) =

∫ c

0

(1− e−cje
α+βxj

)

ceα+βxj
dcj

=
(
ceα+βxj + e−ce

α+βxj − 1
)
/ce2(α+βxj).

The log-likelihood at xj is l(xj, α, β) = δj(− log c+α+βxj)−yjeα+βxj , where δj is zero

if yj is a right-censored observation and unity otherwise. Hence the Fisher information

at point xj is given by

I(xj, α, β) =

(
ceα+βxj + e−ce

α+βxj − 1
)

ceα+βxj

(
1 xj

xj x2j

)
.

Again this is of the form (4.1) for Q(θ) = 1 +

(
e−ce

θ−1
)

ceθ
. Assumptions (a)-(d) and (d1)

hold as a special case of model (4.2) subject to random censoring (see section 4.1.2).
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4.4.4 Locally optimal designs

As mentioned in section 4.2.2, in the case of a binary design space X = {0, 1} the

locally D-optimal design is always equally supported at points 0 and 1 regardless of

the parameter values. We therefore consider the continuous design space X = [0, 1] and

use Theorem 2, presented in section 4.2.3, for the construction of the designs. Following

this, the two D-optimal weights are always equal and the corresponding support points

are found by solving an optimisation problem in just one variable. Tables 4.1 and 4.2

give the support points of locally D-optimal designs for model (4.7) in the cases of

Type-I and random censoring respectively. Both positive and negative β-values are

considered and small values of ceα correspond to large percentages of censoring.

Table 4.1: Support points for some selected locally D-optimal designs for model (4.7)
under Type-I censoring

ceα
β

-2.3 -2.2 -2.1 2.1 2.2 2.3
0.1 (0,0.88) (0,0.92) (0,0.96) (0,1) (0.04,1) (0.08,1)
0.01 (0,0.87) (0,0.91) (0,0.95) (0.04,1) (0.09,1) (0.12,1)
0.001 (0,0.87) (0,0.91) (0,0.95) (0.05,1) (0.09,1) (0.13,1)

Table 4.2: Support points for some selected locally D-optimal designs for model (4.7)
under random censoring

ceα
β

-2.3 -2.2 -2.1 2.1 2.2 2.3
0.1 (0,0.87) (0,0.91) (0,0.96) (0.01,1) (0.06,1) (0.09,1)
0.01 (0,0.87) (0,0.91) (0,0.95) (0.04,1) (0.09,1) (0.13,1)
0.001 (0,0.87) (0,0.91) (0,0.95) (0.05,1) (0.09,1) (0.13,1)

The above results indicate that censoring affects the optimal choice of design for

model (4.7) in both censoring scenarios, which produce similar results. When the

parameter β is positive the probability of occurrence of the event of interest increases

with the explanatory variable x. Hence the point x = 1 is more informative and is

always included in the locally D-optimal design. We also observe that for positive

β-values the smaller support point of the design is greater than zero. This is because

the possibility of censoring and therefore the variance at x = 0 is greater. The bigger

the β-values and/or the smaller the ceα-values are, the bigger the variance at x = 0 is

and so the smaller support point of the locally D-optimal design is chosen to be further

away from zero. In the opposite case of β < 0 the locally D-optimal design is always

supported at x = 0 and tends to include a point smaller than one as the larger support

point.
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We note that the β-values used in Tables 4.1 and 4.2 correspond to large effects of

the explanatory variable. In a medical application x could be a measure of the dose of

a drug with time to relief of symptoms, as the response time. There would be a large

effect size if the time to symptom relief is sensitive to dose. In an engineering example

x could be a measure of stress on a system and the time to failure of the system, the

time of interest. Then the effect size would be large, if the failure time was highly

stress dependent.

The construction of locally c-optimal designs for estimating β for model (4.7) is

facilitated by our results given in Theorem 4, see section 4.3.4, assuming a continuous

design space X = [0, 1]. For the parameter values chosen here the two support points of

the designs are always 0 and 1 and therefore the locally c-optimal designs for β on the

binary design space, X = {0, 1}, and the continuous designs space, X = [0, 1] coincide.

The c-optimal weights on x = 0 are then found using (4.4), given in section 4.3.2, for

Type-I and random censoring separately and are presented in Tables 4.3 and 4.4.

Table 4.3: Weights on x = 0 for some selected locally c-optimal designs for β for model
(4.7) under Type-I censoring

ceα
β

-1 -0.7 -0.4 -0.1 0.1 0.4 0.7 1
0.1 0.39 0.42 0.45 0.49 0.51 0.55 0.58 0.61
0.01 0.38 0.41 0.45 0.49 0.51 0.55 0.59 0.62
0.001 0.38 0.41 0.45 0.49 0.51 0.55 0.59 0.62

Table 4.4: Weights on x = 0 for some selected locally c-optimal designs for β for model
(4.7) under random censoring

ceα
β

-1 -0.7 -0.4 -0.1 0.1 0.4 0.7 1
0.1 0.38 0.42 0.45 0.49 0.51 0.55 0.58 0.62
0.01 0.38 0.41 0.45 0.49 0.51 0.55 0.59 0.62
0.001 0.38 0.41 0.45 0.49 0.51 0.55 0.59 0.62

We observe that even for small values for the parameter β the c-optimal weights

are not equal, unlike locally D-optimal designs which are always equally supported. In

particular, both for Type-I and random censoring the locally c-optimal design for β

allocates more subjects to point x = 0 for β > 0 and less in the case of negative values

for the parameter β. That is, the design puts more weight at the experimental point

where censoring is more likely so that the variance is minimised. Therefore, even for

small β-values and thus small effects of the explanatory variable, the standard design

allocating half the subjects at point x = 0 and the rest at x = 1 is not optimal for

either of the censoring scenarios.
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We also note that there is an obvious symmetry in the c-optimal weight values for

equal departures of the β-values from the trivial case of β = 0. In particular, for a

positive β-value the c-optimal weight at x = 0 is equal to that at point x = 1 for the

corresponding negative value of β equally away from β = 0.

4.4.5 Recommendations

Based on the results presented in the previous section we can give advice to practi-

tioners on how to plan an experiment involving survival models. In particular, if a

design is required before the commencement of a time to event experiment we would

recommend the use of a c-optimal rather than a D-optimal design and the c-optimality

criterion should be chosen for the estimation of the model parameter corresponding

to the explanatory variable effect. This is because the ultimate goal of such time to

event experiments is to explain how a particular covariate, which might be, for exam-

ple, a method or treatment, is related to the time to the event under investigation.

It is therefore reasonable to focus on estimating only the covariate parameter even if

the second model parameter is not known, although in many practical situations some

information is usually available (see Chapter 5 for discussion).

Under the c-optimality criterion it is evident, both from the analytical character-

isations of locally c-optimal designs presented in section 4.3 as well as the numerical

results given in Tables 4.3 and 4.4, that the standard design allocating an equal num-

ber of subjects at the end-points of the design space is not optimal in the presence of

censoring. This can be explained by the fact that the amount of information is lower

at the experimental point where the probability of censoring is greater and therefore

the optimal design puts more weight at that point in order to balance this out. For our

recommendation we also take into account that a practitioner has knowledge about

the type of the explanatory variable effect and so the sign of the covariate parame-

ter. For example, a new treatment will go under study only when it is expected to

be superior to the one currently in use which corresponds to a negative sign for the

treatment parameter (assuming that long times to event are preferable). Therefore a

locally c-optimal design allocating more than half of the subjects to the experimental

point where censoring is more likely to occur will be at least better than the standard

design, if not optimal.

38



Chapter 5

Parameter-robust designs

Due to the nonlinearity of the models considered the optimal designs found in the

previous chapter depend on the model parameters which are unknown in practice.

Hence there is the need to overcome this dependence and construct designs which are

robust to parameter misspecifications, that is, designs which estimate the parameters

of interest with high precision and therefore perform well, even when there is imperfect

knowledge of the true parameter values. In many practical situations, some information

about the parameters, such as a range of plausible values, can be provided by the

experimenter. In particular, throughout this chapter we fix the value of the constant

term α, whereas for the parameter β a range of values is specified. We further assume

that the experimenter has no preference for specific β-values.

The scenario described above is motivated by the interpretation of the parameters

involved in a model under a proportional hazards parametrisation (see equation (4.2)

for a general form of the hazard function). Consider, for example, a clinical trial where

patients are randomised to receive a standard or a new treatment. The expression eα

represents the hazard of the event occurring for patients on the standard treatment

and having in mind that a standard treatment which is in use has been previously

investigated in depth, a reasonable approximation to the value of α may be available.

Moreover, the parameter β describes how the risk of the event occurring changes ac-

cording to the new treatment, and assuming large times to event are preferred it has

a negative value when the new treatment is superior to the standard one. Therefore,

the experimenter can specify a range of β-values for a clinically relevant important

improvement with the new treatment.

In what follows, we present the two design strategies for the construction of pa-

rameter robust designs for models in the class introduced in section 4.1.1 and under

the parameter information scenario discussed. In particular, we first investigate stan-

dardised maximin D- and c-optimal designs as well as cluster designs, the construction

of which is facilitated by our analytical results on locally optimal designs. Then the

robustness of these designs and of locally optimal designs is assessed by comparing
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their efficiencies when the parameters have been misspecified. We use the exponential

regression model in its proportional hazards parametrisation defined in section 4.4.1

throughout the robustness analysis and we illustrate that, unlike traditional designs

currently in use, our designs perform well across a broad range of scenarios.

5.1 Standardised maximin optimal designs

Here we consider the construction of designs using a maximin efficiency approach where

a design is evaluated according to its performance in the worst possible case. Unlike

the Bayesian optimal designs approach, under this concept there is no need for a prior

distribution to be specified for the model parameters, thereby avoiding a step that can

be difficult in practice.

The calculation of our designs is based on standardised optimality criteria intro-

duced by Dette (1997). The main advantage of these criteria is that they satisfy an

invariance property for linear transformations of the design space similar to the one

for the D-optimality criterion. Therefore, the design on the transformed space can be

obtained by scaling the support points according to the transformation of the design

space while leaving the weights unchanged.

Following Dette (1997), we seek designs that maximise the minimum efficiency with

respect to the locally optimal designs found over a certain range of parameter values.

This allows us to construct designs which protect against the worst case scenario for

the parameter misspecification. As pointed out in Dette and Biedermann (2003) the

standardised maximin optimal designs are usually found by optimisation in the subclass

of minimally supported designs. Using our results proved in the previous chapter,

the locally optimal designs for models with information matrix of the form (4.1) and

satisfying conditions (a)-(d) and (d1), always have exactly two support points and

therefore we search for the best performing two-point design.

According to the parameter information scenario previously discussed, we assume

that the true value of the parameter α is known whereas the parameter β takes values

in the interval [β0, β1] with β0 < β1. A standardised maximin optimal two-point design

maximises the criterion

Φ(ξ) = min
{
eff(ξ) β ∈ [β0, β1]

}
,

in the class of all two-point designs, where the efficiency eff(ξ) differs according to

which combination of model parameters we are interested in estimating and therefore

which optimality criterion we consider.

We now define the two standardised maximin criteria for D-and c-optimality and

provide analytical characterisations of the designs found by maximising these criteria

in Theorems 5 and 6 respectively.
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5.1.1 Standardised maximin D-optimal designs

The D-efficiency of an arbitrary design ξ is defined as

effD(ξ) =

(
|M(ξ, α, β)|
|M(ξ∗β, α, β)|

)1/2

, (5.1)

where ξ∗β is the locally D-optimal design on the design space X (see, for example,

Atkinson, Donev and Tobias (2007)). The square root of the ratio of determinants is

taken so that the efficiency has the dimensions of a ratio of variances. Therefore, if

a design with 50% efficiency is used it will require double the replicates for it to be

able to estimate the model parameters with similar variances as for the optimal design.

Following Dette (1997), a design ξ∗ maximising the criterion

Φ(ξ) = min

{(
|M(ξ,α,β)|
|M(ξ∗β ,α,β)|

)1/2
β ∈ [β0, β1]

}
,

in the class of all two-point designs is called a standardised maximin D-optimal two-

point design. Thus, this design maximises the worst D-efficiency over the β-values in

the interval [β0, β1].

We briefly discuss the case of a binary design space X = {0, 1} for which, as is

shown in section 4.2.2, the locally D-optimal design is equally supported at points

0 and 1 regardless of the parameter values. So no further investigation needs to be

done and the standardised maximin D-optimal two-point design also has 0 and 1 as

its support points with equal weights.

For an interval design space X = [0, 1], Lemma 1 in section 4.2.3 states that for

a given set of parameter values the locally D-optimal design is unique and always

equally supported at exactly two points which are then classified according to some

conditions on the parameters in Theorem 2. The following theorem is our main result

of this section and gives the standardised maximin D-optimal two-point design for

models with information matrix of the form (4.1) when a range of negative β-values is

provided.

Theorem 5. Let β ∈ [β0, β1] where β1 < 0, α be fixed and assumptions (a)-(d) and

(d1) be satisfied. The standardised maximin D-optimal two-point design on [0, 1] is

equally supported at points 0 and x∗1 where x∗1 = 1 if β0 > −2Q(α + β0)/Q
′(α + β0).

Otherwise x∗1 is the solution of the equation

Q(α + β0x)Q(α + β1xβ1)x
2
β1

= Q(α + β1x)Q(α + β0xβ0)x
2
β0
, (5.2)

where xβ0, xβ1 are the solutions of the equation βx + 2 Q(α+βx)
Q′(α+βx)

= 0 for β0 and β1

respectively.
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Proof. Using part (b) of Theorem 2 presented in section 4.2.3, for any β-value in the

interval [β0, β1] the corresponding locally D-optimal design ξ∗β is equally supported at

0 and xβ where xβ = 1 if β + 2Q(α + β)/Q′(α + β) > 0. Otherwise, xβ satisfies the

equation

βxβ + 2
Q(α + βxβ)

Q′(α + βxβ)
= 0.

From Silvey (1980) the D-optimal weights of a two-point design under a two-parameter

model must be equal. Therefore, for models with information matrix of the form (4.1),

the D-efficiency, defined in (5.1), of a two-point design ξ{x0,x1} equally supported at

points x0, x1 ∈ [0, 1] with x0 < x1 is given by

effD
(
ξ{x0,x1}

)
=

{
Q(α + βx0)Q(α + βx1)(x0 − x1)2

Q(α)Q(α + βxβ)x2β

}1/2

.

Using conditions (a) and (b) it is easy to show that effD
(
ξ{x0,x1}

)
< effD

(
ξ{0,x1}

)
for

all x0 ∈ [0, x1). Hence the best two-point design is supported at 0 and the standardised

maximin D-optimality criterion reduces to

Φ(ξ) = min

{
(u(x, β))1/2 :=

(
Q(α+βx)x2

Q(α+βxβ)x
2
β

)1/2
β ∈ [β0, β1]

}
.

Now using condition (d1) the function w(β) := β + 2Q(α+ β)/Q′(α+ β) is increasing

with β. If w(β0) > 0, that is, if β0 > −2Q(α + β0)/Q
′(α + β0), then w(β) > 0 for all

β ∈ [β0, β1] and so the locally D-optimal design for any β ∈ [β0, β1] is equally supported

at points 0 and 1. Therefore, the standardised maximin D-optimal two-point design

on [0, 1] is also supported at 0 and 1 with equal weights and this completes the proof

for the first part of Theorem 5.

In the case of w(β0) ≤ 0 the following statement holds and is proven in section

B.1.1 of Appendix B

(i) For fixed 0 < x ≤ 1, the function β → u(x, β) is unimodal.

Hence u(x, β) is minimised at β0 or β1 and the standardised maximin design can be

found by maximising

Φ(ξ) = min
{
u(x, β0), u(x, β1)

}
.

This maximisation can be divided into maximisation over the sets

M< :=
{
x ∈ (0, 1] u(x, β0) < u(x, β1)

}
M> :=

{
x ∈ (0, 1] u(x, β0) > u(x, β1)

}
M= :=

{
x ∈ (0, 1] u(x, β0) = u(x, β1)

}
.
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In section B.1.2 of Appendix B we show that

(ii) The standardised maximin D-optimal two-point design ξ∗{0,x} is in the set M=,

and therefore it can be found by solving u(x, β0) = u(x, β1) which is equivalent to

solving

Q(α + β0x)Q(α + β1xβ1)x
2
β1

= Q(α + β1x)Q(α + β0xβ0)x
2
β0
.

Explicit characterisations of standardised maximin D-optimal designs are also pro-

vided, for example, by Dette and Biedermann (2003) for the Michaelis-Menten model.

However, to the best of our knowledge, Theorem 5 is the first analytical character-

isation of standardised maximin D-optimal designs in a situation where the locally

D-optimal designs are not available in closed form.

Based on an easily verifiable condition on the given model parameter values, the

standardised maximin D-optimal design is either immediately determined or can be

found using an optimisation in just one variable. Therefore, Theorem 5 reduces the

numerical effort for design search substantially. We also note that Theorem 5 applies

only for negative β-values. The proof used in this case is not applicable when β > 0

since the solution xβ of the equation

β(x− 1) + 2
Q(α + βx)

Q′(α + βx)
= 0,

is concave for positive β-values. Therefore the function β → u(x, β) is not unimodal

for fixed 0 ≤ x < 1 and this is a topic for further investigation.

5.1.2 Standardised maximin c-optimal designs

Following Atkinson, Donev and Tobias (2007) the c-efficiency for estimating the pa-

rameter β of an arbitrary design ξ is given by

effc(ξ) =
(0 1)M−(ξ∗β, α, β)

(
0
1

)
(0 1)M−(ξ, α, β)

(
0
1

) , (5.3)

where M− is a generalised inverse of the information matrix M and ξ∗β is the locally c-

optimal design for estimating β on the design space X . By definition (see, for example,

Atkinson, Donev and Tobias (2007)), c-optimal designs for β minimise the asymptotic

variance of the estimator β̂ which is proportional to (0 1)M−(ξ, α, β)
(
0
1

)
. Therefore

the above expression of the c-efficiency is already in terms of a ratio of variances and

the standardised maximin c-optimal criterion for estimating β is

Φ(ξ) = min

{
(0 1)M−(ξ∗β ,α,β)(

0
1)

(0 1)M−(ξ,α,β)(0
1)

β ∈ [β0, β1]

}
.
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A design ξ∗ with two support points maximising this criterion among all two-point

designs and hence maximising the worst c-efficiency over β ∈ [β0, β1], is called a stan-

dardised maximin c-optimal two-point design for estimating β.

For the binary design space X = {0, 1}, the locally c-optimal design for β is sup-

ported at points 0 and 1 and depends on the model parameters through the optimal

weights (see section 4.3.3). Theorem 6 provides an analytical characterisation of the

standardised maximin c-optimal two-point design for β on X = {0, 1} for models with

information matrix of the form (4.1).

Theorem 6. Let β ∈ [β0, β1], α be fixed and assumptions (a), (b) and (d1) be satisfied.

Also let the design space to be binary, that is X = {0, 1}. The standardised maximin

c-optimal two-point design for β on X is

ξ∗ =

{
0 1

ω∗ 1− ω∗

}
,

where ω∗ =
ωβ0+ωβ1

2
and ωβ0 and ωβ1 are the optimal weights at point zero for the locally

c-optimal design for β given in (4.4), for β0 and β1 respectively.

Proof. It has been shown in section 4.3.3 that in the case of the binary design space

X = {0, 1} and for models with information matrix of the form (4.1) the locally c-

optimal design for estimating β, ξ∗β, allocates a proportion ωβ of observations at point

0 and a proportion 1− ωβ of observations at 1, where the optimal weights, defined in

(4.4), are given by

ωβ =

√
Q(α + β)√

Q(α) +
√
Q(α + β)

, 1− ωβ =

√
Q(α)√

Q(α) +
√
Q(α + β)

.

Using these expressions for ωβ, 1 − ωβ, the c-efficiency, defined in (5.3), of a design ξ

with support points 0 and 1 and weights ω and 1− ω respectively becomes

effc(ξ) =
ω(1− ω)

(1− ω)ω2
β + ω(1− ωβ)2

:= u(ω, ωβ).

For fixed ω, taking the first derivative of u(ω, ωβ) with respect to ωβ and equating it

to zero yields ωβ = ω. Furthermore,

∂2u(ω, ωβ)

∂ω2
β

∣∣∣∣∣
ωβ=ω

=
−2

ω(1− ω)
< 0.

Hence for fixed ω, the function ωβ → u(ω, ωβ) is unimodal and so it is minimised

at ωβ0 or ωβ1 . Therefore the standardised maximin c-optimality criterion reduces to

maximising
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Φ(ξ) = min
{
u(ω, ωβ0), u(ω, ωβ1)

}
.

As before we divide the maximisation of Φ(ξ) into maximisation over the sets

M< :=
{
ω ∈ (0, 1] u(ω, ωβ0) < u(ω, ωβ1)

}
M> :=

{
ω ∈ (0, 1] u(ω, ωβ0) > u(ω, ωβ1)

}
M= :=

{
ω ∈ (0, 1] u(ω, ωβ0) = u(ω, ωβ1)

}
.

If we assume that the maximin c-optimal design is in M<, then we must maximise

the function u(ω, ωβ0) and taking its first derivative with respect to ω and equating

that to zero yields the solutions ω = ωβ0 and ω =
ωβ0

2ωβ0−1
. The latter solution is greater

than one since ωβ0 < 1 and so it is rejected. Hence u(ωβ0 , ωβ0) = 1 < u(ωβ0 , ωβ1) which

is a contradiction as the efficiency must be greater than or equal to unity. A similar

argument for M> establishes that the standardised maximin c-optimal two-point design

for estimating β can be found solving u(ω, ωβ0) = u(ω, ωβ1) which yields

ω∗ =
(ωβ0 + ωβ1)

2
.

Note that no assumptions on the sign of the parameter β have been made and

therefore Theorem 6 holds for both positive and negative β-values. As for the locally

c-optimal designs, the equal allocation rule which is frequently used in practice leads

to a suboptimal design and the optimal weight at x = 0 of the standardised max-

imin c-optimal design is the average of the two locally c-optimal weights at point 0

corresponding to the end-points of the given interval of β-values.

5.2 Cluster designs

The second design strategy we consider for finding parameter robust designs is the

construction of cluster designs. These were introduced by Dror and Steinberg (2006)

who look at multivariate generalised linear models and find robust designs that take

into account uncertainty in the model parameter values, the linear predictor as well

as the link function. Their algorithm is based on clustering a set of locally D-optimal

designs obtained from a sample of parameter values drawn from the uncertainty space.

In particular, the method they propose is to convert this sample of locally D-optimal

designs into a set of location vectors and apply a K-means clustering procedure. The

centroids of the resulting clusters are then taken to be the support points of the design

with equal weights. Dror and Steinberg (2006) verify that this procedure can examine
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various alternative designs faster, it is simpler and less computationally intensive than

other more sophisticated methods such as the Bayesian approach.

Biedermann and Woods (2011) also illustrate that cluster designs perform similarly

to and are more easily computed than Bayesian designs through an application to

second-harmonic generation experiments. They modify the method proposed by Dror

and Steinberg (2006) by allowing the weights of the resulting cluster design to be

unequal. Taking into account that the locally optimal weights may differ considerably

they apply the clustering to design rather than support points and take the weights to

be proportional to the number of points in each cluster.

We find cluster designs for the D- and c-optimality criteria separately, the com-

putation of which is facilitated by our analytical results on locally optimal designs

presented in Chapter 4. Under our assumptions about the available information on

the model parameters, the construction of cluster designs is as follows. We first draw

values uniformly from the range of β-values [β0, β1] provided and calculate the corre-

sponding locally optimal designs. Then the modified clustering algorithm proposed by

Biedermann and Woods (2011), provided to us by the authors, is applied since the

locally c-optimal designs for models in the class we consider have unequal weights (see

section 4.3). The resulting cluster design has the cluster centroids as its support points

and the number of support points is allowed to be greater than two when possible.

Finally, the weight corresponding to each support point of the design and hence to

each cluster, is chosen so that it is proportional to the cluster size.

5.3 Robustness analysis

In this section we assess the robustness of the designs constructed using the two strate-

gies described above and also of the locally optimal designs, by calculating their ef-

ficiencies when the parameter values have been misspecified. Again the exponential

regression model in its proportional hazards parametrisation defined in section 4.4.1 is

used. Type-I censoring and the design space X = [0, 1] are assumed for demonstration

purposes.

For the choice of the uncertainty parameter space we considered the Freireich data

(Freireich et al. (1963)). These are data from a two group study to compare a placebo

with an active treatment for leukemia. The times to event are the times in months from

diagnosis until the death of the patients and are modelled by the exponential-based

proportional hazards model. Therefore, we use the maximum likelihood estimates for

α and β which are −2.163 and −1.526 respectively.

In what follows we construct the locally D- and c-optimal designs for four sets

of parameter values and compare their efficiencies when the parameter values have

been misspecified. Then the standardised maximin optimal and cluster designs are
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computed for a range of β-values and finally all of the above designs are compared

separately for the cases of D- and c-optimality. Throughout the efficiency calculations

we use a censoring time c = 30.

5.3.1 Locally D-optimal designs

We consider locally D-optimal designs ξν for various vectors of parameter values ν =

(α, β). The value of the maximum likelihood estimator for α is always used, whereas

the β-values are chosen so that they correspond to small (ν0), medium (ν1) and large

(ν3) effects of the explanatory variable and also the maximum likelihood estimator

value (ν2). Table 5.1 presents the parameter values used and the corresponding D-

efficiencies of the locally D-optimal designs calculated using (5.1) when the vector of

parameter values is misspecified .

Table 5.1: D-efficiencies for some selected locally D-optimal designs

Design
Parameter vector ξν0 ξν1 ξν2 ξν3
ν0 = (−2.163,−0.1) 1 1 1 0.900
ν1 = (−2.163,−0.405) 1 1 1 0.905
ν2 = (−2.163,−1.526) 1 1 1 0.946
ν3 = (−2.163,−2.623) 0.992 0.992 0.992 1

The locally D-optimal designs ξν0 , ξν1 , ξν2 corresponding to the first three sets of

parameter values are all the ‘standard design’ supported at 0 and 1, with equal weights,

whereas ξν3 is equally supported at points 0 and 0.9. We observe that the ‘standard

design’ performs well even in the situation where the true parameter vector is ν3 in

which case its efficiency is equal to 0.992.

Among all the efficiency values the lowest one, 0.900, is obtained if the true vector

is ν0 and the experimenter has misspecified this value as ν3 and hence used the design

ξν3 . In other words if the experimenter has used design ξν3 assuming a large effect

for the explanatory variable when the true effect is actually small, the D-efficiency of

design ξν3 is 0.9 which is quite satisfying. Hence ξν3 seems to be a good alternative

to the standard design if, for example, the experimenter does not want to expose the

patients at the highest treatment dose.

5.3.2 Locally c-optimal designs

For the same vectors of parameter values used in the previous section, the support

points of the locally c-optimal designs are always 0 and 1. The c-optimal weights were

found using (4.4), with ω0 (ω1) being the weight on the smaller (larger) support point

and are shown in Table 5.2. The c-efficiencies of each of the above designs were also
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calculated using (5.3) when the parameter values are misspecified and are presented in

Table 5.3.

Table 5.2: Weights for some selected locally c-optimal designs

Design
Weight ξν0 ξν1 ξν2 ξν3
ω0 0.498 0.491 0.425 0.323
ω1 0.502 0.509 0.575 0.677

Table 5.3: c-efficiencies for the locally c-optimal designs of Table 5.2

Design
Parameter vector ξν0 ξν1 ξν2 ξν3
ν0 = (−2.163,−0.1) 1 0.9998 0.9782 0.8772
ν1 = (−2.163,−0.405) 0.9998 1 0.9824 0.8864
ν2 = (−2.163,−1.526) 0.9787 0.9828 1 0.9552
ν3 = (−2.163,−2.623) 0.8908 0.8991 0.9597 1

The design ξν2 , which is locally c-optimal for parameter values equal to the maxi-

mum likelihood estimator values, has a lowest efficiency of 0.9597 and hence is robust

to misspecifications of the parameter space. However, the other three designs do not

perform so well in some scenarios. As for the locally D-optimal designs, the lowest

efficiency is obtained if the parameter vector is assumed to be ν3 when in fact its true

value is ν0. This efficiency is equal to 0.8772.

5.3.3 Standardised maximin optimal designs

Using the results presented in section 5.1 we found the standardised maximin D- and

c-optimal two-point designs, denoted by ξν4 in both cases, for the range [−2.623,−0.1].

We note that although here we consider a continuous design space, all the locally c-

optimal designs, given in section 5.3.2, are supported at points 0 and 1 for the range

of β-values we use and so the result of Theorem 6 can be applied.

The standardised maximin D-optimal design is supported at 0 and 0.993, with equal

weights and is locally D-optimal for ν4 = (−2.163,−2.380), whereas the standardised

maximin c-optimal design allocates 41.1% of the observations at the experimental point

0 and the rest at point 1, and is locally c-optimal for ν4 = (−2.163,−1.690). Compared

with the locally D-optimal designs corresponding to the parameter vectors ν0, . . . ,ν3,

the minimum (median) efficiency of the standardised maximin D-optimal design is

0.993 (0.993) and 0.969 (0.972) for the standardised maximin c-optimal design. There-

fore, both designs perform well across the given parameter space. We note that the
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minimum efficiency for both of the above designs is obtained when the true parameter

vector is ν0.

5.3.4 Cluster designs

The cluster designs were computed by drawing 1000 β-values uniformly from the in-

terval [−2.625,−0.1]. The number of clusters for the locally D-optimal designs was

chosen to vary from 2 to 6 and so cluster designs with two up to six support points were

constructed. All of the resulting cluster designs give weight 0.5 to the experimental

point 0 and very low weight to points not equal to 1. The D-efficiency of each clus-

ter design was also calculated via (5.1) relative to each of the 1000 locally D-optimal

designs. The minimum and median efficiencies are found to be the same for all the

cluster designs (0.993 and 0.997 respectively) and this may be a result of the very low

weight that these designs give to experimental points other than 0 and 1.

The support points of the 1000 locally c-optimal designs are always 0 and 1, hence

the cluster design can only have two support points which are the experimental points

0 and 1. Also the clustering here was applied to design, rather than support points as

the support points of the locally c-optimal points have differing weights. The resulting

cluster design allocates 43% of the observations at 0 and the rest at 1, and is robust to

parameter value misspecifications as the minimum and median efficiencies, found via

(5.3) relative to 1000 locally c-optimal designs, are 0.956 and 0.990 respectively.

5.3.5 Comparison of designs

First we compare the performance of the following 10 designs: the locally D-optimal

designs ξν0 , . . . , ξν3 , the standardised maximin D-optimal designs ξν4 and the cluster

designs ξ1, . . . , ξ5 with 2 through to 6 support points respectively. The D-efficiency

(5.1) of each of the above designs is calculated with respect to each of the 1000 locally

optimal designs and the results are summarised in Figure 5.1. Design ξν3 was omitted

since it was clearly outperformed by the other designs, although it was reasonably

efficient (see discussion in section 5.3.1).

From Figure 5.1 we observe that the standardised maximin D-optimal design ξν4

is indeed the one with the best minimum efficiency and therefore protects against the

worse case scenario. However, it also has a lower median efficiency than the rest of

the designs. Another important observation is that the cluster designs ξ2, . . . , ξ5 with

more than two support points perform similarly to the two-point cluster design ξ1.

Therefore, any one of them can be used instead of the two-point design which also

allows us to check for the lack of fit of the model. Finally all five cluster designs

and the standardised maximin D-optimal design perform well for the parameter space

provided and so they are good alternatives to the locally D-optimal designs.
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Figure 5.1: Boxplots ofD-efficiencies calculated for 9 designs for 1000 parameter vectors

The comparison of the c-optimal designs is shown in Figure 5.2. The designs com-

pared here are the locally c-optimal designs ξν0 , . . . , ξν3 , the standardised maximin

c-optimal design ξν4 and the two-point cluster design ξ1.
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Figure 5.2: Boxplots of c-efficiencies calculated for 6 designs for 1000 parameter vectors
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Among the locally c-optimal designs ξν0 , . . . , ξν3 , only ξν2 performs well across the

assumed parameter space while the rest are not so good for some scenarios. As for

the D-optimality case, the standardised maximin c-optimal design ξν4 has the highest

minimum but not the best median efficiency amongst the designs. Hence there is a

trade off between seeking a high minimum efficiency and a high median efficiency.

Either of the two-point cluster design ξ1 or the standardised maximin c-optimal design

ξν4 can be used instead of the locally c-optimal designs to achieve robustness.
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Chapter 6

Optimal designs for partial

likelihood information

For a model under the proportional hazards parametrisation (see, for example, equa-

tion (4.2)), often interest centres on estimating just the coefficients of the covariates

which represent the explanatory variable effects; the baseline hazard and any unknown

parameters involved in it are of secondary interest (see the motivating example dis-

cussed in Chapter 5). Therefore, here we consider the construction of optimal designs

for Cox’s proportional hazards model, introduced by Cox (1972), that leaves the base-

line hazard function unspecified. The main assumption of this model, also known as

the Cox regression model, is that of proportional hazards over time. This means that

the hazard function for any subject under investigation is multiplicatively related to

the hazard function of another subject, that is, their hazard ratio is constant over time.

When Cox’s model is considered the full likelihood function cannot be used for the

estimation of the vector of covariate parameters since the baseline hazard function is

of arbitrary form. Hence the designs found so far are not directly applicable here.

However, inference on the explanatory variables coefficients can be made based on the

partial likelihood function proposed by Cox (1972) which does not require knowledge

of the baseline hazard. Therefore, for the construction of optimal designs, the asymp-

totic covariance matrix of Cox’s partial, rather than full, likelihood estimator for the

covariate coefficients is considered.

Andersen and Gill (1982) formulate Cox’s model in a counting process set-up and

provide analytical results for the asymptotic properties of the estimators from this

model. However, there are only two papers in the literature so far that consider optimal

designs for Cox’s model. Kalish and Harrington (1988) find optimal designs for the

special case when two treatments are available and investigate empirically how much

efficiency is lost when equal numbers of patients are allocated to the two treatments,

that is, when the standard design is used. López-Fidalgo and Rivas-López (2012) derive

a partial information matrix for the covariate coefficients using approximations, as well
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as the information matrix for the full likelihood model. In their application, they also

consider a binary design space and find optimal designs for the partial likelihood model

which they then compare with the optimal designs for the full likelihood model.

This chapter is organised as follows. First Cox’s proportional hazards model involv-

ing a vector of explanatory variables and the corresponding partial likelihood function

are presented. We also find a general expression for the asymptotic covariance matrix

of Cox’s partial likelihood estimator for the covariate coefficients. Our approach is

then illustrated through an application to the special case of only one covariate for

which we derive the optimality criterion to be used and find a necessary condition

for the optimality of a design. Minimum variance designs are computed for different

censoring mechanisms and for binary and interval design spaces. Finally, we compare

these designs with the ones found in Chapter 4 for the corresponding parametric model

that involves a full likelihood information and demonstrate that the latter designs are

highly efficient for estimation in the partial likelihood model.

6.1 Cox’s model and partial likelihood function

When the risk of the desired event occurring at a particular time t depends on the

values of a set of explanatory variables, Cox’s proportional hazards model is specified

by the hazard function

h(t, xj) = h0(t)e
β>xj t > 0, (6.1)

where xj is the value of the covariate vector for the jth subject in the experiment

and β is the vector of coefficients of the explanatory variables in the model that needs

to be estimated. The function h0(t) is the baseline hazard function which remains

unspecified and can be regarded as the hazard function for a subject for which the

values of all the explanatory variables are zero.

The linear combination β>xj of the explanatory variables in xj is called the linear

component of the model and does not include a constant term since in such a case,

it would cancel out by a simple rescaling of h0(t). Furthermore, the relative hazard

eβ
>xj , also known as the hazard ratio, is the ratio of the hazard at time t for the jth

subject with covariate values vector xj relative to the hazard for a subject with xj = 0.

Therefore, each parameter in the coefficient vector β explains how the hazard changes

with respect to the corresponding explanatory variable. In particular, if a β-parameter

is positive then the risk of the event of interest occurring increases with that covariate,

whereas negative values correspond to the explanatory variable having a decreasing

effect on the hazard.

The hazard ratio is always non-negative with eβ
>xj being the most commonly used

choice for specifying it (see Collett (2003)). Finally, we note that the hazard ratio is
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independent of t and so model (6.1) satisfies the proportional hazards assumption of

constant hazard ratio over time. However, the baseline hazard function, and hence the

probability distribution of the times to event, is not specified and therefore Cox’s pro-

portional hazards model is referred to as a semi-parametric model. It is this flexibility

of the Cox model, together with the simple interpretability of the regression coefficients

in terms of hazard ratios, that has made the model so popular in survival studies; see,

for example, Collett (2003) for details and examples.

Cox (1972) shows that under the proportional hazards assumption the β-parameters

can be estimated without making any further assumptions on the particular form of

the distribution for the times to event. He proposes the use of a conditional likelihood,

referred to as the partial likelihood that enables this estimation.

Suppose that data are available for n subjects with corresponding observations

denoted by y1, . . . , yn and that δj is an indicator function which is equal to zero if the

jth observation, yj, j = 1, . . . , n is right-censored and unity otherwise. The partial

likelihood function for model (6.1) is

LP (β) =
n∏
j=1

{
eβ
>xj∑

l∈R(yj)
eβ
>xl

}δj

, (6.2)

with corresponding log-likelihood function given by

logLP (β) =
n∑
j=1

δj

β>xj − log
∑
l∈R(tj)

eβ
>xl

 . (6.3)

The set R(yj) is called the risk-set at time yj and contains the indices of those subjects

for which neither the event of interest nor censoring have occurred at a time just prior

to yj. For example, if the event under investigation is death then R(yj) is the set of

indices of patients who are alive and their corresponding observations are uncensored

at a time just before yj. The subjects with indices included in the risk-set R(yj) are

said to be at risk at time yj.

Note that any 1 − 1 increasing transformation of the yj leaves (6.2) unchanged.

Therefore, the log-likelihood function in (6.3) and hence inference on the β-parameters,

depend only on the order of occurrence of the observed event times.

Assuming there are no ties in the data, the partial likelihood defined in (6.2) can

be obtained as a conditional probability conditioning on the observed event times (see

section 2.2.3 in Chapter 2 for the derivation). The actual censored and uncensored

times to event are not used directly and so this is not a true likelihood. A brief

discussion on the treatment of ties is also given in section 2.2.3 of Chapter 2.
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6.2 Optimality criterion

Let β̂PL be the maximum partial likelihood estimator of the explanatory variables

coefficients vector β. This estimator is defined as the solution of the likelihood equation

∂ logLP (β)

∂β
= 0,

where logLP (β) is given in equation (6.3), with its asymptotic variance determined by

the inverse of

E

[
−∂

2 logLP (β)

∂β∂β>

]
.

López-Fidalgo and Rivas-López (2012) approximate this expectation for one co-

variate and find the optimal designs by maximising the resulting expression. They

therefore add an extra layer of approximation to the optimality criterion, in addition

to the fact that the information matrix in itself approximates the inverse of the covari-

ance matrix. For large sample sizes, the latter approximation converges. However we

have found that the quality of the former approximation is questionable by comparing

their results on the information matrix to the asymptotic variance matrix provided by

Andersen and Gill (1982).

We work directly with the asymptotic covariance matrix which we derive from

Andersen and Gill (1982) who prove that under some asymptotic regularity conditions

√
n
(
β̂PL − β

)
D−→ N (0,Σ−1), (6.4)

where 0 is the zero vector of appropriate length. Now let ξ be an approximate design

with support points xi, i = 1, . . . ,m and corresponding weights ωi, i = 1, . . . ,m. For

model (6.1) the inverse, Σ = Σ(ξ), of the asymptotic covariance matrix of β̂PL is given

by

Σ = Σ(ξ) =
m∑
i=1

∑
q<i

ωiωqe
β>(xi+xq)(xi−xq)(xi−xq)>

∫ ∞
0

πi(y)πq(y)h0(y)∑m
l=1 ωlπl(y)eβ

>xl
dy, (6.5)

where πi(y), i = 1, . . . ,m is the probability that a subject with covariate values vector

xi is at risk at time y, that is, neither the event nor censoring have occurred by time

y. The “risk function” πi(y) differs according to the censoring scheme considered.

An optimal design for model (6.1) minimises the asymptotic covariance matrix of

the maximum partial likelihood estimate β̂PL or equivalently maximises Σ(ξ), with

respect to the design ξ. Thus a design ξ∗ is optimal for estimating β if

ξ∗ = arg min
ξ

Σ−1(ξ) = arg max
ξ

Σ(ξ),
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where Σ(ξ) is given in (6.5). We note that the optimal design will depend on the values

of the β-parameters and therefore will be a locally optimal design.

It is clear from the asymptotic distribution given in (6.4) that the bias of the

estimator β̂PL is of order o(n−1/2). Hence the variance will dominate the mean squared

error for large n, thus justifying our choice of optimality criterion, which is solely based

on the asymptotic covariance matrix.

For illustration purposes, in what is to follow, we will consider the special case of

only one covariate being involved in Cox’s proportional hazards model and therefore

there is only one β-parameter that requires estimation. This situation is often encoun-

tered in clinical trials where patients are randomised to different treatments or doses

of a treatment. Similarly, in accelerated life testing, there is usually just one covariate

to be selected by the experimenter.

Proposition 1 gives a necessary condition for the optimality of a design ξ∗, that

is, a design that does not satisfy this condition cannot be optimal. Its proof is given

in appendix B, section B.2.1. Unlike the equivalence theorem for c-optimality, this

condition is not sufficient, since the criterion function, Σ(ξ), could not be shown to be

concave.

Proposition 1. Let H be the class of all one-point designs where the support point is

in the design space X = [u, v], and let η = {x; 1} ∈ H. If a design ξ∗ on X with support

points {x1, . . . , xm} and corresponding weights {ω1, . . . , ωm} is optimal for estimating

β via the partial likelihood method, the inequality

d(ξ∗, η) ≤ 0

holds for all η ∈ H, with equality in the one-point designs ξi = {xi; 1}, i = 1, . . . ,m,

generated by the support points of ξ∗. Here d(ξ∗, η) is the Frechet derivative of the

criterion function at ξ∗ in direction of the one-point design η, and is given by

d(ξ∗, η) = −
m∑
i=1

∑
q<i

ωiωqe
β(xi+xq)(xi − xq)2

∫ ∞
0

h0(y)πi(y)πq(y)∑m
l=1 ωlπl(y)eβxl

dy

−
m∑
i=1

∑
q<i

ωiωqe
β(xi+xq)(xi − xq)2

∫ ∞
0

h0(y)πi(y)πq(y)πx(y)eβx

(
∑m

l=1 ωlπl(y)eβxl)2
dy

+
m∑
q=1

ωqe
β(x+xq)(x− xq)2

∫ ∞
0

h0(y)πx(y)πq(y)∑m
l=1 ωlπl(y)eβxl

dy,

where πx(y) is the probability of being at risk at time y given covariate value x.

In the case of a binary design space X = {0, 1}, the design problem is that of

allocating the subjects, for example, to two treatments and so the design must be
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supported at points x1 = 0 and x2 = 1. Let ω, 1 − ω be the weights at points 0 and

1 respectively. Using the results of Andersen and Gill (1982), Kalish and Harrington

(1988) find the asymptotic variance of
√
n(β̂PL − β) to be

Σ−1(ξ) =
1

ω(1− ω)eβ

[∫ ∞
0

π1(y)π2(y)h0(y)

ωπ1(y) + (1− ω)eβπ2(y)
dy

]−1
, (6.6)

where πi(y), i = 1, 2 is the probability of being at risk at time y for subjects allocated

to points 0 and 1 respectively.

For purposes of comparison with the c-optimal designs found in Chapter 4, for

a continuous design space we consider designs with support points x1 and x2 which

represent, for example, drug doses and corresponding weights ω and 1−ω. From (6.5)

the asymptotic variance of
√
n(β̂PL − β) can be written as

Σ−1(ξ) =
1

ω(1− ω)eβ(x1+x2)(x2 − x1)2

[∫ ∞
0

π1(y)π2(y)h0(y)

ωeβx1π1(y) + (1− ω)eβx2π2(y)
dy

]−1
, (6.7)

where π1(y) (π2(y)) is the “risk function” for subjects allocated to dose x1 (x2).

The optimal design in each case is found by minimising Σ−1(ξ) or, equivalently,

maximising Σ(ξ) with respect to the design ξ. We note that all optimal designs we

found for continuous design intervals X are supported at exactly two points. Therefore

the criterion in (6.7) is given for two-point designs.

6.3 Minimum variance designs using the partial like-

lihood method

In this section we present the optimal designs that minimise criteria (6.6) and (6.7),

for a binary and a continuous design space respectively, assuming a constant baseline

hazard function. This corresponds to the most widely used proportional hazards model

based on the exponential distribution.

We first discuss the special case of no censoring and then consider both Type-I and

random censoring mechanisms. The designs are found numerically for various β-values

and percentages of censoring and our results are compared with those of Kalish and

Harrington (1988). We further extend a result by Kalish and Harrington (1988) to

interval design spaces, where we show that for Type-I censoring the optimal designs

do not depend on the shape of the baseline hazard function. Therefore the designs

found for the exponential-based proportional hazards model are applicable to model

(6.1) with one covariate for any form of h0(t).

Let Y1, . . . , Yn be independent random variables for the times to event of the n

subjects in the experiment with y1, . . . , yn their corresponding observed values and
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[0, c] be the period of the experiment. Following Kalish and Harrington (1988), the

survivor function of the random variable W representing the time to censoring is given

by

SW (w) =

{
1, if 0 < w ≤ c

0, if w > c
, SW (w) =

{
c−w
c
, if 0 < w ≤ c

0, if w > c

for Type-I and random censoring respectively. Therefore, the probability that a subject

allocated to xi is at risk at time y is πi(y) = SW (w)Si(y), i = 1, 2, where Si(y) is the

survivor function of the times to event for subjects allocated to xi.

We also use the Kalish and Harrington (1988) characterisation for the ‘amount

of censoring’ as the overall probability of censoring if a balanced design with equal

weights at the two support points had been used. That is 1 − (0.5d1 + 0.5d2), where

di = P (Yj < W ) =
∫∞
0
SW (y)dFi(y) is the probability of the event occurring and Fi(y)

is the distribution function of the times to event, for subjects allocated to xi, i = 1, 2.

6.3.1 No censoring

The no censoring case corresponds to c = ∞, that is, an experiment that runs for as

long as necessary to record all times until the occurrence of the event of interest. In

this case πi(y) = Si(y), i = 0, 1 and equations (6.6) and (6.7) can be written as

Σ−1(ξ) =
1

ω(1− ω)eβ

[∫ 1

0

ue
β−1

ω + (1− ω)eβueβ−1
du

]−1
(6.8)

Σ−1(ξ) =
1

ω(1− ω)eβ(x1+x2)(x2 − x1)2

[∫ 1

0

ue
βx2−1

ωeβx1 + (1− ω)eβx2ue
βx2−eβx1

du

]−1
,

(6.9)

respectively using the parametrisation u = S0(y) = exp{−
∫ y
0
h0(s)ds}. Then Si(y) =

{S0(y)}eβxi , i = 1, 2 and limy→∞ S0(y) = 0 since all times until the occurrence of

the event are observed. Therefore, whether a binary or a continuous design space is

considered, the baseline hazard does not affect the optimal choice of design.

Assuming exponential times to event, the optimal designs on the binary and the

continuous design space were constructed for various β-values using the Gauss-Laguerre

approximation to the integrals involved in (6.8) and (6.9) respectively and then min-

imising the resulting expressions. These are presented in Table 6.1 where 1− ω is the

optimal weight corresponding to the larger support point of the design x2. We note

that the continuous design interval considered in these calculations is X = [0, 1]. For

every choice of β, the efficiency of the balanced design is also found as
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eff(ξbal) =
Σ−1(ξloc)

Σ−1(ξbal)
,

where ξloc is the locally optimal design corresponding to that β-value and ξbal is the

balanced design allocating half the observations at 0 and the rest at point 1.

Table 6.1: Optimal designs for binary and continuous design spaces and efficiencies, in
percent, of the balanced design in the absence of censoring

optimal eβ(β)
design 0.03 (-3.51) 0.25 (-1.39) 0.5 (-0.69) 2 (0.69) 4 (1.39) 33.3 (3.51)
1− ω 0.68 0.55 0.51 0.49 0.45 0.32

efficiency (92) (99) (100) (100) (99) (91)
{x1, x2} {0.04,0.96} {0,1} {0,1} {0,1} {0,1} {0.1,1}
1− ω 0.66 0.55 0.51 0.49 0.45 0.34

efficiency (90) (99) (100) (100) (99) (90)

From Table 6.1 we observe that for a positive value of β the optimal weight 1−ω at

point x2 = 1 is the same as the weight ω at point x1 = 0 for the corresponding negative

β of equal absolute value. Moreover, for small and moderate absolute values of β, that

is 0.69 and 1.39 the efficiency of the balanced design is very high and decreases for

larger absolute values of β (|β| = 3.51). Using the maximum likelihood estimate for

β found for the Freireich data, see Freireich et al. (1963), given by β̂ = −1.526 the

optimal design is always supported at points 0 and 1 allocating a proportion of 0.56

subjects at point 1 for both a binary and a continuous design space. The efficiency of

the balanced design is found in both cases to be 98%

6.3.2 Type-I censoring

Under Type-I censoring Kalish and Harrington (1988) showed that equation (6.6) can

be written as

Σ−1(ξ) =
1

ω(1− ω)eβ

[∫ 1

S0(c)

ue
β−1

ω + (1− ω)eβueβ−1
du

]−1
, (6.10)

where S0(y) = exp{−
∫ y
0
h0(s)ds}. We extend this result to the case of a continuous

design space. Using the fact that under proportional hazards Si(y) = {S0(y)}eβxi ,
i = 1, 2 and applying the transformation u = S0(y) equation (6.7) becomes

Σ−1(ξ) =
1

ω(1− ω)eβ(x1+x2)(x2 − x1)2

[∫ c

0

S1(y)S2(y)h0(y)

ωeβx1S1(y) + (1− ω)eβx2S2(y)
dy

]−1
=

1

ω(1− ω)eβ(x1+x2)(x2 − x1)2

[∫ S0(c)

1

−ueβx1ueβx2

ωeβx1ue
βx1 + (1− ω)eβx2ue

βx2
du

]−1
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Σ−1(ξ) =
1

ω(1− ω)eβ(x1+x2)(x2 − x1)2

[∫ 1

S0(c)

ue
βx2−eβx1

(1− ω)eβx1 + ωeβx2ue
βx2−eβx1

du

]−1
.

(6.11)

In both cases Σ−1(ξ) depends on the baseline hazard only through S0(c) for which

we can assume that a good approximation of its value is available by the experimenter.

In particular, S0(c) is the probability of the event occurring at a time equal or greater

than c for patients allocated at point x = 0 which corresponds, for example, to a

placebo or a standard treatment previously investigated in depth.

In conclusion, under Type-I censoring and for both binary and continuous design

spaces, the optimal design is independent of the shape of h0(y) and for its construction

we can assume without loss of generality a constant baseline hazard corresponding

to the exponential-based proportional hazards model. Therefore, the designs for the

exponential regression model are optimal for partial likelihood estimation for all pro-

portional hazards models.

Table 6.2 shows the optimal weight 1 − ω at the larger support point x2 = 1

of the design on X = {0, 1} and the efficiency of the balanced design assuming the

exponential regression model. For various values of the covariate hazard ratio eβ and

the amount of censoring, an approximation to the integral given in (6.10) is made using

the Gauss-Legendre method, followed by a minimisation of the resulting expression for

Σ−1(ξ).

The choice of the absolute β-values presented in Table 6.2 was made so that we

account for small, moderate as well as large treatments effects. We also include the

value 0.3 of the amount of censoring as this was used in the Freireich data. A percentage

of censoring as high as 90% can occur in reliability studies where, for example, a

component of a machine is proven to be very reliable.

Table 6.2: Optimal weights 1 − ω corresponding to x2 = 1 and efficiency, in percent,
of the balanced design for a binary design space and Type-I censoring

amount eβ(β)
of 0.03 0.1 0.25 0.5 2 4 10 33.3

censoring (-3.51) (-2.30) (-1.39) (-0.69) (0.69) (1.39) (2.30) (3.51)

0.1
0.68 0.60 0.55 0.52 0.48 0.45 0.40 0.32
(92) (97) (99) (100) (100) (99) (97) (92)

0.3
0.68 0.61 0.58 0.54 0.46 0.42 0.39 0.32
(92) (96) (98) (99) (99) (98) (96) (92)

0.5
0.76 0.68 0.62 0.56 0.44 0.38 0.32 0.24
(80) (88) (95) (99) (99) (95) (88) (80)

0.7
0.82 0.73 0.64 0.57 0.43 0.36 0.27 0.18
(71) (83) (93) (98) (98) (93) (83) (71)

0.9
0.85 0.75 0.66 0.58 0.42 0.34 0.25 0.16
(68) (80) (91) (97) (97) (91) (80) (68)
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We observe that for values of eβ greater than unity, that is, for positive β-values,

the weight 1 − ω is smaller than 0.5 whereas for eβ < 1, that is β < 0, the optimal

design allocates more subjects to point x2 = 1. This agrees with our results on locally c-

optimal designs arising from the full likelihood method discussed in section 4.4.4. Under

both methods the optimal design allocates more subjects to the experimental point

where the possibility of censoring is greater in order for the variance to be minimised.

This point is x1 = 0 when the parameter β is positive since in this case the probability

of occurrence of the event of interest is larger at point 1. Moreover, as for the no

censoring case we can observe the symmetry in the optimal weights ω and 1 − ω at

points 0 and 1 respectively for the same absolute β-values.

From Table 6.2 it is also evident that for heavy censoring (above 50%) and absolute

β-values moderately away from zero (|β| ≥ 2.3) the efficiency of the balanced design,

with equally supported points 0 and 1, relative to the optimal design, drops below 90%.

This contradicts the results by Kalish and Harrington (1988) who only look at small

values for the parameter β and therefore find the balanced design to be very efficient.

We now consider the continuous design space X = [0, 1]. The support points

{x1, x2} of the optimal design, the optimal weight 1 − ω corresponding to the larger

support point x2 and the efficiencies of the balanced design are presented in Table 6.3

for the same values of β and amount of censoring used for the binary design space case.

The Gauss-Legendre approximation to the integral in (6.11) is again used before the

minimisation of Σ−1(ξ).

Table 6.3: Support points {x1, x2}, optimal weights 1−ω at point x2 and efficiency, in
percent, of the balanced design under Type-I censoring for X = [0, 1]

amount eβ(β)
of 0.03 0.1 0.25 0.5 2 4 10 33.3

censoring (-3.51) (-2.30) (-1.39) (-0.69) (0.69) (1.39) (2.30) (3.51)

0.1
{0.04,0.96} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.04,0.96}

0.66 0.60 0.55 0.52 0.48 0.45 0.40 0.34
(90) (97) (99) (100) (100) (99) (97) (90)

0.3
{0,0.91} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.09,1}

0.66 0.61 0.58 0.54 0.46 0.42 0.39 0.34
(90) (96) (98) (99) (99) (98) (96) (90)

0.5
{0,0.84} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.16,1}

0.71 0.68 0.62 0.56 0.44 0.38 0.32 0.29
(76) (88) (95) (99) (99) (95) (88) (76)

0.7
{0,0.77} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.23,1}

0.76 0.73 0.64 0.57 0.43 0.36 0.27 0.24
(63) (83) (93) (98) (99) (93) (83) (63)

0.8
{0,0.74} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.26,1}

0.78 0.75 0.66 0.58 0.42 0.34 0.25 0.22
(59) (80) (91) (97) (97) (91) (80) (59)
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For large absolute β-values and heavy censoring the support points of the optimal

design move away from the end-points 0 and 1 of the design space. In particular, the

optimal design always includes the most informative points about the probability of

occurrence of the event of interest, that is, the points where censoring is less likely.

These will be experimental points greater than zero for eβ > 1 in which case the

covariate has an increasing effect on the hazard, and points smaller than unity when

eβ < 1, that is β < 0, and the probability of the event occurring decreases with the

explanatory variable.

The symmetry for the optimal weights for some absolute values of β is evident as

well as the symmetry of the support points. This is, for large positive values of β

the smaller support point of the design moves away from the boundary 0 by the same

amount the larger support point is away from 1 for the corresponding negative β of the

same absolute value. In the case of the amount of censoring being equal to 0.1, that

is, 10% of the observations will be right-censored, and absolute β-value equal to 3.51

the optimal design is not supported at either of the boundaries 0 and 1 of the design

space.

We also note that for small and moderate values of the parameter β the design is

supported at points 0 and 1. However, in every case the weights of the optimal design

follow the same pattern as the one discussed above for a binary design space, thus

making the equal allocating balanced design suboptimal. Moreover, for absolute β-

values greater than 2.3 and heavy censoring, above 50%, the efficiency of the balanced

design drops substantially below 90%.

6.3.3 Random censoring

In the presence of random censoring the criteria functions Σ−1(ξ) for binary and con-

tinuous design spaces are given by

Σ−1(ξ) =
1

ω(1− ω)ceβ

[∫ c

0

(c− y)S1(y)S2(y)h0(y)

ωS1(y) + (1− ω)S2(y)
dy

]−1
, (6.12)

and

Σ−1(ξ) =
1

ω(1− ω)ceβ(x1+x2)(x2 − x1)2

[∫ c

0

(c− y)S1(y)S2(y)h0(y)

ωeβx1S1(y) + (1− ω)eβx2S2(y)
dy

]−1
,

(6.13)

respectively.

A similar transformation as the one used for Type-I censoring can not be applied

here and therefore Σ−1(ξ) and hence the optimal design does depend on the form of

the underlying hazard. An explanation for this is that for Type-I censoring a 1 − 1

increasing transformation of the exponentially distributed times will not affect the
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partial likelihood function and so Σ−1(ξ) will remain the same. However, under random

censoring transforming the assumed uniform distribution for the censoring times will

result in the distribution no longer being uniform. Therefore the same generalisation

does not hold under the random censoring scenario.

For illustration purposes we compute the optimal designs for various β-values and

amounts of censoring again assuming a constant baseline hazard and applying the

Gauss-Legendre approximation to the integrals given in (6.12) and (6.13). These de-

signs are displayed in Tables 6.4 and 6.5 for the cases of a binary, X = {0, 1}, and

a continuous, X = [0, 1], design space respectively along with the efficiencies of the

balanced design.

Table 6.4: Optimal weights 1 − ω corresponding to x2 = 1 and efficiency, in percent,
of the balanced design for a binary design space and random censoring

amount eβ(β)
of 0.03 0.1 0.25 0.5 2 4 10 33.3

censoring (-3.51) (-2.30) (-1.39) (-0.69) (0.69) (1.39) (2.30) (3.51)

0.1
0.68 0.61 0.55 0.52 0.48 0.45 0.39 0.32
(91) (97) (99) (100) (100) (99) (97) (91)

0.3
0.68 0.62 0.57 0.53 0.47 0.43 0.38 0.32
(91) (96) (98) (100) (100) (98) (96) (91)

0.5
0.71 0.65 0.60 0.55 0.45 0.40 0.35 0.94
(87) (92) (96) (99) (99) (96) (92) (87)

0.7
0.81 0.71 0.63 0.57 0.43 0.37 0.29 0.19
(73) (85) (94) (98) (98) (94) (85) (73)

0.9
0.84 0.75 0.66 0.58 0.42 0.34 0.25 0.16
(68) (80) (91) (97) (97) (91) (80) (68)

As before, we observe that the optimal design is supported at the experimental

points where the probability of censoring and therefore the variance is smaller, and

puts more weight at the support point where censoring is more likely so that the

variance at that point is minimised.

For negative and positive β’s of the same absolute value, the smaller (larger) support

point of the design moves away from the 0 (1) boundary of the design space by the

same amount. The optimal weights at points 0 and 1 are also equal for negative and

positive β-values of the same absolute value.

Overall the two censoring schemes produce similar designs which differ from the

balanced design for heavy censoring and absolute β-values moderately far from the

trivial case of β = 0. In particular, for |β| ≥ 2.3 and more than 50% right-censored

observations the balanced design has efficiencies less than 90%.
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Table 6.5: Support points {x1, x2}, optimal weights 1−ω at point x2 and efficiency, in
percent, of the balanced design under random censoring for X = [0, 1]

amount eβ(β)
of 0.03 0.1 0.25 0.5 2 4 10 33.3

censoring (-3.51) (-2.30) (-1.39) (-0.69) (0.69) (1.39) (2.30) (3.51)

0.1
{0,0.91} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.09,1}

0.66 0.61 0.55 0.52 0.48 0.45 0.39 0.34
(90) (97) (99) (100) (100) (99) (97) (90)

0.3
{0,0.91} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.09,1}

0.66 0.62 0.57 0.53 0.47 0.43 0.38 0.34
(90) (96) (98) (100) (100) (98) (96) (90)

0.5
{0,0.88} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.12,1}

0.68 0.65 0.60 0.55 0.45 0.40 0.35 0.32
(85) (92) (96) (99) (99) (96) (92) (85)

0.7
{0,0.79} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.21,1}

0.75 0.71 0.63 0.57 0.43 0.37 0.29 0.25
(67) (85) (94) (98) (98) (94) (85) (67)

0.8
{0,0.74} {0,1} {0,1} {0,1} {0,1} {0,1} {0,1} {0.26,1}

0.77 0.75 0.66 0.58 0.42 0.34 0.25 0.23
(60) (80) (91) (97) (97) (91) (80) (60)

6.4 Comparison of designs arising from full and par-

tial likelihood methods

Efron (1977) compares the Fisher information for estimating β, for both the full and

the partial likelihood methods, in the same underlying model. He finds that the Fisher

informations coincide except for an extra term in the Fisher information for the full

likelihood, which, however, will usually be small in practice. He concludes that there-

fore in most situations the partial likelihood method will be reasonably efficient. A

simple explicit formula for this extra term could not be derived even in the simple

case of a binary design space. Therefore, we could not work directly with the Fisher

information matrix to prove the similarity of the two approaches analytically.

However, these results suggest that the optimal designs for estimating β, which

are based on the asymptotic variances and thus the Fisher information, should also be

similar. In particular, we wish to find out in which situations the optimal designs for the

full likelihood method, which are constructed in Chapter 4, are efficient for estimation

in the partial likelihood model. Hence finding optimal designs for the complicated

criterion function Σ(ξ) could be avoided by practitioners.

We first compare the optimal designs for several scenarios directly, to see in which

situations they are similar or even coincide and then find an explanation for this phe-

nomenon.

65



Throughout this section, we assume an exponential regression model with constant

baseline hazard h0(t) ≡ exp(α) for some constant α ∈ IR. Then the hazard function

is h(t, x) = h0(t) exp(βx) = exp(α+ βx), and we compare the locally c-optimal design

for estimating β in the two-parameter model with the Σ-optimal design for β in Cox’s

model.

We note that López-Fidalgo and Rivas-López (2012) provide a brief comparison

of such designs for a binary design space. However, they assume that exp(α) = 1,

leaving them with an estimation problem for one parameter only. Hence the optimal

designs they find for the parametric model are one-point designs, taking all observations

at x = 1. This is not surprising since they completely specify the baseline hazard,

implying that the hazard at x = 0 is known, thus not requiring any observations at

x = 0.

6.4.1 Numerical results

We briefly discuss the case of no censoring for which the locally c-optimal design for β

found using the full likelihood function is always equally supported at 0 and 1 for both

a binary and a continuous design space (see section 4.4.2). From Table 6.1 we observe

that for β-values away from zero the two approaches do not coincide as the optimal

weights for the partial likelihood method are not equal. However, the balanced design

allocating equal number of subjects at points 0 and 1 is highly efficient even for large

values of the parameter β making the locally c-optimal designs for β good alternatives

to the designs found using the partial likelihood function.

In the presence of censoring, we calculate the efficiency of the locally c-optimal

designs found using the full likelihood function relative to the designs discussed in

sections 6.3.2 and 6.3.3 by

eff(ξ∗F ) =
Σ(ξ∗F )

Σ(ξ∗P )
=

Σ−1(ξ∗P )

Σ−1(ξ∗F )
,

where ξ∗F and ξ∗P are the locally optimal designs for β arising from the full and partial

likelihood method respectively. The results for the two censoring schemes considered

are illustrated in Tables 6.6 and 6.7 respectively. The cases of X = {0, 1} and X = [0, 1]

are examined and the efficiencies are found as functions of the amount of censoring and

the parameter of interest β.

We observe that the c-optimal designs found using the full likelihood function are

extremely efficient under both censoring schemes, with the efficiencies under random

censoring being slightly lower. Hence the c-optimal designs can be used as an efficient

alternative for the Σ-optimal designs, even if the data are to be analysed through

the partial likelihood approach. In particular, for heavy censoring the full likelihood
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designs give efficiency very close or equal to 1 even for extremely large β-values.

Table 6.6: Efficiencies, in percent, of full likelihood designs under Type-I censoring for
a binary (and a continuous) design space

amount eβ(β)
of 0.03 0.1 0.25 0.5 2 4 10 33.3

censoring (-3.51) (-2.30) (-1.39) (-0.69) (0.69) (1.39) (2.30) (3.51)

0.1
94 98 100 100 100 100 98 94

(93) (98) (100) (100) (100) (100) (98) (93)

0.3
99 100 100 100 100 100 100 99

(98) (100) (100) (100) (100) (100) (100) (98)

0.5
100 100 100 100 100 100 100 100

(100) (100) (100) (100) (100) (100) (100) (100)

0.7
100 100 100 100 100 100 100 100

(100) (100) (100) (100) (100) (100) (100) (100)

0.9
100 100 100 100 100 100 100 100

(100) (100) (100) (100) (100) (100) (100) (100)

Table 6.7: Efficiencies, in percent, of full likelihood designs under random censoring
for a binary (and a continuous) design space

amount eβ(β)
of 0.03 0.1 0.25 0.5 2 4 10 33.3

censoring (-3.51) (-2.30) (-1.39) (-0.69) (0.69) (1.39) (2.30) (3.51)

0.1
94 98 100 100 100 100 98 94

(92) (98) (100) (100) (100) (100) (98) (92)

0.3
98 100 100 100 100 100 100 98

(97) (100) (100) (100) (100) (100) (100) (97)

0.5
100 100 100 100 100 100 100 100

(100) (100) (100) (100) (100) (100) (100) (100)

0.7
100 100 100 100 100 100 100 100

(100) (100) (100) (100) (100) (100) (100) (100)

0.9
100 100 100 100 100 100 100 100

(100) (100) (100) (100) (100) (100) (100) (100)

Comparing the elements of Tables 6.6 and 6.7, that is, the efficiencies of the c-

optimal designs, with the corresponding elements in Tables 6.2-6.5 we find that the c-

optimal designs are considerably more efficient for estimating β in the partial likelihood

model than the balanced design on 0 and 1. For example, when the percentage of

censoring is 0.5 and β = −2.3, the c-optimal designs have efficiencies of 100% for Type-I

and random censoring, respectively for both design spaces whereas the balanced design

achieves corresponding efficiencies of 88% for Type-I censoring and 93% for random

censoring again for both design spaces. This means that under Type-I censoring we

require 114 individuals in a balanced design to achieve the same accuracy for parameter
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estimation as 100 individuals in a c-optimal design. For heavier censoring, the c-optimal

designs are even more preferable.

6.4.2 Analytical results

As mentioned in section 6.1 the partial likelihood function and therefore β̂PL, depend

on the order of occurrence of the event of interest for the various subjects in the

experiment. Hence when the partial likelihood method is used we lose information and

β̂PL is not a sufficient statistic for estimating β. As a result the asymptotic variances

of β̂PL and β̂FL are not equal.

However, the results presented in the previous section suggest that the two variances

are close, thus producing similar designs. In what follows, we find an explanation for

the similarities of c- and Σ-optimal designs, in particular under heavy censoring and

small to moderate β-values.

From section 4.4.3, the Q-function implicitly defined in (4.1) is given by Q(α+βx) =

(1− e−ceα+βx) for the exponential-based proportional hazards model model with Type-

I censoring. As shown in Lemma 2, section 4.3.2, the locally c-optimal design for

estimating β is always supported at exactly two points. Let x1, x2 be the two support

points with corresponding weights 1 − ω and ω respectively. For heavy censoring,

and thus small values of c, the asymptotic variance of (
√
n times) the maximum full

likelihood estimator for β, β̂FL, can be approximated by a first order Taylor expansion

given by

V ar(β̂FL) =
(1− ω)(1− e−ceα+βx1 ) + ω(1− e−ceα+βx2 )

ω(1− ω)(1− e−ceα+βx1 )(1− e−ceα+βx2 )(x2 − x1)2

≈ (1− ω)eβx1 + ωeβx2

ω(1− ω)ceαeβ(x1+x2)(x2 − x1)2
,

using that

1− e−ceα+βx ≈ ceα+βx.

The smaller the value of ceα+βx, the more accurate the approximation.

Now consider the corresponding quantity for the partial likelihood model for two

different treatments or drug doses x1 and x2. Without loss of generality we assume that

among the data available for n subjects, there are k distinct event times, t1 < . . . < tk.

Also let rj be the number of individuals in the risk set at time tj, qj of them allocated

at x2 and rj − qj allocated at x1. Then the log-likelihood function defined in (6.3)

becomes

logLP (β) =
k∑
j=1

{
βxj − log

[
(rj − qj)eβx1 + qje

βx2
]}
.

Taking the second derivative of the above expression with respect to β, the asymptotic
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variance of
√
nβ̂PL, V ar(β̂PL), becomes

V ar(β̂PL) =

[
1

n
E

(
k∑
j=1

qj(rj − qj)eβ(x1+x2)(x2 − x1)2

[(rj − qj)eβx1 + qjeβx2 ]2

)]−1
. (6.14)

Let q∗j = qj/rj and r∗j = rj − qj/rj = 1, j = 1, . . . , k. Then the right hand side

of (6.14) will not change when replacing qj and rj with q∗j and r∗j , respectively. When

k/n is small, this means that the proportion of observed event times is small and this

corresponds to the case of heavy censoring. Therefore, q∗j ≈ ω and r∗j − q∗j ≈ 1−ω that

is, the original proportion of subjects allocated at x2 and x1 respectively, at least for

small j. Similarly, if |β| is small, the proportion of subjects at risk in the two groups

will not change much over time, and again q∗j ≈ ω in this situation.

Now k, the number of observed events, is itself random, and we replace it with its

expectation, approximated by E(k) ≈ n[(1−ω)ceα+βx1 +ωceα+βx2 ]. Overall, we obtain

V ar(β̂PL) ≈ (1− ω)eβx1 + ωeβx2

ω(1− ω)ceαeβ(x1+x2)(x2 − x1)2

Hence the two variances, and thus the optimal designs, are approximately equal for c

and k/n small, which confirms the numerical results in Tables 6.6 and 6.7.

Under random censoring, Q(α + βx) = 1 + (e−ce
α+βx − 1)/ceα+βx ≈ ceα+βx/2 (see

section 4.4.3). Following along the same lines as for Type-I censoring, we find that for

small values of c and k/n

V ar(β̂FL) ≈ V ar(β̂PL) ≈ 2((1− ω)eβx1 + ωeβx2)

ω(1− ω)ceαeβ(x1+x2)(x2 − x1)2
.

Therefore, again the two asymptotic variances, and thus the corresponding optimal

designs, are approximately equal for heavy censoring.

6.5 Conclusions

The partial likelihood approach has become very popular in survival experiments due

to the flexibility provided by the Cox model that leaves the baseline hazard function

unspecified. Moreover, under the proportional hazards framework the interpretation

of the regression coefficients is straightforward as they represent the effect of the cor-

responding explanatory variables involved in the model.

However, the construction of optimal designs based on this method depends on

non-trivial numerical methods and approximations that practitioners may not find

appealing to implement and therefore, the use of some ”off the shelf” designs might be

more preferable. Such designs are the balanced design allocating equal proportions of

subjects at the support points and also the locally optimal designs found in Chapter 4
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as they are analytically characterised using easy to check conditions on the parameters.

We have shown that the balanced design performs well under both Type-I and

random censoring only in the case of small and moderate absolute values of the covariate

effect parameter β (|β| ≤ 2.3) and small percentages of censoring, that is, below 50%

(see Tables 6.2-6.5 for detailed values of the efficiencies). This situation is often met

in studies where, for example, an alternative treatment under investigation improves

the health of patients only by a little compared to the treatment currently in use.

Therefore, the β-value, that is the effect of the new treatment, and also the percentage

of censoring, corresponding to the number of patients whose health has been improved

by the end of the experiment, will both be small.

However, in many industrial reliability studies where, for example, the event of

interest is the failure of a particular component this might not be the case as often

the component under investigation will be extremely reliable thus resulting in heavy

censoring. An example of a situation where the absolute value of the β-parameter will

be large, is a clinical trial comparing a placebo to a new treatment. If this treatment is

effective and is the first one available for the cure of a particular health issue then its

effect will be large. In either of these cases the balanced design will not be sufficiently

efficient. Therefore, in such scenarios the use of our analytical characterisations of

locally optimal designs based on the full likelihood approach is more appropriate as

we have shown that they are efficient also for partial likelihood estimation (see Tables

6.6 and 6.7). Furthermore, under Type-I censoring the locally optimal designs for the

exponential regression model can be used without loss of generality as these are optimal

independent of the form of the baseline hazard (see discussion in section 6.3.2).
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Chapter 7

Model-robust designs

The optimal designs presented in Chapters 4 and 5 were constructed assuming that the

model generating the data is known, up to the values of the parameters involved. In

many practical situations however, the proposed parametric model will only hold ap-

proximately, thus making the formulation of model robust criteria for the construction

of optimal designs an issue of great interest and importance. The results discussed in

the previous chapter on Cox’s proportional hazards model, for which the underlying

distribution of the data is left unspecified, indicate that the full and partial likelihood

approaches result in very similar designs. Moreover, in the presence of Type-I censor-

ing a constant baseline hazard and therefore the exponential regression model can be

assumed without affecting the optimal choice of design.

Based on these observations and taking into account that the exponential distribu-

tion is naturally assumed in survival experiments for time to event data, in this chap-

ter we investigate the construction of designs for maximum full likelihood estimation

which are robust to misspecifications of the exponential-based proportional hazards

model when the data are subject to Type-I censoring. In particular, we consider de-

viations in a neighbourhood of the exponential regression model that includes widely

used parametric proportional hazards models, for example, based on the Weibull and

Gompertz distributions. These small deviations which may occur from imprecisions in

the specification of the mean response, are formulated directly in the hazard function

using what we call a contamination function or simply a contaminant.

In what follows, we first introduce the models considered and define two different

classes of contaminants to account for the various possible forms of the functions. We

then derive the optimality criteria to be used which correspond to the classical D- and

c-optimality criteria but are based on the mean squared error matrix rather than just

the information matrix. Finally, minimax designs for maximum likelihood estimation

are constructed for binary and continuous design spaces. These designs minimise the

corresponding criteria functions for the worst possible contaminant.
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7.1 Models and contamination functions

As before, throughout this chapter we assume that the models involve only one explana-

tory variable taking values x in the design space X and the aim of the experiment is to

estimate one or both of the two model parameters parameters α and β. Also let n be

the total number of subjects utilised and c be the duration of the experiment at which

point the observations of subjects for which the event of interest has not occurred are

said to be right-censored.

We consider the situation where the experimenter assumes the exponential regres-

sion model for the censored data which in its proportional hazards parametrisation is

specified by the hazard function

h1(t) = exp{α + βx}, t > 0, (7.1)

when in fact this is only an approximation of the true model which has hazard function

given by

h2(t) = exp

{
α + βx+

g(t)√
n

}
, t > 0. (7.2)

The function g(t) represents uncertainty about the exact form of the distribution for

the data and we call it the contamination function or just the contaminant. We assume

g(t) is unknown and relatively small but we do not estimate it. The factor n−1/2 is

included so that the deviations are of the order O(1/
√
n) and we have models that are

”close to” the exponential regression model.

The parametrisation in (7.2) allows us to remain in a proportional hazards frame-

work in order to ensure that the model parameters are well defined. In particular,

the contamination function is independent of the covariate value x and therefore β is

the coefficient of the explanatory variable corresponding to the covariate effect. For

identifiability reasons we require that g(t) does not involve an additive constant. Other-

wise, the constant term would be included in the eα quantity representing the baseline

hazard.

We also note that the dependence of g on the time t ensures that the general form

of the true model includes widely used parametric proportional hazards models based,

for example, on the Weibull and Gompertz distributions with known shape parameter

γ for which g(t) is equal to (γ − 1) ln t and γt respectively.

We now define two classes of contamination functions which can be used to include

various forms of g. These classes are specified so that the worst possible contaminant

can be identified for use in the construction of minimax designs.

The first class of contaminants is specified by

G1 =

{
g : max

t∈[0,c]
|g(t)| ≤ c1

}
, (7.3)
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where c1 is a positive constant assumed to be known. This class includes contamination

functions g(t) which are bounded on the time interval [0, c].

Now consider the case of unbounded contamination functions like, for example,

g(t) = log t for which limt→0 g(t) = −∞. A class that can be used to include such

contaminants is

G2 =

{
g :

∣∣∣∣∣
∫ c

0

e−te
α+βx

g(t)dt

∣∣∣∣∣ ≤ c2, ∀x ∈ X and

∣∣∣∣∣
∫ c

0

g(s) ds

∣∣∣∣∣ <∞
}
, (7.4)

where again c2 is a known positive constant.

The integral expression involved in the definition of G2 appears in the optimality

criteria functions discussed in the next section. Therefore, if we assume g belongs in

the class G2 this expression has a fixed and known upper bound given by c2. If g ∈ G1
the worst possible value for the contamination function is equal to c1 and the upper

bound of the integral expression depends on the value x of the explanatory variable.

7.2 Optimality criteria

As mentioned previously, here we adopt the full likelihood approach since the assumed

parametric model is completely specified as the exponential based proportional hazards

model. However, fitting model (7.1) when in fact the true model is given by (7.2) adds

a bias to the maximum likelihood estimator vector of the model parameters besides its

natural variation.

We therefore consider criteria based on the mean squared error matrix rather than

just the information matrix which correspond to the classical criteria of D- and c-

optimality defined in sections 4.2.1 and 4.3.1 of Chapter 4. D-optimality for the mean

squared error matrix is one of the criteria used by Wiens (1992) who looks at approxi-

mately linear regression models for complete data, that is, in the absence of censoring.

As he points out, the advantages of using an optimal design minimising just the vari-

ance are lost even if the deviations are very small.

In this section we first present some mathematical preliminaries required for the

derivation of the mean squared error matrix which is then explicitly determined. Finally

we define the criteria functions to be used for the construction of minimax optimal two-

point designs.

7.2.1 Preliminaries

Xu (2009b) considers the construction of designs which are robust to misspecifications

in the regression function of generalised linear models for censored data with normal

underlying distribution. He focuses on prediction and extrapolation problems, thus
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making the optimality criteria used inapplicable for the estimation problem we consider

here. However, throughout this section we follow a similar procedure to the one used in

Xu (2009b) for the derivation of expectations and covariances required for constructing

the mean squared error matrix.

Let T1, . . . , Tn be independent random variables indicating the times to event for

the n subjects utilised in the experiment with corresponding observed values t1, . . . , tn

and Yj = max{Tj, c}, j = 1, . . . , n be the random variables for the actual observations

in the presence of Type-I censoring. Also let δj be an indicator function taking the

value 1 when the jth observation is not censored and 0 otherwise. That is

δj =

1, if Yj = Tj

0, if Yj = c
.

The probability density and survivor functions for the exponential regression model

defined in (7.1) are

f1(yj) = eα+βxje−yje
α+βxj

and S1(yj) = e−ce
α+βxj

, j = 1, . . . , n

respectively. Therefore, assuming that model (7.1) is correct, the log-likelihood function

of the jth observation with covariate vector xj is given by

l(xj, α, β) = δj log f1(yj) + (1− δj) logS1(c)

= δj
(
α + βxj − yjeα+βxj

)
− (1− δj)ceα+βxj .

Taking the first and second order derivatives of this log-likelihood function with respect

to the model parameters α and β, we have

∂l(xj, α, β)

∂α
= δj

(
1− yjeα+βxj

)
− (1− δj)ceα+βxj ,

∂l(xj, α, β)

∂β
= xj

∂l(xj, α, β)

∂α

and

∂2l(xj, α, β)

∂α2
= −eα+βxj [δjyj + c(1− δj)] ,

∂2l(xj, α, β)

∂α∂β
= xj

∂2l(xj, α, β)

∂α2
,

∂2l(xj, α, β)

∂β2
= x2j

∂2l(xj, α, β)

∂α2
.

The above expressions only involve two random quantities via δj and δjYj. We note

that δj ∼ Bin(1, Pj), where Pj = P (δi = 1) = P (Yj = Tj) and

δjYj =

Yj, if Yj = Tj

0, if Yj = c
.
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We now take into account that the true model is actually specified by (7.2) with

corresponding probability density function given by

f2(yj) = exp

{
α + βxj +

g(yj)√
n

}
exp

{
−eα+βxj

∫ yj

0

eg(s)/
√
n ds

}
, j = 1, . . . , n.

Based on this true model we derive the expectations and variances of the random

variables δj, δjYj separately and also find their covariance using two Taylor expansions.

The calculations are given in detail only for the expectation of δj and the rest of the

expressions can be proved following similar arguments.

E[δj] = Pj =

∫ c

0

exp

{
α + βxj +

g(yj)√
n

}
exp

{
−eα+βxj

∫ yj

0

eg(s)/
√
n ds

}
dyj

= 1− exp

{
−eα+βxj

∫ c

0

eg(s)/
√
n ds

}
.

Since we consider small deviations we can take the Taylor expansion of eg(s)/
√
n around

g(s) = 0. Then the above expression becomes

E[δj] = 1− exp

{
−eα+βxj

∫ c

0

1 +
g(s)√
n

+ o

(
g(s)√
n

)
ds

}
= 1− exp

{
−ceα+βxj

}
exp

{
−eα+βxj

[∫ c

0

g(s)√
n
ds+ o

(
1√
n

)]}
.

By further expanding around
∫ c
0
g(s)√
n
ds + o

(
1√
n

)
= 0, we find that the expectation of

the random variable δj is

E[δj] = 1− e−ce
α+βxj

+ eα+βxje−ce
α+βxj

∫ c

0

g(s)√
n
ds+ o

(
1√
n

)
,

where the first term, 1 − e−ceα+βxi , corresponds to the expectation if the exponential

regression model was in fact the true model. Using the above expression the variance

of δj can be found without making any further calculations and is given by

V ar(δj) = Pj(1− Pj) = e−ce
α+βxj

(1− e−ce
α+βxj

)

+ eα+βxje−ce
α+βxj

(2e−ce
α+βxj − 1)

∫ c

0

g(s)√
n
ds+ o

(
1√
n

)
.

Following along the same lines as for E[δj], we obtain

E[δjYj] =
(1− e−ce

α+βxj
)

eα+βxj
− ce−ce

α+βxj
+ e−ce

α+βxj
(ceα+βxj + 1)

∫ c

0

g(s)√
n
ds

−
∫ c

0

g(yi)√
n
e−yje

α+βxj
dyj + o

(
1√
n

)
,
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V ar(δjYj) =− c2e−ce
α+βxj

(1 + e−ce
α+βxj

) +
(1− e−2ce

α+βxj
)

(eα+βxj)2
− 2ce−2ce

α+βxj

eα+βxj
+ e−ce

α+βxj

(
c2eα+βxj + 4ce−ce

α+βxj
+

2e−ce
α+βxj

eα+βxj
+ 2c2eα+βxje−ce

α+βxj

)∫ c

0

g(s)√
n
ds

−

∫ c

0

2e−yje
α+βxj

(
yj +

e−ce
α+βxj

eα+βxj
+ ce−ce

α+βxj

)
g(yj)√
n
dyj + o

(
1√
n

)
,

Cov(δj, δjYj) = e−ce
α+βxj

(1− e−ce
α+βxj

)/eα+βxj − ce−2ce
α+βxj

+ e−ce
α+βxj

(
2ceα+βxje−ce

α+βxj
+ 2e−ce

α+βxj − 1
)∫ c

0

g(s)√
n
ds

− e−ce
α+βxj

∫ c

0

g(yj)√
n
e−yje

α+βxj
dyj + o

(
1√
n

)
.

Hence

E

[
∂l(xj, α, β)

∂α

]
= eα+βxj

∫ c

0

e−yje
α+βxj g(yj)√

n
dyj + o

(
1√
n

)
,

E

[
−∂

2l(xj, α, β)

∂α2

]
= 1− e−ce

α+βxj
+ eα+βxje−ce

α+βxj

∫ c

0

g(s)√
n
ds

− eα+βxj
∫ c

0

g(yj)√
n
e−yje

α+βxj
dyj + o

(
1√
n

)
,

V ar

(
∂l(xj, α, β)

∂α

)
= 1− e−ce

α+βxj
+ eα+βxje−ce

α+βxj

∫ c

0

g(s)√
n
ds

− (eα+βxj)2
∫ c

0

2
yjg(yj)√

n
e−yje

α+βxj
dyj + o

(
1√
n

)
,

Cov

(
∂l(xj, α, β)

∂α
,
∂l(xj, α, β)

∂β

)
= xjV ar

(
∂l(xj, α, β)

∂α

)
,

V ar

(
∂l(xj, α, β)

∂β

)
= x2jV ar

(
∂l(xj, α, β)

∂α

)
.

7.2.2 Mean squared error matrix

Let λ = (α, β)T be the vector of the model parameters and λ0 the vector of their

true values. Also let ξ be an approximate design supported at points x1, . . . , xm taking

values in the design space X with corresponding weights ω1, . . . , ωm where 0 < ωi ≤ 1,

i = 1, . . . ,m and
∑m

i=1 ωi = 1. Using the results presented in the previous section we

obtain the following expressions.
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The asymptotic information matrix of λ0 is

M(ξ) = M(ξ,λ0) = lim
n→∞

1

n
E

[
−

n∑
j=1

∂2l(xj, α, β)

∂λ∂λT

∣∣∣
λ=λ0

]

=
m∑
i=1

ωi(1− e−ce
α+βxi )

(
1 xi

xi x2i

)
,

the asymptotic expectation of the score function evaluated at λ0 is

b̃(ξ, g) = b̃(ξ, g,λ0) =
1√
n

lim
n→∞

1

n
E

[
√
n

n∑
j=1

∂l(xj, α, β)

∂λ

∣∣∣
λ=λ0

]

=
1√
n

m∑
i=1

ωie
α+βxi

∫ c

0

e−yje
α+βxig(yj) dyj

(
1

xi

)
:=

1√
n
b(ξ, g),

and finally the asymptotic variance-covariance matrix of the score function S(λ) eval-

uated at λ0 is given by

C(ξ) = C(ξ,λ0) = lim
n→∞

1

n

n∑
j=1

Cov

(
∂l(xj, α, β)

∂λ

∣∣∣
λ=λ0

)

=
m∑
i=1

ωi(1− e−ce
α+βxi )

(
1 xi

xi x2i

)
.

In order to obtain the mean squared error matrix we first have to find the asymptotic

distribution of λ̂− λ0. Expanding the score function around λ0 gives

S(λ) = S(λ0) + S ′(λ0)(λ− λ0) + . . . ,

and using the fact that the maximum likelihood estimate λ̂ is a root of the score

function we have

0 ≈ S(λ0) + S ′(λ0)(λ̂− λ0)

(λ̂− λ0) ≈M−1(ξ,λ0)S(λ0).

Now
√
n S(λ0) ∼ AN(b, C) and therefore

√
n(λ̂− λ0) ∼ AN(M−1b,M−1CM−1).

Hence the mean squared error matrix of
√
n (λ̂− λ0) is given by

MSE(ξ, α, β, g) = (M−1b)(M−1b)T +M−1CM−1

= M−1(bbT + C)M−1, (7.5)

since the asymptotic information matrix M is symmetric.
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7.2.3 Minimax designs

We now present the optimality criteria to be used for the construction of minimax

designs. These designs minimise the criteria functions of the mean squared error ma-

trix corresponding to the classical D- and c-optimality criteria, for the worst possible

contamination function g. Therefore, we first fix a design ξ and maximise the criteria

functions over G1 or G2 and finally minimise the resulting expression with respect to

the design. In what is to follow we consider approximate designs with two support

points and so the criteria are given for two-point designs.

The first criterion we consider corresponds to the c-optimality criterion for estimat-

ing the parameter β. The estimation of this parameter is of primary interest in survival

experiments since it represents the covariate effect. We call ξ∗ a minimax c-optimal

design for estimating β if (0 1)T is in the range of MSE(ξ∗, α, β, g) and

ξ∗ = arg min
ξ

max
g∈G1orG2

(0 1)MSE−1(ξ, α, β, g)

(
0

1

)
. (7.6)

Similarly a design ξ∗ is minimax c-optimal for estimating α if (0 1)T is in the range

of MSE(ξ∗, α, β, g) and

ξ∗ = arg min
ξ

max
g∈G1orG2

(1 0)MSE−1(ξ, α, β, g)

(
1

0

)
. (7.7)

As discussed in Chapter 5, the parameter α is involved in the baseline hazard function

and therefore in practice a reasonable approximation of its value might be available.

The reason for considering c-optimality for α is given in section 7.3.2.

Finally, we find minimax D-optimal designs ξ∗ where

ξ∗ = arg min
ξ

max
g∈G1orG2

det {MSE(ξ, α, β, g)} . (7.8)

This criterion is used when we are interested in estimating both of the model parameters

α and β. We note that, unlike the classical D-optimality criterion where ξ∗ maximises

the determinant of the information matrix with respect to the design ξ, here we find

optimal designs that minimise the maximum value of the determinant of the mean

squared error matrix over all probability measures ξ.

7.3 Minimax optimal two-point designs for binary

design space

When the experiment is conducted to compare, for example, two treatments the design

space is binary and given by X = {0, 1}. In this case, the designs are supported
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at points 0 and 1 with corresponding weights ω and 1 − ω where 0 < ω ≤ 1 and

the expressions found in section 7.2.2 for the asymptotic information and variance-

covariance matrices and for the (
√
n times) asymptotic expectation of the score function

become

M(ξ) = C(ξ) =

(
ω(1− eceα) + (1− ω)(1− e−ceα+β) (1− ω)(1− e−ceα+β)

(1− ω)(1− e−ceα+β) (1− ω)(1− e−ceα+β)

)

b(ξ, g) =

(
ωeα

∫ c
0
e−yje

α
g(yj) dyj + (1− ω)eα+β

∫ c
0
e−yje

α+β
g(yj) dyj

(1− ω)eα+β
∫ c
0
e−yje

α+β
g(yj) dyj

)
.

The mean squared error matrix is then given by M−1(bbT +C)M−1 as shown in section

7.2.2. The full matrix is not illustrated here due to its large size.

In what follows we present the functions to be optimised for each of the optimality

criteria using the definitions given in (7.6), (7.7) and (7.8) and the resulting minimax

optimal designs.

7.3.1 Minimax c-optimal designs for β

The objective function defined in (7.6) is given by[
eα+β

(1− e−ceα+β)

∫ c

0

e−yje
α+β

g(yj) dyj −
eα

(1− e−ceα)

∫ c

0

e−yje
α

g(yj) dyj

]2
+

1

ω(1− e−ceα)

+
1

ω(1− e−ceα+β)
.

The minimax c-optimal design for β is found by minimising the above expression with

respect to ω for the worst possible contaminant.

It is easy to see that the term involving the contamination function g is independent

of the weight ω. Therefore, it is enough to minimise

1

ω(1− e−ceα)
+

1

ω(1− e−ceα+β)
,

which gives the optimal weight

ω∗ =

√
1− e−ceα+β

√
1− e−ceα +

√
1− e−ceα+β

. (7.9)

This is the same c-optimal weight as for the case of the exponential-based proportional

hazards model being the true model. Therefore, the contamination function does not

affect the minimax c-optimal design for estimating β and the exponential regression

model can be assumed without loss of generality. Table 4.3 in section 4.4.4 of Chapter

4 presents these weights for various parameter values.
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This result comes to an agreement with the conclusions found in the previous chap-

ter for partial likelihood estimation. That is, in the presence of Type-I censoring the

optimal choice of design is independent of the parametric model used, if the propor-

tional hazards assumption is true.

7.3.2 Minimax c-optimal designs for α

Based on the results found above we felt it is worthwhile examining whether the con-

tamination function plays a role in the construction of the minimax optimal design

when interest centres on estimating only the parameter α, even though in practice this

will rarely be the case.

We therefore also consider the construction of minimax c-optimal designs for α

which minimise the function[
eα

(1− e−ceα)

∫ c

0

e−yje
α

g(yj) dyj

]2
+

1

ω(1− e−ceα)
,

with respect to the weight ω for the worst possible g.

As before, the contamination function does not affect the optimal design since we

only have to minimise the expression 1/ω(1 − e−ceα) which gives ω∗ = 1. Hence the

minimax c-optimal design for α is a one-point design putting all observations at point

0. This is on accordance with the optimal design for the linear model when we are

interested in estimating only the intercept.

7.3.3 Minimax D-optimal designs

For a fixed design in X = {0, 1} supported at 0 and 1 with corresponding weights ω

and 1− ω the determinant of the mean squared error matrix is given by

1

ω(1− ω)(1− e−ceα)(1− e−ceα+β)

{
1 + ω

[
eα
∫ c
0
e−yje

α
g(yj) dyj

]2
(1− e−ceα)

+ (1− ω)

[
eα+β

∫ c
0
e−yje

α+β
g(yj) dyj

]2
(1− e−ceα+β)

}
. (7.10)

Minimax D-optimal designs are constructed by minimising, with respect to ω, the max-

imum of the above expression taken over the class of possible contamination functions

g. We now consider the two different classes of contaminants separately defined in (7.3)

and (7.4).

The following theorem gives the minimax D-optimal weight corresponding to point

x = 0 assuming that the contamination function belongs in the class G1.
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Theorem 7. Let g ∈ G1 and X = {0, 1}. The minimax D-optimal two-point de-

sign supported at points 0 and 1 allocates a proportion ω∗ of observations at point 0

regardless of the sign of the parameter β, where

ω∗ =

√
c21(1− e−ce

α+β) + 1
[√

c21(1− e−ce
α) + 1−

√
c21(1− e−ce

α+β) + 1
]

c21(e
−ceα+β − e−ceα)

. (7.11)

Proof. If g ∈ G1 then maxyj∈[0,c] |g(yj)| ≤ c1 ∀j = 1, . . . , n and so∣∣∣∣∣
∫ c

0

e−yje
α+βx

g(yj) dyj

∣∣∣∣∣ ≤
∫ c

0

e−yje
α+βx |g(yj)| dyj ≤

∫ c

0

e−yje
α+βx

c1 dyj

= c1(1− e−ce
α+βx

)/eα+βx, ∀x ∈ {0, 1}

Therefore, for contamination functions g in the class G1 the maximum value of (7.10)

is given by

c21
ω(1− e−ceα)

+
c21

(1− ω)(1− e−ceα+β)
+

1

ω(1− ω)(1− e−ceα)(1− e−ceα+β)
.

Taking the first order derivative of this expression with respect to ω and equating it to

zero gives

c21ω
2(1− e−ceα)− c21(1− ω)2(1− e−ceα+β)− (1− 2ω) = 0

⇐⇒ ω1,2 =
−[c21(1− e−ce

α+β
) + 1]±

√
c21(1− e−ce

α) + 1
√
c21(1− e−ce

α+β) + 1

c21(e
−ceα+β − e−ceα)

.

When β is positive, it is easy to see that both the numerator and the denominator

of the above expression are non-positive. We reject the negative root of the numerator

as

− c21(1− e−ce
α+β

)− 1−
√
c21(1− e−ce

α) + 1
√
c21(1− e−ce

α+β) + 1

< −c21(1− e−ce
α+β

) + c21(1− e−ce
α

) = c21(e
−ceα+β − e−ceα)

and the weight must always be always less than or equal to unity.

In the case of negative β-values the denominator is positive and since ω > 0, again

we accept the positive root.

Therefore for any sign of the parameter β the minimax D-optimal weight at point

0 is always given by (7.11).

The corresponding result for contamination functions g ∈ G2 is presented in Theo-

rem 8. This is proven in section B.3.1 of Appendix B following along the same lines.
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Theorem 8. Let g ∈ G2 and X = {0, 1}. The minimax D-optimal two-point de-

sign supported at points 0 and 1 allocates a proportion ω∗ of observations at point 0

regardless of the sign of the parameter β, where

ω∗ =

√
c22(e

α+β)2

(1−e−ceα+β )
+ 1

[√
c22(e

α)2

(1−e−ceα ) + 1−
√

c22(e
α+β)2

(1−e−ceα+β )
+ 1

]
c22

[
(eα)2

(1−e−ceα ) −
(eα+β)2

(1−e−ceα+β )

] . (7.12)

7.4 Minimax optimal two-point designs for contin-

uous design space

We now consider the case of an arbitrary continuous design space X = [u, v] corre-

sponding to explanatory variable values indicating, for example, drug doses. We fix

a two-point design ξ with x1, x2 as its support points and ω, 1 − ω the corresponding

weights and construct the minimax designs in a systematic way by minimising the

criteria functions given in (7.6), (7.7) and (7.8) assuming g belongs in the class G1 or

G2 defined in (7.3) and (7.4) respectively.

Applying the two-point design ξ to the expressions found for the asymptotic ma-

trices M(ξ), b(ξ, g) and C(ξ) we obtain the mean squared error matrix defined in (7.5)

which as before is not presented here due to its large size.

7.4.1 Minimax c-optimal designs for β

For the construction of minimax c-optimal design for β we must minimise the function

1

(x1 − x2)2

{[
eα+βx1

∫ c
0
e−yje

α+βx1
g(yj) dyj

(1− e−ceα+βx1 )
−
eα+βx2

∫ c
0
e−yje

α+βx2
g(yj) dyj

(1− e−ceα+βx2 )

]2

+
1

ω(1− e−ceα+βx1 )
+

1

(1− ω)(1− e−ceα+βx2 )

}
,

for the worst contaminant g with respect to x1, x2 and ω. We observe that for fixed

x1 and x2 the minimisation with respect to ω is independent of g and therefore the

minimax c-optimal weight ω∗ corresponding to the smaller support point is of the same

form as for the binary case and is given by

ω∗ =

√
1− e−ceα+βx2√

1− e−ceα+βx1 +
√

1− e−ceα+βx2
:=

√
Q(α + βx2)√

Q(α + βx1) +
√
Q(α + βx2)

, (7.13)

where the Q-function is the one defined in Chapter 4. However, the contamination

function affects the choice of optimal support points and we therefore consider the two
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classes G1 and G2 separately.

An analytical characterisation of minimax c-optimal two-point designs for β when

g ∈ G1 is provided in Theorem 9 . A sketch proof of part (a) is given below and part

(b) is proven in section B.3.2 of Appendix B following along the same lines.

Theorem 9. Let g ∈ G1
(a) If β > 0, the design with support points x∗1 and v and optimal weight on x∗1 given

in (7.13) is minimax c-optimal for β on X = [u, v], where x∗1 = u if

β(u− v) +
2Q(α + βu)

Q′(α + βu)

[
1 +

√
Q(α + βu)√
Q(α + βv)

+
4c21Q(α + βu)

√
Q(α + βv)√

Q(α + βu) +
√
Q(α + βv)

]
> 0.

(7.14)

Otherwise x∗1 is the unique solution of the equation

β(x1 − v) +
2Q(α + βx1)

Q′(α + βx1)

[
1 +

√
Q(α + βx1)√
Q(α + βv)

+
4c21Q(α + βx1)

√
Q(α + βv)√

Q(α + βx1) +
√
Q(α + βv)

]
= 0.

(7.15)

(b) If β < 0, the design with support points u and x∗2 and optimal weight on u given in

(7.13) is minimax c-optimal for β on X = [u, v], where x∗2 = v if

β(u− v)− 2Q(α + βu)

Q′(α + βu)

[
1 +

√
Q(α + βu)√
Q(α + βv)

+
4c21Q(α + βu)

√
Q(α + βv)√

Q(α + βu) +
√
Q(α + βv)

]
< 0.

Otherwise x∗2 is the unique solution of the equation

β(u− x2)−
2Q(α + βx2)

Q′(α + βx2)

[
1 +

√
Q(α + βx2)√
Q(α + βu)

+
4c21Q(α + βx2)

√
Q(α + βu)√

Q(α + βu) +
√
Q(α + βx2)

]
= 0.

Proof. Let β > 0. Since g ∈ G1 then∣∣∣∣∣
∫ c

0

e−yje
α+βx

g(yj) dyj

∣∣∣∣∣ ≤
∫ c

0

e−yje
α+βx |g(yj)| dyj ≤

∫ c

0

e−yje
α+βx

c1 dyj

= c1(1− e−ce
α+βx

)/eα+βx, ∀x ∈ [u, v]

Therefore, [∣∣∣∣∣eα+βx1
∫ c
0
e−yje

α+βx1
g(yj) dyj

(1− e−ceα+βx1 )
−
eα+βx2

∫ c
0
e−yje

α+βx2
g(yj) dyj

(1− e−ceα+βx2 )

∣∣∣∣∣
]2

≤

[∣∣∣∣∣eα+βx1
∫ c
0
e−yje

α+βx1
g(yj) dyj

(1− e−ceα+βx1 )

∣∣∣∣∣+

∣∣∣∣∣eα+βx2
∫ c
0
e−yje

α+βx2
g(yj) dyj

(1− e−ceα+βx2 )

∣∣∣∣∣
]2
≤ 4c21
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Substituting the expression for the c-optimal weights from (7.13) we obtain the

objective function to be minimised to be

1

(x1 − x2)2

{
4c21 +

[
1√

1− e−ceα+βx1
+

1√
1− e−ceα+βx2

]2}
:= k(x1, x2)

For fixed x1(< x2), k(x1, x2) is decreasing with x2 as the product of two non-negative

decreasing functions and therefore attains its minimum at x∗2 = v. Now k(x1, v) has

exactly one turning point on (−∞, v) which is a minimum since

lim
x1→−∞

k(x1, v) = lim
x1→v

k(x1, v) =∞.

If this minimum is attained outside [u, v) then the smaller support point of the

design is u. This occurs if and only if

∂k(x1, v)

∂x1

∣∣∣∣∣
x1=u

> 0,

which is equivalent to condition (7.14). Otherwise, x∗1 is the smaller support point and

can be found by solving
∂k(x1, v)

∂x1
= 0

which is equivalent to solving equation (7.15).

Using Theorem 9 the design problem has either been reduced from a three-dimensional

to a one-dimensional optimisation problem or has been solved completely, thus reducing

the design search substantially.

For contamination functions g ∈ G2 a similar analytical result could not be proven.

However, using the fact that[∣∣∣∣∣eα+βx1
∫ c
0
e−yje

α+βx1
g(yj) dyj

(1− e−ceα+βx1 )
−
eα+βx2

∫ c
0
e−yje

α+βx2
g(yj) dyj

(1− e−ceα+βx2 )

∣∣∣∣∣
]2

≤

[∣∣∣∣∣eα+βx1
∫ c
0
e−yje

α+βx1
g(yj) dyj

(1− e−ceα+βx1 )

∣∣∣∣∣+

∣∣∣∣∣eα+βx2
∫ c
0
e−yje

α+βx2
g(yj) dyj

(1− e−ceα+βx2 )

∣∣∣∣∣
]2

≤ c22

[
eα+βx1

(1− e−ceα+βx1 )
+

eα+βx2

(1− e−ceα+βx2 )

]2
,

the support points of the minimax c-optimal two-point design for β can be found by

minimising the function
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1

(x1 − x2)2

{
c22

[
eα+βx1

(1− e−ceα+βx1 )
+

eα+βx2

(1− e−ceα+βx2 )

]2

+

[
1√

1− e−ceα+βx1
+

1√
1− e−ceα+βx2

]2}
. (7.16)

7.4.2 Minimax c-optimal designs for α

Fixing a two-point design ξ supported at points x1, x2 with corresponding weights

ω, 1− ω, the objective function defined in (7.7) becomes

1

(x1 − x2)2

{[
x1e

α+βx2
∫ c
0
e−yje

α+βx2g(yj) dyj

(1− e−ceα+βx2 )
−
x2e

α+βx1
∫ c
0
e−yje

α+βx1g(yj) dyj

(1− e−ceα+βx1 )

]2

+
x22

ω(1− e−ceα+βx1 )
+

x21
(1− ω)(1− e−ceα+βx2 )

}
.

The c-optimal weight ω can be found independently of g by minimising the above

expression with respect to ω for fixed x1, x2 and is given by

ω∗ =
x2
√

1− e−ceα+βx2

x1
√

1− e−ceα+βx1 + x2
√

1− e−ceα+βx2
:=

x2
√
Q(α + βx2)

x1
√
Q(α + βx1) + x2

√
Q(α + βx2)

,

(7.17)

The following theorem provides a complete classification of minimax c-optimal two-

point design for α and g ∈ G1. Its proof follows similar arguments as for Theorem 9

and is given in section B.3.3 of Appendix B.

Theorem 10. Let g ∈ G1
(a) If β > 0, the design with support points x∗1 and v and optimal weight on x∗1 given

in (7.17) is minimax c-optimal for α on X = [u, v], where x∗1 = u if

β(u− v) +
2Q(α + βu)

Q′(α + βu)

[
1 +

√
Q(α + βu)√
Q(α + βv)

+
2c21(u+ v)Q(α + βu)

√
Q(α + βv)√

Q(α + βu) +
√
Q(α + βv)

]
> 0.

Otherwise x∗1 is the unique solution of the equation

β(x1−v)+
2Q(α + βx1)

Q′(α + βx1)

[
1 +

√
Q(α + βx1)√
Q(α + βv)

+
2c21(x1 + v)Q(α + βx1)

√
Q(α + βv)√

Q(α + βx1) +
√
Q(α + βv)

]
= 0.

(b) If β < 0, the design with support points u and x∗2 and optimal weight on u given in

(7.17) is minimax c-optimal for α on X = [u, v], where x∗2 = v if
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β(u− v)− 2Q(α + βu)

Q′(α + βu)

[
1 +

√
Q(α + βu)√
Q(α + βv)

+
2c21(u+ v)Q(α + βu)

√
Q(α + βv)√

Q(α + βu) +
√
Q(α + βv)

]
< 0.

Otherwise x∗2 is the unique solution of the equation

β(u−x2)−
2Q(α + βx2)

Q′(α + βx2)

[
1 +

√
Q(α + βx2)√
Q(α + βu)

+
2c21(u+ x2)Q(α + βx2)

√
Q(α + βu)√

Q(α + βu) +
√
Q(α + βx2)

]
= 0.

Theorem 10 provides a complete classification of minimax c-optimal two-point de-

signs for estimating α. Based on some easily verifiable conditions on the parameters,

the designs are found by optimising just a one variable function. We also note that

in the case of the continuous design space being the interval [0, 1] and for β < 0, the

smaller support point of the design is x∗1 = 0 and therefore ω∗ = 1. Hence the minimax

c-optimal design for α coincides with the corresponding c-optimal design for a binary

design space and is a one-point design that allocates all the observations at point zero.

When g ∈ G2 an analytical characterisation of the minimax designs is not available

and the support points are found by minimising the function

1

(x1 − x2)2

{
c22

[
x2e

α+βx1

(1− e−ceα+βx1 )
+

x1e
α+βx2

(1− e−ceα+βx2 )

]2

+

[
x2√

1− e−ceα+βx1
+

x1√
1− e−ceα+βx2

]2}
. (7.18)

7.4.3 Minimax D-optimal designs

In the case of an arbitrary two-point design on a continuous design space, the deter-

minant of the mean squared error matrix is given by

1

ω(1− ω)(1− e−ceα+βx1 )(1− e−ceα+βx2 )(x1 − x2)2

{
1 +

(1− ω)

(1− e−ceα+βx2 )(
eα+βx2

∫ c

0

e−yje
α+βx2g(yj) dyj

)2

+
ω

(1− e−ceα+βx1 )

(
eα+βx1

∫ c

0

e−yje
α+βx1g(yj) dyj

)2
}
.

As for the case of a binary design space the optimal weights do not depend on the

form of the contamination function g and are given by

ω∗ =

√
c21(1− e−ce

α+βx2 ) + 1
[√

c21(1− e−ce
α+βx1 ) + 1−

√
c21(1− e−ce

α+βx2 ) + 1
]

c21(e
−ceα+βx2 − e−ceα+βx1 )

,

(7.19)

when the contamination function belongs in G1 and if g ∈ G2
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ω∗ =

√
c22(e

α+βx2 )2

(1−e−ceα+βx2 )
+ 1

[√
c22(e

α+βx1 )2

(1−e−ceα+βx1 )
+ 1−

√
c22(e

α+βx2 )2

(1−e−ceα+βx2 )
+ 1

]
c22

[
(eα+βx1 )2

(1−e−ceα+βx1 )
− (eα+βx2 )2

(1−e−ceα+βx2 )

] . (7.20)

Therefore the design problem is again reduced to identifying only the support points of

the minimax two-point design which can be found numerically by substituting these in

the expression for the determinant of the MSE matrix given above and then minimising

the resulting quantity for the worst possible contaminant.

7.5 Application to Freireich data

To better illustrate our results we now apply them to the Freireich data Freireich

et al. (1963) obtained from a study comparing a placebo with an active treatment for

leukemia with the assumed model being the exponential-based proportional hazards

model (see section 5.3 in Chapter 5 for more details). For these data the maximum like-

lihood estimates of the parameters are α̂ = −2.163 and β̂ = −1.526 and approximately

30% of the observations are right-censored.

We first consider a binary design space X = {0, 1}. The ”amount of censoring”

for the exponential regression model defined in Kalish and Harrington (1988) as the

overall probability of censoring if a balanced design is used, is given by

1− 0.5(1− e−ceα+β)− 0.5(1− e−ceα).

Using the percentage of censoring and the parameter estimates from the Freireich data,

this yields c = 30.

As mentioned in section 7.3.2, the minimax c-optimal design for α allocates all

of the subjects to the experimental point 0 regardless of the parameter values. For

α = −2.163, β = −1.526 and c = 30 the minimax c-optimal weight for estimating β,

given in (7.9), is equal to 0.42. This can be interpreted by taking into account that for

negative β-values the probability of the event of interest occurring, is larger at point

0 than the corresponding probability at x = 1. Therefore, the design allocates more

subjects to the experimental point where censoring is more likely.

The minimax D-optimal weights at point 0 for contamination functions in the

classes G1 and G2 are found in Theorems 7 and 8 respectively. Figures 7.1 and 7.2

illustrate the behaviour of these optimal weights for various values of the constants

c1 and c2 involved in the definitions of the classes of contaminants given in (7.3) and

(7.4).
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Figure 7.1: Minimax D-optimal weight ω at point 0 for g ∈ G1
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Figure 7.2: Minimax D-optimal weight ω at point 0 for g ∈ G2

We observe that in both cases of g ∈ G1 and g ∈ G2, the minimax D-optimal

weight is smaller than 0.5 and its value further decreases with c1 and c2. Therefore,

the balanced design allocating half the subjects at point 0 and the rest at point 1 is

suboptimal for deviations from the exponential regression model.

The optimal weights appear to have limiting values as c1 or c2 increases. This means

that if we allow the amount of contamination to increase the optimal design will not

change much above certain values for c1 and c2.

In the case of the continuous design space X = [0, 1] and using any of the criteria

defined in (7.6), (7.7) and (7.8) the support points of the resulting minimax designs are

found to always be the points 0 and 1. However, the corresponding weights at point
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x = 0 are the same as in the case of the binary design space X = {0, 1} described

above. Hence even when the minimax design is supported at the boundaries of the

continuous design space, the equal allocation rule leads to suboptimal designs.

7.6 Conclusions

In the case of a binary design space our results on minimax c-optimal designs for β,

presented in section 7.3.1, coincide with the locally c-optimal designs for estimating

β assuming the exponential regression model (see section 4.4 in Chapter 4). This

means that the latter designs are also robust to departures from the exponential-based

proportional hazards model provided the proportional hazards property is retained.

Therefore, if one is interested in estimating only the covariate effect parameter β,

the exponential distribution can be assumed for design construction without loss of

generality.

If D-optimality is the desired criterion, that is, if estimation of both of the model

parameters is required, then Theorems 7 and 8 provide analytical characterisations of

the minimax optimal weights to be used. These characterisations, along with the nu-

merical results we have for the Freireich data, suggest that we have to move away from

the traditional balanced design to guard against misspecification of the exponential

distribution.

We also provide analytical characterisations of minimax optimal weights based on

either D- or c-optimality for an arbitrary continuous design space. Moreover, Theorems

9 and 10 offer a complete classification of the support points of the minimax c-optimal

designs for estimating β and α respectively, for contamination functions in the class

G1. Although similar analytical results could not be proven for the case of minimax

D-optimal designs and g ∈ G2, our application to the Freireich data illustrates that

the balanced design allocating equal proportions of subjects at the end-points of the

design space will not perform well if the exponential regression model is incorrect. In

particular, even if the minimax design has the boundaries of the design space as its

support points, the corresponding weights will not be equal, thus making the balanced

design suboptimal.
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Chapter 8

Discussion

We now summarise the main results derived in this PhD thesis and discuss the im-

portance and the benefits of our novel research. Furthermore, we propose future work

that may be carried out in order to extent these results.

8.1 Results and conclusions

The research conducted in this project combines the known and well established criteria

used in Design of Experiments with the features of the models that arise frequently

in survival experiments and that are studied in Survival Analysis. This work is of

great importance not only due to its direct applications in areas such as medicine,

biostatistics, social sciences and engineering where survival and reliability models are

met, but also because of the analytical methods proposed. Using designs based on

DoE theory, we can minimise the cost and duration of survival experiments, while at

the same time maximise the precision of their conclusions. The novelty of our research

is clear from the small number of contributions to the literature in this area and, in

particular, the lack of theoretical results on how experimental designs change in the

presence of censoring, a phenomenon characterising survival data that arise in such

experiments. Therefore, this work has a potential impact on how survival experiments

are set up in the future. In particular our results are summarised as follows.

We have defined a wide class of two-parameter nonlinear models based on the form

of, and some extra assumptions on, the information matrix for an arbitrary approximate

design ξ. Our assumptions are satisfied by some of the most frequently used survival

models and therefore the problem of constructing optimal designs is solved in more

generality. Moreover, these assumptions can easily be verified and in particular they

are easier to check than those of Yang and Stufken (2009). Therefore, our results can

be directly applied by practitioners specifically working in survival experiments.

For models in the general class considered, we provide analytical characterisations

of locally D- and c-optimal designs which can then be used as a starting point for the
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construction of parameter robust designs, for example, sequential designs. Based on

some easily verifiable conditions on the model parameters, we completely classify locally

D- and c-optimal designs and either solve the design problem entirely or simplify it, in

terms of reducing the dimensions of the optimisation required for their construction.

The characterisation of locally c-optimal designs revealed that the weights corre-

sponding to the two support points of the design must always be unequal for both a

binary and a continuous design space. Therefore, if one is interested in estimating only

the effect of the explanatory variable, which is often the primary aim of survival exper-

iments, then different proportions of subjects should be allocated to the experimental

points. This result is of great importance since practitioners traditionally plan survival

experiments such as clinical trials using the equal allocation rule.

Through our application to the exponential-based proportional hazards model un-

der Type-I and random censoring, we explicitly illustrate how censoring affects the

optimal choice of design in the case of a continuous design space. In particular, for

both censoring mechanisms the locally D-optimal designs maintain the allocation of

equal numbers of subjects at the experimental points but these are not the end-points

of the design space in all scenarios. When the event times are highly dependent on the

explanatory variable under investigation, and therefore its effect is large, the design

includes points where censoring is less likely to occur and hence are more informative.

Depending on the sign of the β-parameter representing the covariate effect, the locally

D-optimal design is always supported at the most informative boundary of the design

space whereas the second support point tends to be away from the other design space

end-point. On the other hand, even for small effect sizes, the locally c-optimal designs

put more weight at the experimental point where the probability of censoring is greater

in order for the information to be maximised. In either case, however, the standard

design currently used in practice that puts the same proportion of observations at the

two boundaries of the design space is suboptimal.

The parameter dependence of locally optimal designs makes them difficult to use in

practical situations. In order to overcome this shortcoming we found parameter robust

designs when there is some information about the parameter values. In particular, we

assumed that the experimenter has a good approximation for the value of the parameter

α, involved in the baseline hazard, from previous studies and that he/she can specify

a range of β-values for the expected effect size. This is a situation that frequently

arises in survival experiments and therefore our results can be implemented directly in

practice.

Using this parameter information and for models in the general class we have de-

fined, we constructed optimal designs based on standardised maximin criteria which

maximise the worst efficiency among all two-point designs and therefore protect against

the worst case scenario. Using our results on locally c-optimal designs, we have pro-
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vided an analytical characterisation of standardised maximin c-optimal two-point de-

signs that specifies the design entirely. As before we have shown that for c-optimality

the commonly used equal allocation rule leads to a suboptimal design. Moreover, we

have produced a complete classification of standardised maximin D-optimal two-point

designs which reduces the numerical effort of design search substantially. To the best

of our knowledge this is the first analytical characterisation of such designs when an

explicit form for the locally D-optimal designs is not available.

Additionally, cluster designs were built since these are proven to be similarly ef-

fective and much more easily computed than other parameter-robust designs such as

Bayesian optimal designs. For both the D- and c-optimality criteria we have facili-

tated their construction even more by our results on the corresponding locally optimal

designs.

Using the exponential regression model in its proportional hazards parametrisation

and a set of parameter values based on the well known survival data used in Freireich

et al. (1963) we have shown that both parameter-robust design strategies are good

alternatives to the locally optimal designs. If one is interested in using a design which,

in the worst case scenario of misspecification of the model parameters, will have the best

minimum efficiency, then the standardised maximin optimal designs are the best choice.

Moreover, for D-optimality, that is, when both model parameters are to be estimated,

cluster designs with more than two support points can also be used, thereby enabling

any lack of fit of the model to be checked.

In practice survival data are often modelled through Cox’s proportional hazards

model instead of the corresponding parametric proportional hazards models since the

former leaves the baseline hazard function unspecified and therefore involves fewer

assumptions. We have met the needs of this practical scenario that requires the use

of the partial likelihood function, introduced by Cox (1972), for the estimation of the

model parameters by setting up a general framework for the construction of optimal

designs for the Cox model. Our approach contains the results by Kalish and Harrington

(1988) as a special case and it differs from that of López-Fidalgo and Rivas-López (2012)

in that we work directly with the asymptotic covariance matrix, thereby avoiding the

need for another level of approximation.

We have derived a general expression for the asymptotic covariance matrix for

partial likelihood estimation, thus generalising the optimality criterion found in Kalish

and Harrington (1988) for a binary design space. We illustrated our approach for the

case of only one covariate and found a necessary condition for a design to be optimal

for partial likelihood estimation. This can be used to discard candidate designs which

do not satisfy this condition. This is a non-standard optimality criterion, and there is

no such result in the literature yet.

Kalish and Harrington (1988) claim that the balanced design that allocates equal
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proportions of subjects to the support points of the design is sufficiently efficient under

both Type-I and random censoring. However, we found this not to be the case for

large effect sizes β and/or heavy censoring. We further extended a result by Kalish

and Harrington (1988) to the case of a continuous design space. In particular, for Type-

I censoring, the optimal design for partial likelihood estimation will not depend on the

shape of the baseline hazard function, but only on the value of the survivor function

at the censoring time c. This means that the optimal designs for constant baseline

hazard, that is, for the exponential regression model, will be highly efficient for partial

likelihood estimation in any underlying hazard model and can thus be regarded as

optimal for all proportional hazards models.

Optimal designs for partial likelihood estimation are not trivial to find, and may

therefore not be popular with practitioners. We have compared these designs with the

locally c-optimal designs for the corresponding parametric model constructed using

the full likelihood information, and found that the optimal designs for both methods

are very similar, in particular, for heavy censoring which is often observed in practice.

We used Taylor expansions to show that the two asymptotic variances are indeed

approximately equal, where the accuracy of the approximation is higher, the heavier the

censoring. Hence the c-optimal designs found in Chapter 4 for the general class of two-

parametric nonlinear models are highly efficient also for partial likelihood estimation,

and can thus be used without detriment in most situations.

When parametric models are used in practice, often the exponential distribution is

naturally assumed for the times to event along with the proportional hazards assump-

tion. However, this parametric model may hold only approximately. For this reason,

we have defined a class of models in a neighbourhood of the exponential-based propor-

tional hazards models. This class is specified by small deviations from the exponential

distribution but nonetheless includes the next most frequently considered parametric

proportional hazards models based on the Weibull and Gompertz distributions. There-

fore, we take into account any imprecisions in the specification of the mean response

that may occur in practice.

Following Wiens (1992), we use criteria based on the mean squared error matrix

due to the bias of the maximum likelihood estimators for the model parameters. These

correspond to the classical D- and c-optimality criteria and the minimax designs con-

structed minimise the corresponding criteria functions for the worst possible deviations

from the exponential regression model within the class. We also incorporate Type-I

censoring in the derivation of the mean squared error matrix and thus our resulting

model robust designs also take into account the effect of censoring.

For both binary and continuous design spaces and for D- and c-optimality, we

provide analytical characterisations for the optimal weights of the minimax designs.

In particular, for a binary design space our results on minimax c-optimal designs for
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estimating the covariate coefficient β show that any deviations from the exponential

distribution do not affect the optimal choice of design. Therefore, in survival experi-

ments comparing, for example, two treatments or methods, where interest centres on

estimating this treatment/method effect, the c-optimal design for the exponential-based

proportional hazards model can be used without detriment. This again highlights the

importance of our results from Chapters 4 and 5.

We finally note that our work presented in Chapters 4 and 5 on locally optimal

and parameter robust designs led to the publication entitled ”Optimal designs for two-

parameter nonlinear models with application to survival models” in Statistica Sinica

(Konstantinou, Biedermann and Kimber (2013)).

8.2 Future work

As mentioned in Chapter 5, a topic for further investigation is the analytical charac-

terisation of standardised maximin D-optimal designs on a continuous design space in

the case of positive values for the parameter β. In many clinical trial applications the

response variable is the lifetime of patients and so larger event times are preferable.

Since a new treatment will be studied if it is expected to increase the life expectancy

of patients, the β-value will be negative. However, this is not the case for studies

where the event of interest is non-fatal and so smaller event times may be desired. The

method of proof we used to classify standardised maximin D-optimal designs in the

case β < 0 does not work for the β > 0. Therefore, a different approach is needed in

order to complete the classification of standardised maximin D-optimal designs.

For the Cox’s model, the derivation of analytical results has proved to be difficult

since the integrals involved in the maximum partial likelihood method cannot be solved

analytically. However, based on our conclusions on the similarity of the variances and

hence of the optimal designs found for full and partial likelihood estimation, we feel

that a further theoretical investigation of these findings is worthwhile and may produce

the long awaited analytical results for Cox’s proportional hazards model.

Another possible future direction that can be explored is the construction of model-

robust designs when the proportional hazards assumption is violated. An alternative

class of models that can be used in this case is the class of accelerated failure time

(AFT) models. Therefore, a similar approach to that used in Chapter 7, can be used to

construct optimal designs that are robust to deviations from the exponential regression

model but within an AFT framework rather than the proportional hazards framework

we have used.

Our designs for Cox’s model and the model-robust designs given in Chapter 7

are locally optimal with respect to the model parameter values. Hence, methods to

make them robust to misspecifications of these values could also be topic for further
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investigation.

Finally, our results can be extended to models that involve more than one explana-

tory variable. Although this is not often encountered in survival experiments, such as

clinical trials where only the treatment effect is investigated and all other factors af-

fecting the response are not controlled by the experimenter, the incorporation of many

explanatory variables that are under the experimenter’s control is a natural extension

to our existing findings.
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Appendix A

A.1 Proofs for Chapter 1

A.1.1 Statement 1

Let Q(θ) be a positive function for all θ ∈ R, twice continuously differentiable and

strictly increasing on R (conditions (a) and (b)). If the function logQ(θ) is concave for

θ ∈ R (condition (d1)), then for any s ∈ R, the function g2(θ) = Q(θ)(s− θ)2 satisfies

g′2(θ) = 0 for exactly two values of θ ∈ (−∞, s] (condition (d)).

Proof. Since Q(θ) is twice continuously differentiable then logQ(θ) is concave if and

only if its second order derivative is non-positive for all θ ∈ R. That is, if the function

Q′(θ)/Q(θ) is decreasing on R. Now

g′2(θ)

(s− θ)
= 0 ⇐⇒ Q′(θ)

Q(θ)
=

2

(s− θ)
.

It can be easily seen that the right-hand side of this equation is an increasing function

for θ ∈ (−∞, s), whereas the left-hand side is decreasing on (−∞, s) using the definition

of a concave function given above. Hence the equation g′2(θ)/(s − θ) = 0 has exactly

one solution on (−∞, s) which implies condition (d).

A.1.2 Statement 2

The GLM’s with response variable following a Gamma(γ, (k1 + eα+βx)k2) or an Inv-

Gamma(γ, (k1 + eα+βx)k2) distribution, where γ > 0, k1 > 0, k2 6= 0 are known, have

an information matrix of the form (4.1) and satisfy conditions (a)-(d) and (d1).

Proof. Let T ∼ Gamma(γ, (k1 + eα+βx)k2). The log-likelihood function at point x is

then given by

l(x, α, β) = log fG(t, x) = (γ−1) log t− t

(k1 + eα+βx)k2
−γk2 log (k1 + eα+βx)− log Γ(γ),
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where fG(t, x) is the probability density function of the Gamma distribution and Γ(γ)

is the gamma function evaluated at the shape parameter γ. Therefore the second order

derivatives of the log-likelihood function with respect to the parameters α and β are

given by

∂2l(x, α, β)

∂α2
=
tk2e

α+βx(k1 − k2eα+βx)
(k1 + eα+βx)k2+2

− γk2k1e
α+βx

(k1 + eα+βx)2
,

∂2l(x, α, β)

∂α∂β
= x

∂2l(x, α, β)

∂α2
,
∂2l(x, α, β)

∂β2
= x2

∂2l(x, α, β)

∂α2
.

Using the fact that E(T ) = γ(k1 + eα+βx)k2 , the Fisher information at point x is

I(x, α, β) =

 E
(
− ∂2l
∂α2

)
E
(
− ∂2l
∂α∂β

)
E
(
− ∂2l
∂α∂β

)
E
(
− ∂2l
∂β2

)  = γ

(
k2e

α+βx

k1 + eα+βx

)2
(

1 x

x x2

)
,

which yields (4.1) for Q(θ) = γk22e
2θ/(k1 + eθ)2.

If T ∼ Inv-Gamma(γ, (k1 + eα+βx)k2) then the log-likelihood at x is

l(x, α, β) = γk2 log (k1 + eα+βx)− (k1 + eα+βx)k2

t
− (γ + 1) log t− log Γ(γ),

and E(1/T ) = γ/(k1 + eα+βx)k2 . Following the same procedure as before, we again

obtain an information matrix of the form (4.1) for the same Q-function. It therefore

remains to show that this Q-function satisfies assumptions (a)-(d) and (d1).

Since γ > 0, k1 > 0 and k2 6= 0, the function Q(θ) = γk22e
2θ/(k1 + eθ)2 is positive

for all θ ∈ R. Also

Q′(θ) = 2γk1k
2
2e

2θ/(k1 + eθ)3 > 0 ∀θ ∈ R, Q′′(θ) = 2γk1k
2
2e

2θ(2k1 − eθ)/(k1 + eθ)4,

and so conditions (a) and (b) hold. Now

g′′1(θ) = 4k1(2k1 + eθ)/γk22e
2θ

is decreasing with θ, as its derivative with respect to θ is given by

−4k1(4k1 + eθ)/γk22e
2θ,

and therefore it is an injective function. This concludes the proof for condition (c).

Moreover,

(logQ(θ))′′ = −2k1e
θ/(k1 + eθ)2 < 0, ∀θ ∈ R.

Hence condition (d1) and therefore condition (d) are also satisfied.

98



A.1.3 Statement 3

Any parametric proportional hazards model with hazard function of the form (4.2) and

response variable subject to Type-I censoring, has information matrix of the form (4.1)

and satisfies conditions (a)-(d) and (d1).

Proof. Let Yj = min{Tj, c}, j = 1, . . . , n be random variables for the possibly right-

censored observations and Tj follow model (4.2) with corresponding probability density

and survivor functions given by

f(tj) = eα+βxjr(tj)e
−eα+βxj

∫ tj
0 r(s) ds, S(tj) = e−e

α+βxj
∫ tj
0 r(s) ds, tj > 0.

Also let the indicator variable

δi =


1, when Yj = Tj

0, when Yj = c

,

that is, δj = 0 when the jth observation is right-censored and unity otherwise. Then

the log-likelihood function at point xj is

l(xj, α, β) = log
(
{f(yj)}δj{S(yj)}(1−δj)

)
= δj[α + βxj + log r(yj)]− eα+βxj

∫ yj

0

r(s)ds.

In the second order derivatives of the above function with respect to α and β, the only

random term involved is
∫ yj
0
r(s)ds with expectation given by

E

(∫ Yj

0

r(s)ds

)
=

∫ c

0

∫ yj

0

r(s) ds f(yj) dyj +

∫ c

0

r(s) ds P (Yj = c)

=

∫ c

0

∫ yj

0

r(s) ds eα+βxj r(yj) e
−eα+βxj

∫ yj
0 r(s) ds dyj +

∫ c

0

r(s) ds e−e
α+βxj

∫ c
0 r(s) ds

=
(

1− e−e
α+βxj

∫ c
0 r(s) ds

)
/eα+βxj .

The resulting Fisher information matrix at point xj

I(x, α, β) =

 E
(
− ∂2l
∂α2

)
E
(
− ∂2l
∂α∂β

)
E
(
− ∂2l
∂α∂β

)
E
(
− ∂2l
∂β2

)  =
(

1− e−e
α+βxj

∫ c
0 r(s) ds

)( 1 xj

xj x2j

)
,

is of the form (4.1) for Q(θ) = 1− e−eθ
∫ c
0 r(s) ds.

From the parametrisation defined in (4.2) we observe that r(s) > 0 ∀s ∈ [0, c], since

the baseline hazard function is always positive, and so Q(θ) = 1 − e−e
θ
∫ c
0 r(s) ds > 0,
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∀θ ∈ R. The first and second order derivatives of Q(θ) are given by

Q′(θ) = eθ
∫ c

0

r(s) ds e−e
θ
∫ c
0 r(s) ds > 0 ∀θ ∈ R

Q′′(θ) = eθ
∫ c

0

r(s) ds e−e
θ
∫ c
0 r(s) ds

(
1− eθ

∫ c

0

r(s) ds

)
.

Hence conditions (a) and (b) are satisfied.

Condition (d1) is true if and only if

(logQ(θ))′′ =
Q′′(θ)Q(θ)− {Q′(θ)}2

{Q(θ)}2
≤ 0

⇐⇒ Q′′(θ)Q(θ)− {Q′(θ)}2 ≤ 0

⇐⇒ eθ
∫ c

0

r(s) ds e−e
θ
∫ c
0 r(s) ds

(
1− e−eθ

∫ c
0 r(s) ds − eθ

∫ c

0

r(s) ds

)
≤ 0.

Now 1−e−eθ
∫ c
0 r(s) ds−eθ

∫ c
0
r(s) ds < 1−

(
1− eθ

∫ c
0
r(s) ds

)
−eθ

∫ c
0
r(s) ds = 0. So (d1)

and as a result condition (d) hold.

Let ζ = eθ
∫ c
0
r(s) ds, which is positive for all θ ∈ R. The function eθ

∫ c
0
r(s) ds→ ζ

is continuous and strictly increasing, therefore injective, and also surjective. Hence

it is a bijective function. Using this re-parametrisation the second derivative of the

function g1, defined in condition (c), is given by

g′′1(ζ) =
−2ζe−ζ

(1− e−ζ)3
(1− ζ − e−ζ − ζe−ζ).

This is a strictly decreasing function for θ ∈ R and therefore condition (c) is satisfied.

In order to show this, it is enough to prove that g′′′1 (ζ) < 0 ∀ζ > 0 which is equivalent

to showing

(1− e−ζ)2 + ζ(−3 + ζ + 3e−2ζ + 4ζe−ζ + 4e−2ζ) > 0, ∀ζ > 0.

A sufficient condition for this to be true is that ρ1(ζ) := −3 + ζ+ 3e−2ζ + 4ζe−ζ + 4e−2ζ

is strictly positive for all ζ > 0. But ρ1(0) = 0 and if ρ1(ζ) is a strictly increasing

function then ρ1(ζ) > 0 ∀ζ > 0. Now

ρ′1(ζ) > 0 ∀ζ > 0 ⇐⇒ ρ2(ζ) := 1− 5e−2ζ + 4e−ζ − 4ζe−ζ − 2ζe−2ζ > 0 ∀ζ > 0.

We observe that ρ2(0) = 0 and so for ρ2(ζ) > 0 it is enough to show that

ρ′2(ζ) > 0 ∀ζ > 0 ⇐⇒ 4e−ζ(2e−ζ − 2 + ζe−ζ + ζ) > 0 ∀ζ > 0

⇐⇒ ρ3(ζ) := 2e−ζ − 2 + ζe−ζ + ζ > 0 ∀ζ > 0.
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This last statement is true because ρ3(0) = 0 and ρ′3(ζ) = 1 − e−ζ − ζe−ζ > 0 ∀ζ > 0

since eζ > 1 + ζ ⇐⇒ e−ζ(1 + ζ) < 1.

A.1.4 Statement 4

Any parametric proportional hazards model with hazard function of the form (4.2),

where
∫ cj
0
r(s) ds is log-concave in cj on R+, and response variable subject to random

censoring, has information matrix of the form (4.1) and satisfies conditions (a), (b),

(d) and (d1). Condition (c) has to be checked on a case by case basis.

Proof. In the case of random censoring we assume that the subjects enter the ex-

periment at random times Zj ∈ [0, c], j = 1, . . . , n, which are independent of the

times to event Tj and we also assume that Zj ∼ U(0, c). Hence the censoring times

Cj = c − Zj are also random and Cj ∼ U(0, c) with probability density function

fCj(cj) = 1/c. Under this censoring mechanism what we actually observe for each

subject is Yj = min{Tj, Cj} with Tj following model (4.2). The log-likelihood at point

xj is

l(xj, α, β) = δj(log c+ α + βxj + log r(yj)) + log c− eα+βxj
∫ yj

0

r(s) ds,

where, as in the Type-I censoring case, δj = 0 for a right-censored observation, that is

Yj = Cj and δj = 1 otherwise, that is Yj = Tj. Now

E

(∫ Yj

0

r(s) ds|Cj = cj

)
=
(

1− e−e
α+βxj

∫ cj
0 r(s) ds

)
/eα+βxj ,

and so

E

(∫ Yj

0

r(s) ds

)
= E

(
E

(∫ Yj

0

r(s) ds|Cj = cj

))
=

1

c

∫ c

0

1− e−e
α+βxj

∫ cj
0 r(s) ds

eα+βxj
dcj.

Hence the Fisher information matrix at point xj is

I(x, α, β) =

 E
(
− ∂2l
∂α2

)
E
(
− ∂2l
∂α∂β

)
E
(
− ∂2l
∂α∂β

)
E
(
− ∂2l
∂β2

)  =
1

c

∫ c

0

(1− e−e
α+βxj

∫ cj
0 r(s) ds) dcj

(
1 xj

xj x2j

)
,

which yields (4.1) for Q(θ) = 1
c

∫ c

0

(1− e−eθ
∫ cj
0 r(s) ds) dcj.

For fixed cj, 1 − e−e
θ
∫ cj
0 r(s) ds > 0 ∀θ ∈ R since r(s) > 0. Therefore, conditions

(a) and (b) are satisfied for the Q-function given above with first and second order

101



derivatives given by

Q′(θ) =
1

c

∫ c

0

eθ
∫ cj

0

r(s) ds e−e
θ
∫ cj
0 r(s) ds dcj > 0 ∀θ ∈ R

Q′′(θ) =
1

c

∫ c

0

eθ
∫ cj

0

r(s) ds e−e
θ
∫ cj
0 r(s) ds

(
1− eθ

∫ cj

0

r(s) ds

)
dcj.

Condition (d1) is equivalent to the function Q(θ) being log-concave on R. From

Theorem 2 in Prékopa (1973) it follows that if the function Q(θ, cj) = 1− e−eθ
∫ cj
0 r(s) ds

is log-concave then
∫ c
0

1 − e−eθ
∫ cj
0 r(s) ds dcj is also log-concave and therefore condition

(d1) is satisfied.

Now for the two variable function Q(θ, cj) to be log-concave we must show that the

Hessian matrix involving the second order derivatives of logQ(θ, cj) with respect to θ

and cj is negative semidefinite. This is true if and only if its diagonal entries are both

non-positive and its determinant is non-negative.

From the proof of condition (d1) for Type-I censoring (section A.1.3), we have that

(∂2/∂θ2) logQ(θ, cj) < 0. Also the determinant of the Hessian is non-negative if and

only if (
1− e−eθ

∫ cj
0 r(s) ds − eθ

∫ cj

0

r(s) ds

)(
1− e−eθ

∫ cj
0 r(s) ds

)
(

(∂/∂cj)r(cj)

∫ cj

0

r(s) ds− {r(cj)}2
)
≥ 0

⇐⇒ (∂/∂cj)r(cj)

∫ cj

0

r(s) ds− {r(cj)}2 ≤ 0

⇐⇒
(∂/∂cj)r(cj)

∫ cj
0
r(s) ds− {r(cj)}2(∫ cj

0
r(s) ds

)2 ≤ 0

⇐⇒ log

∫ cj

0

r(s) ds is concave on R+

⇐⇒
∫ cj

0

r(s) ds is log-concave on R+,

which is true. Moreover for the second diagonal element (∂2/∂c2j) logQ(θ, cj) to be

non-positive we must show that

∂r(cj)

∂cj)
r(cj)

(
1− e−eθ

∫ cj
0 r(s) ds

)
− eθ{r(cj)}2 ≤ 0.

Using the assumption of
∫ cj
0
r(s) ds being log-concave on R+ it is enough to show that(

1− e−eθ
∫ cj
0 r(s) ds

)
∫ cj
0
r(s) ds

− eθ ≤ 0
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⇐⇒ 1− e−eθ
∫ cj
0 r(s) ds − eθ

∫ cj

0

r(s) ds ≤ 0,

which is true and therefore assumption (d1) is satisfied.

Condition (c) has to be checked on a case by case basis. For example, the Q-function

for the exponential based proportional hazards model is Q(θ) =
(
ceθ − 1 + e−ce

θ
)
/ceθ

and using the parametrisation ζ = ceθ > 0 we have

g′′1(ζ) =
−2ζ

(ζ − 1 + e−ζ)3
{

(ζ2e−ζ − 1 + e−ζ + ζe−ζ)(ζ − 1 + e−ζ)− 2(1− e−ζ − ζe−ζ)2
}
.

From the graph given below we observe that this is a decreasing function for ζ > 0 and

therefore g′′1(θ) is decreasing on R which implies condition (c).

ζ
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A.1.5 Statement 5

The accelerated failure time model with failure time distribution Gamma(2, 1 + eα+βx)

for α + βx ≤ 0 and Exponential with rate parameter equal to
(
−2e(α+βx)/2 + α+βx

2

)−1
for α + βx > 0, has information matrix of the form (4.1), satisfies conditions (a)-(d)

and (d1) and is not three times continuously differentiable.

Proof. As shown in section A.1.2, a Gamma(2, 1 + eα+βx) distribution yields (4.1) with

corresponding Q-function 2e2θ/(1+eθ)2. Now the log-likelihood function at point x for

the Exponential distribution with rate parameter
(
−2e(α+βx)/2 + α+βx

2

)−1
is

l(x, α, β) = log

(
α + βx

2
− 2e(α+βx)/2

)
+

t

2e(α+βx)/2 − α+βx
2

,

103



and so the Fisher information matrix at x is given by

I(x, α, β) =

(
e(α+βx)/2 − 1

2

)(
1 xj

xj x2j

)
,

which yields (4.1) with Q-function eθ/2 − 1/2. Therefore, the accelerated failure time

model has an information matrix of the form (4.1) with

Q(θ) =

{
2e2θ/(1 + eθ)2, if θ ≤ 0

eθ/2 − 1/2, if θ > 0
.

The plots given below verify that conditions (a) and (b) hold but Q(θ) is not three

times differentiable as continuity is disrupted at point θ = 0.
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Moreover, as shown in the following two plots, the function g′′1(θ) defined in condi-

tion (c) is strictly decreasing and (logQ(θ))′′ < 0 for all θ ∈ R and therefore conditions

(c) and (d1), and hence condition (d), are satisfied.
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Hence assumptions (a)-(d) and (d1) hold for the accelerated failure time model

considered but Yang and Stufken (2009) assumption of a three times continuously

differentiable Q-function is not satisfied.

A.1.6 Lemma 1

Let β 6= 0 and conditions (a)-(c) be satisfied. Then the locally D-optimal design for a

model with information matrix (4.1) is unique and has two equally weighted support

points.

Proof. Let α and β > 0 be fixed. The case where β < 0 can be shown analogously

and is therefore omitted. Also let ξ∗ be a locally D-optimal design for a model with

information matrix (4.1) and

M−1(ξ∗, α, β) =

(
m1 m2

m2 m3

)
,

where m1,m2,m3 ∈ R. From Theorem 1 in section 4.2.1 we obtain that a D-optimal

design ξ∗ must satisfy the inequality

m1 + 2m2 +m3x
2 ≤ 2/Q(α + βx) ∀x ∈ [0, 1],

with equality at the support points of ξ∗. Using the parametrisation θ = α + βx this
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is equivalent to ξ∗ satisfying the inequality

d(θ) := d1 + d2θ + d3θ
2 ≤ 2/Q(θ) = g1(θ) ∀θ ∈ [α, α + β],

with equality at the support points θi of ξ∗, where d1, d2, d3 ∈ R.

Now suppose a locally D-optimal design has three support points, α ≤ θ1 < θ2 <

θ3 ≤ α + β. Then d(θi) = g1(θi), i = 1, 2, 3. By Cauchy’s mean value theorem, there

exist points θ̃i, i = 1, 2 such that

θ1 < θ̃1 < θ2 < θ̃2 < θ3 and d′(θ̃i) = g′1(θ̃i).

Since d(θ) ≤ g1(θ) on [α, α + β], we also have d′(θ2) = g′1(θ2). By the mean value

theorem, there exist points θ̂i, i = 1, 2 such that

θ̃1 < θ̂1 < θ2 < θ̂2 < θ̃2 and d′′(θ̂i) = g′′1(θ̂i).

Now d′′(θ) is constant and using condition (c) it can intersect with g′′1(θ) at most once

on [α, α + β], which contradicts the assumption of three support points. Hence a

D-optimal design has exactly two support points, with equal weights.

Let ξ∗1 and ξ∗2 be two locally D-optimal designs. By log-concavity of the D-criterion,

the design ξ3 = 0.5ξ∗1 + 0.5ξ∗2 must also be locally D-optimal. However, if ξ∗1 and ξ∗2

are different, ξ3 has more than two support points, which contradicts the result above.

Hence the locally D-optimal design ξ∗ is unique.

A.1.7 Theorem 2(b)

Let conditions (a)-(d) be satisfied. If β < 0, the design

ξ∗ =

{
0 x∗1

0.5 0.5

}
,

is locally D-optimal on X = [0, 1], where x∗1 = 1 if β > −2Q(α + β)/Q′(α + β).

Otherwise, x∗1 is the unique solution of the equation βx1+2Q(α+βx1)/Q
′(α+βx1) = 0.

Proof. Let β < 0. From Lemma 1 we know that the locally D-optimal design is

supported at exactly two points with equal weights. Let x∗0, x
∗
1 ∈ [0, 1] be the two

equally weighted support points with x∗0 < x∗1. Then the determinant of the information

matrix (4.1) is given by

|M(ξ, α, β)| = 1

4
Q(α + βx∗0)Q(α + βx∗1)(x

∗
0 − x∗1)2.
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For fixed x∗1,

∂|M(ξ, α, β)|
∂x∗0)

=
Q(α + βx∗1)(x

∗
0 − x∗1)

4
[βQ′(α + βx∗0)(x

∗
0 − x∗1) + 2Q(α + βx∗0)] < 0,

using conditions (a) and (b). Hence, regardless of the value of x∗1, the determinant is

decreasing with x∗0 and therefore maximised for x∗0 = 0. It remains to maximise

g2(α + βx1) = Q(α + βx1)x
2
1.

Using assumption (d), g2(α+ βx1) has exactly two turning points on [0,∞) which can

be found by solving the equation

βQ′(α + βx1)x
2
1 + 2Q(α + βx1)x1 = 0.

It is easy to see that one of the turning points is x1 = 0 which is always a minimum,

since
∂2g2(α + βx1)

∂x21

∣∣∣∣∣
x1=0

= 2Q(α) > 0,

and hence the other turning point must be a maximum. Now if this maximum is

attained outside the design space X = [0, 1], g2(α+βx1) is maximised at x1 = 1 which

will then be the second support point of the locally D-optimal design. This occurs if

and only

∂g2(α + βx1)

∂x1

∣∣∣∣∣
x1=1

> 0,

which is equivalent to

β > −Q(α + β)/Q′(α + β).

Otherwise the point at which the maximum is attained will be the larger support point

x∗1. This is found by solving
∂g2(α + βx1)

∂x1
= 0,

which is equivalent to solving

βx1 + 2Q(α + βx1)/Q
′(α + βx1) = 0.

A.1.8 Theorem 4(b)

Let conditions (a), (b) and (d1) be satisfied. If β < 0, the design ξ∗ with support

points u and x∗1 and the optimal weights given in (4.4) is locally c-optimal for β on
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X = [u, v], where x∗1 = v if

β(u− v)− 2
Q(α + βv)

Q′(α + βv)

(
1 +

√
Q(α + βv)√
Q(α + βu)

)
< 0.

Otherwise, x∗1 is the unique solution of the equation

β(u− x1)− 2
Q(α + βx1)

Q′(α + βx1)

(
1 +

√
Q(α + βx1)√
Q(α + βu)

)
= 0.

Proof. Let β < 0 and using Lemma 2 let x∗0 < x∗1 be the two support points of a locally

c-optimal design for β. For this design with corresponding optimal weights given in

(4.4) the objective function we want to minimise is given by

d̃(x∗0, x
∗
1) :=

(
1√

Q(α + βx∗0)
+

1√
Q(α + βx∗1)

)2
1

(x∗0 − x∗1)2
.

For fixed x∗1,

∂d̃(x∗0, x
∗
1)

∂x∗0
=

(
1√

Q(α + βx∗0)
+

1√
Q(α + βx∗1)

)
1

(x∗0 − x∗1)2[
−βQ′(α + βx∗0)

{Q(α + βx∗0)}3/2
− 2

(x∗0 − x∗1)

(
1√

Q(α + βx∗0)
+

1√
Q(α + βx∗1)

)]
> 0,

using conditions (a) and (b). Hence regardless of the value of x∗1 d̃(x∗0, x
∗
1) is increasing

with x∗0 and therefore attains its minimum in [u, v] at the lower bound, u, of the design

space. It remains to minimise the function d̃(u, x1), the turning points of which can be

found by solving (∂/∂x1)d̃(u, x1) = 0. This is equivalent to solving

u− x1 =
2Q(α + βx1)

βQ′(α + βx1)

(
1 +

√
Q(α + βx1)√
Q(α + βu)

)
.

We observe that u − x1 is decreasing with x1 and using conditions (a), (b) and (d1)

the left-hand side is increasing with x1 as the product of two positive and increasing

functions. Hence the above equation has exactly one root and so d̃(u, x1) has exactly

one turning point in (u,∞). This must be a minimum as

lim
x0→∞

d̃(u, x1) = lim
x0→u

d̃(u, x1) =∞.

If the minimum is not in the interior of the design space, its upper bound, v, is the

larger support point x∗1 of the locally c-optimal design for β. This occurs if and only if
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∂d̃(u, x1)

∂x1

∣∣∣∣∣
x1=v

< 0

which is equivalent to

β(u− v)− 2
Q(α + βv)

Q′(α + βv)

(
1 +

√
Q(α + βv)√
Q(α + βu)

)
< 0.

Otherwise, x∗1 is the unique solution of

∂d̃(u, x1)

∂x1
d̃(u, x1) = 0,

which is equivalent to solving

β(u− x1)− 2
Q(α + βx1)

Q′(α + βx1)

(
1 +

√
Q(α + βx1)√
Q(α + βu)

)
= 0.
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Appendix B

B.1 Proofs for Chapter 5

B.1.1 Statement 1 (Proof of Theorem 5)

Let

w(β) := β +
2Q(α + β)

Q′(α + β)
,

with w(β0) ≤ 0 and u(x, β) := Q(α + βx)x2/Q(α + βxβ)x2β, where xβ satisfies the

equation

βxβ +
2Q(α + βxβ)

Q′(α + βxβ)
= 0.

For fixed 0 < x ≤ 1, the function β → u(x, β) is unimodal.

Proof. Using condition (d1) it can be easily shown that the function w(β) is increasing

with β. We consider two cases: (i) w(β1) > 0 and (ii) w(β1) ≤ 0.

Case (i): Since w(β0) ≤ 0 and w(β) is continuous there exists β∗ ∈ (β0, β1] such

that w(β) > 0 for all β ≥ β∗. In this case xβ = 1 and for fixed 0 < x ≤ 1

∂u(x, β)

∂β
=

x2

[Q(α + β)]2
{Q′(α + βx)xQ(α + β)−Q(α + βx)Q′(α + β)]}.

From condition (d1), Q′(θ)/Q(θ) is decreasing with θ and therefore

Q′(α + βx)

Q(α + βx)
x ≤ Q′(α + βx)

Q(α + βx)
≤ Q′(α + β)

Q(α + β)
,

since x ≤ 1 (⇒ α + βx ≥ α + β). Hence the derivative of u(x, β) with respect to β is

non-positive for all β ∈ [β∗, β1] and u(x, β) is minimised at β1.

For β < β∗ and fixed 0 < x ≤ 1, solving

∂u(x, β)

∂β
= 0

is equivalent to solving
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Q′(α + βx)xQ(α + βxβ)xβ −Q(α + βx)
[
Q′(α + βxβ)xβ

(
xβ + β

dxβ
dβ

)
+ 2Q(α + βxβ)

dxβ
dβ

]
= 0. (B.1)

Using the fact that

βxβ +
2Q(α + βxβ)

Q′(α + βxβ)
= 0

and substituting this expression for Q(α + βxβ), equation (B.1) becomes

βx+
2Q(α + βx)

Q′(α + βx)
= 0,

which has a unique solution β such that xβ = x using part (b) of Theorem 2 (see

section 4.2.3). Therefore the function β → u(x, β) is unimodal for fixed x.

Case (ii): If w(β1) ≤ 0 then for all β ∈ [β0, β1] w(β) ≤ 0 and following the same

arguments as in the β < β∗ case, for fixed 0 < x ≤ 1 the function β → u(x, β) is

unimodal.

B.1.2 Statement 2 (Proof of Theorem 5)

The standardised maximin D-optimal two-point design ξ∗{0,x} is in the set

M= :=
{
x ∈ (0, 1] u(x, β0) = u(x, β1)

}
,

where

u(x, β) :=
Q(α + βx)x2

Q(α + βxβ)x2β
.

Proof. Let us assume that the design is in M< :=
{
x ∈ (0, 1] u(x, β0) < u(x, β1)

}
.

and so we must maximise the function u(x, β0). Taking its first derivative with respect

to x and equating it to zero yields

β0x+
2Q(α + β0x)

Q′(α + β0x)
= 0,

which has a unique solution x = xβ0 . Hence {u(xβ0 , β0)}1/2 = 1 < {u(xβ0 , β1)}1/2,
which is a contradiction since the efficiency is always less than or equal to 1. Following

similar arguments for set M> :=
{
x ∈ (0, 1] u(x, β0) > u(x, β1)

}
also leads to a con-

tradiction and therefore the standardised maximin D-optimal two-point design must

be in the M= set.

112



B.2 Proofs for Chapter 6

B.2.1 Proposition 1

Let H be the class of all one-point designs where the support point is in the design

space X = [u, v], and let η = {x; 1} ∈ H. If a design ξ∗ on X with support points

{x1, . . . , xm} and corresponding weights {ω1, . . . , ωm} is optimal for estimating β via

the partial likelihood method, the inequality

d(ξ∗, η) ≤ 0

holds for all η ∈ H, with equality in the one-point designs ξi = {xi; 1}, i = 1, . . . ,m,

generated by the support points of ξ∗. Here d(ξ∗, η) is the Fréchet derivative of the

criterion function at ξ∗ in direction of the one-point design η, and is given by

d(ξ∗, η) = −
m∑
i=1

∑
q<i

ωiωqe
β(xi+xq)(xi − xq)2

∫ ∞
0

h0(y)πi(y)πq(y)∑m
l=1 ωlπl(y)eβxl

dy

−
m∑
i=1

∑
q<i

ωiωqe
β(xi+xq)(xi − xq)2

∫ ∞
0

h0(y)πi(y)πq(y)πx(y)eβx

(
∑m

l=1 ωlπl(y)eβxl)2
dy

+
m∑
q=1

ωqe
β(x+xq)(x− xq)2

∫ ∞
0

h0(y)πx(y)πq(y)∑m
l=1 ωlπl(y)eβxl

dy,

where πx(y) is the probability of being at risk at time y given covariate value x.

Proof. We first find the Fréchet derivative of the criterion function Σ(ξ) defined in

(6.5), for the case of one covariate, at a design ξ in the direction of another design η,

where

ξ =

{
x1 . . . xm

ω1 . . . ωm

}
and η =

{
xm+1 . . . xl

ωm+1 . . . ωl

}
.

Then

(1− ε)ξ + εη =

{
x1 . . . xm xm+1 . . . xl

ω∗1 . . . ω∗m ω∗m+1 . . . ω∗l

}
where ω∗i = (1−ε)ωi if i ≤ m or ω∗i = εωi if i > m. Let R1(y) =

∑m
r=1 ωrπr(y) exp(βxr)

and R2(y) =
∑l

r=m+1 ωrπr(m) exp(βxr). Then

Σ((1− ε)ξ + εη)− Σ(ξ)

=
l∑

i=1

∑
q<i

ω∗i ω
∗
q exp(β(xi + xq))(xi − xq)2

∫ ∞
0

h0(y)πi(y)πq(y)

(1− ε)R1(y) + εR2(y)
dy

−
m∑
i=1

∑
q<i

ωiωq exp(β(xi + xq))(xi − xq)2
∫ ∞
0

h0(y)πi(y)πq(y)

R1(y)
dy
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=
m∑
i=1

∑
q<i

ωiωq exp(β(xi + xq))(xi − xq)2∫ ∞
0

h0(y)πi(y)πq(y)

[
(1− ε)2

(1− ε)R1(y) + εR2(y)
− 1

R1(y)

]
dy

+ (1− ε)ε
l∑

i=m+1

m∑
q=1

ωiωq exp(β(xi + xq))(xi − xq)2∫ ∞
0

h0(y)πi(y)πq(y)

(1− ε)R1(y) + εR2(y)
dy +O(ε2)

=
m∑
i=1

∑
q<i

ωiωq exp(β(xi + xq))(xi − xq)2∫ ∞
0

h0(y)πi(y)πq(y)
−ε(R1(y) +R2(y)) +O(ε2)

R1(y)[(1− ε)R1(y) + εR2(y)]
dy

+ ε

l∑
i=m+1

m∑
q=1

ωiωq exp(β(xi + xq))(xi − xq)2∫ ∞
0

h0(y)πi(y)πq(y)

(1− ε)R1(y) + εR2(y)
dy +O(ε2).

The Fréchet derivative is therefore

d(ξ, η) = lim
ε→0

1

ε
(Σ((1− ε)ξ + εη)− Σ(ξ))

= −
m∑
i=1

∑
q<i

ωiωq exp(β(xi + xq))(xi − xq)2
∫ ∞
0

h0(y)πi(y)πq(y)

R1(y)
dy

−
m∑
i=1

∑
q<i

ωiωq exp(β(xi + xq))(xi − xq)2
∫ ∞
0

h0(y)πi(y)πq(y)R2(y)

R2
1(y)

dy

+
l∑

i=m+1

m∑
q=1

ωiωq exp(β(xi + xq))(xi − xq)2
∫ ∞
0

h0(y)πi(y)πq(y)

R1(y)
dt.

Clearly, d(ξ, η) =
∑l

i=m+1 ωid(ξ, ηi), where ηi is the one-point design with support

xi and weight 1, i = m + 1, . . . , l. (Equivalently, it can be shown that the Gâteaux

derivative is linear in its second argument.) Therefore we only need to consider direc-

tions towards one-point designs. If ξ is optimal, Σ((1 − ε)ξ + εηi) − Σ(ξ) ≤ 0 for all

designs ηi ∈ H, and the inequality d(ξ∗, η) ≤ 0 follows with l = m+ 1 and xm+1 = x.

Now, if ξ is optimal, maxη d(ξ, η) = 0, and clearly 0 = d(ξ, ξ) =
∑m

i=1 ωid(ξ, ξi)

where ξi = {xi; 1}, i = 1, . . . ,m. Hence d(ξ, ξi) = 0 for all i = 1, . . . ,m.
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B.3 Proofs for Chapter 7

B.3.1 Theorem 8

Let g ∈ G2 and X = {0, 1}. The minimax D-optimal two-point design supported at

points 0 and 1 allocates a proportion ω∗ of observations at point 0 regardless of the

sign of the parameter β, where

ω∗ =

√
c22(e

α+β)2

(1−e−ceα+β )
+ 1

[√
c22(e

α)2

(1−e−ceα ) + 1−
√

c22(e
α+β)2

(1−e−ceα+β )
+ 1

]
c22

[
(eα)2

(1−e−ceα ) −
(eα+β)2

(1−e−ceα+β )

] .

Proof. If g ∈ G2 then

∣∣∣∣∣
∫ c

0

e−yje
α+βx

g(yj) dyj

∣∣∣∣∣ ≤ c2 ∀x ∈ {0, 1}. Therefore, for a fixed

design ξ supported at 0 and 1 with corresponding weights ω and 1−ω the determinant

of the mean squared error matrix defined in (7.10) is smaller than or equal to

1

ω(1− ω)(1− e−ceα)(1− e−ceα+β)

{
1 + ω

(c2e
α)2

(1− e−ceα)
+ (1− ω)

(c2e
α+β)2

(1− e−ceα+β)

}

Taking the first order derivative of this expression with respect to ω and equating it to

zero gives

(c2e
α)2

(1− e−ceα)
ω2 − (c2e

α+β)2

(1− e−ceα+β)
(1− ω)2 − (1− 2ω) = 0

⇐⇒ ω1,2 =
−
[

(c2eα+β)2

(1−e−ceα+β )
+ 1
]
±
√

(c2eα)2

(1−e−ceα ) + 1
√

(c2eα+β)2

(1−e−ceα+β )
+ 1

c22

(
(eα)2

(1−e−ceα ) −
(eα+β)2

(1−e−ceα+β )

) .

When β is positive, it is easy to check that both the numerator and the denominator

of the above expression are non-positive since the function θ2/(1 − e−θ) is increasing

with θ. We reject the negative root of the numerator since

− (c2e
α+β)2

(1− e−ceα+β)
− 1−

√
(c2eα)2

(1− e−ceα)
+ 1

√
(c2eα+β)2

(1− e−ceα+β)
+ 1

< − (c2e
α+β)2

(1− e−ceα+β)
< c22

(
(eα)2

(1− e−ceα)
− (eα+β)2

(1− e−ceα+β)

)
and the weight must always be always less than or equal to unity.

In the case of negative β-values the denominator is positive and since ω > 0, again

we accept the positive root.

Therefore for any sign of the parameter β the minimax D-optimal weight at point
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0 is always given by

ω∗ =

√
c22(e

α+β)2

(1−e−ceα+β )
+ 1

[√
c22(e

α)2

(1−e−ceα ) + 1−
√

c22(e
α+β)2

(1−e−ceα+β )
+ 1

]
c22

[
(eα)2

(1−e−ceα ) −
(eα+β)2

(1−e−ceα+β )

] .

B.3.2 Theorem 9(b)

Let g ∈ G1. If β < 0, the design with support points u and x∗2 and optimal weight on

u given in (7.13) is minimax c-optimal for β on X = [u, v], where x∗2 = v if

β(u− v)− 2Q(α + βu)

Q′(α + βu)

[
1 +

√
Q(α + βu)√
Q(α + βv)

+
4c21Q(α + βu)

√
Q(α + βv)√

Q(α + βu) +
√
Q(α + βv)

]
< 0.

Otherwise x∗2 is the unique solution of the equation

β(u− x2)−
2Q(α + βx2)

Q′(α + βx2)

[
1 +

√
Q(α + βx2)√
Q(α + βu)

+
4c21Q(α + βx2)

√
Q(α + βu)√

Q(α + βu) +
√
Q(α + βx2)

]
= 0.

Proof. Let β > 0. Since g ∈ G1 then∣∣∣∣∣
∫ c

0

e−yje
α+βx

g(yj) dyj

∣∣∣∣∣ ≤
∫ c

0

e−yje
α+βx |g(yj)| dyj ≤

∫ c

0

e−yje
α+βx

c1 dyj

= c1(1− e−ce
α+βx

)/eα+βx, ∀x ∈ [u, v]

Therefore, [∣∣∣∣∣eα+βx1
∫ c
0
e−yje

α+βx1
g(yj) dyj

(1− e−ceα+βx1 )
−
eα+βx2

∫ c
0
e−yje

α+βx2
g(yj) dyj

(1− e−ceα+βx2 )

∣∣∣∣∣
]2

≤

[∣∣∣∣∣eα+βx1
∫ c
0
e−yje

α+βx1
g(yj) dyj

(1− e−ceα+βx1 )

∣∣∣∣∣+

∣∣∣∣∣eα+βx2
∫ c
0
e−yje

α+βx2
g(yj) dyj

(1− e−ceα+βx2 )

∣∣∣∣∣
]2
≤ 4c21

Substituting the expression for the c-optimal weights from (7.13) we obtain the

objective function to be minimised to be

1

(x1 − x2)2

{
4c21 +

[
1√

1− e−ceα+βx1
+

1√
1− e−ceα+βx2

]2}
:= k(x1, x2)

For fixed x2(> x1), k(x1, x2) is increasing with x1 as the product of two non-negative

increasing functions and therefore attains its minimum at x∗1 = u. Now k(u, x2) has
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exactly one turning point on (u,∞) which is a minimum since limx2→∞ k(u, x2) =

limx2→u k(u, x2) =∞.

If this minimum is attained outside (u, v] then the larger support point of the design

is v. This occurs if and only if

∂k(u, x2)

∂x2

∣∣∣∣∣
x2=v

< 0,

which is equivalent to condition

β(u− v)− 2Q(α + βu)

Q′(α + βu)

[
1 +

√
Q(α + βu)√
Q(α + βv)

+
4c21Q(α + βu)

√
Q(α + βv)√

Q(α + βu) +
√
Q(α + βv)

]
< 0.

Otherwise, x∗2 is the larger support point and can be found by solving

∂k(u, x2)

∂x2
= 0,

which is equivalent to solving equation

β(u− x2)−
2Q(α + βx2)

Q′(α + βx2)

[
1 +

√
Q(α + βx2)√
Q(α + βu)

+
4c21Q(α + βx2)

√
Q(α + βu)√

Q(α + βu) +
√
Q(α + βx2)

]
= 0.

B.3.3 Theorem 10

Let g ∈ G1
(a) If β > 0, the design with support points x∗1 and v and optimal weight on x∗1 given

in (7.17) is minimax c-optimal for α on X = [u, v], where x∗1 = u if

β(u− v) +
2Q(α + βu)

Q′(α + βu)

[
1 +

√
Q(α + βu)√
Q(α + βv)

+
2c21(u+ v)Q(α + βu)

√
Q(α + βv)√

Q(α + βu) +
√
Q(α + βv)

]
> 0.

Otherwise x∗1 is the unique solution of the equation

β(x1−v)+
2Q(α + βx1)

Q′(α + βx1)

[
1 +

√
Q(α + βx1)√
Q(α + βv)

+
2c21(x1 + v)Q(α + βx1)

√
Q(α + βv)√

Q(α + βx1) +
√
Q(α + βv)

]
= 0.

(b) If β < 0, the design with support points u and x∗2 and optimal weight on u given
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in (7.17) is minimax c-optimal for α on X = [u, v], where x∗2 = v if

β(u− v)− 2Q(α + βu)

Q′(α + βu)

[
1 +

√
Q(α + βu)√
Q(α + βv)

+
2c21(u+ v)Q(α + βu)

√
Q(α + βv)√

Q(α + βu) +
√
Q(α + βv)

]
< 0.

Otherwise x∗2 is the unique solution of the equation

β(u−x2)−
2Q(α + βx2)

Q′(α + βx2)

[
1 +

√
Q(α + βx2)√
Q(α + βu)

+
2c21(u+ x2)Q(α + βx2)

√
Q(α + βu)√

Q(α + βu) +
√
Q(α + βx2)

]
= 0.

Proof. For g ∈ G1 we have that∣∣∣∣∣
∫ c

0

e−yje
α+βx

g(yj) dyj

∣∣∣∣∣ ≤
∫ c

0

e−yje
α+βx |g(yj)| dyj ≤

∫ c

0

e−yje
α+βx

c1 dyj

= c1(1− e−ce
α+βx

)/eα+βx, ∀x ∈ [u, v].

Therefore,[∣∣∣∣∣x1eα+βx2
∫ c
0
e−yje

α+βx2g(yj) dyj

(1− e−ceα+βx2 )
−
x2e

α+βx1
∫ c
0
e−yje

α+βx1g(yj) dyj

(1− e−ceα+βx1 )

∣∣∣∣∣
]2

[∣∣∣∣∣x1eα+βx2
∫ c
0
e−yje

α+βx2g(yj) dyj

(1− e−ceα+βx2 )
−
x2e

α+βx1
∫ c
0
e−yje

α+βx1g(yj) dyj

(1− e−ceα+βx1 )

∣∣∣∣∣
]2

≤

[∣∣∣∣∣x1eα+βx2
∫ c
0
e−yje

α+βx2g(yj) dyj

(1− e−ceα+βx2 )

∣∣∣∣∣+

∣∣∣∣∣x2eα+βx1
∫ c
0
e−yje

α+βx1g(yj) dyj

(1− e−ceα+βx1 )

∣∣∣∣∣
]2

≤ c21(x1 + x2)
2.

Substituting the expression for the c-optimal weights from (7.17) we obtain the

objective function to be minimised to be

1

(x1 − x2)2

{
c21(x1 + x2)

2 +

[
x2√

1− e−ceα+βx1
+

x1√
1− e−ceα+βx2

]2}
:= k̃(x1, x2).

(a) Let β > 0. For fixed x1(< x2), k̃(x1, x2) is decreasing with x2 as the product of two

non-negative decreasing functions and therefore attains its minimum at x∗2 = v. Now

k̃(x1, v) has exactly one turning point on (−∞, v) which is a minimum since

lim
x1→−∞

k̃(x1, v) = lim
x1→v

k̃(x1, v) =∞.

If this minimum is attained outside [u, v) then the smaller support point of the
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design is u. This occurs if and only if

∂k̃(x1, v)

∂x1

∣∣∣∣∣
x1=u

> 0,

which is equivalent to condition

β(u− v) +
2Q(α + βu)

Q′(α + βu)

[
1 +

√
Q(α + βu)√
Q(α + βv)

+
2c21(u+ v)Q(α + βu)

√
Q(α + βv)√

Q(α + βu) +
√
Q(α + βv)

]
> 0.

Otherwise, x∗2 is the larger support point and can be found by solving

∂k̃(u, x2)

∂x2
= 0,

which is equivalent to solving equation

β(x1−v)+
2Q(α + βx1)

Q′(α + βx1)

[
1 +

√
Q(α + βx1)√
Q(α + βv)

+
2c21(x1 + v)Q(α + βx1)

√
Q(α + βv)√

Q(α + βx1) +
√
Q(α + βv)

]
= 0.

The proof of part (b) follows along the same lines with similar arguments as for the

proof of Theorem 9(b) and is therefore omitted.
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